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Abstract. Fundamentally, it is believed that interactions between physical objects are two-body.
Perturbative gadgets are one way to break up an effective many-body coupling into pairwise
interactions: a Hamiltonian with high interaction strength introduces a low-energy space in
which the effective theory appears k-body and approximates a target Hamiltonian to within
precision ε . One caveat of existing constructions is that the interaction strength generally scales
exponentially in the locality of the terms to be approximated.

In this work we propose a many-body Hamiltonian construction which introduces only a
single separate energy scale of order Θ(1/N2+δ), for a small parameter δ > 0, and for
N terms in the target Hamiltonian. In its low-energy subspace, we can approximate any
normalized target Hamiltonian Ht =

∑N
i=1 hi with norm ratios r = maxi, j∈{1,...,N } ‖hi ‖/‖hj ‖ =

O(exp(exp(poly n))) towithin relative precisionO(N−δ). This comes at the expense of increasing
the locality by at most one, and adding an at most poly-sized ancilliary system for each coupling;
interactions on the ancilliary system are geometrically local, and can be translationally-invariant.

In order to prove this claim, we borrow a technique from high energy physics—where matter
fields obtain effective properties (such as mass) from interactions with an exchange particle—and
a tiling Hamiltonian to drop all cross terms at higher expansion orders, which simplifies the
analysis of a traditional Feynman-Dyson series expansion.

As an application, we discuss implications for QMA-hardness of the Local Hamiltonian
problem, and argue that “almost” translational invariance—defined as arbitrarily small relative
variations of the strength of the local terms—is as good as non-translational-invariance in many
of the constructions used throughout Hamiltonian complexity theory. We furthermore show
that the choice of geared limit of many-body systems, where e.g. width and height of a lattice
are taken to infinity in a specific relation, can have different complexity-theoretic implications:
even for translationally-invariant models, changing the geared limit can vary the hardness of
finding the ground state energy with respect to a given promise gap from computationally trivial,
to QMAEXP-, or even BQEXPSPACE-complete.
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1 Introduction

In nature, the way particles can interact is inherently limited. Just like in a game of
billiards, where under high-enough time resolution every ball-to-ball contact can be
discriminated in principle, many-body systems are believed to be governed by two-body
interactions. When we relax the time resolution—and for instance only check the billiard
table every half second—it appears as if multiple balls have interacted simultaneously,
and one can derive an effective multi-body theory from these observations.
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Whilemany-body terms appear in real-world systems, e.g. in rare-gas liquids [Jak+00],
where describing thermodynamic properties accurately requires the introduction of a
three-body term, to model polar molecules [BBW10] or phases of charged particles in
suspension [WFW18], their occurence is rare. For the field of Hamiltonian complexity
theory, which tries to link rigorous complexity-theoretic statements like “how hard is it
to estimate the ground state energy of a local Hamiltonian?” to realistic systems—e.g.
by requiring low local dimension, a realistic set of interactions, and nearest-neighbour
couplings only—this is of course a conundrum: hardness constructions usually work
by mapping a type of constraint satisfaction problem to the interactions of a many-body
system. If the interactions get more restricted, the constraints become easier to solve.

In order to circumnavigate this problem, reductions are typically proven in two steps:
at first, one allows the freedom of choosing long-range interactions, which makes the
task of embedding a hard problem into a local Hamiltonian significantly easier. As a
second step, one uses a technique called perturbation gadgets to break down effective
k-local terms to two-body couplings.
Effective theories usually introduce a separate energy scale ∆, which has to increase

with the system size in order to suppress the introduced errors. This scaling is usually
quite drastic: to break down a k-local interaction to 2-body with an error ε , ∆ commonly
has to scale like Ω(1/εk), where ε = 1/poly n in the system size n. Yet having
a coupling constant which increases as the system grows is highly unphysical—in
particular because the typical polynomial degree of ε−1 itself is huge, e.g. in the context
of QMA-hardness constructions, where ε scales inverse quadratically in the runtime of
the computation, which itself can be an arbitrary polynomial in the system size n.
In a recent study [CK17], the authors have analysed how the scaling of ∆ can

be improved by an effective numerical algorithm, which yields tighter bounds than
suggested by perturbation theory alone. Yet while the bounds are improved by several
orders of magnitude, the asymptotic scaling appears to remain unfavourable (see e.g.
[CK17, fig. 5]).

In this paper, we propose a novel methodwhich allows the introduction of only a single
scaling constant with vastly-reduced overhead as compared to the typical ∆ required in a
perturbative expansion. The aim of this work is not to replace gadget constructions, but
to augment them: it can be applied to any construction of a Hamiltonian H with various
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energy scales up to relative strength that scales doubly-exponential in the size of the
system, i.e. exp(exp(poly n)). However, as in the gadget case we cannot get away with no
scaling constant at all. For our construction, a strong interaction with weight O(N2+δ)

is necessary to simulate H in an effective subspace up to relative accuracy O(N−δ),
where N is the number of local terms present in the target Hamiltonian. We emphasize
that this approximation is independent of the original scale ∆ one wishes to obtain.
This comes at a cost: the effective Hamiltonian is normalized to O(1), and one has to
introduce an ancilliary system for every interaction present in the original construction
that features a scaling operator norm. The ancilliary system is a geometrically local
and translationally-invariant nearest-neighbour spin chain which couples locally to the
system at hand. This means that we need to potentially increase the locality of the
original construction by one—where we emphasize that this is only necessary if the
interaction with scaling norm are already k-local for a k-local Hamiltonian.1

While it is true that it seems to defeat the purpose of perturbation gadgets to first
break down high-locality interactions to two-body, only then to increase them back to
three-local, we argue that our construction improves the picture in three aspects.

1. Our scaling is independent of the locality of the original construction, and thus
superior to e.g. stopping perturbation theory of a 10-local Hamiltonian once the
interactions are 3-local.

2. We introduce a relative overall error only. This is particularly useful for hardness
constructions, where e.g. a small promise gap of 1/poly n has to maintained. For
us, a relative error of say 1/10 would thus suffice.

The notion of perturbation gadgets is tightly-linked to the idea of simulation of
quantum systems. The theory is well-developed, and we only summarize the central
points here; we focus on the simpler definition in [BH17], but refer the reader to
[CMP17] for an in-depth discussion. Formally, the ability to simulate (the static
properties of) one quantum system with another means that one can reproduce either the
eigenvalues, the eigenvectors—or both—of some target Hamiltonian Ht within some

1A counterexample would, for instance, be a 2-local Hamiltonian with additional 1-local on-site
interactions that vary; as only the latter will have their locality increased by one, the overall
Hamiltonian is still 2-local.
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technique
locality k
order l

∆ = Ω(·) extra terms per interaction

Piddock and Montanaro [PM17; BH17] S-W l ≤ 4 ε−l ‖V‖l(l+1)

Cao and Nagaj [CN15] F-D k = 2,3 O(ε) Ω(ε−2, ‖V‖2)-sized cliques†

Kempe, Kitaev, and Regev [KKR06] F-D k = 3 ε−3 3 ancillas
Bravyi, DiVincenzo, and Loss [BDL11] S-W l ∈ N ε−(l+1)‖V‖l+1/l2

Jordan and Farhi [JF08] Bloch k ∈ N ‡ k-sized cliques
Oliveira and Terhal [OT05] F-D k 7→ dk/2e + 1 ε−2(‖V‖ + r)6 1 ancilla§

Table 1: Examples for perturbation gadgets using various expansion techniques, with required
gap scaling, interaction graph modifications, and coupling scaling ∆ in the parameters:
approximation error ε , operator norm of the target Hamiltonian ‖V‖.
†One per 2-body interaction. The paper contains a direct proposal for three-body interactions;
for higher-order terms, the authors also propose taking another gadget to break k-body to
2-body, and then reduce the weight with their method.
‡The authors show series convergence for ∆ > ‖V‖/k; no analytical error analysis is given.
§For the mediator gadget: r is ∝ max{‖A‖, ‖B‖} for the k-local interaction term A ⊗ B.

invariant subspaceL ⊂ Hsim (e.g. the low-energy subspace) of a simulator Hamiltonian
Hsim.

Since the Hilbert spaces on which Ht and Hsim are defined—denotedHt andHsim—
are usually not identical, we need to allow for an encoding map E : Ht 7→ Hsim; then
Hsim together with E simulate Ht with error tuple (ε, η) if there exists an isometry
Ẽ : Ht 7→ Hsim such the image of Ẽ is L, and further ‖Ht − Ẽ

†HsimẼ ‖ ≤ ε and
‖E − Ẽ‖ ≤ η. Roughly speaking, the first two conditions imply that the eigenvalues of
Ht are reproduced up to error ε ; the latter implies closeness of the eigenvectors up to
error η (see [BH17, def. 1, lem. 1&2]). The reason for this distinction is that while
the exact mapping Ẽ might be very complicated and does not tell us anything about
the eigenvectors, we can approximate it via an encoding; since the two maps are close
in operator norm we can also reach closeness of the eigenvectors with the effective
simulated Hamiltonian.
Since our goal is to reproduce the entire target Hamiltonian within a low-energy

space of a simulator Hamiltonian, and since we will employ a well-established series
expansion, we will generally disregard the explicit distinction between ε and η; the
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self-expansion theorems in section 2.2 capture the two notions of approximation that
suffice for our purposes.

2 Preliminaries

A Hamiltonian is a hermitian operator H on a finite dimensional Hilbert spaceH . We
say H is n-body if H = (Cd)⊗n for some n, d ∈ N. The Hamiltonian H is k-local
if H =

∑n
i=1 hi, and such that hi are Hermitian matrices that each act non-trivially

only on k of the subsystems ofH . More precisely, we demand that hi = qi,Si ⊗ 1Sc
i
,

where qi,S is a Hermitian operator on a subset Si ⊂ {1, . . . ,n} of size |Si | ≤ k, and 1Sc
i

the identity operation on the complement of Si. We also call the hi local coupling or
interaction terms, and if hi is part of a k-local Hamiltonian H, then hi is—in itself—an
at most k-body interaction. Indeed, as mentioned in the abstract, fundamentally physical
systems are believed to be interacting via two-body interactions, which means that the
Hamiltonian describing such systems is two-local.

If there is a topological structure associated to the Hilbert spaceH—e.g. if each of
the d-dimensional spaces is associated to the vertices of a graph—then we speak of H
being geometrically local if the local interaction terms hi act in a local fashion with
respect to this topology, which usually means that the k vertices that hi acts on have to
be connected. For instance, if the hi are interaction terms between neighbouring d-
dimensional spins on a grid of side length L×L (each spin with Hilbert spaceCd, which
we also call a d-dimensional qudit), then H is a 2-local, L2-body, nearest-neighbour
Hamiltonian on a square lattice.
If the topology permits and is e.g. like a hyperlattice, we can speak of translational

invariance, which means that for all the local terms qi,Si = qSi , and H =
∑n

i=1 is such
that the interactions on the underlying graph are invariant under translations—modulo
boundary effects; for translationally invariant systems we generally assume open
boundary conditions.

The interaction degree of a Hamiltonian is then the maximum number of local terms
hi acting non-trivially on any site; it coincides with the degree of the graph describing
the interaction topology of H. A Hamiltonian with fixed interaction degree then has an
interaction degree ≤ D for some D ∈ N, which we keep implicit. Similarly, we will
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often leave the locality unspecified when speaking of local Hamiltonians, which simply
implies that that the Hamiltonian is k-local for some constant k.

2.1 Feynman-Dyson Series

Because a lot of our construction hinges on employing a well-known series expansion—
the Feynman-Dyson series—and to introduce the notation used throughout the rest of
the paper, we will spend some time explaining how to approximate low energy spectra
of a sum of a Hamiltonian H and a perturbation V. We follow the excellent and more
thorough introductions within [KKR06; PM17].
Assume we are given a Hamiltonian H̃ := H + V, where H has a spectral gap ∆

above its ground space L(H). We further assume that ‖V‖ < ∆/2.

Notation. Denote the eigenvalues and eigenvectors of H (H̃) with λi and |ψi〉 (λ̃i
and |ψ̃i〉), such that λmin(H) =: λ0 is the ground state of H. Let λ∗ := λmin(H) + ∆/2
midway within the spectral gap of H, and let Π− be the projector onto L(H)—and Π+
onto its orthogonal complement, respectively. We define the resolvent of H via

G(z) := (z1 −H)−1 =
∑
i

(z − λi)−1 |ψi〉〈ψi | , (1)

and analogously G̃(z) for H̃; we note that both resolvents have first order poles at z = λi
or z = λ̃i, respectively. The self-energy of H is then given by

Σ−(z) := z1− −
[
G̃−1(z)

]
−
, (2)

where the subscripts on an operator A are defined via the restriction to the support of
the projections Π±, e.g. A− := A|L(H) (such that 1− denotes the identity on L(A)), and
analogously A+ is the restriction to the complement of L(H). We will also use the
mixed subscripts, best defined in a representation of the Hilbert space L(H) ⊕ L(H)⊥,
where the operator A block-decomposes as

A =

(
A+ A+−
A−+ A−

)
.

This also means that the order of operations in eq. (2)—restriction to the low-energy
subspace and operator inversion—is irrelelevant for all z < {λi}, i.e. where G̃(z) is
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invertible; for simplicity of notation we thus drop the brackets where appropriate, and
identify e.g. G̃−1

− (z) :=
[
G̃−1(z)

]
−
(which is thus nothing but z1− − H̃−).

If we solve eq. (2) via Σ−(z) = z1− −
[
(z1− − H̃−)−1]−1

= H̃−, we see that the
self-energy Σ−(z) is nothing but the low-energy part of the Hamiltonian H̃—where it is
important to note that “low-energy” in this context means with respect to the spectrum
of the unperturbed Hamiltonian H, not H̃. This is not useful per se, though; we do
not know how to calculate the effective low-energy Hamiltonian of H̃. On the other
hand, we can use a series expansion to approximate it, starting from Σ−(z). Since
G−1
+−(z) = G−1

−+(z) = 0 by construction, note

G̃(z) = (z1 − H̃)−1 = (z1 −H − V)−1 = (G−1(z) − V)−1

=

(
G−1
+ (z) − V+ −V+−
−V−+ G−1

− (z) − V−

)−1

=:

(
A B
C D

)−1

.

The lower-right block of G̃(z) is then given by the Schur complement

G̃−1
− (z) = D − CA−1B = G−1

− (z) − V− − V−+(G−1
+ (z) − V+)−1V+−.

Dropping the argument z in G+ = G+(z) for brevity, we further have

(G−1
+ − V+)−1 = (G−1

+ (1+ −G+V+))−1 = (1+ −G+V+)−1G+
= G+ +G+V+G+ +G+V+G+V+G+ + . . .

as a geometric series expansion, which converges if ‖G+V+‖ < 1. Under this
assumption, we can conclude

Σ−(z) = H− + V− + V−+G+V+− + V−+G+V+G+V+− + . . . . (3)

2.2 Self-Energy Expansion Theorems

There is two major variants of approximations that can result from this self-expansion
using the Feynman-Dyson series. Representative of the literature we quote the following
two variants.

Theorem 1 (Cao and Kais [CK17]). Let H̃ = H+V as above, and assume ‖V‖ ≤ ∆/2.
Let ε > 0. If there exists a Hamiltonian Heff with spectrum {λ1, . . . , λk} contained
in an interval [a, b], a < b < ∆/2 − ε , and for all z ∈ [a − ε, b + ε] it holds that
‖Σ−(z) −Heff ‖ ≤ ε , then each λi is ε-close to the ith eigenvalue of H̃−.
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Note that in general we will have a dependence ε = ε(∆); however, if we only request
that the error be small, but not shrinking with the system size, we can keep the ratio of
the terms H and V fixed. The following variant allows one to make a statement not
only about the eigenenergies, but also about the eigenvectors.

Theorem 2 (Oliveira and Terhal [OT05]). Let the setup be as in theorem 1, and denote
with λ∓ the ground- and first excited energy of H, respectively. Let z0 = (b + a)/2,
weff = (b − a)/2, and r be the radius of a disc D centered around z0 encompassing the
point b + ε . If for all z ∈ D we have ‖Σ−(z) −Heff ‖ ≤ ε , then

‖H̃− −Heff ‖ ≤
3(‖Heff ‖ + ε)‖V‖
λ+ − ‖Heff ‖ − ε

+
r(r + z0)ε

(r − weff)(r − weff − ε)
.

In particular, while theorem 1 allows us to make a statement about the eigenenergies
without requiring ∆/‖V‖ → ∞—which manifests in a constant approximation error for
the eigenvectors of Heff—with said condition and theorem 2 we can also approximate
the full spectrum of Heff to arbitrary precision.

2.3 A Bound State Hamiltonian

We will need a variant of a random walk Hamiltonian, used ubiquitously in QMA-
hardness constructions in the context of Feynman’s History State construction. In
particular, what we aim to achieve is to create a Hamiltonian on a multipartite Hilbert
space, with a constant spectral gap above a unique ground state, and such that the latter
has most of its weight localized around a particular site. Like this, we can “condition”
an interaction on the ground state away from its localization site. The intuition is
taken from particle physics: interactions are commonly coupled to an exchange gauge
particle; this coupling is weak when conditioned on a field away from where the gauge
particle mostly lives—e.g. a photon, whose field drops off away from an electron,
influences how strong an electron-electron scattering is depending on how far apart the
two electrons are.
Let us make this precise. Let b > 0. For an integer T ≥ 2, let Hb be a Hamiltonian

on CT defined via

Hb := −b |1〉〈1| +
T−1∑
t=1
(|t〉 − |t + 1〉)(〈t | − 〈t + 1|), (4)
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where the |t〉 label a fixed orthonormal basis. The second term in eq. (4) is a path graph
Laplacian, whereas the first term assigns a bonus term of strength b to the state |1〉.

Lemma 3. For b > 0, Hb as defined in eq. (4) has a single ground state with eigenvalue
λmin < −b2/(b + 1). All other eigenvalues are positive.

Proof. Uniqueness of a single negative eigenvalue is a standard argument: assume
this is not the case. Then there exist at least two orthogonal eigenvectors |u〉 , |v〉
with negative eigenvalues, and any |x〉 ∈ span{|u〉 , |v〉} satisfies 〈x |Hb |x〉 < 0.
Since dim ker |1〉〈1| = T − 1, there exists a nonzero |x〉 ∈ span{|u〉 , |v〉} such that
|1〉〈1| |x〉 = 0. Therefore 0 > 〈x |Hb |x〉 = 〈x | (Hb + b |1〉〈1|) |x〉, contradiction, since
Hb + b |1〉〈1| is a path graph Laplacian, which is positive semi-definite.
We make an ansatz for the ground state. Let

|Ψ〉 := A
T∑
t=1
(b + 1)−t |t〉 where A2 =

b(2 + b)
1 − (b + 1)−2T for normalization, (5)

for which we note A ∈ (0, b + 1) ∀b > 0,T ≥ 2. Then

Hb |Ψ〉 = A
T∑
t=1
|t〉 ×


−(b + 1)−2 + (b + 1)−1 − b

b+1 t = 1

−(b + 1)−t−1 + 2(b + 1)−t − (b + 1)−t+1 1 < t < T

−(b + 1)−T+1 + (b + 1)−T t = T

= −A
T−1∑
t=1

b2

(b + 1)t+1 |t〉 −
Ab

(b + 1)T
|T〉

= −
b2

b + 1
|Ψ〉 −

Ab
(b + 1)T+1 |T〉 . (6)

Thus

〈Ψ|Hb |Ψ〉 = −
b2

b + 1
−

A2b
(b + 1)2T+1 < −

b2

b + 1
.

Lemma 4. We pick b ≥ 1. Hb then has ground state |Ψ0〉 = |Ψ〉 + ε |ξ〉, where |Ψ〉 is
from eq. (5), |ξ〉 is normalized, and ε = O(b

√
T/(b + 1)T ) where the O limit is taken

with respect to T −→ ∞.

Proof. By absorbing complex phases, choose the eigenvectors {|Ψi〉}
T−1
i=0 of Hb—with

ground state |Ψ0〉—such that we can represent the ansatz state |Ψ〉 =
∑T−1

i=0 αi |Ψi〉 with
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αi ≥ 0 for all i. By lemma 3, the lowest eigenvalue λ0 = λmin(Hb) ∈ (−∞,−b2/(b+ 1)];
all other eigenvalues of Hb satisfy λi ∈ [0,∞). Therefore, for any s ∈ (0, b2/b + 1),

αi = 〈Ψi |Ψ〉 =
1

λi + s
〈Ψi |Hb + s1 |Ψ〉

= −
1

λi + s

[(
b2

b + 1
− s

)
〈Ψi |Ψ〉 +

Ab
(b + 1)T+1 〈Ψi |T〉

]
,

where in the first line we used the fact that the |Ψi〉 are an orthonormal set of vectors,
and in the second line we used the expression of Hb |Ψ〉 from eq. (6). Since b ≥ 1, we
can choose s = 1/4. We further have A ≤ b + 1. For i > 0, we know that λi ≥ 0, and
we conclude

αi =

(
1 +

1
λi +

1
4

(
b2

b + 1
−

1
4

))−1
1

λi +
1
4

Ab
(b + 1)T+1 | 〈Ψi |T〉 | ≤

4b
(b + 1)T

.

Then

| 〈Ψ0 |Ψ〉 |
2 = α2

0 = 1 −
T−1∑
i=1

α2
i = 1 +

4(T − 1)b2

(b + 1)2T
= O

(
Tb2

(b + 1)2T

)
for large T , and the claim follows.

This allows us to approximate to very high precision the amplitudes of the ground-
and higher excited states; of particular interest will be the amplitudes for the basis states
|T ′〉 for T ′ < T ; the reason for this is that the approximation error in lemma 4 (i.e. the
precision to which we know the ground state at all) is of the same order of magnitude
as the smallest amplidude in the ground state, | 〈Ψ0 |T〉 |. However, since we want to be
able to accurately fine-tune a specific amplitude of |Ψ0〉, we need the corresponding
error of that entry to be much smaller. In order to formalize this notion, we will assume
the path graph underlying the graph Laplacian in the definition of Hb in eq. (4) has a
multiple of the original length T ; we call this multiple M ∈ N, M > 1 throughout the
paper, and the target amplitude we wish to estimate and tune remains 〈Ψ0 |T〉. This is
captured in the following corollary.

Corollary 5. Let M ∈ N, M > 1, and b ≥ 1. Let |Ψ0〉 be the ground state of Hb on a
chain of length MT . Then

| 〈Ψ0 |T〉 |2 =
b(b + 2)
(b + 1)2T

+ O
(

1
(b + 1)MT

)
,

where the O limit is taken with respect to T −→ ∞.
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Proof. By lemma 4,

| 〈Ψ0 |T〉 |2 = | 〈Ψ|T〉 + ε 〈ξ |T〉 |2 ≤ | 〈Ψ|T〉 |2 + 2ε | 〈Ψ|T〉 | + ε2.

First note that by eq. (5), 〈Ψ|T〉 = A/(b + 1)T , where A is the normalization constant
defined on a path of length MT (not T), such that

| 〈Ψ|T〉 |2 =
b(2 + b)

1 − (b + 1)−2MT
×

1
(b + 1)2T

=
b(2 + b)

(b + 1)2T − (b + 1)−2MT+2T

=
b(2 + b)
(b + 1)2T

+ O
(

1
(b + 1)4T

× (b + 1)−2MT+2T
)

=
b(2 + b)
(b + 1)2T

+ O
(

1
(b + 1)2MT+2T

)
for the O-limit taken with respect to T −→ ∞. Using the expansion

√
a + x =

√
a + O(x/

√
a) for 0 < x < a and the small x limit, we therefore have

| 〈Ψ|T〉 | =

√
b(2 + b)
(b + 1)T

+ O
(

1
(b + 1)MT

)
.

By lemma 4 we further have ε = O(b
√

MT/(b + 1)MT ) and thus

ε | 〈Ψ|T〉 | = O

( √
MT

(b + 1)MT

)
× O

(
1

(b + 1)T

)
= O

(
1

(b + 1)MT

)
,

as
√

MT/(b + 1)T −→ 0 for T −→ ∞. A similar argument bounds ε2; the claim
follows.

Note that e.g. choosing M = 4 suffices such that | 〈Ψ0 |T〉 |2 in corollary 5 equals
b(b+ 2)/(b+ 1)2T up to a relative factor of O(1/(b+ 1)2T ), as intended; it is clear that a
tighter error bound can be achieved by increasing M further. Furthermore, the overlap
with a site T ′ < T is larger; it is therefore possible to expand corollary 5 to obtain the
following claim.

Corollary 6. Let M ∈ N, M > 1, and b ≥ 1. On a chain of length MT and for any
T ′ ≤ T , the ground state overlap

| 〈Ψ0 |T ′〉 |2 =
b(b + 2)
(b + 1)2T ′

+ O
(

1
(b + 1)MT

)
in the O-limit T −→ ∞.
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In the same fashion as in corollary 6, we can now immediately deduce the overlap of
a state |T ′〉 with the rest of the spectrum of Hb.

Corollary 7. Let M ∈ N, M > 1, and b ≥ 1. We consider a chain of length MT , and
let the eigenstates |Ψi〉 of Hb be as in lemma 4. Then for all T ′ ≤ T and in the limit
T −→ ∞, we have

MT−1∑
i=1
| 〈Ψi |T ′〉 |2 = 1 + O

(
b(b + 2)
(b + 1)2T ′

)
As we have seen, there is an exponential falloff of the ground state of Hb away

from its bonus term, and the magnitude of overlap | 〈Ψ0 |T〉 | is tightly-controlled by
corollaries 5 to 7. Since T is discrete and we want b to be taken from a fixed interval,
an obvious question that arieses is which values r := | 〈Ψ0 |T ′〉 |2 ∈ R we can construct,
by choosing T , T ′, M and b appropriately. This is a straightforward calculation; yet
since we will be interested of the scaling of the parameters T , M and b with respect to
r we state the result here explicitly.

Lemma 8. Let r ∈ (0,1/100). Then there exist an M ∈ N, M > 3, an integer
T ∈ [ln(3/r)/ln 4, ln(15/r)/ln 16] and a real number b ∈ [1,3] such that, if |Ψ0〉 denotes
the ground state of Hb describing a chain of length MT , we have | 〈Ψ0 |T〉 |2 = r .

Proof. By corollary 5, a short calculation yields

| 〈Ψ0 |T〉 |2 = r ⇐⇒ T =
ln(b(b + 2)/r)

2 ln(b + 1)
+ ε for some ε = O

(
1

(b + 1)(M−2)T

)
.

What remains to be shown is that we chan choose M large enough such that for any
r ∈ (0,1/100), there exists a b ∈ [1,3] such that the above equation is satisfied, even
under the restriction that T can only assume an integer value.

To prove this, we note that both enumerator and denominator in the expression for T

increase monotonically with b; their extreme points are thus reached at the endpoints
of the interval b ∈ [1,3]. For the enumerator they are ln(3/r) and ln(15/r), for the
denominator 2 ln 2 and 2 ln 4. We note that the achievable difference T |b=1 − T |b=3 =

ln(3/5r)/ln 16 > 5/4 ∀r ∈ (0,1/100). The claim of the lemma then follows from the
intermediate value theorem and choosing M large enough such that ε < 1/10.

We emphasize that in lemma 8 we can pick b,M and T such that | 〈Ψ0 |T〉 |2 = r

exactly, without any remaining error term. By corollary 6, we can alternatively demand
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thatT be fixed, and choose to tune the overlap | 〈Ψ0 |T ′〉 |2 for someT ′ < T . Interestingly,
if we have multiple copies of the spin Hamiltonian Hbi , we can achieve the same feat,
even under the condition that M and T is identical for all of them. More precisely,
for a range of target overlaps ri ∈ (0,1/100), we wish to find states Ti ≤ T and biases
bi ∈ [1,3], such that ri = | 〈Ψ0,i |Ti〉 |2 (where |Ψ0,i〉 denotes the ground state of Hbi ).

Corollary 9. Take a family {ri}i∈I for a finite index set I, such that ri ∈ (0,1/100) ∀i.
Then there exist M,T ∈ N, M > 3 and T ∈ [ln(3/r̄)/ln 4, ln(15/r̄)/ln 16] where
r̄ := mini∈I {ri}, and a family of Hamiltonians {Hbi }i∈I , each on chain length MT

and such that for all i there exists a bias bi ∈ [1,3] and state Ti ≤ T such that
| 〈Ψ0,i |Ti〉 |2 = ri, where |Ψ0,i〉 is the ground state of Hbi .

Proof. Follows analogous to lemma 8, using corollary 6 instead of corollary 5.

For now, this Hb as defined in eq. (4) acts on a single qudit of dimension T ; but by
the following remark we can ensure the interactions are all defined on a constant local
dimension.

Remark 10. LetH := (Cd)s be a spin chain of length s and local dimension d. Then
the following exists: Basis states {|i〉} of H such that {|i〉} =: Sgood Û∪Sc

good, where
T := |Sgood |; define H′b on the basis states |t〉 ∈ Sgood as in eq. (4). Then

1. H′b has only translationally-invariant nearest-neighbour interactions.

2. There exists a 2-body interaction term p, such that H := Hb+
∑s−1

i=1 pi,i+1—where
pi,i+1 acts on the neighbouring spins (i, i+1) only—such that H is block-diagonal
with respect to the partition Sgood∪Sc

good. H|span(Sgood) � Hb (unitary equivalence),
where Hb is defined in eq. (4), but on Hilbert space CT . The other block of H
satisfies H|span(Sc

good)
≥ 0.

3. Either T = (d − 1) × (s − 1), or T = Bs−3 for B = b(d − 5)/2c.

Proof. While the proof of this remark is non-trivial—it forms the foundation of Kitaev’s
seminal proof of QMA-hardness of approximating ground states of local Hamiltonians,
see [KSV02] where a 5-local variant is proven—it has been refined and repeated many
times throughout literature ([KKR06; Aha+09; OT05; GI09; BCO17; BP17; NW08;
Nag12; CLN18; BC18], amongst others), so we will omit it. The specific scaling of
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T with respect to the local dimension d and chain length s can be found for d = 3 in
[BCO17, Sec. 8.3.4], and B = 6 in [BCO17, Sec. 8.3.3]; the general d and B cases are
immediate consequences, see [Bau+18, Rem. 12].

In particular, remark 10 shows that we can construct translationally-invariant version
of the bound state Hamiltonian Hb from section 2.3, which has local nearest-neighbour
coupling terms, the same single negative-energy ground state |Ψ0〉 with weights
constrained as e.g. in lemma 8, and a spectral gap of ≥ 1/2.

3 Main Result

To make rigorous what we mean by one Hamiltonian to approximate another in its low
energy subspace, we phrase the following definition.

Definition 11. Let H0 be a local Hamiltonian on a Hilbert space H = (C2)⊗n such
that each local term has operator norm bounded by r(n). We say that H′ onH ⊗ H2

approximates H0—to error ε—in its low-energy subspace if the following conditions
hold.

1. H′ has a band gap, i.e. its spectrum σ(H′) ⊂ (−∞,a) ∪ (b,∞) with a < b

independent of n.

2. LetΠ− be the projector onto the lower part of the spectrum, i.e. onσ(H′)∩(−∞,a).
Then there exists a state |ψ0〉 ∈ H2 such that

r(n)Π−H′Π− = H0 ⊗ |ψ0〉〈ψ0 | + O(ε),

where Landau O(ε) term is measured with respect to the operator norm.

Theorem 12. Let {H0(n)}n∈N be a fixed interaction degree k−local family of Hamilto-
nians, where H0(n) =

∑N
i=1 hi is defined on a multipartite Hilbert spaceH = (Cd)⊗n,

and where all N = poly n interactions have norm ‖hi ‖ = ri, where ri = ri(n) with
|ri(n)/rj(n)| ≤ r(n) ∀i, j. Let δ > 0. Then there exists a family of fixed interaction
degree k + 1-local Hamiltonians {H′(n)}n∈N, where H′ =

∑N ′

i=1 qi onH ′ := H ⊗ H2,
N ′ = poly n,H2 = (C

q)⊗ poly n, where 1 ≤ ‖qi ‖ ≤ N2+δ , and such that H′(n) approx-
imates H0(n) in its low-energy subspace, in the sense of definition 11, with relative
error O(N−δ). The local dimension of the ancilliary system satisfies
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1. q = 3 if r = O(exp(poly n)), or otherwise

2. q = 9 if r = O(exp(exp(poly n))).

We give a constructive proof of theorem 12; we note that while a variant of theorem 12
may in principle also hold for an r(n) that grows faster than doubly exponentially in
n, our proof does not easily extend to that case. The next few sections will be spent
introducing the machinery necessary for the proof. As a first step we will prove a
slightly weaker variant, where we increase the locality of the interactions by 2 instead
of 1. This will save us some tedious algebra in due course, but we will lift the extra
constraints and obtain theorem 12 in section 3.5.

To further simplify notation, we will generally speak of a Hamiltonian H0 instead of a
family of Hamiltonians {H0(n)}n∈N—which is the only type of family of Hamiltonians
we will be considering here, as per theorem 12; therefore the indexing variable n—i.e.
the system size—will always be clear from the context.
Let for now H2 = Hclock ⊗ Htile, where each Hilbert space will be used for one

specific step in the construction. Without loss of generality, we will also assume that
the system does not decompose into mutually non-interacting subsets; if this is the case,
we can always regard each system separately. We first list the two ingredients for our
construction.

3.1 Local Bound State Hamiltonians with Controlled Falloff

Let M > 3 be a fixed integer. For every interaction hi inH0 =
∑N

i=1 hi as per theorem 12,
we add an ancilliary system CTi , where Ti = O(poly N) will be specified later. Then
Hclock =

⊗
iC

Ti =:
⊗

iH
(i)
clock. On eachH

(i)
clock, we define the Hamiltonian2

H(i)clock := −(bi + 1) |0〉〈0| +
MTi−1∑
t=0
(|t〉 − |t + 1〉)(〈t | − 〈t + 1|), (7)

where bi ∈ [1,3] independent of n to be specified later; this is precisely Hb from
section 2.3, where we emphasize the sum running form t = 0 to t = MTi − 1. As
noted at the end of section 2.3, H(i)clock acts on a single qudit of dimension MTi; by

2The subscript “clock” stems from the standard terminology in Hamiltoinan complexity theory where the
graph Laplacian part of eq. (7) denotes the transition terms of a so-called history state Hamiltonian.
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remark 10 we can similarly define H(i)clock to have 2-local nearest neighbour interactions
on a constant local dimension spin chain, and all of the following construction will go
through unaltered. We set Hclock :=

∑N
i=1 H(i)clock.

In addition, we raise each local interaction hi in H0 to couple to the Ti th basis state,
i.e. we write

h′i := hi ⊗ (1 ⊗ . . . ⊗ 1 ⊗ |Ti〉〈Ti | ⊗ 1 ⊗ . . . ⊗ 1) =: hi ⊗ |Ti〉〈Ti |i . (8)

We remark that |Ti〉〈Ti |i can be made into an at most 2-local projector on a spin chain
in a similar fashion as Hb; how exactly this is done will depend on the construction
used to turn Hb into a local interaction operator, and we refer the reader to remark 10
and the references mentioned in the proof for more details on how this can be achieved.

The reason for choosing H(i)clock to run to t = MTi − 1, and then couple hi to the Ti th

basis state is that, as per lemma 8, we can very precisely control the weight 〈T |Ψ0〉 of
the ground state |Ψ0〉 of Hb if it is defined over a path graph Laplacian of length MT

for M > 3. In turn, this control will allow us to tune the effective coupling strength for
the hi by chosing bi and Ti appropriately.

3.2 Unique Coupling Tiling

We will useHtile to introduce an extra coupling term to the h′i that will force products of
two distinct terms—i.e. h′ih

′
j for i , j—to vanish. In principle this is straightforward; if

Htile was, say, CN , we could introduce an orthogonal projector for each interaction via
h′i ⊗ |i〉〈i |. Then clearly (hi ⊗ |i〉〈i |)(hj ⊗ | j〉〈 j |) = 0 ∀i , j. The issue with this solution
is that we introduced a single N-dimensional spin with a high interaction degree, which
we want to avoid.

To circumvent this problem, we introduce an extra qutrit per interaction, i.e. as before
H
(i)
tile := C3. We furthermore add one extra qutrit on the left and right side with indices

i = 0 and i = N + 1, and set Htile :=
⊗N+1

i=0 H
(i)
tile. On this space, we introduce a

diagonal tiling Hamiltonian à la

Htile := 2
N−1∑
i=1

[
|21〉〈21|+ |20〉〈20|+ |10〉〈10|+ |11〉〈11|

]
i,i+1−

N−1∑
i=0
|012〉〈012|i,i+1,i+2 .

(9)
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It is easy to check that all eigenvectors ofHtile are product states of the basis {|0〉 , |1〉 , |2〉}
(i.e. ternary strings), with an N-fold degenerate ground space

L0(Htile) = span{|0122 · · · 2222〉 , |0012 · · · 2222〉 , . . . , |0000 · · · 0012〉}. (10)

Observe that the states are such that there is precisely one, respectively, where a |1〉 is
at position i for all 1 ≤ i ≤ N , and that the ground space energy is precisely −1, with a
spectral gap of 1.
We couple the h′i toHtile with interaction terms of the form

h′′i := h′i ⊗ (1 ⊗ . . . ⊗ 1 ⊗ |1〉〈1| ⊗ 1 ⊗ . . . ⊗ 1) =: h′i ⊗ |1〉〈1|i , (11)

so that the overall Hamiltonian then reads

H′ := 1 ⊗ 1 ⊗ Htile + C1 ⊗ Hclock ⊗ 1 +

N∑
i=1

hi ⊗ |Ti〉〈Ti |i ⊗ |1〉〈1|i , (12)

where we introduced a constant C to be able to satisfy the preconditions for the
Feynman-Dyson expansion: since Hclock has a constant gap—see lemma 3—we will
have to pick C = Ω(N); we will parametrize this dependence as C = Θ(N2+δ), where
δ ≥ 0 is a parameter to be chosen in due course.

3.3 Restriction to Good Signatures

The first term 1 ⊗ 1 ⊗ Htile in eq. (12) commutes with all others, which means that
H′ is block-diagonal with respect to the eigenstates of Htile. This implies that we can
restrict our attention to the blocks representing the ground space of Htile—all other
blocks will have energy ≥ 1.
We write ·|tile for a restriction to the ground space L0(Htile) as defined in eq. (10).

More specifically, we set A|tile := (1 ⊗ 1 ⊗ Πtile)A(1 ⊗ 1 ⊗ Πtile), where Πtile is a
projector onto L0(Htile), such that

H′ |tile = C1⊗Hclock⊗Πtile+

N∑
i=1

hi⊗ |Ti〉〈Ti |i⊗(. . . |0〉〈0| ⊗ |1〉〈1|i⊗ |2〉〈2| ⊗ . . .). (13)

Observe that now products of distinct terms within the sum—those containing products
hihj for i , j—are projected out; and further all terms from Htile vanished since we
are within its ground space.
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3.4 Series Expansion

As in [KKR06], we utilize a perturbative series expansion to estimate what the low-
energy subspace of H′ looks like; for an introduction and the notation we use in the
following see section 2.1.

By section 3.3, and since H′ is block-diagonal with respect to Htile’s eigenstates, we
can simplify the notation in the following analysis by only working within the subspace
under the restriction ·|tile; all other eigenstates have energy ≥ 1. This means that we
can write and partition eq. (13) as

H′ |tile =

=:H︷              ︸︸              ︷
C

N∑
i=1
1 ⊗ H(i)clock +

=:V︷              ︸︸              ︷
N∑
i=1

hi ⊗ |Ti〉〈Ti |i,

where we dropped theHtile part of the Hilbert space; it can uniquely be reconstructed
from eq. (13). We will denote the eigenstates of Hclock =

∑N
i=1 H(i)clock with

��ψj

〉
for

j ∈ {0, . . . ,dimHclock − 1}. The ground space projector of Hclock and its complement
are then given by

Π− = 1 ⊗ |ψ0〉〈ψ0 | =: 1 ⊗
(
P0,1 ⊗ . . . ⊗ P0,N

)
=: 1 ⊗ P− (14)

Π+ = 1 ⊗ |ψ0〉〈ψ0 |
⊥ =: 1 ⊗ P+, (15)

where P0,i is given by |Ψ0〉〈Ψ0 | from lemma 4, for a H(i)clock = Hb on a chain of length
Ti; we further implicitly assume an energy shift to set the ground space energy of Hclock

to zero by introducing an energy shift for each individual clock Hamiltonian.
To keep the notation consistent, we will denote the eigenvectors of said H(i)clock for a

certain chain lengthTi with
��Ψj ,i

〉
, and the eigenvalues by µj ,i , for j = 0, . . . ,Ti−1. Then

P0,i =
��Ψ0,i

〉〈
Ψ0,i

�� and P⊥0,i =
∑

j>0
��Ψj ,i

〉〈
Ψj ,i

��. We note that the H(i)clock—and hence of
Hclock—are real symmetric matrices; we can therefore choose all its eigenvectors with
real entries, which we will assume henceforth.

The complement projector P+ =
∑

j>0
��ψj

〉〈
ψj

�� is a bit more complicated to express
in closed form; summing over all binary strings of length N apart from the all zero
string,

P+ =
∑

s,0· · ·0
P(s1)

0,1 ⊗ . . . ⊗ P(sN )0,N where P(si )0,i =


P0,i if si = 0

P⊥0,i otherwise.
(16)
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We can re-express eq. (16) in terms of the eigensystems of the individual H(i)clock’s, as

P+ =
∑

s,0· · ·0

(T1−1)s1∑
k1=s1

· · ·

(TN−1)sN∑
kN=sN

��Ψk1,1
〉〈
Ψk1,1

�� ⊗ . . . ⊗ ��ΨkN ,N

〉〈
ΨkN ,N

�� ,
where Ti is the number of eigenstates of H(i)clock, and the sums either just sum over a
single term ki = 0 if si = 0, or ki = 0, . . . ,Ti − 1 if si = 1.

The products of these projectors with some
��Tj

〉〈
Tj

��
j
, j ∈ {1, . . . ,N}, are as follows.

P−
��Tj

〉〈
Tj

��
j
P− = 〈T | j P0, j |T〉 j P− =: p2

0, jP−, (17)

P−
��Tj

〉〈
Tj

��
j
P+ = P0,1 ⊗ . . . ⊗ P0, j−1 ⊗ P0, j

��Tj

〉〈
Tj

�� P⊥0, j ⊗ P0, j+1 ⊗ . . . ⊗ P0,N

= p0, jP0,1 ⊗ . . . ⊗ P0, j−1 ⊗
��Ψ0, j

〉 ∑
i>0

〈
Tj

��Ψi, j

〉 〈
Ψi, j

�� ⊗ P0, j+1 ⊗ . . . ⊗ P0,N

=: p0, jP0,1 ⊗ . . . ⊗ P0, j−1 ⊗
��Ψ0, j

〉〈
pj

�� ⊗ P0, j+1 ⊗ . . . ⊗ P0,N , (18)

P+
��Tj

〉〈
Tj

��
j
P+ (19)

=
∑
s,r.0

P(s1)
0,1 ⊗ . . . ⊗ P(sN )0,N

(
1 ⊗ . . . ⊗

��Tj

〉〈
Tj

�� ⊗ . . . ⊗ 1) P(r1)
0,1 ⊗ . . . ⊗ P(rN )0,N

=
∑
s,r.0

P(s1)
0,1 δs1,r1 ⊗ . . . ⊗ P(sj )0, j

��Tj

〉〈
Tj

�� P(rj )0, j ⊗ . . . ⊗ P(sN )0,N δsN ,rn

=
1
2

∑
all s

P(s1)
0,1 ⊗ . . . ⊗

(
P0, j

��Tj

〉〈
Tj

�� P⊥0, j + P⊥0, j
��Tj

〉〈
Tj

�� P0, j + P⊥0, j
��Tj

〉〈
Tj

�� P⊥0, j)
⊗ . . . ⊗ P(sN )0,N

=
1
2

∑
all s

P(s1)
0,1 ⊗ . . . ⊗

(
p0, j

��Ψ0, j
〉〈

pj

�� + p0, j
��pj

〉〈
Ψ0, j

�� + ��pj

〉〈
pj

�� ) ⊗ . . . ⊗ P(sN )0,N .

(20)

We emphasize that in the last two lines, we sum over all binary strings s, which is where
the factor of 1/2 stems from. Again for consistency of notation, we set pi, j :=

〈
Tj

��Ψi, j

〉
.

Note that the pi, j are always real, since we chose our eigenbasis real.
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We are interested in the low-energy space of H̃, for which we can calculate the
expansion terms of Σ−(z) from eq. (2) using eqs. (3), (17), (18) and (20). We have

H− = Π−HΠ− = 0, (21)

V− = Π−VΠ− =
N∑
i=1

p2
0,ihi ⊗ P−, (22)

V+ = Π+VΠ+

=
1
2

N∑
i=1

hi ⊗
∑
all s

(
P(s1)

0,1 ⊗ . . . ⊗
[
p0,i |Ψ0,i〉〈pi |

+ p0,i |pi〉〈Ψ0,i | + |pi〉〈pi |
]
⊗ . . . ⊗ P(sN )0,N

)
, (23)

V−+ = Π−VΠ+ =
N∑
i=1

p0,ihi ⊗
[
P0,1 ⊗ . . . ⊗ |Ψ0,i〉〈pi | ⊗ . . . ⊗ P0,N

]
, (24)

G+ = Π+(z1 −H)−1
Π+

= Π+

(
1 ⊗

N∑
i=1
(z − λi)−1 |ψi〉〈ψi |

)
Π+

= 1 ⊗
∑
i>0
(z − λi)−1 |ψi〉〈ψi | . (25)

We note that the term G+ is nothing but a weighted variant of the projector Π+. This is
consistent with what we discussed in section 2.1: solving the self-energy Σ−(z) = H̃−
yields the low-energy part of H̃, a weighted variant of the projector Π−. Eqs. (21)
to (25) allow us to calculate the series terms of Σ−(z); since we are still working within
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the ground space of Htile as per section 3.3 and eq. (13), all cross-terms hihj for which
i , j are exactly zero. Then

V−+G+V+− =
N∑
i=1

p2
0,ih

2
i ⊗ P0,1 ⊗ . . . ⊗

( ��Ψ0,i
〉〈

pi
��

×
∑
k>0
(z − µk ,i)−1 ��Ψk ,i

〉〈
Ψk ,i

�� ��pi〉〈Ψ0,i
�� ) ⊗ . . . ⊗ P0,N

=

N∑
i=1

p2
0,i

∑
k>0
(z − µk ,i)−1 ��〈pi

��Ψk ,i

〉��2 h2
i ⊗ Π−.

Similarly

V−+G+V+G+V+− =
N∑
i=1

(
p2

0,i

∑
k>0
(z − µk ,i)−1

∑
l>0
(z − µl,i)−1

[ =〈Ti |Ψk ,i〉︷    ︸︸    ︷〈
pi

��Ψk ,i

〉
×

〈
Ψk ,i

��Ti〉 〈
Ti

��Ψl,i〉 〈
Ψl,i

��pi〉 ])
h3
i ⊗ Π−

=:
N∑
i=1

p2
0,iη

2
i h

3
i ⊗ Π−,

and therefore inductively

V−+(G+V+)nG+V+− =
N∑
i=1

p2
0,iη

n+1
i hn+2

i ⊗ Π−. (26)

The self-energy given in eq. (2) then reads

Σ−(z) =
N∑
i=1

p2
0,i

∑
l≥0

ηli(z)h
l+1
i ⊗ Π−. (27)

To finalize our proof, we will need to analyse the z-dependence of ηi; this is
straightforward: since we shifted each individual clock Hamiltonian such that µ0,i = 0
and with the scaling constant C = Ω(N2+δ) in eq. (13), we have µk ,i > Cb2

i /(bi + 1) ≥
C/2 ∀i > 0 by lemma 3. For C ≥ 4 and for all |z | ≤ 1 we have |z − µl,i | ≥ C/4 ∀i,∀l >

0—where the condition C ≥ 4 simply translates into a condition on the system size N ,
which in turn depends on the proportionality constant in the Landau C = Ω(N2+δ) that
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was free to choose in eq. (12); fixing it to C = 4N2+δ , for instance, yields the result for
all N ≥ 1. By corollary 7 we then get

|ηi | ≤
∑
l>0
|z − µl,i |−1 ��〈Ti ��Ψl,i〉��2 ≤ 4

C

[
1 + O

(
bi(bi + 2)
(bi + 1)2Ti

)]
= O

(
C−1

)
. (28)

Note that we arbitrarily chose the region of z to have radius 1; this has to do with our
choice of bi ∈ [1,3], which itself is arbitrary; tuning the norm of some Heff will then
have to be done by making Ti larger, see lemma 8.

3.5 Proof of Main Result

Theorem 12. In order to proof theorem 12, we start with a k-local Hamiltonian
H0 =

∑N
i=1 rihi on a Hilbert space (Cd)⊗n, where each ‖hi ‖ = 1 and |ri(n)| ≤ r(n) ∀i.

We assume without loss of generality that the hi square to identity,3 i.e. we demand
h2
i = 1 for all i ∈ {1, . . . ,N}. We set r ′i (n) := ri(n)/(200r(n)), each of which now

satisfies ri ∈ (0,1/100). With the local terms hi, we define V for a new k + 2-local
Hamiltonian H′ as in eq. (12), where Hclock =

∑N
i=1 H(i)clock; by lemma 8, we know that,

for all i ∈ {1, . . . ,N}, there exist parameters bi, M , and Ti for H(i)clock such that

p2
0,i =

��〈Ψ0,i
��Ti〉��2 = ri

200r(n)
∈ (0,1/100).

Set Heff := V−. By eq. (22), we then have

Heff =

N∑
i=1

p2
0,ihi ⊗ Π− =

(
N∑
i=1

��〈Ψ0,i
��Ti〉��2 hi

)
⊗ Π− =

1
200r(n)

H0 ⊗ Π−,

3A canonical basis for the Hermitian d × d matrices is given by the d linearly inependent matrices
{ei}i∈{1,...,d} such that ei has a single 1 on the diagonal at the ith location, as well as the d(d − 1)/2
matrices {ei, j }1≤i< j≤d and {e′i, j }1≤i< j≤d , where ei, j has a matching pair of 1s at location (i, j)
and ( j, i), and similarly e′i, j a (i,−i)-pair on corresponding off-diagonal locations (i, j) and ( j, i),
respectively. We can define a new set of operators as follows:

fi := 1d − 2ei for i = 1, . . . , d

fi, j := 1d + ei, j/
√

2 − (1 + 1/
√

2)ei − (1 − 1/
√

2)ej for 1 ≤ i < j ≤ d

f ′i, j := 1d + e′i, j/
√

2 − (1 + 1/
√

2)e′i − (1 − 1/
√

2)e′j for 1 ≤ i < j ≤ d.

It is easy to verify that these operators are all hermitian, form a basis of the d × d hermitian matrices,
and all square to 1d .
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with Π− defined in eq. (14). Furthermore, eqs. (27) and (28) tell us that

ε := ‖Heff − Σ−(z)‖
∗
=






 N∑
i=1

p2
0,i

∑
l≥2

ηli(z)h
l+1
i ⊗ Π−







≤

N
100

∑
l≥2

O
(
C−l

)
= O(N)

∑
l≥2

N−(2+δ)l =
O(N)

N4+2δ − N2+δ = O
(
N−3−δ

)
. (29)

where in the first line (∗) we used the fact that the term of order l = 1 in the second
sum just introduces a constant energy shift—as by assumption h2

i = 1 ∀i. The Landau
O terms are with respect to the limit N −→ ∞.
Let us now remove the tiling Hamiltonian from section 3.3 and reduce the extra

locality introduced in eq. (12) by 1; we call this Hamiltonian H̃. More explicitly, we
now lift the implicit assumption of working in the ground space of Htile, within which
all cross terms hihj vanish for i , j. This means that at order l in the above sum
defining ε , we will get at most N l additional cross-terms to take care of, all of which of
unit norm within the sum in eq. (27). A short calculation yields the final error bound
ε ′ = O(N−2−δ) for H̃.
Invoking theorem 2, we get

‖H̃− −Heff ‖ ≤ O
(

N(‖Heff ‖ + ε
′)

λ+

)
+ O(ε ′)

= O
(

N2/r(n) + N−1−2δ

N2+δ

)
+ O(ε ′)

= O
(
N−δ

)
,

where we used ‖Heff ‖ = O(N/r(n)), ‖V‖ = O(N), and λ+ as the spectral gap of
Hclock—which scales as C.

What is left to show now is that the local dimension of the ancilliary system necessary
to specify Hclock is as claimed for the two cases of scaling of r(n)—i.e. q = 3 if
r = O(exp(poly n)), and q = 9 for r = O(exp(exp(poly n))). This follows by remark 10,
which concludes the proof.
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4 Applications, Extensions and Corollaries

4.1 The Local Hamiltonian Problem

Hamiltonian complexity theory has spawned a whole host of literature and research,
from hardness proofs [OT05; Aha+09; BCO17; BP17; Bra11; BBT06; Sch11; KKR06;
HNN13; GY16], efficient algorithms [BG16; Ara+15; Ara+13; LVV15], modified
proposals on encoding computation into the ground state of a local Hamiltonian [BT14;
CLN18; BC18; UHB17], to suggestions on how to perform quantum computation
with a Hamiltonian [WL15; NW08; Nag12], or simulation and universality [CMP17;
PM17; CM14; Chi+10], just to name a few. In order to satisfy the task for physically
realistic models—typically translational invariance and low local dimension—it is often
necessary in these constructions to break down many-body terms into two-body terms.
The traditional method is to use perturbation gadgets, which, as discussed extensively,
introduces energy scales that scale both in the required absolute error, as well as in the
interaction range.
Can we apply our methods to improve upon one of the existing results? In the

following subsections we will pick a representative problem of each class and discuss
the respective implications.
The Local Hamiltonian problem is the complexity-theoretic formalization of the

question of approximating the ground state energy of a local Hamiltonian [KSV02],
which is a natural question that arises in physics. It is the quantum analogue of classical
boolean satisfiability problems such as 3-sat: while the latter asks for an assignment to
boolean variables that render a logic statement true, Local Hamiltonian asks how
well a quantum state can satisfy local constraints (given by the local interaction terms
of some local Hamiltonian H =

∑N
i=1 hi). Kitaev proved that this problem is complete

for the complexity class QMA, by a construction first introduced by Feynman [Fey85].
Completeness for QMA implies that on a quantum computer one can verify a solution
efficiently within poly-time and with success probability ≥ 2/3. Just like NP, QMA
makes no claims about obtaining said solution in first place.

To be precise about all the parameters involved, we give the formal definition of Local
Hamiltonian, as well as the complexity classes QMA, QMAEXP, and BQEXPSPACE,
for which we will prove hardness results of variants of the Local Hamiltonian problem
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in the following; for a brief but detailed reference of complexity-theoretic terminology,
as well as the notion of Turing machines and quantum cirucuits, we refer the reader to
[Wat12], in which the following definitions can also be found.

Definition 13 (Local Hamiltonian).
Input: k-local Hamiltonian H =

∑N
k=1 hi on (Cd)⊗n, N = poly n, ‖hi ‖ = poly n ∀i.

Two real numbers α, β with β − α ≥ 1/poly n.
Promise: The ground state energy of H satisfies either λmin(H) ≥ β, or λmin(H) ≤ α.
Output: YES iff λmin(H) ≤ α.

Note that while definition 13 does not allow local terms to have exponentially large
norm, it does allow exponentially small norms; yet not more as the bit complexity of the
matrix entries—which comprise the input to the Local Hamiltonian problem—have
to be bounded by a polynomial.

Definition 14 (Promise Problem). Let Σ be a finite set, called alphabet. A promise
problem is a set A ⊆ Σ∗—where the ∗ denotes the Kleene star, i.e. strings of symbols of Σ
of length ≥ 0—such that A = AYES Û∪ANO, called YES- and NO-instances, respectively.

In the following, we will always assume that Σ = {0,1}, and we identify |x〉 :=
|x0x1 · · · xn−1〉 ∈ (C

2)⊗n for some instance x ∈ A, |x | = n.

Definition 15 (BQP and BQEXP). If there exists a polynomial-time terminating Turing
machine which for all n ∈ N, on input 1n, writes out the description of a quantum circuit
Qn, we call the family Q = {Qn}n∈N polynomial-time generated, or polynomial-time
uniform. A promise problem A is in BQP(a, b) for functions a, b : N −→ [0,1] if
there exists a polynomial-time uniform quantum circuit family Q, such that Qn acts
on an n qubit input |x〉, x ∈ A with |x | = n and has a single measured output qubit
measured either in state |0〉 or |1〉, where the latter signifies “accept”, which we write
Qn(|x〉) = 1. The circuit family satisfies

1. Pr(Qn(|x〉) = 1) ≥ a(n) if x ∈ AYES, or otherwise

2. Pr(Qn(|x〉) = 1) ≤ b(n) if x ∈ ANO.

By convention BQP = BQP(2/3,1/3). BQEXP is defined analogously, replacing
polynomial time with exponential time (strictly speaking O(exp(nc))-time, for any
constant c ≥ 0) throughout.
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Definition 16 (QMA and QMAEXP). A promise problem A is in QMAp(a, b) if for
the same setup as in definition 15, Qn acts on an input of size n + p(n) for some
p(n) = poly n and a single output qubit, such that

1. ∀x ∈ AYES ∃ |ψ〉 ∈ (C
2)⊗p(n) : Pr(Qn(|x〉 , |ψ〉) = 1) ≥ a(n), and

2. ∀x ∈ ANO ∀ |ψ〉 ∈ (C
2)⊗p(n) : Pr(Qn(|x〉 , |ψ〉) = 1) ≤ b(n).

We set QMA =
⋃

p(n)=poly n QMAp(2/3,1/3). The circuit family Qn is also called
verifier (which itself is a BQP circuit with an extra unconstrained input), and the
quantum state |ψ〉 a witness for the instance; as in definition 15, we define QMAEXP in
a similar fashion, replacing the BQP verifier with a BQEXP one.

We note that one can amplify the acceptance and rejection probabilities of 2/3 and
1/3 in definitions 15 and 16 such that BQP = BQP(1 − 2−q,2−q), for any q(n) = poly n

in the input size n [Wat12, Prop. 3]. StoqMA is defined as QMA, but for a classical
probabilistic boolean circuit instead of a quantum circuit (i.e. a BPP verifier), and if we
remove randomness completely we end up with the complexity classes P and NP, of
which BQP and QMA are the natural quantum analogues.

Instead of bounding the computational runtime, one can in a similar fashion bound
the required space; yet instead of uniform families of quantum circuits a hybrid model
of a classical Turing machine which can perform quantum operations on a separate
tape of qubits is a more natural notion; the space requirements for such a quantum
Turing machine is defined by how much classical and quantum tape the machine ingests
during a computation; we again refer the reader to [Wat12, Sec. VII.2] for an extended
introduction.

Definition 17 (BQPSPACEandBQEXPSPACE). Apromise problem A is inBQPSPACE
if there exists a quantum Turing machine with poly-bounded space requirement, accept-
ing YES instances with probability ≥ 2/3, and NO instances with probability ≤ 1/3.
BQEXPSPACE is defined analogously.

What might come as a surprise is that, in contrast to the amplification statement
for BQP—which limits how close to 1/2 acceptance and rejection probabilities may
lie—BQPSPACE=PQPSPACE, defined with > 1/2 and ≤ 1/2 acceptance and rejection
probabilities. Even more surprisingly, BQPSPACE=PSPACE [Wat03]—i.e. classical
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Figure 1: Triangular lattice, and stacked triangular lattice, used in theorems 18 and 19,
respectively. The blue line indicates a 2-local interaction between spins in the same triangular
lattice layer; the red line a 3-local interaction emerging from the extra coupling between two
lattice layers.

computers (without access to randomness) are as powerful as quantum computers,
given the only restriction is placed on how much space each machine is allowed to
demand.

The Local Hamiltonian problem as defined in definition 13 is known to be QMA-
complete [KSV02]; and as mentioned, variants of this result have been proven which
impose ever more restrictions onto the types of Hamiltonians for which the same
result holds. For instance, for a promise gap (i.e. the difference β − α in definition 13)
which closes as ∝ 1/exp n, the Local Hamiltonian problem is known to be PSPACE-
complete [FL16]; this is shown by encoding a variant of a QMA-hard problem with
an acceptance and rejection probability > 1/2 and ≤ 1/2, respectively, matching the
probabilistic bounds in the definition of BQPSPACE. Another variant is for the case
of translationally-invariant local Hamiltonians for which the Local Hamiltonian
problem is QMAEXP-complete [GI09]: this is due to the fact that the specification of an
instance has bit complexity |n| in the system’s size n ∈ N—since this is the only free
variable in a translationally-invariant system that changes from instance to instance. To
still obtain a polynomially-closing promise gap we need to allow the verifier circuit to
run for an exponential time (cf. [BCO17, Sec. 3.4]).
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Returning from this digression, we now wish to analyse whether we can improve
upon any of these best-known results in some aspect. To this end, we will focus on a
concrete example, namely Piddock andMontanaro’s proof that the Local Hamiltonian
problem is QMA-complete, even with antiferromagnetic interactions on a triangular
lattice [PM17].

Theorem 18 (Piddock andMontanaro [PM17, Th. 4]). Let (V,E) be a triangular lattice
of |V | = n vertices, as shown in fig. 1. Let α, β and γ such that α+β, β+γ,and γ+α ≥ 0,
and not α = β = γ. Then there exists a family of real positive numbers {re}e∈E ,
re = poly |V |, such that the Local Hamiltonian problem for the family of Hamiltonians
(indexed by the lattice’s size n)

H :=
∑
e∈E

he where he := re(ασxσx + βσyσy + γσzσz), (30)

is QMA-complete.

Our goal is to employ theorem 12 to remove the explicit variation in coupling strength
in theorem 18 given by the re = poly n at every lattice edge for a triangular lattice on
n vertices, and prove a variant of the result with a scaling limited to ∝ n2+δ , for an
arbitrarily small δ > 0.

Theorem 19. Let Λ = (V,E) be a triangular lattice as shown in with |V | = n vertices,
as shown in fig. 1, and let δ′ > 0. Then for n′ ∈ N, stacks of the lattice are given by
Λ′ = Λ�Λ2, where Λ2 is a path graph of length n′, and � denoting the Cartesian
graph product. The Local Hamiltonian problem is QMA-complete with interactions
on a graph Λ′, even when restricted to the following type of interactions:

1. 3-local interactions of the form h ⊗ |0〉〈0|, where h is given in eq. (30) but such
that ‖h‖ = 1; h only acts within a lattice layer Λ, and |0〉〈0| is a one-local
projector onto state |0〉 of an adjacent qubit in the next higher layer;

2. q are diagonal geometrically 3-local terms from eq. (7), acting on the vertical
edges within Λ′, such that ‖q‖ = O(sδ′)), where s = nN ′ is the number of
vertices in Λ′.

Proof. LetH := (C2)⊗Λ and similarly H′ be the associated Hilbert space for qubits
located at each of Λ and Λ′’s vertices, respectively. We start with a QMA-complete
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2-local Hamiltonian H0 =
∑

e∈E he onH given by [PM17, Th. 4]; then by construction
all interactions on the triangular edges he satisfy eq. (30), and such that

max
i, j∈E
{‖hi ‖/‖hj ‖} = poly n and r(n) := max

i∈E
{‖hi ‖} = poly n. (31)

By theorem 12, we thus know that there exists a 3-local Hamiltonian H′ onH ⊗ H2

with the following properties:

1. H2 = (C
3)N

′, N ′ = poly n.

2. H′ approximates H0 within its low-energy subspace, according to definition
definition 11, to relative precision O(N−δ); this means

Π−H′Π− = H0 |Ψ0〉〈Ψ0 | + O
(
r(n)
Nδ

)
,

where Π− are projectors onto the lower part of the spectrum of H′, for some state
|Ψ0〉 defined on an ancilliary spaceH2, and ε = N−δ .

3. H′ =
∑N ′

i=1 qi is 2-local, where 1 ≤ ‖qi ‖ ≤ n2+δ .

To determine δ, we note that by definition 13 there is a promise gap p(n) := β(n)−α(n) =
1/poly n associated to H0. In order to retain QMA-hardness of H′, we need to choose
δ = δ(n) such that r(n)/Nδ < p(n); we will therefore increase N ′ (i.e. the number of
triangular lattice stacks) by an at most polynomial factor—uncoupled to the rest of the
system—to ensure ‖q‖ = O(nN ′).
What is left to show is that the H(i)clock Hamiltonians can be chosen such that they

feature 3-local qubit interactions, instead of 2-local qutrit ones. This is straightforward:
since the maximum norm ratios we need to approximate are r(n) = poly n, and the
overlap in lemma 8 is exponentially small in T , it suffices to have T = O(log poly n). To
construct Hb in eq. (4) with 3-local interactions onH (i)2 = (C

2)⊗MT (for some constant
M as explained at the end of section 2.3), we can identify

|t〉 = |11 . . . 1︸  ︷︷  ︸
t times

0 . . . 00〉

where {|0〉 , |1〉} are a basis forC2; the identification implies that the terms |t〉〈t + 1| in
Hb are three-local at most, as is easily verified; similarly, the bonus term |1〉〈1| can be
identified with a 1-local term |0〉〈0| acting on the second qubit onH2.
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Since every H(i)clock has an individual Ti—tuned to yield an amplitude |
〈
Ψ0,i

��Ti〉 |2 ∝
ri—we need to offset the 3-local terms in H(i)clock such that |Ti〉〈Ti | aligns with the
triangular layer Λ on which H0 is defined. As we are free to choose said layer—as
H′ does not have to be translationally invariant in this construction—the claim of the
theorem follows.

We remark that instead of varying the offset of H(i)clock for each interaction hi in H0

individually, we can align them all uniformly with a fixed Ti = T for all i ∈ {1, . . . ,n}.
To see this, note that by corollary 5, the coupling strength induced by Hb goes
asymptotically like ∝ b(b + 2)/(b + 1)2T . Any pair of biases b, b′ for fixed T thus
allows a ratio of

R(b, b′) =
b(b + 2)

b′(b′ + 2)

(
b′ + 1
b + 1

)2T
. (32)

We have R(1,1) = 1, and R(b,1) scales exponentially in T , so the claim follows as in
lemma 8, where we note that the overall effective Hamiltonian will be rescaled by only a
polynomial factor, keeping the conditions on the promise gap in definition 13 satisfied.

As a short digression for the familiar reader, we emphasize that this result is weaker
than it seems: QMA-hardness constructions, which are based on embedding a QMA-
verifier computation into the ground state of a local Hamiltonian, are commonly given
with a promise gap that scales as ∝ 1/τ2 in the runtime τ of this embedded computation
(see [BC18]; we further point out the connection to our bound state Hamiltonian in
section 2.3). For QMA, the runtime is thus τ = poly n for a system size n. In order to
lift the promise gap arbitrarily close to constant in the system size, it always suffices
to add a polynomially-sized non-interacting ancilliary space of size n′ = poly n; if we
express τ in n′, we can thus get a runtime scaling τ = n′1/a, for some arbitrarily large
a > 0, and the promise gap thus similarly follows Ω(n′−2/a).
In essence, this is an artefact of Karp-reductions allowing a polynomial overhead—

which work either way, i.e. one can shrink the input to a problem by a polynomial,
reducing the runtime of a QMA-hard construction in whatever parameter one chose to
express the input size with, while maintaining the complexity-theoretic implications.
However, while the promise gap can be made to close like the Ω(n′−2/a) for arbitrarily
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large but constant a, constant relative promise gap (relative in the system size) would
imply a quantum analogue of the classical PCP theorem.4

Yet instead of the necessity feature multiple, potentially wildly varying coupling
strengths, theorem 19 shows that it suffices to have a single additional energy scale
∝ n′1/a, instead of multiple ones; all other interactions are O(1), independent of the
system size.
Theorem 19 and eq. (32) are interesting for another reason. The reader might have

noticed by now that our construction allows us to amplify a constant-range b ∈ [1,3] to
an energy scale that varies like bf (n), for f being a polynomial or exponential in the
system size n. So what if we turn this problem around, and drastically limit the range
for the biases b, say, to an interval b ∈ (1,1 + χ), for χ very small? We will address
this question in the next section.

4.2 Noise Amplification and Translational Invariance

As outlined at the end of the previous section, we want to restrict the biases present
in H(i)clock to satisfy bi ∈ (1,1 + χ), for χ−1 � 1 and all i ∈ {1, . . . ,N}. What range of
effective coupling strengths for a target Hamiltonian H0 =

∑N
i=1 hi can emerge from

these subtly-varying one-local terms inside H(i)clock? We collect this result in the next
lemma.

Lemma 20. Let the setup be as in corollary 6, with Hb defined as in eq. (4). Let
χ : N −→ (1,∞) and T : N −→ N. Denote with R(b,1) the relative achievable scaling

4PCP stands for “probabilistically checkable proof”, and it sais that any NP-hard problem can be verified
to arbitrary precision with only constant query complexity. As explained in the introduction, the
local Hamiltonian problem is the quantum analogue of 3-sat; a constant relative promise gap would
thus imply a similar argument about a constant number of constraint violations sufficing to verify a
QMA-hard problem.
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T = Θ(·) na an

χ = Θ(·) n−b b−n n−b b−n

R(1 + χ,1) = Ω(·)


2−T χ if a > b

1 otherwise
1 2−T χ


2−T χ if a > b

1 otherwise

Table 2: Overview over asymptotic scaling of the achievable effective coupling ratio R(b,1) for
b = 1 + χ defined in eq. (32), as proven in lemma 20. The first two rows show the asymptotic
behaviour of T and χ in the system size n—either power-law or exponential for a, b ≥ 1; the
last row shows the resulting asymptotic scaling of R(1 + χ,1). All Landau symbols are taken
with respect to the limit n −→ ∞.

ratio for some bias b ≥ 1 as defined in eq. (32). Then the asymptotic ratio with respect
to n −→ ∞ is given by R(1 + χ,1) = O( f (T, χ)) where

f (T, χ) =



2−T χ
T = Θ(na) ∧ χ = Θ(n−b) ∧ a > b ≥ 1 or
T = Θ(an) ∧ χ = Θ(b−n) ∧ a > b ≥ 1 or
T = Θ(an) ∧ χ = Θ(n−b),

1
T = Θ(na) ∧ χ = Θ(n−b) ∧ b ≥ a ≥ 1 or
T = Θ(an) ∧ χ = Θ(b−n) ∧ b ≥ a ≥ 1 or
T = Θ(na) ∧ χ = Θ(b−n).

Proof. We first note

R(1 + χ,1) =
b(b + 2)

3

(
2

(b + 1)

)2T
=
(1 + χ)(3 + χ)

3

(
2

2 + χ

)2T
.

If both T and χ are power-laws, i.e. T = Θ(na), χ = Θ(n−b) for a > b > 1, then an
explicit calculation shows R(1 + χ,1) = O(2−na−b

) = O(2−T χ). The other cases follow
in a similar fashion.

An overview over the asymptotic scalings in lemma 20 can be found in table 2. One
immediate corollary is the following.

Corollary 21. Take any QMA or QMAEXP-hard Local Hamiltonian problem H0 =∑N
i=1 hi (e.g. the construction used to prove theorem 19) on an n-partite Hilbert space
H = (Cd)⊗n with N = poly n local terms, and such thatmaxi, j∈{1,...,N }{‖hi ‖/‖hj ‖} =
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O(exp(poly n)). Let δ > 0. Then for any χ = 1/poly n, there exists a Local Hamiltonian
variant H′ =

∑N ′

i=1 qi on an n′-partite Hilbert space H ′ = (Cd′)⊗n
′ with n′ = poly n,

such that

1. each local term qi has norm ‖qi ‖ ∈ {1} ∪ [n′δ, (1 + χ)n′δ],

2. the variant has a promise gap 1/poly n′,

3. it is QMA (QMAEXP) hard if H0 is QMA (QMAEXP) hard, and

4. if the original variant was 2-local, then d ′ = max{3, d}; otherwise d ′ = d.

Proof. We apply theorem 12, but restrict the bi in H(i)clock to lie within the interval
[1,1 + χ] for χ = 1/poly n, for which by lemma 20 it suffices to choose T = poly n

in such a way that the polynomial degrees of T and χ−1 satisfy deg(T) > deg(χ−1).
By the same argument as in theorem 19 we can further restrict the scaling constant C

present in eq. (12) to scale as n′δ , whereby the system is padded to size n′ = poly n.
Finally, by the definition of definition 13, all ‖hi ‖ = poly n; the resulting scaling of the
simulated low-energy subspace Π−H′Π− in definition 11 is thus a polynomial, which
means that the variant retains a 1/poly n′ promise gap. The first three claims follow.
The last claim follows from theorem 12 in case H0 was 2-local; otherwise (which means
the case k-local for k > 2, as a 1-local Hamiltonian cannot be QMA or QMAEXP-hard)
a similar construction as in the proof of theorem 19 for H(i)clock can be used. The last
claim follows.

We emphasize that while the Local Hamiltonian problem with an exponentially
small promise gap is already PSPACE-complete [FL16], the small promise gap in the
reduction does not stem from an exponentially small penalty term, but because of the
embedding of a PreciseQMA-hard computation. It is thus doubtful whether there is an
analogue of corollary 21 that holds for the PSPACE case.
We know there exist QMA-hard Local Hamiltonian constructions with terms

that all have non-varying O(1) weights in the system size, albeit few of them are
translationally-invariant; and if they are, the local dimension is large, or the construction
is contrived [GI09; BCO17]. Corollary 21 is interesting for this precise reason: given a
Hamiltonian with wildly-varying interaction strengths, there exists another Hamiltonian
where each local term has almost zero variation in strength from site to site (apart
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from the two energy scales; but they apply uniformly throughout the system), and with
the same hardness properties. We thus conjecture that for any construction where
translational invariance is hard to obtain, “almost” translational invariant models can
be constructed from them, with compatible gap scaling. This, of course, comes at the
expense of changing the interaction set to allow for Hb from eq. (4) to be included,
and modifying the interaction graph—if only by incrementing the spatial interaction
topology by at most one dimension, as e.g. done in theorem 19 from a two- to a
three-dimensional many-body system.

As a final remark: in essence, one could achieve a similar effect as in corollary 21 by
writing a Hamiltonian

∑N
i=1 hi −

∑N
i=1(1 + χi)hi . This would be an unfair comparison

though: if we expand such a Hamiltonian in a Pauli basis, there will be small constants
of O(χ) � 1; the large relative energy variations of order one are relevant for the
complexity characteristics. Corollary 21, on the other hand, only introduces a single,
uniform energy scale, with negligible relative strength variations, even when expressed
in the same Pauli basis.

4.3 Hamiltonians with Hybrid Geared Asymptotics

One curious feature of our construction is that it allows scaling the interaction strength
of a coupling with a spatial dimension of the system at hand. We phrase two theorems.

Theorem 22. Let δ > 0. There exists a translationally-invariant 2-local Hamiltonian
HL,M =

∑
i hi on a square lattice of size L × M with local Hilbert space H and

with open boundary conditions, for which we can define one-parameter families of
Hamiltonians SL := {HL,M(L)} and a polynomial p(L), such that the following holds.

1. All 1- and 2-local terms either have norm 1, or norm Θ(L2+δ).

2. The local spin dimension is ≤ 150.

3. If M(L) = O(log(log(L))), the Local Hamiltonian problem for SL with promise
gap 1/p(L) is QMAEXP-complete.

4. If M(L) = Ω(log(L)), the Local Hamiltonian problem for SL is trivial for any
1/poly promise gap.

35



Proof. We take the QMAEXP-complete spin chain variant from [BCO17] with local
interaction term w of unit norm, which has local dimension dimH ≤ 75, acting on
neighbouring spin pairs. We extend the many-body system to form a square lattice of
side length L × M , with qudits of dimension 2 dimH located at the lattice vertices; we
identify this local Hilbert space with C2 ⊗ H , which allows us to encode an extra bit
of information locally at each lattice vertex.

First we use the open boundary trick from [GI09] to partition the lattice to a signature
of 0’s and 1’s, such that on one of the edges of length L—which we call a column
on the lattice—all spins have flag state 0, and all other sites across the lattice are in
state 1. All eigenstates of the resulting Hamiltonian with a different signature will have
eigenvalue ≥ 1. We modify w to only act non-trivially if there is a zero flag below,
i.e. via |0〉〈0| ⊗ w. Similarly, we define a translationally-invariant unary biased clock
Hamiltonian horizontally, i.e. by setting |1〉〈1| ⊗Hb for b = 2; note that for any specific
column index, all the latter terms commute, and that the dimension ofH (dimH ≥ 42
by ??Th. 60]Bausch2016) is more than enough to implement a binary counter using
only 2-local terms; this includes a locally-identifiable final clock state T on which we
wish to condition in due course.

Now, w contains a so-called output penalty term, which is used to inflict an energy
penalty on invalid computation outcomes; this is what pushes the ground state energy
of the history state Hamiltonian up by a 1/poly amount in case of an embedded
NO-instance. We couple this penalty term to |T〉〈T | in the biased clock Hamiltonian’s
space; this term is 1-local, so we do not increase the overall Hamiltonian’s locality. All
other terms will be un-coupled.
Claim 1 and 2 follow by construction. The consequence of scaling the system in

dimension M is to reduce the effect of the output penalty; by lemma 4 and for b = 2, the
magnitude of the scaling will be ∝ 1/2T . Since T ∝ 2M , the suppression of the error
term is doubly-exponential in M . It is clear that if M = O(log(log(L)), the penalty term
is only polynomially-suppressed, and the problem remains QMA hard—in particular,
there exists a polynomial p such that with a promise gap closing as 1/p(n), the YES and
NO-instances of the embedded computation lie above resp. below the corresponding
thresholds.
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On the other hand, for any polynomially-closing promise gap an energy difference of
O(1/exp) will essentially be invisible; for L = Ω(log L), all embedded computational
instances—irrespective of their outputs—are thus jointly either YES or NO instances
in the Local Hamiltonian problem. The claim follows.

It is clear that variants of this effect are easily constructed, by varying the clock, or
by changing which terms couple to its final state. We emphasize that the threshold
O(log(log(L))) is, again, an arbitrary choice, and we can e.g. set it at O(log(L)),
implying that different directions of geared limits have distinct complexity-theoretic
behaviour.

Corollary 23. Theorem 22 holds also for a choice of 1/exp promise gap: the distinction
then is trivial vs. BQEXPSPACE-complete, for geared limits M(L) = O(log L) vs
M(L) = Ω(L).

Proof. Follows from [Fefferman2016a].

5 Conclusion

We also emphasize that eq. (4) is stoquastic—i.e. it has non-positive off-diagonal matrix
entries. In turn, this implies that
With the construction presented in this work we show that one can significantly

reduce the unphysically-large energy variations present in various models used in
Hamiltonian complexity theory. While it does not completely remove the necessity
of strong interactions, it decouples the scaling from the range of the interactions and
precision to be simulated; furthermore, the approximation error introduced is relative,
meaning that any requirements on an error bound present in a target Hamiltonian
remain intact. This does not come for free: we need to add ancilliary qubits, potentially
increase the locality and/or the local dimension of the system. While one could certainly
claim that it is arguable which model is more physical, in the end, our work draws the
tradeoff between locality, local dimension, varying interaction strenght and the overall
norm of an operator from a new angle.

Another shift in perspective is given with regards to translational invariance. While
most if not all many-body systems in the real world have translationally-invariant interac-
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tions, many complexity-theoretic models do not. Modfiying them to be translationally-
invariant often requires an unphysically large local dimension. With our construction,
it is conceivable that non-translationally-invariant systems can be lifted to “almost”
invariant models. In this way, complex systems can be arbitrarily close to true transla-
tional invariance—this becomes particularly interesting if the latter are deemed easy to
solve.
There’s a list of open problems we wish to address in future work.

1. In the commuting case, perturbation theory can be applied in parallel without
the requirement of a coupling constant that scales with the system size; this also
applies to our findings. The Local Hamiltonian problem is not yet completely
solved for the case of commuting terms, although there is progress [Sch11; BV03;
AE11]. While our path clock in section 2.3 is not commuting, in [BT14] the
authors present a commuting version, which could be similarly biased as ours to
present a sufficient falloff. Can one construct a commuting variant of perturbation
gadgets, applicable to the commuting Local Hamiltonian problem?

2. What about using e.g. the Schrieffer-Wolff transform instead of a Feynman-Dyson
series? In [CK17, Sec. 5], the authors have analyzed the tradeoff between the
two constructions, and found the scaling to be favourable for the Schrieffer-Wolff
expansion. And can we combine our result with the numerical optimizations of
the necessary scaling as in [CK17]?

3. Including the tiling Hamiltonian to cancel out cross terms renders eq. (27)
particularly simple; indeed, if we replaced η with η−1, Catalan numbers emerge
in the sum, with an emerging link to Motzkin walks [MS16]. Can we learn
something from this, and e.g. add eq. (27) up exactly?
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