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Abstract 

Background:  Unsupervised learning can discover various unseen abnormalities, 
relying on large-scale unannotated medical images of healthy subjects. Towards this, 
unsupervised methods reconstruct a 2D/3D single medical image to detect outliers 
either in the learned feature space or from high reconstruction loss. However, without 
considering continuity between multiple adjacent slices, they cannot directly discrimi-
nate diseases composed of the accumulation of subtle anatomical anomalies, such as 
Alzheimer’s disease (AD). Moreover, no study has shown how unsupervised anomaly 
detection is associated with either disease stages, various (i.e., more than two types of ) 
diseases, or multi-sequence magnetic resonance imaging (MRI) scans.

Results:  We propose unsupervised medical anomaly detection generative adversarial 
network (MADGAN), a novel two-step method using GAN-based multiple adjacent 
brain MRI slice reconstruction to detect brain anomalies at different stages on multi-
sequence structural MRI: (Reconstruction) Wasserstein loss with Gradient Penalty + 100 
ℓ1 loss—trained on 3 healthy brain axial MRI slices to reconstruct the next 3 ones—
reconstructs unseen healthy/abnormal scans; (Diagnosis) Average ℓ2 loss per scan dis-
criminates them, comparing the ground truth/reconstructed slices. For training, we use 
two different datasets composed of 1133 healthy T1-weighted (T1) and 135 healthy 
contrast-enhanced T1 (T1c) brain MRI scans for detecting AD and brain metastases/
various diseases, respectively. Our self-attention MADGAN can detect AD on T1 scans 
at a very early stage, mild cognitive impairment (MCI), with area under the curve (AUC) 
0.727, and AD at a late stage with AUC 0.894, while detecting brain metastases on T1c 
scans with AUC 0.921.

Conclusions:  Similar to physicians’ way of performing a diagnosis, using massive 
healthy training data, our first multiple MRI slice reconstruction approach, MADGAN, 
can reliably predict the next 3 slices from the previous 3 ones only for unseen healthy 
images. As the first unsupervised various disease diagnosis, MADGAN can reliably 
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detect the accumulation of subtle anatomical anomalies and hyper-intense enhancing 
lesions, such as (especially late-stage) AD and brain metastases on multi-sequence MRI 
scans.

Keywords:  Generative adversarial networks, Self-attention, Unsupervised anomaly 
detection, Brain MRI reconstruction, Various disease diagnosis

Background
Machine learning has revolutionized life science research, especially in neuroimaging 
and bioinformatics [1, 2], such as by modeling interactions between whole brain genom-
ics/imaging [3, 4] and identifying Alzheimer’s disease (AD)-related proteins [5]. Espe-
cially, deep learning can achieve accurate computer-assisted diagnosis when large-scale 
annotated training samples are available. In medical imaging, unfortunately, prepar-
ing such massive annotated datasets is often unfeasible [6, 7]; to tackle this pervasive 
problem, researchers have proposed various data augmentation techniques, including 
generative adversarial network (GAN)-based ones [8–13] ; alternatively, Rauschecker 
et al. combined convolutional neural networks (CNNs), feature engineering, and expert-
knowledge Bayesian network to derive brain magnetic resonance imaging (MRI) dif-
ferential diagnoses that approach neuroradiologists’ accuracy for 19 diseases. However, 
even exploiting these techniques, supervised learning still requires many images with 
pathological features, even for rare diseases, to make a reliable diagnosis; nevertheless, it 
can only detect already-learned specific pathologies. In this regard, as physicians notice 
previously unseen anomaly examples using prior information on healthy body structure, 
unsupervised anomaly detection methods leveraging only large-scale healthy images can 
discover and alert overlooked diseases when their generalization fails.

Towards this, researchers reconstructed a single medical image via GANs [14], 
autoencoders (AEs) [15], or combining them, since GANs can generate realistic images 
and AEs, especially variational AEs (VAEs), can directly map data onto its latent repre-
sentation [16]; then, unseen images were scored by comparing them with reconstructed 
ones to discriminate a pathological image distribution (i.e., outliers either in the learned 
feature space or from high reconstruction loss). However, those single image reconstruc-
tion methods mainly target diseases easy-to-detect from a single image even for non-
expert human observers, such as glioblastoma on MR images [16] and lung cancer on 
computed tomography (CT) images [15]. Without considering continuity between mul-
tiple adjacent images, they cannot directly discriminate diseases composed of the accu-
mulation of subtle anatomical anomalies, such as AD. Moreover, no study has shown so 
far how unsupervised anomaly detection is associated with either disease stages, various 
(i.e., more than 2 types of ) diseases, or multi-sequence MRI scans.

Therefore, this paper proposes unsupervised medical anomaly detection GAN (MAD-
GAN), a novel two-step method using GAN-based multiple adjacent brain MRI slice 
reconstruction to detect various diseases at various stages on multi-sequence structural 
MRI (Fig. 1): (Reconstruction) Wasserstein loss with gradient penalty (WGAN-GP) [17, 
18] + 100 ℓ1 loss—trained on 3 healthy brain axial MRI slices to reconstruct the next 3 
ones—reconstructs unseen healthy/abnormal scans; the ℓ1 loss generalizes well only for 
unseen images with a similar distribution to the training images while the WGAN-GP 
loss captures recognizable structure; (Diagnosis) Average ℓ2 loss per scan discriminates 
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them, comparing the ground truth/reconstructed slices; the ℓ2 loss clearly discriminates 
the healthy/abnormal scans as squared error becomes huge for outliers. Using receiver 
operating characteristics (ROCs) and their area under the curves (AUCs), we evaluate 
the diagnosis performance of AD on T1-weighted (T1) MRI scans, and brain metas-
tases/various diseases (e.g., small infarctions, aneurysms) on contrast-enhanced T1 
(T1c) MRI scans. Using 1133 healthy T1 and 135 healthy T1c scans for training, our 
self-attention (SA) MADGAN approach can detect AD at a very early stage, mild cogni-
tive impairment (MCI), with AUC 0.727, and AD at a late stage with AUC 0.894, while 
detecting brain metastases with AUC 0.921.

Contributions Our main contributions are as follows:

•	 MRI Slice Reconstruction This first multiple MRI slice reconstruction approach can 
reliably predict the next 3 slices from the previous 3 ones only for unseen images 
similar to training data by combining SAGAN and ℓ1 loss.

•	 Unsupervised Anomaly Detection This first unsupervised multi-stage anomaly detec-
tion reveals that, like physicians’ way of performing a diagnosis, massive healthy data 
can aid early diagnosis, such as of MCI, while also detecting late-stage disease much 
more accurately by discriminating with ℓ2 loss.

•	 Various Disease Diagnosis This first unsupervised various disease diagnosis can reli-
ably detect the accumulation of subtle anatomical anomalies (e.g., AD), as well as 
hyper-intense enhancing lesions (e.g., brain metastases) on multi-sequence MRI 
scans.

Train

Infer

Train GAN to reconstruct next 3 healthy
MRI slices from previous 3 ones

Based on reconstruction, classify
MRI scans into healthy or diseased

Unseen
3 slices

Next
3 slices

Reconstructed
3 slices

Compare average
   loss per scan

Fig. 1  Unsupervised medical anomaly detection framework: we train WGAN-GP w/ℓ1 loss on 3 healthy brain 
axial MRI slices to reconstruct the next 3 ones, and test it on both unseen healthy and abnormal scans to 
classify them according to average ℓ2 loss per scan
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Related work
Alzheimer’s disease diagnosis

Even though the clinical, social, and economic impact of early AD diagnosis is of para-
mount importance [19]—primarily associated with MCI detection [20]—it generally 
relies on subjective assessment by physicians (e.g., neurologists, geriatricians, and psy-
chiatrists). The diagnosis typically considers two characteristics: (i) medial temporal 
lobe atrophy (particularly hippocampus, entorhinal cortex, and perirhinal cortex) and 
(ii) temporo-parietal cortical atrophy. Quantifying these structures is crucial for early 
AD diagnosis and its progression tracking [21]. Moreover, morphometry-based markers, 
such as gray matter volume and cortical thickness, can play a key role in brain atrophy 
assessment [22].

Towards quantitative and reproducible approaches, many traditional supervised 
machine learning-based methods—which relies on handcrafted MRI-derived fea-
tures—were proposed in the literature [23, 24]. In this context, diffusion-weighted MRI 
tractography enables reconstructing the brain’s physical connections that can be subse-
quently investigated by complex network-based techniques. Lella et  al. [25] employed 
the whole brain structural communicability as a graph-based metric to describe the AD-
relevant brain connectivity disruption. This approach achieved comparable performance 
with classic machine learning models—namely, support vector machines, random for-
ests, and artificial neural networks—in terms of classification and feature importance 
analysis.

In the latest years, deep learning has achieved outstanding performance by exploiting 
more multiple levels of abstraction and descriptive embeddings in a hierarchy of increas-
ingly complex features [26]: Liu et  al. devised a semi-supervised CNN to significantly 
reduce the need for labeled training data [27]; for clinical decision-making tasks, Suk 
et al. integrated multiple sparse regression models (i.e., deep ensemble sparse regression 
network) [28]; Spasov et al. proposed a parameter-efficient CNN for 3D separable con-
volutions, combining dual learning and a specific layer to predict the conversion from 
MCI to AD within 3 years [29]; different from CNN-based approaches, Parisot used a 
semi-supervised graph convolutional network trained on a sub-set of labeled nodes with 
diagnostic outcomes to represent sparse clinical data [30]. However, to the best of our 
knowledge, no existing work has conducted fully unsupervised anomaly detection for 
AD diagnosis since capturing subtle anatomical differences between MCI and AD is 
challenging.

Brain metastasis and various disease diagnosis

Along with neuro-degenerative diseases, MRI can also play a definite role in abnormality 
diagnosis. Whereas advanced cancer screening, imaging, and therapeutics can improve 
oncological patients’ survival and quality of life, brain metastases still remain major con-
tributors of morbidity and mortality, especially for patients with lung cancer, breast can-
cer, or malignant melanoma [31]. To tackle this, previous computational methods have 
detected the brain metastases in either a supervised [13, 32] or semi-automatic manner 
[33, 34].
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Detecting other various diseases, such as cerebral aneurysms, hemorrhage, and 
infarctions, also remain challenging [35, 36]. Therefore, similar to the brain metastases, 
researchers have mostly relied on supervised methods, especially CNN-based detection 
[37–39]. Recently, unsupervised anomaly segmentation methods have been applied to 
brain MRI datasets for detecting multiple sclerosis lesions [40] and glioblastoma [41]. 
However, it is difficult to directly compare our approach with such existing unsupervised 
anomaly detection methods on 3D medical images since we perform a whole-brain diag-
nosis (i.e., classification), instead of segmentation.

Unsupervised medical anomaly detection

Unsupervised disease diagnosis is challenging because it requires estimating healthy 
anatomy’s normative distributions only from healthy examples to detect outliers either 
in the learned feature space or from high reconstruction loss. The latest advances in 
deep learning, mostly GANs [8] and VAEs [42], have allowed for the accurate estimation 
of the high-dimensional healthy distributions. Except for discriminative boundary-based 
approaches including [43], almost all unsupervised medical anomaly detection studies 
have leveraged reconstruction: as pioneering research, Schlegl et al. proposed AnoGAN 
to detect outliers in the learned feature space of the GAN [44]; then, the same authors 
presented fast AnoGAN that can efficiently map query images onto the latent space [14]; 
since the reconstruction-based models often suffer from many false positives, Chen et al. 
penalized large deviations between original/reconstructed images in gliomas and stroke 
lesion detection on brain MRI [45]. However, to the best of our knowledge, all previous 
studies are based on 2D/3D single image reconstruction, without considering continuity 
between multiple adjacent slices. Moreover, no existing work has investigated how unsu-
pervised anomaly detection is associated with either disease stages, various (i.e., more 
than two types of ) diseases, or multi-sequence MRI scans.

Self‑attention GANs (SAGANs)

Zhang et al. proposed SAGAN that deploys an SA mechanism in the generator/discrimi-
nator of a GAN to learn global and long-range dependencies for diverse image genera-
tion [46]; for further performance improvement, they suggested to apply the SA modules 
to large feature maps. The SAGANs have shown great promise in various tasks, such as 
human pose estimation [47], image colorization [48], photo-realistic image de-quantiza-
tion [49], and large-scale image generation [50]. This SAGAN trend also applies to medi-
cal imaging to extract multi-level features for better super-resolution/denoising and 
lesion characterization: to mitigate the problem of thin slice thickness, Kudo et al. and Li 
et al. applied the SA modules to GANs on CT and MRI scans, respectively [51, 52]; simi-
larly, in [53], the authors proposed to fuse plane SA modules and depth SA modules for 
low-dose 3D CT denoising; Lan et al. synthesized multi-modal 3D brain images using 
SA conditional GAN [53]; Ali et  al. incorporated SA modules into progressive grow-
ing of GANs to generate realistic and diverse skin lesion images for data augmentation 
[54]. However, to the best of our knowledge, no existing work has directly exploited the 
SAGAN for medical disease diagnosis.
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Materials and methods
Datasets

AD dataset: OASIS‑3

We use a longitudinal 3.0T MRI dataset of 176× 240/176× 256 T1 brain axial MRI 
slices containing both normal aging subjects/AD patients, extracted from the open 
access series of imaging studies-3 (OASIS-3) [55]. The 176× 240 slices are zero-padded 
to reach 176× 256 pixels. Relying on clinical dementia rating (CDR) [56], common clini-
cal scale for the staging of dementia, the subjects are comprised of:

•	 Unchanged CDR = 0: Cognitively healthy population;
•	 CDR = 0.5: Very mild dementia ( ∼ MCI);
•	 CDR = 1: Mild dementia;
•	 CDR = 2: Moderate dementia.

Since our dataset is longitudinal and the same subject’s CDRs may vary (e.g., CDR = 0 
to CDR = 0.5), we only use scans with unchanged CDR = 0 to assure certainly healthy 
scans. As CDRs are not always assessed simultaneously with the MRI acquisition, we 
label MRI scans with CDRs at the closest date. We only select brain MRI slices includ-
ing hippocampus/amygdala/ventricles among whole 256 axial slices per scan to avoid 
over-fitting from AD-irrelevant information; the atrophy of the hippocampus/amygdala/
cerebral cortex, and enlarged ventricles are strongly associated with AD, and thus they 
mainly affect the AD classification performance of machine learning [57]. Moreover, we 
discard low-quality MRI slices. The remaining dataset is divided as follows:

•	 Training set: Unchanged CDR = 0 (408 subjects/1133 scans/57,834 slices);
•	 Test set: Unchanged CDR = 0 (168 subjects/473 scans/24,278 slices),
	 CDR = 0.5 (152 subjects/253 scans/13,813 slices),
	 CDR = 1 (90 subjects/135 scans/7532 slices),
	 CDR = 2 (6 subjects/10 scans/500 slices).

The same subject’s scans are included in the same dataset. The datasets are strongly 
biased towards healthy scans similar to MRI inspection in the clinical routine. During 
training for reconstruction, we only use the training set—structural MRI alone—con-
taining healthy slices to conduct unsupervised learning. We do not use a validation set 
as our unsupervised diagnosis step is non-trainable.

Brain metastasis and various disease dataset

This paper also uses a non-longitudinal, heterogeneous 1.5T/3.0T MRI dataset of 
190× 224/216× 256/256× 256/460× 460 T1c brain axial MRI slices. This dataset was 
collected by the authors at National Center for Global Health and Medicine, and is not 
publicly available due to ethical restrictions. The dataset contains both healthy subjects, 
brain metastasis patients [33], and patients with various diseases different from brain 
metastases. The slices are resized to 176× 256 pixels. The various diseases include but 
are not limited to:

•	 Small infarctions;
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•	 Aneurysms;
•	 Benign tumors;
•	 Hemorrhages;
•	 Cysts;
•	 White matter lesions;
•	 Post-operative inflammations.

Conforming to T1 slices, we also only select T1c slices including hippocampus, amyg-
dala, and ventricles—a large portion of various diseases also appear in the mid-brain. The 
remaining dataset is divided as follows:

•	 Training set: Normal (135 subjects/135 scans/7793 slices);
•	 Test set: Normal (58 subjects/58 scans/3353 slices),
	 Brain Metastases (79 subjects/79 scans/4872 slices),
	 Various Diseases (66 subjects/66 scans/4195 slices).

Since we cannot collect large-scale T1c scans from healthy patients like OASIS-3 dataset, 
during training for reconstruction, we use both T1/T1c training sets containing healthy 
slices simultaneously for the knowledge transfer. In the clinical practice, T1c MRI is well-
established in detecting various diseases, including brain metastases [58], thanks to its 
high-contrast in the enhancing region—however, the contrast agent is not suitable for 
screening studies. Accordingly, such inter-sequence knowledge transfer is valuable in com-
puter-assisted MRI diagnosis. During testing, we make an unsupervised diagnosis on T1 
and T1c scans separately.

Fig. 2  Proposed MADGAN architecture for the next 3-slice generation from the input 3 256× 176 brain MRI 
slices: 3-SA MADGAN has only 3 (red-contoured) SA modules after convolution/deconvolution whereas 7-SA 
MADGAN has 7 (red- and blue-contoured) SA modules. Similar to RGB images, we concatenate adjacent 3 
gray slices into 3 channels
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MADGAN‑based multiple adjacent brain MRI slice reconstruction

To model strong consistency in healthy brain anatomy (Fig.  1), in each scan, we recon-
struct the next 3 MRI slices from the previous 3 ones using an image-to-image GAN 
(e.g., if a scan includes 40 slices si for i = 1, . . . , 40 , we reconstruct all possible 35 setups: 
(si)i∈{1,2,3} �→ (si)i∈{4,5,6} ; (si)i∈{2,3,4} �→ (si)i∈{5,6,7} ; ...; (si)i∈{35,36,37} �→ (si)i∈{38,39,40} ). As 
Fig. 2 shows, our MADGAN uses a U-Net-like [59, 60] generator with 4 convolutional lay-
ers in encoders and 4 deconvolutional layers in decoders respectively with skip connections, 
as well as a discriminator with 3 decoders. We apply batch normalization to both convo-
lution with leaky rectified linear unit (ReLU) and deconvolution with ReLU. Between the 
designated convolutional/deconvolutional layers and batch normalization layers, we apply 
SA modules [46] for effective knowledge transfer via feature recalibration between T1 and 
T1c slices; as confirmed on four different image datasets [61], introducing the SA modules 
to GAN-based anomaly detection (i.e., attention-driven, long-range dependency modeling) 
can also mitigate the effect of noise by ignoring irrelevant disturbances and focusing on the 
salient body parts in the slice. We compare the MADGAN models with a different number 
of the SA modules: (i) no SA modules (i.e., MADGAN); (ii) 3 (red-contoured) SA modules 
(i.e., 3-SA MADGAN); (iii) 7 (red- and blue-contoured) SA modules (i.e., 7-SA MADGAN). 
To confirm how reconstructed slices’ realism and anatomical continuity affect medical 
anomaly detection, we also compare the MADGAN models with different loss functions: 
(i) WGAN-GP loss + 100 ℓ1 loss (i.e., MADGAN); (ii) WGAN-GP loss (i.e., MADGAN w/o 
ℓ1 loss). The ℓ1 and ℓ2 losses between an input image x and its reconstructed image x′ are 
defined as follows:

where P denotes the number of pixels.
Implementation details Each MADGAN training lasts for 1.8× 106 steps with a batch 

size of 16 (our maximum available batch size). We use 2.0× 10−4 learning rate for Adam 
optimizer [62]. Such as in RGB images, we concatenate adjacent 3 grayscale slices into 3 
channels. During training, the generator uses two dropout [63] layers with 0.5 rate. We 
flip the discriminator’s real/synthetic labels once in three times for robustness. Using 
4 NVIDIA Quadro GV100 graphics processing units, we implement the framework on 
TensorFlow 1.8.

Unsupervised medical anomaly detection

During diagnosis, we classify unseen healthy and abnormal scans based on average ℓ2 
loss per scan. The average ℓ2 loss is calculated from whole MADGAN-reconstructed 
3 slices si of each scan containing n slices: (si)i∈{4,5,6} ; (si)i∈{5,6,7} ; ...; (si)i∈{n−2,n−1,n} . 
We use the ℓ2 loss since squared error is sensitive to outliers and it significantly out-
performed other losses (i.e., ℓ1 loss, dice loss, structural similarity loss) in our prelimi-
nary paper [64]. To evaluate its unsupervised AD diagnosis performance on a T1 MRI 

(1)ℓ1 =

P∑

i=1

|xi − x′i|,

(2)ℓ2 =

P∑

i=1

(x − x′)2,
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test set, we show ROCs—along with the AUC values—between CDR = 0 versus (i) all 
the other CDRs; (ii) CDR = 0.5; (iii) CDR = 1; (iv) CDR = 2. We also show the AUCs 
under different training steps (i.e., 150k, 300k, 600k, 900k, 1.8M steps) and confirm the 
effect of calculating average ℓ2 loss (among whole slice sets or continuous 10 slice sets 
exhibiting the highest loss) per scan; if the 10 slice sets start from the jth slice, we use: 
(si)i∈{j,j+1,j+2} ; (si)i∈{j+1,j+2,j+3} ; ...; (si)i∈{j+9,j+10,j+11} ). Moreover, we visualize pixelwise ℓ2 
loss between real/reconstructed 3 slices, along with distributions of average ℓ2 loss per 
scan of CDR = 0/0.5/1/2 to know how disease stages affect its discrimination. In exactly 
the same manner, we evaluate the diagnosis performance of brain metastases/various 
diseases on a T1c MRI test set, showing ROCs/AUCs between normal versus (i) brain 
metastases + various diseases; (ii) brain metastases; (iii) various diseases.

Results
Reconstructed brain MRI slices

Figure 3 illustrates example real T1 MRI slices from a test set and their reconstruction 
by MADGAN and 7-SA MADGAN. Similarly, Figs. 4 and 5 show example real T1c MRI 
slices and their reconstructions. Pixelwise ℓ2 loss tends to increase (i.e., high intensity 
in the heatmap) around lesions due to their different image distribution from healthy 
samples.

Figures 6 and 7 indicate distributions of average ℓ2 loss per scan on T1 and T1c scans, 
respectively. Leveraging ℓ1 loss’ good realism sacrificing diversity (i.e., generalizing well 
only for unseen images with a similar distribution to training images) and WGAN-GP 
loss’ ability to capture recognizable structure, the MADGAN can successfully capture 

Fig. 3  Example T1 brain MRI slices with CDR = 0/0.5/1/2 from a test set: a Input 3 real slices; b Ground truth 
next 3 real slices; c, d Next 3 slices reconstructed by MADGAN and 7-SA MADGAN. To compare the real/
reconstructed next 3 slices, we show pixelwise ℓ2 loss values in (b) versus (c) and (b) versus (d) columns, 
respectively. Using a Jet colormap in [0, 0.2] with alpha-blending, we overlay the obtained maps onto the 
ground truth slices. The achieved slice-level, pixelwise ℓ2 loss values are also displayed



Page 10 of 20Han et al. BMC Bioinformatics 2021, 22(Suppl 2):31

Fig. 4  Example T1c brain MRI slices with no abnormal findings/three brain metastases from a test set: a 
Input 3 real slices; b Ground truth next 3 real slices; c, d Next 3 slices reconstructed by MADGAN and 7-SA 
MADGAN. To compare the real/reconstructed next 3 slices, we show pixelwise ℓ2 loss values in (b) versus (c) 
and (b) versus (d) columns, respectively. Using a Jet colormap in [0, 0.06] with alpha-blending, we overlay 
the obtained maps onto the ground truth slices. The achieved slice-level, pixelwise ℓ2 loss values are also 
displayed

Fig. 5  Example T1c brain MRI slices with four different brain diseases from a test set: a Input 3 real slices; b 
Ground truth next 3 real slices; c, d Next 3 slices reconstructed by MADGAN and 7-SA MADGAN. To compare 
the real/reconstructed next 3 slices, we show pixelwise ℓ2 loss values in (b) versus (c) and (b) versus (d) 
columns, respectively. Using a Jet colormap in [0, 0.06] with alpha-blending, we overlay the obtained maps 
onto the ground truth slices. The achieved slice-level, pixelwise ℓ2 loss values are also displayed
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T1-specific appearance and anatomical changes from the previous 3 slices. Meanwhile, 
the 7-SA MADGAN tends to be less stable in keeping texture but more sensitive to 
abnormal anatomical changes due to the SA modules’ anomaly-sensitive reconstruc-
tion via the attention-driven, long-range dependency modeling, resulting in moderately 
higher average ℓ2 loss than the MADGAN.

Since the models are trained only on healthy slices, as visualized by an over-imposed 
Jet colormap, reconstructing slices with higher CDRs tends to comparatively fail, espe-
cially around hippocampus, amygdala, cerebral cortex, and ventricles due to their insuf-
ficient atrophy after reconstruction; this is plausible because physicians also perform the 
AD diagnosis based on their prior normal atrophy information around those body parts. 
We do not find other significant reconstruction failures except them, considering that 
inter-subject/sequence variability also lead to considerable reconstruction failures. The 
T1c scans show much lower average ℓ2 loss than the T1 scans due to darker texture. 
Since most training images are the T1 slices with brighter texture than the T1c slices, 
reconstruction quality clearly decreases on the T1c slices, occasionally exhibiting bright 
texture. Accordingly, reconstruction failure from anomaly contributes comparatively less 
to the average ℓ2 loss, especially when local small lesions, such as brain abscesses and 
enhanced lesions, appear—unlike global big lesions, such as multiple cerebral infarction 

Fig. 6  Distributions of average ℓ2 loss per scan evaluated on T1 slices with CDR = 0/0.5/1/2 reconstructed 
by: a MADGAN and b 7-SA MADGAN

Fig. 7  Distributions of average ℓ2 loss per scan evaluated on T1c slices with no abnormal findings/brain 
metastases/various diseases reconstructed by: a MADGAN and b 7-SA MADGAN
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and blood component retention. However, the average ℓ2 loss remarkably increases on 
brain metastases scans due to their hyper-intensity, especially for the 7-SA MADGAN.

Unsupervised anomaly detection results

Figures 8 and 9 show AUCs of unsupervised anomaly detection on T1 and T1c scans 
under different training steps, respectively. The AUCs generally increase as training 
progresses, but more SA modules require more training steps until convergence due to 
their feature recalibration. Although most models show a convergence after 900k steps, 
MADGAN with abundant SA modules might perform even better, especially on the T1c 
scans with less training data than the T1 scans, if we continue its training.

All the best results in specific tasks, except for CDR = 0 versus CDR = 0.5, are from 
the SA models (e.g., 7-SA MADGAN w/o ℓ1 loss under 900k steps: AUC 0.783 in 
CDR = 0 versus CDR = 0.5 + 1 + 2, 3-SA MADGAN under 300k steps: AUC 0.966 in 
normal versus brain metastases, 3-SA MADGAN under 600k steps: AUC 0.638 in nor-
mal versus various diseases); thus, whereas the SA models, which do not know the task 
to optimize in an unsupervised manner, perform unstably, we might use them similar to 
supervised learning if we could obtain good parameters for a certain disease. Without 
ℓ1 loss, the AUCs tend to decrease, also accompanying large fluctuations; 7-SA MAD-
GAN w/o ℓ1 loss performs well on the T1 scans but poorly on the T1c scans due to the 
instability.

Fig. 8  AUC performance on T1 scans using average ℓ2 loss per scan under different training steps (i.e., 150k, 
300k, 600k, 900k, 1.8M steps). Unchanged CDR = 0 (i.e., cognitively healthy population) is compared against: 
a all the other CDRs (i.e., dementia); b CDR = 0.5 (i.e., very mild dementia); c CDR = 1 (i.e., mild dementia); d 
CDR = 2 (i.e., moderate dementia)
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Figures 10 and 11 illustrate ROC curves and their AUCs on T1 and T1c scans under 
1.8M training steps, respectively. Since brains with higher CDRs accompany stronger 
anatomical atrophy from healthy brains, their AUCs between unchanged CDR  =  0 
remarkably increase as CDRs increase. MADGAN and 7-SA MADGAN both achieve 
good AUCs, especially for higher CDRs—The MADGAN obtains AUC 0.750/0.707/0.829 
in CDR = 0 versus CDR = 0.5/1/2, respectively; the discrimination between healthy sub-
jects versus MCI patients (i.e., CDR = 0 versus CDR = 0.5) is extremely difficult even in 
a supervised manner [57]. Whereas detecting various diseases is difficult in an unsuper-
vised manner, the 7-SA MADGAN outperforms the MADGAN and achieves AUC 0.921 
in brain metastases detection. As Tables  1 and  2 show, the effect of how to calculate 
average ℓ2 loss (among whole slice sets or continuous 10 slice sets exhibiting the highest 
loss) per scan is limited. Whereas no significant differences exist between them, the best 
performing approach on each dataset is always whole slice sets-based.

Discussion and conclusions
Using massive healthy data, our MADGAN-based multiple MRI slice reconstruction can 
reliably discriminate AD patients from healthy subjects for the first time in an unsuper-
vised manner; to detect the accumulation of subtle anatomical anomalies, our solution 
leverages a two-step approach: (Reconstruction) ℓ1 loss generalizes well only for unseen 
images with a similar distribution to training images while WGAN-GP loss captures 

Fig. 9  AUC performance on T1c scans using average ℓ2 loss per scan under different training steps (i.e., 150k, 
300k, 600k, 900k, 1.8M steps). No abnormal findings are compared against: a brain metastases + various 
diseases; b brain metastases; c various diseases
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recognizable structure; (Diagnosis) ℓ2 loss clearly discriminates healthy/abnormal data 
as squared error becomes huge for outliers. Using 1133 healthy T1 MRI scans for train-
ing, our approach can detect AD at a very early stage, MCI, with AUC 0.727 while 
detecting AD at a late stage with AUC 0.894. Accordingly, this first unsupervised anom-
aly detection across different disease stages reveals that, like physicians’ way of perform-
ing a diagnosis, large-scale healthy data can reliably aid early diagnosis, such as of MCI, 
while also detecting late-stage disease much more accurately.

To confirm its ability to also detect other various diseases, even on different MRI 
sequence scans, we firstly investigate how unsupervised medical anomaly detection is 
associated with various diseases and multi-sequence MRI scans, respectively. Due to 
the different texture of T1/T1c slices, reconstruction quality clearly decreases on the 
data-sparse T1c slices, and thus reconstruction failure from anomaly contributes com-
paratively less to the average ℓ2 loss. Nevertheless, we generally succeed to unravel dis-
eases hard-to-detect and easy-to-detect in an unsupervised manner: it is hard to detect 
local small lesions, such as brain abscesses and enhanced lesions; but, it is easy to detect 
hyper-intense enhancing lesions, such as brain metastases (AUC 0.921), especially for 
7-SA MADGAN thanks to its feature recalibration. Our visualization of differences 
between real/reconstructed slices might play a key role in understanding and preventing 
various diseases, including rare diseases.

Fig. 10  Unsupervised anomaly detection results using average ℓ2 loss per scan on reconstructed T1 slices 
(ROCs and AUCs). Unchanged CDR = 0 (i.e., cognitively healthy population) is compared against: a all the 
other CDRs (i.e., dementia); b CDR = 0.5 (i.e., very mild dementia); c CDR = 1 (i.e., mild dementia); d CDR = 2 
(i.e., moderate dementia). Each model is trained for 1.8M steps
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Fig. 11  Unsupervised anomaly detection results using average ℓ2 loss per scan on reconstructed T1c slices 
(ROCs and AUCs). No abnormal findings are compared against: a brain metastases + various diseases; b brain 
metastases; c various diseases. Each model is trained for 1.8M steps

Table 1  AUC performance of unsupervised anomaly detection on T1 scans using average ℓ2 loss 
(among whole slice sets/continuous 10 slice sets exhibiting the highest loss) per scan. Unchanged 
CDR  =  0 (i.e., cognitively healthy population) is compared against: (i) all the other CDRs (i.e., 
dementia); (ii) CDR = 0.5 (i.e., very mild dementia); (iii) CDR = 1 (i.e., mild dementia); (iv) CDR = 2 (i.e., 
moderate dementia). Each model is trained for 1.8M steps

CDR = 0 versus CDR = 0.5 + 
1 + 2

CDR = 0.5 CDR = 1 CDR = 2

MADGAN 0.768 0.750 0.797 0.829

MADGAN (10 slice sets) 0.764 0.745 0.793 0.830

MADGAN w/o ℓ1 Loss 0.693 0.689 0.699 0.711

MADGAN w/o ℓ1 Loss (10 slice sets) 0.705 0.697 0.717 0.736

3-SA MADGAN 0.752 0.736 0.775 0.835

3-SA MADGAN (10 slice sets) 0.739 0.725 0.760 0.810

3-SA MADGAN w/o ℓ1 Loss 0.728 0.715 0.748 0.785

3-SA MADGAN w/o ℓ1 Loss (10 slice sets) 0.735 0.721 0.756 0.806

7-SA MADGAN 0.765 0.743 0.800 0.832

7-SA MADGAN (10 slice sets) 0.764 0.743 0.798 0.835

7-SA MADGAN w/o ℓ1 Loss 0.759 0.727 0.809 0.894
7-SA MADGAN w/o ℓ1 Loss (10 slice sets) 0.746 0.710 0.803 0.868
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Since we firstly propose a two-step unsupervised anomaly detection approach based 
on multiple slice reconstruction, its limitations are two-fold: yet less generalizable recon-
struction and diagnosis. As future work, we will investigate more suitable SA modules in 
a reconstruction model, such as dual attention network that captures feature dependen-
cies in both spatial/channel dimensions [65]; here, optimizing where to place how many 
SA modules is the most relevant aspect. We will validate combining new loss functions 
for both reconstruction/diagnosis, including sparsity regularization [66], structural simi-
larity [67], and perceptual loss [68]. Lastly, we plan to collect a higher amount of healthy 
T1c scans to reliably detect and locate various diseases, including cancers and rare dis-
eases. Integrating multi-modal imaging data, such as positron emission tomography 
with specific radiotracers [69], might further improve disease diagnosis [70], even when 
analyzed modalities are not always available [71]. Moreover, to specify detected anoma-
lies, we might extend this work to supervised learning with limited pathological data 
by discriminating normal/pathological image distributions during diagnosis, instead of 
calculating the average ℓ2 loss per scan.
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