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Summary

The Contribution of Retrotransposons to the Transcriptomes of Murine

Somatic Cells

Joseph Michael Gardner

Retrotransposons comprise approximately 40% of the mouse genome. Once thought

to be useless “junk” DNA, there is growing evidence that retrotransposons play

crucial roles in genome evolution and gene regulation, and contribute to the tran-

scriptome. Several studies have found functional retrotransposon transcripts in

the germline and during early development, but less is known about retrotrans-

poson transcription in adult somatic cells. Retrotransposons are also responsible

for generating gene copies in mammalian genomes (retrocopies), and there are

several examples of retrocopies evolving into new genes, or being transcribed as

non-coding RNA. Using computational approaches, I analyse RNA-seq data to

assess the contribution of retrotransposons and retrocopies to the transcriptomes

of adult mouse somatic cells, using purified naive B and T lymphocytes. First,

I describe the transcriptomes generated using high-quality total RNA-seq data.

Second, I quantify and characterise the retrotransposon content of these transcrip-

tomes. Finally, I identify retrocopy transcripts and assess their relationship with
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the genes from which they originate. I found widespread inclusion of retrotrans-

posons in somatic cell transcriptomes. These transcripts form distinct clusters

based on retrotransposon sequence, with endogenous retroviruses being particu-

larly prevalent in retrotransposon-rich transcripts. While these clusters are consis-

tent between cell types, the individual retrotransposons transcribed show cell-type

specificity. I also find evidence that retrotransposons may facilitate gene regulation

by antisense transcripts. I demonstrate that a subset of retrocopies is transcribed,

and the vast majority of these form RNA complementary to their parent mRNA,

with high sequence identity. Using differential expression and proteome analy-

sis, I present evidence for post-transcriptional regulation of parent transcripts by

retrocopy RNA, possibly through stabilisation of the parent RNA. I also find that

while retrocopy expression is not necessarily shared between cell types or mouse

strains, certain parent transcripts tend to have an expressed retrocopy in multiple

contexts. Overall, this thesis presents evidence of an important role for retrotrans-

posons and retrocopies in the adult somatic transcriptome, and sets the stage for

further investigation to experimentally elucidate the functions of these transcripts.
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Chapter 1

Introduction

The 1950s and 60s were a remarkable time for molecular biology. Arguably the

most famous discovery of this period was the structure of DNA by Crick and

Watson in 1953, based on work by Wilkins and Franklin [1]. In 1961, Jacob

and Monod proposed the Jacob-Monod model, now a textbook example of gene

regulation, and laid out a theory for the role of messenger RNA (mRNA) [2]. In

1961, two studies demonstrated the role of mRNA in protein synthesis [3,4], partly

based on previous work from several authors [5]. Together, these findings laid the

foundation for the “central dogma” of molecular biology: DNA is transcribed

into RNA, RNA is translated into protein. This is an appealing model in its

simplicity, and serves as a good starting point for the student of molecular biology.

Unfortunately, it is insufficient for explaining many other phenomena in genetics

and cell biology. In particular, the related genetic phenomena of non-coding RNA

(ncRNA) and retrotransposons require fundamental revisions to this model.

The central dogma, as stated above, suggests that the role of RNA is only to

transmit genetic information, as an intermediary between DNA and protein. In
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truth, there are many kinds of RNA that do not code for a protein, known as non-

coding RNA, which instead fulfill a role as RNA. The advent of high-throughput

sequencing (HTS) of RNA led to the identification of thousands of distinct ncR-

NAs. A few examples have well-characterised functions, in the classical sense:

they have an observable knockout phenotype, or a known biochemical mechanism

in the cell. These examples demonstrate the potential of ncRNA, but are only a

tiny minority, leaving tens of thousands of positively identified transcripts without

a clear role, if any. This leads to the question of whether every single ncRNA is

functional. Indeed, the answer may call for a revised idea of molecular function. Is

is possible that every individual ncRNA has an observable knockout phenotype or

distinct molecular pathway? Some authors have suggested alternatives, whereby

ncRNAs act in concert; hence, removal of a single ncRNA would have little impact,

but the removal of many would be severely deleterious.

The central dogma, as stated above, only goes in one direction, from DNA

to RNA to protein; it does not allow for the passage of information back from

RNA to DNA. In 1950, Barbara McClintock published a paper describing DNA

segments in maize that could move within the genome [6]. While fascinating,

the importance of these ”jumping genes” was unclear. McClintock herself specu-

lated that these elements controlled gene expression, although this idea was not

immediately accepted [7]. These jumping genes are now known as transposable

elements (TEs): DNA sequences that can move within the genome, or can copy

themselves to a new location. As with ncRNAs, HTS revealed the scale of their

presence: TEs have been found in nearly all species studied, and can account for

significant proportions of the genome. In particular, mammalian genomes have a

high proportion of retrotransposons, TEs that produce new copies of themselves
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in the genome through retrotranscription, a process that uses RNA as a template

to create new DNA. For example, about 40% of the human genome is made up of

TEs, nearly all of which are retrotransposons [8]. It is also widely accepted that

they are vital components of the genome, as McClintock correctly predicted, and

as shown by a few well-studied examples. However, as with ncRNAs, it is not yet

fully understood how many are functional, or even in what sense they might be

functional. In addition, their presence in the genome has led to a number of other

effects, such as gene duplication, altered regulatory networks, and the emergence

of novel genes.

Non-coding RNA and retrotransposons represent two genome-scale phenomena,

not yet fully understood, but undoubtedly important. Both have been linked to

human disease, and cancer in particular. It is particularly fascinating to note that

many studies have now established a link between ncRNAs and retrotransposons,

and so the study of one almost inevitably leads to the study of the other. At

the level of basic science, they are certainly worth studying: huge numbers of

mysterious transcripts, large proportions of genomes, across almost all species

studied. Beyond the motivation of scientific curiousity, their relevance in medical

science is now beyond question.

1.1 Long Non-Coding RNA

As discussed above, thousands of distinct non-coding RNAs have been discovered

across many species. They can be classified into several different kinds, based on

size and function (see Table 1.1).

Most relevant to this work are the long non-coding RNAs, a large class of
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Name Abbr. Size (nt) Function

Ribosomal RNA rRNA 120 - 5,025
Ribosome components;

protein synthesis

Long non-coding RNA lncRNA >200
Various regulatory roles;

see below

Transfer RNA tRNA 70 - 90
Translation of codons to

amino acids

Piwi-interacting RNA piRNA 23 - 31 suppression

Micro RNA miRNA 22
Post-transcriptional gene

regulation via
base-pairing

Small interfering RNA siRNA 22
Post-transcriptional gene

regulation via RNA
interference pathway

Small nuclear RNA snRNA 100 - 300
Pre-messenger RNA

processing

Small nucleolar RNA snoRNA 70
Guiding RNA nucleotide

modifications

Table 1.1: A summary of the major classes of non-coding RNAs [9–12].

ncRNAs usually defined as being more than 200bp in length [11]. Several thousand

distinct lncRNAs have been identified in each of the mouse and human genomes

(as well as other species), and they generally have the following features:

1. Highly tissue-specific expression patterns [11,13,14]

2. Low expression compared to coding RNAs [14,15]

3. Low sequence conservation across species [14, 16], although, recent work by

Hon and colleagues suggests higher levels of conservation than previously

thought [17]
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The advent of high-throughput transcriptomics radically changed our under-

standing of lncRNAs, revealing that thousands of distinct lncRNAs exist. However,

low expression levels and tissue specificity make them particularly difficult to de-

tect using sequencing approaches, notwithstanding the usual biological noise that

affects studies of this kind (e.g., cell cycling, mixed cell populations). Differences

in experimental design, such as sequencing depth and choice of analysis tools, can

also alter the transcripts detected. It is therefore hardly surprising that estimates

of the number of lncRNAs vary widely between studies (Figure 1.1) [18], and there

are still no consensus lncRNA annotations in mouse or human.

Figure 1.1: The number of lncRNAs found in human and mouse in different tran-
scriptomics studies. Figure based on Table 1 in [18], using data from [13–15,19–23]

While annotations continue to expand and improve the catalogue of known

lncRNAs, the question of function is still unanswered. The sheer number of lncR-
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NAs present in the mouse and human genomes makes classical genetic approaches

difficult, although recent studies have demonstrated techniques that can assess the

function of multiple lncRNAs [17,24,25].

A minority of well-studied lncRNAs have been shown to perform a role in the

cell (such as those shown in Table 1.2), and these illustrate the regulatory potential

of lncRNAs. These are not the only examples, and it is likely that more will be

discovered as lncRNA study continues. However, these still account for a small

proportion of the lncRNA transcripts identified in model organisms. Some studies

have suggested that most lncRNAs do not have specific roles as an individuals,

but instead work together. For example, Rinn et al. have suggested that lncRNAs

are used as anchors to alter chromatin structure [18]. Such theories suggest that

the majority of lncRNAs do not have distinct, individual functions, but instead

act together in concert. Traditionally, to say a transcript is functional would

imply that its absence is associated with an observable phenotype. It may be

that to understand lncRNAs requires a different perspective, in which individual

transcripts are not in themselves functional, and to remove them would have little

or no effect; but to remove all such transcripts would have severe consequences.

For the time being, it is unknown whether every single one of these transcripts

has a distinct function; whether lncRNAs work together as a whole; or whether

they are transcriptional noise. It may be a mixture of all three possibilities. While

debate and study of their function continues, there is a common finding across

recent surveys of lncRNAs: they have a strong link with transposable elements,

particularly retrotransposons.
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Name Description Chromosome Function

XIST
X inactive specific

transcript
X

Coats and silences one copy of
the X chromosome during X

chromosome inactivation

AIRN
Antisense IGF2R

RNA
6

Induces imprinting of gene
cluster including IGF2R

HOTAIR
HOX transcript

antisense intergenic
RNA

12
Binds LSD1 and PRC2 to

repress HOXD gene cluster in
trans

FIRRE

Functional
intergenic

repeating RNA
element

X Maintains repressive chromatin

MEG3
Maternally

expressed gene 3
14 Possible tumour suppressor

Table 1.2: Examples of well-studied human lncRNAs that have been functionally
characterised [10, 26–28]. All of these have an orthologue in mouse, although
Hotair may not be functional in mouse [29,30]. IGF2R: insulin-like growth factor
2 receptor. LSD1 : Lysine-specific demethylase 1. PRC2 : Polycomb repressive
complex 2. HOX : Homeobox.

1.2 Retrotransposons in the Mouse Genome

1.2.1 Introduction to the Repetitive Genome

Repetitive DNA is defined as a nucleotide sequence that appears multiple times

in the genome. These sequences are often simply termed “repeats”, and can be

broadly divided into four classes [8] (Figure 1.2):

• Simple repeats: a short nucleotide sequence (e.g., T, CGG) repeated several

times

• Tandem repeats: a longer (100 - 200 base pair (bp)) sequence duplicated
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several times at the same location

• Segmental duplications: large blocks (10 - 300 kilobases) that have been

copied to another region of the genome

• Interspersed repeats: copies of sequences of varying length (100 - 10,000 bp)

at several locations throughout the genome

Figure 1.2: The four broad classes of repeats.

The majority of interspersed repeats are transposable elements (TEs): DNA

elements characterised by an ability to move around the genome, and hence give

rise to interspersed repeats. TEs can be either DNA transposons, which move via

a “cut and paste” mechanism, or retrotransposons, which move via a “copy and

paste” mechanism using an RNA intermediate that is retrotranscribed [31].

Approximately 45% of the mouse genome has been identified as repetitive by

RepeatMasker (Figure 1.3) (see Datasets for a discussion of the RepeatMasker

software). The vast majority of repetitive elements are retrotransposons, with only

a small percentage of the genome identified as simple repeats, tandem repeats,
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or DNA transposons. A similar distribution is observed in the human genome,

although with a higher total percentage of repetitive DNA (52.5%, Figure 1.3).

While the distributions are similar and the broad classes of repeat are shared

between them, the exact subclasses are often species- or lineage-specific (such as

the primate-specific Alu retrotransposon).

Figure 1.3: The repetitive DNA content of the mm10 mouse and hg38 human
reference genomes, as identified by RepeatMasker [8]. LINE: long interspersed
element. ERV: endogeneous retrovirus. SINE: short interspersed element. SVA:
SINE VNTR Alu; a primate-specific retrotransposon composed of a SINE, a vari-
able number tandem repeat (VNTR), and the primate-specific Alu SINE. LINEs,
SINEs, ERVs, and SVAs are the major classes of retrotransposon.

1.2.1.1 Retrotransposons

Retrotransposons (RTs) are characterised by their “copy and paste” mechanism,

which has resulted in many hundreds or thousands of RT copies scattered through-

out their host genomes. While each type of retrotransposon has a different exact

mechanism for retrotransposition, the steps are broadly similar [31] (Figure 1.4):

1. The RT is transcribed into RNA
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2. This RNA is reverse transcribed back into DNA by a reverse transcriptase

enzyme

3. The newly synthesised DNA is inserted into the host genome at a new loca-

tion

Thus, a new copy of the retrotransposon has been created. The use of reverse

transcriptase to synthesise DNA from an RNA template is the key feature that

differentiates RTs from other types of transposable element.

Figure 1.4: The basic mechanism of retrotransposition leading to multiple retro-
transposon copies in the genome.

In practice, this process is often imperfect, causing truncations and other mu-

tations in the new retrotransposon copy [32,33]. RTs are also subject to the usual

mutations that affect the host genome as a whole. This means that many of the

RTs identified in the genome are partial or otherwise imperfect copies that are no

longer competent for retrotransposition [34,35]. Over evolutionary time, new RTs

have emerged and older ones have decayed, leading to species-specific retrotrans-

posons [31]. Examination of shared retrotransposons between species, along with

the degree to which their copies are decayed, can be used to estimate the age of a

retrotransposon type.

Retrotransposons are described as either autonomous or non-autonomous. Au-

tonomous retrotransposons encode all of the cellular machinery needed to copy
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themselves (except for RNA polymerase), while non-autonomous RTs rely on ma-

chinery from another source, such as an autonomous RT. It should be noted that

classification as autonomous does not guarantee that a given RT element is able

to successfully retrotranspose by itself - as discussed above, acquired mutations

have rendered the majority of copies incompetent for retrotransposition. Rather,

it means that the complete and unaltered version of this element would be able to

retrotranspose using its own cellular machinery.

Retrotransposons (RTs) in mammals can be broadly divided into three types

(Figure 1.5), and their presence in the mouse genome is summarised in Table 1.3:

• Long INterspersed Elements (LINEs)

• Short INterspersed Elements (SINEs)

• Endogenous Retroviruses (ERVs)

Each type can be recognised by its structure and mechanism of retrotranspo-

sition, and each has originated from a different source.

Autonomous? Length (bp)
% of
mouse
genome

Number of
elements in

mouse genome

LINE Yes 500 - 8,000 20.3 713,890

SINE No 100 - 300 7.8 1,451,137

ERV Yes 200 - 5,000 12.0 738,286

Table 1.3: A summary of the retrotransposon content of the mouse genome ac-
cording to RepeatMasker [8].
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Figure 1.5: The three main classes of retrotransposon in mammalian genomes.
ERVs are characterised by long terminal repeats (LTRs), which are not found in
LINEs or SINEs. ERVs and LINEs are autonomous. ERVs encode the viral gag
and pol genes for retrotransposition, while LINEs have two open reading frames
(ORFs) coding for the necessary proteins. SINEs are not autonomous, and often
rely on LINEs for retrotransposition. Figure adapted from [36] and [37].

1.2.1.2 LINEs

LINEs are autonomous, and have been highly successful in eukaryotic genomes,

particularly in mammals [8] [38]. In mammals, LINEs can be classified as LINE-1

(L1) or LINE-2 (L2), although L1s dominate, and the few remaining L2s are fossils

that are not competent for retrotransposition.

Complete LINEs typically have the following structure (Figure 1.5) [39]:

• A 5’ untranslated region (UTR) that contains an internal RNA Polymerase

II (RNAPII) promoter
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• Open reading frame (ORF) 1, which encodes an RNA binding protein

• ORF2, which encodes a protein with endonuclease and reverse-transcriptase

functions

• A 3’ adenosine-rich region

The proteins encoded by ORF1 and ORF2 are both crucial for retrotranspo-

sition. Both exhibit a strong cis-preference and so tend to associate with the

RNA molecule that encoded them, in an attempt to ensure that the LINE itself is

retrotransposed [40–42].

LINEs retrotranspose through the target-primed reverse transcription (TPRT)

mechanism [43] (Figure 1.6). This mechanism typically produces target-site dupli-

cations, 5’ truncation of the LINE, and A-rich sequence at the 3’ end; it can also

lead to inversions of the L1 [31–33, 43]. This propensity for errors has left only a

few active copies remaining (about 100 in humans) [34].

The origin of LINEs is still unclear. There is evidence that they may have

evolved from group II introns, mobile genetic elements found in bacterial and

mitochondrial genomes (reviewed in [44]). Group II introns and LINEs have similar

reverse transcriptases, and both use the TPRT mechanism for retrotransposition.

However, it is difficult to distinguish between this case and the possibility that

LINEs and group II introns share a common ancestor.
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Figure 1.6: The target-primed reverse transcription (TPRT) mechanism used by
LINEs for retrotransposition, adapted from [37].
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1.2.1.3 SINEs

SINEs are not autonomous, and instead depend on LINE machinery for retro-

transposition [45, 46]. Some SINEs have sequence that closely matches that of

a particular LINE, increasing the likelihood that the LINE proteins will retro-

transpose the SINE instead [47]. As such, their mechanism of retrotransposition

is essentially the same as for LINEs, but with SINE RNA instead of the original

LINE. Despite (or perhaps because of) their reliance on LINEs, SINEs have been

highly successful in eukaryotic genomes.

SINE structure is as follows [48] (Figure 1.5):

• An RNA Polymerase III (Pol III) promoter that initiates transcription

• LINE-like sequence used for retrotransposition, although this is not always

present

• An A-rich 3’ tail

However, there can be significant variation in structure between individual SINEs.

As the name suggests, they are shorter than other retrotransposons, usually be-

tween 80 and 500 bp [48].

SINEs are thought to be derived from cellular RNA combined with other se-

quence, such as partial LINE elements. In mouse, there are four main subclasses of

SINE: B1, B2, B4, and ID, in order of abundance. These are derived from tRNA

(ID, B4, B2) [49,50] or 7SL RNA (B1, B4) [50].
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1.2.1.4 ERVs

ERV retrotransposons are characterised by the presence of a long terminal repeat

(LTR) at each end of the retrotransposon [51,52]. Full length ERVs, partial ERVs,

and solo LTR elements have all been identified in the genome [8,52]. The full ERV

structure is as follows (Figure 1.5):

• The 5’ LTR, which initiates transcription

• Gag, pol, and env genes that encode viral proteins for retrotransposition

• The 3’ LTR, which terminates transcription

As the 5’ and 3’ LTRs are identical, they can undergo homologous recombination,

excising the viral genes in between and leading to solo LTRs [53]. The mechanism

of retrotransposition for LTR elements is summarised in Figure 1.7.

As the name suggests, ERVs are thought to have originated from retroviruses

that infected the ancestral germline and inserted a copy of their viral genome [54].

These copies lost the ability to transfer horizontally from cell to cell, instead be-

coming restricted to transfer within the genome of a single cell. New ERVs have

emerged within lineages, giving rise to multiple related families of ERVs within

any given species. In the mouse, for example, there are three main classes of ERVs,

which can be further subdivided into 13 subclasses [55]. While the behaviour of

each class is broadly similar, their age and activity levels vary.
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Figure 1.7: The mechanism of retrotransposition used by ERVs, adapted from [37].
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1.2.2 Silencing of Retrotransposons

Active retrotransposons pose a great threat to genome stability, potentially causing

severe deleterious mutations. Germline mutations could result in inviable offspring,

and retrotransposon activity has been linked to more than 90 genetic diseases in

humans [56]. L1 activity in somatic cells has been linked to numerous types of

cancer, although it is unclear whether this is a cause of cancer or an effect of

a more fundamental loss of regulation [57]. In order to limit the damage done

by retrotransposons, mammals (and many other species), have evolved an array of

mechanisms to repress retrotransposons. As an organism develops, different mech-

anisms become important, acting in complementary fashion to ensure continuous

silencing of retrotransposons. The three major mechanisms found in mammals are

DNA methylation, histone modifications, and Piwi-interacting RNA.

1.2.2.1 DNA Methylation

DNA methylation is one of the most important and best-studied epigenetic marks

in mammals, and plays an essential role in retrotransposon suppression. Indeed, it

has been suggested that DNA methylation originally evolved as a retrotransposon

defence mechanism, before gaining other functions such as gene regulation and

imprinting [58]. DNA methylation is the addition of a methyl group to a cytosine

(C) to form 5-methylcytosine (5mC) (Figure 1.8). In mammals, this usually occurs

at a cytosine-guanine dinucleotide (CpG).

In nearly all differentiated cells, retrotransposons are heavily methylated [60],

and numerous studies have shown that demethylation is associated with increased

retrotransposon activity, in a variety of contexts. In mouse, failure to establish or
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Figure 1.8: The addition of a methyl group to cytosine to form methylated
cytosine/5-methyl cytosine (5mC). Figure from [59].

Figure 1.9: The DNA methyltransferase (DNMT) enzymes in mouse. Dnmt1 main-
tains already-established methylation. Dnmt2 and Dnmt3A/3B establish methy-
lation de novo. Dnmt3L does not methylate directly, but is an important co-factor
facilitating methylation by the catalytic methyl transferases. Figure from [60].

maintain methylation during development results in increased L1 and ERV activ-

ity [61,62], and removal of methylation in post-natal mice leads to increased ERV

activity [63]. In human cell lines, lower methylation levels seem to correlate with

increased human ERVK (HERVK) activity [64]. These findings are corroborated

by Reiss and colleagues, who found that LTRs with placenta-specific promoter

activity are demethylated in placenta, but methylated in blood cells [65]. Studies

in cancer cell lines have found similar upregulation of L1 and ERV elements in the
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absence of methylation [66–68]. These studies represent a convincing and growing

body of evidence that methylation is vital in controlling retrotransposons, par-

ticularly L1s and ERVs. However, removal of methylation is not associated with

increased activity across all retrotransposons. For example, SINE expression in

human cell lines is not affected by demethylation [69]. Lavie et al. examined spe-

cific HERVK elements in different cell lines and found that they were suppressed

by methylation in Tera-1 cells, but T47D cells did not show increased HERVK

expression, despite reduced methylation at the same elements [64]. It may be that

these elements are silenced by other mechanisms, such as histone modifications

(see below). Alternatively, they may have become degraded to such an extent that

methylation can no longer be targeted - at which point it is also unnecessary, as

the retrotransposon will likely be incapable of retrotransposition.

1.2.2.2 Histone Modifications

During early mammalian development, there is a wave of epigenetic reprogram-

ming, when nearly all methylation is removed from the genome and re-established

(Figure 1.10) [70]. This could lead to increased levels of retrotransposon activity

at a time when genome stability is particularly important. However, nearly all

retrotransposons remain inactive during reprogramming, as multiple mechanisms

act in a complementary fashion. One of these mechanisms is histone modifications.

Histone modification is another well-studied epigenetic mechanism. In eukary-

otes, DNA is packaged as nucleosomes. Each nucleosome consists of a segment

of DNA wrapped around a protein complex consisting of eight histone proteins

(Figure 1.11). Chemical modifications, such as methylation and acetylation, can

be made to the N-terminal tail of each histone protein. These modifications then
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Figure 1.10: Methylation levels during mouse development. Cells undergo two
waves of reprogramming. This first occurs after fertilisation. The paternal pronu-
cleus undergoes rapid demethylation (blue), followed by passive loss of methylation
in the maternal pronucleus. Methylation is then re-established in the inner cell
mass (ICM). In the primordial germ cells (PGCs, shown in green), there is a sec-
ond wave of reprogramming, which establishes sex-specific methylation patterns.
During the periods of low methylation, retrotransposons are free from methylation-
based control. Figure from [70].

affect expression of nearby regions by altering chromatin structure and/or recruit-

ing interactors. Different combinations of histone protein, modified residue, and

chemical modification lead to a wide range of effects.

The regulation of transposable elements by histone modifications is not yet

completely understood, and involves several complex interactions between vari-

ous DNA-binding complexes, recruiters, and histone modifiers. However, there

are common findings from several groups providing some insight into the rela-

tionship between histone modifications and retrotransposon control. Two histone

modifications in particular seem to be associated with retrotransposon silencing:

histone 3 lysine 9 trimethylation (H3K9me3) and histone 4 lysine 20 trimethyla-
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Figure 1.11: A cartoon showing the structure of nucleosomes. DNA (red) wraps
around the histone proteins (yellow). The tails can be chemically modified, which
results in epigenetic regulation. Figure from [9].

tion (H4K20me3). Genome-wide studies have found enrichment of one or both of

these marks at ERVs in mouse embryonic stem cells (mESCs) [71–74]. Both of

these marks are associated with repression, and mutants lacking enzymes that es-

tablish H3K9me3 show increased levels of retrotransposon expression, particularly

ERVs [74]. This is in contrast to H4K20me3, which appears to be dispensable,

with no deregulation as long as the H3K9me3 marks remain intact [73].

1.2.2.3 Piwi-interacting RNA in the Germline

As noted above, the germline undergoes epigenetic reprogramming during devel-

opment. During these periods, and in general, it is important to silence retro-

transposons in the germline, not least because germline insertions can become

fixed in the genome. To achieve constant repression of retrotransposons in the

germline, a germline-specific small RNA-mediated mechanism has evolved, based

on Piwi-interacting RNAs (piRNAs). PiRNAs are a class of short non-coding

RNA, between 23 and 31 bp long [12], which control transposable elements (TEs)

at both the transcriptional and post-transcriptional levels. Two features of the
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piRNA pathway make it extremely effective in its control of TEs: the ability to

adapt to and remember new TEs, and a mechanism for amplifying piRNAs to

specifically target active TEs.

As the name suggests, the piRNA silencing mechanism relies on interaction

with proteins in the Piwi family, a metazoan-specific clade of the Argonaute protein

family [12]. While the piRNA pathway is found throughout eukaryotes and much

work has been done on piRNA in Drosophila melanogaster and Caenorhabditis

elegans, this discussion will focus on piRNA in mice. The mouse genome contains

three proteins in the Piwi family: MIWI, MILI, and MIWI2, which are expressed at

different stages in development and correspond to different subsets of piRNA [75–

78]. It should be noted that in mouse there is an unusual asymmetry between

the piRNA activity in male and female germlines. In Drosophila, zebrafish, and

several mammalian species (including humans), piRNAs are active and essential

in both spermatogenesis and oogenesis [79, 80]. In mice, the Piwi proteins and

piRNAs are essential for spermatogenesis and male fertility, but do not affect

female fertility [75–77]. Oocytes do express the Piwi proteins [81, 82], but have

very low piRNA levels [83,84]. It is beyond the scope of this introduction to explore

this interesting discrepency, and so the rest of this section will focus on piRNAs

in the male germline.

piRNAs are a highly complex group of molecules, with millions of distinct piR-

NAs found in mouse. However, these millions of individual sequences all map to a

few regions on the genome, known as piRNA clusters [85–89]. These regions can be

very large (up to 200kb), and in mouse are usually found in euchromatic domains.

In mouse there are two kinds of piRNA cluster: one class which is transcribed

in embryonic development, and another which is transcribed in the spermatogenic
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cells of adolescent mice during meiosis (known as pachytene clusters) [81]. The for-

mer class defends against retrotransposon activity, but the function of pachytene

clusters is not yet completely understood. Unless stated otherwise, the rest of this

discussion will focus on the former class.

The primary role of piRNAs in the germline is to defend the genome from

potentially harmful mutations caused by transposable elements. In mouse, there

is evidence for both transcriptional and post-transcriptional silencing. At the

transcriptional level, piRNAs and Piwi proteins are essential in establishing DNA

methylation during embryonic germ cell development [81,90,91]. Failure to estab-

lish DNA methylation during this period leads to retrotransposon activation and

subsequent sterility [75].

In order to understand the post-transcriptional activity of piRNAs, one must

first understand their biogenesis. piRNAs can be classified as either primary or

secondary, based on how they are generated. Primary piRNAs arise from pre-

cursors transcribed from piRNA clusters. These precursors are single-stranded

RNA molecules that are significantly longer than piRNAs. The exact mechanism

that gives rise to mature piRNAs from these precursors is not yet completely un-

derstood [12, 92]. It is thought that the precursors are first cleaved into shorter

piRNA precursors, which are then loaded into a Piwi protein. After loading, the

piRNA precursor is trimmed and stabilised. Disruption of any of these steps leads

to a reduction in the number of piRNAs, increased retrotransposon activity, and

sterility [12].

piRNA clusters are enriched for retrotransposon sequence. Therefore, piRNAs

contain short pieces of retrotransposon sequence, which are used to target RNA

molecules transcribed from retrotransposons. These can then be cleaved by the
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Piwi protein into which the piRNA is loaded. The use of retrotransposon sequence

to target active retrotransposons gives piRNA a “memory” that has been likened

to an adaptive immune system. If an active retrotransposon jumps into a piRNA

cluster, piRNAs to target it can be generated, and so the retrotransposon can be

suppressed [12,92].

Secondary piRNAs are generated by an amplification pathway known as the

ping-pong cycle. This pathway is significantly better understood than primary

piRNA biogenesis, particularly in Drosophila. In the ping-pong cycle, TE tran-

scripts are cleaved by Piwi proteins loaded with piRNA. These cleaved transcripts

are then used by other Argonaute proteins to select transcripts from the piRNA

cluster that match the cleaved transposon. These piRNA precursors are then pro-

cessed to form mature piRNA that can target the active transposon, and so the

cycle continues. In this way, piRNAs that target active transposable elements

are amplified. The combination of memory and amplification ensures effective

and adaptive suppression of any transposable element that escapes transcriptional

silencing [12,92].

1.2.3 The Role of Retrotransposons in Genome Evolution

and Function

Despite the efforts to suppress their activity, the presence of retrotransposons

in mammalian (and other) genomes has had far-reaching consequences for the

evolution of their host organisms at a molecular level. Retrotransposons are now

known to make significant contributions to the transcriptome. Alongside this,

they have had a great impact on expression regulation, transcript diversity, and
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epigenetic mechanisms [93].

1.2.3.1 Retrotransposons Create Regulatory Elements

Retrotransposons are a rich source of regulatory elements, including promoters, en-

hancers, and transcription factor binding sites (TFBSs) [52]. As retrotransposons

have spread, their regulatory regions have been adopted by host genomes and used

to engineer transcriptional activity, including the creation of new regulatory net-

works, the modification of existing ones, and the regulation of new transcriptional

units. This can occur when a new RT copy inserts in or near an existing gene

such that the RT regulatory elements can influence the gene’s expression pattern.

While this may be deleterious, in some cases it has led to beneficial effects for the

host genome, and the new regulatory network has been retained.

There is overwhelming evidence for this, to the extent that there is now a

catalogue of genes affected by transposable elements [94]. This catalogue lists 124

experimentally validated cases of genes influenced by transposable element-derived

regulatory elements in humans, and 48 examples in mouse [94]. Summary statistics

show that SINEs are responsible for 112 cases (about 50%), with LINEs and LTRs

accounting for the remainder, except for the 7 (∼3%) due to DNA transposons.

About 75% of the regulatory effects are due to promoters (primary or alternative),

alternative splicing, and alternative polyadenylation signals. When broken down

by transposable element type, LTRs are primarily responsible for new promoters,

while SINEs cause alternative splicing. Alternative splice sites and promoters ac-

count for 50% and 20% of LINE effects. In addition to the validated examples,

genome wide studies have identified many thousands of possible sites where trans-

posable elements influence genes [94–96]. Below, I describe some examples that
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illustrate how retrotransposon regulatory regions can influence transcription.

The LTR regions of ERVs contain promoters used to initiate their own tran-

scription as the first step in retrotransposition. If an ERV inserts near an existing

gene, the LTR promoter can act as an alternative promoter for that gene, or can

become the sole promoter. An example of the former is found in the human p63

gene. This gene was known to eliminate oocytes that had suffered from DNA dam-

age, but an equivalent activity in the male germline had not been identified [97].

Beyer et al. identified a novel p63 transcript expressed specifically in testis, with

a transcriptional start site (TSS) inside an upstream LTR. Hence, the insertion of

a retrotransposon upstream of a gene provided an alternative promoter, leading

to a novel transcript with new tissue-specificity [97].

A particularly well-studied and interesting example of an LTR promoter ef-

fect is the Agouti viable yellow gene in mouse, reviewed in [98]. The insertion of

an intracisternal A particle (IAP), a mouse-specific ERV, upstream of the Agouti

gene has provided an alternative promoter. If this promoter is unmethylated, the

Agouti gene is ectopically expressed, leading to a different coat colour phenotype

(Figure 1.12). If methylated, normal expression occurs and the usual phenotype

is observed. This particular example also demonstrates the ability of retrotrans-

posons to create metastable alleles: genes that create different phenotypes depend-

ing on the epigenetic state of a particular locus, in genetically identical individuals.

There are also entire gene networks that have been found to rely on retrotrans-

poson regulatory elements. Chuong et al. found that the interferon pathway in

humans, part of the innate immune system, relies on TFBSs derived from a par-

ticular family of ERVs. Deleting these ERVs led to a reduced immune response

to viral infection. They also found evidence for a similar exaptation of ERVs
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Figure 1.12: The Agouti viable yellow (Avy) example of a retrotransposon influ-
encing gene expression. (A) The insertion of an intracisternal A particle (IAP),
a mouse-specific ERV, upstream of the Avy gene leads to ectopic expression if
the ERV is unmethylated. This leads to a metastable epiallele. (B) Genetically
identical individuals with different epigenetic states leading to distinct phenotypes.
Figure from [98].

in other primates [99]. A similar example is found in gene networks involved in

pregnancy. In humans, progesterone triggers differentiation of endometrial cells to
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form the maternal component of the placenta (the decidua). This process depends

on the activation of a gene network that uses MER20 ERVs as binding sites for

progesterone-responsive signalling molecules [100].

As noted above, retrotransposons can introduce new alternative splice sites,

potentially leading to new isoforms of that gene. The primate-specific Alu SINE

has been particularly well-studied in this context, with several studies showing that

nearly all Alu-containing exons in humans are alternatively spliced [101–104]. Shen

et al. found a particular enrichment for Alu-induced exons in the zinc finger pro-

teins of primates and humans [104]. In some cases, the introduction of splice sites

has led to tissue-specific isoforms, as observed in the selenoprotein N 1 (SEPN1)

gene [105]. In humans, SEPN1 has a muscle-specific isoform resulting from an Alu

exon, which is not present in macaque and chimpanzee. Lin et al. hypothesised

that the introduction of Alu led to beneficial new tissue specificity [105].

Retrotransposons can also contain alternative polyadenylation sites, influenc-

ing the post-transcriptional processing of expressed isoforms [93]. The attractin

(ATRN) gene in humans illustrates how a retrotransposon insertion can influence

transcript diversity and function. An L1 insertion in an intron of ATRN causes

cleavage and polyadenylation at an alternative site for some ATRN transcripts,

while others splice out the L1. The former transcript encodes a soluble form of

ATRN, whereas the latter encodes a membrane-bound protein [106].

1.2.3.2 Retrotransposons Cause Genomic Rearrangements

Retrotransposons have the potential to cause genomic rearrangements. The obvi-

ous case is the simple insertion of a retrotransposon into or near a gene. This can

disrupt an open reading frame, causing the gene to lose coding ability, or separate
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a gene from its enhancer or promoter. It is also possible for a retrotransposon in-

sertion into a gene to lead to new transcripts, as described by Wheelan et al. They

identified 15 candidate genes that had undergone an L1 insertion leading to the

creation of novel transcripts, as a result of the L1 antisense promoter [107]. More

recently, Criscione et al. used computational methods to identify 988 possible

chimeric transcripts initiated from within L1 promoters. It is not known whether

these transcripts are functional, and it is possible that they are transcriptional

noise resulting from incomplete silencing of L1s. On the other hand, the inclusion

of gene sequence could result in coding or regulatory potential.

The mechanism of retrotransposition can also cause structural variants. As dis-

cussed in detail below, retrotransposons can retrotranspose mRNA from a protein-

coding gene to create a gene retrocopy. Another well-studied mechanism is trans-

duction. L1s have a weak transcription termination signal [108,109], and so in some

cases the RNA polymerase will read through this and transcribe extra sequence

downstream of the retrotransposon (Figure 1.13) [108, 110, 111]. The whole tran-

script can then be picked up by the L1 retrotransposition machinery and inserted

somewhere else. Hence, not only has the retrotransposon been moved, but a length

of downstream sequence has also been copied to a new location. Approximately

15% of L1s in humans were found to be flanked by sequences showing evidence of

transduction events [111], and L1-mediated transduction has been linked to can-

cer [112] and some genetic diseases [39]. Regulatory or coding elements in this

extra sequence could interact with their new genetic environment, altering expres-

sion patterns or leading to new transcripts. This process could also lead to new

gene copies, but there are no in vivo examples of L1 transduction creating new

genes, other than in the context of disease. It may be that ancient examples of
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this have decayed to the point that they are no longer identifiable as the result of

transduction.

Figure 1.13: A cartoon showing L1 transduction. RNA polymerase reads through
the weak termination signal in the L1 until an alternative is found. The whole
transcript is then retrotranscribed and inserted into a new location. Thus, a new
copy of both the L1 and neighbouring sequence is produced. This can potentially
create gene copies in new locations.

The presence of multiple near-identical copies of the same sequence in the

genome leads to non-allelic homologous recombination (NAHR). This can cause

significant structural variants. Such events are thought to be responsible for a

number of structural variants between the human and chimpanzee genomes, and

have been linked to genetic diseases [39].

1.2.3.3 Retrotransposons Alter the Epigenome

Retrotransposons are thought to have played a significant role in the evolution of

epigenetic mechanisms, and continue to be an important part of several epigenetic
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pathways. DNA methylation, one of the most widespread and important epige-

netic marks in mammals, may have evolved as a defence against retrotransposons.

Similarly, piRNAs are thought to have evolved as a retrotransposon defence mech-

anism, but have now gained other functions in the genome.

Some investigators have observed that retrotransposons may act as nucleation

points for epigenetic marks, from which marks can spread to neighbouring re-

gions [113, 114]. Conversely, L1s may be involved in X chromosome inactivation

(XCI), helping genes to escape repression. During XCI, the Xist lncRNA is ex-

pressed and coats one copy of the X chromosome, silencing it. The small number

of genes that escape XCI are found in low-L1 regions, and some experiments have

found evidence for L1s actively nucleating heterochromatin formation [27]. How-

ever, the role of L1s in XCI, if any, is still not clear, and will require further

study.

1.2.4 Transcription of Retrotransposons

Retrotransposon contributions are not limited to the genome, but extend to the

transcriptome, despite the danger posed by transcriptionally active retrotrans-

posons. There is now substantial evidence that a limited amount of retrotranspo-

son activity is not only permitted, but essential for certain cell types. The work

in this area can be separated based on the cell types investigated. The majority

of work has been done in embryonic stem cells (ESCs), with some related work

in induced pluripotent stem cells (iPSCs). Other studies have focused on adult

somatic cells, with notable emphasis on the placenta and brain.
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1.2.4.1 Retrotransposon Transcription in Pluripotent Cells

During embryonic development in humans and mice there is a general relaxation

of the controls on retrotransposons, in part due to the wave of epigenetic repro-

gramming that occurs in this period of development. It is therefore not surpris-

ing that increased levels of retrotransposon expression are observed in embry-

onic cells [115, 116]. However, several studies have found evidence that specific

retrotransposons are actively expressed at particular stages in development and in

ESCs [117–119]. Human ERVs (HERVs) in particular seem to serve as mark-

ers for pluripotency, and may have a functional link to the pluripotent state

[116, 118, 120–123]. Others have found that there is in fact dynamic control

of ERVs during development, with different transcriptional profiles at different

stages [124,125].

Indeed, it appears that some retrotransposons are in fact regulated by pluripo-

tency genes. A number of studies have shown that HERV-K and HERV-H el-

ements are regulated by the pluripotency transcription factors (TFs) Oct4 and

Nanog [122, 126]. As relatively young retrotransposons, some HERV-K elements

have retained their protein-coding potential, and so their RNA can be translated

to form viral-like particles in the cell [116]. It has been suggested that the presence

of these particles induces an antiviral response in the embryo, protecting it from

new viral infections.

1.2.4.2 Retrotransposon Transcription in Adult Cells

Several studies have shown that a significant proportion of lncRNAs contain a

retrotransposon, or at least part of one [127–129]. However, the exact number
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of lncRNAs present and the proportion of lncRNAs containing retrotransposon

sequence vary between studies. The role of transposable elements in lncRNAs is

not yet clear and the role of lncRNAs as a whole is still an area of active research.

Some hypotheses have been suggested, however. Kapusta and colleagues found

evidence that the presence of retrotransposons in lncRNAs allows them to form

secondary structures, which may be of functional importance [128]. Johnson and

Guigó have proposed that retrotransposons in lncRNAs act as sites for RNA, DNA,

or protein binding [130]. Such a role may explain how functional evolution can

keep pace with the rapid evolution seen in lncRNAs.

Aside from their presence within lncRNAs themselves, it is now generally

agreed that retrotransposons contain a significant proportion of transcriptional

start sites for lncRNAs [127, 128, 131]. Again, estimates vary as to how many

lncRNAs are initiated from retrotransposons. This relationship is unsurprising,

given the significant regulatory potential of retrotransposon sequences, discussed

above.

A better-understood example of retrotransposon utilisation comes from placenta-

specific genes. The placenta is a transient organ that mediates the exchange of gas

and nutrients between fetus and mother during pregnancy [132]. In humans it also

provides an environment where the “foreign” paternal antigens of the fetus are tol-

erated, protecting the fetus from rejection by the mother’s body [132]. Part of the

placenta is formed of cytotrophoblast cells, which have the unusual ability to fuse,

forming the syncytiotrophoblast [133]. This is a layer that mediates implantation

of the embryo into the endometrium. It subsequently plays a number of essential

roles, including mother-fetus exchange, hormone secretion, immune response reg-

ulation, and protection from pathogens. In humans, the syncytin genes syncytin-1
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and syncytin-2 are have a major role in the formation of the syncytiotrophoblast.

These genes are derived from human ERV (HERV) retrotransposons encoding for

viral env genes [52, 134]. In their ancestral viral role, the Env proteins coded by

this gene were essential for viral entry into the cell, inducing fusion of the viral

envelope with the target cell membrane. This ability to induce fusion makes them

useful in the development of the syncytiotrophoblast.

The syncytin-1 and syncytin-2 genes are hominoid- and primate-specific, re-

spectively, having emerged 30 million years and 45 million years ago. Remarkably,

syncytin genes derived from ERVs have been identified in diverse other mammalian

species, in a fascinating example of convergent evolution. In mice, for example,

the syncytin-A and syncytin-B genes are unrelated to the human genes but share

an analogous function and similar characteristics, and are derived from ERVs.

Homologous genes have been found in carnivores, ruminants, and other eutherian

mammals, indicating that there have been independent ERV exaptation events in

each of these lineages (Figure 1.14) [52].

Figure 1.14: Syncytin genes in mammalian lineages. In a remarkable example of
convergent evolution, each lineage has independently evolved syncytin genes from
ERVs. Figure from [52].

Despite the various examples of functional retrotransposon transcription in
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both adult and embryonic cells, the transcription of retrotransposons still has the

potential to cause insertional mutations through retrotransposition. Remarkably,

there is growing evidence that retrotransposition events may in fact play a use-

ful role, specifically in cells of the neuronal lineage (reviewed in [135]). Several

studies have shown that these cell types accommodate L1 activity leading to new

insertions. The frequency of these insertions is disputed, with estimates varying

between studies, possibly due to differences in the techniques used to measure

insertional frequency. These inconsistencies aside, it is generally agreed that L1s

are mobilised in the brain, and these events can be traced back to neuronal pre-

cursor cells. These insertions are enriched in genes related to neurobiology and

in neuronal enhancers, and therefore have an increased chance of creating a new

molecular phenotype in the brain. As yet, the function of these insertions is un-

clear. There is no obvious evolutionary advantage to allowing individual insertions,

as they cannot be passed to subsequent generations [135]. It has been hypothe-

sised that L1 activity in neuronal precursors gives the host organism an advantage

by creating genetic mosaicism, akin to the V(D)J system in adaptive immunity.

There is much work to be done before the purpose of neuronal L1 activity becomes

clear, however.

1.2.5 Retrotransposon Outlook

The role of retrotransposons in the genome is not yet completely clear, but a

picture is emerging showing their remarkable contribution to transcriptional and

functional evolution, both directly and indirectly. Their threat to genome sta-

bility has forced the evolution of a myriad of defence mechanisms, which have
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since been adopted for other functions, increasing the complexity and power of the

epigenome. The regulatory sequences they contain combined with their spread

throughout the genome have given host genomes the opportunity to modify ex-

isting transcriptional networks and create entirely new ones. Retrotransposition

activity has shuffled the genome, creating new copies of genes, which act as raw

material for the creation of new genes and the modification of existing ones. Fi-

nally, their contribution to the transcriptome, both coding and non-coding, is only

just emerging. Useful protein functions have been adopted and led to the evolution

of some of the most fundamental mammalian traits. As the non-coding genome

begins to be understood, retrotransposons will be included in the discussion, as it

is already abundantly clear that they make up a great part of it. While retrotrans-

posons are undoubtedly dangerous and continue to lead to mutations and disease,

their presence in our genome has become indispensable.

1.3 Gene Retrocopies

Throughout the mouse and human genomes, there are full and partial copies of

genes. Here, I will review the mechanisms by which gene copies arise, focusing

on those that arise as a result of retrotransposon activity. I will then discuss the

evolutionary and functional roles they have acquired.

1.3.1 Retrocopy Origins in Mammals

New copies of existing genes can arise through either DNA-based or RNA-based

mechanisms. DNA-based mechanisms include segmental duplications overlapping

all or part of a gene, and large-scale genome duplication events leading to copies of
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whole chromosomes [136]. RNA-based mechanisms rely on the activity of a reverse

transcriptase (RT) enzyme that uses an mRNA template to synthesise DNA, which

is then integrated into the genome [137]. In many eukaryotes, and particularly

mammals, the major source of reverse transcriptase is retrotransposons [40, 42,

138,139]. As such, gene copies arising in this way are often known as retrocopies.

These arise when the reverse transcriptase from a retrotransposon erroneously

targets mRNA from a gene, rather than retrotransposon’s own RNA. The mRNA

is then used to synthesise DNA, which is inserted into a new location (Figure 1.15).

Figure 1.15: The process by which new retrocopies are formed as a result of the
activity of reverse transcriptase (RT) from a retrotransposon. Instead of targeting
the retrotransposon RNA, the RT enzyme targets mRNA from a gene. New DNA
is then synthesised using the mRNA as a template, and this is inserted into the
genome at a new location. Hence, a new partial copy of the original gene arises.

The high level of retrotransposon activity in many eukaryotic lineages has led

to large numbers of retrocopies in modern genomes. In mouse, the estimated

number of retrocopies ranges from 6,000 to 18,500, depending on the method used

to identify them [140]. In general, retrocopies are found by searching for sequences

matching mRNA from existing transcripts. This process is confounded by acquired
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mutations in retrocopies and a lack of sequence motifs that consistently identify

retrocopies [140].

The retrotransposons responsible for retrocopy formation vary between species,

depending on which have been most active. In mammals, LINE-1 (L1) elements

seem to be the most significant contributors. Studies in cultured cells have demon-

strated the ability of L1 elements to create gene retrocopies using mRNA as a

template [40,42,138,139]. There also seems to be a correlation between L1 activ-

ity and retrogene formation. For example, the platypus seems to have relatively

few retrocopies [141], commensurate with its small number of L1 elements [137],

while the mouse has many thousands of retrocopies [141], and a large number of

L1 elements [8]. Many recent retrocopies show the hallmarks of L1-based retro-

transposition, such as target-site duplications [40, 42, 138]. These hallmarks tend

to decay over time, and so it is harder to demonstrate conclusively that older retro-

copies originated from L1 activity [140]. Alongside L1s, ERV retrotransposons are

also abundant in mammalian (and other) genomes, and also encode for reverse

transcriptase enzymes. One might expect that ERVs would then also give rise

to retrocopies, but it is not yet clear whether this is the case. Introduction of

ERV RT enzymes into cell lines does not give rise to new retrocopies, as L1 RT

does [139]. However, Tan et al. recently found evidence for LTR-mediated gene

duplication in a range of metazoan species, including mammals [142]. The decay

of tell-tale marks that would identify the pathway responsible make it difficult to

reliably assign retrocopies to the retrotransposon family responsible. It may also

be that LTR-mediated duplications are sufficiently rare that experimental assays

cannot detect them - indeed, fewer than 0.05% of L1 retrotransposition events led

to retrocopy formation [42]. While L1s are probably the major players in retrocopy
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formation in most mammals, it would be unwise to dismiss the potential impact

of other autonomous retrotransposons.

The structure of the retrocopy compared to its parent gene depends primarily

on the RNA molecule that was retroposed. The majority of retrocopies observed

in the mouse and human genomes are partial copies, sometimes known as pro-

cessed pseudogenes [137]. In these cases, the mature mRNA has been captured

by the retrotransposition machinery. Therefore, the new copy will lack any un-

transcribed regulatory regions, introns will have been spliced out, and it will have

a polyA tail. While these retrocopies appear at first to be functionally incom-

petent, especially as they lack regulatory sequence, there is now evidence that

they make significant contributions to genome evolution and the transcriptome,

discussed below. In rare cases, full retrocopies of genes have also been observed,

when a non-processed mRNA has been retrotranspsosed. These will have retained

introns from the parent gene, and will not have a polyA tail. In cases where the

parent gene has multiple transcriptional start sites, a promoter may also be in-

cluded in the retrocopy, potentially leading to expression of the retrocopy from its

own promoter [141].

It should be noted that for a retrocopy to become fixed in a lineage, its forma-

tion must take place in the germline. Therefore, there are two basic requirements

for a retrocopy to form: its parent gene must be expressed at some level in the

germline, and a retrotransposon able to carry out retrotransposition must be ac-

tive. This has led to a bias in the formation of retrocopies of germline-specific

genes, and genes that are expressed ubiquitously across tissues [143–145].
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1.3.2 Contribution of Retrocopies to Genome Evolution

Gene retrocopies make good source material for new genes and transcripts. Despite

the frequent lack of promoters and introns, there are several examples of retrocopies

evolving into new genes, often with a different function to their parent. In general,

retrocopies tend to evolve distinct expression patterns from their parents, becoming

involved in new pathways and thus evolving new functions [137,140]. In some cases,

the retrocopy is still able to encode for a protein, but mutations lead to a change in

subcellular localisation of the new protein [146]. An example of this is glutamate

dehydrogenase 2 (GLUD2), which emerged in a common ancestor of apes and

humans as a retrocopy of GLUD1 [147]. GLUD1 localises to mitochondria and the

cytoplasm, but a substitution in the protein’s sequence led to GLUD2 targeting

only mitochondria [148, 149]. It has been suggested that this change contributed

to adaptation of GLUD2 for a new function in metabolism in the brain [149].

Aside from the creation of new genes, retrocopies inserted into or near an

existing gene can alter the expression patterns of the existing gene, or lead to

the creation of novel transcripts. Illustrative examples of these “fusion genes” are

found in owl monkeys and macaques. Remarkably, both examples involve the same

pair of genes, tripartite motif containing 5 (TRIM5) and cyclophilin A (CypA).

TRIM5 is an antiviral defence gene, while CypA binds strongly to retroviral cap-

sids [137]. In both cases, a retrocopy of CypA inserted into TRIM5, replacing

the capsid-binding domain of TRIM5 and leading to a more effective antiviral

defence protein [150–152]. In owl monkeys, the CypA retrocopy inserted into an

intron of TRIM5, and alternative splicing led to the new TRIM5-CypA fusion

transcript [150, 152]. In macaques, CypA inserted into the 3’ UTR of TRIM5,
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again leading to a novel fusion transcript [151, 152]. While two cases of the same

fusion gene arising independently may seem unlikely, CypA is highly expressed in

the germline, increasing its chances of being retroposed [137], and the creation of

an improved antiviral gene will have increased its chances of being selected for.

The above two examples illustrate the potential for retrocopies to give rise

to new transcripts with novel functions, and a number of other specific examples

have been characterised (reviewed in [137] and [140]). It should be noted, however,

that these are the exceptions, rather than the rule. Even the most conservative

estimates of retrocopies in primates and mouse put the numbers in the thousands,

and it is certainly not the case that every single one of these has or will give

rise to a novel coding gene. While they have undoubtedly played an important

role in gene evolution, this may not be their most significant contribution to the

transcriptome.

1.3.3 Retrocopy Expression and the Germline

A consistent observation in studies of retrocopies is that they are frequently ex-

pressed in the testes [141, 153, 154]. It has been suggested that the permissive

transcriptional environment of the testes allows transcription of DNA that is usu-

ally silent, including retrocopies. In this way, retrocopies start off expressed in

the testes and gain a useful function, in some cases leading to expression else-

where and the evolution of new genes [137]. An alternative hypothesis is that

retrocopies preferentially insert into regions of open chromatin. In testes, this

would mean retrocopy insertions near to germline-expressed genes, and so the

retrocopies are therefore more likely to be transcribed when these nearby genes
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are transcribed [137]. These hypotheses are not mutually exclusive, and different

retrocopies may have become expressed for either of these reasons.

It has also been consistently observed in both mammals and Drosophila that

a disproportionate number of functional retrocopies originate from genes on the

X chromosome [141,155–157]. In mammals, these retrocopies are expressed in the

testes during and after meiosis [141]. During this period, their parent genes are

silenced as a result of meiotic sex chromosome inactivation (MSCI), when the X

and Y chromosomes are segregated and transcriptionally silenced [158]. Based on

these observations, the “out of X” hypothesis states that retrocopies originating

in the X chromosome are selected for in order to compensate for silenced parent

genes that are needed during meiosis [141].

1.3.4 Non-coding Transcription of Retrocopies

As noted above, relatively few retrocopies have been characterised as having evolved

into protein-coding genes, compared to the number of retrocopies identified. How-

ever, several studies have found widespread transcription of retrocopies [141, 153,

154, 159–161]. Rather than being protein-coding, these transcripts contribute to

the repertoire of non-coding RNAs (ncRNAs). In particular, the sequence simi-

larity between a retrocopy and its parent transcript can lead to interesting and

functionally relevant interactions between the two, at the transcriptional and post-

transcriptional levels. Here I discuss four such mechanisms.
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1.3.4.1 Targeting of Epigenetic Modifications

At the transcriptional level, there is evidence to suggest that retrocopy RNA can al-

ter chromatin state at the parent locus. Phosphatase and tensin homolog (PTEN)

is a tumour-supressor gene in humans with a retrocopy, PTENpg1, that expresses

three antisense lncRNA isoforms [162]. These RNAs are complementary to the

parent RNA from which they originated. Johnsson et al. found that suppression

of one of these transcripts in human cell lines resulted in increased PTEN ex-

pression, and that this was mediated by chromatin remodelling complexes [162].

They hypothesised that the retrocopy RNA targets the chromatin modifiers to the

parent locus. Similar mechanisms have been observed in antisense lncRNAs (e.g.,

HOTAIR [163]), and it may be the case that numerous retrocopy transcripts act

in a similar way.

1.3.4.2 Retrocopy LncRNAs as Micro RNA Decoys

Micro RNAs (miRNAs) are a class of short (around 23bp) non-coding RNAs that

mediate post-transcriptional gene regulation (reviewed in [164]). This is achieved

by binding of a miRNA to a target mRNA through sequence complementarity.

This inhibits translation, either by repressing translation directly or by trigger-

ing RNA degradation [164]. Any RNA with the correct recognition site could be

targeted by the relevant miRNAs, and as such retrocopy transcripts with intact

miRNA recognition sites could act as decoys for their parent mRNA. Several stud-

ies have shown this occurring in genes with retrocopies, including PTEN, in the

context of cancers [165–169]. In these cases, the retrocopy transcript is bound by

miRNAs and so the parent mRNA is not repressed.
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1.3.4.3 Retrocopy Antisense LncRNAs

In order to act as a miRNA decoy, the retrocopy transcript must have sequence

matching that of the parent (at least at the miRNA recognition site). Such a

mechanism might be thought to account for the observed retrocopy transcription.

However, several recent studies have shown that retrocopies are also antisense

transcribed, giving rise to lncRNAs complementary to the parent [159–161]. These

have the potential to form RNA:RNA duplexes with their parent mRNAs, which

can lead to both up- and down-regulation of the parent [170, 171], but it is still

unclear to what extent this occurs and what its functional consequences are.

Korneev et al. provided an early demonstration of this mechanism using the

central nervous system of the Lymnaea stagnalis snail as a model. They found that

transcripts from a nitric oxide synthase (NOS) retrocopy form RNA:RNA duplexes

with NOS mRNA in vivo. This prevents translation, leading to a reduction in NOS

enzyme activity [172].

More recently, genome-wide studies have found examples of retrocopy antisense

transcripts in human, but estimates differ between studies. Muro and Andrade-

Navarro found 87 human retrocopies with antisense transcripts [159], whereas

Bryzghalov et al. found only 35 [160]. The latter study also found expression cor-

relation for three retrocopy RNA/parent RNA pairs (two positive, one negative),

and ten pairs with high sequence identity. While these few serve as interesting ex-

amples to pursue, they do not provide a genome-wide picture. Milligan et al. per-

formed a more comprehensive analysis in humans, comparing lncRNA databases

with retrocopy annotations. They found 313 potential antisense-expressed retro-

copies, but did not investigate the effects of these on the expression of their parent
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genes [161].

1.3.4.4 Retrocopy Short RNAs

As well as interacting with short ncRNAs, retrocopies can be a source of short

ncRNA, including miRNA, piRNA, and endogenous short interfering RNA (endo-

siRNA), although it remains to be seen whether this is a major role for retrocopies.

The current evidence for retrocopy-derived miRNA is not convincing. De-

vor identified two primate-specific miRNA loci overlapping retrocopies [173], and

other examples of miRNA/retrocopy overlaps can be found [140]. However, these

account for very small proportions of miRNAs and retrocopies, and without knowl-

edge of their regulatory targets it is difficult to assess whether this is truly an

important link, or simply a handful of coincidences.

A better-studied phenomenon is the transcription of piRNAs from retrocopies.

Studies in the common marmoset, human, mouse, and pig have found antisense-

oriented retrocopies present within piRNA clusters [174–177]. PiRNAs transcribed

from such clusters could potentially regulate parent genes via the same mechanism

used to silence retrotransposons, and this has indeed been observed in mouse and

pig [176, 177]. This suggests additional roles for both piRNAs, as regulators of

genes as well as retrotransposons, and for retrocopies, as sources of regulatory

small RNAs.

Finally, retrocopies have been found to generate endo-siRNAs, particularly

in the mouse oocyte [83, 178] where they regulate protein-coding transcripts. A

similar phenomenon has been observed in hepatocellular carcinoma [179].
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1.3.5 Retrocopy Regulation

A question that arises from the observation that retrocopies are transcribed is how

they are regulated. As mentioned above, many retrocopies do not carry with them

the promoter or other regulatory elements of their parent gene, so in most cases

regulatory elements must be found elsewhere if the retrocopy is to be transcribed.

There are three mechanisms that seem to account for the majority of observed

retrocopy transcripts:

1. Retrocopies that insert inside a new gene can become part of a fusion gene,

as described above

2. An insertion near to an existing gene may be able to “piggyback” on the

existing promoter, estimated to occur for around 11% of retrocopies in human

and mouse [141]

3. A new promoter can evolve, either from an existing proto-promoter (e.g.,

part of a retrotransposon) or a CpG island; according to Carelli et al., ap-

proximately 51% of retrocopies in humans and 38% in mouse have a promoter

overlapping a CpG island [141]

1.3.6 Retrocopy Outlook

A number of specific and well-characterised examples have conclusively demon-

strated the potential for retrocopies to evolve into novel genes and transcripts,

and to alter those that already exist. Undoubtedly there are still many such cases

to be discovered, and they will continue to provide insight into the evolution of

genes and their functions. Still far from clear, however, is the role of retrocopies in
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the non-coding transcriptome. It is clear that they do indeed contribute, forming

a subset of lncRNAs and giving rise to short ncRNAs. The proportion that are

transcribed, and their relationship with their parent transcripts, is not decided.

Their contribution to piRNAs is becoming increasingly well-characterised, and this

is made easier by the significant existing body of work on piRNAs and their mech-

anism. In contrast, the role of long antisense retrocopy transcripts still requires

much work. Do they regulate parent transcripts through RNA:RNA duplexes? Is

this a positive or negative regulation, and to what extent does it occur?

1.4 RNA Sequencing

Much of the work discussed so far was made possible by the development of high-

throughput sequencing techniques. Genome sequencing revealed the significant

retrotransposon and retrocopy content of the human and mouse genomes. RNA

sequencing (RNA-seq) opened up the transcriptome, allowing us to produce a

complete snapshot of the transcriptome in a sample, leading to the discovery of the

thousands of previously unknown ncRNAs. RNA-seq datasets also form the basis

of this thesis, so here I summarise the experimental procedure and bioinformatic

analysis, and discuss the challenges presented by repetitive DNA.

1.4.1 Summary of Experimental Procedure

There are three main steps required to produce RNA-seq reads from a biological

sample: extracting and preparing the RNA, preparing a library for sequencing, and

the sequencing itself. These three steps are outlined below, based on [180–182].
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1.4.1.1 RNA Preparation

The goals of this step are to isolate and purify RNA from a biological sample, and

to enrich for target classes of RNA. The procedure is summarised in Figure 1.16.

Nearly all RNA-seq experiments will follow this process, and the main differences

will come at the RNA filtering step (step 3 in Figure 1.16), as different experimental

designs require a different subset of the RNA present in a cell. Ribosomal RNA

(rRNA) accounts for more than 80% of the RNA in a cell, and so sequencing the

RNA at this stage would result in rRNA accounting for nearly all of the reads

and obscuring signal from other transcripts; therefore nearly all experiments will

remove rRNA. This can be achieved by selectively removing rRNA, or by directly

selecting for another class of RNA, such as mature mRNA. Experiments focusing

on smaller RNA classes, such as miRNA, siRNA, or piRNA, can use size selection

techniques to enrich for their target class, as these are much smaller than most

mRNA and rRNA.
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Figure 1.16: The major steps involved in extracting RNA from a sample, as the
first step in RNA-seq.
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1.4.1.2 Library Preparation

Once the RNA has been isolated, purified, and target-enriched, it must be con-

verted into double-stranded complementary DNA (cDNA) for sequencing. In ad-

dition, most modern sequencing technologies require platform-specific adapters to

be added at either end of the DNA molecule. These steps are summarised in

Figure 1.17.

Figure 1.17: The major steps involved in preparing a library for RNA-seq, starting
from purified RNA. Partially adapted from [180].

As shown in Figure 1.17, sequencing platform-specific adapters must be at-
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tached to the ends of the fragments before they can be sequenced. The sequence

between the adapters, known as the insert, is often longer than the maximum

length that can be sequenced by the platform. By including a sequencing primer

at both ends, the insert can be sequenced from both ends, resulting in a pair of

reads. Knowing that a given pair of reads come from the same insert improves the

efficiency with which reads can be aligned to a reference after sequencing.

Additional components can be included in the adapters, such as barcode se-

quences. These sequences identify which sample a given read originated from,

allowing multiple samples to be sequenced simultaneously, which lowers the cost

per sample. Protocols have also been developed that preserve the strand from

which the original RNA was transcribed, improving mapping efficiency and en-

abling analysis of the direction of transcription.

1.4.1.3 Sequencing

The final stage of the RNA-seq protocol is to place the prepared sample in a

sequencing machine. Different companies have developed different technologies to

carry out the actual sequencing. Illumina is a popular choice, and is one of the

technologies based on short reads (typically between 75bp and 150bp). Emerging

sequence technologies are changing the way in which HTS is approached. Pacific

Bio (PacBio) sequencing, for example, produces significantly longer reads than

Illumina, on the order of 10,000bp. While PacBio reads have a higher error rate

than short-read sequencing, their significantly increased length makes them very

useful, particularly in resolving repetitive regions. Recent genomics studies have

made use of hybrid approaches, using long PacBio reads to build rough scaffolds,

and filling in the details with short reads. Nanopore sequencing technologies, such
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as the MinION sequencer, also produce longer reads, and at a fraction of the cost

and size of current standard sequencers. While these new technologies hold great

potential, many studies still rely on Illumina and similar technologies, due to their

low error rate, established protocols, and the existence of a wide range of analysis

tools.

1.4.2 Bioinformatic Analysis

HTS techniques produce staggering amounts of information, and would be useless

without efficient and accurate computational tools to analyse them. With current

sequencing techniques, this information is presented as large numbers of short

reads, usually between 75 and 150 base pairs (bp) in length. These reads are short

substrings of the larger molecule (either DNA or RNA) being sequenced. The

main goal of many RNA-seq analysis pipeline is to use these reads to discover

which transcripts were present in the sample, and how abundant these transcripts

were relative to each other. The following summary is based on [181,183].

The first step in analysing RNA-seq reads is often to map them to some kind of

reference, either a transcriptome or a genome. The quickest and easiest method to

produce abundance estimates is to use an existing reference transcriptome. If one

is not interested in discovering new transcripts, and there is a sufficiently good

reference available for the organism in question, this method is effective. This

can be used for straightforward abundance estimation of known mRNA, or more

involved analysis (e.g., splicing).

If a reference is not available, or the experiment aims to discover novel tran-

scripts, the RNA-seq reads can instead be mapped to a genome. This relies on a
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sufficiently good genome being available, although more and more model organ-

isms have high quality genomes. Once the reads have been mapped to the genome,

the transcripts that were present in the sample can be reconstructed. This is usu-

ally done by looking at overlapping reads and estimating the most likely set of

transcripts that would explain the reads present. The possibility of reads overlap-

ping splice junctions must also be considered. In this way, transcripts not present

in a given reference transcriptome can be found.

Finally, in the absence of a reference genome, transcripts can be reconstructed

de novo. This is similar to the de novo construction of a genome. Reads with shared

sequence are grouped together, and the most likely transcripts are constructed

using these overlaps. This is a computationally intensive process, with less reliable

results, and so should be avoided in favour of one of the above methods, if possible.

In order to calculate relative abundance estimates, the relative number of reads

mapping to a given transcript is used as a proxy for transcript abundance, based

on the assumption that an RNA molecule is just as likely to be sequenced as

any other. In order to make abundance estimates comparable between different

samples, the read counts for each transcript must be normalised. The most popular

normalisations are reads per kilobase per million (RPKM), fragments per kilobase

per million (FPKM), and transcripts per million (TPM). While FPKM and RPKM

have been used for several years, and still are, TPM is becoming increasingly

popular.

It should be noted, however, that these estimates are not truly comparable

between samples, and only measure the relative abundance of a given transcript

within a sample. In order to compare expression between samples, several statis-

tical methods have been developed that can estimate the differential expression of
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a transcript between samples, often using read counts. These can be used with

multiple replicates to find differentially expressed transcripts or genes between

multiple conditions, e.g., between treatment and control.

Many abundance estimation methods rely on an alignment of reads to a tran-

scriptome. Recently published methods, such as kallisto [184], Sailfish [185], and

Salmon [186] do not require an alignment, and instead create a “pseudoalignment”.

This is achieved by splitting reads into short k-mers, sequences of k nucleotides,

where k is typically around 25 (although this can be varied). The number and

positions of occurrences of each k-mer in the reference is then obtained, and this

can be used to estimate read counts and abundance for each transcript. The exact

algorithm for doing this differs between software packages. These methods have

proven to have comparable accuracy to alignment-based methods, and are usually

orders of magnitude faster to run.

1.4.2.1 RNA-seq and Repeats

Repetitive sequences present a significant challenge to current sequencing tech-

nologies. Nearly all known genomes have repeats to some degree. These repeats

are often much longer than the usual length of a read, which creates the problem

of multimapping reads: reads that map equally well to multiple locations in the

genome. This can make it difficult to assemble genomes accurately, and in the

context of RNA-seq, it can have a significant effect on abundance estimation and

transcript reconstruction [187]. Early approaches, such as ignoring multimapping

reads [188,189], or using heuristic methods to assign multimapping reads to single

loci [190] risk introducing bias into one’s analysis, even if one is not considering

repeats specifically [191].
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Fortunately, bioinformatics tools have now been developed that account for

repetitive sequences. Alignment tools often give users the option to retain reads

mapping to multiple sites. Many recently developed abundance estimation tools

are based on multimapping-aware models. RSEM, for example, uses expectation

maximisation to assign fractions of reads to different sites based on the number of

reads uniquely mapping to that site [192]. Multimapping reads are still an issue,

and will remain so while short-read sequencing technologies dominate. However,

those developing RNA-seq analysis pipelines now have a range of tools available

that will handle multimapping reads in a rigorous way, and can avoid repeat mask-

ing and other naive approaches.

1.5 Motivation and Open Questions

It is now clear that retrotransposons are an essential part of mammalian genomes,

and have shaped their evolution. They have made and continue to make significant

contributions to the transcriptome. This occurs directly, by transcription of retro-

transposons, and indirectly, by altering transcript regulation, and by formation of

retrocopies which are then transcribed.

In both cases, high-quality RNA-seq datasets combined with repeat-aware

bioinformatics pipelines are required to accurately quantify their transcription.

The BLUEPRINT Consortium Work Package 11 (WP11 - mouse models) has

produced high-quality RNA-seq data from purified cell populations in both the

mouse reference strain and a wild-derived strain. These are ideal for exploring the

retrotransposon-derived transcriptome.
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1.5.1 Aims

The direct transcription of retrotransposons has been well-studied in stem cells

and the germline, but with fewer studies examining adult somatic cells. In both

cases, many of these have either focused on specific retrotransposon elements or

families, or have quantified their transcription by mapping reads to retrotrans-

posons. Several studies have examined the relationship between lncRNAs and

retrotransposons, finding that retrotransposons contribute to a majority of lncR-

NAs, but do not explore the transcripts in detail. It is now well-established that

lncRNAs display cell-type specificity, but to what extent is the retrotransposon

content cell-type specific? I therefore aim to:

1. Produce a comprehensive catalogue of retrotransposon content in murine

somatic cell transcriptomes using a repeat-aware bioinformatics pipeline

2. Test whether retrotransposon expression displays cell-type specificity by com-

paring B and T lymphocytes

3. Test whether retrotransposon transcripts affect expression of protein coding

genes in cis

Understanding how retrotransposons contribute to transcripts is essential for

understanding why they contribute to transcripts, which in turn will shed light on

the possible functions of these transcripts. At present, it is known that many thou-

sands of individual lncRNAs have been identified, but their function is unclear,

either individually or as a whole. A clear and precise picture of their retrotrans-

poson content will be important for understanding this.
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It is becoming increasingly clear that retrocopies contribute to the transcrip-

tome, either by altering existing transcripts or giving rise to new ones. In some

cases, retrocopies have evolved to form new genes, but many have remained as

partial copies lacking coding potential. Nonetheless, their expression has been

observed in multiple species and multiple cell types. The function of these tran-

scripts, if any, is not clear, although there is evidence that retrocopy transcripts

are involved in regulation of their parent transcripts. However, a genome-wide

assessment of their impact on parent genes has not yet been published, to my

knowledge, and it is still unclear which pathways they might operate through,

although several have been proposed. I therefore aim to:

1. Produce a reliable catalogue of retrocopy transcription in mouse B and T

cells

2. Test whether retrocopy transcripts affect the expression of their parent genes

3. Test whether any such effect takes place via a mechanism based on sequence

similarity

The formation of retrocopies may simply be a side-effect of retrotransposon ac-

tivity, but there are multiple examples of these seemingly random events becoming

essential in gene expression and regulation. Retrocopies are certainly a rich source

of raw material for gene formation, but may also be the basis for essential regula-

tion of transcription and translation.
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Chapter 2

Datasets

2.1 BLUEPRINT Datasets

The BLUEPRINT Consortium is an EU-wide scientific consortium that aims to

generate multiple normal and cancer epigenomes. Purified homogeneous popula-

tions of ex vivo cells are being used for the analysis since, within a tissue, different

cell types may have different epigenomes. These epigenomes are being studied in

order to understand the role of epigenetics in health and disease, and in particular

in haematopoietic cells. BLUEPRINT formed the major part of the EU’s contri-

bution to the International Human Epigenome Consortium (IHEC). BLUEPRINT

is split into eighteen Work Packages, each tackling a different aspect of the larger

project. The work presented in this thesis was largely conducted on data gener-

ated as part of Work Package 11 (WP11), led by Anne Ferguson-Smith and David

J. Adams (Wellcome Trust Sanger Institute), which uses the mouse as a model

organism. It should be noted that the other BLUEPRINT Work Packages focus

exclusively on data from humans.
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As part of WP11, a large number of sequencing datasets were generated, cov-

ering the transcriptome and several aspects of the epigenome. For each type of ex-

periment, multiple samples were used to cover different mouse strains, both sexes,

and two cell types. Experimental work, including cell purification; RNA, DNA,

and chromatin isolation; and library preparation, was conducted by Dr Marcela

Sjöberg-Herrera in the Ferguson-Smith and Adams labs.

2.1.1 Mouse Strains

Two mouse strains were used in WP11: the inbred C57BL/6J (BL6) strain, which

is the mouse reference strain, and the wild-derived CAST/Eij (CAST) strain. The

CAST strain is genetically distinct from BL6, with approximately 17.5 million

SNPS, 2.5 million indels, and 86,000 structural variants, which are all higher than

many other commonly used mouse strains [193]. In addition to the pure strains,

reciprocal hybrids were also generated, but these data are not used in this work.

2.1.2 Sexes

In each strain, both male and female mice were used.

2.1.3 Cell Types

Two cell types were used for each strain/sex combination: naive B lymphocytes

and naive CD4+ T lymphocytes. Näıve lymphocytes, which have not yet been

activated in response to an antigen, are quiescent but still transcriptionally active.

Purified populations of cells were generated using the marker properties of CD4+,

CD25-, CD62Lh, and CD44l to purify näıve T cells and CD19+, CD43-, and B220+
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näıve B cells. The quiescent state of the cells, which places them all in the same

stage of the cell cycle, further reduced the potential noise in the sequencing output.

This design minimised heterogeneity within the purified cell types.

There are therefore eight possible strain/sex/cell type combinations relevant to

this work (Figure 2.1). For each combination, the following sequencing experiments

were carried out, with multiple biological replicates in each, as noted. In each case,

100bp paired end reads were generated.

Figure 2.1: The strain/sex/cell type combinations used in the BLUEPRINT WP11
datasets.
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2.1.4 RNA Sequencing

Whole-transcriptome RNA sequencing (RNA-seq) datasets used a stranded pro-

tocol and were generated by Dr Marcela Sjöberg-Herrera. Samples were depleted

for ribosomal RNA. There are 12 BL6 and 11 CAST samples.

2.1.5 Whole Genome Bisulphite Sequencing

Bisulphite sequencing is used to identify which cytosines are methylated at base

resolution. Whole genome bisulphite sequencing (WGBS) can be used to quan-

tify methylation on a genome wide scale. During WGBS, the DNA in the sample

is treated with bisulfite (hydrogen sulfite, HSO−
3 ). This converts unmethylated

cytosine to uracil, but methylcytosine is left unaffected. The sample is then se-

quenced. Providing one can differentiate between single nucleotide variants and

genuine conversions, one can determine whether a given read covering a CpG site

came from DNA that was methylated or not. By looking at multiple reads cov-

ering a CpG site, one can quantify the level of methylation at that site as the

proportion of reads that are methylated. This should reflect the proportion of

cells in the sample where that CpG site is methylated.

For each strain/sex/cell type combination, eight biological replicates were se-

quenced. The raw samples were analysed by Dr Nic Walker to produce methylation

estimates at each sequenced CpG site. NW also merged replicates to improve se-

quencing depth and coverage, and I used merged samples for my analysis.

I addition, I applied smoothing to the methylation values, following the pro-

tocol described by Hansen et al. using the BSmooth software [194]. Methylation

is spatially correlated between CpG sites, so CpGs near to each other tend to
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have similar methylation values. Using this, the authors of BSmooth created an

algorithm that adjusts methylation levels according to the levels of nearby CpG

sites, weighted by their sequencing depth. In this way, the accuracy of methylation

estimates is improved.

2.1.6 Chromatin Immunoprecipitation Sequencing

Chromatin immunoprecipitation sequencing (ChIP-seq) is a technique used to

identify regions where a given protein is bound to DNA, such as a transcription

factor. ChIP-seq comprises two main steps: the chromatin immunoprecipitation

(ChIP), followed by high-throughput sequencing. During ChIP, DNA and any

proteins bound to it are cross-linked. The DNA is then sheared into fragments,

and bead-attached antibodies are added that are specific to the protein or protein

modification of interest. The beads can then be precipitated out, the proteins

unlinked, and the DNA purified. In this way, one selects or enriches for regions

of DNA that had the protein of interest bound to them. The purified DNA is

then sequenced in the usual way. The reads obtained from sequencing can then be

analysed with the aim of finding “peaks”: regions where a significant proportion

of reads map, indicating enrichment of the protein or modification of interest at

that region.

In the WP11 datasets, ChIP-seq was used to identify regions with six his-

tone modifications: H3K27ac, H3K27me3, H3K36me3, H3K4me3, H3K9me, and

H4K20me3. The raw reads were analysed by Dr Hui Shi to find peaks; during

this process, the latter two marks were deemed to have been unsuccessful, despite

repeated attempts, and so only the first four are used in this project. Unless
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stated otherwise, merged sets of peaks were used in my analysis, obtained using

the bedtools merge software [195].

2.2 ENCODE Data

To extend the investigations of cell-type specificity in retrotransposon and retro-

copy transcription, I downloaded publicly available RNA-seq datasets from the

ENCODE project. I used data from experiment ENCSR000AJU [196], which has

the following properties:

• Stranded total RNA-seq from adult BL6 liver

• 101bp paired-end reads

• rRNA depleted

• Two biological replicates, no technical replicates

These samples were generated by the Gingeras lab at Cold Spring Harbor Labo-

ratories. While the number of replicates would ideally be larger, this was one of

the few available datasets with the same technical properties as the BLUEPRINT

datasets, making it a good comparison.

2.3 Proteomes

Proteomes were generated by Dr Sudhakaran Prabakaran and analysed by Dr Sud-

hakaran Prabakaran, Dr Ruchi Chauhan, and Ms. Chaitanya Erady (Prabakaran

Group, Department of Genetics, University of Cambridge). Data were generated
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for BL6 males and females, in both B and T cells, to match the BLUEPRINT

RNA-seq datasets. I was provided with abundance values in each sex/cell combi-

nation for 4,030 proteins, along with additional information. An additional dataset

of 1,937 proteins was also provided, in which proteins had been filtered based on

false discovery rate.

2.4 Reference Genomes and Annotations

2.4.1 Reference Genomes

The majority of the analysis in this project was done on data from the C57BL/6J

mouse strain, which is the mouse reference genome strain. I used genome version

mm10 (GRCm38). For the CAST/Eij analysis, I used the genome assembly created

by the Wellcome Trust Sanger Institute Mouse Genome Project [197].

2.4.2 Reference Transcriptome

For the BL6 analysis, I used the Ensembl GRCm38.84 annotation, released in

March 2016 [198,199]. New versions have subsequently been released, but for the

purposes of consistency I have used this release throughout.

2.4.3 Repeat Annotation

For all of the retrotransposon analysis in this project, I used the annotation of

repetitive regions created by RepeatMasker [8] for the UCSC Genome Browser [200].

RepeatMasker is a set of software tools designed to screen DNA for interspersed

repeats and low complexity regions. The output is an annotation of the repetitive
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regions in the query sequence, and, if desired, a copy of the query sequence with

the repeats “masked”: either converted to Ns or to lower-case characters. For some

commonly-used genomes, such as human and mouse, ready-made repeat annota-

tions are available. These annotations include the location and type of repeat, and

summary statistics about its identification. In addition, recent updates from Re-

peatMasker also include information about how fragments of repeats, particularly

retrotransposons, may be related. For example, if an ERV has had a SINE inserted

in the middle of it, the now separated pieces of the ERV would be represented as

a single element in two pieces.

RepeatMasker was originally developed by Smit et al. in the 1990s [201]. The

underlying method for identifying repeats has not changed radically since then.

RepeatMasker takes a set of reference repeat sequences, and searches for matching

sequences in the query. For the ready-made annotations available for mouse and

human, the reference sequences are based on two libraries of consensus repeat

sequences:

• Repbase [202]: a library of manually curated submissions from researches,

maintained by the Genetic Information Research Institute (GIRI)

• Dfam [203]: a more recent library that uses hidden Markov models to identify

consensus sequences

Given a consensus library, RepeatMasker can use one of several tools to perform

the search step, depending on the relative importance of factors such as speed and

precision.

There are several advantages to using RepeatMasker. It is actively maintained

and updated, and represents many years of expertise in the field. It is also popular
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amongst groups working in the field, so comparisons with other studies are more

straightforward, especially given the established nomenclature and categorisation

used by RepeatMasker. The integration with the UCSC Genome Browser means

that visualisation and comparison with other annotations (e.g., reference tran-

scriptomes) is easy. In general, the availability of a ready-made and high quality

annotation saves the significant time and resources required to produce one. Rep-

base, the repeat reference library used by RepeatMasker, is manually curated and

represents the most comprehensive library of repeats available, and many years of

experience in the field.

However, there are also problems associated with RepeatMasker. While it

is maintained, it is not always up to date with the latest reference sequences.

Similarly, while the UCSC Genome Browser advertises itself as having the most

recent RepeatMasker releases, this is not alway the case. For example, the most

recent Repbase update was in 2015, while the most recent mm10 repeat annotation

available on RepeatMasker was created in 2013. Similarly, the currently available

RepeatMasker annotation on UCSC Genome Browser was created in 2012, but the

most recent data on the RepeatMasker website is labelled as 2013-04-22.

The use of Repbase may affect RepeatMasker results. While manual curation

can be advantageous, as it leverages human intelligence and expertise, it can also

lead to biases, as acknowledged by the maintainers of Repbase [204]. (Although the

Repbase maintainers have taken steps to reduce unintended bias in the submissions

to Repbase.) In addition, Repbase data and methods are not openly available, and

so it is difficult to assess their methods in comparison with others.

The sensitivity of RepeatMasker is difficult to assess, as there is not yet a stan-

dard set of benchmarks for repeat annotation [205,206]. There are now many tools
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designed to identify and annotate repeats, many of which are specific to particular

species or types of repeat [206], further increasing the complexity of meaningful

comparisons. While these may be able to identify repeats with high specificity

and sensitivity, they cannot be categorised without the use of a reference library

such as Repbase. Aside from Repbase, few reference libraries exist. Dfam, for

example, can be used, and it has been incorporated into RepeatMasker. However,

the methodology used for Dfam suggests that in fact they use Repbase and Re-

peatMasker to produce their library, and so their results may be influenced by the

same biases. In addition, de novo repeat annotation is a computationally intensive

and time-consuming process.

I decided to use the RepeatMasker annotation available on the UCSC Genome

Browser, and the work in this thesis was carried out using the version available

there as of December 2015. This decision was motivated by the ease of use of

RepeatMasker and the expertise behind it. In addition, being able to quickly vi-

sualise the repetitive regions alongside my own datasets proved extremely useful.

The recent inclusion of fragment-joining information was also extremely useful in

accurately quantifying retrotransposon transcription. At the time of writing, more

recent versions of the RepeatMasker mouse annotation have become available, and

it would be of interest to repeat the analysis described here with the new anno-

tation. It would also be advisable to experiment with other repeat identification

software and compare the results. More accurate retrotransposon identification

should reduce noise and clarify the existing results.
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2.4.4 Retrocopy Annotation

For the retrocopy analysis, I used the “Retroposed Genes V6” dataset, which is

the retrocopy annotation currently displayed by default on the UCSC Genome

Browser. This annotation was created using the retroFinder program [207], which

finds alignments between known mRNAs and the corresponding reference genome.

The resulting alignments are then filtered based on features indicative of retrocopy

formation, such as poly(A) tail length and proportion of mRNA present in the

alignment. The original retroFinder publication assessed this method’s efficacy

and found it to be in good agreement with other existing studies at the time.

Since then, the resulting retrocopy annotation has been updated to include more

recent reference mRNAs.

My decision to use this annotation was influenced by several factors. Using

ready-made annotations such as this leverages domain expertise, and avoids the

need to recreate the annotation, which could be time consuming and may not

produce comparable results. Its integration with the UCSC Genome Browser al-

lows rapid visualisation of retrocopies in combination with other datasets, such as

reference genes and retrotransposons. In particular, this annotation lists the par-

ent reference gene corresponding to the retrocopy, where possible, using Ensembl

identifiers, which enables integration with a high-quality gene annotation for anal-

ysis of retrocopy parents. It also includes detailed information on the alignment

between retrocopy and parent.

As with other annotations available through the UCSC Genome Browser, it

receives updates to reflect new reference data. However, these do not always reflect

the most recent data available. The annotation currently available on the UCSC
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Genome Browser was created in 2015 using the RefSeq gene annotation [208];

however, since then there have been multiple updates to the RefSeq library. Ideally,

these changes should be used to update the retrocopy annotation, although the

changes may be relatively minor, and without significant effects on the results of

retrocopy discovery.

As noted in [140], the UCSC Genome Browser annotation is less conservative

than other available annotations in mouse. Without a ground truth dataset it is

difficult to compare these annotations. The differences between annotations likely

reflect the methods and reference genes used, and choices by individual authors on

what should or should not be included. By using a less conservative annotation, I

aim to be as inclusive as possible. Applying the same analysis to other annotations

would hopefully produce similar results, and such a comparison between the results

would be of interest in future work. Using a merged dataset based on multiple

annotations could be a reliable alternative.
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Chapter 3

Methods

3.1 Transcriptome Reconstruction Pipeline

The aims of this project were to explore the retrotransposon and retrocopy content

of somatic cell transcriptomes. The bioinformatics analysis pipeline used therefore

had to satisfy the following key requirements:

• Multimapping reads preserved, not discarded or collapsed to one locus

• Novel transcripts discovered

• Multimapping reads treated properly during transcript abundance estima-

tion

Alongside these specific requirements, the pipeline needed the usual desired

characteristics, including high quality results, ease of use, and reasonable running

time. The final outcome of this pipeline would be a set of reconstructed transcripts

with accurate abundance estimates.
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3.1.1 Comparison of Available Tools

Implementing this pipeline would require four main bioinformatics tools: a quality

control tool; an aligner; a transcript constructor; and an abundance estimator. In

addition, ribosomal RNA reads would have to be removed, either before or after

alignment. Multiple tools have been published to accomplish each of these tasks,

and so it was necessary to compare those available and choose the most appropriate

for this project.

3.1.1.1 Quality Control

It is common practice to check raw reads for various quality metrics, such as

phred score, adapter contamination, and GC content. (Phred score measures the

likelihood that a particular base in a read is correct; higher scores mean the base

is more likely to be correct.) In the event of poor quality or contaminated reads

being discovered, adapters and bases with low phred scores can be trimmed to

produce shorter reads with higher quality scores. This can improve the results of

subsequent analysis steps.

The choice of quality control tool does not impact the results of RNA-seq analy-

sis results directly, but it is important that the tool used provides a comprehensive

set of checks with easy to interpret results. I therefore chose to use FastQC [209]

to check read quality. FastQC is a popular tool that performs a wide set of quality

checks and outputs the results in an easy-to-read HTML file.

Based on the results of FastQC, it appeared that some samples might benefit

from read trimming. Many tools are available, each employing a different algo-

rithm, which impacts both results and run time. There was no evidence of adapter
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contamination from FastQC, so I focused on choosing a tool to trim reads based

on phred score. I ran preliminary tests on cutadapt [210], ERNE-FILTER [211],

and trimmomatic [212] to check their impact on FastQC output and alignment

score. I discovered that trimming reads appeared to have little impact on either

of these outcomes. In addition, literature on this subject suggested that trim-

ming should be used with caution in RNA-seq analyses, lest useful information

be lost [213]. Many recent aligners automatically take quality score into account

during the alignment, trimming reads if and when necessary to achieve a better

alignment. I therefore decided not to carry out an explicit read trimming step,

and instead to choose an aligner that would handle this internally.

3.1.1.2 Alignment and rRNA Removal

There are many alignment tools available for RNA-seq reads, and so I relied on

published comparison and benchmarking studies to narrow the field to a smaller

number of choices. I then made a final decision based on suitability for this project,

ease of use, and speed. The comparison published by Engström et al. [214] showed

that STAR [215], GSNAP [216], and RUM [217] all produce high-quality results

in comparison to other popular aligners. The paper that presented STAR demon-

strated similar results [215]. A more recent comparison by Sahraeian et al. has

demonstrated that HISAT2 [218] may perform better than STAR [219], although

the HISAT2 documentation states that it is not suitable when reads mapping to

many loci need to be retained, as is the case in this project.

I carried out informal testing with these STAR, GSNAP, and RUM, and in-

vestigated their capabilities. STAR stood out from the others in terms of ease of

use and documentation quality. In addition, it automatically trims reads based
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on alignment quality. Most importantly, a maximum number of alignments per

read can be set, and each alignment is preserved in the results. Finally, STAR

runs significantly faster than any other published aligner. I therefore decided to

use STAR for the alignment step.

I decided to use the RSeQC software package [220] to remove reads mapping

to known rRNA regions, based on its fast runtime, ease of use, and good docu-

mentation.

3.1.1.3 Transcript Reconstruction

There are significantly fewer transcript reconstruction tools available than there

are aligners. The most popular available are Scripture [221], Cufflinks [222], and,

more recently, StringTie [223] (the successor to Cufflinks). Scripture is poorly

documented and maintained, and is difficult to use, unlike Cufflinks and StringTie.

StringTie was presented as an improved version of Cufflinks, and informal testing

with both demonstrated that StringTie runs significantly faster and is easier to

use. In addition, the more recent versions of StringTie handle reads from stranded

RNA-seq protocols. A comparison between StringTie and other tools in the context

of a complete pipeline demonstrates that StringTie does indeed produce better

results [219]. I therefore decided to use StringTie as the transcript reconstruction

tool.

3.1.1.4 Abundance Estimation

The key requirement for an abundance estimation tool in this project is that it

handles multimapping reads correctly, as this is the stage where they can have

the greatest impact. There are several tools that explicitly deal with multimap-
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ping reads. Popular choices in the bioinformatics community include RSEM [192]

and kallisto [184], both of which perform well according to benchmarking stud-

ies [184, 192, 219, 224]. RSEM uses an expectation-maximisation algorithm to as-

sign fractions of reads to different loci based on the number of uniquely mapped

reads at each locus. Alternatively, kallisto is one of a recent group of abundance

estimators that rely on a “pseudoalignment” rather than an explicit alignment.

This method results in remarkable speed-ups, without a drop in quality of re-

sults. I decided to use kallisto, based on its ease of use, remarkable speed, and

benchmarking results.

3.1.2 Final Pipeline

Based on the above considerations, I decided on a final pipeline using FastQC,

STAR, RSeQC, StringTie, and kallisto:

1. Align raw RNA-seq reads to the appropriate genome using STAR version

2.5.0a with the following options:

• --outReadsUnmapped Fastx

• --outSAMattributes All

• --outFilterMultimapNmax 50

2. Remove reads mapping to rRNA regions using split_bam.py from RSeQC

version 2.6.4, with the BL6 ribosomal annotation available on the RSeQC

website [225], or the rRNA annotation I developed for CAST (see below)

3. Sort reads not mapping to rRNA using samtools version 1.3.1 [226] to pro-

duce sorted BAM files
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4. Reconstruct transcriptomes for each sample from the sorted BAM files using

StringTie version 1.3.3 with the following options:

• -f 0.05

• -M 0.99

• --fr

5. Merge reconstructed transcriptomes were using the --merge option in StringTie

to produce a consensus set of transcripts for each phenotype combination. At

least 3 samples contributed to each merged transcriptome in the BLUEPRINT

datasets.

6. Estimate abundances of merged transcripts in each sample using kallisto

7. For BL6 samples, compare merged transcriptomes to the Ensembl annotation

using the gffcompare tool, which comes with StringTie

3.2 Differential Expression Analysis

I performed two analyses to find differential expression between cell types. Both

were done using the StringTie and Ballgown [227] software packages, following the

post-alignment steps in the protocol described in [228]. Ballgown is designed to

work with StringTie output, and performs well in benchmarking studies [219,229].

3.2.1 Differential Expression of Reconstructed Transcripts

After obtaining a merged set of reconstructed transcripts (see above), I used

stringtie -eB, which reassigns reads to each transcript and therefore obtains
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counts and expression values for each transcript. This also produces tables that

can be used by the Ballgown software for differential expression analysis. I applied

the ballgown::stattest function to the samples to find differentially expressed

genes between cell types, accounting for sex as a potential confounding factor. I

then filtered the results, retaining those where the false discovery rate-adjusted

significance value q < 0.05. This left a set of 11,380 transcripts with associated

fold-change values, p values, and q values.

3.2.2 Differential Expression of Ensembl Transcripts

This analysis was done as for the reconstructed transcriptomes, but using the

Ensembl reference annotation instead of the reconstructed transcriptome. While

the reference may not be as complete a transcriptome as the reconstructed one, it

is easier to use the Ensembl reference to investigate retrocopy parent expression.

Retrocopies that have a known parent have an Ensembl transcript to identify

it. To use the reconstructed transcriptome, one would have to reliably assign

reconstructed transcripts to Ensembl references. With total RNA samples, this

is not straightforward, as there may be unprocessed mRNA, splice intermediates,

and other RNA products that cannot easily be accounted for. Using the Ensembl

reference, 10,714 transcripts remained after filtering on q value.
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3.3 Comparing Reconstructed and Ensembl Tran-

scripts

To ascertain how the reconstructed StringTie transcriptomes compared to the En-

sembl reference transcripts, I used gffcompare, which is included with StringTie.

The gffcompare algorithm compares exon overlaps between the query (recon-

structed) transcripts and the reference and places each reconstructed transcript

into one of the classes shown in Table 3.1. For classes =, c, j, o, e, i, and x, the

query transcript is assigned a corresponding reference transcript. It is possible for

a query transcript to match multiple references, and vice versa.

Name Symbol Description

Complete match =
Query exons match the exons of a reference
perfectly

Contained c Query exons entirely contained in reference exons

Possible novel isoform j
Query and reference share exons and at least one
exon junction

Exon overlap o
Query exons overlap reference exons on the same
strand

Possible pre-mRNA e Single-exon query that partially overlaps an intron

Intronic i Query is fully contained in a reference intron

Antisense x
Query exons overlap reference exons on the
opposite strand

Novel u
Unknown intergenic; query does not correspond to
any reference

Possible polymerase
run-on

p

Probable false positive s

Table 3.1: The classes used by gffcompare for query transcripts in comparison to
reference transcripts.
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3.4 Ribosomal RNA in CAST

In order to apply the same alignment and transcriptome reconstruction pipeline

to the CAST samples as to the BL6 samples, I required an rRNA annotation in

CAST so that reads mapping to these regions could be removed. As I was unable

to find a published annotation, I found the regions myself using the annotation

from the BL6 analysis. This approach assumes a high level of conservation between

BL6 and CAST in rRNA.

I first obtained sequence for the rRNA regions used in the BL6 analysis. I

then used blastn, part of the BLAST+ suite [230, 231], to search for matching

sequences in the CAST genome. The repetitive nature of rRNA led to multiple

query regions matching the same region in CAST, and so I collapsed overlapping

hits into single regions. This method identified 1,407 rRNA regions in CAST,

compared to 1,564 in BL6, suggesting there may have been some regions missed.

However, similar ratios of the different subunits were found (Table 3.2).

5S LSU-rRNA Hsa SSU-rRNA Hsa

Strain
Total rRNA

regions
Number % Number % Number %

BL6 1564 1038 73.01 481 30.75 45 2.88

CAST 1407 937 73.26 424 30.14 46 3.27

Table 3.2: The results of the CAST rRNA discovery pipeline compared to the BL6
annotation.
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3.5 Epigenetic State Visualisation

As described in Datasets, I had access to both methylation and histone modifica-

tion data for BL6 B and T cells. I wrote custom scripts to visualise these marks at

a given set of transcripts (Figure 3.1), with an option to expand the field of view

(i.e, to add a given number of base pairs at either end of the region visualised). I

used these to ascertain whether there were consistently different epigenetic states

between transcripts with and without expressed retrocopies.
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Figure 3.1: (A) An example of histone modification visualisation. Each blue/red
bar represents a ChIP-seq peak. Black arrowheads show the direction of tran-
scription. (B) An example of methylation visualisation. In both (A) and (B), blue
represents B cells and red T cells. Green blocks are exons.

117



3.6 Proteome Normalisation

Before using the protein abundance values provided by the Prabakaran group, I

normalised and transformed them in order to make the samples more comparable.

I applied a median normalisation, as follows

vji → 100× vji
mj/M

(3.1)

where vji is the ith value from sample j, mj is the median for sample j, and M is the

mean of the medians from all samples. I ignored missing values. This normalisation

causes all samples to have the same median. I then applied a log2 transformation

to the non-zero normalised values. Missing values were then interpreted as zero,

i.e., low abundance protein. Figure 3.2 shows the effect of normalisation on the

set of 4,030 proteins.

Figure 3.2: The effect of median normalisation on the distribution of protein abun-
dance values. Missing values were ignored. The normalisation process makes the
different samples more comparable.
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3.7 Transcript Retrotransposon Content

Early exploration of the reconstructed transcripts and their overlap with retro-

transposons showed that a naive approach to finding overlaps would result in a

large number of false-positive hits. Here, the naive approach is one that uses “end-

to-end” coordinates for a genomic feature (Figure 3.3) to find overlaps between

two sets of features. This approach produces misleading results because it ignores

the internal structure of both the transcripts and the retrotransposons. Using the

beginning and end coordinates of a multi-exonic transcript will include intronic

retrotransposons in the overlap results. While this may be of interest, it does

not truly reflect the amount of retrotransposon sequence in the transcript, as the

introns will be spliced out of the final transcript.

The retrotransposon annotation also contains internal structure. A single retro-

transposon element may actually be composed of multiple blocks that are linked

based on shared sequence and/or membership of the same family (Figure 3.4).

These blocks may be punctuated by other types of retrotransposon, retrocopies,

or other genomic features. Again, simply using the start and end coordinates to

find overlaps with transcripts will give misleading results. For example, if a tran-

script is contained entirely between two joined L1 blocks split by an LTR, but

overlaps neither of them, a naive approach will report this as a transcript high in

L1 content and LTR content, when in fact it is only high in LTR content.

In order to ensure that the retrotransposon content of transcripts is accurately

quantified, I developed the following method (Figure 3.3):

1. Apply bedtools intersect [195] to a set of exons and a set of individual

retrotransposon blocks

119



Figure 3.3: A comparison showing the potential false positives created by using a
naive intersection method instead of an exon/block-aware method.

Figure 3.4: A screenshot from the UCSC Genome Browser showing the Repeat-
Masker tracks. A LINE element (blue) has been split by an ERV insertion (green)
and a simple repeat (red).
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2. Reassemble exons into transcripts and reassemble retrotransposon blocks

into full elements, preserving the overlap relationships

3.8 Retrotransposon Content Visualisation

In order to summarise the retrotransposon content of transcripts in a readily un-

derstood way, I developed a barchart-like visualisation. Figure 3.5 shows an ex-

ample for illustrative purposes (for analysis of these plots, see Chapter 5). The

input is a set of transcripts with overlapping retrotransposons, as produced by the

method described above. For each transcript, the proportion of sequence content

for each retrotransposon subfamily is calculated. Non-retrotransposon sequence is

labelled as unique (“UNIQ” in figures and code). Each transcript can therefore be

represented as a vector of values that sum to 1, representing its retrotransposon

content. The bars are coloured to represent the values in this vector; for example,

a transcript with 25% LINE, 25% LTR, and 50% unique sequence would have a

bar that is one quarter green, one quarter red, and half white. Agglomerative clus-

tering is applied to these vectors in order to group the transcripts based on their

retrotransposon content. The results are then plotted, with transcripts ordered

based on the clusters. The bar on the left indicates the clusters, with each colour

representing one cluster. (Colours are chosen on a per-plot basis based on the

number of clusters, and do not indicate any kind of relationship between clusters.)

The number of clusters is chosen by maximising the silhouette score, which

measures the similarity of an object to its own cluster, and therefore serves as

a measure of how well matched the objects within each cluster are [232]. High

values indicate that a given clustering is well-suited to the data. When using
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agglomerative clustering, which structures the data hierarchically, the number of

distinct clusters found is based on the distance from the root of the hierarchy.

The data can therefore be divided into any number of clusters between 1 and the

number of elements in the data, depending on the chosen distance from the root.

In this work, I calculated the silhouette score for each value in a range of possible

numbers of clusters and used the number of clusters that had the highest score.

122



Figure 3.5: An example visualisation of the retrotransposon content of a tran-
scriptome. Agglomerative clusters are shown in the left-hand bar. Each row in
the central plot represents a single transcript. Each of the main retrotransposon
families has an associated colour (LINEs, green; ERVs, red; SINEs, blue), with
shades representing subfamilies, shown in the colour bar at the top. White is
non-retrotransposon sequence, labelled “UNIQ”.
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3.9 Cluster Comparison

Having discovered transcript clusters based on retrotransposon content, I was in-

terested in establishing whether similar clusters existed in different samples (e.g.,

in different cell types). Visual inspection of the plots described above suggests

that this is the case, and so I devised a method to carry out comparison of clusters

in order to quantify and formalise these observations.

Separating data into clusters implies that the points within a single cluster are

similar to each other; the concept of similarity is defined by the clustering algorithm

used. Suppose we have two datasets D1 and D2 representing observations of the

same phenomena under different conditions (so that D1, D2 ⊂ D, where D is the

set of all possible observations). In the context of this project, D1 and D2 could

be the retrotransposon content of transcripts in B and T cells.

Now suppose we cluster each dataset, so that we obtain disjoint subsets Cj
i ⊂

Di, j = 1, . . . , Ni where Ni is the number of clusters in Di. Choose a pair of

clusters Cj
1 , C

k
2 . If the elements in each of these clusters are similar in the sense

defined by the clustering algorithm (i.e., they would cluster together), then these

two clusters can be said to be similar. By comparing every pair of clusters Cj
1 , C

k
2

in this way, we can discover pairs of clusters that are similar.

To formalise this, we create a new dataset E = D1 ∪D2, and apply the clus-

tering algorithm to create clusters Cj
E, j = 1, . . . , NE. For each cluster Ci

1, we can

calculate what proportion of its elements are assigned to each Cj
E. In this way we

can form a matrix Q where each element Qij is the proportion of elements from

Ci
1 that are assigned to Cj

E. Similarly, we can form a matrix R where Rij is the
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proportion of elements from Ci
2 that are assigned to Cj

E. Now define the matrix

M = QRT

Therefore the element Mij represents the probabilities that an element from cluster

Ci
1 and an element from cluster Cj

2 are found in the same cluster Ck
E, summed over

all clusters in E. Mij can be used as a score to measure how similar two clusters

are. If two clusters have elements that are often found in the same cluster Ck
E,

then they will have a high score; if their elements are rarely found in the same

cluster, the score will be low.

However, these scores can have a large range, and are not comparable between

different datasets, as they depend on the number of clusters found in E. In order

to make them more comparable and easier to visualise, I transform the elements

of M as follows:

Mij → M̂ij = log2

(
1

NE

Mij + 1

)
where NE is the number of clusters found in E.

I tested this method by creating a dataset that samples data from several mul-

tivariate normal (MVN) distributions and combines them. The elements sampled

from each MVN therefore form natural clusters in the dataset. By changing the

covariance of the MVN distribution, the mixing of the datasets is increased, thus

making accurate clustering more difficult.

This dataset is clustered, and then split into two datasets based on the results.

Some clusters are placed in one dataset (A), some in another (B), and the re-

maining clusters are divided between the two. In this way, A and B contain data

that should form corresponding clusters (the clusters split between A and B), and
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data that certainly do not correspond (the clusters that are placed in either A or

B). Hence, clustering A and B separately, we can infer a true mapping between

clusters.

I then apply the cluster comparison algorithm described above to A and B. By

choosing a score threshold to decide whether two clusters correspond or not, we

can compare the found cluster mapping to the true mapping, and thus calculate

the true positive rate (TPR) and false positive rate (FPR). By using different

covariance values and different score thresholds, I was able to measure the method’s

performance on noisy data, and find the optimal value for a score cutoff.

The testing results are shown in Figure 3.6 and Table 3.3. As expected, choos-

ing very low score thresholds results in high false positive rates, whereas overly

stringent thresholds cause true positives to be missed. A threshold of 7 seems

to perform well across the covariance values, even when noise is high, with false

positive rates at 0 and true positive rates at 1. It should be noted that in order

to maintain reproducibility and reliable clustering structure, the testing data is

somewhat artificial; however, it does indicate that the method performs well, and

gives a guideline for choosing a score threshold for correspondence. Visual inspec-

tion of results from real data also suggests that this method performs well (see

Figure 5.11 for an example).
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Figure 3.6: Receiver operating characteristic (ROC) plots showing the performance
of the cluster comparison algorithm with different covariance values and different
score thresholds. Sigma represents the value used to construct the covariance
matrix for the MVN distributions. As the covariance increases and clustering
becomes more noisy, the false positive rate (FPR) increases; however, using a
score threshold of 7.0 produces optimal true positive rates (TPRs) in every case,
and low FPRs.
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Covariance Threshold TPR FPR

1.0 1 1.00 0.00

1.0 4 1.00 0.00

1.0 7 1.00 0.00

1.0 10 0.00 0.00

1.0 13 0.00 0.00

2.5 1 1.00 0.06

2.5 4 1.00 0.00

2.5 7 1.00 0.00

2.5 10 0.00 0.00

2.5 13 0.00 0.00

5.0 1 1.00 0.22

5.0 4 1.00 0.12

5.0 7 1.00 0.00

5.0 10 0.00 0.00

5.0 13 0.00 0.00

7.5 1 1.00 0.42

7.5 4 1.00 0.25

7.5 7 1.00 0.02

7.5 10 0.00 0.00

7.5 13 0.00 0.00

Table 3.3: A representative subset of the results from testing the cluster compar-
ison algorithm (full results can be found in Online Resources). This confirms the
observations from Figure 3.6 that 7.0 is a good choice of score threshold, as it
produces optimal TPRs with minimal FPRs (usually zero or close to zero).
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3.10 Expression Correlation Distributions

In order to assess the effect of retrotransposon-containing transcripts on protein-

coding genes, I paired StringTie transcripts with Ensembl protein-coding tran-

scripts. Pairings were based on the results from gffcompare, a program included

with StringTie that matches reconstructed transcripts to reference transcripts, in

one of several categories (see Chapter 4).

Each pair could be further categorised based on whether the StringTie tran-

script contained retrotransposon (RT) sequence, and if so, whether the Ensembl

transcript also contained matching RT sequence. For each category, I obtained

kallisto expression estimates for the StringTie and Ensembl transcripts for each

sample individually. I then filtered pairs based on expression estimates (both with

TPM >1), and the number of samples the pair was expressed in (>5). I calculated

the Spearman’s rho correlation coefficient [233] for that pair across the relevant

samples. This produced a set of correlation coefficients for each category. I then

plotted the distribution of these values. I used an Anderson-Darling test to test

whether the difference between the distributions was statistically significant.

3.11 Venn Diagrams and Statistical Analysis

Venn diagrams were created using the matplotlib-venn package [234]. Visual in-

spection of a Venn diagram can suggest a bias towards sharing or non-sharing

between categorised sets of interest (e.g., retrotransposons expressed in a given

cell type). To assess these possibilities statistically, I used the following approach.

First, I generated sets for each category by drawing randomly from the set of
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all possible members, and counted the number of overlaps between categories. I

repeated this to produce a null distribution, representing the degree of overlap

between categories expected by chance. I visualised the actual observed overlaps

compared to the randomly generated data, and then calculated p values represent-

ing the likelihood that the observed value was drawn from the null distribution. To

do this, I first checked whether the randomly generated data could be modelled by

a normal distribution, using quantile-quantile plots, the Shapiro-Wilk test for nor-

mality [235], and the D’Agostino-Pearson test for normality [236]. If these checks

showed that a normal distribution was appropriate, I calculated the parameters

for the normal distribution that would model the random data. Using these pa-

rameters, I applied the cumulative density function (CDF) to the observed values.

This returns a value representing how likely it is to observe a value at least as

extreme as the input from the normal distribution. This can be used as a p-value.

I also compared Venn diagrams where one represents a subset of the data

represented in the other. In particular, I wanted to quantify whether the subset

was split in the same proportions as the larger set. Suppose D is the larger dataset,

which has been split into categories as shown in a Venn diagram, and E is a subset

of D. We can use the proportion of D in each category to calculate the expected

number from E in each category. This represents the null hypothesis that E

follows the same distribution as D. We then categorise E and use a chi-square

test to compare the observed and expected values. A small p value suggests that

we should reject the null hypothesis, and that E follows a different distribution to

D.
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3.12 Retrocopy Transcripts

To identify retrocopies that are transcribed and the transcripts they belong to, I

used a similar method to that used to identify transcribed retrotransposons. As

with retrotransposons, the retrocopy annotations I used have internal structure.

The gaps between these blocks can include non-retrocopy regions, such as retro-

transposons. Again, naive intersections between transcripts and retrocopies could

produce false-positives. I used the following method to accurately identify true

retrocopy transcripts (steps 1 and 2 are identical to the above method):

1. Apply bedtools intersect to a set of exons and a set of individual retro-

copy blocks

2. Reassemble exons into transcripts and reassemble retrocopy blocks into full

elements, preserving the overlap relationships

3. Filter overlaps based on proportion of total exon/block length covered by

the intersection, for both transcript and retrocopy

3.13 Retrocopy Conservation

In order to assess the degree to which retrocopies have retained sequence identity

with their parent transcripts, I carried out an alignment between each retrocopy

and its parent. This was done using the matcher software, part of the EMBOSS

suite [237], wrapped in a custom script to achieve parallelisation and to manage

the inputs and outputs efficiently. This produces a file for each pair containing

information about the best alignment between the two.

Each alignment has two important properties for assessing how good it is:
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• Length: the length, in nucleotides, of the match

• Identity: the proportion of nucleotides in the matching regions which are the

same in both the retrocopy and parent.

Separately, these can both be misleading measures of alignment. An alignment

may be the full length of the query, but with very low identity. Conversely, an

alignment may have 100% identity but represent only a short subsequence of the

query. Neither of these represent true alignments between a retrocopy and its

parent. I therefore combined these two to produce an alignment score, S:

S =
MI

Q
(3.2)

where M is the length of the match, I is the identity, and Q is the length of

the query sequence (in this case, the retrocopy). This represents the proportion

of nucleotides in the retrocopy that have a match in the parent transcript. This

measure is therefore high for long matches with high identity. It is not confounded

by gaps resulting from lost introns, but will penalise acquired mutations.

3.14 Retrocopies in CAST

In order to find BL6 retrocopies conserved in CAST, I extracted the sequences

for all BL6 annotated retrocopies (query sequences) and searched for matches in

the CAST genome (subject) using blastn. This produced 6,645,353 hits across

18,139 BL6 retrocopies. However, many of these hits were due to the alignment of

a short subsequence of a query, and do not represent conservation. Many of the

hits were also interchromosomal: the chromosome of the query sequence did not
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match that of the subject. Again, these hits do not represent conservation of the

query. I therefore removed all interchromosomal hits, and filtered the remaining

hits on the length of the match as a proportion of the length of the query, requiring

this to be > 0.8. These filters reduced the number of hits to 27,875 across 10,694

retrocopies.

Figure 3.7 shows a visualisation of these hits. A large number of hits show

significant shifts in the relative position in the chromosome of the query versus

the match, which suggests either a false positive or a structural variation that has

affected the retrocopy. I therefore removed hits where the relative position of the

query did not closely match the relative position of the match. The threshold was

chosen by considering Figure 3.8. There is a clear enrichment along the diagonal

representing true-positive hits. Cutoffs were chosen to include points in this region,

while excluding the others. This further reduced the number of hits to 22,312

across 10,493 retrocopies.

A more sophisticated version of this analysis could use a list of known structural

variants (SVs) between BL6 and CAST to identify those retrocopies that had been

affected by an SV, and thus include them in downstream analysis. This would

expand the range of retrocopies, increasing the power and reliability of downstream

analysis. One could also compare those that had been affected by an SV and those

that had not. Due to the complexity of the SV catalogue I was unable to include

such an analysis here.

While there are 18,456 retrocopies in the BL6 annotation I used, these orig-

inate from just 3,860 parent transcripts, notwithstanding those retrocopies that

do not have a definitively labelled parent. This implies that there will be distinct

retrocopies from the same parent with high sequence identity, which would there-
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Figure 3.7: BL6 retrocopy matches in CAST. The outer ring represents the BL6
genome, while the inner ring is CAST. Lines link BL6 retrocopies to their matches
in CAST, after filtering on length of match and removing interchromosomal hits.
A large number show significant shifts in relative position on the chromosome.
Figure created using the Circos software [238].

fore have sequence matches at the same loci in the CAST genome, erroneously

increasing the number of hits. To remove these false hits, I merged the match re-

gions based on location, so overlapping hits are merged into a single region. This
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Figure 3.8: The relative positions on chromosomes for retrocopies in BL6 and
their matches in CAST, after filtering for length and removing interchromosomal
matches. Red dashed lines indicate the cutoff for keeping a match.

resulted in a reduced list of 14,788 regions, but with some regions having multiple

matching BL6 retrocopies. I split these regions based on whether the matching

retrocopies shared a single parent (11,475), did not share a single parent (485), or

had an unknown parent (2,558).

At this stage, I had a list of 11,475 regions representing BL6 retrocopies con-

served in CAST. However, 12.1% of these matched multiple BL6 retrocopies, and

so I could not reliably assign these a single retrocopy. However, they each had an

agreed parent transcript in BL6, with 2,666 parent transcripts accounting for the
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11,475 regions.

It is important to note that this is not an exhaustive search for retrocopies in

CAST, but only a search for those conserved between BL6 and CAST that have

retained their relative position in the chromosome. While I have endeavoured to

remove as many false positives as possible, some may still remain; in particular,

retrocopies may match their parent transcript. Intron loss and acquired mutations

will have made it less likely for retrocopies to match their parents, and removal of

interchromosomal matches will have also reduced the number of retrocopy/parent

matches. The process used to remove false positives is likely to be overly strict,

and ignores the possible effects of SVs, as discussed above.

3.15 Computing Environments and Online Re-

sources

I carried out the majority of computing work for this thesis on the Ubuntu 14.04

operating system, and the remainder on recent versions of macOS. The major-

ity of the custom code I developed is written in Python 2.7, with additional

scripts written using the R programming language, the Bash shell, Perl, and

other command line tools included with Ubuntu; in particular sed, awk, xargs,

and parallel [239]. Particular note should be given to the superb matplotlib [240],

numpy [241], scipy [242], and scikit-learn [243] Python packages, which I used

extensively. This thesis was typeset using LATEX.

Original code, processed data, and additional images can be found in the Online

Resources at https://github.com/jmg1297/thesis. For larger datasets (e.g.,
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raw reads, whole transcriptomes), contact the Ferguson-Smith lab directly.
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Chapter 4

Mouse Lymphocyte

Transcriptomes

I ran the analysis pipeline described in Methods on the BLUEPRINT BL6 and

CAST samples, resulting in alignments and transcriptomes for B and T lympho-

cytes in males and females from two diverged strains. This represents a useful

resource for future analysis, particularly in reference to retrotransposons and other

repetitive content.

4.1 Alignments

I aligned the raw reads for each BLUEPRINT BL6 and CAST sample and removed

reads mapping to ribosomal RNA (rRNA). I retained uniquely mapping reads and

multimapping reads with fewer than 50 matches for downstream analysis. After

alignment, the reads are divided into the four categories shown in Figures 4.1

and 4.2:
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• Uniquely mapped: reads that mapped to a single location in the reference

genome

• Multimapped: reads that mapped to multiple locations in the reference

genome

• rRNA: reads that mapped to ribosomal RNA regions and therefore needed

to be removed before further analysis (see Methods)

• Unmapped: reads that could not be mapped to any location in the genome,

or that mapped to too many locations in the genome

There is significant variation in the amount of rRNA present in each sample,

both in terms of raw read numbers and percentage of total reads. In some cases,

this significantly reduces the number of reads available for downstream analysis.

The worst example of this is a reduction from 80 million reads to under 20 million.

While this represents a significant reduction in coverage, using these in combination

with the other samples should still produce reliable results, and so these samples

were retained.

Figures 4.3 and 4.4 show the distributions of alignment score (AS), representing

the quality of the alignment based on length and number of mismatches, and

number of hits (NH), the number of loci each read is mapped to, for the BL6 and

CAST samples. AS scores greater than or equal to 200 are ideal, representing a

full-length (or near full-length) paired-end match, and NH would be 1 for a unique

alignment. Both show all of the samples following similar distributions, with high

AS values (around 200) and low NH values. Some of the CAST samples show

weaker peaks around 200 for AS values, and tend to have fewer multimapping
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reads. This could be a result of the lower quality of the CAST genome compared

to the BL6 genome.
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4.2 Reconstructed Transcriptomes

I produced a transcriptome for each BLUEPRINT BL6 and CAST sample, and

merged transcriptomes based on phenotype combinations. The results are sum-

marised in Figures 4.6, 4.7, 4.8, and 4.9. I used these summary figures to check

for consistency in the features found in each reconstructed transcriptome. Each

figure contains six subfigures:

• Top left, transcripts per gene: the number of distinct transcripts for each

reconstructed gene

• Top middle, exons per transcript: the number of exons for each reconstructed

transcript

• Top right, transcripts per chromosome: the number of transcripts found in

each chromosome

• Bottom left, total genes: the total number of reconstructed genes in each

sample

• Bottom middle, total transcripts: the total number of reconstructed tran-

scripts in each sample

• Bottom right, total exons: the total number of reconstructed exons in each

sample

The feature numbers are consistent across individual samples and between

merged transcriptomes. As expected, merged transcriptomes including more sam-

ples contain more features. The female samples and female-only merges contain

a small number of transcripts on the Y chromosome, although fewer than those
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from the male samples and male-only merges. Figure 4.5 shows the distribution

of the number of hits per read (i.e., the number of locations to which the read

maps) for male and female samples. The reads mapping to the Y chromosome in

the female samples are more likely to have multiple hits, compared to those in the

male samples. This suggests that many of the erroneous Y mappings in the female

samples are in fact due to the fact that the pipeline retains multimapped reads.

The Y chromosome reads and transcripts in the female samples should be ignored

in downstream analysis.

Figure 4.5: The cumulative distribution of NH values in the male and female
BL6 samples. While the higher NH values do not clearly differ between male and
female values, the female samples have fewer uniquely mapping reads on the Y
chromosome and more with at least 2 mappings.

For the BL6 samples, I compared the merged transcriptomes to the Ensembl

reference transcriptome to ascertain which of the reconstructed transcripts were

novel, summarised in Figure 4.10. The results are consistent across the merges.

Approximately 60% of transcripts in each merge matched an Ensembl transcript,

either completely or with at least one shared splice junction. Of those remaining,
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the majority are antisense to a known transcript, or a novel intergenic transcript.

In the transcriptome merging all samples, the transcripts matching a reference

cover 11,933 of the possible 115,220 Ensembl transcripts.
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Chapter 5

Retrotransposon Transcription in

Lymphocytes

As discussed in the Introduction, many of the studies on retrotransposon transcrip-

tion have focused on pluripotent and embryonic cells, with relatively few studies on

transcription of retrotransposons in somatic cells. Those that have focused on so-

matic cells have found evidence of retrotransposon activity in multiple cell types,

and have identified a close link between retrotransposons and long non-coding

RNAs (lncRNAs) [127–129]. The high quality BLUEPRINT RNA-seq datasets

provide an ideal opportunity to compare retrotransposon transcription in two so-

matic cell types in detail. Using the reconstructed transcriptomes described in

Chapter 4, I aim to:

• Quantify the retrotransposon content in the BLUEPRINT BL6 transcrip-

tomes

• Test the hypothesis that retrotransposon transcripts affect gene expression
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levels

• Compare the retrotransposon content of B and T lymphocytes

For these analyses I used only BL6 samples, as high quality retrotransposon

and gene annotations are readily available for this reference genome. To create

these annotations in CAST with comparable quality was beyond the scope of this

project; however, obtaining these annotations and running a similar analysis in

CAST should be included in future work.

5.1 Quantifying Retrotransposon Transcription

In order to quantify retrotransposon transcription in B and T lymphocytes, I

compared the merged reconstructed transcriptomes to the RepeatMasker retro-

transposon annotation and used novel software tools to visualise the results, as

described in Methods.

The results are summarised in Table 5.1. I found between 8,600 and 16,000

transcripts with exons overlapping retrotransposons, representing 40-45% of the

transcripts in the reconstructed transcriptomes. However, for the vast majority of

these transcripts there is only a small amount of overlap between their exons and

retrotransposons: only 3-5% have an overlap of more than 50% with retrotrans-

posons. Of these, about half have an overlap of more than 90% (see Table 5.1 and

Figure 5.1).

Including all retrotransposon-containing transcripts, agglomerative clustering

reveals little structure in the data, dividing the transcripts into three clusters:

two with relatively high retrotransposon content, and one large and noisy cluster
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Transcripts
with RT

> 50% RT > 90% RT

Transcript
Set

Total
Transcripts

Number % Number % Number %

ALL 33,785 16,225 48.02 1,757 5.20 868 2.57

B 26,202 11,207 42.77 948 3.62 404 1.54

T 27,700 12,382 44.70 1,374 4.96 698 2.52

Females 28,062 12,806 45.63 1,244 4.43 609 2.17

Males 29,486 12,934 43.86 1,517 5.14 770 2.61

Female B 23,128 9,300 40.21 829 3.58 333 1.44

Female T 22,236 9,317 41.90 813 3.66 445 2.00

Male B 22,435 8,645 38.53 657 2.93 283 1.26

Male T 25,786 10,506 40.74 1,387 5.38 687 2.66

Table 5.1: A summary of the BL6 reconstructed transcriptomes and the retrotrans-
poson (RT) content of each. A very small percentage of transcripts overlapping
retrotransposons contain more than 50% retrotransposon content, and about half
of these contain more than 90% retrotransposon content.

with low to intermediate retrotransposon content. The retrotransposon elements

overlapping transcripts are dominated by SINEs, which make up approximately

75% of all of the retrotransposon elements overlapping transcripts. LINEs and

LTRs make up approximately 10% and 15% (Table 5.2). These represent an

enrichment in SINEs and a depletion in LINEs and LTRs, compared to their

contributions to all retrotransposons (Figure 5.4).

However, when transcripts with less than 50% retrotransposon content are re-

moved, the same clustering algorithm shows several distinct clusters based on the

type of retrotransposon that the transcripts overlap (Figure 5.2). LINEs and LTRs

dominate in terms of transcript sequence content and number of transcripts (Ta-

ble 5.2 and Figure 5.2). SINEs are no longer overrepresented, and the proportion

of LTRs exceeds their proportion of all retrotransposons (Figure 5.4). There is
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Figure 5.1: A heatmap showing the retrotransposon content of the reconstructed
transcriptomes, merged across all BL6 samples. Each row represents one recon-
structed transcript, and the bars in that row represent the total proportion of
retrotransposon sequence in the exons of that transcript. The colours represent
the different classes of retrotransposon, according to the legend at the top of the
figure. Greens represent LINEs; reds represent LTRs; blues represent SINEs; and
white for non-RT sequence. Different shades of each colour represent specific sub-
classes. The blocks on the left of the figure show the results of agglomerative
clustering based on the total proportion of each type of retrotransposon. The
methods used to produce these figures are described in detail in Methods. In this
figure, clustering reveals relatively little structure: there is one small cluster of
transcripts with high ERV1 content; a larger cluster with high RT content, but a
mix of classes; and the large cluster with relatively low RT content.

particular enrichment for ERV1, ERVK, ERVL-MaLR, and L1 retrotransposons.

These patterns are even more pronounced when selecting transcripts with more
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than 90% retrotransposon content (Figure 5.3).
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Figure 5.2: Retrotransposon content of transcripts containing >50%
RT sequence.

Figure 5.3: Retrotransposon content of transcripts containing >90%
RT sequence.
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This suggests that retrotransposon-containing transcripts can be divided into

two main categories: those with low to intermediate retrotransposon content, and

those with high retrotransposon content. Transcripts in the former group tend to

have a mixture of different retrotransposons, possibly representing small fragments

of retrotransposon or those present in introns and untranslated regions (UTRs).

These could be functionally relevant as regulatory regions, or may simply be chance

insertions that do not play any significant role.

Transcripts in the latter group can be subdivided into clusters based on the

kind of retrotransposon they overlap, and are dominated by LINE and LTR retro-

transposons. This suggests the existence of a set of LTR- and LINE-based tran-

scripts. Such transcripts could have significant regulatory potential, based on

sequence similarity with RT-derived regulatory regions or RT sequence in other

transcripts [244]. Some of these could also be retrotransposition intermediates, as

the mouse genome does contain potentially active retrotransposons [55,245].

LINEs SINEs LTRs

Transcript
Set

Total RT
Elements

Number % Number % Number %

> 0% RT
Content

112,705 11,731 10.41 85,122 75.53 15,852 14.07

> 50% RT
Content

5,846 1,105 18.90 2,694 46.08 2,047 35.02

> 90% RT
Content

1,089 201 18.46 188 17.26 700 64.28

Table 5.2: The number of individual retrotransposon (RT) elements overlapped
by transcripts in the reconstructed transcriptome across all B and T samples.
SINEs dominate when including all transcripts with retrotransposon content, but
not when filtering on retrotransposon content percentage. In particular, the num-
ber of ERV elements increases rapidly, which is reflected in the sequence content
(Figures 5.1, 5.2, and 5.3).
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Figure 5.4: The proportion of each of the major retrotransposon classes with
different filters applied. All RTs: all retrotransposon (RT) elements in the genome;
>0%: all RTs overlapping a reconstructed transcript; >50%: RTs overlapping a
reconstructed transcript with more than 50% RT content; >90%: RTs overlapping
a reconstructed transcript with more than 90% RT content. As more stringent
filters are applied, LTRs become enriched compared to their proportion across the
genome, while SINEs are depleted.

5.2 Effect of RT transcripts on gene expression

As discussed in the Introduction, there is a well-established link between lncRNA

and retrotransposons, with many lncRNAs containing retrotransposon sequence.
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Their relationship with protein-coding genes is less clear, if any such relationship

exists. There are multiple examples of retrotransposon regulatory sequence being

incorporated into gene regulatory networks (e.g., the interferon pathway [99]), and

some genes have evolved from retrotransposons (e.g., syncytin [132]; see Introduc-

tion). These examples aside, the majority of published studies in this filed focus

on the relationship between retrotransposons and lncRNAs.

The presence of retrotransposon sequence in protein-coding transcripts would

allow for regulation based on sequence similarity with the retrotransposon. This

could be at the transcriptional level (e.g., targeting of epigenetic marks), or at

the post-transcriptional level, through RNA-based mechanisms [246–248]. In this

section I will quantify how the RT-containing transcripts already identified corre-

spond to annotated protein-coding transcripts using the Ensembl annotation (see

Methods). I will then test whether RT-containing transcripts affect the expression

of protein-coding genes in cis.

To quantify the relationship between protein-coding transcripts and the RT-

containing transcripts identified in the previous sections, I used the gffcompare tool

(see Methods). I applied this tool to the RT-containing transcripts, so they would

be classified based on their correspondence to a protein-coding transcript. The

results are shown in Figure 5.5. As the proportion of retrotransposon sequence in

the query transcripts increases, the proportion corresponding to a protein-coding

gene decreases.

In order to assess whether retrotransposons in ncRNAs were affecting gene

expression, I used data from three kinds of novel transcripts identified by the gf-

fcompare program: intronic, antisense, and intergenic. For intronic and antisense

transcripts, there is a corresponding reference transcript. For intergenic tran-
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Figure 5.5: The proportion of reconstructed transcripts in each gffcompare cate-
gory, for different levels of retrotransposon sequence content. Transcripts matching
protein-coding reference transcripts tend to have lower retrotransposon content, as
expected, and novel transcripts, which are potential lncRNAs, tend to have higher
retrotransposon content.

scripts, one can find a corresponding reference transcript by looking in a window

around the novel transcript. For each kind of novel transcript, I divided the novel

transcripts into two categories: those with retrotransposon content, and those

without. I then calculated the distribution of Spearman’s rho correlation values

between the novel transcripts and their corresponding reference transcripts (see

Methods), and used an Anderson-Darling (AD) test to compare the distributions

statistically.

Figures 5.6, 5.7, 5.8 show the results of this analysis for intronic, intergenic,
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and antisense novel transcripts. Table 5.3 shows the results of AD tests. In the

first two cases, there is no clear bias towards high or low correlation values, and

no difference between transcripts with or without retrotransposon content; this

is confirmed by the AD test. The intronic transcripts with RTs show a slightly

different distribution to the other intronic transcripts, with a small peak at around

ρ = −0.5, but it is not statistically significant.

For antisense transcripts, there is a clear bias towards high correlation values,

and antisense transcripts with retrotransposon content tend to have higher correla-

tion values than those without; again, this is confirmed by the AD tests. The high

correlations in expression between antisense transcripts and the protein-coding

transcripts they overlap could be interpreted as a consequence of transcriptional

activity in that region: if the gene is being expressed, then by chance an antisense

transcript is also expressed. If this were the case, however, similar distributions

would be expected for the intronic and intergenic transcripts as well. This is not

the case, suggesting that the high correlation values may be meaningful.
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Figure 5.6: The distribution of correlation coefficients
between expression levels of intronic StringTie tran-
scripts and their corresponding protein-coding tran-
scripts.

Figure 5.7: The distribution of correlation coefficients
between expression levels of intergenic StringTie tran-
scripts and protein-coding transcripts within 5kb.

Figure 5.8: The distribu-
tion of correlation coeffi-
cients between expression
levels of antisense StringTie
transcripts and their cor-
responding protein-coding
transcripts.
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Antisense Intronic Intergenic

All vs. With RTs -1.31 -0.65 -1.04

All vs. Without RTs 27.32 0.13 0.74

With RTs vs. Without RTs 27.32 1.76 1.54

Significance level 5% 2.5% 1%

Critical value 1.96 2.72 3.75

Table 5.3: Upper table: Anderson-Darling (AD) statistic values comparing the
distributions of Spearman’s rho values shown in Figures 5.6, 5.7, and 5.8. Lower
table: critical values for the AD statistic at different significance levels. For intronic
and intergenic transcripts, none of the comparisons have AD statistics exceeding
any of the critical values, and there is no evidence to suggest that any of their
distributions are significantly different. For antisense transcripts, the distribution
for the “Without RTs” category is significantly different from both other cate-
gories. These results are consistent with visual inspection of the distributions, and
confirm that the presence of RTs correlates with higher Spearman’s rho values in
sense/antisense pairs.

To further investigate whether antisense transcripts are indeed regulating the

protein-coding transcripts they overlap with a retrotransposon-based mechanism,

then two additional observations are of interest:

• The exact type of retrotransposon present in the antisense transcript

• Whether the protein-coding transcript also contains retrotransposon sequence

Figure 5.9 shows the retrotransposon content of antisense transcripts. The clus-

ters are noisy, with a mixture of retrotransposon types, and relatively low retro-

transposon content overall. This is not surprising, given that they overlap coding

genes on the opposite strand, which are unlikely to contain large retrotransposon

sequences. There is no apparent bias towards any single type of retrotransposon.

Figure 5.10 shows the distribution of correlation values between antisense
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transcripts and their corresponding protein-coding transcripts, but with the RT-

containing antisense transcripts divided into two groups based on the retrotrans-

poson content of the protein-coding transcript:

• RTs match: the antisense transcript and the corresponding protein-coding

transcripts both contain sequence from the same kind of retrotransposon

• RTs mismatch: the antisense transcript contains RT sequence, but the protein-

coding transcript does not, or contains sequence from different kinds of RTs

In this case, there is a stronger bias towards higher correlation values if the an-

tisense transcript and the protein-coding transcript both contain the same kind of

retrotransposon content, compared to the other categories. This suggests that the

presence of retrotransposon sequence may contribute towards regulation through

sequence identity. If this is the case, the effect appears to be positive, as the

correlations are exclusively positive. Antisense transcripts in general have the po-

tential to regulate corresponding sense transcripts via sequence identity, which

may account for the high correlations seen across all antisense transcripts. How-

ever, the antisense/sense pairs that share a retrotransposon type are more likely to

have high correlation values, suggesting that the shared retrotransposon sequence

may be better suited to such a mechanism. Indeed, it may be the case that both

transcripts overlap the same retrotransposon element.

This supports previous findings linking antisense transcripts to gene regulation,

and suggests that this is usually positive regulation. In addition, it suggests that

shared retrotransposon sequence may facilitate such interactions.
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Figure 5.9: The retrotransposon content of antisense transcripts.
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Figure 5.10: Expression correlation distributions for antisense transcripts in each
retrotransposon matching category.
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Antisense

All vs. RTs Match 13.40

All vs. RTs Mismatch 12.90

All vs. Without RTs 27.32

RTs Match vs. RTs Mismatch 42.00

RTs Match vs. Without RTs 52.15

Without RTs vs. RTs Mismatch
6.08

Table 5.4: Anderson-Darling statistic values comparing the distributions of Spear-
man’s rho values shown in Figure 5.10. All of these values exceed the critical
value for 1% significance, indicating that all four distributions are significantly
different from each other. In particular, the distribution of values for the “RTs
Match” category is very different from the distributions for the “RTs Mismatch”
and “Without RTs” categories.
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5.3 Cell-type Specificity

Previous studies [11,13,14] have observed cell-type specificity in lncRNA transcrip-

tion, and I hypothesised that retrotransposon transcription in B and T cells would

also show specificity. I also hypothesised that, as part of the same cell lineage, B

and T cells would have a more similar retrotransposon transcription profile com-

pared to another cell type. For this comparison I used an RNA-seq dataset from

liver, as described in Datasets.

Upon visual inspection, the retrotransposon transcription profiles of B, T, and

liver cells appear similar, all containing the large noisy cluster with low retrotrans-

poson content, and a small cluster of high retrotransposon content transcripts.

The primary visible difference is an extra cluster in T cells of high-ERV1 tran-

scripts; however, it may be that similar transcripts exist in B and liver cells, but

have not been separated from other high retrotransposon clusters (relevant figures

can be found in Online Resources).

After filtering out transcripts with less than 50% retrotransposon content, B,

T, and liver all show new clusters, similar to Figures 5.2 (full sets of figures can be

found in Online Resources). These clusters appear similar, and so to quantify this

I performed a cluster comparison, as described in Methods (Figure 5.11). This

analysis confirmed that there are similar clusters of retrotransposon-containing

transcripts in both B and T cells; in particular, high LTR content transcripts and

high LINE content transcripts. When compared to the liver transcripts, I found

similar results when comparing B against liver and T against liver (see Online

Resources).

From this, I concluded that at a broad level there are similar groups of retrotransposon-
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containing transcripts in B, T, and liver cells, including transcripts with high L1

and ERV content. However, it may be that the individual retrotransposons be-

ing transcribed in each case are specific to each cell type. Figure 5.12 shows the

number of individual retrotransposon elements shared between the cell types, with

different content level filters applied. As more stringent filters are applied, the in-

dividual retrotransposon elements tend to be cell-type specific (Tables ??). This

would be consistent with the idea that transcripts with lower retrotransposon con-

tent tend to be coding transcripts with non-functional retrotransposon content,

which are more likely to be shared between cell types. In contrast, those with

higher retrotransposon content may be functional lncRNAs that make use of the

retrotransposon content, displaying the characteristic tissue specificity.

Label B T L B, T B, L T, L B, T, L

Observed 2,323 2,864 1,260 1,336 40 40 74

Expected 2,592 1,889 783 2,192 103 95 283

χ2 = 1,381.59

p = 2.35× 10−295

Table 5.5: The results of a chi-squared test comparing the number of retrotrans-
posons in each Venn category for all transcribed retrotransposons (expected), and
for those in a transcript consisting of more >50% retrotransposon content (ob-
served) (see Methods). The results are significant, and the observed versus ex-
pected values suggest that with the 50% filter the individual retrotransposons are
more likely to be cell-type specific.
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Figure 5.12: Overlap in transcribed retrotransposons between liver, B cells, and T
cells. (A) All transcripts with retrotransposon content. (B) Transcripts with >50%
retrotransposon content. (C) Transcripts with >90% retrotransposon content. In
all three cases, there is a higher degree of shared retrotransposons between B and
T than with liver, suggesting lineage-specificity as well as cell-type specificity.
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Label B T L B, T B, L T, L B, T, L

Observed 345 638 101 171 20 28 25

Expected 389 479 211 224 7 7 12

χ2 = 234.24

p = 9.51× 10−48

Table 5.6: The results of a chi-squared test comparing the number of retrotran-
posons in each Venn category for retrotransposons in a transcript consisting of
more >50% retrotransposon content (expected), and those in a transcript consist-
ing of more >90% retrotransposon content (observed) (see Methods). The results
are similar to those shown in Table 5.5, suggesting that retrotransposons are more
likely to be cell-type specific with the more stringent filter.
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5.4 Summary

In this chapter, I have quantified the retrotransposon content of B and T lym-

phocytes, and demonstrated that a significant proportion of transcripts contain

some degree of retrotransposon sequence. Most of these transcripts contain only

a small amount of retrotransposon sequence, but a small percentage contain a

high proportion of RT sequence. These are enriched for ERVs and L1s, and tend

to be intergenic transcripts that do not correspond to a known protein-coding

transcript; however, their function cannot be ascertained from this analysis. Tran-

scripts of this kind are found in B, T, and liver cells, but usually do not represent

the same individual retrotransposon elements. It may be that there is a common

role for high-retrotransposon sequences in multiple cell types, but different retro-

transposons fulfil this role under different epigenetic conditions (e.g., chromatin

conformation).

A minority of the reconstructed transcripts can be classified as antisense to

a known protein-coding transcripts. In general, there are positive correlations

between expression of the antisense transcript and the corresponding protein-

coding transcript; however, in this chapter I have shown that these correlations

are stronger if the antisense transcript contains retrotransposon sequence, and

even more so if the protein-coding transcript contains matching retrotransposon

sequence. Antisense transcripts have the potential to form RNA:RNA duplexes

with the corresponding sense transcripts, if there is sufficient corresponding se-

quence between the two. It may be that the presence of retrotransposon sequence

in both facilitates the formation of such duplexes, and that this protects the mRNA

from degradation.
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Chapter 6

Retrocopy Transcription in

Mouse Lymphocytes

Retrocopy transcription is now known to be widespread, giving rise to non-coding

transcripts that represent an indirect contribution of retrotransposons to the tran-

scriptome in mammals [141,159,161]. Recent work has suggested that a retrocopy

RNA may regulate the transcript from which it was copied [160, 172], possibly

through mechanisms based on sequence identity (see Introduction for a more de-

tailed review). However, this is still an open question, and relatively few studies

have explored this. The BLUEPRINT RNA-seq datasets provided an excellent

opportunity to do so.

In this chapter, I hypothesise that:

• retrocopy lncRNAs (RC-lncRNAs) do affect the expression of the genes from

which they originate

• this is a regulated, functional effect
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• this occurs through a mechanism based on the sequence similarity between

the RC-lncRNA and the parent mRNA

To investigate these hypotheses, I will focus only on the BL6 datasets initially,

as there are high quality annotations for both reference genes and retrocopies. I

will also use the CAST datasets to investigate possible conservation of retrocopy

transcripts, but due to the lack of high quality annotations for the CAST genome,

I was not able to conduct an equivalent analysis in CAST. Any future work on

this topic should include the creation of a high quality retrocopy annotation for

CAST, if one does not exist, and a more extensive analysis of retrocopy expression

in CAST.

6.1 Retrocopies are Expressed in Mouse Lym-

phocytes

In order to discover expressed retrocopies in the RNA-seq samples, I compared the

reconstructed transcripts to annotated retrocopies using a similar approach to that

used with retrotransposons (see Methods). I added an additional step to retain

only transcripts with a high degree (>80%) of reciprocal overlap with a retrocopy.

Using this method, I discovered 994 expressed retrocopies across all of the

BLUEPRINT BL6 RNA-seq samples, corresponding to 1,073 transcripts. The 994

expressed retrocopies originated from 456 parent transcripts. 1,010 of the tran-

scripts were novel transcripts, with no corresponding annotation in ENSEMBL,

while 54 matched a previously annotated transcript to some degree (Table 6.1).

The expressed retrocopies and their parent transcripts are distributed fairly
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Code Description Number

= Complete match 9

c
Query contained in
reference

1

e Possible pre-mRNA 7

j Possible novel isoform 20

o Exon overlap 17

p
Possible polymerase
run-on

9

i Intronic 164

u Novel transcript 734

x Antisense exon overlap 112

Table 6.1: Comparison of retrocopy transcripts to Ensembl reference transcripts
according to gffcompare, across all BL6 samples. Codes “i”, “u” and “x” can
be regarded as novel transcripts (highlighted in blue, 1,010 in total), while the
remaining codes indicate a type of match. However, only 9 match exactly (code
“=”).

evenly throughout the genome, with some hotspots (Figure 6.1). The distribution

of expressed retrocopies across chromosomes follows that of all retrocopies (i.e.,

including both expressed and non-expressed), in general (Figure 6.2). Two notable

exceptions are chromosome 6 and chromosome Y. The distribution of expressed

retrocopy parents follows the distribution of all retrocopy parents fairly well, with

no notable outliers.

Chromosome 6 is noticeably enriched for expressed retrocopies. A gene on-

tology (GO) analysis of genes on chromosome 6 showed an enrichment for genes

involved in immunoglobin production and the immune response (Table 6.2). It

may be that the large regions of chromosome 6 are in an open conformation so that

immune response genes are expressed or ready for expression in lymphocytes. As a

result of this, retrocopies are more likely to be transcribed in this more permissive
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Figure 6.1: Distribution of expressed retrocopies (inner red heatmap, inner num-
bers) and their parent transcripts (outer blue heatmap, outer numbers) in the
mouse genome. Created using the Circos software [238].

environment.

Chromosome Y is almost completely depleted for expressed retrocopies, whereas

across all retrocopies, the greatest proportion are on chromosome Y. This is prob-

ably the result of two features of the Y chromosome and its evolution. Firstly, the

182



Figure 6.2: The proportion of retrocopies and their parents found on each chro-
mosome, both expressed (red) and randomly selected (grey). Error bars indicate
the standard deviation of proportions from 1000 random samples, each of similar
size to the number in the expressed set.

mammalian Y chromosome is almost exclusively involved in testis determination

and spermatogenesis, with little or no function outside of these roles [250]. In

particular, it does not play a known role in the immune response, and is there-
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GO biological process Ref Query Expected Enrichment
+/-

p-value

detection of chemical
stimulus involved in
sensory perception of
bitter taste

48 30 2.38 12.58 + 4.79× 10−19

immunoglobulin
production

163 71 8.10 8.77 + 1.74× 10−38

→ production of
molecular mediator of
immune response

181 71 8.99 7.90 + 1.29× 10−35

→ immune
system process

1,915 153 95.14 1.61 + 4.66× 10−5

response to
pheromone

104 37 5.17 7.16 + 6.34× 10−16

immune response 1,087 107 54.01 1.98 + 2.91× 10−7

Table 6.2: The results of a gene ontology (GO) analysis of the genes on chromo-
some 6. There is significant enrichment for genes related to the immune response,
suggesting that chromosome 6 will be in an open conformation in lymphocytes.
GO analysis carried out using the online GO Enrichment Analysis tool from the
Gene Ontology Consortium [249].

fore likely to be silenced in lymphocytes, leading to the observed depletion for

retrocopy transcription. Secondly, its role in spermatogenesis suggests it will be in

a more permissive chromatin conformation in male germ cells, making it a more

likely target for retrocopy insertion. Such germline insertions are then fixed in the

genome. In combination, this means that the Y chromosome has a relatively high

number of retrocopies, but they are unlikely to be expressed in lymphocytes.

A GO analysis of the parent genes corresponding to the expressed retrocopies

showed a number of enriched biological processes (see Online Resources). How-

ever, a GO analysis of all retrocopy parents showed enrichment for all of the same

biological functions (see Online Resources), suggesting that no specific functional

subset has been chosen for expression, and that retrogenes are simply more likely
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to originate from certain groups of genes (e.g., germline-expressed genes, house-

keeping genes).

6.2 Retrocopy expression is shared across lin-

eages

Comparing transcript expression across cell types can be used to identify putative

functional transcripts. Expression of a given transcript specifically in one cell type

may indicate a specific role for that transcript in that cell type; transcripts shared

across multiple diverged cell types may be involved in a pathway common to many

cell types.

To investigate these possibilites for retrocopy transcripts, I ran the retrocopy

discovery pipeline on samples from each cell type separately, to obtain sets of ex-

pressed retrocopies for B cells and T cells. By comparing these two cell types,

I obtained lists of cell type-specific and shared expressed retrocopies, and retro-

copy parents. The majority of expressed retrocopies and their parents were found

in both B and T cells, with a small number showing cell-type specificity (Fig-

ure 6.3). A statistical analysis (see Methods and Online Resources) showed a

significant enrichment towards shared retrocopies (p < 4.94× 10−324) and parents

(p < 4.94×10−324), with a corresponding depletion in cell type-specific retrocopies

and parents. The sets of parents with expressed retrocopies found in one cell

type or the other were not enriched for any biological functions, according to a

gene ontology analysis. Those shared between both cell types showed the same

enrichments as shown by all retrocopy parents, expressed or otherwise.
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Figure 6.3: (A) Retrocopies expressed in B and T cells. (B) Parents of retrocopies
expressed in B and T cells. In both cases, there is a high degree of overlap between
the cell types.

B and T cells are relatively close cell types, both being derived from lymphoid

progenitor cells. The high proportion of shared expressed retrocopies and parents

could be a reflection of their shared lineage. To investigate this, I used publicly

available RNA-seq data from mouse liver as an outgroup (see Datasets). I applied

the same analysis pipeline to obtain a set of expressed retrocopies in liver (Ta-

ble 6.3). Fewer retrocopies are expressed in the liver, which may be a reflection of

the small number of samples available in that dataset, although they have higher

sequencing depth than the BLUEPRINT samples. A better comparison could be

obtained by downsampling the BLUEPRINT data before comparing to he liver

samples; such a comparison should be included in future work.

I compared the liver results to the results from the B and T cells (Figure 6.4).

For both retrocopies and their parents, there is significant enrichment in the num-

ber shared between all three cell types (p < 4.94 × 10−324 for both retrocopies
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Transcript
Set

Retrocopy
Transcripts

Retrocopies
Parent

Transcripts

ALL 1,073 994 456

B 901 856 413

T 979 938 437

Liver 375 348 253

Table 6.3: Number of retrocopy transcripts, expressed retrocopies, and correspond-
ing parent transcripts across all BLUEPRINT samples, in B cells, in T cells, and
in liver.

and parents) and for the number shared between B and T cells but not liver (p <

4.94×10−324 for both retrocopies and parents). There is a depletion in retrocopies

and parents found in one cell type only. This suggests that while retrocopy ex-

pression does reflect cell lineage, there is also a core set of retrocopies and parents

that are expressed across diverged cell types. This result is stronger in the parents

than in retrocopies.

This analysis does not directly suggest a functional role for these retrocopies.

The different sets of retrocopies that are expressed could be an effect of chromatin

conformation, so retrocopies are expressed by chance when other transcripts nearby

are expressed. The analysis of parent genes is more interesting, as a single parent

transcript can have multiple retrocopies in different areas of the genome, and so

their inclusion in a given set is not necessarily linked to chromatin conformation

and location. The evidence for a set of parents with expressed retrocopies shared

across cell types is stronger than for individual retrocopies. It may be that certain

transcripts are regulated using a retrocopy-based mechanism, and different specific

retrocopies are used to achieve this in different cell types, depending on chromatin

conformation or other regulatory factors. Future work on this should expand this

187



Figure 6.4: (A) Expressed retrocopies in B cells, T cells, and liver. (B) Parents of
expressed retrocopies in B cells, T cells, and liver. Liver shows little overlap with
B and T individually, but there is significant overlap between all three.

analysis to a range of other cell types; if this hypothesis is correct, we would expect

to see a significant number of shared parents across multiple cell types.

6.3 Expressed Retrocopies Produce RNA Com-

plementary to Their Parent

As noted above and in the Introduction, retrocopy transcripts have regulatory

potential based on sequence similarity with their parent gene. The specific mech-

anism depends on whether the retrocopy RNA is complementary to the parent or

not. If it is complementary, the retrocopy and parent RNAs can form RNA:RNA

duplexes [172]; if not, the retrocopy RNA can act as an miRNA sponge, for exam-

ple [168,169]. Establishing a preference for one option or the other would rule out

188



one set of mechanisms in favour of the other.

The relative strandedness of the retrocopy RNA can be used to establish

whether it is complementary to its parent transcript. When considering tran-

scribed retrocopies and their relationship with their parent transcripts, there are

three levels of strandedness (Figure 6.5):

• The strand of the parent transcript, i.e., the strand from which the parent

transcript is transcribed

• The strand of the retrocopy annotation, which reflects the orientation of the

insertion

• The strand from which the retrocopy is transcribed

There are therefore eight possible combinations of strands, which can be divided

into two groups: those that produce retrocopy RNA (rcRNA) complementary to

their parent mRNA, and those that do not (Figure 6.5).

Each retrocopy transcript is associated with a retrocopy and a parent, and so I

assigned each of the expressed retrocopies to one of the eight strand combinations.

This showed that the vast majority of expressed retrocopies are transcribed in such

a way as to produce rcRNA complementary to their parent mRNA (Table 6.4).

To assess the statistical significance of this result I performed a chi-squared test

comparing the observed number in each category to the expected number in each

category. To obtain the expected number I counted the number of retrocopies

falling into each of the four parent/retrocopy strand combinations. I used the pro-

portions of observed retrocopy transcript strand to calculate the expected num-

ber in each of the eight parent/retrocopy/transcript categories. This calculation
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Figure 6.5: The possible combinations of parent transcript strand, retrocopy
strand, and transcript strand. Blue lettered boxes represent exons. The addition
of ’ represents the reverse complement. (i) The original transcript in the genome.
(ii) The parent mRNA. (iii) The retrocopy insertion and its possible transcription.
Sense with respect to (wrt) the parent produces RNA equivalent to the parent.
Antisense wrt the parent produces RNA complementary to the parent.

showed an essentially even distribution across all eight categories. The chi-squared

test indicated that there is a significant bias towards combinations that produce

antisense RNA. There is no bias towards any particular strand combination.

This suggests that any functional role played by the expressed retrocopies will

tend to be based on RNA complementarity, rather than exact sequence identity.
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Parent Retrocopy Transcript
Sense wrt
parent

Count Expected

+ + + Sense 11 138.08

+ + - Antisense 227 121.44

+ - + Antisense 288 138.02

+ - - Sense 12 121.38

- + + Sense 8 137.49

- + - Antisense 217 120.91

- - + Antisense 256 149.33

- - - Sense 39 131.33

Observed total antisense = 988 Observed total sense = 70

Expected total antisense = 529.70 Expected total sense = 528.28

χ2 = 809.67

p =1.52× 10−170

Table 6.4: The number of expressed retrocopies across all BLUEPRINT BL6 sam-
ples falling into each strand combination. A chi-squared test shows that there is
a very clear enrichment in the categories leading to rcRNA complementary to the
parent (highlighted in blue).

However, any such role would rely not just on complementarity from a strand

perspective, but also on high sequence identity between the parent transcript DNA

and the retrocopy DNA.

6.4 Expressed Retrocopies Have Higher Sequence

Identity with Their Parents

The previous section demonstrates that the expressed retrocopies are much more

likely to form RNA complementary to that of their parent transcript. If retrocopy

expression is regulating parent transcripts, this bias rules out certain regulatory
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mechanisms (e.g., miRNA sponge) in favour of others (e.g., formation of RNA:RNA

duplexes). However, all of these mechanisms rely on a high level of sequence

identity between the retrocopy and the parent. If the retrocopy has degraded over

time, the sequence identity may be low, in which case it would not be able to fulfill

a regulatory role based on sequence identity.

To assess the sequence identity between parents and retrocopies, I compared

each retrocopy with its parent transcript and performed a local alignment between

the two (see Methods). I assigned each alignment a score based on its length and

identity, and plotted the distribution of scores for three sets of retrocopy/parent

pairs: expressed retrocopies, non-expressed retrocopies, and a subset of retrocopies

with a randomly assigned parent.

Figure 6.6 shows the results of this analysis. The distribution of alignment

scores across all retrocopies shows a multimodal distribution, which could reflect

the distribution of ages across the retrocopies. In this case, the leftmost peak would

be the oldest retrocopies, which have decayed to the point that the alignment with

the parent is no better than the alignment between the retrocopy and a random

reference gene. In this case, the reliability of assigning a parent to a retrocopy

seems dubious, if the alignment is no better than random; however, the score used

here is a summary, and information is lost that could be used to identify a parent.

This leftmost peak could represent a burst of retrocopy activity at a particular

time, or a plateau of decay reached by most retrocopies eventually. The peaks to

the right of the histogram could also be more recent bursts of retrocopy formation,

as reported in [154,251].

Overall, the expressed retrocopies tend to have higher levels of sequence identity

with their parents compared to non-expressed retrocopies. It is therefore possible
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Figure 6.6: Retrocopy/parent alignment scores, where 1.0 represents a perfect
full-length alignment (see Methods). ALL: All retrocopies. EXPR: All expressed
retrocopies. RANDOM ALN: Negative control where retrocopies are aligned to
randomly chosen parent transcripts. Expressed retrocopies are clearly biased to-
wards high scores compared to all retrocopies.

that the majority of the retrocopy transcripts identified here could interact with

their parent transcripts based on shared sequence identity. Given the previously
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described bias towards complementary rcRNA, I expected to observe a higher

sequence identity among retrocopies producing complementary RNA. However,

the number of retrocopies producing non-complementary RNA is too small to be

reasonably compared with any other category (see Online Resources).

While this finding does not guarantee that expressed rcRNA regulates parent

transcripts via a sequence-based mechanism, it allows for the possibility that such a

mechanism exists. It should be noted that more recent retrocopies are expected to

have a higher sequence identity with their parent, as they will have suffered fewer

mutations. Indeed, methods similar to the alignment score used here are used to

estimate the age of retrocopies [141]. Assuming that these retrocopy transcripts

are functional, it may be that expressed retrocopies have undergone selection to

preserve sequence identity with their parent, which is important for said function.

Alternatively, it may be that expressed retrocopies are also younger retrocopies,

and remain expressed until the sequence similarity to the parent has decreased to

the point when it is no longer effective as a regulatory RNA. If this is the case,

then how is their expression regulated? As described by Carelli et al., expressed

retrocopies either use pre-existing promoters, or evolve one de novo; the former

case accounts for a small percentage of retrocopies, and the latter case requires

time for such a promoter to evolve.
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6.5 Retrocopy Transcription and Retrotranspo-

son Indels

Over time, retrotransposons acquire mutations, including single nucleotide varia-

tions (SNVs) and structural variations (SVs). These can be deleterious, rendering

the retrotransposon unable to successfully copy and paste itself. Amongst the SVs

are “indels”: insertion of sequence not belonging to the retrotransposon, some-

times also accompanied by a deletion of retrotransposon sequence at the insertion

locus (Figure 6.7). These have been identified by the RepeatMasker software by

looking for fragments of the same retrotransposon near to each other, often with

overlapping sequence on either side of the gap. 340,398 (11.7%) retrotransposons

in the mouse genome contain at least one indel.

A näıve intersection of the reconstructed transcriptomes with retrotransposons

(i.e., ignoring internal structures, see Methods) showed sets of transcripts with

a high degree of overlap with retrotransposons, particularly L1 and certain ERV

elements. Closer examination showed that some of these were not true retro-

transposon transcripts, but instead transcripts from inside retrotransposon indels

(RTIs) (Figure 6.7).

To quantify this, I compared the reconstructed transcriptomes with the full set

of RTIs to find all transcribed RTIs. I also compared RTIs to the RepeatMasker

annotation and the retrocopy annotation in order to classify each RTI based on its

contents. Visual inspection of Figure 6.8 suggests that retrocopy-containing RTIs

are highly enriched in the set of expressed RTIs compared to all RTIs, while other

classifications are depleted. A chi-squared test showed that this is indeed the case

(Table 6.5).
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Figure 6.7: An example of a retrotransposon indel (RTI) with a retrocopy tran-
scribed from inside it. A retrocopy of the Lsm5 gene has inserted into an ERVK
element, creating an RTI with the retrocopy inside. The reconstructed transcrip-
tomes show that this retrocopy is transcribed across all of the BL6 samples.
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Class LINE SINE LTR DNA
Low

complexity
Simple
repeat

Satellite

Observed 34 63 82 1 1 1 0

Expected 69 91 95 5 2 135 1

Class
Retro-

copy
RNA Other Mixed NONE

Observed 254 1 1 0 115

Expected 2 1 1 0 151

χ2 = 32, 124.85

p < 4.94× 10−324

Table 6.5: The results of a chi-squared test comparing the contents of all RTIs to those that are expressed. To
obtain the expected values, the proportions falling into each category across all RTIs were multiplied by the total
number of expressed RTIs. This shows a clear and significant enrichment for retrocopies in the expressed RTIs.



I then compared the set of expressed retrocopies to the full set of RTIs, and

found 241 expressed retrocopies contained inside RTIs. While this is a minority

of the expressed retrocopies, a chi-squared contingency test showed that there is

a statistically significant enrichment for expressed retrocopies inside RTIs, with

approximately double the expected number (Table 6.6).

Inside RTI Not inside RTI

Expressed 241 753

Not
Expressed

2,002 15,460

Total BL6 retrocopies 18,456

χ2 = 142.69

p = 6.857× 10−33

Expected Values:

Inside RTI Not inside RTI

Expressed 120.80 873.20

Not
Expressed

2,122.20 15,339.80

Table 6.6: The results of a chi-squared contingency test comparing expression of
retrocopies in BL6 and their location inside an RTI. The observed values differ
significantly from the expected values, suggesting that retrocopy expression and
location inside an RTI are not independent.

These results suggest a possible link between retrocopy expression and its po-

sition inside a retrotransposon. As noted previously, retrotransposons are a rich

source of regulatory elements, and it may be that retrocopies have adopted retro-

transposon promoters. It is not clear why having retrotransposon sequence at both

ends should be important; it may not be, and future work should include a more

comprehensive analysis of retrotransposons as regulatory elements for retrocopies.
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6.6 Retrocopy Expression May Affect Parent mRNA

Levels

If retrocopy transcripts are involved in the regulation of their parent transcripts,

we would expect to see this reflected in the expression levels of the parent mRNA.

To investigate this, I compared the expression of parent transcripts in B and T

cells. Since a single parent transcript can give rise to multiple retrocopies, and each

retrocopy has the potential to interact with the parent individually, I used cell-

specific parents, rather than cell-specific retrocopies. I obtained a list of parents

corresponding to expressed retrocopies for each cell type, and compared the two

lists to produce three sets of parents: those with one or more retrocopies expressed

across both cell types, those with at least one retrocopy expressed in B cells only

(“B-specific parents”), and those with at least one retrocopy expressed in T cells

only (“T-specific parents”). It should be noted that the first list includes parents

with multiple distinct retrocopies expressed in each cell type separately. There are

45 B-specific parents, 69 T-specific parents, and 368 shared (Figure 6.3).

I used the Ballgown software to obtain fold change values for each Ensembl

transcript between B and T cells, along with corresponding confidence values (see

Methods). There is a visible bias towards upregulation of the parent when a

retrocopy is expressed (Figure 6.9), although a only minority of parent transcripts

show this pattern: 15 in B cells, and 19 in T cells (listed in Table 6.7).

As described above, expressed retrocopies tend to have higher sequence identity

with their parents, and so it may be possible that retrocopy RNA to regulates

parent transcript expression through a mechanism based on sequence identity. If

this is the case, we might expect that the parent transcripts showing upregulation
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Figure 6.9: Fold change (FC) of retrocopy parents with a retrocopy expressed in
either B cells or T cells. Positive log FC values indicate upregulation in T cells
compared to B cells. There is a bias towards upregulation in the presence of a
retrocopy in each case.

in the presence of an expressed retrocopy to have a higher level of sequence identity

with these retrocopies. To investigate this, I obtained alignment scores for each

expressed retrocopy corresponding to a cell type-specific parent with upregulation
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in that cell type, and plotted these against the log-transformed fold change for

each parent (Figure 6.10). This did not show any strong correlation between fold

change and alignment score. While several of the parents used do have expressed

retrocopies with high sequence identity, this is not true for all of the parents, and

some have very low alignment scores. Even if only the retrocopy with the highest

alignment score is used, there is still no correlation (see Online Resources).

Figure 6.10: A scatter plot showing the log fold change (FC) against the align-
ment score between retrocopy and parent, for retrocopy parents with a retrocopy
expressed in either B cells or T cells. Spearman’s rho values do not show strong
correlations in either cell type. The bias in expressed retrocopies towards high
sequence similarity will skew these results, however.

I carried out a similar analysis comparing the liver samples with the lymphocyte

202



samples (Figure 6.11). Due to the small number of liver-specific parent transcripts,

it is difficult to judge whether there is any bias in their differential expression.

However, the lymphocyte-specific parents show the same bias as observed in the

B/T cell comparison; namely, upregulation of the parent in the presence of a

retrocopy transcript. Examination of the parent transcripts found in liver and

lymphocytes showed upregulation in lymphocytes as well. It may be that the

discrepancy in number of samples (2 for liver vs. 12 for lymphocytes) skews the

differential expression analysis in favour of the larger sample set. Downsampling

of the BLUEPRINT samples could be used to remove this discrepancy.

A gene ontology analysis of parent transcripts following the observed bias did

not produce any meaningful results. I manually inspected each list (Table 6.7)

but did not see any pattern linking all of the parent transcripts. Five genes from

the immunoglobulin kappa variable (IGKV) cluster are upregulated in B cells.

However, this is to be expected, as these genes are antigen recognition molecules

of B cells [252]. In fact, 125 out of 195 IGKV transcripts show upregulation in B

cells compared to T cells (Figure 6.12). The remaining 70 do not have sufficiently

high confidence values to reliably call differential expression.

Based on this analysis, there is not sufficient evidence to reject the null hypothe-

sis that retrocopy RNA does not affect parent expression. A minority of transcripts

with expressed retrocopies show upregulation in the presence of a retrocopy tran-

script, but there is not evidence to suggest that this is a universal phenomenon.

It may be that these few transcripts are indeed regulated by their retrocopies, but

if so the mechanism is not clear. Some may be based on sequence identity, but

based on the alignment scores this is not necessarily the case. It may be that

the retrocopy RNAs act through another mechanism; however, in this case, it is
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Figure 6.11: Fold change (FC) of retrocopy parents with a retrocopy expressed
in either liver or lymphocytes. Positive log FC values indicate upregulation in
lymphocytes compared to liver. The small number of liver-specific parents make
the results less clear. Examining the shared parents, it appears that there is a
general upregulation in lymphocytes.

unclear how or why they should affect the expression of their parent transcripts.
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Figure 6.12: Fold change (FC) between B and T values. Immunoglobulin kappa
variable transcripts are highlighted in red. Negative log FC indicates upregulation
in B cells compared to T cells.
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T cell B cell

Transcript ID Gene Name Transcript ID Gene Name

ENSMUST00000022925 Eif3h ENSMUST00000000356 Dazap2

ENSMUST00000022960 Eif3e ENSMUST00000002436 Snx9

ENSMUST00000025357 Ap3s1 ENSMUST00000029515 S100a11

ENSMUST00000026537 Paox ENSMUST00000043813 Nudt15

ENSMUST00000028522 Itga6 ENSMUST00000049821 Gm21411

ENSMUST00000031977 Agk ENSMUST00000058714 Cd24a

ENSMUST00000034983 Atp1b3 ENSMUST00000080204 Sp140

ENSMUST00000035983 Rpl21 ENSMUST00000102795 Ublcp1

ENSMUST00000041048 Orai2 ENSMUST00000115672 Birc3

ENSMUST00000048010 Dse ENSMUST00000187641 Ncf2

ENSMUST00000051620 Cyb5d1 ENSMUST00000103336 Igkv1-88

ENSMUST00000070215 Npm3 ENSMUST00000103400 Igkv3-5

ENSMUST00000082223 Rpl5 ENSMUST00000116380 Igkv4-53

ENSMUST00000085519 Anp32a ENSMUST00000103356 Igkv4-57-1

ENSMUST00000097420 Rnaset2a ENSMUST00000103350 Igkv4-68

ENSMUST00000102840 Ass1

ENSMUST00000103664 Trav5-4

ENSMUST00000113064 Traf1

ENSMUST00000182636 Pdlim1

Table 6.7: Parent transcripts with at least one retrocopy expressed cell type-
specifically, and with upregulation in the presence of retrocopy expression.
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6.7 Retrocopy Transcription Does Not Affect Epi-

genetic State of the Parent Locus

Some studies have found that retrocopy transcripts, and lncRNAs in general, can

target epigenetic marks to genes [162,163]. I investigated whether this is the case

for cell-specific parents that show differential expression in the direction of the

bias described above, i.e., higher expression in the presence of a retrocopy. If

rcRNA is targeting epigenetic marks to its parent, we might expect to see regions

in or around the parent with cell-type-specific epigenetic state, e.g., a differentially

methylated region (DMR).

I first examined the methylation state of each parent transcript, plus 1kb up-

and downstream (Datasets and Methods). While some did show DMRs between

cell types, I did not see a consistent pattern across all of them, and so there is no

evidence of retrocopy transcripts targeting methylation to their parent transcripts.

I also looked for differences in histone modification peaks, but similarly, I did not

observe any consistent pattern across the parent transcripts (see Online Resources

for figures).

Since the transcripts in question are differentially expressed between cell types,

different epigenetic states would be expected, and so any differences would not be

absolute proof that rcRNAs are having an effect.
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6.8 Retrocopy Expression May Affect Protein

Abundance

The above analysis on mRNA levels does not provide strong evidence for the reg-

ulation of parent transcripts by retrocopy RNA, with a minority of cell-specific

parents showing differential expression between cell types. However, if the mecha-

nism is post-transcriptional, this would not necessarily be accompanied by a change

in mRNA expression levels, but could be observed in protein abundances. Based

on the mRNA analysis, I would expect to see increased parent protein abundance

levels in the presence of retrocopy transcripts. In order to investigate this, I used

normalised protein abundances from BL6 mouse B and T cells, provided by the

Prabakaran group (see Datasets and Methods).

I examined the distribution of protein abundances for parent transcripts with

and without an expressed retrocopy (Figure 6.13). Visual inspection suggests that

parent transcripts with an expressed retrocopy had protein abundances distributed

towards higher values, and with fewer low abundance proteins, compared to parents

without an expressed retrocopy, and compared to all proteins. To test this, I used

the Anderson-Darling test [253]. For each sex/cell type combination, I compared

the abundance distribution for proteins with an expressed retrocopy to those with

an unexpressed retrocopy, and to all proteins. A significant result would allow us

to reject the null hypothesis that the two sets of abundances were drawn from the

same distribution. The results are shown in Table 6.8.

In this case, all of the test statistics exceed the critical value, and so there is

sufficient evidence in every case to reject the null hypothesis. We can therefore

conclude that proteins translated from transcripts with expressed retrocopies do
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tend to have higher abundances compared to other proteins. This is consistent

with the observations above that for some transcripts there is upregulation in the

presence of an expressed retrocopy.

It is also worth noting that Figure 6.13 appears to show a small difference in

abundance distributions between all proteins and those with a retrocopy that is

not expressed. This may be because retrocopies are more likely to be formed from

genes that are highly and ubiquitously expressed, and this is reflected in protein

abundances when we select those that have retrocopies.

Number of proteins Anderson-Darling test

Dataset expr unexpr all Test pair
A-D

statistic
Critical

value

Male B 187 889 1932
expr vs. unexpr 18.44 3.75

expr vs. all 61.27 3.75

Male T 199 888 1932
expr vs. unexpr 15.12 3.75

expr vs. all 56.11 3.75

Female B 179 892 1932
expr vs. unexpr 8.66 3.75

expr vs. all 32.71 3.75

Female T 198 888 1932
expr vs. unexpr 23.59 3.75

expr vs. all 71.16 3.75

Table 6.8: The results of Anderson-Darling (A-D) tests comparing protein abun-
dance distributions (Figure 6.13). The ”critical value” represents the value of the
A-D statistic with a 1% significance level.
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6.9 Conservation of BL6 Expressed Retrocopies

in CAST

Conservation of genomic features across divergent species or strains implies selec-

tion for those features, which can be a sign of functional importance. I therefore

assessed the conservation of BL6 retrocopies in CAST, in order to quantify the

degree to which those expressed in BL6 are conserved and expressed in CAST.

In order to do this, I first identified which of the BL6 retrocopies are conserved

in CAST. After searching for CAST sequences matching BL6 retrocopies, I applied

filters to remove false positive and partial hits (see Methods). This left 11,745

putative conserved retrocopies in CAST, across 10,014 BL6 retrocopies.

Table 6.9 shows the results of a chi-squared contingency test between retrocopy

expression in BL6 and conservation in CAST. The results suggest that there is a

relationship between lack of expression in BL6 and conservation in CAST, the

opposite of what one might expect if the retrocopy transcripts have an important

function. However, there is a different pattern for retrocopy parents. The results

of a chi-squared test are shown in Table 6.10, but in this case the counts are of

retrocopy parent transcripts. Here we see that there is a relationship between

expression in BL6 and conservation in CAST, so that parents with an expressed

retrocopy in BL6 are more likely to have a conserved retrocopy in CAST.

Using the CAST RNA-seq data, I investigated whether retrocopy expression in

BL6 was related to expression of conserved retrocopies in CAST. For this analysis,

I applied the same RNA-seq analysis pipeline to the CAST data as to the BL6

(see Methods). This produced merged reconstructed transcripts in CAST. I com-

pared these to the conserved retrocopies to produce a list of conserved retrocopies
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CAST Conserved
Not CAST
conserved

BL6
Expressed

338 656

Not BL6
Expressed

9,676 7,786

Total BL6 retrocopies 18,456

χ2 = 172.80

p = 1.817× 10−39

Expected Values:

CAST Conserved
Not CAST
conserved

BL6
Expressed

539.33 454.67

Not BL6
Expressed

9,474.67 7,987.33

Table 6.9: The results of a chi-squared contingency test comparing expression of
retrocopies in BL6 and their conservation in CAST. The observed values differ
significantly from the expected values, suggesting that fewer BL6 expressed retro-
copies are conserved than would be expected by chance. However, the significance
level of this test is not very low, and the difference between the observed and
expected values is not large, so this is not a strong result.

expressed in CAST. I considered only retrocopy parents here, as there are difficul-

ties in establishing exactly which retrocopies are conserved between strains (see

Methods). Table 6.11 summarises the results of a chi-squared contingency test.

There is a significant relationship between expression in BL6 and conservation and

expression in CAST.

Intuitively, it would not be surprising if retrocopies expressed in BL6 and con-

served in CAST were also expressed in CAST. However, this analysis indicates

that there is not a relationship between expression of a retrocopy in BL6 and its
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Has CAST
Conserved
Retrocopy

No CAST
Conserved
Retrocopy

BL6
Expressed

351 105

Not BL6
Expressed

2,315 1,089

Total BL6 retrocopy parents 3,860

χ2 = 14.71

p = 1.25× 10−4

Expected Values:

Has CAST
Conserved
Retrocopy

No CAST
Conserved
Retrocopy

BL6
Expressed

314.95 141.05

Not BL6
Expressed

2,351.05 1,052.95

Table 6.10: The results of a chi-squared contingency test comparing parents of
expressed retrocopies in BL6 and the parents of retrocopies conserved in CAST.
The observed values differ significantly from the expected values, suggesting that
there are more parents with both an expressed retrocopy in BL6 and a conserved
retrocopy in CAST.

expression in CAST; indeed, it appears that BL6 expressed retrocopies are less

likely to be conserved in CAST (Table 6.9). Given that expressed retrocopies in

BL6 shown signs of being younger, this would make sense, if these specific retro-

copies appeared after CAST and BL6 diverged. What these analyses do suggest

is that parent genes with a retrocopy expressed in BL6 are more likely to have a

retrocopy conserved and expressed in CAST, even if it is not the same retrocopy.

It would appear, then, that certain parent genes are more likely to have expressed

retrocopies across divergent strains. It may be that there is selection in favour
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CAST expressed
Not CAST

expressed

BL6
Expressed

173 178

Not BL6
Expressed

160 2,155

Total BL6 retrocopy parents conserved in CAST 2,666

χ2 = 496.86

p = 4.58× 10−110

Expected Values:

CAST expressed
Not CAST

expressed

BL6
Expressed

43.84 307.16

Not BL6
Expressed

289.16 2,025.84

Table 6.11: The results of a chi-squared contingency test comparing parents of ex-
pressed retrocopies in BL6 and the parents of retrocopies conserved and expressed
in CAST. The observed values differ significantly from the expected values, sug-
gesting that there are more parents with both an expressed retrocopy in BL6 and
a conserved and expressed retrocopy in CAST.

of these parents having expressed retrocopies, and due to the dynamic nature of

retrocopy formation, different individual retrocopies are expressed according to

precise conditions.

This is consistent with the earlier observations that there is a set of parents

with expressed retrocopies shared between B, T, and liver cells. I compared this set

of parents to the parents that have conserved and expressed retrocopies in CAST

(Table 6.12). While the result is not strongly significant compared to other results

in this section, the p value shows significance at the 1% level. This suggests that

there is a link between having at least one retrocopy expressed in BL6 across all
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three cell types, and having a conserved and expressed retrocopy in CAST. This

would again be consistent with the existence of a set of parents for which retrocopy

expression is advantageous, possibly because they are regulated by retrocopy RNA.

An important extension to this work would be to use a full retrocopy annotation

in CAST to confirm this possiblity, as the retrocopy discovery method used here is

restricted to those that exist in both BL6 and CAST. It may be that these parent

genes have CAST-specific retrocopies that are expressed.
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CAST expressed
Not CAST

expressed

BL6
Expressed
and Shared

95 76

BL6
Expressed,
not Shared

92 133

Total BL6 cell-shared retrocopy parents conserved in CAST 396

χ2 = 7.81

p = 5.20× 10−3

Expected Values:

CAST expressed
Not CAST

expressed

BL6
Expressed
and Shared

80.75 90.25

BL6
Expressed,
not Shared

106.25 118.75

Table 6.12: The results of a chi-squared contingency test comparing cell-shared
parents of expressed retrocopies in BL6 and the parents of retrocopies conserved
and expressed in CAST. That is, a retrocopy parent which has at least one retro-
copy expressed in all three BL6 cell types will fall into the “BL6 Expressed and
Shared” category; a parent with a retrocopy expressed in only one or two cell types
will fall into the “BL6 Expressed, not Shared” category. The observed values differ
significantly from the expected values, suggesting that there are more parents with
both an expressed retrocopy in BL6 across B, T, and liver cells, and a conserved
and expressed retrocopy in CAST.

6.10 Summary

In this chapter, I have demonstrated a significant bias towards retrocopy RNA

complementary to the parent transcript RNA and with high sequence identity to

the parent. These retrocopy RNAs therefore have the potential to regulate their
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parent transcripts through the formation of RNA:RNA duplexes. While there is

not strong evidence for this at the mRNA level, protein abundance values are

higher for transcripts with an expressed retrocopy, suggesting that the retrocopy

RNAs may play a protective role for their parent transcripts. By comparing cell

types and mouse strains, I have identified sets of parent transcripts that tend to

have expressed retrocopies across cell types and lineages. Specific retrocopies are

not necessarily expressed in all cases, and do not show conservation across mouse

strains. I propose that there are in fact a set of protein-coding genes that are post-

transcriptionally regulated by retrocopies. Due to the risk of decay of retrocopies

and the different chromatin environments in different cell types, these parents may

be regulated by different specific retrocopies in different circumstances. This would

be a novel regulatory mechanism that ensures consistent and reliable regulation

by taking advantage of the redundancy introduced by multiple retrocopies.
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Chapter 7

Discussion

7.1 Retrotransposon Transcription

7.1.1 Summary of Results

In this thesis, I have quantified the retrotransposon content of whole transcrip-

tomes in mouse B and T lymphocytes. I found that 40-45% of transcripts contain

some retrotransposon content, but the majority of these have relatively low retro-

transposon content. A small proportion (3-5%) have high retrotransposon content

(>50%), and these can be separated into distinct clusters based on their retrotrans-

poson content. There are particularly distinct clusters of transcripts consisting

entirely of L1 or ERV sequence. Similar clusters are found in both B and T cells,

as well as liver cells; however, the individual retrotransposon elements being tran-

scribed are not necessarily the same, and show cell-type specificity. I also found

a potential regulatory role for retrotransposons in ncRNAs: antisense transcript

expression is more strongly correlated with expression of the corresponding sense
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transcript if the antisense transcript contains retrotransposon sequence, and par-

ticularly if the sense/antisense pair both contain the same type of retrotransposon.

This indicates a possible role for retrotransposons in regulation of transcripts by

their antisense counterpart.

7.1.2 Comparison to Existing Literature

As discussed in the Introduction, there are relatively few studies that have quan-

tified the retrotransposon content of somatic cell transcriptomes; of these, only

a small number use a mouse model. In particular, two studies have carried out

transcriptome-scale analysis of retrotransposons in mouse transcripts, although

both focused on lncRNAs. Kapusta et al. used available lncRNA annotations in

human, mouse, and zebrafish and compared them to the RepeatMasker annota-

tion in each species [128]. The mouse data comprised 2,167 transcripts. Kannan et

al. used microarray data for long intergenic ncRNAs (lincRNAs) in mouse [254],

downloaded from NRED [255], and compared these to RepeatMasker. This dataset

comprised 2,390 transcripts. In both cases, multiple cell types and tissues were

included.

These studies reported 68% (Kapusta) and 51% (Kannan) of mouse lncRNAs

containing transposable element (TE) sequence. The lower value found in the

Kannan study may be due to the use of microarray data, and to the inclusion of

only intergenic lncRNAs. Both studies report a higher proportion of transcripts

with TE content then I do; however, my estimates include all transcripts, rather

than only lncRNAs, and so this is expected. While I do identify putative lncRNAs

based on comparison with protein-coding genes, it would not be meaningful to
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analyse these as lncRNAs without further validation that they can be classified as

such; for example, by an open reading frame analysis.

There is clearer agreement between both previous studies and my own work

when examining the proportion of each transcript comprising TEs. Kapusta et al.

reported that in humans the majority of lncRNAs have relatively low TE content:

approximately 20% have more than 50% TE sequence, and around 1% have more

than 90% TE sequence. However, they did not report an equivalent analysis in

mouse. Kannan et al. report that 78% of mouse lincRNAs have less than 20%

TE sequence; supplementary figures show around 1% of lincRNAs have more than

50% TE sequence, and almost none with more than 90%. This is broadly in

agreement with my findings, in which 95% of mouse transcripts have less than

50% retrotransposon sequence. The differences between exact figures may again

be due to the differences in datasets and methods used; in particular, the exclusive

use of lincRNAs by Kannan et al. Comparisons with the percentages from Kapusta

et al. can only be made in the broadest terms, as these figures are for human.

There is less clear agreement on the exact types of TE included. In the mouse

ENSEMBL lncRNAs, the Kapusta study reported that, as a percentage of total

sequence, LTRs contributed 40%, SINEs 30%, and LINEs 25%, with other non-

retrotransposon TEs contributing the remaining 5% (mainly DNA transposons).

Kannan et al. performed a similar analysis. Although their methods are not di-

rectly comparable, the order of contribution is the same: LTRs, SINEs, LINEs,

and DNA transposons. Here, I find that approximately 75% of the retrotrans-

posons found inside a transcript are SINEs, with LTRs and LINEs making up

14% and 10%, respectively. The discrepancy between my results and those from

Kapusta and colleagues may be due to the relative sizes of the different retrotrans-
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poson classes: SINEs tend to be much shorter than LTRs and LINEs, and so a

large number may still contribute a relatively small proportion of sequence. The

sequence contributions shown in Chapter 5 are more closely in agreement with the

previous studies.

Neither of these studies analyse the cell-type specificity of retrotransposon ex-

pression; the closest such analysis I found is from Faulkner et al., which focused

on retrotransposon-derived transcriptional start sites (TSSs) [127]. This study re-

ported that the activity of different classes of retrotransposon is cell-type specific.

This is in direct contradiction to my findings, which is that the same types of retro-

transposon are expressed across different cell types, but the individual elements

are specific. Broadening the cell types assessed may reveal different results, but

the results across the three cell types already included are remarkably consistent.

However, the activity of retrotransposon TSSs and actual retrotransposon tran-

scription are different phenomena, and comparisons should be made with caution.

The regulation of mRNAs by their corresponding antisense lncRNA is well-

studied (reviewed in [246–248]). At the transcriptional level, lncRNA transcrip-

tion can recruit chromatin modifying complexes, thus influencing expression in

cis [246]. At the post-transcriptional level, the formation of mRNA:lncRNA du-

plexes can either up- or down-regulate the target mRNA, depending on the context.

For example, this can mask miRNA binding sites [247], or influence splicing [248].

RNA:RNA duplexes can also be targeted by enzymes. For example, staufen 1

(STAU1) mediated decay (SMD) degrades mRNA when STAU1 binds to double

stranded RNA [256]. Several studies have reported that the formation of these du-

plexes is dependent on the presence of a SINE in the UTR of the mRNA, to which

a lncRNA containing a complementary SINE binds, in multiple species [256,257].
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This demonstrates the potential role for retrotransposons in RNA:RNA binding,

but is a single example, involving only a single class of retrotransposons. The

evidence presented here suggests that a similar phenomenon may be part of the

regulatory pathway of many genes, using different classes of retrotransposon. John-

son and Guigó have previously suggested that retrotransposons act as functional

domains in lncRNAs, and in particular as sites for hybridisation to other RNA and

DNA molecules [130]. Such a role is consistent with the observations reported here;

however, it is unclear how retrotransposon sequence would present an advantage

over other sense/antisense pairs. In addition, the mechanism through which any

such regulation occurs is unknown. The fact that the bias is seen at the mRNA

level suggests that it occurs at the transcriptional or post-transcriptional stage,

rather than at the translation stage. The bias towards up-regulation suggests

that if the mechanism is post-transcriptional then it works through a protective

mechanism, such as miRNA site masking.

7.1.3 Conclusions and Future Work

As expected, retrotransposons make significant contributions to the transcriptomes

of somatic cells. Transcripts can be classified based on the amount of retrotrans-

poson sequence they contain, and the type of retrotransposons included. In par-

ticular, there are relatively small but distinct sets of transcripts consisting almost

entirely of ERV and LINE sequence. These clusters are found in diverse cell types,

but the individual retrotransposon elements are cell type-specific. If these are

functional, it may be that cells utilise different retrotransposon elements to fulfil

the same role under different epigenetic conditions.
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It is possible, however, that these transcripts instead represent transcriptional

noise, or possibly retrotransposition intermediates. To rule out these latter possi-

bilities, future work should include the following:

• Repeat analysis with different parameters and annotations to ensure results

are not an artefact of parameter choice

• Expand this analysis to other cell types to ensure that these clusters are

consistent

• Expand this analysis to other mouse strains (beginning with CAST), as these

transcripts are unlikely to be BL6-specific if they represent true functional

transcripts

Similar results from all three extensions would confirm that these transcripts are

not technical noise. A more detailed study of their exact retrotransposon content

would also be useful. For example, are they full-length retrotransposons?

The next step would be to test for function, ideally using experimental assays

rather than bioinformatic techniques. Knockout or knockdown experiments would

be ideal, but this may be difficult given the number of transcripts involved, and

their repetitive nature, which would increase the likelihood of off-target effects

(which could be severely deleterious given the contribution of retrotransposons

to regulatory regions). Liu et al. recently demonstrated the use of a modified

CRISPR assay to inhibit expression of multiple lncRNAs simultaneously [25]; a

similar technique could be useful here. Bioinformatics analysis of co-expression

between these transcripts and coding transcripts could be used to select candidates.

If such studies successfully showed a function for these transcripts, this would

be evidence for distinct classes of lncRNA common to many somatic cell types,
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with the high retrotransposon content currently associated with transcripts found

in pluripotent cells [115–118, 120–126]. It is too early to speculate what these

functions might be, but the well-established contributions of retrotransposons to

regulatory networks is promising.

The widespread role of retrotransposons in sense/antisense pairs is also novel,

and suggests that retrotransposons facilitate up-regulation or protection of com-

plementary transcripts. While specific examples of retrotransposons in this kind of

regulation have been identified, this is the first evidence for such action on a broad

scale. However, these findings are currently only statistical, and must be validated.

If the three tasks listed above demonstrated similar results, this would be a promis-

ing start, reducing the likelihood that this is a technical artefact. Experimental

validation of these results and establishing the mechanism would also be impor-

tant. Experimental validation is made difficult by the fact that sense/antisense

pairs cannot be knocked out separately. Bioinformatics analysis could identify

putative promoters for the antisense transcripts, which could then be used to in-

hibit expression of the antisense transcript. The CRISPRi technique mentioned

above [25] could also be useful for assaying multiple lncRNAs.

To discover the mechanism, a relatively simple first step would be to examine

the shared retrotransposons between the sense and antisense transcripts. What

kind of retrotransposons are represented? How large they? Which part of the

transcript are they located in? Are they always the same retrotransposon element?

Bioinformatics tools have been developed to computationally predict RNA:RNA

interactions [258–260]. The results of such a tool could be compared to the results

from this work; if there is evidence for the formation of these duplexes, they could

be validated using experimental techniques. If not, exploration of transcriptional
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mechanisms would be warranted.

7.2 Retrocopy Transcription

7.2.1 Summary of Results

In this thesis, I have found that retrocopies are expressed throughout the genome in

B and T lymphocytes and liver cells, originating from a relatively restricted pool of

parent transcripts. I have found a small number of retrocopy/parent pairs showing

evidence for up-regulation of the parent mRNA when a retrocopy is expressed. I

also found evidence for increased abundance levels of proteins translated from

parent transcripts when a matching retrocopy is expressed, suggesting a possible

regulatory role for retrocopy transcripts at the post-transcriptional or translational

level. I also found that expressed retrocopy RNA is almost always complementary

to the parent mRNA, and tends to have high sequence identity to the parent

mRNA. This would allow for a regulatory mechanism based on the formation of

RNA:RNA duplexes.

I compared the retrocopy transcripts in different cell types, and found that

there is enrichment for parent transcripts with expressed retrocopies in multi-

ple cell types, although the individual retrocopies may be different in each cell

type. When comparing BL6 and CAST mouse strains, I found that while specific

retrocopies are not necessarily conserved between strains, there is enrichment for

parent transcripts with expressed retrocopies in both strains. This suggests that

there may be a set of parent transcripts that rely on retrocopy-based regulation,

but utilise different retrocopies depending on the genomic or epigenetic context.
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7.2.2 Comparison to Existing Literature

Several previous studies have also quantified retrocopy transcription in mouse, as

well as in human and other species. The following three studies report comparable

results to the work presented here:

• Yano et al. [261]: by comparing expressed sequence tags (ESTs) to a database

of 4,476 previously identified mouse retrocopies, Yano and colleagues found

evidence for expression of between 22 and 45 retrocopies (0.5-1%)

• Harrison et al. [262]: using a novel method, Harrison and colleagues identified

215 transcribed retrocopies (0.04%) in mouse by comparing annotated genes

and ESTs to a previously published set of 5,582 retrocopies [144]

• Carelli et al. [141]: using a novel method, Carelli and colleagues identified

5,569 retrocopies in mouse, of which 420 (7.5%) show signs of expression

(FPKM >1), across 6 tissues

In this work, I report 1,131 expressed retrocopies across three cell types, out

of a total of 18,456 retrocopies (6.12%). This is a comparable proportion to that

reported in the Carelli study, and significantly more than the proportion found to

be expressed by either the Yano or Harrison studies. Both the Yano and Harrison

studies are based on ESTs, and data from more than a decade ago, while this work

and the Carelli study are based on RNA-seq, and more recent data. These two

factors may account for the discrepancy in the proportion of expressed retrocopies.

ESTs may not be effective at detecting low abundance transcripts [263], although

I was unable to find a direct comparison between the ESTs and RNA-seq. None

of these studies contained a detailed analysis of the parent genes from which the
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retrocopies originated, or a comparison between the retrocopies and their parents.

The idea that retrocopy antisense transcripts might influence the expression of

their parent transcripts is not new, and was first theorised in 1986 by McCarrey

and Riggs [264]. The first example of this to be characterised was by Korneev et

al. in a snail model [172], who showed that the antisense transcript from a nitric

oxide synthase (NOS) retrocopy suppresses NOS, although the exact mechanism

was not established. More recently, Hawkins and Morris showed that Oct4 is sup-

pressed by an antisense Oct4 retrocopy transcript in human cell lines [265], and

suggested a mechanism where the retrocopy RNA targets epigenetic regulators to

the parent gene. In 2013, Johnsson et al. found a similar example in human cells:

the phosphatase and tensin homolog (PTEN) gene, which has a corresponding

antisense retrocopy transcript with two isoforms. One isoform suppresses the par-

ent transcript by targeting epigenetic modulators to PTEN, while the other forms

an RNA:RNA duplex with the PTEN mRNA, reducing translation. It should be

noted that in all cases the antisense retrocopy transcript has a repressive effect

on the parent. In addition to these specific examples, Muro and Andrade-Navarro

identified 87 such transcripts using ESTs in a genome-wide screen [159], but did

not investigate whether these RNAs interacted with the parent transcripts.

The work I present here represents the first transcriptome level analysis of

retrocopy regulation of parent transcripts. My results suggest that the majority

of these interactions are based on sequence complementarity, as observed in the

examples described above. In addition to these retrocopy-based examples, there is

a significant body of literature describing the interactions between sense/antisense

transcript pairs, as discussed above. However, unlike the examples of NOS, Oct4,

and PTEN, my results suggest that the presence of an antisense retrocopy tran-
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script is linked to increased protein abundance, rather than repression. While

this has not previously been observed in retrocopy/parent interactions, there is

evidence for this in the general sense/antisense pair regulation literature [247].

Possible mechanisms that would explain this include the formation of RNA:RNA

duplexes that mask miRNA binding sites, thus preventing miRNA-based degra-

dation of the parent transcript. The antisense transcripts could recruit activating

epigenetic marks to the parent locus, although in this case a clearer up-regulation

of mRNA would be expected, whereas here the only clear increase is in protein

abundance.

My findings on cell type specificity and conservation between strains also rep-

resent a departure from existing literature. Carelli et al. compared cell types and

species, but focused on individual retrocopies. Carelli and colleagues showed that

in mouse, retrocopy transcription tends to be cell type specific. Here, I have shown

that while expression of specific retrocopies shows some cell type specificity, the

same parents tend to have expressed retrocopies across cell types, and a similar

trend is seen when comparing strains. While more work is needed to validate these

findings, I believe it may indicate that the parent transcripts are the more impor-

tant consideration, especially given the potential regulatory effects of expressed

retrocopies.

7.2.3 Conclusions and Future Work

Based on my results, I hypothesise the existence of a novel regulatory mechanism

based on complementary RNAs transcribed from retrocopies. These transcripts

positively regulate their parent transcripts at the post-transcriptional level, either
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through a protective mechanism that prevents degradation, or an active mech-

anism that encourages translation. Given the high level of sequence similarity

observed in expressed retrocopies, the mechanism could be based on the formation

of RNA:RNA duplexes. Further, I would suggest that the protein-coding genes

that are regulated in this manner may utilise different retrocopy instances under

different circumstances to ensure consistent regulation, regardless of genetic or

epigenetic context.

There are some clear parallels between the work presented on antisense tran-

scripts with retrotransposons, and the antisense retrocopy transcripts. It would

be worth investigating whether there is retrotransposon sequence common to both

the parent transcript and the retrocopy transcript, and whether this sequence is

linked to stronger upregulation, as seen in Chapter 5.

I believe that the results presented in this thesis are a compelling basis for

further investigation. The initial steps would be similar to those described for my

results on retrotransposons:

• Repeat analysis with different parameters and annotations to ensure results

are not an artefact of parameter choice

• Expand this analysis to other cell types

• Recreate full retrocopy expression analysis in CAST

• Expand this analysis to other mouse strains and species

The first point is particularly important given the number and diversity of retro-

copy annotations available. I would hope to see essentially the same retrocopies

and parents being expressed, regardless of the annotation used, rather than being
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an artefact of the retrocopy annotation I used. The second and third points are

essential in establishing whether there is a set of parent genes that consistently

have expressed retrocopies, regardless of context.

This work has not established how the expressed retrocopies are regulated.

While I was able to find interesting links between the retrocopy transcripts and

flanking retrotransposon sequence, I could not establish whether the retrotrans-

posons were functioning as promoters. A bioinformatics analysis could be used to

identify putative promoters for the expressed retrocopies, potentially followed by

experimental validation.

Experimental validation would also be essential in establishing whether retro-

copies do actually regulate their parents, and the mechanism of action if this is

the case. Knockout studies on a set of candidate parent/retrocopy pairs would

establish whether removing the retrocopy affects the mRNA level or protein abun-

dance of the parent. In addition, the CRISPRi technique mentioned previously

could also be used to target multiple retrocopies simultaneously [25]. If these ex-

periments confirmed the link between retrocopy expression and parent expression,

the next step would be to establish a mechanism. Bioinformatic analysis could be

used to establish whether RNA:RNA duplex formation would be possible; if so,

experimental validation could follow. Known databases of miRNA targets could be

used to check for miRNA binding sites in parent transcripts that could be masked

by an antisense retrocopy RNA. This is an ambitious program of work, but, if

successful, it would produce compelling evidence for an important new regulatory

mechanism.
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7.3 Final Remarks

The findings I have presented should be treated as what they are: the results of

a purely bioinformatic analysis of high-throughput sequencing (HTS) data. While

RNA-seq and other HTS techniques are a powerful tool for exploring the genome,

transcriptome, and epigenome, they are not flawless, and should be treated with

a degree of caution. The identification of lncRNAs, for example, is fraught with

possible sources of error. RNA-seq itself has intrinsic biases, aligners can map

reads incorrectly, and reconstruction of transcriptomes can produce significant

numbers of false positive transcripts. All of these may be compounded, on top

of biological noise, to produce misleading results. High-quality software tools and

well-designed bioinformatics pipelines can serve to ameliorate these errors, but

even then a different choice of software can give rise to notably different results. It

is therefore sensible to allow for the possibility that the results of a bioinformatics

pipeline will contain a certain degree of noise. Nonetheless, these analyses are

useful, and can be used to estimate the number of transcripts and their sequence

content. Experimental validation is essential.

Biological noise should also be considered. The widely publicised findings from

ENCODE and similar large-scale projects claim that almost the entire genome is

transcribed, with the implication that every one of these transcripts is a useful,

functional molecule. This could well be the case, or it may be that in fact many

of the observed transcripts are simply “genomic weather”, the result of accidental

transcriptional activity arising from essentially stochastic processes and the pres-

ence of cryptic promoters. It would be ignorant to assume that every non-coding

transcript is meaningless, and increasing numbers of non-coding RNAs are being
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functionally characterised. However, given the number of ncRNAs reported, how

likely is it that every single one has a specific function? Or that they are all in-

volved in some kind of coordinate action, as proposed by Melé and Rinn [18]? To

me, the latter seems more likely, combined with a certain amount of biological

noise.

Ideally, one would experimentally validate every single RNA molecule that is

functionally characterised, but this is far from practical given that the number

of reported molecules is often on the order of 10,000. The validation of a few

candidate molecules is of limited use: it is seldom possible to do this for more

than a small percentage of the molecules found, and functional characterisation

is even more difficult. In addition, lncRNAs present their own set of technical

problems associated with experimental validation, and are not always amenable

to the techniques developed for coding genes [266].

There is hope on the horizon though. Classical genetics infers function based

on the effects of removal, and the advent of CRISPR-based techniques for genome

editing are making it easier to accurately remove or insert sequence of interest.

The effects of mass retrotransposon deletion would certainly be interesting. From

a bioinformatics perspective, the ever-decreasing cost of short-read sequencing

and the increasing length of short reads means that more accurate results can be

obtained with increased depth and mapping precision. Bioinformatics software is

ever-improving. The emergence of long-read technologies promises much-improved

mapping, with the promise of banishing the problem of multimapping reads, which

will be particularly useful for the study of repetitive regions, and researchers have

already started to do so [129]. Single-cell sequencing could be used to establish

whether transcripts are expressed consistently across individual cells in a popu-
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lation. All together, these emerging technologies promise to vastly improve the

accuracy with which we can measure transcription and related phenomena, lead-

ing to a better understanding of how the vast catalogue of RNA helps to shape

us.
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