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Hydrodynamics of Cyclogenesis from Numerical
Simulations

Veeraraghavan Kannan

Cyclogenesis is referred to as a transition of low-pressure disturbances on the
tropical ocean into a more symmetric warm-core cyclone. This has been studied in
detail for the past 100 years. However, no laboratory analogue for tropical cyclones has
been discovered to date. Thus, the fundamental understanding of cyclogenesis remains
challenging and limited as one has to rely on satellite imagery, which has disadvantages.
This calls for further research to develop a simple model that can be replicated in
the laboratory to better understand cyclogenesis. The main advantage of using a
simple model is that the birth of a tropical cyclone from a quiescent environment
can be continuously tracked, and the various hydrodynamic processes involved in its
genesis can be better understood in a confined domain. This understanding can help
in developing better forecasting models.

The rotating Rayleigh-Benard convection (RRBC) model has been very effective
and widely used in numerical simulations and by experimentalists to understand
complex geophysical flows. Therefore in this work, the same RRBC model is used
to carry out 3D numerical experiments in a shallow cylindrical domain filled with
Boussinesq fluid. In atmospheric flows, the large eddies are responsible for turbulent
transport since they contain most of the turbulent kinetic energy. Thus, the Large
Eddy Simulation (LES) technique that explicitly resolves the larger eddies and models
the effects of smaller eddies is appropriate for atmospheric flows and is used in this work
to simulate a tropical cyclone-like vortex. This thesis attempts to tackle the problem
of cyclogenesis purely based on hydrodynamics, neglecting the effects of stratification,
thermodynamics and external wind shear. Therefore, the resulting large-scale vortex
simulated is referred to as a tropical cyclone-like vortex.

This thesis explores the capability of the RRBC model in simulating tropical
cyclone-like vortex and understanding cyclogenesis in detail. The first part of the
thesis focuses on fixing suitable boundary conditions and finding the parameter space
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necessary for forming a tropical cyclone-like vortex. This is because a tropical cyclone-
like vortex has not been observed in a 3D RRBC model. This is a continuation of
the previous studies, which focussed on simulating tropical cyclone-like vortex with
axisymmetric approximation. The numerical experiments are then performed for a
wide parameter range spanning several orders of magnitude. The simulated vortex is
compared quantitatively with an actual tropical cyclone. It was found that the distinct
structure of the vortex, namely the eye, eyewall and spiral bands, as well as the force
balance of the simulated tropical cyclone-like vortex, is in good agreement with an
actual tropical cyclone.

In the second part of the thesis, the data obtained from the simulation are analysed
to understand the cyclogenesis in the simple model. The timescale for the cyclogenesis
phase is proposed by taking advantage of simulating the vortex from a quiescent initial
state. The cyclogenesis phase is the time difference between the start of the spinup
of the cyclonic vortex and the vortex is fully evolved in the flow. The time for the
start of the spinup of the cyclonic vortex is directly proportional to Ω−1√Ret, where
Ω is the background rotation rate and Ret is the turbulent Reynolds number. The
vortex fully evolves at Ekman spinup time, proportional to Ω−1/

√
Et, where Et is

the turbulent Ekman number. During this period, unique spatial features appear
in the large-scale vortex, namely, the eye, eyewall and spiral bands, and the vortex
simultaneously becomes more intense. The proposed cyclogenesis timescale in the
simple model agrees well with the real tropical cyclone track data from the United
States Military’s Joint Typhoon Warning Centre (JTWC) database. In addition, the
simulated data are used to understand the energy exchange between the large-scale
symmetric vortex and the asymmetric spiral bands in a tropical cyclone-like vortex by
looking at the energy budget. Finally, the reason behind the formation and sustenance
of tropical cyclone-like vortex in the RRBC setup is studied. The spontaneous onset of
barotropic instability during the start of the spinup of the cyclonic vortex is seen as a
plausible reason for the formation of a tropical cyclone-like vortex in the computational
model used for this work.
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Chapter 1

Introduction

1.1 Motivation

A tropical cyclone is a collective term used by meteorologists to describe a rotating,
organized system of clouds and thunderstorms originating over tropical or subtropical
waters with closed low-level circulation (Emanuel, 2018). Low-level circulation is a
weak cyclonic circulation that develops around a low-pressure region. This system is
classified as a hurricane, typhoon, or cyclone, depending on the geographical origin of
the storm. A typical tropical cyclone is shown in Fig. 1.1 and its anatomy is shown in
Fig. 1.2 schematically. Tropical cyclones develop by drawing energy from the ocean
surface. They can only form when the sea surface temperature is above 26◦C, and
their intensity is sensitive to the temperature at the sea surface (Riehl, 1950). The
higher the temperature, the larger its intensity.

Tropical cyclones (TCs) cause widespread damage in specific regions due to high
winds and flooding. Studies have shown that in the aftermath of severe storms, there
is a 25% increase in the onset of mental depression for the survivors after the storm
event (Neria & Shultz, 2012). Apart from the health effect, there is also a significant
economic impact. A study by the International Monetary Fund (IMF) showed that
the destruction caused by the storms cost countries around the world about 100 billion
US dollars per year from 2000 to 2010 (Sebastian et al., 2017). In addition to the
socio-economic impacts of a tropical cyclone, there are also environmental impacts.
A tropical cyclone is always accompanied by strong winds and flooding, which can
uproot trees and plants and over-saturate the soil, thereby affecting the local natural
ecosystem (Ibanez et al., 2019).

Tropical cyclones usually help maintain the global heat balance by moving warm
tropical air from the equator towards the poles. However, due to rapid climate change
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Fig. 1.1 Hurricane Hector was captured from the International Space Station nearly
250 miles above the Pacific Ocean just south of the Hawaiian island chain (Expedition
56 Crew NASA, 2018).

Fig. 1.2 Anatomy of a typical tropical cyclone (National Weather Service, 2019).
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occurring around the world, there is an increase in the sea level, which can influence
the behaviour of tropical cyclones (Knutson et al., 2010, 2019, 2020). A summary of
modelled TC projections for a 2°C anthropogenic global warming is shown in Fig. 1.3.
It is expected that the tropical cyclone’s frequency and intensity will increase due to
global warming. Therefore, improving the cyclone forecasting model is required to
minimise its impact on the economy and living beings.

Fig. 1.3 Summary of TC projections for a 2°C global anthropogenic warming (Knutson
et al., 2020).

Tropical cyclones are usually forecasted using metrological data with the help
of numerical models. They are of three types, namely, dynamic, statistical, and
combined statistical-dynamical models. The dynamic model is a global model that
solves the governing equations for the atmospheric flow on the global scale (Holland,
1993). Some widely used global dynamic models are the United Kingdom Met Office
Model (UKMET), Weather Research and Forecasting (WRF) model, Geophysical
Fluid Dynamics Laboratory model (GFDL), and European Center for Medium-Range
Weather Forecasting (ECMWF) (Holland, 1993). Dynamical models utilise powerful
supercomputers and metrological data to calculate the subsequent development of
tropical cyclones. The statistical model predicts the cyclone behaviour by extrapolating
the previously available datasets; since this model does not solve the mathematical
equations at a global scale, they are faster than the dynamic model (Holland, 1993).
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There are also hybrid statistical/dynamical models that combine dynamic and statistical
model functions and features. The three models specified here are mainly used
to forecast storm tracks, the storm’s intensity, coastal flood, and rainfall (Roy &
Kovordányi, 2012). These forecasting models require various inputs such as topography,
bottom friction, tidal level characteristics, and meteorological data.

There are two significant issues in forecasting tropical cyclones: predicting the
storm track and its intensity. Storm track forecasts have significantly improved in the
past 25 years, but progress is comparatively less for intensity forecasting (Montgomery
& Smith, 2017). The improvement is because track forecasting depends on large-scale
atmospheric flows, included predominantly in almost all global forecasting models. On
the other hand, intensity forecasting depends on internal variability (within tropical
cyclones) and air-sea interaction. The intensity appears to depend on processes of wide-
ranging scales spanning many orders of magnitude. Improving the cyclone prediction
model involves a better understanding of cyclogenesis and the complex processes
involved in sustaining a mature cyclone.

Understanding and predicting the genesis of a tropical cyclone is a challenging task.
There are several intermediary stages involved in the formation of tropical cyclones.
These stages are, as summarised in many textbooks for example, see Anthes (2016),

1. Tropical Disturbance
The formation of clouds and precipitation combined with surface winds is called a
tropical disturbance. These disturbances create an area of low-pressure circulation
without any presence of a closed isobar. The disturbance is usually formed
over a large area of warm water, which facilitates the formation of clouds and
precipitation through organized convection. In addition, the radial temperature
difference between warm ocean and cold surrounding set up surface wind. In
some cases, the reminiscence of tropical cyclones that travelled through the region
for a few days can also contribute to the tropical disturbance. This disturbance
in the atmosphere above the ocean must be sustained for more than 24 hours,
leading to the formation of low-pressure circulation. Typhoon Bopha, which has
a basic round shape in Fig. 1.4, is a tropical disturbance yet to develop into a
depression system. Typically, the tropical disturbance has a size of about 100 to
200 km.

2. Tropical Depression
The tropical disturbance upgrades to a tropical depression when the sustained
wind speed is between 20 to 35 knots (10 to 18 m/s). In this stage, there is a
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closed circulation where at least one closed isobar is seen, accompanied by a
drop in pressure in the centre of the storm. The pressure drop will help create
subsidence in the storm, referred to as the “eye”, see Fig. 1.2. Once formed, the
eye will play a vital role in increasing the intensity of the storm at a later stage.
A thunderstorm also accompanies the low-pressure storm. In Fig. 1.4, typhoon
Maria is on the verge of forming a spiral structure and central eye. Therefore,
it can be inferred that the tropical disturbance has sustained to form a tropical
depression and is on the verge of developing into a tropical cyclone with its
unique spatial features. These depressions have a typical size of about 500 km.

3. Tropical Storm
In this stage, the maximum sustained winds ranging from 35 to 64 knots (18 to
33 m/s), and the pressure will drop even further at the storm’s centre, aiding in
the eye formation. The convection begins to concentrate in the vicinity of the
eye in the form of an annular ring. The rainfall resulting from the thunderstorm
begins to organize itself into distinct rain bands (see typhoon Saomai Fig. 1.4)
in the outer region of the storm due to intensified circulation.

4. Tropical Cyclone
A tropical storm becomes a tropical cyclone when the sustained wind speed
exceeds 64 knots (33 m/s). In this stage, the pressure drops, and the rotation
becomes intense. The rain bands start to rotate around the eye of the Storm.
The region of strongest winds near the eye is referred to as the “eyewall”, which
is the most destructive part of the tropical cyclone. In Fig. 1.4, typhoon Saomai
is seen to have developed into a tropical cyclone with an organized convection
pattern of about 1000 km in size.

The fundamental understanding of cyclogenesis is limited and further research is
still required to understand this better. Developing an improved theory for cyclogenesis,
which can predict this process using large-scale flow parameters, can help to improve
intensity forecasting. Since the large-scale parameters are inherently present in the
global forecasting models. The improved prediction model can help to minimise
damages and loss of life caused by the destructive forces of tropical cyclones.

1.2 Background on Cyclogenesis

As discussed in the previous section, cyclogenesis involves several intermediatory stages,
and developing a good understanding of it is challenging. There is no widespread
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Fig. 1.4 Stages of development of tropical cyclone (NASA, 2006).

consensus on the definition of this term in the literature, though very broadly, it is
referred to as a transition of the system from a disturbance often observed in the tropics
to a more symmetric warm-core cyclone with a low-pressure centre. One thing that is
accepted from the earliest studies of cyclogenesis is that tropical cyclones originate only
in the presence of some disturbance (Riehl, 1948). Bergeron (1954) attempts to explain
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why a finite-amplitude disturbance is required for the formation of the cyclone. It is
highlighted that groups of convective storms in the ocean are always accompanied by
cool, anticyclonic outflow near the surface. It stabilizes the atmosphere and prevents
the formation of the cyclone. Bergeron (1954) postulates that if the convective storms
occur over a sufficiently warm ocean (acts as disturbance), then the cooled outflow
is reheated on coming in contact with the warm ocean. This, in turn, initiates the
convection process and results in the formation of a tropical cyclone. When numerical
models are initialized using environments where the moist convection is statistically
equilibrated, a finite amplitude disturbance is required to initiate intensification by
wind-surface flux feedback, and the too weak disturbances decay (Rotunno & Emanuel,
1987, Emanuel, 1989, Dengler & Reeder, 1997). It is consistent with the observation
that an external disturbance must trigger the genesis.

Another necessary condition agreed upon in the literature for genesis is that the
potential intensity, a measure of the maximum wind in the system, must be sufficiently
large (Emanuel, 2018). This maximum wind speed strongly correlates with the ocean
surface temperature (Riehl, 1950). Palmen (1948) established that tropical cyclones
form only when the ocean surface temperature is larger than about 26◦ C, which
supports the conclusion of Riehl (1950). Gray (1968) showed that genesis occurs
only in environments characterized by small vertical shear of the horizontal wind and
also favours regions of relatively large, low-level cyclonic vorticity. Gray (1979) later
established a set of conditions that are necessary (but not sufficient) for the genesis.
Further to the two factors noted above, Gray (1979) identifies higher values of the
Coriolis parameter, relative humidity of the middle troposphere, ocean thermal energy,
and the difference between the equivalent potential temperatures at the surface and
500 hPa height favour the genesis process.

The early studies, such as that of Riehl (1948) and Bergeron (1954), argued whether
tropical cyclones arise from pre-existing disturbances near the surface, such as fronts,
or from disturbances in the upper troposphere. Later observations showed that there
are many routes to the genesis, including nearly classic baroclinic development (Bosart
& Bartlo, 1991), the interaction of easterly waves or other low-level disturbances with
upper troposphere tropical disturbance (Ramage, 1959, Sadler, 1976, Montgomery &
Farrell, 1993), and possibly, accumulation of energy from the wave into large-scale
diverging flows (Shapiro, 1977, Sobel & Bretherton, 1999).

Another theory for cyclogenesis is developed using the idea that patches of high
vorticity associated with individual convective systems can, under certain circumstances,
merge to form a more powerful emerging cyclone (simply called vortex merging).
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Fujiwhara (1921) proposed the idea that genesis involves the fusion of several small
vortices. This theory has been revived by conducting a series of numerical experiments
using idealized quasi-geostrophic, asymmetric balance, and shallow water primitive
equation model (Ritchie & Holland, 1993, Simpson et al., 1997, Montgomery & Enagonio,
1998, Möller & Montgomery, 1999, 2000, Montgomery et al., 2006), where it has been
shown that small-scale patches of vorticity (also known as hot towers) introduced
into the flow field with a larger-scale vortex have quickly become axisymmetric. The
small-scale vorticity patches feed their energy into the vortex scale flow. This suggests
that mesoscale convective systems that develop outside the eyewall may help intensify
the vortex.

The primary problem in the genesis is the transformation of an existing disturbance
in the environment into a system operating on the feedback between surface enthalpy
fluxes and surface wind. Any theory for the cyclogenesis must consider that such
transformations are relatively unusual and, in any event, only occur under the conditions
reviewed by Gray (1968). Gray (1968) identified six environmental properties upon
which genesis depends: the Coriolis parameter, low-level relative vorticity, shear of the
horizontal wind through the depth of the troposphere, relative humidity of the middle
troposphere, ocean thermal energy, and the difference between the temperatures at
the surface and at 500 hPa height. Bergeron (1954) concluded that, under normal
circumstances, convective downdrafts extinguish the tendency for the boundary layer
entropy to increase. This study also suggested that if the surface cyclone could be
made strong enough, by some means, the inward Ekman drift would overcome the
anticyclonic outflow, leading to positive feedback between surface enthalpy flux and
wind and transformation into a warm-core system. But it has become apparent
from a series of numerical experiments (Emanuel, 1989, 1995) and a field experiment
(Emanuel, 1994, Bister & Emanuel, 1997) that a necessary condition for the genesis
is the establishment of the order of a 100-km-wide column of nearly saturated air in
the system core. Any environmental influence that disrupts the formation of such a
saturated column will prevent the genesis and weaken any existing system. This has
been pointed out clearly by Simpson & Riehl (1958), the ventilation of low entropy
air in the middle troposphere through a nascent system will have this effect, which
explains why sometimes vertical shear tends to obstruct the genesis. In axisymmetric
models, establishing the order of 100-km-wide saturated column also appears to be
sufficient for genesis (Emanuel, 1995).

An important remaining question is how such a column is established and what
conditions are required to sustain it. Bister & Emanuel (1997) tried to address this
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question in an axisymmetric model with moisture and with an additional assumption
of an artificial “showerhead” (rain) in the middle troposphere. The evaporation of the
rain cooled and moistened the column spinning up a mesocyclone near the altitude of
the assumed showerhead. When the wind-induced by heat exchange on the sea surface
reaches sufficient strength, it forms a warm core cyclone in the pre-moistened column.
The observations by Davidson (1995a,b) of evolving cloud clusters and Hurricane
Guillermo observed in the eastern North Pacific in 1991 by Bister & Emanuel (1997)
suggest in these developments. The saturation was achieved by evaporation of rain
falling from clouds associated with the cumulus convection. The vital ingredient in the
genesis process is the downward advection of angular momentum in the evaporatively
driven downdraft. However, it is still unclear whether such a mechanism works in the
genesis. This suggests the need for more field and numerical experiments dedicated to
the problem of understanding the processes involved in cyclogenesis. Therefore, a lot
of dedicated research is required.

1.3 Aims and Objectives

In the previous section, it can be seen that the cyclogenesis problem is studied with
the help of field experiments, numerical models with complete moist physics, or
approximated dry convective models (like axisymmetric approximation, shallow water
equation, quasi-geostrophic approximation, etc.,). Even in numerical experiments,
most of the problems focussed on studying the transition of disturbance to the tropical
cyclone with a pre-defined disturbance (100 km wide column of saturated air in the
system). More focus was given to the effect of thermodynamics on cyclogenesis. In
this thesis, we try to to understand the hydrodnamics of cyclogenesis by considering
a simple rotating 3D Rayleigh-Benard convection (RRBC) setup with Boussinesq
approximation (Boussinesq, 1903). The RRBC setup has high relevance to geophysical
and astrophysical flows. It has been used in the past to study the mechanism behind
eye formation in a tropical cyclone-like vortex (Oruba et al., 2017) by conducting
laminar axisymmetric simulations. The upsweep of the bottom boundary layer by
strong poloidal flow was shown to form an eye and eyewall in axisymmetric RRBC of
Boussinesq fluid (Oruba et al., 2017, 2018) which was also suggested by Atkinson et al.
(2019).

The main aim of this thesis is to explore the capability of the RRBC model to
simulate a 3D tropical cyclone-like vortex starting from a quiescent initial state and to
better understand the hydrodynamics involved in the cyclogenesis using the simple
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model. In this work, Large Eddy Simulation (LES) paradigm will be used to model the
turbulence. The next chapter will present a detailed explanation of the LES framework
and why it is used for this study. Since we don’t consider moisture physics in the
model, we call the resulting large-scale vortex a tropical cyclone-like vortex.

An attempt is made to answer the following questions forming the objective of this
work.

1. How different is the tropical cyclone-like vortex dynamics in a 3D model compared
to the earlier axisymmetric counterpart studied? Is there any significant effect of
adding an extra degree of freedom to the fluid on the evolution of the vortex?

2. What is the role of the sidewall thermal boundary condition on the evolution
of tropical cyclone-like vortex? The effect of thermal boundary conditions is
assessed using adiabatic and isothermal boundary conditions along the sidewall.
This question is addressed because there isn’t a sidewall in reality, but that is
not the case in an experiment/numerical model. Therefore, it is essential to
understand the role of the sidewall boundary condition, precisely the thermal
boundary condition, in the model.

3. When does a tropical cyclone-like vortex emerge in a RRBC model? Can
a condition be deduced for cyclogenesis using the control parameters of the
problem? If it can be deduced, this condition helps to improve the forecast of
tropical cyclones because large-scale atmospheric flow parameters are inherently
present in the global weather forecasting models.

4. Are the features of a simulated tropical cyclone-like vortex similar to that seen
in an actual tropical cyclone using field measurements (see Fig. 1.2)?

5. Characterize the energetics of symmetric vortex scale and asymmetries during
the evolution of the tropical cyclone-like vortex.

6. How is the large-scale tropical cyclone-like vortex formed from a quiescent initial
state? What is/are the probable reason(s) for the formation of these large-scale
structures?

Addressing these objectives will help us understand the cyclogenesis conditions
in controlled numerical experiments, which will probably also help to design con-
trolled physical experiments. The experiments can be used to unravel the intricate
hydrodynamic complexities in cyclogenesis further.
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1.4 Thesis Structure

The structure of the rest of this thesis is as follows. Chapter 2 describes the governing
equations, control parameters and the methodology used to simulate the tropical
cyclone-like vortex in a RRBC setup using LES. The sub-grid closure model used in
this work is also discussed.

The capabilities of the OpenFOAM software to simulate atmospheric flows are
tested and validated in chapter 3. In particular, the classical problem of the turbulent
Ekman layer is simulated using the LES framework. The mean velocity, second-order
statistics, and eddy viscosity are computed in LES using the dynamic Smagorinsky
sub-grid closure model at different Reynolds numbers discussed in detail to show
the capabilities of the LES framework. The results obtained are validated with the
DNS (Coleman et al., 1990, Coleman, 1999) and experimental results (Caldwell et al.,
1972). The thesis will subsequently use the same LES model for the turbulent tropical
cyclone-like vortex simulations.

Further validations of the code with rotational effects and the temperature equation
implemented are performed by conducting laminar axisymmetric tropical cyclone-like
vortex investigated by Oruba et al. (2017, 2018) and Atkinson et al. (2019). The effects
of 3D and sidewall thermal boundary conditions in laminar flows are discussed, along
with the validation results in Chapter 4. This chapter address the first two objectives.

The third objective is addressed in chapter 5. A condition for cyclogenesis is
deduced through an order of magnitude analysis of the azimuthal vorticity equation.
The LES calculations are performed for a wide range of flow parameters to test and
validate the condition, and the results are discussed in this chapter. The timescale for
cyclogenesis is also proposed through data analysis.

The symmetric and asymmetric features of tropical cyclone-like vortex deduced
from the simulation are compared with field measurements of actual tropical cyclones
in chapters 5 and 6 to address the fourth objective. The different energy exchange
mechanisms at play between the azimuthally symmetric and asymmetric energy during
the cyclogenesis are discussed to address the fifth objective. The possible reasons
for the formation of a large-scale vortex from a quiescent state, the sixth objective,
is investigated in chapter 7. In particular, the role of barotropic instability in the
formation and sustenance of tropical cyclone-like vortex is studied in detail. The main
findings of this thesis work are summarized in chapter 8, along with directions for
future work.





Chapter 2

Research Methodology

Fluid flow driven by buoyancy is prevalent in nature. In these flows, thermal convection
driven by density difference plays an important role. In some cases, rotation, in addition
to buoyancy, affects these fluid flows. Large-scale motion in the Earth’s atmosphere
and ocean are driven by buoyancy induced by sufficiently strong temperature gradients
and have large length scales such that rotation of the Earth plays a significant role in
its development. Rotating Rayleigh-Benard convection may be a simple model, but it
is very effective and helpful for understanding complex geophysical flows. Furthermore,
the rotating convection model is a very intriguing flow configuration of fundamental
interest. Insights gathered from rotating convection problems can be used to model
geophysical flows. Since tropical cyclones are large-scale, organized, rotating convective
vortices, numerical experiments of rotating convection are conducted in a low aspect
ratio (vertical scale≪ horizontal scale) domain deduced from an actual tropical cyclone
for this work.

In this chapter, the governing equations used are introduced. The Earth’s rotation
is incorporated into the model by adding Coriolis and centrifugal forces into the
momentum equation. The tropical cyclone circulation is relatively limited on the
horizontal scale, so the rotation rate is assumed to be independent of latitude. This is
referred to as f -plane approximation, where f denotes the Coriolis parameter defined by
f = 2Ω sinϕ, with Ω as the Earth’s rotation rate and ϕ as the latitude (Montgomery &
Smith, 2017). The governing equations presented later are simplified using Boussinesq
approximation (Boussinesq, 1903), which is acceptable for dry convective flows typically
used to model tropical cyclones. Much of the information provided in this chapter can
be found in the textbooks by Davidson (2013), Pope (2000) and Chandrasekhar (1961).
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2.1 Equations of Motion

This section introduces the fluid flow equations for a tropical cyclone-like vortex. The
fluid is considered to be incompressible. In an incompressible flow, the volume of
fluid is conserved. Apart from the volume of the fluid, the mass of the fluid is also
conserved. The mass and volume conservation is the same in incompressible flow. The
mass conservation equation for an incompressible flow is given as (Davidson, 2013,
Pope, 2000, Chandrasekhar, 1961),

∂ui

∂xi

= 0 (2.1)

where, ui is the fluid velocity in the spatial direction xi.
The momentum balance in rotating frame of reference is (Davidson, 2013, Chan-

drasekhar, 1961),

ρ

[
∂ui

∂t
+ uj

∂ui

∂xj

]
= −∂P

∂xi

+ µ
∂2ui

∂xj∂xj

− 2ρΩujεij3 + Fb (2.2)

The temperature equation is given by (Davidson, 2013, Chandrasekhar, 1961)

∂T

∂t
+ uj

∂T

∂xj

= κ
∂2T

∂xj∂xj

+ Q̇s (2.3)

The body forces, Fb, that are relevant for the atmospheric flow system include
buoyancy force due to gravitational effect. Therefore, Fb = −ρgδi3. µ is the molecular
viscosity, κ is the thermal diffusivity, T is the temperature, P is the pressure, the term
2ρΩUjεij3 is the Coriolis force; a fictitious body force that manifests as a result of
moving in a non-inertial frame, δi3 is the Kronecker delta which is one if i =3 and
otherwise it is zero, εij3 is Levi-Civita symbol which is zero if i = j, 1 if (i, j) = (1,2)
and -1 if (i, j) = (2,1), Qs is the source term in the temperature equation which usually
includes the evaporation, condensation term given by Q̇s = Leq̇e + Lcq̇c, where Le is
the latent heat of evaporation, Lc is the latent heat of condensation, q̇e is the rate of
evaporation and q̇c is the rate of condensation. Since the equation for fluid is solved in
a dry state, the source term Q̇s is neglected while solving for temperature equation.
Since the density difference created by thermal gradients drives the flow, the Boussinesq
approximation (Boussinesq, 1903) can be invoked for the body force Fb. According to
this approximation, the density variation can be expressed as ρ = ρo +ρ′, where ρ is the
density, ρo is the background density distribution, and ρ′ is the density perturbation.
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In the same way, as for density, it is often helpful to separate the temperature field into
two parts; a background temperature To and a perturbation θ such that T = To + θ.
One can link the density and temperature variations through a thermal expansion
coefficient α = −(∂ρ/∂T )p/ρo as follows (Chandrasekhar, 1961),

ρ′ = −ρoαθ (2.4)

Therefore after including the body forces with Boussinesq approximation, the mo-
mentum and temperature perturbation equations are given by (Chandrasekhar, 1961,
Davidson, 2013):

∂ui

∂t
+ uj

∂ui

∂xj

= − 1
ρo

∂P

∂xi

+ ν
∂2ui

∂xj∂xj

− 2Ωujεij3 − α(T − To)gδi3 (2.5)

∂T

∂t
+ uj

∂T

∂xj

= κ
∂2T

∂xj∂xj

(2.6)

where P = p + po(z) − (ρo(Ω× x)/2) is the reduced pressure term which includes
hydrostatic pressure due to ρo and centrifugal force contribution, the kinematic viscosity
is ν = µ/ρo.

2.1.1 Dimensionless Numbers

The governing equations, Eqs. (2.5) and (2.6), can be non-dimensionalised by intro-
ducing H, V , and ∆T as the reference length, convective velocity and temperature
scales respectively, where V =

√
gα∆TH is the maximum buoyancy-generated velocity

(Prandtl, 1932). The non-dimensionalised equations are then given as:

∂ui
*

∂t*
+ uj

* ∂ui
*

∂xj
* = −∂P

*

∂xi
* + 1

Re
∂2ui

*

∂xj
*∂xj

* −
2

Rouj
*εij3 − T *δi3 (2.7)

∂T *

∂t*
+ uj

* ∂T
*

∂xj
* = 1

RePr
∂2T *

∂xj
*∂xj

* (2.8)

where, dimensionless distance is xi
* = xi/H, velocity is ui

* = ui/V , time is t* = tV/H,
temperature T * = T/∆T , pressure P * = P/V 2. The dimensionless numbers are
Reynolds number Re =V H/ν, which is the ratio of convective to viscous force, Prandtl
number Pr = ν/κ, Ekman number E = ν/ΩH2 is the ratio of viscous to rotational
force and Rossby Number Ro = V/ΩH = ReE. It is also useful to define a geometrical
parameter called aspect ratio Γ = H/R for a convective flow inside a bounded domain,
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which can influence the flow dynamics. The equations discussed in this section are to
be supplemented with appropriate initial and boundary conditions before solving them.

2.2 Simulation Methods

High Reynolds number time-evolving three-dimensional turbulent motion consists of
a wide range of scales of chaotic motion. Numerical integration of the governing
equations without any approximation to explicitly calculate all the relevant scales of
turbulent motion is known as Direct Numerical Simulation (DNS). The drawback of
this method is that it can be used only for low-moderate Reynolds number flow due
to its computational demand. The relevant scales range from the energy-containing
large scale to the dissipative Kolmogorov scale. The Kolmogorov scales are defined as
(Kolmogorov, 1941, Tennekes & Lumley, 1972):

• Length scale

ℓ =
(
ν3

ϵ

)1/4

• Timescale

τ =
(
ν

ϵ

)1/2

• Velocity scale
v = ℓ

τ
= (νϵ)1/4

where ν is the kinematic viscosity, and ϵ is the kinetic energy dissipation rate. These
scales define the ratio of the largest to the smallest scale of motion. The largest length,
time and velocity scale be denoted as lo, to and Uo respectively. Therefore, the energy
dissipation at a large scale is approximated as ϵ ∼ Uo

3/lo (Tennekes & Lumley, 1972).
This expression for ϵ when substituted into the length scale gives the ratio of largest
to smallest length scale and is given as,

lo
ℓ
∼ Re3/4 (2.9)

where the Reynolds number, Re = (Uolo)/ν. A similar ratio can be obtained for velocity
and timescale ratios.

The number of grid points required for the DNS is based on Eq. (2.9). The total
number of grid points accurately required for the DNS study of 3D turbulence is given
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by (Geurts, 2003):
N = (nRe3/4)3 = n3Re9/4 (2.10)

where n is a constant with a value ranging from 3 to 5 is typically used (Geurts, 2003).
Equation (2.10) shows that as the Reynolds number increases, more grid points are
required for DNS to resolve all the relevant scales of motion. The Reynolds number
is Re ∼ 109 (Stull, 2012) for a typical atmospheric boundary layer flow. The number
of grid points required to fully resolve the flow is N = 64× (109)9/4 ∼ 1.14× 1022 for
n = 4 in Eq. (2.10). It is not possible to conduct simulations with this huge number of
grid points; the current capabilities of the modern computer allow for simulating grid
sizes with O(1011) points. Thus, DNS is unsuitable for atmospheric flows, although it
is an excellent tool to investigate at moderate Re.

The turbulent fluctuating velocity in the Navier-Stokes equation can be statistically
described using a model instead of fully resolving the turbulence as in DNS; this
approach is known as Reynolds-Averaged Navier-Stokes (RANS) calculation. This
method can be used for studying flows with realistic complexity but cannot be used
for studying dynamic influences and consequences for all the scales involved.

There is another turbulence modelling approach known as Large Eddy Simulation
(LES), wherein the large-scale motions are resolved, and the small scales that are
insensitive to the specifics of the flow are modelled (Pope, 2000). Thus, the model can
be simple and universal. The LES framework compromises between DNS (fluctuations
are resolved) and RANS (fluctuations are modelled).

The schematic of the turbulent kinetic energy spectrum in wavenumber space is
shown in Fig. 2.1. The schematic of the energy spectrum plot summarises the extent
of turbulent length scales modelled/computed for the different turbulence modelling
approaches. The typical numerical resolution requirements and complexity that different
turbulence modelling approaches can handle are detailed in Fig. 2.1. DNS is usually
preferred for simple problems, requiring a higher resolution of the numerical grid to
compute the relevant scales of turbulence. The numerical grid resolution requirement
decreases for LES and even more for RANS modelling approaches compared to DNS.
Hence, problems with a higher complexity are usually solved using LES and RANS
approaches.

In atmospheric flows, the largest turbulent eddies are of the order of kilometres
and the smallest scale is in the order of a millimetre. The entire range of scales covers
six orders of magnitude. Integrating the governing equations to resolve this entire
range of scales using the currently available massively parallel exascale machines is
unfavourable. Given this limitation, the LES approach is ideal, since the important
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Fig. 2.1 Schematic showing the capabilities of different turbulent approaches (adapted
from Geurts (2003)).

energy-containing large scales can be resolved, and other scales of physical relevance
can be modelled. In atmospheric flows, the large eddies are responsible for turbulent
transport since they contain most of the turbulent kinetic energy (Wyngaard, 2010).
Thus, the LES technique that explicitly resolves the larger eddies and models the
effects of smaller eddies is appropriate for atmospheric flows and is used in this work
to simulate a tropical cyclone-like vortex.

2.3 Large Eddy Simulation

In LES technique the governing equations, Eq. (2.5) and Eq. (2.6), are spatially filtered
and the filtered equations are obtained by decomposing the dependant variables into
filtered and subgrid parts. For example, velocity (ui) in the momentum equation is
decomposed as ui = ui − ui

′ where ui is the filtered or resolved component and ui
′ is

the subgrid scale component. The resolved scale component is defined as (Pope, 2000)

ui(xi) =
∫∫∫

V
ui(x′

i)G(xi − x′
i) dx′

i (2.11)

Equation (2.11) is written for one-dimension for the sake of simplicity, and it can be
easily extended to three dimensions as demonstrated in (Pope, 2000). The homogeneous
filter function G whose shape is chosen such that it approaches zero when xi − x′

i

exceeds filter size ∆. In addition, the filter function must also satisfy the normalisation
condition

∫
G(x′

i)dx′
i = 1 (Pope, 2000). A few important points should be noted with

regard to the filtering operation for LES:
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1. The rules for filtering in LES are ui ̸= ui and u′
i ̸= 0, where u′

i = ui − ui is the
residual or sub-grid part of ui.

2. The operation of filtering and differentiation with respect to time do commute
i.e., (

∂ui

∂t

)
= ∂ui

∂t

3. The operation of filtering and differentiation with respect to position do not
commute in general i.e., (

∂ui

∂xj

)
̸= ∂ui

∂xj

It is to be noted that the above operation of filtering for spatial derivative do
commute when homogeneous filter is used (Pope, 2000) and hence

(
∂ui

∂xj

)
= ∂ui

∂xj

The filter should be chosen with care since it determines the accuracy of LES.
Filtering is a weighted spatial average, where the shape of the filter determines its
weight distribution, and its magnitude is determined by filter width. The most
commonly used LES filters are Box (or top-hat) filter, Gaussian filter, and Spectral (or
sharp-cut off) filter.

Applying the filtering procedure, term by term to Eq. (2.5) and Eq. (2.6) leads to
the equations that govern resolved eddies (North et al., 2014, Pope, 2000):

∂ui

∂t
+ ∂uiuj

∂xj

= − 1
ρo

∂P

∂xi

− ∂τij

∂xj

+ ν
∂2ui

∂xj∂xj

− 2Ωujεij3 − α(T − To)gδi3 (2.12)

∂T

∂t
+ ∂ujT

∂xj

= κ
∂2T

∂xj∂xj

−
∂τT

j

∂xj

(2.13)

where the subgrid-scale (SGS) stress per unit mass is defined as τij = uiuj − uiuj

and SGS heat flux is given by τT
j = Tuj − T uj which are used to model the residual

Reynolds stress and heat flux, respectively. In order to solve the filtered equations,
SGS models (closure equation) are required for the SGS stresses and heat fluxes. The
choice of these models depends on the flow problem, and the models used in this work
are detailed next.
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2.3.1 Sub-grid Scale Closure

This study aims at simulating a large-scale phenomena. Hence, a simple SGS model
that dissipates energy properly is preferred (also adequate) to represent the net effect
of small-scale eddies. Therefore, the dynamic Smagorinsky model of Lilly (1992) is
implemented into the OpenFOAM solver for this work. Other types of LES models
are described in chapter 13 of Pope (2000) book. In this work, only the dynamic
Smagorinsky model of Lilly (1992) is used; hence that approach is described in detail.

Dynamic Smagorinsky Model

The SGS stress per unit mass, τij in the Eq. (2.12) can be written as the sum of its
trace and an anisotropic part (Pope, 2000):

τij = δij

3 τ ij
R + τ ij

r (2.14)

The trace is added to the pressure term in Eq. (2.12) and computed implicitly in a
pressure-corrector algorithm. The anisotropic residual term, τ ij

r, is modelled in this
work using the dynamic Smagorinsky model of (Lilly, 1992) which is an extension of
the Smagorinsky model (Smagorinsky, 1963), where the model constant is computed
dynamically from the flow variables as described by Lilly (1992). This model is based
on the assumption that the anisotropic residual tensor is aligned to the filtered strain.
It can be expressed as

τ ij
r = −2νtSij = −νt (∂ui/∂xj + ∂uj/∂xi) (2.15)

Similarly the SGS heat flux, τT
j , in Eq. (2.13) is related to local gradient of filtered

temperature field as,

τT
j = −κt

∂T

∂xi

(2.16)

where Sij is the filtered strain, νt is the subgrid scale turbulent eddy viscosity and κt

is the subgrid-scale turbulent thermal diffusivity.
The subgrid-scale eddy viscosity and thermal diffusivity are expressed by

νt = Cs(∆f )2(2SijSij)0.5 (2.17)

κt = νt

Prt

(2.18)
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where filtered length scale ∆f is proportional to the grid size through ∆f = (Vcell)1/3

and V cell is the numerical cell volume, Prt is the turbulent Prandtl number.
The dynamic Smagorinsky model assumes scale invariance and exploits the resolved

scales to compute the model coefficients Cs and Prt. The original dynamic model by
Germano et al. (1991) computes one global averaged value for the whole flow field
and assumes that the model constant is filter-invariant. In this work, the localised
mixed formulation by Lilly (1992) is used, which computes the model constants, namely
Smagorinsky constant Cs and turbulent Prandtl number Prt locally and also does not
rely on the assumption of filter-invariance. The Cs computed based on Lilly (1992)
approach is the square of actual Cs defined by Smagorinsky (1963).

Some advantages of using dynamic approach of Lilly (1992) compared to constant
Smagorinsky model (Smagorinsky, 1963) are,

1. It is self-contained, and no need to specify any parameters as the model constants
are computed dynamically.

2. No need for near-wall correction as the stresses are calculated from the flow
variables as it evolves.

3. Inexpensive as it does not solve any additional transport equation for sub-grid
scale variable.

4. Applied successfully to many flows (Free shear flows, rotating flows, atmospheric
boundary layer, etc.,)

The specific boundary conditions used in this work are detailed in the following
chapters.

2.4 Summary

The governing equations, both instantaneous and filtered, for an RRBC model are
presented and described. The non-dimensional parameters governing this problem
are identified and discussed. They are deduced by non-dimensionalising the equation.
The need for LES to model turbulence in atmospheric flows is discussed, and the
sub-grid scale model used in this study is described and justified. The LES model
implemented in OpenFOAM will be validated in the next chapter by simulating the
turbulent Ekman layer, as the first case for rotating flow, and comparing the results
with DNS and experimental results.





Chapter 3

Turbulent Ekman Layer Simulation

In this chapter, the dynamic Smagorinsky model implemented in OpenFOAM is
validated for a rotating flow as a first step. The classical problem of a turbulent flow
generated near the ocean surface by steady wind stress in the presence of Earth’s
rotation is considered. Interest in this flow goes back to the early 1900. The first set
of works was published by Ekman (1905). Ekman assumed a balance between the
Coriolis force, viscous friction and the pressure gradient, adopted the approximation of
constant vertical eddy viscosity νt, and derived a solution now known as the “Ekman
spiral”. In the case of a steady wind in the x-direction, the steady-state Ekman velocity
profile in the open ocean is (for the northern hemisphere) (Ekman, 1905),

ux = Vo cos
(
π

4 + π

D
z
)

exp
(
− π
D
z
)
, uy = −Vo sin

(
π

4 + π

D
z
)

exp
(
− π
D
z
)

(3.1)

where ux and uy are the components of mean horizontal velocity, z is the downward
directed vertical distance, Vo =

√
2πτo/(Dfρ) is the amplitude of the surface velocity,

D = π (2νt/f)1/2 is the Ekman depth, τo is the surface shear stress and f = 2Ω sinϕ
is the Coriolis parameter, with Ω and ϕ denoting the Earth’s rotation and latitude,
respectively. According to the above solution, the mean horizontal velocities spiral
clockwise and decay exponentially with depth. At the surface, the velocity is directed
at 45◦ to the right (northern hemisphere) or the left (southern hemisphere) of the wind
direction.

The Ekman model is, however, simple, elegant, and clearly supported by laminar
laboratory experiments, rather dissimilar to the actual turbulent flow near an ocean
or a lake surface. A persistent well-developed Ekman spiral has probably, never
been observed in field measurements, (see Price & Sundermeyer (1999); for a detailed
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review). The reason is that the over-simplified character of the model leads to significant
inconsistencies between the predicted and actual flows.

The basic assumptions of the Ekman model of a steady-state wind and the absence
of any geostrophic currents are never observed in the open ocean. The effect of transient
winds is significant. Attempts have been made to reconcile the Ekman layer theory and
the measured data (Price et al., 1987, Chereskin & Roemmich, 1991, Gnanadesikan &
Weller, 1995). Some important observations are made; in particular, the angle between
the surface current and the wind was typically smaller than the 45◦ predicted by the
Ekman model. However, a high degree of uncertainty remains associated with field
observations of the phenomenon.

The assumption of a constant turbulent viscosity νt is a crude approximation. This
is because, in real flows, the intensity of turbulent momentum transport expressed by
νt is expected to vary with depth and time. This problem was recognized soon after
the study by Ekman (1905). Rossby & Montgomery (1935) used the mixing length
theory to derive a realistic distribution of turbulent viscosity νt(z). The mixing length
η was assumed to decrease with depth in the bulk flow but to increase linearly in a
thin boundary layer near the surface. This adjustment resulted in a modification of
the Ekman velocity profile. The angle between the wind and surface current depends
on the wind speed and latitude and, in most cases, is slightly smaller than 45◦.

The classical Ekman model is based on the ’f -plane’ approximation and, thus,
neglects the possible influence of the horizontal (tangential to the Earth surface)
component of the Earth’s rotation vector and, thus, the possible dependence of the
flow on latitude and wind direction. Evidence that this simplification is not always
justified was found in the systematic linear stability analysis of the Ekman profile by
Leibovich & Lele (1985). Both for the atmospheric and oceanic Ekman layers, the
properties of unstable modes (growth rates and bands of unstable wavelengths) were
found to be strongly affected by the horizontal component of the Earth’s rotation
vector. Further indications of the possible impact of the latitude and the wind direction
on flow properties were obtained in a DNS study of the turbulent atmospheric Ekman
layer by Coleman et al. (1990). It was found that variations as significant as 20% in
the surface friction velocity and as large as 70% in the angle between the free-stream
velocity and the wall shear stress were found. In this work, the turbulent Ekman layer
is simulated in an ‘f -plane’ approximation because the objective of the current study,
as stated at the end of chapter 2, is to validate the LES model using available results
without adding much complexity arising from the horizontal component of the rotation
vector.
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The Reynolds number is very high in the meteorological context and the Atmospheric
Boundary Layer (ABL) can be idealized as an Ekman layer in the fully turbulent
regime (see chapter 5 of Holton 2004). The correct scaling of characteristic quantities
of the ABL is of prime importance in numerical modelling, where it is required to relate
unknown surface fluxes to known model variables. In addition to the Coriolis force due
to Earth rotation, the structure of the ABL is strongly influenced by buoyancy owing
to surface cooling or heating. Although the influence of buoyancy is an essential part
of the ABL analysis, the present study refers to the neutral case of a homogeneous
fluid. This neutral case may be approached in the atmosphere for windy conditions
under a heavy cloud cover. The neutral ABL is described as two overlapping layers
(see chapter 5 of Holton 2004). In the outer layer, generally called the Ekman layer, the
Coriolis force strongly influences the flow structure and the velocity direction change
with height by as much as 25◦. In the inner layer, also called the wall or surface layer,
shear stress is assumed to be constant, leading to the usual logarithmic profile for the
mean velocity.

As stated at the beginning of this chapter, this task of simulating the turbulent
Ekman layer is carried out to validate the LES model implemented in OpenFOAM and
to test the capabilities of the OpenFOAM solver in simulating atmospheric flows. The
particular problem of the Ekman layer is taken up in this study because even in the
RRBC model, the boundary layer plays a crucial role in the formation of the eye in
the TCLV, as seen from the previous studies (Oruba et al., 2017, 2018, Atkinson et al.,
2019). It was observed that the sweeping up of the bottom boundary layer results in
the formation of the eye in the cyclonic vortices. Therefore, checking whether the LES
model can simulate the turbulent Ekman layer is crucial. The results obtained from
LES are compared with the DNS of Coleman et al. (1990), Coleman (1999) and the
experimental study of the Ekman layer by Caldwell et al. (1972).

3.1 Numerical Procedure

Governing equations and sub-grid scale model

The equations considered in the present study for conducting numerical simulations
are grid-filtered continuity and Navier-Stokes equation with added Coriolis term (in f -
plane approximation).

∂ui

∂xi

= 0 (3.2)
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Fig. 3.1 Computational domain with periodic sidewalls.

∂ui

∂t
+ ∂uiuj

∂xj

= − 1
ρo

∂P

∂xi

− ∂τij

∂xj

+ ν
∂2ui

∂xj∂xj

− 2Ωujϵij3 (3.3)

The above equation is the same as the filtered equation Eq. (2.12) discussed in the
last chapter but without the buoyancy term. In the above equations, the overbar on
the variable indicates the grid filtered quantity, ui (where i = 1, 2, 3) are the velocity
components in the direction (x1, x2, x3) respectively, where x1 = x and x2 = y are the
horizontal coordinates and x3 = z is the coordinate in the vertical direction pointing
upwards, Ω is the background rotation rate of the system pointing in the vertical
direction, P is the reduced pressure term containing the contribution from centrifugal
acceleration and symmetric part of stress, ν is the kinematic viscosity of the fluid and
τij is the turbulent stress.

The turbulent stress in the filtered equation is given by,

τij = uiuj − uiuj (3.4)

A closure model for subgrid-scale stress relates to the sub-grid scale stress with
resolved scale variables which enables the above-filtered equations to be integrated. This
study aims at simulating a large-scale phenomenon. Hence, the dynamic Smagorinsky
model described in section 2.3 is used for the present turbulent Ekman layer simulation.
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The velocity and length scales which define the Reynolds number are geostrophic
velocity G and viscous depth D =

√
ν/Ω. The Reynolds number within the Ekman

layer based on G is given by,

ReG = GD

ν
= G√

νΩ
(3.5)

The validation for the case “A90” and “New” in the DNS paper by Coleman et al.
(1990), Coleman (1999) for ReG = 400 and 1000 are carried out in the current study
using OpenFOAM to check for its capability in simulating turbulent Ekman layer.

Numerical Methods

Equations (3.2) and (3.3) are solved numerically in a rectangular computational domain
of dimensions Lx × Ly × Lz using appropriate subgrid-scale model, boundary, and
initial conditions, see Fig. 3.1. The value of Lz is taken to be 20 times the viscous
depth D, that is, Lz = 20D and for the case considered in this chapter for validation,
Lx = Ly = 40D. Since the flow is assumed to be homogeneous in the horizontal
plane, periodic boundary conditions are applied in the x and y directions. The flow
can evolve freely without any bias in the computational domain. At the bottom of
the computational domain, a no-slip condition is imposed. At the top of the domain,
velocity u takes the value of geostrophic velocity G. The typical computational domain
and the boundary conditions are shown in Fig.3.1.

The simulation is initiated from a quiescent state. Second-order central difference
spatial discretisation schemes and first-order Euler time integration schemes are used
in the numerical simulation. The CFL number of 0.3 is used for the simulations. The
simulations are carried out in a numerical grid with 1 million mesh cells (100×100×100)
for ReG = 400 and 2 million mesh cells (100 × 100 × 200) for ReG = 1000. In the
present calculations, the grid sizes are ∆x = ∆y, and the ratio ∆z/∆x varies between
approximately 0.4 next to the surface and 1.9 near the top. Therefore, no anisotropy
corrections were included in the dynamic procedure. The mesh sensitivity is tested by
analysing the subgrid-scale ratio of residual kinetic energy to the total kinetic energy
(Pope, 2000). The mean and the mode for the distribution of this ratio are observed
to be less than 10% when 1, 2 or 4M cells are used for ReG = 400. Hence, the above
criterion is used to select the numerical grid for other ReG, and 2M cells are used for
ReG = 1000.
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3.2 Results & Discussion

3.2.1 Mean Velocity Profiles

Fig. 3.2 Mean velocity profiles computed from LES (lines) are compared with DNS
data of Coleman et al. (1990) (symbols).

The vertical profiles of mean velocities for ReG = 400 and ReG = 1000 normalised
with G are shown in Fig. 3.2 from the simulations with the corresponding values
reported in DNS studies of (Coleman et al., 1990, Coleman, 1999). The following
symbol, “. . .” is used to denote surface averaging over a horizontal plane throughout
this chapter. The vertical coordinate is normalised with turbulent length scale ℓ = u∗/f ,
where u∗ is the frictional velocity and f = 2Ω is the Coriolis parameter. The friction
velocity is computed by taking the square root of shear stress at the lower boundary
in the domain. The results from LES agree well with the DNS results. The profile
indicates that the Ekman-layer height, defined as the minimum height where ux and G
are parallel, and it is about 0.7ℓ for ReG = 400 and 0.5ℓ for ReG = 1000. As ReG is
increased, the Ekman-layer height decreases. The SGS parametrization used in LES
and the numerical schemes used in the present simulation could capture the velocity
profiles without significant deviation from the DNS results. It is well known that
the mean velocity follows the logarithmic region in the near wall region, expressed as
(Holton, 2004),

Q+ = 1
σ

log z+ + C (3.6)

where σ is the von Karman constant, Q+ =
√
ux

2 + ux
2/u∗ is the absolute mean

velocity normalised with u∗ and z+ is the vertical coordinate normalised with u∗/ν.
The von Karman constant σ can be obtained using Eq. (3.6) as

1
σ

= z+∂Q
+

∂z+ (3.7)
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Fig. 3.3 von Karman constant σ computed from LES (lines) are compared with
experimental data of Caldwell et al. (1972) (◦ → ReG = 1159,× → ReG = 1234).

The common value of σ for non-rotating turbulent boundary layers varies from 0.4
to 0.42 (Holton, 2004). Figure 3.3 shows the values of σ obtained in this study for
ReG = 400 and 1000. In the case of ReG = 400, the von Karman constant does not
exhibit any constant region but increases monotonically. However, in the case of a
higher Reynolds number ReG = 1000, σ exhibits a local maximum and stays nearly
at a constant value in a wider region. Thus, if the mean velocity is expressed in
terms of Q+, the logarithmic nature of the mean velocity is very robust, despite the
three-dimensionality of the velocity field. The result of σ for higher Reynolds numbers
shows a similar trend compared to the experimental results of Caldwell et al. (1972).

The hodographs of the mean velocities for ReG = 400 and 1000 are shown in Fig.
3.4. The analytical solution in the laminar Ekman boundary layer is also shown. The
spiral shrinks as the Reynolds number increases. This suggests that the mean flow
direction becomes closer to the geostrophic wind. The angle ϕu0 between the shear
direction at the bottom wall and the geostrophic wind is shown in Table 3.1. The
analytical solution of the laminar Ekman boundary layer gives ϕu0 = 45◦. However,
the angle ϕu0 obtained from the simulation of the turbulent Ekman layer decreases
to a smaller value of ϕu0 = 28.2◦ and 19.8◦ for ReG = 400 and 1000 respectively. The
experiments by Caldwell et al. (1972) and the DNS studies of Coleman et al. (1990),
Coleman (1999) also obtained smaller angle of ϕu0 ranging between 19◦ to 28◦. The
angle ϕu0 decreases with an increase in the Reynolds number. This is attributed to the
enhancement of momentum transfer in the vertical direction with an increase in the
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Fig. 3.4 Hodographs of mean velocities.

Reynolds number. Thus, the momentum of the geostrophic wind penetrates more into
the near-wall region for a higher Reynolds number.

Table 3.1 Mean shear direction at the wall.

S.no ReG ϕu0
1 400 28.2
2 1000 19.8

3.2.2 Turbulence Intensity & Reynolds Stress

Root mean square fluctuations of the individual velocity components for ReG = 400
and 1000 are shown in Fig. 3.5 using both inner z+ and outer z/ℓ scaling. In the case
of ReG = 400, the magnitude of the vertical velocity components is smaller than its
streamwise and spanwise counterparts in the boundary layer. The trend is reversed
near the top of the simulation domain. The small velocity fluctuations near the top
of the domain are due to the slowly decaying velocity field (see Fig. 12a of Coleman
et al. 1990). The streamwise velocity fluctuations are larger near the wall region than
the spanwise velocity component, which is due to the three-dimensionality of the flow.
While moving away from the boundary layer region, both components behave similarly.
This behaviour of the velocity components remains the same for ReG = 1000 except
that the fluctuations have a higher magnitude since the Reynolds number is increased
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more than two folds. The trend observed for the individual velocity components in Fig.
3.5 are in line with that observed in the DNS calculations of Coleman et al. (1990),
Coleman (1999) for ReG = 400 and 1000.

Fig. 3.5 Turbulent intensities as a function of z+ = zu∗/ν is shown in figures (a) and
(c). The figures (b) and (d) show the variation with z/ℓ.

The vertical profiles of Reynolds stress curves normalized with the square of friction
velocity u∗ are shown in Fig. 3.6 for ReG = 400 and 1000. The present results from
the LES (line) agree well with the DNS (symbols) results in the previous studies by
Coleman et al. (1990), Coleman (1999) for all the stress components of the flow for
both the lower and higher Reynolds number. This indicates that the LES model used in
the study can capture the second-order statistics very well over the range of Reynolds
numbers.

3.2.3 Eddy Viscosity Model

Many theoretical approaches to the turbulent Ekman problem have employed some
empirical specifications for the eddy-viscosity. The mixing length model proposed
by Blackadar (1962) is compared with the present LES data. The results are also
compared with those from the experiments from Caldwell et al. (1972). In mixing



32 Turbulent Ekman Layer Simulation

Fig. 3.6 Vertical profiles of Reynolds stress computed from LES (line) and DNS of
Coleman et al. (1990) (symbols).

length representations, the eddy-viscosity is expressed as

νt = η2S (3.8)

where η is the mixing length and S is the magnitude of wind shear given by,

S =
(∂ux

∂z

)2

+
(
∂uy

∂z

)2
 1

2

(3.9)

The mixing length in Eq. (3.8) is assumed to have a form (Blackadar, 1962)

1
η

= 1
σz

+ 1
λ

(3.10)

Here, λ is an empirical parameter which specifies a maximum value of η as z approaches
infinity. Blackadar (1962) used the following empirical relation for λ:

λ = u∗
δBL

G
(3.11)
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where δBL is the boundary layer thickness, and u∗ is the friction velocity. The u∗ and
H are computed from the LES data. Here, H is the height at which the wind direction
becomes first parallel to the geostrophic wind.

Figure 3.7 shows the eddy-viscosity profiles. The dashed lines show the results
computed from the Blackadar (1962) model. The solid line shows the viscosity profiles
obtained from LES. The eddy viscosity is calculated in LES based on Eq. (2.17). The
Blackadar (1962) model does not agree well with the LES data for both ReG = 400
and 1000. In the near-wall region, the results of the Blackadar (1962) model are larger
than the present results. This is because the effect of viscosity is not considered in
Eq. (3.10). In the remaining part, the eddy-viscosity obtained from Blackadar (1962)
model is smaller. The eddy-viscosity from LES data is in line with the values observed
from the experiments by Caldwell et al. (1972) for all the Reynolds numbers considered
in the study.

Fig. 3.7 Eddy-viscosity variation with height (z/ℓ).

Fig. 3.8 Mixing length variation with height (z/ℓ).

The mixing length profiles are shown in Fig. 3.8 and compared with experiments
of Caldwell et al. The mixing length can be computed by applying the following



34 Turbulent Ekman Layer Simulation

definition:
η(z) =

√
νt/S (3.12)

The mixing lengths computed from LES calculations agree well with the experiments.
The deviation increases with an increase in height, and this is because the mean velocity
gradients become smaller at larger heights. Thus, the derivation of η becomes less
accurate in the experiment. The mixing length calculated from the Blackadar (1962)
model does not agree with the LES or experimental data. This behaviour can be
attributed to the lack of inclusion of viscous effects in the model.

3.3 Summary

Large eddy simulation of turbulent Ekman layer is undertaken using the OpenFOAM
code with the implemented dynamic Smagorinsky closure model proposed by Lilly
(1992). The simulations are carried out for ReG = 400 and 1000, and the results
are compared with the DNS results of Coleman et al. (1990), Coleman (1999) and
the experimental results of Caldwell et al. (1972). In addition, the results are also
compared with the well-known eddy-viscosity model for the turbulent Ekman problem.
The conclusions are as follows:

1. The velocity profiles obtained for both ReG = 400 and 1000 agree well with the
DNS results of Coleman et al. (1990), Coleman (1999) At a higher Reynolds
number, the von Karman constant σ exhibits and local maximum and nearly
stays constant in a wider region.

2. The Ekman spiral shrinks on increasing ReG = 400 to 1000 as the vertical
momentum transfer is enhanced with an increase in ReG. Also, the spiral angle
(mean shear angle at the bottom surface) ϕu0 obtained from simulation agrees
well with Caldwell et al. (1972) experiments and DNS results of Coleman et al.
(1990) and Coleman (1999).

3. The second-order statistics obtained from LES calculations agree well with the
DNS results of Coleman et al. (1990), Coleman (1999) for both ReG = 400 and
1000.

4. The trends of eddy viscosity and mixing length obtained from LES data agree well
with the results from Caldwell et al. (1972) experiments. However, the present
results do not show good agreement with the Blackadar (1962) model. This
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discrepancy can be attributed to neglecting the viscous effect in the presumed
model.

The LES model in the OpenFOAM code can simulate the turbulent Ekman layer
and show good agreement with the previously published results in the literature.
Therefore, the same LES model is used in the thesis to simulate a tropical cyclone-like
vortex in a RRBC paradigm. The results obtained from the simulation of a tropical
cyclone-like vortex in a RRBC paradigm are discussed in the following chapters.





Chapter 4

Tropical Cyclone-like Vortex: 3D &
Boundary Condition Effects

In this chapter, Tropical Cyclone-like Vortex obtained in the past laminar axisymmetric
studies (Oruba et al., 2017, 2018, Atkinson et al., 2019) within the Rotating Rayleigh
Benard Convection (RRBC) setup is simulated in a 3D shallow cylindrical domain
without any constraints on the flow evolution. The cyclonic vortex formed is referred
to as a tropical cyclone-like vortex because of the very low aspect ratio (radius ≫
height) of the vortex with features such as eye and eyewall similar to that seen in
a tropical cyclone. The streamlines of a typical tropical cyclone-like vortex, along
with the iso-surface of the eye and eyewall, are shown in Fig. 4.1. The poloidal flow
fills the domain with subsidence near the centre for the tropical cyclone-like vortex
and spiralling outwards and inwards fluid motion near the top and bottom boundary,
respectively. This chapter addresses the first two questions posed in section 1.3 of
Chapter 1.

Moeng et al. (2004) found that in a rotating convection system, the convective
entrainment within a planetary boundary layer in a 3D model is less compared to
the 2D model with axisymmetric approximations. This is because the flow evolution
is more organised/constrained in the 2D model than its 3D counterpart due to the
restricted degree of freedom. Therefore, this suggests that the axisymmetric convections
occurring in concentric rings may be likewise overly efficient in generating buoyancy
fluxes compared to 3D convection leading to excessive heating and extremely rapid
spin-up in the tropical cyclone context. Following Moeng et al. (2004), other studies
also pointed out that some of the results published using axisymmetric models may
have to be re-evaluated using three-dimensional simulations (Bryan & Rotunno, 2009).
Persing et al. (2013) found that observations of Moeng et al. (2004) hold well for
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numerical simulation of tropical cyclones as well by comparing the results from 3D
and axisymmetric simulations. It was found that the 3D model predicted significantly
reduced intensity (15-50%) compared to their axisymmetric counterpart (Persing
et al., 2013). In addition, 3D simulations are required to improve our understanding
of cyclogenesis and subsequent intensification process, which are highly asymmetric
(Nguyen et al., 2011). It was noted that only the most intense storms exhibit a
substantial degree of axial symmetry, and even then, only in their inner-core region
(Nguyen et al., 2011). Therefore, it is essential to carry out 3D simulations of a tropical
cyclone-like vortex and compare the results with their axisymmetric counterpart to
gain clear fundamental perspectives.

Besides the dimensionality of the computational domain, another challenge is to
devise suitable boundary conditions, specifically for the sidewall of the 3D computational
domain, to observe tropical cyclone-like vortex. This is because there is no sidewall
boundary for a real cyclone, but it is required for the computational or experimental
model. Therefore, it is important to understand the effect of this artificial boundary
and, specifically, its thermal boundary condition on the formation of a tropical cyclone-
like vortex. The effect of these thermal, either isothermal or insulated, boundary
conditions has been studied extensively in the past for non-rotating Rayleigh Benard
Convection (RBC). Buell & Catton (1983) and Hébert et al. (2010) observed that
the convection onset was delayed for isothermal condition compared to the insulated
condition. This also affected the flow stability. The stability curve was observed to
be more complex for the isothermal sidewall than its insulated counterpart due to
enhanced thermal activity near the wall (Puigjaner et al., 2004, 2008). The sidewall
thermal condition also influences the formation of flow pattern, specifically when the
RBC system is close to the onset of convection (Cross & Hohenberg, 1993) even in
a very shallow domain with Γ = 0.024 and 0.023 as observed in the experiments
of Hu et al. (1993). Direct Numerical Simulation (DNS) studies showed that the heat
transport and flow structures are influenced significantly by the thermal conductance
along the sidewall and its thermal boundary condition (Verzicco, 2002, Stevens et al.,
2014, Wan et al., 2019). These studies used a large aspect ratio of Γ = 4. In the
low Ra regime (Ra ≤ 108), the heat transport is higher for the isothermal sidewall
than for the insulated counterpart. In contrast, the difference in the heat transport
decreases for the higher Ra regime since the convection in bulk dominates (Verzicco,
2002, Stevens et al., 2014, Wan et al., 2019). Many past DNS studies investigated the
effects of rotation on the heat transport (Zhong et al., 2009, King & Aurnou, 2013)
and energy balance (Horn & Shishkina, 2015) using RRBC and RBC systems with
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insulated sidewall. All of these studies focused on the regime of convection onset. The
effects of this boundary condition on the formation of tropical cyclone-like vortex in
a 3D domain have not been investigated hitherto. Therefore, in this chapter, further
to understand the 3D effects in the simulation of a tropical cyclone-like vortex, the
influence of sidewall thermal BC on the flow evolution and the formation of the tropical
cyclone-like vortex are studied using the RRBC paradigm. The 3D simulations are
performed within the flow parameter regime wherein a tropical cyclone-like vortex is
observed previously using axisymmetric calculation (Oruba et al., 2017, 2018, Atkinson
et al., 2019).

The remainder of the chapter is structured as follows. First, the numerical procedure
employed is discussed in section 4.1, detailing the equation solved, the boundary
conditions used, the computational domain, the mesh information, and the flow
parameter values used for the simulations. Also, the code OpenFOAM (Weller et al.,
1998) used to perform the simulations is tested by comparing the current results for
2D- axisymmetric simulations with the previously published works (Oruba et al., 2017,
2018, Atkinson et al., 2019). It is worth noting that the previous chapter discussed
the validation of this code for rotating flows without buoyancy. In section 4.2.1,
the instantaneous flow fields are studied for the 3D simulations with insulated and
isothermal sidewall boundary conditions. The momentum budget analysis compares
the results of 3D simulations with the axisymmetric counterpart in section 4.2.2. The
flow behaviour near the isothermal and insulated sidewall is compared and analysed in
section 4.2.3. The chapter is concluded with a summary.

4.1 Numerical Procedure

4.1.1 Governing Equations

A cylindrical domain having a radius R and height H, giving an aspect ratio of
Γ = H/R, considered for this is shown in Fig. 4.1. This domain rotates at a rate
of Ω and has a background temperature variation of To(z) = Tref − βz to maintain
static equilibrium, where Tref is a reference temperature taken to be T (z = 0). The
flow is initiated by imposing a uniform vertical heat flux, proportional to β in the
domain. This flow is computed by solving an equation for temperature perturbation,
θ = T − To(z) along with the continuity and Navier-Stokes equations. These equations
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Fig. 4.1 Streamlines in a typical tropical cyclone-like vortex along with the eyewall
denoted using ωφ = 0 iso-surface coloured gray and eye marked using the black
iso-surface for uz = 0 (drawn not to scale).

written in rotating frame of reference are

∂u

∂t
+ u · ∇u = − 1

ρo

∇P + ν∇2u− 2Ω× u− αθg, (4.1)

∂θ

∂t
+ u · ∇θ = κ∇2θ + βuz, (4.2)

with Boussinesq approximation and the continuity equation is ∇ · u = 0. The velocity
vector is u and the reduced pressure is P = p− ρog · x− ρo(Ω× x)2/2, where ρo is
the fluid density at To and g is the acceleration due to gravity pointing in vertically
downward direction. The symbol ν is the fluid kinematic viscosity, α is the thermal
expansion coefficient, κ is the thermal diffusivity, and t is the time.

The objective of this chapter is to conduct 3D simulations to investigate the
three-dimensional effects on the formation of the tropical cyclone-like vortex. Hence,
conditions of Oruba et al. (2018) yielding tropical cyclone-like vortex in their axisym-
metric calculations are chosen. The aspect ratio of the computational domain, Γ = 0.1,
and the boundary conditions used by them are kept for this study. The bottom and
sidewalls are specified as no-slip, while the top boundary at z = H has the free-slip
condition. These bottom and top boundaries are specified to have ∂θ/∂z = 0 so that a
uniform and constant heat flux of λβ is maintained in the vertical direction within the
domain, where λ is the thermal conductivity of the fluid. The sidewall is treated to be
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insulated with ∂θ/∂r = 0 as in Oruba et al. (2018). The effects of sidewall thermal
boundary conditions are also investigated in this study by using θ = 0. The simulations
are run as an initial value problem starting from quiescence until a steady-state is
reached.

If one uses H as a reference length, the buoyancy velocity V =
√
αβgH2 as the

reference velocity, and Ω−1 as a reference timescale to non-dimensionalise the governing
equations then the dimensionless flow parameters involved are,

Γ = H

R
,Pr = ν

κ
,E = ν

ΩH2 , Ra = αgβH4

νκ
,Re = V H

ν
,Ro = ReE (4.3)

where Pr is the Prandtl number of the fluid. The Rayleigh number Ra is related to
Reynolds number Re through Ra = Re2Pr and the Rossby number Ro = ReE is
related to Re and Ekman number E. The values of these parameters explored in this
study are listed in Table 4.1 which are taken from previous axisymmetric simulations
showing tropical cyclone-like vortex for Γ = 0.1 (Oruba et al., 2017, 2018, Atkinson
et al., 2019).

4.1.2 Numerical Method

The governing equations written in Cartesian systems are solved using a finite volume
solver, OpenFOAM (Jasak et al., 2007), employing a second-order central difference
scheme with implicit Euler time-stepping. The pressure and velocity fields are coupled
through PISO algorithm (Issa, 1986) available in OpenFOAM. The discretised governing
equation are advanced in time using a variable time-stepping which kept the CFL
number, defined as ∆t×max(|u|/δc), to be below 0.3, where δc is the computational
cell size, |u| is the velocity magnitude, and time step is given by ∆t. The Coriolis
and buoyancy term in the momentum equation and the transport equation for θ are
implemented in OpenFOAM and validated first.

The cylindrical computational domain has about 2.1M numerical cells, which are
distributed as Nx = 200, Ny = 200 and Nz = 54 after extensive tests with 1M cells as
reference grid. The various characteristics such as the thickness of bottom boundary
layer (δ∗

BL = δBL/H), width of eyewall (δ∗
ew = δew/H) and the radius of tropical

cyclone-like vortex (r∗
tc = rtc/R) compared are observed not to change beyond 2.1 M

grid when the tropical cyclone-like vortex is fully evolved as shown in Table 4.2 and
hence 2.1 M grid is used for all the results explored in this study. δ∗

BL evaluated at
mid-radius r/R = 0.5 is the vertical extent of negative azimuthal vorticity (Oruba
et al., 2018). The width of the eyewall δ∗

ew is the horizontal extent of the negative



42 Tropical Cyclone-like Vortex: 3D & Boundary Condition Effects

Table 4.1 Summary of the parameter values considered for this study with Γ = Pr =
0.1.

Case E Ra Re Ro Romax
φ,axi Romax

φ,3D TC-like vortex?
Axisymmetric 3D-ins 3D-iso

1 0.05 9000 300 15 4.75 4.24 ✓ ✘ ✓

2 0.05 15000 387.3 19.36 23.03 22.32 ✓ ✘ ✓

3 0.05 20000 447.21 22.36 26.73 24.81 ✓ ✘ ✓

4 0.075 4000 200 15 12.28 11.68 ✓ ✘ ✓

5 0.075 9000 300 22.5 21.82 20.45 ✓ ✘ ✓

6 0.075 12000 346.41 25.98 25.2 22.82 ✓ ✘ ✓

7 0.075 18000 424.26 31.82 29.14 5.28 ✓ ✘ ✘

8 0.1 1500 122.47 12.25 6.15 6.1 ✘ ✘ ✘

9 0.1 2000 141.42 14.14 9.52 8.87 ✓ ✘ ✓

10 0.1 3000 173.21 17.32 12.85 11.51 ✓ ✘ ✓

11 0.1 4000 200 20 16.28 13.47 ✓ ✘ ✓

12 0.1 5000 223.61 22.36 18.1 15.33 ✓ ✘ ✓

13 0.1 6000 244.95 24.5 19.6 16.18 ✓ ✘ ✓

14 0.1 7500 273.86 27.38 22.16 17.27 ✓ ✘ ✓

15 0.1 9000 300 30 24.35 13.47 ✓ ✘ ✘

16 0.1 23040 480 48 34.94 5.62 ✓ ✘ ✘

17 0.1 30000 547.72 54.77 37.63 4.67 ✓ ✘ ✘

18 0.15 1800 134.16 20.12 13.29 7.59 ✓ ✘ ✓

19 0.15 3000 173.21 25.98 17.81 6.21 ✓ ✘ ✓

20 0.15 4000 200 30 19.62 5.44 ✓ ✘ ✘

21 0.15 8000 282.84 42.43 25.82 4.94 ✓ ✘ ✘

22 0.15 12000 346.41 51.96 29.95 4.71 ✓ ✘ ✘

23 0.15 16000 400 60 32.27 4.75 ✓ ✘ ✘

24 0.15 20000 447.21 67.08 34.08 4.65 ✓ ✘ ✘

25 0.15 24000 489.9 73.48 35.63 4.9 ✓ ✘ ✘

26 0.15 28000 529.15 79.37 37.05 4.77 ✓ ✘ ✘

27 0.15 32000 565.69 84.85 37.7 4.2 ✓ ✘ ✘

azimuthal vorticity at the height of the eye centre zeye (Oruba et al., 2018). The radius
of tropical cyclone-like vortex, r∗

tc is defined as the radial extent from the domain centre
at which the radial gradient of depth averaged pressure first changes sign.

Table 4.2 Results from Grid sensitivity analysis for Case 3 in Table 4.1.

Grid (in M) (Nx ×Ny ×Nz) δ∗
BL δ∗

ew r∗
tc

0.6 (150× 150× 27) 0.274 1.48 0.83
1 (200× 200× 27) 0.259 1.36 0.81

2.1 (200× 200× 54) 0.255 1.32 0.8
3.6 (300× 300× 40) 0.255 1.3 0.8
4.9 (300× 300× 54) 0.254 1.3 0.8
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The simulations are started from the quiescence with θ = 0 in the computational
domain and are run until the flow has evolved to a steady state which is monitored
using volume-averaged kinetic energy per unit mass ⟨K⟩v = ⟨u ·u⟩v/2. The simulations
are stopped when there isn’t a significant change in the ⟨K⟩v for many tens of rotation
time. Before embarking on 3D simulations, axisymmetric calculations are performed to
validate the implementation of the Coriolis and buoyancy terms, and this is discussed
next. In total, 81 cases listed in Table 4.1 are simulated for this study, including 27 2D
axisymmetric cases with the same boundary conditions used by Oruba et al. (2017,
2018) and Atkinson et al. (2019) i.e., no-slip at the bottom and sidewall and free-slip
at the top for velocity and uniform heat flux thermal boundary conditions at the top
and bottom bottom boundary and insulated condition at the sidewall. The remaining
cases are the corresponding 3D cases with insulated and isothermal sidewalls.

4.1.3 Code Validation

The axisymmetric simulations employ 1000 radial × 100 axial numerical grid cells
following the past work of (Atkinson et al., 2019). These calculations yield a tropical
cyclone-like vortex for the combinations of Re and E chosen except for one condition,
which is listed as Case 8 in Table 4.1. Figure 4.2 compares the radial variation of time
and depth-averaged total angular velocity (rΩ + uφ) computed here to the results of
Atkinson et al. (2019), see their figure 5. The angular velocity is normalised using
rΩ, and the agreement is excellent. As one would expect for a cyclonic flow, the
depth-averaged angular velocity is maximum near the eyewall region and reduces to
the background rotation velocity as one moves away from this region. The spatial
variation of the azimuthal vorticity, streamlines and the angular momentum shown in
Fig. 4.2 are the same as shown by Atkinson et al. (2019) in figure 4d. These variations
suggest that ωφ is swept up from the bottom boundary layer, and the eye is formed as
a consequence of this upsweep as observed in the previous studies (Oruba et al., 2017,
2018). The conservation of angular momentum suggests that the streamlines and the
angular momentum contours should follow each other in regions with weak diffusion
(Oruba et al., 2017), which is also observed in Fig. 4.2. Specifically, this is seen in
the region above the Ekman layer and outside the eyewall region. These steady-state
results are in accord with the previous works (Oruba et al., 2017, 2018, Atkinson et al.,
2019).

The modified OpenFOAM code is also tested to verify its capability to capture
unsteady behaviours reported in Atkinson et al. (2019). When the heat flux at the
bottom boundary is increased for a given value of E, the eye, identified from the
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Fig. 4.2 The computed radial variation of depth averaged total angular velocity is
compared to the results of Atkinson et al. (2019) in the left frame. The pseudo
colour-map of ωφ/r along with streamlines (solid lines, dashed lines denoted negative
streamlines) and the angular momentum contour (dotted) is shown in the right frame.
The results are for Re = 300 and Pr = E = Γ = 0.1, Case 15 in Table 4.1.

negative streamlines, pinches off from the axis and moves into the annulus. Then, this
pinched-off eye moves towards the axis as the downward flow strength increases leading
to some oscillatory behaviour of the eye. This unsteady behaviour was suggested
to emerge from inertial waves trapped within the eye (Atkinson et al., 2019) and
the modified OpenFOAM code is also able to capture this unsteady behaviour as
demonstrated in Fig. 4.3. The snapshot of ωφ/r contours along with the streamlines
are shown for six instant within one oscillation period, τo from Fig. 4.3a to 4.3f .
Figure 4.3g compares the radial variation of depth-averaged total angular velocity,
which is also time-averaged over an oscillation period, compared here to that of Atkinson
et al. (2019), see their figure 12. The modified code captures the unsteady behaviour
well. It is clear that this code captures the behaviours of tropical cyclone-like vortex in
axisymmetric cases reported in past studies (Oruba et al., 2017, 2018, Atkinson et al.,
2019) is used to conduct corresponding 3D simulations. This will help us to address
the objectives listed in the introduction of this chapter. In total, 81 simulations listed
in Table 4.1 are considered for this study, and typical behaviours discussed in the
following sections are presented using Case 12 as an example since similar behaviours
are observed in other cases.
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Fig. 4.3 ωϕ/r contour along with streamlines for an oscillatory eye over one oscillation
period τo for case 16 in Table 4.1 with Re = 480, Pr = E = Γ = 0.1.
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4.2 Results

4.2.1 Flow Fields

The 3D simulations are run for several tens of rotation time (τ = tΩ), and their
durations are determined by monitoring the temporal evolution of three components
of volume-averaged kinetic energy per unit mass, ⟨Ki⟩v, in the computational domain.
The simulations are stopped when ⟨Ki⟩v does not change over a period of about 40τ
to 50τ . The time-averaged statistics required for the analysis discussed below are
constructed using the data collected over the final 50τ period.

Figure 4.4 shows the time evolution of K∗
i ≡ ⟨Ki⟩v/ (ΩR)2 for Case 12 with both

insulated and isothermal sidewalls conditions. If one uses V 2 for normalisation as K+
i =

Fig. 4.4 Time evolution of K∗
i = ⟨Ki⟩v/ (ΩR)2 for Case 12 with insulated (left) and

isothermal (right) sidewalls. The red lines are for the axisymmetric counterpart.

⟨Ki⟩v/V 2 then K∗
i = K+

i Ro
2Γ2. This figure shows that K∗

i evolves similarly for both
boundary conditions until τ = 15 starting from the initial quiescence. Subsequently,
the energies start to level off for the insulated condition and the horizontal energies,
K∗

r and K∗
φ, are dominant compared to the vertical component. The ratio of K∗

r /K
∗
φ

is about 1 and K∗
r /K

∗
z is about 3. On the other hand from τ ≈ 15 onwards, K∗

φ and
K∗

z decrease while K∗
r increases for the isothermal condition. The axial and azimuthal

components level off at about τ = 40 but the radial component increases rapidly before
levelling off at about 45τ as shown in Fig. 4.4. The radial kinetic energy is about 4.4
and 11 times larger than the azimuthal and axial components respectively. Hence,
the sidewall thermal boundary condition influences the kinetic energy (rather than
the flow field) evolution strongly and the physical reasons for this are explained later
in this chapter. However, these thermal boundary conditions do not play a role in
axisymmetric simulations as reported in earlier studies Oruba et al. (2017, 2018), which
is also verified here using the axisymmetric counterparts listed in Table 4.1. However,
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K∗
i evolves rapidly to its steady state value in the axisymmetric counterpart as shown

in Fig. 4.4b. Since the 3D simulations also lead to tropical cyclone-like vortex which is
nearly axisymmetric, the differences in the steady state values of normalised kinetic
energy components are negligible between the 3D and axisymmetric counterparts.
These axisymmetric results and the reasons for the rapid spin up are discussed in the
next subsection.

Fig. 4.5 Contours of azimuthally averaged radial (in a and d), tangential (b, e) and
axial velocities (d,f) for insulated (top row) and isothermal (bottom row) sidewalls at
τ = 100 form Case 12.

Figure 4.5 shows typical spatial variations of azimuthally averaged velocity compo-
nents in Case 12 with insulated and isothermal sidewalls. The azimuthally averaged
quantity Q is obtained using ⟨Q⟩ =

∫ 2π
0 Qdφ/2π. The averaged velocities are nor-

malised using the rotational velocity, ΩR, and the results are shown for τ = 100.
Figures 4.5a and 4.5d shows that the maximum ⟨u∗

r⟩ is nearly 4 times smaller for the
insulated sidewall compared to its isothermal counterpart. The spatial variation of
this radial flow is drastically different, and there is radially inward flow extending to
the centre near the bottom boundary in the isothermal case. In addition, there is a
radial outflow near the top boundary, and these flow patterns are absent when the
sidewall is insulated. The radial flow pattern is shown in Fig. 4.5d is typical when
there is poloidal circulation, implying a tropical cyclone-like vortex, in the domain.

The maximum value of ⟨u∗
φ⟩ is nearly 8 times larger for the isothermal case compared

to that for the insulated sidewall, although the minimum values remain more or less the
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same as observed in Fig. 4.5b and 4.1e. Also, higher azimuthal velocity is concentrated
towards the inner region of the domain along with negative ⟨u∗

φ⟩ at a larger radius
as seen in Fig. 4.5e. The white iso-line is for ⟨u∗

φ⟩ = 0, and this azimuthal flow is
organised similarly to for a tropical cyclone-like vortex. However, the flow is quite
random when the sidewall is insulated, as seen in Fig. 4.5b. The spatial variation
of ⟨u∗

z⟩ shown in Fig. 4.5f complements the radial flow pattern shown in Fig. 4.5d
demonstrating the presence of a domain-filled poloidal (r–z plane) circulation when
the sidewall is isothermal. Clearly, the flow has an organised structure resembling
a tropical cyclone-like vortex shown in Fig. 4.1, but it is quite unorganised for the
insulated boundary condition. This strong influence of the sidewall thermal boundary
condition is not observed for the axisymmetric counterparts since a tropical cyclone-like
vortex is always seen as listed in Table 4.1.

Fig. 4.6 Instantaneous ∆T = T − Tref distribution at two different heights and az-
imuthally averaged variation, ⟨∆T ⟩, in the poloidal plane for (a) insulated and (b)
isothermal sidewall conditions shown for τ = 100.

The organised 3D flow in the case of the isothermal sidewall can be confirmed further
by studying the spatial variation of azimuthally averaged ∆T = T −Tref = θ−βz. The
spatial variation of instantaneous ∆T , is shown in the poloidal plane in Fig. 4.6 a and
4.6b for the insulated and isothermal sidewall conditions respectively. For the insulated
condition, hot fluid is concentrated in some parts with cold fluids in other parts of
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the sidewall, as seen in Fig. 4.6a. Also, the distribution in the poloidal plane shows
that the hot fluid is present in the region 0.4 ≤ r/R ≤ 0.8 leading to the formation of
counter-rotating large-scale vertical rolls as suggested by Fig. 4.5c (also see Fig. 4.22
discussed later). The contours of ∆T are symmetric for the isothermal sidewall with
hot fluid in the central region at all heights, as shown in Fig. 4.6b which is seen clearly
in ⟨∆T ⟩ variation shown in the poloidal plane. This ensures a single poloidal flow in
the whole domain, as observed from the velocity contours shown in Figs. 4.5d to 4.5f .

Fig. 4.7 Spatial variation of ⟨ω∗
φ⟩ = ⟨ωφ⟩/Ω along with poloidal flow streamlines for (a)

insulated and (b) isothermal sidewalls of Case 12 at τ = 100.

The poloidal flow (ur, uz) is embodied in the azimuthal vorticity, ωφ = ∂ur/∂z −
∂uz/∂r. Figure 4.7 shows the azimuthally averaged ωφ is also normalised using Ω for
Case 12 with insulated and isothermal sidewalls. The results are shown for τ = 100
along with the poloidal flow streamlines. The vorticity is positive near the sidewall
(outside the Stewartson layer). It changes gradually to a large negative value near the
streamlines, suggesting the radial velocity is weaker than uz. There is more than one
vortex in the domain, and these variations are consistent with the velocity variations
shown in Figs. 4.5a and 4.5c.

For the isothermal sidewall a uniform negative vorticity is observed within the
Ekman layer as observed for the axisymmetric counterpart (see Figs. 4.2 and 4.3) in past
studies (Oruba et al., 2017, 2018, Atkinson et al., 2019). The region above the boundary
layer has positive vorticity arising from the variations of ur in z and uz in r directions
(see Fig. 4.5). The high positive vorticity near the sidewall (outside the Stewartson
layer) arises from the strong variation of axial velocity in the radial direction. The
conical region of negative vorticity is swept up as observed in axisymmetric calculations
of Oruba et al. (2017) to form the eyewall. The streamlines of azimuthally averaged
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poloidal flow shown for the isothermal case suggest an organised flow with structures
depicted in Fig. 4.1.

Fig. 4.8 The radial profile of Roφ (left) and Ror (right) defined in Eq. (4.4).

The strength of horizontal flow at a given radial location can be quantified through
radial and tangential Rossby numbers defined as

Ror(r) = ⟨ur⟩min

ΩH ;Roφ(r) = ⟨uφ⟩max

ΩH (4.4)

respectively. The symbol ⟨Q⟩ denotes the time and azimuthally averaged value of
Q. The minimum value of this averaged radial velocity at a given radial location is
⟨ur⟩min and ⟨uφ⟩max is the maximum value of ⟨uφ⟩ at a specific r. Figure 4.8 shows
the radial variations of Roφ and Roφ for Case 12 with the isothermal and insulated
sidewalls, and the corresponding axisymmetric case. The value of Roφ increases and
reaches a maximum value of about 12 (see Table 4.1) at r/R ≈ 0.15 and then decreases
gradually towards 0 to satisfy the no-slip condition at the isothermal sidewall. For the
insulated case, Roφ is very small irrespective of the radial location. A typical variation
of Roφ with its value of order 10 near the centreline was suggested to be required for
the formation of tropical cyclone-like vortex (or eyewall) by Oruba et al. (2017) using
their axisymmetric calculations, and such a variation is seen in 3D simulations only for
isothermal sidewall. The maximum value of this Rossby number, Romax

φ , for the various
flow conditions investigated here is listed in Table 4.1 for both axisymmetric and
3D-isothermal cases. One sees that the axisymmetric cases have larger values (about
3% in Case 12 to 186 % in Case 19) compared to their 3D-isothermal counterparts.
This behaviour reflects the observation of Moeng et al. (2004) who has noted that
a flow evolving in an axisymmetric rotating system is overly efficient in generating
buoyancy fluxed, leading to rapid spin-up and larger uφ values (or intensity) while
studying the planetary boundary layers. The radial variations of Ror shown in Fig. 4.8
suggests a weaker radial flow in the insulated case, an observation consistent with
Fig. 4.7 compared to the isothermal counterpart. Ror value is uniform for most of
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the domain, and it reached a maximum at r/R ≈ 0.9 for both axisymmetric and
3D-isothermal cases. The convective flow is initiated by buoyancy in this three 3D-
isothermal, 3D-insulated and axisymmetric scenarios, but the flow is shaped by the
spatial variations induced by the Coriolis force and its relative strength compared to
buoyancy. A larger value of Ror implies stronger radial flow (higher magnitude of
ur) which yields a larger 2Ωur, influencing uφ spatial variation (see Eqs. (4.6) and
(4.9) discussed later). This yields the variation of Roφ, a value of order 10 near the
centreline and of order 1 near the sidewall, required to form tropical cyclone-like vortex.
To further probe the influences of sidewall thermal boundary conditions on shaping
the flow into 3D tropical cyclone-like vortex or convective rolls, the azimuthal mode
decomposition is performed to understand the evolution of azimuthal modes between
the two sidewall boundary condition. Also, momentum budgets are analysed for these
two sidewall boundary condition.

Azimuthal Mode Decomposition - Insulated Sidewall

Figure 4.6(b) shows that there is an organised flow in the case of the isothermal sidewall
with hot fluid concentrated towards the centre and the cold fluid near the circumference
of the domain, which ensures the poloidal flow setup in the domain required for the
formation of a tropical cyclone-like vortex. On the other hand, in the case of the
insulated sidewall, the hot and cold fluids are concentrated alternatively along the
periphery of the cylindrical domain preventing the formation of poloidal flow, as seen
in Fig. 4.6(a). In order to further see whether the pattern seen in ∆T for insulated
sidewall remains the same at different time instant once the flow is fully evolved, the
time evolution of spatial contour of ∆T is shown in Fig. 4.9 for two different axial planes
z/H = 0.25 and 0.75 from Case 12 in Table 4.1. The spatial pattern of ∆T seen at
τ = 100 remains the same for three other different times as seen at τ = 115, 130, & 145,
except the ∆T pattern of alternating hot and cold fluid along the circumference is seen
to move in a clockwise/retrograde direction (opposite to the direction of the background
rotation, Ω) in time. It is visible if we can track the location of the maximum value of
the ∆T contour in time, denoted by a small circle in Fig. 4.9. The instantaneous ∆T
contour and its variation in time are depth independent, as seen from the z/H = 0.25
and 0.75 contours shown in Fig. 4.9. Azimuthal mode decomposition is performed
on ∆T next to understand the distribution of ∆T among different azimuthal modes
m with insulated sidewall. This will give insight into the spatial pattern observed in
Fig. 4.9 which inhibits the formation of poloidal flow in the domain.
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Fig. 4.9 The evolution of ∆T at τ = 100, 115, 130 and 145 at two different heights
z/H = 0.25 (bottom row) and 0.75 (top row) for Case 12 in Table 4.1.

Azimuthal mode decomposition performed through Fast Fourier transform in φ

direction (with m modes) using ∆T at two different axial planes z/H = 0.25 and 0.75 as
a function of time. This gives insight into the distribution of ∆T among axisymmetric
(m = 0) and asymmetric modes (m > 0) and also the dominant asymmetric mode
present in the flow in the case of the insulated sidewall. The spatial average of square

of Fourier coefficients of azimuthal modes, | ˆ∆Tm|
2
, at two different heights z/H = 0.25

and 0.75 for first 8 azimuthal modes of ∆T is shown in Fig. 4.10. The time evolution
of azimuthal mode distribution remains more or less the same with height. The flow
starts to evolve till τ ≈ 10. At τ > 10, higher asymmetric and axisymmetric modes
start to develop. The axisymmetric mode m = 0 remains the dominant mode until
τ ≈ 35. After that, the asymmetric mode, m = 2, begins to become dominant for
τ > 40 both the axisymmetric mode and m = 2 asymmetric modes contribute to ∆T
with m = 2 being the dominant mode. The distribution of ∆T into the dominant
asymmetric mode m = 2 prevents the symmetric organisation of flow into a large-scale
tropical cyclonic vortex with m = 0. The observation of m = 2 to be the dominant
mode for ∆T from the azimuthal mode decomposition shown in Fig. 4.10 complements
the observation seen in the spatial contour of instantaneous ∆T depicted in Fig. 4.9
where two regions of alternating hot and cold fluid is observed.

Spatial distribution of the structures for the dominant asymmetric mode as observed
in Fig. 4.10 can be educed by taking inverse FFT with Fourier coefficients for mode
number of interest, ∆T̂ (m). The data spanning the entire radius is used for FFT in φ
direction so that spatial extent of these structures can be seen at the two axial locations
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Fig. 4.10 The time evolution of spatial-averaged square of Fourier coefficient of azimuthal

modes m = 1 to 8 computed for ∆T denoted by | ˆ∆Tm|
2
, at two different heights z/H

= 0.25 and 0.75 for Case 12 in Table 4.1.

z/H = 0.25 and 0.75. Figure 4.11 shows these structures obtained for τ = 100, 115, 130
and 145. It is observed here that the dominant asymmetric mode moves in a retrograde
direction with the maximum magnitude (marked by small circle) is concentrated near
the periphery of the domain. Also, the spatial structures shown here are observed to
be depth independent. Thus, the spatial ∆Tm=2 pattern of the dominant asymmetric
mode complement the instantaneous ∆T contour shown in Fig. 4.9. It is also seen in
Fig. 4.11 at τ = 130 that there is an emergence of spiral structure with two arms near
the core of the domain. In order to further understand about the spiral pattern seen in
Fig. 4.11 the continuous time evolution of ∆Tm=2 at z/H = 0.75 between τ = 88 and
128 is shown as movie (see the video attached titled “Ch4-movie1”). The two-arm spiral
in the core can be clearly seen in the movie, which rotates very fast in the retrograde
direction compared to the flow near the circumference of the cylinder. The sense of
rotation of the spiral is such that resulting wave propagated out from the spiral core.

Figure 4.12 shows the contour plot for logarithm of frequency-wavenumber spectrum
computed from ∆T , i.e., logχ, where χ = |∆T̂ (m, f)|2/|∆T̂ (m, f)|2max for two radial
locations r/R = 0.2 & 0.4 at two heights z/H = 0.25 & 0.75. The spectral content
is dominant for the lower azimuthal modes 0 ≤ m ≤ 4 at both z/H = 0.25 & 0.75.
The frequency distribution among the dominant lower azimuthal modes is seen to be
decreasing as one moves radially outwards from r/R = 0.2 to 0.8 The higher values
of logχ is seen upto f/Ω = 2.5 at r/R = 0.2, whereas it reduces f/Ω = 2 & 1 at
r/R = 0.4 and 0.8 respectively. The retrograde motion of the m = 2 asymmetric mode
of ∆T is quantitatively measured by computing the peak frequency f+ at different

1The movie Ch4-movie shows the time evolution of ∆Tm=2 at z/H = 0.75 between τ = 88 and 128
for case 12 in Table 4.1 with insulated sidewall. The movie is available at https://www.dropbox.
com/s/tytgk5ghe79zz27/Ch4-movie.mp4?dl=0.

https://www.dropbox.com/s/tytgk5ghe79zz27/Ch4-movie.mp4?dl=0
https://www.dropbox.com/s/tytgk5ghe79zz27/Ch4-movie.mp4?dl=0
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radial locations from frequency-wavenumber spectrum of ∆T at m = 2 (as shown with
dashed lines in Fig. 4.12). The radial variation of the peak frequency f+ is shown in
Fig. 4.13. The frequency calculated was found to be depth invariant complementing
the observation seen in the spatial contour in Fig. 4.11 for ∆Tm=2. As seen from the
movie, the two-arm spiral in the inner core of the domain rotates at a frequency larger
than the background rotation. The rotational frequency of the spirals is observed
to be greater than the background rotation in the inner core region till r/R < 0.4.
This is also inline with the observation in Fig. 4.12. The ratio of maximum to the
minimum frequency of rotation of the spirals was found to be 120. Thus, there is a
large variation in the frequency of rotation within the domain for the dominant mode
m = 2. The frequency decreases exponentially as one moves towards a larger radius
from the centre. Thus, the distinct hot and cold fluid pattern concentrated near the
sidewall takes longer to complete one cycle, as observed in Fig. 4.9 and 4.11. The
m = 2 asymmetric mode is the dominant mode when the flow is fully evolved for all
the 3D cases in Table 4.1 with insulated sidewall.

The presence of spiral inner core with single and multi-armed spirals was also
previously observed in very low aspect ratio non-rotating Rayleigh-Benard experiments
(Γ = 0.008-0.05) (Bodenschatz et al., 1991, Assenheimer & Steinberg, 1994, Plapp &
Bodenschatz, 1996, Plapp et al., 1998). It was observed in those studies that spiral
cores rotates in the retrograde direction with a frequency considerably higher than
the frequency of the overall spiral rotation (Plapp & Bodenschatz, 1996). The present
results for the m = 2 asymmetric mode described in this section for a rotating Rayleigh-
Benard study are consistent with the observation from the previous experimental
studies in a Rayleigh-Benard setup. Therefore to summarise, the emergence of the
dominant non-axisymmetric retrograde mode m = 2 and a spiral core inhibits the
formation of an axisymmetric structure. These features are absent in the case with
isothermal sidewall, where strong poloidal flow is observed helping the emergence of
large-scale vortex. Since the previous calculations with insulated sidewall (Oruba
et al., 2017, 2018, Atkinson et al., 2019) are axisymmetric, the asymmetric modes are
excluded inherently. Thus, these m = 2 spiral inner core regions are not observed as
seen in the present 3D study. Thus, the sidewall thermal boundary condition does
not seem to influence the formation of tropical cyclone-like vortex in the previous
axisymmetric studies (Oruba et al., 2017, 2018, Atkinson et al., 2019). The momentum
budget analysis is carried out next to shed further insights and to understand the force
balance for the tropical cyclone-like vortex especially near the sidewall.
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Fig. 4.11 The evolution of ∆T for the dominant mode m = 2 denoted by ∆Tm=2, at τ
= 100, 115, 130 and 145 at two different heights z/H = 0.25 (bottom row) and 0.75
(top row) for Case 12 in Table 4.1.

Fig. 4.12 Contour plot of frequency-wavenumber spectrum for case 12 in Table 4.1
where χ = |∆T̂ (m, f)|2/|∆T̂ (m, f)|2max
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Fig. 4.13 The radial variation of peak frequency f+ for the dominant asymmetric mode
m = 2 normalised with background rotation Ω measured from frequency-wavenumber
spectrum as shown in Fig. 4.12 at z/H = 0.25 (×) and 0.75 (◦) for case 12 in Table 4.1.

4.2.2 Momentum Budget

For the budget analysis, the instantaneous momentum equation, Eq. (4.1) is written
in cylindrical coordinate system as,

∂ur
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where ∇2 = ∂2

∂r2 + 1
r

∂
∂r

+ 1
r2

∂2

∂φ2 + ∂2

∂z2 is the Laplacian operator in the cylindrical system.
Any dependent variable Q can be expressed as the sum of its azimuthal average ⟨Q⟩
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and a fluctuation (asymmetry part) Q′ and ⟨Q′⟩ = 0 by definition. The equations for
azimuthally averaged velocities are
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∂t︸ ︷︷ ︸
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In the above equations, the transient term of ⟨ui⟩ is denoted using Ti, the azimuthal
mean advection is As,i, the advection by the asymmetry motion is Aa,i, the contributions
of pressure gradient, Coriolis force, buoyancy and the viscous diffusion are Pi, Ci, Bz,
and Di respectively.

Figures 4.14 and 4.17 show a balance diagram for the three azimuthally averaged
momentum equations, Eqs. (4.8) to (4.10) respectively. These radial variations are
shown for τ = 100 in two axial planes located at z/H = 0.25 and 0.75 for Case
12 in Table 4.1. The values are normalised using Ω2R. The relative behaviour and
dominance of these quantities are similar for the two heights except for some difference
in the azimuthal momentum balance because of the change in the radial flow directions
(inward at z/H = 0.25 and outward at 0.75) in the isothermal case. Also, there are
some differences in the magnitudes of these terms at the two heights shown in the
figures.
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Fig. 4.14 Radial distribution of various terms in Eqs. (4.8) to (4.10) in z/H = 0.25
plane at τ = 100 from Case 12 for 3D simulations with insulated (top row) and
isothermal (bottom row) sidewall BC. The axial component is shown in the first
column. Radial and azimuthal momentum terms are shown in the second and third
columns respectively.

Fig. 4.15 Radial distribution of different terms in symmetric advection term As,i in
Eqs. (4.8) to (4.10) for Case 12 in Table 4.1 3D insulated (top row) and isothermal
(bottom row) sidewall BC at z/H = 0.25 and τ = 100.



4.2 Results 59

Fig. 4.16 Radial distribution of different terms in asymmetric advection term Aa,i in
Eqs. (4.8) to (4.10) for Case 12 in Table 4.1 3D insulated (top row) and isothermal
(bottom row) sidewall BC at z/H = 0.25 and τ = 100.

Fig. 4.17 Radial distribution of various terms in Eqs. (4.8) to (4.10) in z/H = 0.75
plane at τ = 100 from Case 12 for 3D simulations with insulated (top row) and
isothermal (bottom row) sidewall BC. The axial component is shown in the first
column. Radial and azimuthal momentum terms are shown in the second and third
columns respectively.
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The radial variations of axial momentum budget for the insulated and isothermal
conditions are shown in Figs. 4.14(a) and 4.14(d) respectively. The pressure gradient,
Pz and the buoyancy, Bz are of the same magnitude and these two curves are on
top of each other. The contribution of As,z is negligible, indeed it is of the order of
0.05, as seen in Fig. 4.14(a). The asymmetric advection term, Aa,z, present in the
insulated case has the same magnitude as the viscous diffusion. This term can also be
written as Aa,z = ∂⟨u′

r u
′
z⟩/∂r + ∂⟨u′

z u
′
z⟩/∂z + ⟨u′

r u
′
z⟩/r by rearranging it after using

the continuity equation. The large contribution of Aa,z near the centreline for both
insulated and isothermal conditions comes from ⟨u′

r u
′
z⟩/r due to 1/r (see Figs. 4.16(a)

& 4.16(d)). The small increase in As,z near the isothermal sidewall in Fig. 4.14(d) is
because of stronger downward flow near the sidewall due to poloidal circulation leading
to non- negligible mean advective fluxed of axial momentum in the radial and axial
directions, see As,z term in Eq. (4.10). A similar behaviour is observed for a larger
height (see Fig. 4.17(a) and 4.17(d)). However, the magnitude of these advective and
diffusive terms is smaller compared to Pz and Bz contributions. Thus, the predominant
balance for the axial momentum is through the hydrostatics for either sidewall thermal
boundary conditions.

The radial momentum budgets are shown in Figs. 4.14(b) and 4.14(e) for the
insulated and isothermal boundary conditions respectively. The predominant balance is
among the asymmetric advection, pressure gradient and viscous diffusion with negligible
contributions from the Coriolis and symmetric advection for the insulated sidewall.
The asymmetric advection and viscous diffusion are of similar magnitude near the
centreline for both conditions. Analysing various components of Aa,r (see Figs. 4.16(b)
& 4.16(e)) shows that the relative large contribution of Aa,r near the centreline is
from ⟨u′ 2

φ + u′ 2
r ⟩/r because of 1/r. All other terms in the radial momentum equations,

Eq. (4.8), are negligible for the insulated condition as seen in Fig. 4.14(b), implying
that the radial flow is weaker compared to the axial flow. This is consistent with
the insight from Fig. 4.7. On the other hand, the pressure gradient and As,r have
a larger contribution compared to other terms in Eq. (4.8). It is observed that the
dominant contribution comes from the centrifugal term, ⟨uz⟩∂⟨ur⟩/∂z contribution is
about half of the centrifugal term, and the radial advection term is negligible (1/20
of the centrifugal term) in this region. However, the predominant contribution comes
from these two advective fluxes, and the centrifugal term is negligible for r/R ≥ 0.8
and this As,r contribution is balance predominantly by Pr as seen in Fig. 4.14(e). It
is important to note that the magnitude of Pr in the isothermal case is an order of
magnitude larger compared to that of the insulated counterpart. At a larger height,
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these relative behaviours do not change much except for some change caused by the
switch in the radial flow direction for isothermal conditions, as shown in Fig. 4.17(e).
The results are shown in Fig. 4.17(b) are similar to those in Fig. 4.14(b).

Figures 4.14(c) and 4.14(f) shows the azimuthal momentum budgets for the insu-
lated and isothermal sidewalls respectively. All the terms contribute equally for the
insulated condition, and this variation does not suggest an organised azimuthal flow as
seen in Fig. 4.5(b). The uφ is organised as seen in Fig. 4.5(f) and hence the asymmetric
advection, Aa,φ is negligible as seen for the radial and axial components. All other
terms contribute equally. However, the relative increase in Aa,φ near the centreline
comes from ⟨u′

φu
′
r⟩/r (see Figs. 4.16c & 4.16(f)) similar to that seen for other two

components. A larger contribution to As,φ comes from ⟨ur⟩⟨uφ⟩/r (see Figs. 4.16(c) &
4.16(f)) for r/R ≤ 0.4 where ⟨ur⟩ is negative as seen in Figs . 4.5(d). Hence, As,φ is
negative in this region and it is positive for r/R ≥ 0.5 as seen in Fig. 4.14(f) because
of the radial flux of azimuthal momentum while remaining two terms in As,φ are small.
The Coriolis term Cφ = 2Ω⟨ur⟩ acts as a source and its substantial contribution comes
from large negative ⟨ur⟩ resulting from the enhanced radial pressure gradient in the
isothermal case. Also, the magnitude of the azimuthal momentum terms is smaller
than the axial and radial momentum terms. Hence, the flow is shaped mainly by
the axial and radial momentum balance, governing the poloidal flow to form tropical
cyclone-like vortex. The sidewall thermal boundary conditions heavily influence this
interplay in 3D flows. This comes mainly through the link of a pressure gradient to a
thermal gradient near the sidewall.

From the hydrostatic balance observed in Figs. 4.14(d) and 4.17(d) for the axial
momentum equation, Eq. (4.10), one gets ∂⟨P ⟩ ∼ ρoαg⟨θ⟩∂z suggesting that one
can write ∂⟨P ⟩/∂r ∼ ρoαgz1∂⟨θ⟩/∂r at a given height z1. This is verified to hold for
r/R > 0.9 by analysing the simulation results (see Fig. 4.18). Also, one must be
cautious in interpreting this equation in the light of the radial momentum balance
depicted in Figs. 4.3(d) and 4.17(d) showing Pr ∼ As,r near the sidewall. This implies
that the symmetric advection near the sidewall is driven by the thermal boundary
condition (Pr ∼ ∂θ/∂r) as one can guess intuitively. The ∂θ/∂r = 0. case does not
yield sufficiently large Pr to drive symmetric radial advection and hence the poloidal
flow does not ensue. Figure 4.19 shows the radial variation of momentum balance in
the axisymmetric counterparts of Case 12 with the insulated and isothermal sidewalls.
The asymmetric component, Aa,i, is zero since they are absent in the axisymmetric
flow equations. These terms’ relative behaviour and variation are similar for both
conditions except for some small differences near the sidewall, which do not affect
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Fig. 4.18 Radial distribution of Pr and αgz∂⟨θ⟩/∂r in z/H = 0.25 and z/H = 0.75
plane at τ = 100 from Case 12 for 3D simulation with isothermal sidewall BC.

Fig. 4.19 Radial distribution of various terms in Eqs. (4.8) to (4.10) in z/H = 0.25
plane at τ = 150 from Case 12 for axisymmetric simulation with insulated (top row)
and isothermal (bottom row) sidewall BC. The axial component is shown in the first
column. Radial and azimuthal momentum terms are shown in the second and third
columns respectively.

the bulk behaviour. For the axial momentum, Pz and Bz are of similar magnitude
for r/R ≤ 0.7 and Dz is very small. The contribution of Bz is reduced for r/R > 0.8
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(near-wall region) and As,z also contributes significantly to balance Pz as seen in Fig.
4.19(a) and 4.19(d). This behaviour is contrastingly different from the 3D counterparts
shown in Fig. 4.14 and hence once cannot relate ∂P/∂r to ∂θ/∂r near the sidewall
in the axisymmetric cases as we did for the 3D simulations. Also, the radial and
azimuthal momentum balances are shown in Fig. 4.19 for the axisymmetric cases is
similar to that shown for 3D- isothermal simulations in Figs. 4.14(e) and 4.14(f).
Hence, the reduced degree of freedom in 2D-axisymmetric cases leads to stronger axial
and radial advection in the near-wall region, leading to stronger poloidal flow. This is
also reflected in the ratio of azimuthal to poloidal kinetic energy listed in Table 4.3 for
a few cases. The percentage difference between the axisymmetric and 3D-isothermal
counterparts suggests that the poloidal flow is stronger in the axisymmetric case. This
yields a stronger eye, suggested by Roφ results in Fig. 4.8 and this is consistent with
the observation of Moeng et al. (2004) as noted earlier. The percentage difference
for Case 27 is not listed in Table 4.3 since no tropical cyclone-like vortex is seen for
3D-isothermal simulation, but it emerges in the axisymmetric calculation as noted in
Table 4.1.

Table 4.3 Typical values for ratio of azimuthal kinetic energy, K∗
φ, to poloidal kinetic

energy, K∗
P = K∗

r +K∗
z .

Case K∗
φ/KP

Axisymmetric 3D-iso % difference
6 0.23 0.26 -11.5
12 0.23 0.25 -8
18 0.21 0.24 -12
27 0.32 0.72 -

To summarise the discussion in this section, the radial pressure gradient near the
sidewall strongly influences the thermal boundary condition in 3D simulations. This
pressure gradient drives a waker radial inflow for the insulated condition resulting
in convective rolls in the domain, which are typical for this setup. A stronger radial
thermal gradient near the sidewall under isothermal conditions leads to a stronger
radial pressure gradient which drives the stronger poloidal flow. It is to be noted that
in the 3D simulations, either the free-slip or no-slip velocity boundary condition for
the sidewall does not change the flow evolution in the cases with both insulated and
isothermal sidewall boundary conditions. It is only the sidewall thermal boundary
condition that dictates the flow evolution for the parameter range explored in this
work.
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4.2.3 Flow Behaviour near Sidewall

The effect of sidewall thermal boundary condition on the flow is felt through radial
pressure gradient in the near-wall region. This pressure gradient drives the radial
flow shaping the poloidal circulation, and hence it is instructive to understand the
near-wall flow structures when the sidewall is isothermal or insulated. This analysis is
performed through Fast Fourier Transform (FFT) in φ direction (with m modes) using
u′∗

φ and u′∗
z collected in the regions 0.9 ≤ r/R ≤ 1.0 at various instants. The power

spectra constructed thus are shown in Figs. 4.20 and 4.21 for u′∗
φ and u′∗

z respectively.
The results are shown for both isothermal and insulated conditions. The spectral
distribution is similar for both conditions at τ = 15, with the 4th or 5th mode having
the peak value. The peak value moves towards the higher mode as the flow evolves in
time and settles at m = 18 when the steady-state is reached for the isothermal condition.
The volume-averaged kinetic energies also reach a steady-state value by about τ = 50
as shown in Fig. 4.4. The spectrum is quite broad for the insulated condition. The u′∗

z

spectrum depicted in Fig. 4.21 also shows similar behaviour. However, this spectrum
is broader for the insulated condition, suggesting that the structures as large as the
computational domain and much smaller size (m = 20) have larger energies.

The spatial distribution of these structures can be deduced by taking FFT with
Fourier coefficient for mode numbers of interest, û′∗

φ (m), and using appropriate threshold
values. The data spanning the whole domain is used for FFT in φ direction so that the
spatial extent of these structures can be seen. Figure 4.22(a) shows these structures
obtained at τ = 100 using û′∗

φ (m = 18) and using threshold values of u′∗
φ = 0.1 and

−0.1 for the isothermal condition. These structures are seen only near the sidewall and
correspond to a retrograde wave. The structures deduced as above using û′∗

z (m = 15)
are shown in Fig. 4.22(b) for the insulated condition. Since u′∗

φ is weak compared
to the axial component as suggested by the momentum balance in Figs. 4.14 and
4.17, u′∗

z is used to emphasis the presence of vertical rolls for the insulated condition.
These structures extend well into the domain interior and feel the background rotation
at a larger radius. These modal structures are also compared to the corresponding
two iso-surfaces of u′∗

φ and u′∗
z shown in Figs. 4.22(c) and 4.22(d) extracted directly

from the simulation data (includes all the modes). It is clear that the well-organised
structures forming a retrograde wave are coming from the dominant mode, m = 18,
for the isothermal condition. The vertical rolls for m = 15 shown in Fig. 4.22(b) are
part of chaotic convection for the insulated condition. Therefore, the flow is unable to
organise to yield a strong poloidal circulation.
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Fig. 4.20 Azimuthal power spectrum of u′∗
φ in the region 0.9 ≤ r/R ≤ 1.0 at 4 different

times from Case 12 with isothermal and insulated sidewalls. The values are normalised
using the respective maximum and these values are 0.9 (isothermal) & 0.3 (insulated)
at τ = 15; 0.8 & 0.25 at τ = 30; 0.65 & 0.22 at τ = 40; and 0.6 & 0.23 at τ = 50.
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Fig. 4.21 Azimuthal power spectrum of u′∗
z in the region 0.9 ≤ r/R ≤ 1.0 at 4 different

times from Case 12 with isothermal and insulated sidewalls. The values are normalised
using the respective maximum and these values are 0.8 (isothermal) & 0.7 (insulated)
at τ = 15; 0.6 & 0.65 at τ = 30; 0.4 & 0.6 at τ = 40; and 0.3 & 0.5 at τ = 50.

4.3 Summary

In this chapter, the three-dimensional effects and effects of sidewall thermal boundary
condition on the formation of the tropical cyclone-like vortex are studied in detail. The
following conclusions can be drawn from the analysis presented:
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Fig. 4.22 Spatial structures for (a)u′∗
φ = 0.1 (red) and -0.1 (blue) deduced using

û′∗
φ (m = 18) for the isothermal condition and (b)u′∗

z = 0.1 (red) and -0.1 (blue) deduced
using û′∗

z (m = 15) dominant near sidewall for insulated condition. The corresponding
iso-surfaces obtained directly from the simulation data (without involving FFT) are
shown in (c) and (d). The results are shown for Case 12 at τ = 100.

• OpenFOAM code used in this work is able to capture the steady and unsteady
behaviour of tropical cyclone-like vortex in 2D-axisymmetric calculations well
compared to the past studies (Oruba et al., 2017, 2018, Atkinson et al., 2019).

• Tropical cyclone-like vortex formed in 3D simulation were found to be less intense
than the axisymmetric counterpart, consistent with the observation of Moeng
et al. (2004). This is attributed to the stronger poloidal flow in 2D- axisymmetric
calculation due to a lesser degree of freedom of the fluid. This is also the reason
for tropical cyclone-like vortex formation at higher Re in 2D-axisymmetric cases
in Table 4.1.

• The sidewall thermal boundary condition strongly influences the formation of
poloidal flow and tropical cyclone-like vortex in the 3D simulations.

• 3D simulation with insulated sidewall show unorganised, chaotic convection with
convective rolls filling the domain. The presence of asymmetric retrograde mode
of m = 2 with a spiral core in ∆T variations inhibits the formation of organised
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flow in the domain. The corresponding simulations with isothermal sidewall show
organised convection with tropical cyclone-like vortex forming in the bulk of the
domain and well-organised retrograde wave in the periphery. This organised flow
is observed only when Ro ≈ C/Γ is satisfied by the global flow parameters. The
analysis of 27 cases in Table 4.1 suggests that

√
2 ≤ C ≤ 2

√
2 for the conditions

explored here.

• The isothermal sidewall boundary condition leads to a stronger radial thermal
gradient near the sidewall, which directly relates to a stronger radial pressure
gradient (due to hydrostatic balance), which further leads to stronger poloidal
flow in the domain aiding the formation of tropical cyclone-like vortex.

The model used for analysis in this chapter is simple without additional complexities
such as turbulence, stratification, latent heat from moist convection, and air-sea
interaction, which are essential in an actual tropical cyclone. As stated in Chapters 1
and 2 of this thesis, turbulence will be included by considering the large eddy simulation
(LES) paradigm. This task is taken up in the next chapter.



Chapter 5

Timescale for the Cyclogenesis

Rotating flows driven by natural convection between two differentially heated plates are
very rich in physics and have high relevance to geophysical (Marshall & Schott, 1999)
and astrophysical flows (Schumacher & Sreenivasan, 2020) and also to semiconductor
industries (Dold & Benz, 1999). A wide range of flow topologies arise from instabilities,
and past studies provided valuable insights; see the reviews in (Bodenschatz et al., 2000,
Ahlers et al., 2009). For example, bulk convection starts to emerge between two infinitely
long isothermal plates separated by a vertical distance, H, with a temperature difference
of ∆T , rotating at a rate of Ω when the Rayleigh number exceeds a critical value,
Rac = 8.7Ê−4/3 when the Ekman number, Ê, becomes small (Chandrasekhar, 1961).
The Rayleigh and Ekman numbers are defined, respectively, as Ra = αg∆TH3/ (νκ)
and Ê = ν/ (2ΩH2), where α is the thermal expansivity of the fluid with a constant
kinematic viscosity ν and thermal diffusivity κ and g is the gravitational acceleration.
This bulk convection emerges through many bifurcations arising from flow instabilities
sensitive to ∆T , thermal and hydrodynamic boundary conditions, and the Prandtl
number Pr = ν/κ. The flow patterns and structures evolving through these bifurcations
were investigated in several past direct numerical simulation (DNS) (Horn & Schmid,
2017, de Wit et al., 2020, Zhang et al., 2020, Favier & Knobloch, 2020) and experimental
(Zhong et al., 1991, Ecke et al., 1992, Ning & Ecke, 1993, Zhong et al., 1993, Liu & Ecke,
1997) studies. DNS studies have also shown that depth invariant long-lived cyclonic
large scale vortices (LSV) form when Ra are several times larger than Rac for a given
Ekman number imposing strong enough rotational constraints on the convective flow
structures (Guervilly et al., 2014, Favier et al., 2014, Couston et al., 2020, Guzmán
et al., 2020). These LSVs have been observed for Boussinesq (Guervilly et al., 2014,
Favier et al., 2014) and two-layer stratified fluids (Couston et al., 2020) regardless of
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the hydrodynamic boundary conditions (Guzmán et al., 2020). However, it is unclear
if these LSVs have eye and eyewall structures typical of tropical cyclones or hurricanes.

The upsweep of the bottom boundary layer by strong poloidal flow was shown to
form eye and eyewall in axisymmetric rotating convection of a Boussinesq fluid (Oruba
et al., 2017, 2018), which was also suggested in Smith (2005). This was observed only
when (i) the convective Reynolds number Re =

√
Ra/Pr = V H/ν, where V is the

buoyancy velocity scale, is sufficiently large; (ii) the Ekman number, E = ν/ (ΩH2)
is sufficiently small, and (iii) the Rossby number, Ro = ReE, is between a lower and
an upper bound (Oruba et al., 2018). The eye was also observed to trap inertial
waves leading to its oscillation when the thermal forcing on the bottom surface was
increased (Atkinson et al., 2019). These observations were made in axisymmetric
simulations of rotating laminar convection of a Boussinesq fluid with the following
boundary conditions. The no-slip bottom and outer radial boundaries had constant
uniform heat flux and insulating conditions. The stress-free top boundary had a
constant uniform heat flux condition. Despite this recent advance in our understanding,
the statement of Emanuel (1991), “no laboratory analogue for tropical cyclone has been
discovered,” made 30 years ago still holds. This is because an answer to the question
“when does a strong poloidal flow emerge in rotating convection to form tropical
Cyclone-like vortex?” is unclear. In the last chapter, it was seen from 3D laminar
simulations that by choosing an appropriate sidewall thermal boundary condition,
organised flow with a tropical cyclone-like vortex is seen when Ro ≈ C/Γ is satisfied
by the global flow parameters. It is still unclear when the initially quiescent flow
starts to organise itself into a large-scale tropical cyclone-like vortex. It is necessary
to know the timescale of this cyclogenesis process. It can help DNS practitioners and
experimentalists with the expected runtime of the experiments and the time period at
which cyclogenesis is expected. This can help them to concentrate on the particular
time period of the experiments to extract relevant data so that the hydrodynamic
intricacies in the tropical cyclone-like vortex formation and dynamics can be unravelled.
Since the formation of a tropical cyclone-like vortex from a quiescent initial condition
is a long process and it takes several 100s of the rotation time, it is important to
know the estimated time taken for several processes involved in cyclogenesis. In this
chapter, an attempt is made to come up with a timescale for cyclogenesis by running a
simulation spanning several orders of magnitude of flow parameters and analysing the
simulation data. Thus, the objectives of this chapter are:

1. To simulate a tropical cyclone-like vortex from a turbulent rotating Rayleigh-
Benard convection setup using LES paradigm for a wide range of flow parameters.
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2. To quantitatively compare the structure of the resulting tropical cyclone-like
vortex with an actual tropical cyclone.

3. To propose a timescale for the cyclogenesis and see its implications to actual
cyclogenesis.

The remainder of the chapter is structured as follows. First, the numerical procedure
employed is discussed in section 5.1, detailing the equation solved, the boundary
conditions used, the computational domain, the mesh information, the turbulence
modelling framework and the flow parameter values used for the simulations. In the
section 5.2.1, the instantaneous flow fields are shown for the 3D turbulent simulations.
The time-averaged structures of the tropical cyclone-like vortex obtained for a wide
range of flow parameters are compared qualitatively with a real tropical cyclone.
A timescale for cyclogenesis is proposed by analysing the simulation data, and the
flow evolution during cyclogenesis is briefly described in section 5.2.2. The timescale
proposed for cyclogenesis is validated using storm track data from field experiments in
section 5.3. The chapter is concluded with a summary.

5.1 Numerical Procedure

A cylindrical domain shown in Fig. 5.1 with a radius R and height H, giving an
aspect ratio of Γ = H/R is considered for this work. The computational domain
rotates at the rate of Ω and the system has a linear background temperature variation
of To(z) = Tref − βz to maintain a static equilibrium, where Tref is the reference
temperature taken at z = 0. The flow in the domain is initiated by imposing a uniform
vertical heat flux, proportional to β, at the bottom boundary. This flow is computed
by solving an equation for temperature perturbation, θ = T − To(z) along with the
continuity and Navier-Stokes equations using large eddy simulation (LES) paradigm.

5.1.1 Large eddy simulation framework

The equations considered in the present study for carrying out numerical simulations
are the grid-filtered continuity, Navier-Stokes with the added coriolis and buoyancy
term, and temperature perturbation (from the background linear profile) equations for
a incompressible fluid under the Boussinesq approximation (Boussinesq, 1903):

∂ui

∂xi

= 0 (5.1)
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∂ui

∂t
+ ∂uiuj

∂xj

= − 1
ρo

∂P

∂xi

+ ∂τij

∂xj

+ ν
∂2ui

∂xj∂xj

− 2Ωujεij3 + αθgi (5.2)

∂θ

∂t
+ ∂ujθ

∂xj

= κ
∂2θ

∂xj∂xj

+ ∂hj

∂xj

+ βuz (5.3)

In the above equations, overbar on the variable indicates a grid-filtered quantity,
ui (where i = 1,2,3) are the velocity components in the direction (x1, x2, x3), where
x1 and x2 are the horizontal coordinates and x3 is the coordinate in the upward
vertical direction, P is the reduced pressure, θ is the temperature perturbation from
the background linear temperature profile, gi is the gravitational vector pointing in
the vertically downward direction, Ω is the background rotation rate, α is the thermal
expansion coefficient, ν is the kinematic viscosity and κ is the thermal diffusivity of
the fluid.

The filtered governing equation (5.2) and (5.3) contain subgrid-scale terms, which
are defined as

τij = uiuj − uiuj (5.4)

hj = θuj − θuj (5.5)

A closure model for subgrid-scale stress relates the sub-grid scale stress with
resolved scale variables which enables the above-filtered equations to be integrated.
This study aims at simulating a large-scale phenomenon. Hence, a simple SGS model
that dissipates energy properly is preferred (also adequate) to represent the net effect
of small-scale eddies. Therefore, the dynamic Smagorinsky model (Lilly, 1992) is used
in this work for modelling SGS stresses. The models is described in section 2.3.

5.1.2 Numerical set-up

LES are conducted using an opensource finite volume solver OpenFOAM (Weller
et al., 1998). The governing equations (5.2) and (5.3) written in Cartesian coordinates
along with the SGS closures discussed above are solved using a second-order central
difference spatial discretisation scheme and an implicit first-order Euler time-stepping.
These discretised equations are advanced in time using a variable time-stepping which
kept the CFL number, defined as ∆t × max(|u|/δc), to be below 0.3, where δc is
the computational cell size with velocity magnitude |u| and ∆t is the time step size.
The pressure and velocity fields are coupled through the PISO algorithm (Issa, 1986).
Figure 5.1(b) shows the various boundary conditions employed for this work. The
no-slip bottom and outer radial boundaries had uniform heat flux and isothermal
conditions respectively. The stress-free top boundary had a constant uniform heat
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Fig. 5.1 (a) Computational domain and (b) boundary conditions.

flux condition. All the simulations are started from a quiescent initial state and the
simulations are run until a stationary state (in terms of volume-averaged kinetic energy)
is reached. Typical streamlines for a fully evolved tropical cyclone like vortex are shown
in Fig. 5.1(a).

The LES is stopped when there isn’t a significant change in the monitored volume-
averaged kinetic energy per unit mass. The grid sensitivity is tested by analysing
the ratio of SGS to the total kinetic energies (Pope, 2000). The mean and mode for
the distribution of this ratio are observed to be about 8% or lower when 2, 4, or 8
million cells are used for the case with Re = 1000, and the maximum change in the
eyewall, Ekman layer and size of tropical cyclone is less than 10% (these quantities
are measured as described in section 4.1.2). Hence, the criterion proposed by Pope
(2000), the SGS kinetic energy being less than 20% of the total kinetic energy, is used
to decide the numerical resolution for other Reynolds numbers, and 11 million cells are
used for the largest Re case considered for this study.

5.1.3 Simulated Cases

Past laminar axisymmetric simulations of RRBC showed that strong poloidal circu-
lations leading to the formation of TCLV occurred only for certain combinations of
Re and E (Oruba et al., 2018). This combination is observed to be more stringent for
three-dimensional laminar simulations and the propensity for TCLV to form in 3D
domains increases if Ro = ReE ≃ C/Γ with

√
2 ≤ C ≤ 2

√
2 is satisfied by the global

flow parameters. The data points shown in this figure are the conditions for various
simulations conducted for the study.

This condition for the formation of TCLV is independent of the Prandtl number,
Pr. Nevertheless, three values of Pr, 0.025, 0.1 and 0.7, are considered for the
simulations to verify this observation. It was found that irrespective of the value of
Pr if Ro = ReE ≃ C/Γ then tropical cyclone-like vortex is formed in the domain
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Fig. 5.2 Condition for observing a tropical cyclone-like vortex in a domain of aspect ratio
Γ rotating at Ω. The dash-dotted line is the bulk convection onset condition (Chan-
drasekhar, 1961, Aurnou et al., 2018) for Pr = 0.1 and the 55 data denote conditions
of simulations displaying fully evolved tropical Cyclone-like vortex structure shown
in Fig. 4.1. The symbols denote ∗ - axisymmetric cases in (Oruba et al., 2017, 2018,
Atkinson et al., 2019), + - 3D laminar, △ - transition, and ◦ - turbulent cases having
Pr = 0.1 and cases with Pr = 0.7 and 0.025 are denoted using □ and × respectively.

with less than 10% variation in its spatial features like, size of the vortex and width of
eyewall. In total, 54 simulations covering laminar, transient, and turbulent regimes are
performed and each of these cases shows a TCLV in the computational domain and
are detailed in Table A.1 of Appendix A. These various simulations are marked in the
Re–E space shown in Fig. 5.2. Four cases from a total of 54 simulations are listed in
Table 5.1. These cases are typical examples for presenting and discussing results in
the remainder of the thesis. These cases cover laminar, transition and turbulent flow
regimes.

Case Re E Γ V/Vℓ

1 224 0.1 0.1 1.0
2 1000 0.02 0.1 4.46
3 2.82× 107 10−6 0.05 633.92
4 2.82× 1010 10−9 0.05 633.92

Table 5.1 Cases with Pr = 0.1 showing tropical cyclone-like vortex.
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It is worth noting that past studies (Bodenschatz et al., 2000, Ahlers et al., 2009,
Horn & Schmid, 2017, Kunnen et al., 2010, Aurnou et al., 2018) predominantly
focussed on the flow stability. Also, the values of Re and E used in studies showing
LSV (Guervilly et al., 2014, Favier et al., 2014, Couston et al., 2020, Guzmán et al.,
2020) do not satisfy the condition ReE ≃ C/Γ. Furthermore, in those studies, Γ ≥ 0.25
are atypical of tropical cyclones or hurricanes. LESs are performed to verify the above
condition for the formation of tropical Cyclone-like vortex showing structures in Fig. 4.1
surviving for several tens of rotation time. This domain-filling vortex is called a fully
evolved tropical Cyclone-like vortex. This is assessed by monitoring the temporal
evolution of volume-averaged kinetic energy.

5.2 Results & Discussion

5.2.1 Flow Structure of Tropical Cyclone-like Vortex

Figure 5.3 shows the azimuthal-mean spatial structure of the tropical cyclone-like
vortex at τ = 100 for Case 2 in Table 5.1 when the tropical cyclone-like vortex
is fully evolved. The velocities are non-dimensionalised with ΩH, the temperature
perturbation, ⟨θ∗⟩, is non-dimensionalised with βH and the azimuthal vorticity, ⟨ω∗

φ⟩
is normalised with Ω. The hot temperature compared to background temperature
To(z) (θ > 0) is concentrated towards the centre of the domain and the temperature
decreases radially away from the centre to towards the sidewall. The uniform radial
gradient of temperature seen from the centre to the sidewall at all heights ensures a
single poloidal flow in the whole domain by enhancing the radial inflow (⟨u∗

r⟩ < 0)
near the bottom and outflow (⟨u∗

r⟩ > 0) near the top. This further ensures transport
of angular momentum towards the centre and a cyclonic flow near the centre of the
domain (⟨u∗

φ⟩ > 0). The cyclonic flow extends throughout the height of the domain
in the bulk of the domain, while anticyclonic flow (⟨u∗

φ⟩ < 0) occupies at outer radii.
The Ekman layer (⟨ω∗

φ⟩ < 0) formed at the bottom surface in the domain is seen to be
swept up to form the eyewall (Oruba et al., 2017) separating the strong poloidal region
(⟨ω∗

φ⟩ > 0) from the eye formed at the core of the domain. The qualitative similarity
of the symmetric tropical cyclone-like vortex structure with that of an actual tropical
cyclone is discussed in detail next. The spatial features for azimuthal mean quantities
shown in Fig. 5.3 are similar for other cases in Table 5.1.

The contours of u∗
φ = ⟨̃uφ⟩/Vℓ, with ⟨̃·⟩ denoting the azimuthal and time-averaging

noted earlier, plotted in Fig. 5.4 shows the tropical Cyclone-like vortex, the eyewall
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Fig. 5.3 Azimuthal averaged contours of (a) Radial velocity ⟨u∗
r⟩ normalised with (ΩH),

(b) Azimuthal velocity ⟨u∗
φ⟩ normalised with (ΩH), (c) Temperature perturbation ⟨θ∗⟩

normalised with (βH), and (d) Azimuthal vorticity ⟨ω∗
φ⟩ normalised with background

rotation Ω at τ = 1.2 for case 2 in Table 5.1.

and isoline of u∗
φ = 0. Vℓ denotes the buoyancy velocity computed for the laminar

case 1 in Table 5.1. The intense swirl is in the inner quarter of the domain, and the
peak u∗

φ in case 4 is nearly 14 times larger compared to the laminar case. The isoline
of u∗

φ = 0 separates regions with cyclonic and anticyclonic rotations, and the size of
the anticyclonic region varies with z/H and Re. Although the effects of moisture
are excluded here, this variation shown in Fig. 5.4(c) for the largest Re is similar to
that observed in field measurements of tropical cyclones, see Fig. 9 of (Frank, 1977).
The inward shift of the eyewall with increased intensity is also seen using in situ
observational data shown in Fig. 4 of Willoughby (Willoughby, 1990). The smaller and
stronger eye at larger Re is due to stronger rotation effects arising from the constraint
ReE ∼ C/Γ for tropical Cyclone-like vortex formation, leading to larger cyclonic
vorticity. The PDF of the deviation of ⟨̃uφ⟩ from the gradient wind Ṽg defined by ζ
around eye-eyewall region (0 ≤ r/R ≤ 0.25) excluding the bottom Ekman layer for
cases 1 (if one attempts to plot for laminar case), 2, and 1 are shown in Fig. 5.4(d). Ṽg

is computed from the gradient wind balance approximation (see Eq. (2) of (Willoughby,
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1990)) given by

Ṽg =
−2Ωr +

√
(4Ω2r2 + 4r∂P/∂r)

2 (5.6)

The gradient wind balances the radial pressure gradient force, centrifugal, and Coriolis
forces. Therefore, Ṽg solution in Eq. (5.6) is obtained by solving the gradient wind
balance equation for velocity. Gradient wind balance (ζ ≈ 0) is seen predominantly
in tropical Cyclone-like vortex since the peak of pdf is at zero for all the cases. This
balance is observed in an actual tropical cyclone as well (Willoughby, 1990). (ζ ≈ 0) is
seen around the eye-eyewall region, near ⟨̃uφ⟩max. The spread in the pdf increases as
Re increases because the tropical Cyclone-like vortex core region becomes narrower,
and the flow deviates from gradient wind balance. The super-gradient flow (ζ > 0) is
seen in the eye-eyewall region above the location of ⟨̃uφ⟩max. The sub-gradient flow
(ζ < 0) is seen at region away from the radius of maximum tangential velocity, rmax.
Since, rmax becomes smaller at higher Re, the region of (ζ < 0) increases thus larger
spread with higher value of ζ is observed in the pdf.

Fig. 5.4 Contours of u∗
φ = ⟨̃uφ⟩/Vℓ for cases 1, 2 and 4 in Table 5.1 are shown in

(a)− (c). The black line is the outer surface of the eyewall and the white line is for
u∗

φ = 0. The pdf of ζ = ũφ−Ṽg

Ṽg
within (0 ≤ r/R ≤ 0.25) (excluding Ekman layer) is

shown in (d) for cases 1, 2, and 4.

5.2.2 Timescale for Cyclogenesis

The strong poloidal flow is necessary for the formation of tropical cyclone-like vortex
(see previous chapter Chapter 4). The formation of the large-scale poloidal circulation
in the domain is known as Ekman pumping. The strength of the Ekman pumping
mechanism is determined by a dimensionless flow parameter called the Ekman number.
The Ekman number, E is defined as a ratio of viscous to Coriolis forces, and the small
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Ekman numbers used in this study to observe tropical cyclone-like vortex indicate
that the Coriolis forces which cause Ekman pumping dominate the spin-up of the
fluids. Ekman pumping characteristically causes fluid to spin up over a period on the
order of the Ekman time τE which is defined as τE ∼ Ω−1E−0.5

t . Thus, it would be
logical to non-dimensionalise the time with τE to see whether the tropical cyclone-like
vortex is formed approximately within τE. In order to see that, the time evolution
of volume-averaged kinetic energy ⟨K⟩v, normalised by its maximum value in time
⟨K⟩max

v , is plotted in Fig. 5.5 for all the cases in Table 5.1. The time is scaled with the
Ekman spin-up time (Greenspan & Howard, 1963) with an additional pre-multiplier
Γ/
√

2 (found empirically from analysing all the simulation data) given by,

τ1 =
(

Γ√
2

)
tΩ
√
Et, (5.7)

Here, Et is the turbulent Ekman number defined based on the bottom Ekman boundary
layer-averaged eddy viscosity ⟨νt⟩BL computed from LES simulations for turbulent
cases and based on ν for laminar cases. The pre-multiplier Γ/

√
2 in τ1 is obtained by

analysing the 54 tropical cyclone-like vortex simulation the current work. τ1 denotes the
time taken for the spinup of cyclonic vortex and to set up the Ekman layer in the whole
domain for a fluid initially at rest. The flow saturates after τ1 for all the cases. Thus,
the tropical cyclone-like vortex is observed to be formed within the Ekman spinup time.
The flow dynamics and spatial organisation happening within 0 < τ1 < 1 help form a
tropical Cyclone-like vortex. As we can see from Fig. 5.5, which shows the strength
of the eye in the tropical Cyclone-like vortex by measuring the maximum downward
velocity u∗

z,min normalised by its absolute value of minimum in time within the LSV.
The eye begins to form u∗

z,min < 0 at τ1 = 0.9 & 0.75 for cases 2 & 4 respectively. The
energy in the domain is also increased by about 20− 40 % before reaching saturation
during this time interval. Thus, the cyclogenesis process starts well before the spin-up
time τ1 = 1. But it is still unclear when the cyclogenesis starts in this model for any
given flow parameters as the subsidence and increase in energy happen at different τ1

for different cases. Since there isn’t any clear definition available for cyclogenesis, the
start of cyclogenesis is defined here as the time when the subsidence starts to happen
in the LSV to form a tropical Cyclone-like vortex, and the system’s energy begins to
rise due to the intensification of the tropical Cyclone-like vortex.

We propose a new timescale for the start of cyclogenesis, τc given by,

τc = 2
√

2Ω−1Re0.5
t (5.8)
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Fig. 5.5 Temporal evolution of ⟨K⟩v/⟨K⟩max
v with τ1. The scatter plot of u∗

z,min denote
strength of subsidence along the centre of vortex axis.

where Ret is the turbulent Reynolds number defined based on boundary layer- averaged
eddy viscosity ⟨νt⟩BL computed from LES simulations for turbulent cases and based
on ν for laminar cases. The pre-multiplier 2

√
2 in τc is obtained by analysing the

54 tropical cyclone-like vortex simulation of the current work. τc depends on both
the convection and rotation, denoting the time at which the interaction of these two
driving forces begins in the system, leading to tropical Cyclone-like vortex formation.
This is time at which subsidence is seen in the large scale cyclonic vortex along with
the sweeping up of bottom boundary layer resulting in the emergence of characteristic
eye-eyewall to form tropical cyclone-like vortex. Figure 5.6 shows the time evolution
of volume-averaged kinetic energy ⟨K⟩v, normalised by its maximum value in time
⟨K⟩max

v with time scaled with τc that is

τ2 = tτ−1
c (5.9)

The cyclogenesis begins at around τ2 = 1 and the tropical Cyclone-like vortex eye
strength increases till flow saturates at time τ1 = 1. Therefore, the cyclogenesis happens
in the timespan t = τ1 − τ2 which is referred in this chapter & thesis as timescale of
cyclogenesis.

In order to briefly describe what is meant by the timescale of cyclogenesis. The
evolution of the eye within the large-scale cyclonic vortex into a tropical cyclone-like
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Fig. 5.6 Temporal evolution of ⟨K⟩v/⟨K⟩max
v with τ2. The scatter plot of u∗

z,min denote
strength of subsidence along the centre of vortex axis.

vortex in a radial plane at φ = 0◦ is shown in Fig. 5.7 for case 4 in Table 5.1. The
region of the large magnitude of cyclonic vorticity (ωz > 0) is the core of the large-scale
cyclonic vortex. At τ2 = 0.8, the cyclonic vortex is formed in the domain, but it is
slightly off-centred. At τ2 = 0.9, the cyclonic vortex is approaching the centre of the
domain and is still off-centred. During this time instant, it can be seen that the core
of the vortex doesn’t have any subsidence. This can be seen from the line contour of
vertical velocity plotted in the same Fig. 5.7. The core of the cyclonic vortex has a net
upward flow (uz > 0). But it can be seen at τ2 = 1.0 that there is subsidence within
the core of the cyclonic vortex (dashed contour lines denoting uz < 0) spanning 50%
of the domain. The subsidence seem to be increasing its strength at τ2 > 1 as seen
from both Fig. 5.6 and Fig. 5.7 at τ = 1.1 as the subsidence within the core seems
to extend close to 60% of the domain from the top. It can also be seen that number
of vertical rolls (uz > 0) which are initially present in the bulk of domain reduces in
time and during the start of cyclogenesis there are vertical rolls concentrated near the
sidewall and finally only poloidal circulation is seen in the entire radial plane. Thus,
the time t = τc / τ2 = 1 denotes the time at which the eye begins to appear in the
cyclonic vortex, and it starts evolving into a tropical cyclone-like vortex with all its
intricate flow features (see Fig. 4.1). It is completely evolved at the Ekman spinup
time t ∼ τE/ τ1 = 1. Thus, the time interval t = τ1 − τ2 is referred to here as time
scale of cyclogenesis.
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Fig. 5.7 The vertical cross-section of the azimuthal vorticity, ω∗
z normalised with Ω

(colour) and the vertical velocity, u∗
z = 0.1 (solid line) and u∗

z = −0.1 (dashed line)
normalised with ΩR at φ = 0 before and during cyclogenesis phase for case 2 in
Table 5.1.

Thus, the global flow parameters dictate the formation of tropical Cyclone-like
vortex in the domain, whereas the local flow dynamics and turbulence decide the
spatial organization and start of cyclogenesis. The local flow dynamics leading to the
formation of large scale tropical cyclone-like vortex in the domain are discussed in the
subsequent chapters.

5.3 Implications to Actual Cyclogenesis

Research on tropical cyclogenesis has focused primarily on two aspects of the prob-
lem: the nature of the large-scale environments in which tropical cyclones form, and
the hydrodynamic and thermodynamic routes taken by particular observed and/or
numerically simulated cyclones as discussed in Chapter 1. Even several field cam-
paigns have been conducted in the past to understand the cyclogenesis process such as
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Tropical Experiments in Mexico (Bister & Emanuel, 1997, TEXMEX), Pre-Depression
Investigation of Cloud Systems in the Tropics experiments (Montgomery et al., 2012,
PREDICT) and NASA’s Genesis and Rapid Intensification Processes field experiment
(Braun et al., 2013, GRIP) and NOAA’s Hurricane Intensity Forecasting Experiment
(Rogers et al., 2013). Much has been learned, and many theories have been proposed,
but a clear understanding of the cyclogenesis process remains elusive.

Empirical genesis indices have also been proposed in the recent past linking large-
scale environment variables to the tropical cyclone formation. Emanuel & Nolan
(2004) used the statistical fitting procedure of seasonal and spatial variation of climate
data during cyclogenesis to come up with Genesis Potential index (GPI), which is a
non-dimensional number defined based on relative humidity (RH), potential intensity
(PI), absolute vorticity (ωabs), and vertical wind shear (Vshear) between the heights
850 and 200 hPa. This GP index was formulated from several environmental variables
that are known to be associated with tropical cyclone formation (Gray, 1968, 1979).

GPI = |105ωabs|3/2
(
RH

50

)3 (PI
70

)3
(1 + 0.1Vshear)−2 (5.10)

This index has been used to investigate hurricane formation in global warming conditions
(Nolan et al., 2006) and to access cyclogenesis in global climate models (Camargo et al.,
2007a,b, Murakami & Wang, 2010). Emanuel (2010) suggested that the genesis index
should not depend directly on relative humidity but rather on the mid-level saturation
deficit. The revised index replacing the GPI proposed by Emanuel & Nolan (2004)
comprises of absolute vorticity, potential intensity, shear, and a measure of the moist
entropy deficit of the middle troposphere (χ).

GPI = |ωabs|3χ−4/3 max[(PI − 35), 0]2(25 + Vshear)−4 (5.11)

The primary focus of this work is on understanding cyclogenesis in a simple Rotat-
ing Rayleigh-Benard Convection (RRBC) setup without any additional complexities
arising from the stratification or thermodynamic effects. In this section, the simple
hydrodynamic cyclogenesis condition obtained this chapter (without considering the
effects of moisture as in previous works) is tested for an actual tropical cyclone. The
purpose of this exploration is to test the extent of validity of the results (considering
only the hydrodynamic effects in the model) presented in this thesis to the actual
cyclone arising in tropical region. We hope that this emphasises the relevance and
importance of the results based on hydrodynamics presented in this thesis to a real
scenario and motivates further research in this direction.
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5.3.1 Cyclogenesis Conditions

In this section, we will revisit the cyclogenesis conditions formulated from RRBC
simulation of tropical cyclone-like vortex. It was shown in previous chapter 4 empirically
that when

RoΓ = V

Vrot

≈ O(1) (5.12)

there will be strong poloidal flow in the domain leading to the formation of tropical
Cyclone-like vortex, where Ro is the convective Rossby number, V is the buoyancy
velocity, Vrot = ΩR is the rotational velocity, and Γ = H/R is the aspect ratio.

It is also shown in this chapter from analysing the simulation data that two
timescales namely,

τE ≈
√

2
ΓΩ
√
Et

; τc ≈
2
√

2
√
Ret

Ω

govern the dynamics of tropical Cyclone-like vortex in RRBC framework. The spin up
timescale of the fluid is τE (multiplied with the pre-multiplier found from analysing the
computational results) (Greenspan & Howard, 1963), τc is the timescale for the start
of cyclogenesis spinup in a cyclonic vortex, Ret and Et are the turbulent Reynolds
and Ekman number respectively defined based on the bottom Ekman boundary layer-
averaged turbulent viscosity and Ω is the background rotation rate. The cyclogenesis
should occur before the spin up time of the fluid which gives an additional constraint
for tropical Cyclone-like vortex formation, that is,

τc < τE ⇒ 2
√

Γ
√
RoΓ < 1 (5.13)

Equations (5.12) and (5.13) when satisfied simultaneously gives the hydrodynamic
condition for the formation of tropical Cyclone-like vortex in a simple RRBC setup.
It will be interesting to see whether this conditions can be leveraged to predict the
genesis of an actual tropical cyclone using the field data as explained next.

5.3.2 Data and Methods

Data

The Joint Typhoon Warning Center (JTWC) provides tactical tropical cyclone (TC)
forecasts for U.S. Department of Defence installations operating in the North western
Pacific, Indian, and South Pacific Oceans. These forecasts include position, intensity
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(maximum wind/tangential velocity), and the radii of maximum wind, 34, 50, and
64 kt (1 kt = 0.514 ms-1) winds through 5 days. The data from JTWC (available at
JTWC storm track database) will be used in the current work to test the cyclogenesis
condition proposed above.

JTWC’s historical best tracks provide quality controlled 6-hourly position, intensity,
and the radii information for each TC tracked by JTWC. These data are in the
Automated Tropical Cyclone Forecast system (ATCF) format. Due to issues such
as latency of real-time data and operational security considerations, “working” best
track data may contain biases, whereas the “final” best tracks have been reanalysed by
JTWC following the season using all available data and current operational practices.
Both working and final best tracks use units of knots and nautical miles (1 nmi ≈ 1.85
km) for intensity and distance, respectively, and the final best track data are used for
the analysis discussed below.

Method

From the storm track data following quantities are obtained to see whether Eq. (5.12)
and (5.13) holds good.

• Aspect ratio - Γ
The aspect ratio defined as ratio of height (H) to that of radius (R) of the tropical
cyclone system. Height H is the height of the tropopause from the sea surface
which is approximately 10 km. Here it is assumed that the tropical cyclone
system extends up to tropopause throughout its evolution. The radius R is taken
to be the radius of outermost closed isobar (ROCI) to estimate the size of the
tropical cyclone as proposed by Merrill (1983). The ROCI changes as the tropical
cyclone evolves.

• Buoyancy velocity - V
The buoyancy velocity V is defined as, V =

√
αg(Tsea − Ttrop.)H where α =

3.3 × 10−3 K-1 is the volumetric thermal expansion coefficient of air, g = 9.81
m/s2 is the acceleration due to gravity. In order to calculate V , the temperature
at the sea surface, Tsea, and near tropopause, Ttrop. is required as it is defined
based on the temperature difference between top and bottom surface of tropical
cyclone. Since the top surface is assumed to be tropopause the temperature
of air at tropopause (Ttrop. = −51◦C) can be used as temperature at the top
surface (Lydolph, 1985). The sea surface temperature should be at least 26.5◦C

spanning through at minimum a 50-metre depth and is one of the precursors

https://www.metoc.navy.mil/jtwc/jtwc.html?best-tracks
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needed to maintain a tropical cyclone (Webster et al., 2005). In order to obtain
the maximum buoyancy velocity, the maximum sea surface temperature will be
obtained from the minimum sea-level pressure data, Psea, available in JTWC
tropical cyclone track database as shown below (WMO, 2018),

Tsea = Tatm

(
Patm

Psea

)−γR/g

Here Tatm = 15◦C and Patm = 1.01 bar are the atmospheric temperature and
pressure data. R = 287 J/kg/K is the specific gas constant and γ = −6.5× 10−3

K/m is the temperature lapse rate in troposphere defined as the rate of decrease
of temperature with height (Lydolph, 1985).

The buoyancy velocity formulation is used here to compute the convective velocity
from storm track data. It is because convective velocity depends more on thermal
buoyancy in moist convection when the raindrop terminal velocity is large (Parodi
& Emanuel, 2009). Since tropical cyclone accompanies heavy rainfall with large
raindrop terminal velocity (Anthes, 2016), the buoyancy scaling is used here to
compute the convective updraft velocity.

• Rotational velocity - Vrot

The maximum wind speed/potential intensity recorded by JTWC track data
is used here as the maximum rotational velocity in the current study. This
usually occurs near the eyewall at the centre of the tropical cyclone during the
cyclogenesis phase.

5.3.3 Analysis

Figure 5.8 shows the time evolution of terms in Eqs. (5.12) and (5.13) obtained using
JTWC data over the life of an actual cyclone. The maximum values of RoΓ in Eq.
(5.12) for the cyclones denoted by (RoΓ)m obtained from maximum buoyancy velocity
estimated as above and the observed maximum wind speeds are plotted in Fig. 5.8
along with τc/τE. It is to be noted that the hydrodynamic condition proposed in this
work holds good for other tropical cyclones as well that are not shown in Fig. 5.8.
Around 50 tropical cyclone track data from 2002 to 2022 have been analysed from
JTWC database to verify the cyclogenesis condition. For the sake of brevity the three
latest tropical cyclone are shown in this chapter covering two different oceans (Pacific
and Indian Ocean), two hemisphere (North and South Hemisphere) and 3 categories
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Fig. 5.8 The evolution of the quantities (RoΓ)m (denoted by ◦) and τc/τE (denoted
by ⋆) obtained from Eqs. (5.12) and (5.13) respectively for three different tropical
cyclone system. The data is obtained from the JTWC storm track database available
at https://www.metoc.navy.mil/jtwc/jtwc.html?best-tracks.
(a): Data from Category 2 tropical cyclone Hikaa that struck eastern Oman (Indian
Ocean) in September 2019. The maximum wind speed is 46.4 m/s.
(b): Data from Category 3 tropical cyclone Vongfong that struck Philippines (Pacific
Ocean) in May 2020. The maximum wind speed is 51.5 m/s.
(c): Data from Category 5 tropical cyclone Veronica that struck Western Australia
(Pacific Ocean) in March 2019. The maximum wind speed is 67 m/s.
1 - Tropical Depression; 2 - Tropical Storm ; 3 - Tropical Cyclone.

https://www.metoc.navy.mil/jtwc/jtwc.html?best-tracks
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of tropical cyclone (Category 2, 3 and 5 as defined in Saffir-Simpson hurricane wind
scale) to show the robustness of the obtained condition.

It is seen from Fig. 5.8(a)-5.8(c) that the cyclogenesis condition holds good in the
real tropical cyclone context. The cyclogenesis is said to have commenced when the
tropical depression (denoted by the vertical line marked as 1) changes to a tropical
storm (indicated by 2). As specified in the section 1.1, the difference between a
tropical storm and a tropical cyclone (denoted by 3) is the change in the intensity of
the wind. Thus for cyclogenesis, it is important to understand when the depression
changes to a tropical storm. The conditions specified in Eqs. (5.12) and (5.13) seem to
capture this change well. It can be seen that for all the different tropical cyclone data
shown in Fig. 5.8, both the condition holds good simultaneously only in stage 2 & 3,
which confirms that the conditions obtained from hydrodynamic analysis in a simple
RRBC setup holds good for an actual tropical cyclones evolving in nature without any
approximations.

5.4 Summary

The global flow parameters dictating the formation of tropical Cyclone-like vortex in
the domain through the condition ReE = Ro ≃ C/Γ is tested for several orders of
magnitude by carrying out turbulent RRBC simulation with the LES framework. When
the condition is met, the tropical Cyclone-like vortex is formed in the domain for all
values of flow parameters. The spatial structure of the simulated tropical Cyclone-like
vortex is qualitatively similar to that of the actual tropical cyclone. The eyewall formed
was found to be shifting closer to the vortex core as the Re of the flow this compliments
the observation made by Willoughby (1990) for a real tropical cyclone. Also, the
gradient wind balance seen around the core by Willoughby (1990) for an actual tropical
cyclone was found to be obeying for the simulated tropical cyclone-like vortex across
the simulated range of flow parameters. In addition, it was found that this balance is
violated with super-gradient flow observed near eye-eyewall region and sub-gradient
flow outside vortex core.

By analysing the simulation data it was found that two time scales control the
dynamics of the formation of like vortex in the RRBC framework. The fully evolved
tropical cyclone-like vortex was found to be formed in the domain at Ekman spinup
time t ∼ τE. In addition, the timescale for the start of cyclogenesis, τc, was found
through the data analysis. The τc was found to be directly proportional to

√
Re. The

τc is defined as the time at which eye/subsidence begins to form in the cyclonic-vortex.
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The cyclogenesis happens for a timespan of about τE − τc and hence, τc should be less
than τE to see the birth of tropical cyclone-like vortex from a persisting depression in
the domain.

The condition namely, (i) ReE = Ro ≃ C/Γ and (ii) τc < τE obtained from the
RRBC simulations of tropical cyclone vortex is tested using actual tropical cyclone
track data to see whether the conditions obtained in this chapter hold good in reality.
The results agree well. Thus, the analysis in this chapter suggests that cyclogenesis
is driven by hydrodynamics, at least in the simple model considered here and the
thermodynamics process help to intensify the tropical cyclone-like vortex further. The
cyclogenesis condition proposed in this work relates the major environmental parameters
to cyclone formation. It reduces them to a single parameter that can provide a valuable
way of assessing cyclone changes from large-scale analyses or model simulations. The
motivation for establishing a simple parametric relationship is that it can be applied
to climate model output to forecast cyclones and assess potential cyclone changes
associated with varying and changing future climates. In the next couple of chapters,
the energetics of fully evolved tropical cyclone-like vortex, asymmetric structures of
the tropical cyclone-like vortex are compared qualitatively with real tropical cyclones,
the local flow dynamics leading to the formation of LSV at the start of cyclogenesis
and the subsequent energy transfer mechanism happening during the cyclogenesis will
be discussed.



Chapter 6

Asymmetries & Energetics in
Tropical Cyclone-like Vortex

The presence of azimuthal asymmetries during the evolution of tropical cyclone has been
observed in radar measurements (Marks et al., 1992), satellite remote sensing (Chen
et al., 2006), and three dimensional high-resolution simulations (Anthes, 1972). Al-
though these asymmetries are seen over the entire life cycle of these cyclones they
become notable during the intensification or weakening, involving significant changes
in the structure and intensity, of the cyclone. Hence, the growth and decay of the
asymmetries were investigated in detail in past studies (Montgomery & Davis, 2004,
Montgomery et al., 2006). These studies found that the presence of asymmetries helps
in strengthening the vortex, and their absence lead to the weakening of the vortex.
Despite these studies, the mechanism through which these asymmetries influence the
cyclone intensity is unclear since the asymmetries can arise from both external and
internal processes. External asymmetries arise when the cyclonic vortex responds to
changes in the external flow field like wind shear or landfall and these asymmetries
lead to reorganisation of the convection and flow fields (Jones, 1995, Frank & Ritchie,
2001). On the other hand, the internal vortex dynamics can produce asymmetries such
as vortical hot towers (Montgomery & Davis, 2004, Gopalakrishnan et al., 2011) and
rainbands (Willoughby et al., 1984, Didlake & Houze, 2013). These asymmetries are
commonly attributed to barotropic, baroclinic, and convective instabilities (Willoughby
et al., 1984, Schubert et al., 1999, Kossin et al., 2000, Kossin & Schubert, 2001) and,
they contribute to a major portion of upward mass transport in the vortex near the
eyewall (Braun, 2002). Also, the gradient associated with the asymmetric distributions
of quantities like vorticity, energy and momentum results in wave asymmetries and
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asymmetric fluxes, which helps in the redistribution of these quantities (Willoughby,
1977, Montgomery & Kallenbach, 1997, Hendricks et al., 2010, Moon & Nolan, 2010).

The asymmetries could increase the magnitude of azimuthal velocity in the cyclone
through vortex axisymmetrisation which produces a state of circular flow in the vortex,
i.e., cyclone (Melander et al., 1987, Montgomery & Kallenbach, 1997). A series of studies
have studied this axisymmetrisation process and the role of asymmetries in strength-
ening the azimuthal velocity during tropical cyclogenesis in a barotropic asymmetric
balance model (Möller & Montgomery, 1999), a three-dimensional quasigeostrophic
model (Montgomery & Enagonio, 1998), a 3D asymmetric balance model (Möller &
Montgomery, 2000), and a shallow-water model (Enagonio & Montgomery, 2001).

By using NASA’s Doppler radar data, Heymsfield et al. (2001) tried to characterise
the asymmetric structure of intense convection in hurricane Bonnie(1998) and suggested
that the asymmetries might have played an important role in the storm intensification.
On the other hand, past numerical studies suggest that the external asymmetries could
reduce the cyclone intensity. Peng et al. (1999) and Frank & Ritchie (1999, 2001)
investigated the intensity change due to large-scale environmental influences such as
the wind direction, boundary layer friction, vertical wind shear, planetary vorticity
gradient (beta gyre or effect) using mesoscale modelling code and showed that cyclone
was weakened when one of these influences was present. However, the weakening
was hypothesised to occur because of asymmetries of the eyewall region leading to
an increase in centre pressure since the wind shear ventilated the eye. The beta
gyre produced asymmetric circulation by distorting the vortex and this asymmetry
could either co-act or oppose the asymmetry induced by the wind direction. The
westerly wind was suggested to be more favourable for the cyclone intensification
compared to easterly wind of the same speed (Peng et al., 1999). These studies
suggested that the asymmetries had the maximum amplitudes around the radius of
maximum wind and hence the weakening might be associated with the asymmetric
circulation. This is consistent with the notion that intense cyclones tend to be relatively
symmetric whereas less severe storms have their convection organised in asymmetric
spiral bands (Willoughby et al., 1984), also known as internal asymmetries. Thus, it is
important to understand the role of these asymmetries in tropical cyclone evolution.
Hence, the aim of this chapter is to shed light on the role of the internal asymmetries in
the formation of tropical cyclone-like vortex in a rotating Rayleigh-Benard convection
(RRBC) of a Boussinesq fluid in a three-dimensional domain. The axisymmetric version
of this simple model has been used in the past to study the formation of eye and
eyewall (Oruba et al., 2017, 2018, Atkinson et al., 2019) and also for three-dimensional
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laminar flows (see chapter 4). This study relies on the hydrodynamic perspective
without additional complexities arising from stratification, latent heat release from
moist convection, air-sea thermodynamic disequilibrium, wind-induced surface heat
exchange effects, boundary layer thermodynamics and beta gyres present in actual
cyclones. Hence, the specific objectives for this chapter are:

1. To analyse the numerical data of tropical cyclone-like vortex studied from chapter 4
& 5 to extract the characteristics of internal asymmetries, specifically spiral bands,
and to compare them with field observations.

2. To conduct energy budget analysis to study the contributions of axisymmetric
and asymmetric processes to the cyclogenesis from an energetic viewpoint. Since
there are no external processes such as wind, shear and beta effects are not
considered here, there are only internal asymmetries, which is the focus, of this
chapter.

The remainder of this chapter is organised as follows. The energy budget equations
for symmetric and asymmetric fields are discussed in subsection 6.1 highlighting the
important energy exchange terms and these equations for a RRBC model are derived
in Appendix B. Results are presented and discussed in section 6.2 and the results are
summarised in the final section of this chapter.

6.1 Energy Budget Equations

The kinetic energy K = 1/2
(
u2

r + u2
φ + u2

z

)
and potential energy A = 1/2 (αgθ/N)2

per unit mass can be split into two components namely the symmetric/azimuthal
mean denoted by ⟨(· · · )⟩ and asymmetric part denoted by (· · · )′. The four energy
equations in cylindrical coordinates can derived from Eqs. (5.2) and (5.3), namely an
azimuthal mean kinetic energy ⟨K⟩ = 1/2 (⟨ur⟩2 + ⟨uφ⟩2 + ⟨uz⟩2) equation [Eq. (6.1)],
an asymmetric kinetic energy K ′ = 1/2

(
u′

r
2 + u′

φ
2 + u′

z
2
)

equation [Eq. (6.2)], an
azimuthal mean potential energy ⟨A⟩ = 1/2 (αg⟨θ⟩/N)2 equation [Eq. (6.3)], and
an asymmetric potential energy A′ = 1/2 (αgθ′/N)2 equation [Eq. (6.4)], N is the
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buoyancy frequency defined as
√
αgβ.
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′
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−CM +D⟨K⟩ (6.1)
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A⟨A⟩

− CA = CM +D⟨A⟩

(6.3)

∂⟨A′⟩
∂t︸ ︷︷ ︸
TA′

+ 1
r

∂

∂r
(r⟨Aur⟩) + ∂

∂z
(⟨A′uz⟩)︸ ︷︷ ︸

AA′

+CA = CP +DA′ (6.4)

The energy exchange terms CK , CA, CM , CP are explained in detail in the next
section.

6.1.1 Energy Exchange Terms

These exchanges of energy between azimuthally symmetric flows and asymmetries and
between the potential and kinetic energies are commonly quantified in the manner
originally suggested by Lorenz (1967) in which the flow is partitioned between sym-
metric (azimuthally averaged) components and departures therefrom (“asymmetries”),
with four main energy reservoirs (⟨A⟩, A′,⟨K⟩, K ′, ) representing respectively the
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asymmetric and symmetric potential energy and the corresponding kinetic energies.
From considerations of the energy conservation equations (see Eq. (6.1) −− (6.4)),
expressions can be defined to represent the rates of exchange between the four energy
reservoirs (James, 1995). The common terms present in Eqs. (6.1) - (6.4) denotes
the energy exchange between the four different energies decomposed in the previous
section. In this section, the significance of these energy exchange terms is highlighted.

CK − ⟨K⟩ ←→ K ′

The common terms on the Eq. (6.1) and Eq. (6.2) represent an energy exchange
between ⟨K⟩ and K ′. The term will be positive when energy exchange takes place
from K ′ to ⟨K⟩, the energy exchange term can be written as

CK =
[
r⟨u′

ru
′
φ⟩
∂

∂r

(
⟨uφ⟩
r

)
+ ⟨u′

ru
′
z⟩
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+ ⟨u′
φu

′
z⟩
∂⟨uφ⟩
∂z

+ ⟨u′
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′
r⟩
∂⟨ur⟩
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+ ⟨ur⟩
r
⟨u′

φu
′
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′
z⟩
∂⟨uz⟩
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+ ⟨u′
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′
z⟩
∂⟨uz⟩
∂z

]

The exchange invokes the covariance between the azimuthally averaged flows and the
asymmetric convergence of momentum (cf. Eq. 6.1). In the kinetic energy budget
formulation, this transaction between the mean and asymmetries feature as a production
term (for e.g., see chapter 5 of Stull (2012)).

CA − ⟨A⟩ ←→ A′

This term represents an energy exchange between ⟨A⟩ and A′, and a positive value is
defined as an energy exchange from ⟨A⟩ to A′. This is the common term with opposite
signs in the azimuthally averaged ⟨A⟩ equation [Eq. (6.3)] and the A′ equation [Eq.
(6.4)].

CA =
[(

αg

β

)
⟨u′

rθ
′⟩∂⟨θ⟩
∂r
−
(
αg

β

)
⟨u′

zθ
′⟩∂⟨θ⟩
∂z

]

The term consists of a radial (or axial) asymmetric heat flux with respect to the
radial (or vertical) gradient of azimuthal mean temperature field. The exchange term
is described by the covariance of asymmetric fluxes with respect to the gradient of
azimuthal mean temperature fields. It is to be noted here that the sign of this term
is determined by the product of a velocity asymmetry (u′

r or u′
z) with a thermal

asymmetry (θ′) and the gradient of mean temperature.
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CM − ⟨K⟩ ←→ ⟨A⟩ & CP −K ′ ←→ A′

An energy exchange term CM between ⟨K⟩ and ⟨A⟩ and an energy exchange term CP

between K ′ and A′ are the common terms with opposite signs in Eq. (6.1) and Eq.
(6.3), and Eq. (6.2) and Eq. (6.4), respectively.

CM = αg⟨uz⟩⟨θ⟩, CP = αg⟨u′
zθ

′⟩

The sign of both terms are defined as being positive when potential energy is converted
to kinetic energy. Both the terms are computed as a covariance between verical velocity
uz and temperature perturbation θ. When warm air rises or cold air sinks, the common
term becomes positive, which means the potential energy is exchanged to kinetic energy,
and vice versa. Therefore, both terms represent the process of the energy conversion
between potential energy and kinetic energy.

6.2 Results & Discussion

6.2.1 Symmetric Structure and Evolution

Figure 6.1 shows the time evolution of ⟨u∗
φ⟩max = ⟨uφ/ΩH⟩max with angle brackets

denotes the azimuthal averaging. This quantity is directly related to the intensity of
the cyclone vortex and its spatial location denotes the approximate eyewall position
which is denoted using r∗

m = Rm/R. The axisymmetricity, γuφ(r, z, t), of the tangential
velocity is defined as (Miyamoto & Takemi, 2013)

γuφ = ⟨uφ⟩2

⟨uφ⟩2 +A (6.5)

where A =
∫ 2π

0 u′
φ

2dφ/2π. Hence, γuφ = 1 implies that the tangential velocity is
axisymmetric when A = 0 and the level of asymmetry increases as γuφ → 0. The
temporal variation of volume-averaged axisymmetricity, γuφ , is also shown in Fig. 6.1.
The time is non-dimensionalised using cyclogenesis timescale τc = 2

√
2
√
Ret/Ω, where

Ret = V H/νt is the Reynolds number based on volume averaged eddy viscosity which is
also time averaged. The factors 2

√
2 are found empirically based on the 54 simulations

conduced for this study as discussed in the chapter 5. The cyclogenesis timescale, τc,
denotes the time at which the subsidence, eye and eyewall features begin to appear in
the large-scale vortex which evolves into a stationary cyclonic vortex over the spin-up
timescale, τE. During the cyclogenesis phase, the intensity or ⟨u∗

φ⟩max increases for
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Fig. 6.1 Time evolution of maximum value of azimuthally averaged azimuthal velocity,
⟨u∗

φ⟩max, the radial location of ⟨u∗
φ⟩max, r∗

m and degree of axisymmetricity, γuφ defined
in Eq. (6.5) for (a) Case 1, (b) Case 2 and (c) Case 4 in Table 5.1.

all cases. During the cyclogenesis phase a single large poloidal flow is formed as
shown in Fig. 5.1(b), and this tends to increase the angular momentum in the domain
thereby increasing the intensity of the vortex. The ⟨u∗

φ⟩max increases nearly by 165%
for the Case 1 in Table 5.1 and the increase is about 144% and 88% for Cases 2 and 4
respectively. This is because turbulent diffusion processes and advection of asymmetries
in the domain begin to dominate at higher Re resulting in reducing the magnitude of
angular momentum in the domain.

The radial location of maximum tangential velocity, r∗
m, decreases during the

cyclogenesis phase and reaches a stationary value in all cases. This is because the
maximum angular momentum in the system increases and r∗

m decreases to conserve
angular momentum. The stationary value of r∗

m decreases as Re increases because the
Ekman number has to decreases to maintain ReE = C/Γ so that a strong poloidal
flow can ensue, allowing the eye and eyewall to form. The reduction in E makes the
rotational effects experienced by the fluid to be stronger, resulting in a stronger and
tighter eye in flows with larger Re values which is observed in figure 6.1.

The degree of axisymmetricity, γuφ , of the vortex increases during the cyclogenesis
as shown in figure 6.1 for all the cases. This is because, organised asymmetric features
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like spiral bands and wall modes begin to appear in regions outside the vortex core
(eye and eyewall region). The spatial variation of these asymmetries are discussed in
the next section. The value of γuφ increases by about 4 times during the cyclogenesis
phase for the Case I and this increase decreases considerably as Re increases. This
is because (i) the region occupied by the axisymmetric vortex core is reduced as Re
increases and (ii) the turbulent processes are dominant at larger Re hindering the
organisation of asymmetries into axisymmetric structures. Thus, to summarise this
figure, the axisymmetric vortex core forms with increasing tangential velocity during the
cyclogenesis the level of axisymmetricity decreases at higer Re. The spatial structure
of asymmetries are discussed next.

6.2.2 Spiral Bands

The spatial variations of depth-averaged fluctuations in kinetic energy over the az-
imuthal mean value are shown in figure 6.2 at four different times during the cyclogenesis
for Case 2 in Table 5.1. The depth-averaging excludes the bottom boundary layer and
the values are normalised using Ω2H2. As τ2 ≥ 1, tropical cyclone-like vortex becomes
more axisymmetric (see Fig. 6.1b), and the asymmetries begin to evolve into a more
organised structure, namely spiral bands in the bulk of the domain and wall modes
near the sidewall. Many relatively narrow bands of alternating positive and negative
Ë∗ in the azimuthal direction are identified between r/R = 0.2 and r/R = 0.8 and are
referred to here as spiral bands. Similarly, alternating positive and negative Ë∗ in the
azimuthal direction are seen near the sidewall (r/R ≥ 0.8) and are referred to here
as wall modes (similar to that discussed in chapter 4). The number of spiral bands
increases from 3 to 4 during flow evolution. Similarly, the wall modes near the sidewall
also increase from 12 to 18. The dry tropical cyclone-like vortex exhibit the prominent
spiral bands and wall modes not only in the kinematic fields shown in Fig. 6.2 but also
in the thermodynamic fields (not shown here) throughout the height of the domain.
The spiral bands in the asymmetric structure are similar to those in actual tropical
cyclones, where spiral/rain bands are predominantly seen outside the inner-core region.
The characteristics of the spiral bands, namely the spiral angle and the phase speed,
will be discussed in the context of the actual tropical cyclone later in this section. It is
to be noted that the same behaviour in the asymmetric evolution is seen during the
cyclogenesis for other cases exhibiting tropical cyclone-like vortex.

An azimuthal Fourier decomposition of the fluctuations in kinetic energy, E ′ is
performed to obtain insight into the dominant components of the TC flow at the height
of z/H = 0.75 during the cyclogenesis phase and is shown in Fig. 6.3. This particular
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Fig. 6.2 Four snapshots, at τ2 = 1.05, 1.1, 1.15, and 1.2, of depth-averaged Ë∗ =
K − ⟨K⟩ for Case 2 in Table 5.1. The averaging is done between z/H = 0.2 and 1 and
the results are normalised using Ω2H2. Dotted concentric circles are drawn for every
r/R = 0.2 from the centre and dotted radial lines are drawn for every φ = 45◦.
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Fig. 6.3 Azimuthal power spectrum of E ′∗ in the axial plane z/H = 0.75 calculated
at radius for azimuthal wavenumbers m = 1 to m = 30 at four different time instant
(same as in Fig. 6.2) for Case 2 in Table 5.1. The values are normalised using the
respective maximum and these values are 5805.1 at τ2 = 1.05; 3780.3 at τ2 = 1.1;
3443.2 at τ2 = 1.15; and 3440.1 at τ2 = 1.2.

height is chosen as the main feature of the tropical cyclone-like vortex; namely, the eye
and eyewall are well defined (see Fig. 5.3d). During the start of cyclogenesis τ2 = 1.05,
the dominant mode with highest power is found near the centre at wavenumber m = 1.
At this time, the asymmetries begin to form an organised pattern (see Fig. 6.2). As
the time evolves τ2 ≥ 1.05, the low wave number asymmetries dominate the power
spectrum. The wavenumber m = 4 is found to be the dominant model in the bulk
of the domain 0.2 ≤ r/R ≤ 0.6 denotes the spiral band-like asymmetries see in Fig.
6.2. Similarly, the wavenumber m = 18 is found to be the dominant mode (see for
τ2 ≥ 1.15) near the sidewall, r/R ≥ 0.8 denotes the wall modes observed in Fig. 6.2.
The same behaviour for azimuthal power spectrum is observed during cyclogenesis
phase for other cases in Table 5.1. The near wall behaviour of evolution of asymmetries
for case 1 is discussed in section 4.2.3.

The vertical structure of the spiral bands is examined for fully evolved tropical
cyclone-like vortex by taking azimuth-height structures form = 4, which is the dominant
mode in the region outside the tropical cyclone-like vortex core r/R ≥ 0.2. Figure 6.4
shows the vertical structure of the m = 4 component of temperature perturbation,
θ′∗

m=4, radial velocity, u′∗
rm=4, axial velocity, u′∗

zm=4, and azimuthal velocity, u′∗
φm=4 at

a radius of r/R = 0.4 and τ2 = 1.2. The asymmetry are titled against the vertical
axis for θ′∗

m=4, u′∗
rm=4 and u′∗

φm=4 in Fig. 6.4, this is because of strong vertical shear
of their azimuthal mean quantities namely ⟨θ∗⟩, ⟨u∗

r⟩ and ⟨u∗
φ⟩ at r/R = 0.4 (see Fig.



6.2 Results & Discussion 99

Fig. 6.4 The height-azimuth contours of asymmetries for the dominant azimuthal mode
(m = 4) of (a) Temperature perturbation θ′∗

m=4 normalised with (βH), (b) Radial
velocity u′∗

rm=4 normalised with (ΩH), (c) Axial velocity u′∗
zm=4 normalised with (ΩH),

(d) Azimuthal velocity u′∗
φm=4 normalised with (ΩH), at r/R = 0.4 and τ2 = 1.2 for

Case 2 in Table 5.1.

5.3). This leads to titling of the asymmetry at a height z where the maximum value of
azimuthal mean quantities are observed. It is for the same reason that the asymmetry
of u′∗

zm=4 is almost vertically oriented because the flow is poloidal in r−z plane (see Fig.
5.1(b) & Fig. 5.3(d)) and hence ⟨u∗

z⟩ value will be uniform and negligible in the bulk
of the domain. The θ′∗

m=4 and u′∗
zm=4 are positively correlated throughout the height

of the domain indicating the exchange of asymmetric potential energy to asymmetric
kinetic energy in the bulk of the domain (see term CP in Eqs. (6.2) and (6.4)).

Figure 6.5(a) shows the angle of the spiral bands as a function of the radius measured
at z/H = 0.75 when the tropical cyclone-like vortex is fully evolved. The radius r is
normalised with tropical cyclone-like vortex radius rtc where rtc is the radius of last
closed isobar. The spiral angle ψ at a particular radius r is defined as the angle formed
by the streamline (computed from time-averaged velocities) and the tangent drawn at
intersection point of streamline and the concentric circle drawn at r from the centre.
The spiral angle, ψ decreases as one goes away from the tropical cyclone-like vortex
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Fig. 6.5 The radial variation of the (a) maximum (open symbols) and minimum (filled
symbols) spiral angle ψ (deg.) and (b) azimuthal phase speed v∗

p (filled symbols)
normalised with time and azimuthal averaged azimuthal velocity ⟨ũφ⟩ for Case 1, 2
and 4 in Table 5.1 in a fully evolved state.

centre for all the Cases in Table 5.1. The value measured for fully evolved tropical
cyclone-like vortex seems to be within the range of 10◦ − 30◦, which is approximately
within the range observed for spiral/rain bands in an actual tropical cyclone (10◦− 25◦)
from field measurements (Anthes, 2016).

Figure 6.5(b) shows the azimuthal phase speed v∗
p as a function of the radius

measured at z/H = 0.75. vp at a particular radius is measured by taking spatial
and temporal FFT of kinetic energy fluctuations E ′ (similar to Fig. 4.12). It is then
normalised with time and azimuthal-averaged azimuthal velocity, ⟨ ˜uφ/r⟩, at the same
radius. The phase speed v∗

p increases by about 14%, 16% and 24% for case 1, 2 and
4 respectively as one move from r/R = 0.3 to r/R = 0.6. This is because the value
of ⟨ũφ/r⟩ decreases radially at larger radius for a typical tropical cyclone-like vortex
(see Ch, 4 & 5). The azimuthal phase speeds were observed to be slower than the
mean flow velocity, ⟨ũφ⟩, for all the radius and for all the cases plotted in Fig. 6.5(b).
This is consistent with the previous works on the theory of spiral bands (Willoughby
et al., 1984, Montgomery & Kallenbach, 1997). The trend in the spiral angle ψ and the
azimuthal phase speed v∗

p remains the same at 0.75 ≤ z/H ≤ 0.95 and the deviation in
the magnitude is less than 10%. Thus, the asymmetric features of tropical cyclone-like
vortex, namely spiral bands, obtained from dry convection simulation in a RRBC
setup compare well qualitatively with that of the actual tropical cyclone. The energy
exchange between asymmetries and large-scale symmetric tropical cyclone-like vortex
structure from an energetic viewpoint is discussed in the next section.
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Fig. 6.6 Time evolution of volume-averaged energy components. (a) Symmetric ⟨K⟩v
and asymmetric ⟨K ′⟩v kinetic energy per unit mass normalised with (ΩR)2, (a) Sym-
metric ⟨A⟩v and asymmetric ⟨A′⟩v potential energy per unit mass normalised with
(ΩR)2, for case 2 in Table 5.1.

6.2.3 Energy Exchange within Tropical Cyclone-like Vortex

The role of different energy exchange terms in Eqs. (6.1)−−(6.4) which are detailed
in section 6.1.1 will be studied in this section to understand the evolution of tropical
cyclone-like vortex during cyclogenesis.

Figure 6.6 shows the time evolution of volume-averaged symmetric and asymmetric
components of kinetic and potential energies per unit mass during the cyclogenesis
phase for case 2 in Table 5.1. The energies are normalised with (ΩR)2. It should be
noted that the scales of the vertical axes for the variables in the Fig. 6.6(a) and Fig.
6.6(b) are different. The symmetric part of the kinetic energy starts increasing after
τ2 = 0.95 and achieves a steady value at around τ2 = 1.2. In contrast, the asymmetric
kinetic energy starts reducing well before the cyclogenesis phase and attain a steady
value around τ2 = 1.2. Similarly, the symmetric potential energy starts to increase
around τ2 ≈ 1 and the asymmetric potential energy also decreases similar to its kinetic
energy counterpart. This is consistent with the observation made in Fig. 6.1(b) that
during the cyclogenesis phase of a tropical cyclone-like vortex, the vortex becomes
more axisymmetric and intense. Hence, axisymmetric energies are of higher magnitude
and they start to increase during the cyclogenesis phase. The evolution of the energies
shown in Fig. 6.6 is similar for other cases in Table 5.1.

The evolution of volume-averaged energy exchange terms is shown in Fig. 6.7
to understand better the energy exchanges happening between the symmetric and
asymmetric components of kinetic and potential energies (shown in Fig. 6.6). The
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Fig. 6.7 Time evolution of the volume-averaged energy exchange terms in Eqs.
(6.1)−−(6.4) for case 2 in Table 5.1. The values are normalised with (Ω3R2).

values of energy exchange terms are normalised with (Ω3R2). ⟨C∗
K⟩v term represented

by solid line increases initially during cyclogenesis but then starts reducing by about
50% till it reaches a steady value. The volume-averaged term is positive throughout
the cyclogenesis phase and beyond, indicating the energy exchange from asymmetric to
symmetric kinetic energy. This is in line with the trend seen in Fig. 6.6(a). ⟨C∗

A⟩v term
denotes the energy exchange from asymmetric to symmetric potential energy increases
from about 0 to a positive value during cyclogenesis. This behaviour complements
the evolution of potential energies seen in Fig. 6.6(b). The exchange of azimuthal
mean potential to kinetic energy is the dominant energy exchange term, as seen in the
evolution of ⟨C∗

M⟩v. This is obvious because that is the inherent nature of convection
which initiates and aids the formation of tropical cyclone-like vortex. Since the flow
becomes more axisymmetric during cyclogenesis and the asymmetries energies are lower
than their axisymmetric counterpart. Therefore, ⟨C∗

P ⟩v denotes the energy exchange
between asymmetric potential and kinetic energy reduces during cyclogenesis. The
spatial variation of these terms and a summary of the overall energy exchange for a
fully evolved tropical cyclone-like vortex will be discussed next.

Figure 6.8 shows the spatial variation of energy exchange terms in Eqs. (6.1)−−(6.4)
for a fully evolved tropical cyclone-like vortex for case 2 in Table 5.1 at τ2 = 1.2. The
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individual terms are normalised by (Ω3R2). The exchange of kinetic energy between
azimuthal mean and asymmetries denoted by the term C∗

K is shown in Fig. 6.8(a). It
is positive in the poloidal flow region (see Fig. 5.3(d)) denotes the exchange of energy
towards an azimuthal mean kinetic energy, and this occupies the bulk of the domain,
and hence we get to see a positive value for this term in Fig. 6.7. There is also a
significant negative value of this term in the domain, and they are concentrated near
the boundary layers, namely the bottom Ekman layer, eyewall (sweeping up of bottom
Ekman layer (Oruba et al., 2017)) and sidewall Stewartson layer. This is because in
this region, the turbulence is predominant, and the nature of turbulence is to exchange
energy to smaller scales (in this case, the asymmetries) (Pope, 2000). This can be the
plausible reason for the decrease in the value of ⟨C∗

K⟩v in Fig. 6.7 during cyclogenesis.
This is because the boundary layer is set up throughout the bottom and sidewall and
is also swept up to form an eye-eyewall during cyclogenesis leading to formation of
tropical cyclone-like vortex in the domain.

The exchange of energy from asymmetric to symmetric potential energy is denoted
by the term C∗

A. It can be seen from Fig. 6.8(b) that it remains positive in the
bulk of the domain and this is because the thermal asymmetries and vertical velocity
asymmetries are positively correlated in bulk (for example, see Fig. 6.4(a) & 6.4(b))
also the radial gradient of azimuthal mean temperature gradient is uniform in the bulk.
The C∗

A term is negative near the region of maximum azimuthal velocities (see Fig.
5.3) this is because the radial gradient of ⟨θ∗⟩ changes the sign. This is because the
⟨θ∗⟩ is maximum near the eyewall region (where convection is predominant), and there
is a quiet eye region formed near the centre, which causes the sudden change in the
radial gradient sign and this is seen in the sign of C∗

A. The second sub-term in C∗
A is

negligible and is an order of magnitude small in value (not shown here).
Figure 6.8(c) shows the contour of C∗

M , which represents the energy exchange
between azimuthal mean potential and kinetic energy. It can be seen that it is positive
in the bulk of the domain because ⟨u∗

z⟩ and ⟨θ∗⟩ are positive in the bulk of the domain.
The higher value is concentrated near the centre in the eyewall region, where the
convection dominates. The value of C∗

M is negative near the centre of the domain at
z/H ≥ 0.8 this is because of the downward flow seen in the eye region therefore ⟨u∗

z⟩ is
negative. Similarly, ⟨u∗

z⟩ is negative near the sidewall region to complete the poloidal
flow seen in tropical cyclone-like vortex, whereas ⟨θ∗⟩ is positive near the top of the
domain z/H ≥ 0.5 and negative in the bottom half. Since ⟨θ∗⟩ and ⟨u∗

z⟩ are negatively
correlated for z/H ≥ 0.5 the C∗

M value is negative in this region.
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Fig. 6.8 The colour contours showing the spatial variation of energy exchange terms
in Eqs. (6.1)-(6.4) for Case 2 in Table 5.1 at τ2 = 1.2. The individual terms are
normalised by (Ω3R2).

The contour of C∗
P is shown in Fig. 6.8(c) indicating the energy exchange between

asymmetric potential and kinetic energy. It is positive in the domain because the
temperature asymmetries and vertical velocity asymmetries are positively correlated.
Similar to Fig. 6.8(c) there is a negative correlation between the thermal and vertical
velocity asymmetries near the top half of the sidewall. Thus the C∗

P value is negative
in the region. Also, the maximum value is concentrated near the centre as convection
is predominant near the core. The spatial variation of all the terms shown in Fig. 6.9
is similar for all other cases with tropical cyclone-like vortex. The overall energy cycle
for a fully evolved tropical cyclone-like vortex can be constructed from these exchange
terms described in Fig. 6.8 and is shown next.

Figure 6.9 shows the overall energy flow diagram with the value of different energy
change terms and the flow direction with an arrow for all the cases in Table 5.1. The
time-averaged (for 100 rotation time after the tropical cyclone-like vortex is fully
evolved) and volume averaged value of energy exchange terms are reported. The values
are normalised with a maximum value of the energy exchange term to have a maximum
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Fig. 6.9 The energy flow diagram in a fully evolved tropical cyclone-like vortex for
(a) Case 1, (b) Case 2 and (c) Case 4 in Table 5.1. The energy exchange values are
normalised to have 1.0 as a maximum value. The maximum value used for normalisation
are (a) ⟨C̃∗

M⟩v = 8832.1, (b) ⟨C̃∗
M⟩v = 5124.4 and (c) ⟨C̃∗

M⟩v = 4661.6.

value to be 1. It can be seen that for all the cases, the predominant energy exchange
is between azimuthal mean potential and kinetic energy. Following this, the energy
conversion from asymmetric to symmetric kinetic energy is dominant. This is because
of the poloidal flow set up in the domain, which helps in tilting the asymmetries and
contributes to this energy exchange. It is important to note here that this exchange
from asymmetric kinetic energy to symmetric energy is seen only in tropical cyclone-like
vortex cases where poloidal flow is set up in the domain and not for the cases that
do not show tropical cyclone-like vortex (not shown here). The energy conversion
between asymmetric and symmetric potential energy and the energy exchange between
asymmetric potential and kinetic energy are less compared to other energy exchanges.
This trend in the terms is observed for all the cases which show tropical cyclone-like
vortex, as seen in Fig. 6.9. However, their relative magnitude increases compared to
the maximum value for increasing Re. This is because turbulent processes dominate
at higher Re, and hence the maximum value of the energy exchange term used for
normalising, is reduced compared to the value of other terms.
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6.3 Summary

The simulation data of tropical cyclone-like vortex in a dry rotating Rayleigh-Benard
convection setup is analysed in this work. The data is decomposed into azimuthal
mean and asymmetries, and the asymmetries are studied in detail. The salient findings
based on this study presented in the work are as follows:

• During cyclogenesis, the asymmetries organise themselves into a spiral band as
seen in the actual tropical cyclone, even in the simple dry rotating convection
setup without considering moisture effects in the simulation.

• The spiral angle of the spiral bands formed in the tropical cyclone-like vortex lie
in the range of that of an actual tropical cyclone reported in the literature.

• The phase speed of the bands is slower than the mean flow velocity, again in line
with the theory of spiral bands (see Anthes (2016)).

• The evolution of different energy exchange terms and their spatial variation for a
fully evolved tropical cyclone-like vortex is understood in detail.

Though the asymmetries have been studied in this work during cyclogenesis, it is still
a simple model without any additional complexities such as stratification, moisture and
beta effect, to name a few. It is important to incorporate these factors into this simple
model to better understand their roles in the evolution of asymmetries and its effect on
cyclogenesis. This will help to further understand the role of different environmental
factors on cyclone formation and also help in developing better forecasting models.
The implications of the observed energy exchange among different components of the
energies in the tropical cyclone-like vortex formation are studied in the next chapter.



Chapter 7

Formation of Tropical Cyclone-like
Vortex

The tropical cyclone-like vortex is simulated successfully in this study using a 3D RRBC
setup for both laminar and turbulent flow conditions. The dry convection simulations
are able to capture spiral bands analogous to rain bands as seen in actual tropical
cyclones. The resulting spatial structure of the large-scale vortex is also found to agree
qualitatively with that of real tropical cyclones. The conditions for cyclogenesis in the
simple setup is obtained by analysing the computational results to come up with two
distinct timescales for cyclogenesis. It was found that the hydrodynamic conditions
for the cyclogenesis obtained from the present work agree well with the field data
for actual tropical cyclones. The energy transfer from asymmetries (spiral bands) to
axisymmetric structure is also studied in detail in the previous chapter. However, one
of the objectives for this work, namely understanding the cyclogenesis process leading
to the formation of the large-scale vortex and the mechanisms sustaining that structure
in the domain is still unclear. This chapter attempts to find some insight into plausible
reason(s) for the formation of the vortex in the simple model used for the present work.

The mechanism of tropical cyclogenesis remains a challenging scientific problem.
The formation of a tropical cyclone involves several steps (as discussed in chapter 1)
and might be loosely split into three stages: (i) the initial formation of weak cyclonic
regions where convection prefers to occur, (ii) the formation of large-scale cyclonic
circulation (aka tropical depression) and (iii) the spontaneous spinup of a large-scale
cyclonic circulation and its intensification into a vortex with a self-sustaining eye-
eyewall features (Montgomery et al., 2006). The last stage is referred to as cyclogenesis,
wherein the large-scale cyclonic circulation becomes intense and acquires the unique
eye-eyewall features absent in the tropical depression.
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The formation of eye-eyewall in the axisymmetric cyclonic vortex has been studied
extensively in the past by (Oruba et al., 2017, 2018). It was shown that the sweeping
up of the bottom Ekman layer helped the formation of the eyewall and, in turn, the
formation of the eye in the cyclonic vortex. The past studies were carried out in the
axisymmetric RRBC model. The important asymmetric effects were neglected in those
studies. Therefore, the study is revisited for the 3D counterpart to better understand
the cyclogenesis process in the simple RRBC model. As we can see from Fig. 7.1
at τ2 = 0.5 that initially large pool of cyclones (ωz > 0) and anti-cyclones (ωz < 0)
fills the domain in an highly disorganised manner. The flow evolves into an organised
tropical cyclone-like vortex, as seen in the second frame of Fig. 7.1 shown for τ2 = 1.5.
The detailed flow evolution from a quiescent initial condition for case 4 in Table 5.1 is
attached as a video titled “Ch7-movie1” with this document.

The horizontal kinetic energy, is defined as Kh = 1/2 × (u2
r + u2

φ). Its spectrum
computed for the plane z/H = 0.75 is shown in the bottom row of Fig. 7.1 suggests
that the dominant energy move towards the large scales as the tropical cyclone-like
vortex is formed in the domain at τ2 = 1.5 as shown in past studies for a large scale
vortex (Guervilly et al., 2014, Couston et al., 2020, Guzmán et al., 2020). However, it
is unclear if the large scale vortex in the previous work have eye and eyewall structures
typical of tropical cyclones. This chapter sheds some light on how the flow organises
into a large-scale tropical cyclone-like vortex as seen in Fig. 7.1, with distinct features
of eye-eyewall and spiral bands from a quiescent initial state. It is hoped that this will
shed some insight into the cyclogenesis, at least for the simple 3D RRBC setup used
for this study.

The remainder of this chapter is organised as follows. The overview of the barotropic
and baroclinic instabilities occurring in synoptic-scale (of the order of thousands of
kilometres) meteorology are discussed in subsection 7.1. The results are presented and
discussed in section 7.2, and the chapter is concluded with a summary.

7.1 Overview of Barotropic & Baroclinic instability

Much of the infomation provided in this section regarding the barotropic & baroclinic
instability can be found in the textbooks by Holton (2004) and Vallis (2017). In

1The movie Ch7-movie shows the evolution of axial vorticity, ω∗
z , normalised with Ω from a

quiescent initial state for case 4 in Table 5.1. The movie is available at https://www.dropbox.
com/s/4xrauy9yijblj5c/Ch7-movie.mp4?dl=0.

https://www.dropbox.com/s/4xrauy9yijblj5c/Ch7-movie.mp4?dl=0
https://www.dropbox.com/s/4xrauy9yijblj5c/Ch7-movie.mp4?dl=0
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Fig. 7.1 The instantaneous axial vorticity contour ω∗
z normalised with background

rotation along with the horizontal kinetic energy Kh spectrum at z/H = 0.75 and
τ2 = 0.5 (left) and τ2 = 1.5 (right) for case 4 in Table 5.1 showing evolution of large
scale vortex.
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geophysical fluid dynamics, the barotropic and baroclinic instabilities are well-known
mechanisms responsible for forming dominant energy-containing eddies in both atmo-
spheric and oceanic flows. In general barotropic instabilities occur in flows wherein
background rotation plays an important role, whereas baroclinic instabilities, in ad-
dition, require statistically stable stratification. They are typically distinguished
energetically by the respective dominance of exchanges of either kinetic (for barotropic)
or potential (for baroclinic) energy with the mean flow. Barotropic instability is
associated with dominant energy exchange of kinetic energy between the background
azimuthally symmetric flow and asymmetries, whereas dominant energy exchange
of potential energy between background flow and asymmetries is seen for baroclinic
instability. Both of these instabilities have been observed in the experiments of rotating
convection system (Hide, 1969, Hide & Mason, 1975).

These exchanges of energy between azimuthally symmetric flows and asymmetries
and between potential and kinetic energies are commonly quantified in the manner orig-
inally suggested by Lorenz (1967) in which the flow is partitioned between azimuthally
symmetric components and departures therefrom (“asymmetries”), with four main
energy reservoirs (⟨A⟩, A′,⟨K⟩, K ′) representing respectively the symmetric and asym-
metric potential energy and the corresponding kinetic energies. From considerations of
the energy conservation equations, expressions can be defined to represent the rates of
conversion between the four energy reservoirs denoted by CK , CA, CM and CP (e.g. see
Lorenz (1967), James (1995), and section 6.1.1 of chapter 6). CK is the rate of energy
exchange between azimuthal mean and asymmetric kinetic energy. The rate of energy
exchange between azimuthal mean and asymmetric potential energy is denoted by CA.
The rate of energy exchange between azimuthal mean potential and kinetic energy is
CM and CP denotes the rate of energy exchange between asymmetric potential and
kinetic energy. The mathematical expression for these energy exchange terms are given
in section 6.1.1. Barotropic instability is associated with dominant magnitude of CK

compared to CA. Similarly dominant value of CA compared to CK is associated with
baroclinic instability provided criteria for baroclinic/barotropic instability is satisfied
in the flow. The necessary criteria for occurrence of baroclinic/barotropic instability
are discussed later in this section.

The Baroclinic effect is incorporated in an incompressible Boussinesq fluid manifest
through the buoyancy term and this effect is an important mechanism of vorticity
generation, and could be regarded as the essence of the buoyancy effect which converts
potential energy to kinetic energy (Vallis, 2017). Such effect is due to the non alignment
of pressure gradient and density gradient, and it appears in the vorticity equation as
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the curl of the pressure term ∇× (∇p/ρ), namely the baroclinic torque. Due to the
complexity caused by the coupling of pressure and density in the pressure term , it
is widely preferred to substitute in the denominator ∇p/ρ by the constant reference
density ρ = ρo . Apparently, such simplification completely eliminates the curl of the
pressure term in the vorticity equation and requires a buoyancy term to compensate
the loss of the baroclinic torque. Therefore the curl of the buoyancy term should be
equal to, or approaching, in order to recover the true evolution of vorticity (Vallis,
2017).

In addition to energy considerations discussed until now, the spatial distribution
of absolute vorticity (ωabs) also plays a key role in determining whether an instability
develops and the character of the instability when it occurs (Holton, 2004, Vallis, 2017).
The absolute vorticity is the sum of axial vorticity and background rotation given by
ωabs = ωz + Ω. The subsequent non-linear evolution of the instability then depends
also on both energetic and vorticity constraints, posing significant challenges to our
understanding of how such instabilities evolved, interact, and equilibrate.

Analysis of linearised equations of momentum, energy and continuity has been
traditionally used to study the occurrence of barotropic or baroclinic instabilities; see
Chapters 9 & 10 of Vallis (2017) for detailed derivation. This type of analysis led to a
well-known condition for the presence growing infinitesimal azimuthal perturbations
on a mean tangential flow and this condition is called as Charney–Stern–Pedlosky
(CSP) (Charney & Stern, 1962, Pedlosky, 1964) A brief discussion of deducing this
condition is presented below for a flow with gradient wind and hydrostatic balances for
clarity.

One starts with asymmetric radial and tangential momentum equations and , energy
equation given by (B.14), (B.15) and (B.17) in Appendix B and the equation for mass
conservation. In these equations, the non-linear terms and the terms involving mean
radial and axial velocities, ⟨ur⟩ and ⟨uz⟩ respectively, are neglected to obtain simplified
evolution equations for asymmetries involving only ⟨uφ⟩. This tangential velocity is
taken to be in the gradient wind balance with ⟨P ⟩ and the equation for this is given by

2Ω⟨uφ⟩+ ⟨uφ⟩2

r
= 1
ρo

∂⟨P ⟩
∂r

.

One can obtain an expression for ⟨uφ⟩ using the positive root of the above equation,
which would be useful later on to get an equation for P ′. Neglecting ⟨ur⟩, ⟨uz⟩ and the
non-linear terms in Eqs.
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eqrefem1 to (B.17) as noted above, one gets

Dvu
′
r

Dt

− ⟨E⟩u′
φ = − 1

ρo

∂P ′

∂r
(7.1)

Dvu
′
φ

Dt

+ u′
z

∂⟨uφ⟩
∂z

+ ⟨ωabs⟩u′
r = − 1

ρo

∂P ′

r∂φ
(7.2)

Dv (∂P ′/∂z)
Dt

+ ⟨E⟩∂⟨uφ⟩
∂z

u′
r + u′

zN
2 = 0 (7.3)

1
r

∂ (ru′
r)

∂r
+ 1
r

∂u′
φ

∂φ
+ ∂u′

z

∂z
= 0 (7.4)

as discussed in Shapiro & Montgomery (1993). Here, Dv/Dt = ∂/∂t+ ⟨uφ⟩∂/r∂φ is
the advective change following a fluid parcel in the symmetric vortex with no radial
and axial velocities, the symbol E is E = 2Ω + 2⟨uφ⟩/r and N =

√
αβg is the buoyancy

frequency. To derive Eq. (7.3), the hydrostatic balance, i.e, ∂P ′/(ρo∂z) = αgθ′ is
assumed to get θ′ in terms of P ′ and thermal wind relation ∂⟨θ⟩/∂r = ⟨E⟩∂⟨uφ⟩/∂z is
used to replace ∂⟨uφ⟩/∂z in terms of P ′ appropriately. An evolution equation for P ′ can
then be obtained by replacing u′

r, u
′
φ, and u′

z using appropriate expressions obtained by
operating Dv/Dt on Eqs. (7.1) and (7.2) along with Eq. (7.3). The detailed derivation
of this can be found in (Shapiro & Montgomery, 1993, Montgomery & Shapiro, 1995)).
The final evolution equation for P ′ is (see Eq. (3.10) of Shapiro & Montgomery (1993))
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with

⟨q⟩ = 1
⟨E⟩

N2⟨ωabs⟨E⟩ − ⟨E2⟩
(
∂⟨uφ⟩
∂z

)2
 .

A modal solution of the form

P ′ = Φ(r, z) exp[i(mφ− ωt)],
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where m is an integer restricted to m ≥ 1, is sought for stability analysis. Then,
Eq. (7.5) becomes (see Montgomery & Shapiro (1995))

σ
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(7.6)

where σ = ω −m⟨uφ⟩/r is the Doppler-shifted frequency. The existence of unstable
mode is assumed by taking the imaginary part of the frequency, ωi ̸= 0. On multiplying
Eq. (7.6) by Φ∗, the complex conjugate of the P ′ amplitude, Φ, and integrating over
the cross section of the vortex 0 ≤ z <∞, 0 ≤ r <∞ yields,
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Equating the imaginary part (the last two terms) of Eq. (7.7) to zero gives a condition
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If there exists an instability within the vortex then ωi ̸= 0 and the integral
in the L.H.S of Eq. (7.8) must be zero to satisfy Eq. (7.8). This gives the Char-
ney–Stern–Pedlosky necessary condition for baroclinic/barotropic instability which
require one or more of the following condition to be satisfied: (Charney & Stern, 1962,
Pedlosky, 1964)

1. ∂⟨ωabs⟩/∂r changes sign along some surface in the domain.

2. ∂⟨ωabs⟩/∂r take the opposite sign to ∂⟨uφ⟩/∂z at the upper boundary at z = H.

3. ∂⟨ωabs⟩/∂r take the same sign to ∂⟨uφ⟩/∂z at the lower boundary at z = 0. or
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0 r1 r2 R

∂〈ωabs〉/∂r

〈ωabs〉

Fig. 7.2 Schematic showing the radial variation of absolute vorticity, ⟨ωabs⟩, and radial
gradient of absolute vorticity,∂⟨ωabs⟩/∂r, in a flow to illustrate Charney–Stern–Pedlosky
necessary condition for baroclinic/barotropic instability.

4. ∂⟨ωabs⟩/∂r = 0 in the interior and ∂⟨uφ⟩/∂z takes the same sign at both z = 0
and z = H.

If any one of the above conditions is satisfied, it gives the necessary condition for
the presence of an instability (baroclinic or barotropic to determined based on energy
exchange which will be discussed later in section 7.3) within the domain. It is also
to be noted that the condition given in Eq. (7.8) can be satisfied anywhere in the
domain implying that the wave is excited locally. Hence, the Eq. (7.8) doesn’t need
to be satisfied over the whole domain for the instability to exist. Figure 7.2 shows
an illustration of how this condition can be satisfied in the flow. It can be seen that
the integral of radial absolute vorticity over the range 0-R will be negative. However,
∂⟨ωabs⟩/∂r changes its sign in the region between r1 and r2 as illustrated in Fig. 7.2
and hence P ′ wave is excited in that region, which is only a part of the whole domain.
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In the next section, the computational results for cases with and without tropical
cyclone-like vortex are analysed to study the above condition illustrated in Fig. 7.2.
This helps to understand plausible reason for the formation and sustenance of a
large-scale tropical cyclone-like vortex in the domain.

7.2 Results & Discussion

7.2.1 Signature of Barotropic/Baroclinic Instability

In this section, the simulation showing a tropical cyclone-like vortex is analysed to
check whether the CSP necessary criteria for the presence of barotropic/baroclinic
instability in the flow is satisfied.

As seen in section 7.1, the spatial variation of absolute vorticity plays a key role
in identifying the presence of instability. Since the background rotation is constant
in the present case due to f -plane approximations, only the spatial variation of axial
vorticity is analysed. Figure 7.3 shows the time- and azimuthal-averaged axial vorticity
contour for case 2 in Table 5.1. The high-magnitude cyclonic vorticity is concentrated
near the core of the domain. It can be seen that the magnitude of axial vorticity
decreases radially as one moves from the core towards the sidewall. This behaviour
is the same across heights. In order to see the variation of axial vorticity near the
eye-eyewall and sidewall region, the radial gradient of time and azimuthal average axial
vorticity ∂⟨ω̃∗

z⟩/∂r is plotted in Fig. 7.3. There is a change in sign in the ∂⟨ω̃∗
z⟩/∂r

plot near the inner region of the eyewall at r/R ≈ 0.5. Similarly there is a change in
sign of ∂⟨ω̃∗

z⟩/∂r near the sidewall at r/R ≈ 0.975. Thus, condition number 1 of the
Charney-Stern-Pedlosky criteria for barotropic-baroclinic instability is satisfied for the
tropical cyclone-like vortex. Therefore, the Eq. 7.8 will be satisfied near the eyewall
region around r/R ≈ 0.05 and near the sidewall at around r/R ≈ 0.975 which will
enable wave propagation in this region. Since slip boundary condition is assumed at
the the upper boundary of the domain (see Fig. 5.1) therefore ∂⟨uφ⟩/∂z = 0 at z = H.
Thus, condition number 2 cannot be satisfied. Similarly, ∂⟨ω∗

z⟩/∂z ̸= 0 in the interior,
which prevents satisfying the condition number 4. Also, condition number 3 is not
satisfied because there is a uniform reduction in the value of ⟨ω̃∗

z⟩ from the centre of
the domain to the sidewall at z/H = 0 thus ∂⟨ω̃∗

z⟩/∂r < 0 whereas ∂⟨ũφ⟩/∂z > 0 at
z/H = 0. Therefore, the flow exhibits baroclinic/barotropic instability by satisfying
condition 1 of the Charney-Stern-Pedlosky criteria. The time evolution of the the radial
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Fig. 7.3 The time- and azimuthal-average axial vorticity contour ⟨ω̃∗
z⟩ for case 2 in

Table 5.1 (left). The radial variation of radial gradient of ⟨ω̃∗
z⟩ at z/H = 0.75 for case

2 in Table 5.1 (right). The axial vorticity is normalised with background rotation Ω.

gradient of axial vorticity is plotted next to get insight into what time the instability
sets up in the flow.

The radial variation of ∂⟨ω∗
z⟩/∂r is shown in Fig. 7.4 for three different times

τ2 = 0.9, 1.0, and 1.3 to understand when the ∂⟨ω∗
z⟩/∂r starts changing the sign in the

domain for cases 2 and 4 in Table 5.1. These times are chosen to see the radial variation
of the the radial gradient of axial vorticity before, during and after cyclogenesis. It
can be seen that before the start of cyclogenesis, at τ2 = 0.9, there isn’t a change
in the sign of ∂⟨ω∗

z⟩/∂r within the domain. Whereas at τ2 = 1.0, and 1.3, it can be
seen that there is a change in the sign of ∂⟨ω∗

z⟩/∂r near the centre and sidewall of the
domain. It is because, as we have seen in chapter 5 that, from τ2 = 1, the eye-eyewall
features begin to appear in the large-scale cyclonic vortices during the cyclogenesis
time τ2 = 1, poloidal flow is set up in the domain and sweeping up of the bottom
boundary layer to form an eye-eyewall is also seen near the core of the domain. In
the region closer to the sidewall, a well organise structures start appearing (as wall
modes are seen in chapter 4 & chapter 6). The well-defined eyewall and wall mode
structure are seen around the region where ∂⟨ω∗

z⟩/∂r changes sign. It is still unclear
as to whether the emergence of eyewall and wall modes causes the sign change in the
radial plot of ∂⟨ω∗

z⟩/∂r or vice-versa. Therefore to summarise the CSP is a necessary
criterion for baroclinic/barotropic instability, is satisfied in the flow at the start of
cyclogenesis τ2 = 1. Then at the same instant, the combined evolution of eye-eyewall
and wall modes is observed at these locations. The interaction between the eyewall
and the wall modes near the sidewall is understood by revisiting the earlier analysis.
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Fig. 7.4 The radial variation of radial gradient of axial vorticity, ∂⟨ω∗
z⟩/∂r at z/H = 0.75

for case 2 in Table 5.1 at three different times τ2 = 0.9, 1.0, 1.1, and 1.3 for case 2 and
4 in Table 5.1 and for case 70 in Table A.1 which does not form tropical cyclone-like
vortex denoted by NTC in the figure legend. The axial vorticity is normalised with
background rotation Ω.

The radial variation of ∂⟨ω∗
z⟩/∂r at different instants during the cyclogenesis is

shown in Fig. 7.4 and the time- and volume-average ∂⟨ω̃∗
z⟩/∂r in Fig. 7.3 clearly shows

that the radial gradient of axial vorticity changes sign near the eyewall and sidewall. As
discussed in section 7.1, around the region where ∂⟨ωz⟩/∂r changes sign the Eq. 7.8 is
satisfied, leading to the excitation of a wave. We can see from Fig. 6.3 that azimuthal
mode m = 2 (at r/R = 0.05 near eyewall) and m = 18 (at r/R = 0.95 near the sidewall)
are the dominant mode in these regions during and after the cyclogenesis phase. Also,
m = 18 wall mode near the sidewall rotates in the retrograde sense (see chapter 4)
as the background azimuthal velocity near the sidewall is opposite (negative) to that
of the background rotation (refer to Fig. 5.4(b)). Similarly, m = 2 mode dominant
in the eye-eyewall region rotates in the prograde sense as the background azimuthal
velocity is positive (refer to Fig. 5.4(b)). Also, the magnitude of the azimuthal velocity
in the region close to eye-eyewall (r/R ≈ 0.05) is very low compared to the magnitude
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of azimuthal velocity near the sidewall (r/R ≈ 0.975). Thus, the wave with m = 18
mode near the sidewall rotates faster compared to the wave with m = 2 mode near
the eyewall. Also, the phase speed of the two counter-rotating (prograde-retrograde)
waves can be computed from the frequency-wavenumber plot. The phase speed for the
prograde wave near the eyewall and the phase speed for the retrograde wave near the
sidewall was found to be 0.1. Thus, the phase speed of these two waves is the same.
Therefore, the two waves excited near the eyewall and sidewall due to a change in sign
of ∂⟨ωz⟩/∂r as seen in Fig. 7.4 phase-lock with each other, thereby helping sustain the
large-scale cyclonic vortex in the domain.

In order to verify whether the observation seen so far are unique to only for
simulation showing tropical cyclone-like vortex in the domain, computational results
which do not show tropical cyclone-like vortex are analysed. To carry out the analysis,
case 70 of Table. A.1 in Appendix. A is used. In order to ensure that the flow is
fully evolved, the volume-averaged kinetic energy is monitored in the flow with time.
The time evolution of volume-averaged kinetic energy for the case 70 is shown in
Fig. 7.5 (top row). The kinetic energy is normalised by (ΩR)2. The volume-averaged
kinetic energy becomes fully evolved and doesn’t change much after τ > 70. Figure 7.5
(bottom four frames) shows the spatial contours of axial vorticity, ωz, and temperature
perturbation, θ are shown at two time instants after the flow is fully evolved, namely,
τ = 180 and 200. The axial vorticity is normalised with background rotation Ω, and
temperature perturbation is normalised with βH. It can be seen that though hot
temperatures are concentrated near the centre of the domain, as seen for tropical
cyclone-like vortex, the structure is not axisymmetric. The hot fluid concentrates near
the centre because of the net transport of angular momentum towards the centre of
the domain due to the presence of enhanced inflow with isothermal sidewall boundary
condition (see chapter 4) but that does not help in the organisation of the flow into the
symmetric vortex. The axial vorticity contour also exhibits a disorganised structure
with the presence of many small-scale cyclonic vortices (ω∗

z > 0) in the domain. Fig.
7.6 shows the axial velocity contour in a radial plane at φ = 0◦ and azimuthal-averaged
azimuthal vorticity ⟨ω∗

φ⟩. We can see that the domain is filled with convective rolls, as
seen with alternating positive and negative values of u∗

z. Also, there isn’t sweeping up
of bottom boundary layer (⟨ω∗

φ⟩ < 0) which is typical in a tropical cyclone-like vortex
(see chapter 4). Therefore, we have seen that for the simulation of flow outside the
range of Ro ≈ C/Γ, where

√
2 ≤ C ≤ 2

√
2 does not organise into a large-scale tropical

cyclone-like vortex with eye-eyewall and spiral band features. Also, the radial variation
of ∂⟨ωz⟩/∂r at z/H = 0.75 is plotted for four different time instant in Fig. 7.4. The
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∂⟨ωz⟩/∂r plot does not change the sign in the radial direction for all the time instant.
A similar observation is seen at all other heights in the domain for this case. Thus, we
observed that the CSP condition for instability is not satisfied for a flow without a
tropical cyclone-like vortex in the domain.

Fig. 7.5 The time evolution of volume averaged kinetic energy ⟨K∗⟩v normalised with
(ΩR)2 for Re = 4× 1010, E = 10−9, Pr = 0.1, Γ = 0.05 (case 70 of Table. A.1) which
does not form tropical cyclone-like vortex (top). The contour of axial vorticity ω∗

z

normalised with rotation rate Ω and temperature perturbation θ∗ normalised with βH
at z/H = 0.75 and for τ = tΩ = 180 & 200 (bottom four frames).

To summarise this section, we have seen that condition number 1 of the Charney-
Stern-Pedlosky criteria for the barotropic/baroclinic instability is satisfied in the domain.
The radial gradient of axial vorticity changes signs at the onset of cyclogenesis near the
eye-eyewall region and the sidewall boundary. The change in sign at these locations
excites m = 2 prograde wave (near eyewall) and m = 18 retrograde wave (near sidewall).
These are typical for baroclinic/barotropic instability Holton (2004), Vallis (2017),
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Fig. 7.6 The contour of axial velocity u∗
z normalised with (ΩR) shown in the radial

plane at φ = 0◦ and azimuthal-averaged tangential vorticity ⟨ω∗
φ⟩ normalised with Ω

for τ = tΩ = 180 & 200.

and they phase-lock with each other since they have the same phase speed and help
maintain the large-scale vortex in the domain. The energy flow diagram is compared
between simulations showing tropical cyclone-like vortex and otherwise to verify the
dominant energy exchange term in the simulation showing tropical cyclone-like vortex.
This helps identify the presence of either barotropic or baroclinic instability in the
tropical cyclone-like vortex. In the case of the flow which does not show a tropical
cyclone-like vortex in the domain the ∂⟨ωz⟩/∂r does not change sign in the domain.

7.2.2 Energy Exchange Revisited

In the previous section, it became clear that the tropical cyclone-like vortex satisfy
the CSP criteria near the eyewall and sidewall, and the resulting wave excited around
the region phase-lock with each other to help sustain large-scale vortex in the domain.
In this section, we look into the energy exchange diagram to understand whether the
instability is barotropic or baroclinic.

The energy flow diagram is constructed once the volume-averaged energy in the
domain is saturated for several tens of rotation time.The energy flow diagram in Fig.
7.7(a) (same as 6.9(c)) for a tropical cyclone-like vortex obtained for case 4 in Table



7.3 Summary 121

5.1 suggests that the dominant energy exchange is between azimuthal mean potential
and kinetic energy. This is because the buoyancy drives the flow in the model and the
inherent nature of the buoyant convection is to convert the potential energy into kinetic
energy. The second most dominant energy exchange, which helps sustain the tropical
cyclone-like vortex, is due to the exchange between azimuthal mean and asymmetric
kinetic energy. This suggests that barotropic instability helps form and sustain the
large-scale tropical cyclone-like vortex in the domain. However, to further verify the
same, the energy flow diagram is constructed from a simulation which does not yield
a tropical cyclone-like vortex, as discussed in the previous section. Figure 7.7 shows
the energy flow diagram for case 70 of Table. A.1. It can be seen that the magnitude
of ⟨C̃∗

k⟩v denoting the time and volume-averaged energy the exchange between the
azimuthal mean kinetic energy and asymmetric kinetic energy is negligible compared
to other energy exchange terms. Therefore, comparing the energy flow diagram for
the case with and without a tropical cyclone-like vortex gives evidence that barotropic
instability dominates in the fully evolved large-scale cyclonic vortex in the domain
further to satisfy the necessary CSP criteria for the instability.

The view presented here regarding the genesis of the tropical cyclone-like vortex in
the simple RRBC model differs from that expressed by Fujiwhara (1921), Montgomery
et al. (2006). In those studies, genesis is attributed to merging small-scale vortices to
form a large-scale cyclonic vortex. In the present work, we have seen vortex merging
happen in the domain, but the resulting vortices formed from vortex merging eventually
dissipate in the flow over time. The large-scale cyclonic vortex is suddenly formed
from a single small-scale cyclonic vortex (see the movie titled “Ch7-movie” referred
to earlier in this chapter with the link). And this sudden formation of a large-scale
cyclonic vortex from a small-scale cyclonic vortex is attributed here to the barotropic
instability, which enables the excitation and interaction of two waves far apart in the
domain leading to the formation of a large-scale structure. Though the phase-locking
of waves is seen in the flow with barotropic and baroclinic instability in the past for
rotating convective flows (Hide, 1969, Vallis, 2017), this study shows that the barotropic
instability combined with the phase-locking of waves results in the formation of tropical
cyclone-like vortex in the simple RRBC model.

7.3 Summary

In this chapter, the probable reason for the formation and maintenance of a tropical
cyclonic-like vortex in a RRBC setup is studied. The conclusions derived are as follows:
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Fig. 7.7 (a) Energy flow diagram for tropical cyclone-like vortex obtained for case 4
in Table 5.1. (b) Energy flow diagram for case 70 in Table. A.1 which does not form
tropical cyclone-like vortex. The energy exchange values are normalised to have 1.0 as
a maximum value. The maximum value used for normalisation is (a) ⟨C̃∗

M⟩v = 4661.6
and (b) ⟨C̃∗

M⟩v = 4102.1
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1. The radial gradient of axial vorticity changes sign in the domain at two different
locations near the eyewall and sidewall, thereby satisfying the condition 1 of the
Charney-Stern-Pedlosky criteria for baroclinic/barotropic instability.

2. The radial gradient of axial vorticity begins to change signs at τ2 ≈ 1, i.e., during
the start of the cyclogenesis when the eye-eyewall and spiral bands features begin
to appear on the large-scale cyclonic vortex.

3. m = 2 prograde (near eyewall) and m = 18 retrograde (near sidewall) mode
is dominant around the the region where the radial gradient of axial vorticity
changes sign. These two mode phase lock with each other, resulting in the
sustenance of the large-scale tropical cyclone-like vortex in the domain for the
remainder of the simulation time.

4. The comparison of energy flow diagram between simulation with and without
tropical cyclone-like vortex in the domain confirms the barotropic instability
in the flow with the rate of energy exchange from asymmetric to azimuthally
averaged kinetic energy has a dominant magnitude compared to the energy
exchange rate from asymmetric to azimuthally averaged potential energy.

5. Thus, the combined evolution of eyewall and wall modes with the simultaneous
excitation of the waves at these locations, due to the onset of barotropic instability,
lead to the formation of the desired tropical cyclone-like vortex in the domain.





Chapter 8

Conclusions and Future Work

In this work, an attempt is made to study the hydrodynamics of cyclogenesis using
a simple rotating Rayleigh Benard convection setup. To this aim a 3D laminar and
turbulent tropical cyclone-like vortex was simulated in a rotating Rayleigh-Benard
convection setup with a Boussinesq fluid in a shallow cylindrical domain. A large
Eddy Simulation (LES) framework has been used to model the turbulence. The effects
and accuracy of the numerical model on the simulated tropical cyclone-like vortex are
studied. The similarity of the resulting structure of the tropical cyclone-like vortex with
an actual tropical cyclone is highlighted. Subsequently, the results obtained from the
simulation are analysed to get physical insights into the hydrodynamics of cyclogenesis.
This chapter summarises the results presented in the thesis and suggests directions for
future work.

8.1 Effects and Accuracy of Numerical Model

In Chapter 4, the axisymmetric and 3D tropical cyclone-like vortex are compared
to better understand the effect of the vortex evolution along the third dimension,
the azimuthal direction. It was found that due to diffusive effects the 3D tropical
cyclone-like vortex is found to be less intense compared to its axisymmetric counterpart.
Also, the effect of sidewall thermal boundary condition on the formation of 3D tropical
cyclone-like vortex was studied by changing the sidewall boundary condition from
insulated to isothermal. It was found that with the insulated boundary conditions the
retrograde asymmetric mode m = 2 with spiral inner core are more dominant compared
to axisymmetric mode m = 0 thereby preventing the formation of symmetric large scale
tropical cyclone-like vortex in the domain. On the other hand, axisymmetric tropical
cyclone-like vortex were obtained with isothermal sidewall. Thus, the thermal boundary
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condition along the sidewall strongly influence the formation of large-scale tropical
cyclone-like vortex in the domain. However, the upsweep of the bottom boundary
forming the eye-eyewall observed by Oruba et al. (2017) in their laminar axisymmetric
calculations is also observed in the current 3D simulations.

In Chapter 5, turbulent tropical cyclone-like vortex are simulated using a Large
Eddy Simulation (LES) paradigm. The capabilities of LES in resolving large scale
turbulence and modelling small scale turbulence is leveraged to conduct simulation of
tropical cyclone-like vortex spanning 10 orders of magnitude. The tropical cyclone-like
vortex obtained from both laminar and turbulent simulations are compared qualitatively
with real tropical cyclones data (Frank, 1977, Willoughby, 1990, Anthes, 2016). It was
found that the structure obtained compares well. Also, the gradient wind balance as
observed in an actual tropical cyclone are also seen for the tropical cyclone-like vortex
around its core obtained from the simple model (Willoughby, 1990). The gradient wind
balance is the balance of the pressure, Coriolis and centrifugal forces (Willoughby, 1990).
In chapter 6, the asymmetries in the azimuthal direction for the tropical cyclone-like
vortex are analysed. The spatial features of asymmetries present in the dry convection
simulations conducted here take the form of spiral bands resembling the rain bands
seen in the actual tropical cyclones. The angle and the phase speed for the spatial
bands are measured from the simulation and are compared with that of actual tropical
cyclones (Anthes, 2016). It was found that results agree well.

8.2 Insights of Cyclogenesis

The simulation data are analysed in chapter 5 and a timescale for start of cyclogenesis
is proposed. It is the time at which the subsidence inside the large-scale cyclonic vortex
begins thereby giving it the unique spatial feature such as eye, eyewall and spiral bands,
although the eyewall is formed earlier through upsweep of the bottom boundary layer.
This timescale is found to be proportional to

√
Ret where Ret = V H/⟨νt⟩BL is the

turbulent Reynolds number. It is found that two timescales control the spinup of the
tropical cyclone-like vortex in the model, namely a timescale for the start of cyclogenesis
and the spin-up timescale, which is proportional to 1/

√
Et where Et = ⟨νt⟩BL/ΩH2

(Greenspan & Howard, 1963). By the later timescale, the vortex with all its features
including eye, eyewall and spiral bands are clearly visible. The timescale for the
start of cyclogenesis is smaller thanthe spin-up timescale for the formation of the
large scale vortex. To see the implication of the results to actual cyclogenesis, the
tropical cyclone track data obtained from United States Military’s Joint Typhoon
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Warning Centre (JTWC) database are analysed using these two timescales. It is
found that hydrodynamic conditions for cyclogenesis obtained from the present work
agree well for the real tropical cyclone. The energy transfer from asymmetries to
the symmetric vortex is studied in detail in chapter 6 to understand the importance
of the energy transfer process in sustaining the tropical cyclone-like vortex in the
domain. In chapter 7, the plausible reason for the formation of large-scale tropical
cyclone like vortex from quiescent state is studied. When simulations are performed
for the flow parameter outside the range

√
2 ≤ RoΓ ≤ 2

√
2 tropical cyclone-like vortex

is not observed and the exchange of energy from asymmetric to azimuthal kinetic
energy is not dominant as seen for the tropical cyclone-like vortex (see chapter 6). The
dominant energy exchange between azimuthal mean and asymmetric kinetic energy
denotes the presence of barotropic instability in the flow (Holton, 2004). The presence
of barotropic instability in the tropical cyclonic vortex is further confirmed by plotting
the radial variation of radial gradient of axial vorticity (Holton, 2004). It is seen that
radial gradient of axial vorticity changes sign in the radial direction near the eyewall
and sidewall denoting the excitation of counter-rotating wave in these regions. These
wave phase-lock with each other thereby helping the sustenance of large scale tropical
cyclone-like vortex in the domain. Thus, the combined evolution of eyewall and wall
modes with the simultaneous excitation of the waves at these locations due to the
onset of barotropic instability leads to the formation of the desired tropical cyclone-like
vortex in the domain.

8.3 Future Work

The work and analysis presented in this thesis have provided useful insights into the
hydrodynamics of cyclogenesis. Nevertheless, there are still various aspects where
additional simulations and analysis would be of interest. The specific future works
recommended are as follows:

• Regarding the sidewall thermal boundary condition effects, it would be of interest
to study the cause for the asymmetric modes to be dominant with insulated
sidewall leading to chaotic convection inhibiting the formation of tropical cyclone-
like vortex in the domain.

• The cyclogenesis timescale proposed in this work is checked only for tropical
cyclone track data available in the JTWC database. The conditions need to be
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checked for tropical cyclone track data from other databases like MET office,
NASA etc.

• The simulations can be made more realistic by replacing f -plane with β plane
approximations to study the influences of Rossby wave phenomenon that are
ubiquitous in atmospheric flows.

• Finding a suitable algorithm to automatically track the small scale cyclones and
anticylones separately as the computations evolve would be of great intrest and
very useful. This can enable us to better understand whether vortex merging
plays a role in the formation of the large-scale tropical cyclone-like vortex. Also,
the individual trajectory of the cyclonic and anti-cyclonic vortices obtained by
tracking them will be useful to study the role of Ekman pumping in the flow
evolution.

• The role of kinetic and potential energy transfer between different wavenumbers
needs to be studied in detail to understand the inverse cascade of energy required
to form a large tropical cyclone-like vortex from a small scale cyclonic vortex.

• The results from this work suggests that the hydrodynamical effects play an
important role in the formation and maintenance of tropical cyclone-like vortex.
However, additional effects which are present in reality such as stratification,
moisture, external wind shear effects and variation of rotation rate must be
considered. Incorporating these effects gradually would be helpful to assess their
individual influences on the cyclogenesis.
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Appendix A

Flow Parameter Values

Table A.1 Summary of the parameter values simulated in this work with isothermal sidewall.

S.No H (m) R (m) ν (m2/s) Ω (s-1) β (K/m) V (m/s) E Re Ro Pr Γ TCLV?1

1 103 104 10−6 6.67 · 10−12 3 · 10−17 1.34 · 10−7 1.5 · 10−1 1.34 · 102 20.12 0.1 0.1 ✓

2 103 104 10−6 6.67 · 10−12 3 · 10−17 1.73 · 10−7 1.5 · 10−1 1.73 · 102 25.98 0.1 0.1 ✓

3 103 104 10−6 6.67 · 10−12 3 · 10−17 2 · 10−7 1.5 · 10−1 2 · 102 30 0.1 0.1 ✘

4 103 104 10−6 6.67 · 10−12 3 · 10−17 2.82 · 10−7 1.5 · 10−1 2.82 · 102 42.43 0.1 0.1 ✘

5 103 104 10−6 6.67 · 10−12 3 · 10−17 3.46 · 10−7 1.5 · 10−1 3.46 · 102 51.96 0.1 0.1 ✘

6 103 104 10−6 6.67 · 10−12 3 · 10−17 4 · 10−7 1.5 · 10−1 4 · 102 60 0.1 0.1 ✘

7 103 104 10−6 6.67 · 10−12 3 · 10−17 4.47 · 10−7 1.5 · 10−1 4.47 · 102 67.08 0.1 0.1 ✘

8 103 104 10−6 6.67 · 10−12 3 · 10−17 4.89 · 10−7 1.5 · 10−1 4.89 · 102 73.48 0.1 0.1 ✘

9 103 104 10−6 6.67 · 10−12 3 · 10−17 5.29 · 10−7 1.5 · 10−1 5.29 · 102 79.37 0.1 0.1 ✘

10 103 104 10−6 6.67 · 10−12 3 · 10−17 5.65 · 10−7 1.5 · 10−1 5.65 · 102 84.85 0.1 0.1 ✘

1Tropical Cyclone-like Vortex
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Flow

Param
eter

Values
11 103 104 10−6 10−11 1.99 · 10−17 1.22 · 10−7 10−1 1.22 · 102 12.25 0.1 0.1 ✘

12 103 104 10−6 10−11 1.99 · 10−17 1.41 · 10−7 10−1 1.41 · 102 14.12 0.1 0.1 ✓

13 103 104 10−6 10−11 3 · 10−17 1.73 · 10−7 10−1 1.73 · 102 17.32 0.1 0.1 ✓

14 103 104 10−6 10−11 4 · 10−17 2 · 10−7 10−1 2 · 102 20 0.1 0.1 ✓

15 103 104 10−6 10−11 4 · 10−17 2 · 10−7 10−1 2 · 102 20 0.7 0.1 ✓

16 103 104 10−6 10−11 4 · 10−17 2 · 10−7 10−1 2 · 102 20 0.025 0.1 ✓

17 103 104 10−6 10−11 5 · 10−17 2.24 · 10−7 10−1 2.24 · 102 22.36 0.1 0.1 ✓

18 103 104 10−6 10−11 6 · 10−17 2.45 · 10−7 10−1 2.45 · 102 24.5 0.1 0.1 ✓

19 103 104 10−6 10−11 6.25 · 10−17 2.5 · 10−7 10−1 2.5 · 102 25 0.1 0.1 ✓

20 103 104 10−6 10−11 7.5 · 10−17 2.74 · 10−7 10−1 2.74 · 102 27.39 0.1 0.1 ✓

21 103 104 10−6 10−11 7.5 · 10−17 3 · 10−7 10−1 3 · 102 30 0.1 0.1 ✘

22 103 104 10−6 10−11 7.5 · 10−17 4.8 · 10−7 10−1 4.8 · 102 48 0.1 0.1 ✘

23 103 104 10−6 10−11 7.5 · 10−17 5.47 · 10−7 10−1 5.47 · 102 54.77 0.1 0.1 ✘

24 103 104 10−6 1.33 · 10−11 4 · 10−17 2 · 10−7 7.5 · 10−2 2 · 102 15 0.1 0.1 ✓

25 103 104 10−6 1.33 · 10−11 4 · 10−17 2 · 10−7 7.5 · 10−2 2 · 102 15 0.7 0.1 ✓

26 103 104 10−6 1.33 · 10−11 9 · 10−17 3 · 10−7 7.5 · 10−2 3 · 102 22.5 0.1 0.1 ✓

27 103 104 10−6 1.33 · 10−11 1.2 · 10−16 3.46 · 10−7 7.5 · 10−2 3.46 · 102 25.98 0.1 0.1 ✓

28 103 104 10−6 1.33 · 10−11 1.2 · 10−16 4.24 · 10−7 7.5 · 10−2 4.24 · 102 31.82 0.1 0.1 ✘

29 103 104 10−6 2 · 10−11 9 · 10−17 3 · 10−7 5 · 10−2 3 · 102 15 0.1 0.1 ✓

30 103 104 10−6 2 · 10−11 9 · 10−17 3 · 10−7 5 · 10−2 3 · 102 15 0.7 0.1 ✓

31 103 104 10−6 2 · 10−11 1.5 · 10−16 3.87 · 10−7 5 · 10−2 3.87 · 102 19.36 0.1 0.1 ✓

32 103 104 10−6 2 · 10−11 2 · 10−16 4.47 · 10−7 5 · 10−2 4.47 · 102 22.36 0.1 0.1 ✓

33 103 104 10−6 2.22 · 10−11 1.6 · 10−16 4 · 10−7 4.5 · 10−2 4 · 102 18 0.1 0.1 ✓

34 103 104 10−6 2.5 · 10−11 2 · 10−16 4.47 · 10−7 4 · 10−2 4.47 · 102 17.89 0.1 0.1 ✓

35 103 104 10−6 2.5 · 10−11 2.03 · 10−16 4.5 · 10−7 4 · 10−2 4.5 · 102 18 0.1 0.1 ✓

36 103 104 10−6 2.86 · 10−11 2 · 10−16 4.47 · 10−7 3.5 · 10−2 4.47 · 102 15.65 0.1 0.1 ✓
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37 103 104 10−6 2.86 · 10−11 3 · 10−16 5.48 · 10−7 3.5 · 10−2 5.48 · 102 19.17 0.1 0.1 ✓

38 103 104 10−6 2.86 · 10−11 3 · 10−16 5.48 · 10−7 3.5 · 10−2 5.48 · 102 19.17 0.7 0.1 ✓

39 103 104 10−6 2.86 · 10−11 3 · 10−16 5.48 · 10−7 3.5 · 10−2 5.48 · 102 19.17 0.025 0.1 ✓

40 103 104 10−6 2.86 · 10−11 3.25 · 10−16 5.7 · 10−7 3.5 · 10−2 5.7 · 102 19.95 0.1 0.1 ✓

41 103 104 10−6 2.86 · 10−11 5.2 · 10−16 7.21 · 10−7 3.5 · 10−2 7.21 · 102 25.24 0.1 0.1 ✓

42 103 104 10−6 3.33 · 10−11 2.35 · 10−16 4.85 · 10−7 3 · 10−2 4.85 · 102 14.55 0.1 0.1 ✓

43 103 104 10−6 3.33 · 10−11 3.6 · 10−16 6 · 10−7 3 · 10−2 6 · 102 18 0.1 0.1 ✓

44 103 104 10−6 3.33 · 10−11 4.44 · 10−16 6.66 · 10−7 3 · 10−2 6.66 · 102 19.98 0.1 0.1 ✓

45 103 104 10−6 3.33 · 10−11 5.37 · 10−16 7.33 · 10−7 3 · 10−2 7.33 · 102 21.99 0.1 0.1 ✓

46 103 104 10−6 3.33 · 10−11 5.38 · 10−16 7.33 · 10−7 3 · 10−2 7.33 · 102 22 0.1 0.1 ✓

47 103 104 10−6 5 · 10−11 7.99 · 10−16 8.94 · 10−7 2 · 10−2 8.94 · 102 17.88 0.1 0.1 ✓

48 103 104 10−6 5 · 10−11 7.99 · 10−16 8.94 · 10−7 2 · 10−2 8.94 · 102 17.88 0.7 0.1 ✓

49 103 104 10−6 5 · 10−11 10−15 10−6 2 · 10−2 103 20 0.1 0.1 ✓

50 103 104 10−6 5 · 10−11 10−15 10−6 2 · 10−2 103 20 0.7 0.1 ✓

51 103 104 10−6 5 · 10−11 10−15 10−6 2 · 10−2 103 20 0.025 0.1 ✓

52 103 104 10−6 5 · 10−11 1.5 · 10−15 1.22 · 10−6 2 · 10−2 1.22 · 103 24.48 0.1 0.1 ✓

53 103 104 10−6 5 · 10−11 1.5 · 10−15 1.22 · 10−6 2 · 10−2 1.22 · 103 24.48 0.7 0.1 ✓

54 103 104 10−6 5 · 10−11 1.5 · 10−15 1.22 · 10−6 2 · 10−2 1.22 · 103 24.48 0.025 0.1 ✓

55 103 104 10−6 5 · 10−11 2 · 10−15 1.41 · 10−6 2 · 10−2 1.41 · 103 28.28 0.1 0.1 ✓

56 103 104 10−6 5 · 10−11 2 · 10−15 1.41 · 10−6 2 · 10−2 1.41 · 103 28.28 0.7 0.1 ✓

57 103 104 10−6 5 · 10−11 2 · 10−15 1.5 · 10−6 2 · 10−2 1.5 · 103 30 0.1 0.1 ✘

58 103 104 10−6 10−9 4 · 10−13 2 · 10−5 10−3 2 · 104 20 0.1 0.1 ✓

59 103 104 10−6 10−9 4 · 10−13 2 · 10−5 10−3 2 · 104 20 0.7 0.1 ✓

60 103 104 10−6 10−6 4 · 10−7 2 · 10−2 10−6 2 · 107 20 0.1 0.1 ✓

61 500 104 2.5 · 10−6 10−8 8.01 · 10−11 1.42 · 10−4 10−3 2.83 · 104 28.3 0.1 0.05 ✓

62 500 104 2.5 · 10−7 10−8 8.01 · 10−11 1.42 · 10−4 10−4 2.83 · 105 28.3 0.1 0.05 ✓
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eter

Values
63 500 104 2.5 · 10−9 10−8 8.01 · 10−11 1.42 · 10−4 10−6 2.83 · 107 28.3 0.1 0.05 ✓

64 500 104 2.5 · 10−9 10−8 8.01 · 10−11 1.42 · 10−4 10−6 2.83 · 107 28.3 0.7 0.05 ✓

65 500 104 2.5 · 10−10 10−8 8.01 · 10−11 1.42 · 10−4 10−7 2.83 · 108 28.3 0.1 0.05 ✓

66 500 104 2.5 · 10−10 10−8 8.01 · 10−11 2 · 10−4 10−7 4 · 108 40 0.1 0.05 ✘

67 500 104 2.5 · 10−12 10−8 8.01 · 10−11 1.42 · 10−4 10−9 2.83 · 1010 28.3 0.1 0.05 ✓

68 500 104 2.5 · 10−12 10−8 8.01 · 10−11 1.42 · 10−4 10−9 2.83 · 1010 28.3 0.7 0.05 ✓

69 500 104 2.5 · 10−12 10−8 8.01 · 10−11 1.42 · 10−4 10−9 2.83 · 1010 28.3 0.025 0.05 ✓

70 500 104 2.5 · 10−12 10−8 8.01 · 10−11 2 · 10−4 10−9 4 · 1010 40 0.025 0.05 ✘

α = 10−4K−1 & g = 10 ms−2 for all the simulations.



Appendix B

Derivation of Energy Budget
Equations

This appendix contains derivation of the energy budget Eqs. (6.1)-(6.4) from the
momentum and temperature perturbation equations in cylindrical coordinates given
by,
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All variables can be separated into the azimuthal mean ⟨X⟩ and its asymmetric term
X ′.

ur = ⟨ur⟩(r, z, t) + u′
r(r, φ, z, t) (B.5)

uφ = ⟨uφ⟩(r, z, t) + u′
φ(r, φ, z, t) (B.6)

uz = ⟨uz⟩(r, z, t) + u′
z(r, φ, z, t) (B.7)

P = ⟨P ⟩(r, z, t) + P ′(r, φ, z, t) (B.8)

θ = ⟨θ⟩(r, z, t) + θ′(r, φ, z, t) (B.9)

After substituting these relationships into Eq.(B.1) to Eq.(B.4) and taking the azimuthal
average, the azimuthal mean momentum and temperature perturbation equations can
be written as follows:
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The asymmetric momentum equations can be derived by subtracting the azimuthal
mean equations [Eqs. (B.10) to (B.13)] from the total momentum equations [Eq. (B.1)
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to Eq. (B.4)], respectively,
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An azimuthal mean kinetic energy equation ⟨K⟩ is obtained by adding the three
components of momentum equations after multiplying ⟨ur⟩ by Eq. (B.10), ⟨uφ⟩ by Eq.
(B.11) and ⟨uz⟩ by Eq. (B.12) and further simplified using the continuity equation
(1/r)(∂/∂r)(rur) + (1/r)(∂uφ/∂φ) + (∂uz/∂z) = 0. An azimuthal mean asymmetric
kinetic energy equation K ′ can be obtained by the same method after multiplying u′

r



148 Derivation of Energy Budget Equations

by Eq. (B.14), u′
φ by Eq. (B.15) and u′

z by Eq. (B.16):
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By multiplying (αg/N2)⟨θ⟩, (αg/N2)θ′ by Eq. (B.13) and Eq. (B.17), respectively,
an azimuthal mean ⟨A⟩ and a perturbation A′ potential energy equation can be obtained.
N =

√
αgβ is the buoyancy frequency.
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