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Abstract

The drag anisotropy of slender filaments is a critical physical property allowing swimming in

low-Reynolds number flows, and without it linear translation is impossible. Here we show that, in

contrast, net rotation can occur under isotropic drag. We first demonstrate this result formally by

considering the consequences of the force- and torque-free conditions on swimming bodies and we

then illustrate it with two examples (a simple swimmers made of three rods and a model bacterium

with two helical flagellar filaments). Our results highlight the different role of hydrodynamic forces

in generating translational vs. rotational propulsion.

∗ lmk42@cam.ac.uk
† e.lauga@damtp.cam.ac.uk

1



Since the 1950’s [1, 2], a continuous dialogue between theory and experiments has allowed

us to unravel the fundamental physics of microorganism locomotion [3] and we can now

predict how different organisms swim [4, 5], how they move to favorable environments [6, 7]

and how they respond to boundaries [8, 9]. The scientific community has also created its

own series of synthetic microswimmers and attempted to optimise them [10–13].

Our understanding is made possible by our combined ability to (a) accurately measure

the motion of micro-scale swimmers [4, 7, 9] and (b) theoretically describe the motion of the

surrounding fluid through the incompressible Stokes equations [3, 14]. The flow around the

swimmer is obtained by enforcing that the fluid velocity on its surface is the same as the

velocity of the swimmer itself (no-slip boundary condition) and the swimming kinematics

are such that there is no net force and torque on the swimmer (free-swimming conditions).

Since the Stokes equations are linear and time independent, net propulsion can only be

created by a stroke kinematics which breaks the time symmetry of the system, termed non-

reciprocal [15]. In the vast majority of cases, microorganisms generate non-reciprocal strokes

by sending bending waves [16] or rotating [17] slender filaments termed flagella.

Such slender filaments are able to generate net propulsive forces due to their drag

anisotropy at low Reynolds numbers (so-called drag-based thrust). Specifically, the drag

per unit length acting on the slender filament is smaller for a translation along its centreline

than for translation perpendicular to it. This is a fundamental property of small-scale fluid

mechanics, which originates from the Green’s function, G(r), for the incompressible Stokes

equations due to a point force f located at r0 [18]

G(r) =
1

8πµ

I + R̂R̂

|R|
· f , (1)

where µ is the dynamic viscosity of the fluid, I is the identity tensor and R = r− r0 is the

vector pointing from the location of the point force to the point of interest (R̂ is a unit vector

in the same direction). Clearly, the flow resulting from the Green’s function at any point in

which R is parallel to f is twice as strong as the flow at a point with R perpendicular to f

for the same |R|.

The resulting modeling approaches to describe the motion of slender filaments in viscous

fluids therefore also display this feature of drag-anisotropy. The two commonly-used theories

are resistive-force (or local-drag) theory, which is analytical but only logarithmically correct

[2, 19, 20], and slender-body theory, which has to be implemented numerically in general
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Figure 1. Diagram showing the slender filament used to prove the necessity of drag anisotropy.

The black line represents the filaments centreline, r(s, t), and the blue dotted arrows indicate the

instantaneous velocity of the filament at arclength s and time t, U(s, t). The mean geometric

position, r(t), is also indicated for said filament.

but is algebraically correct [12, 21, 22].

In a number of important situations, the anisotropy of the drag is less prominent.

For example some eukaryotic microorganisms have evolved hairs along their flagella called

mastigonemes [23, 24]. These change the drag characteristics of the filament by making

the drag parallel to the filament similar to, or smaller than, the drag perpendicular to the

filament, allowing these swimmers to swim ‘backwards’. When these hairs are at the cor-

rect length and density the drag on the filament therefore becomes isotropic, removing the

anisotropic influence imparted by the Stokes Green’s function. Similarly in non-Newtonian

environments the drag changes in complex ways [25]. For example the drag on rods in

a shear thinning fluid was seen to decrease as the non-Newtonian nature of the fluid was

increased [26]. This relative decrease was seen to be similar for motions parallel and per-

pendicular, though if the decrease was different for the two motions the system may again

develop isotropic drag characteristics. Similarly if the Stokes Green’s function was made

isotropic (i.e. proportional to the Laplacian Green’s function), the drag on a filament would

arise from a line distribution of these isotropic Green’s functions and would be isotropic as

a result.
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However, drag anisotropy is the critical physical ingredient to allow motion of the ge-

ometric center of a swimmer, and without it a net translation is impossible [27]. Indeed,

consider an inextensible [28] filament of length L described by the centerline location r(s, t)

and deforming its shape with the instantaneous velocity U(s, t) in the laboratory frame of

reference (Fig. 1). Under isotropic drag, the hydrodynamic force density along the filament,

at arclength s, scales as f(s, t) ∝ U(s, t), so that the velocity of the mean filament position,

r(t) = (
∫

r(s, t) ds)/L, is given by

dr

dt
=

1

L

d

dt

∫ L

0

r(s, t) ds =
1

L

∫ L

0

U(s, t) ds

∝
∫ L

0

f(s, t) ds = 0, (2)

since the swimmer is force-free at all times. Allowing the body to be extensible can break

this condition, prompting the creation of many popular theoretical models, like extensible

filament swimming [28] and three sphere swimmers [29, 30]. However for many microswim-

mers, which are inextensible, drag anisotropy is a fundamental constraint on whether an

organism can translate at low Reynolds number.

The argument shown in Eq. (2) applies to the swimmer’s translation. It is unclear if a

similar reasoning may be used to rule out a net rotation. In this paper we show that, in

fact, drag anisotropy is not required to generate rotation. This is first shown formally by

considering the force- and torque-free condition for the arbitrary deformation of a swimmer

actuating slender appendages. We then illustrate the generation of rotation using model

two swimmers: a lopsided paddle swimmer composed of three rods and a model bacterium

with two flagellar filaments. Our work demonstrates that geometry alone can generate the

conditions required to induce rotation and highlights the different role of hydrodynamic

forces in generating translational vs. rotational propulsion.

Using the notation above to describe the filament, we employ Udef(s, t) to denote the

instantaneous zero-mean deformation of the body in the laboratory frame. We pick the

instantaneous origin of the frame of reference to be the center of mass of swimmer and thus

write r = 0. The velocity along the shape of the swimmer is therefore written as

U(s, t) = Udef(s, t) + U(t) + Ω(t)× r(s, t), (3)

where U(t) and Ω(t) are the instantaneous translation and rotational velocities. If mo-

tion occurs is in a medium with isotropic drag, then Eq. (2) shows that U(t) = 0 for all
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times. Denoting f(s, t) = ζU(s, t) the isotropic relationship between the hydrodynamic force

density acting on the fluid and the velocity of the swimmer centerline, we can write

f(s, t) = ζUdef(s, t) + ζΩ(t)× r(s, t), (4)

where ζ is the isotropic drag per unit length. The form of ζ depends on the specific situation,

whether that be a non-Newtonian fluid or a complex geometry and it is left general here to

demonstrate this affect in any environment where isotropic drag on a ‘filament’ is present.

From the isotropic drag condition, the torque density, `(s, t), is given by

`(s, t) = r(s, t)× f(s, t) + γt̂t̂ ·Ω(t), (5)

where t̂ ≡ t̂(s, t) is the tangent vector along the body centreline. The last term in Eq. (5)

accounts for the torque generated from local rotation about the centerline of the filament,

with a rotational drag coefficient denoted γ (in both illustrative examples below we chose

γ = 0, but it has been left here for completeness). We thus get a torque density given by

`(s, t) = ζr(s, t)× [Udef(s, t) + Ω(t)× r(s, t)]

+γt̂t̂ ·Ω(t). (6)

The total force and torque on the body are then given by

0 =

∫ L

0

f(s, t) ds = ζΩ(t)×
∫ L

0

r(s, t) ds, (7)

0 =

∫ L

0

`(s, t) ds = ζ

∫ L

0

r(s, t)×Udef(s, t) ds (8)

+

∫ L

0

(
ζIr2 − ζrr + γt̂t̂

)
ds ·Ω(t),

where we have used the vector identity a × (b × c) = b(a.c) − c(a.b). The zeros on the

left hand side of Eqs. (7)-(8) reflect the fact that the swimmer is force- and torque-free for

all times. The force free condition is automatically satisfied since r̄ = 0. The torque-free

condition, Eq. (8), leads to an explicit equation for the rotation rate of the swimmer as

R(t) ·Ω(t) = −ζ
∫ L

0

r(s, t)×Udef(s, t) ds, (9)

where the resistance tensor, R(t), is instantaneously given by

R(t) =

∫ L

0

(
ζIr2 − ζrr + γt̂t̂

)
ds. (10)
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Figure 2. (Color online) Representation of the lopsided paddle swimmer with three arms of lengths

2L1, 2L2 and 2L3. The different colored arms show the swimmer configuration at different times

with arrows indicating their rotation. The frame of reference (x, y, z) rotate with the swimmer so

that the x axis is instantaneously aligned with rod #2.

Hence, provided the deformation generates a net torque on the right-hand side of Eq. (9),

and since the resistance tensor R is always positive definite for any finite-length filament,

then Ω(t) 6= 0 without the need for drag anisotropy. Note that this derivation is independent

of the reference frame as it involves instantaneous velocities (the laboratory frame can be

chosen to match the swimming frame at the time t, without loss of generality).

Physically, anisotropy is necessary to create any motion. In the case of linear velocity this

anisotropy must come from the drag, as demonstrated by Eq. (2). However in the case of

rotation, the configuration of the centerline, r(s, t), can generate the required anisotropy, as

shown by the non-isotropic resistance tensor Rc, even in the presence of isotropic drag. This

instantaneous rotation can then generate a net rotation over a period if the deformation

undergoes a non-reciprocal stroke, as per the scallop theorem [15].

To provide further intuition, we illustrate this result on two simple examples exhibiting

non-zero angular velocities. Note that many more examples can be created from existing
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calculations that use resistive-force theory by formally setting the drag to be isotropic [4, 31].

First we consider an elementary lopsided paddle swimmer as shown in Fig. 2. This

swimmer consists of three straight rods of lengths 2L1, 2L2 and 2L3. The first and third

rods are perpendicular to the second rod and both positioned at opposite ends of the second.

The first and third rod then rotate around the axis of the second rod in opposing directions

with period T = 2π/ω. The centerline of this swimmer is described for all times and in the

(x, y, z) frame rotating with it (see Fig. 2) as

r + r =


{−L2,−s1 sinωt, s1 cosωt} −L1 < s1 < L1,

{s2, 0, 0} −L2 < s2 < L2,

{L2, s3 sinωt, s3 cosωt} −L3 < s3 < L3,

(11)

where si describes the configuration of rod i. The origin of the reference frame is located at

the center of the swimmer, r, which is found by

2(L1 + L2 + L3)r =

∫
(r + r) ds

=

∫ L1

−L1

{−L2,−s1 sinωt, s1 cosωt} ds1

+

∫ L2

−L2

{s2, 0, 0} ds2

+

∫ L3

−L3

{L2, s3 sinωt, s3 cosωt} ds3

= {2L2(L3 − L1), 0, 0} . (12)

Hence the center of the swimmer is a point on the second rod closer to the longest rotating

rod. The deformation velocity for this swimmer is given by

Udef = ω


{0,−s1 cosωt,−s1 sinωt} −L1 < s1 < L1,

{0, 0, 0} −L2 < s2 < L2,

{0, s3 cosωt,−s3 sinωt} −L3 < s3 < L3,

(13)

and it generates an instantaneous net force and torque on the fluid of magnitudes

F = ζ

∫
Udef ds = {0, 0, 0}, (14)

L = ζ

∫
r×Udef ds =

{
−2

3
(L3

3 − L3
1)ζω, 0, 0

}
, (15)
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where the integrals are taken over all three rods as in Eq. (12). Assuming for simplicity that

γ = 0, then the resistance matrix from Eq. (10) is instantaneously

R(t) = ζ


2
3
(L3

1 + L3
3) 0 0

0 2
3
A(t) B(t)

0 B(t) 2
3
C(t)

 , (16)

where the coefficients A, B, and C are given by

A(t) =
L2
2[4L1(L2 + 3L3) + L2(L2 + 4L3)]

L1 + L2 + L3

+(L3
1 + L3

3) cos2 ωt, (17)

B(t) = −1

3
(L3

3 − L3
1) sin 2ωt, (18)

C(t) =
L2
2[4L1(L2 + 3L3) + L2(L2 + 4L3)]

L1 + L2 + L3

+(L3
1 + L3

3) sin2 ωt. (19)

Inverting R, we obtain that the instantaneous rotation rate of the lopsided paddle swimmer

is constant and given by

Ω = R(t)−1L =

{
−L

3
3 − L3

1

L3
3 + L3

1

ω, 0, 0

}
, (20)

which has a nonzero angular velocity provided L1 is not equal to L3. Clearly, if both rods

have finite sizes, then the rotation rate of the whole swimmer is not equal to minus the

rotation rates of each rod and indicates that a net rotation of the whole swimmer body can

be induced purely from geometry.

As a second example we consider a model for a bacterium with two flagellar filaments, as

illustrated in Fig. 3a. The swimmer is composed of two identical rigid helices attached at one

end to a cell body and oriented with their helix axes perpendicular to each other. Each helix

rotates around its axis with period T = 2π/ω. For simplicity we ignore hydrodynamically

the presence of the cell body which is correct in the limit where the helical flagella are much

longer than the body. In the frame of reference attached to the swimmer (see Fig. 3a), the

location of each helix is given by

r1 + r = {αs, b sin(kx− ωt), b cos(kx− ωt)} , (21)

r2 + r = {b cos(kx− ωt), b sin(kx− ωt),−αs} , (22)
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Figure 3. Rotation of a model bacterium under isotropic drag. (a): Geometry of the swimmer

composed of two identical helices of perpendicular axis, amplitude b and wavenumber k and rotate

with frequency ω. The cell body is small compared to the helices and can thus be ignored. (b):

Components of the angular velocity of the swimmer in the swimmer frame, Ω (scaled by ω), as a

function of dimensionless time. For all figures b = 0.05 and k = 4π.

where r1 and r2 denote, respectively, the centerlines of the first and second helices, 0 < s < 1,

k = 2nπ is the wavenumber of the helix for a positive integer n, b its amplitude, and α is the

cosine of the helix angle which satisfies α2 + b2k2 = 1 for inextensible helices. This swimmer
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rotates about the centre r defined as

r =
1

2

∫ 1

0

(r1 + r) ds+
1

2

∫ 1

0

(r2 + r) ds

=
α

4
{1, 0,−1}, (23)

which is the origin for both r1 and r2. The deformation velocity for for each helix, Udef,i,

is then obtained by computing ∂tri (i = 1, 2). We obtain that the rotation of the helices

around their axes generates net forces and torques on the body of magnitude

F(t) = ζ

∫
Udef ds = {0, 0, 0}, (24)

L(t) = ζ

∫
r×Udef ds (25)

=
bζω

2nπ
{2bnπ + α sinωt, α cosωt, α sinωt− 2bnπ} .

Assuming γ = 0 for simplicity, the resistance matrix relating torque and rotation for this

bacterial configuration can be computed exactly and we obtain

R(t) = ζ


36b2 + 5α2

24

bα cosωt

2nπ
−α

2

8
bα cosωt

2nπ
b2 +

5

12
α2 −bα cosωt

2nπ

−α
2

8
−bα cosωt

2nπ

36b2 + 5α2

24

 , (26)

and the torque-free condition then gives the swimmer an instantaneous angular velocity of

Ω(t) = −6bω {A2(t) +B2(t), C2(t), A2(t)−B2(t)} , (27)

where

A2(t) =
α sinωt

nπ(18b2 + α2)
, (28)

B2(t) =
2bn2π2(12b2 + 5α2)− 6bα2 cos2 ωt

n2π2(108b4 + 69b2α2 + 10α4)− 36b2α2 cos2 ωt
, (29)

C2(t) =
2nπα(3b2 + 2α2) cosωt

n2π2(108b4 + 69b2α2 + 10α4)− 36b2α2 cos2 ωt
. (30)

We plot in Fig. 3b all the components of Ω, nondimensionalized by ω, for the values

b = 0.05 and k = 4π (i.e. n = 2). We see that the instantaneous rotational velocity is

non-zero for all body directions and oscillates sinusoidally, around a mean value of

ω

2π

∫ 2π/ω

0

Ω dt = ω

[(
1−
√
W
)

+
6r2h

9r2h + 2α2

√
W

]
{−1, 0, 1}, (31)
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where

W =
108r2h + α2 (69− 108r2h)− α4 (69− 10n2π2)

108r2h + α2 (69− 72r2h)− α4 (69− 10n2π2)
· (32)

The angular displacement experienced in the laboratory frame can be found from

dêi
dt

= Ω(t)× êi, (33)

where êi is the body frame vector i = 1, 2, 3. We take ê1(t) to be the body vector aligned

the helix axis of r1, ê3(t) the body vector aligned with the helix axis of r2 and ê2(t) the

body vector perpendicular to the helix axes. The above equation was solved numerically

for a bacterial swimmer with rh = 0.05 and k = 4π [32]. In this configuration, the body

vectors, after one period of rotation, become

ê1

(
T =

2π

ω

)
= {0.989.− 0.149,−0.003} (34)

ê2

(
T =

2π

ω

)
= {0.148, 0.9778, 0.149} (35)

ê3

(
T =

2π

ω

)
= {−0.020,−0.148, 0.989} (36)

where we have assumed ê1(0) = {1, 0, 0}, ê2(0) = {0, 1, 0}, and ê3(0) = {0, 0, 1}. These

vectors are written in terms of the x, y, and z coordinates of the laboratory frame. Fig. 4

plots the trajectories of these vectors on the surface of a unit sphere. Hence under isotropic

drag, this model bacterium undergoes a non-trivial net rotation in the laboratory frame due

solely to the anisotropy of its shape.

Anisotropy in their linear drag is a requirement for microorganisms using filamentous

appendages to undergo net translation through viscous fluids. By extension one may think

that such drag anisotropy is also required to generate rotation. In this paper we showed that

in fact rotation was possible in a system with isotropic drag. This result was evident when

considering the force- and torque-free conditions directly and allowed us to demonstrate that

in such a fluid the rotation is physically generated by the anisotropy in the shape of the

swimmer (specifically, the centerline of the slender filaments it actuates). We derived this

rotation for an arbitrary body and then illustrated it on two model swimmers, a lopsided

paddle swimmer and a multi-flagellated model bacterium, which both exhibit non-zero ro-

tation within an isotropic-drag medium. Other examples may also be created by making

the drag isotropic in existing resistive force theory studies [4, 31]. Our results highlight the

different role of hydrodynamic forces in generating translational vs. rotational propulsion
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Figure 4. Trajectories of the body vectors (ê1(t), ê2(t), ê3(t)) on the surface of a unit sphere

(rh = 0.05, k = 4π). (a) The trajectory of ê1(t) (blue); (b) The trajectory of ê2(t) (red); (c) The

trajectory of ê3(t) (green). The paths over the sphere represent the motion with the initial (solid)

and final (dashed) vectors clearly labelled. In the above T = 2π/ω.

and may change our understanding of the physical requirements for rotational motion in

complex environments.
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