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SUMMARY

Sampling from the posterior probability distribution of the latent states of a hidden Markov
model is nontrivial even in the context of Markov chain Monte Carlo. To address this, Andrieu
et al. (2010) proposed a way of using a particle filter to construct a Markov kernel that leaves the
posterior distribution invariant. Recent theoretical results have established the uniform ergodicity
of this Markov kernel and shown that the mixing rate does not deteriorate provided the number
of particles grows at least linearly with the number of latent states. However, this gives rise to a
cost per application of the kernel that is quadratic in the number of latent states, which can be
prohibitive for long observation sequences. Using blocking strategies, we devise samplers that
have a stable mixing rate for a cost per iteration that is linear in the number of latent states and
which are easily parallelizable.

Some key words: Hidden Markov model; Markov chain Monte Carlo; Particle filter; Particle Gibbs sampling.

1. INTRODUCTION

1·1. Notation and background

Let {(Xt , Yt) ∈ (X , Y) : t ∈ N+} be a hidden Markov model in which {Xt : t ∈ N+} is the
state process, a Markov chain with state space X . The sequence {Xt : t ∈ N+} is not observed
and its values have to be inferred using the observed sequence {Yt : t ∈ N+}. Conditionally on
{Xt : t ∈ N+}, the observations {Yt : t ∈ N+} are independent. We work under the assumption
that a fixed sequence of observations (y1, . . . , yn) is available, where n denotes the final time-
point. The key object of interest is the joint smoothing distribution φ(dx1, . . . , dxn), which is
the probability distribution of (X1, . . . , Xn) conditioned on (Y1 = y1, . . . , Yn = yn). Markov
chain Monte Carlo simulation can be used to sample from the joint smoothing distribution, for
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example by a Gibbs scheme that uses Metropolis–Hastings kernels to update the state variables Xt
(t = 1, . . . , n) individually. However, strong dependence between consecutive states of the state
process can cause this method to mix very slowly and the solution is often deemed inefficient
(Carter & Kohn, 1994; Frühwirth-Schnatter, 1994).

Recent developments in sequential Monte Carlo methods have had a significant impact on the
practice of Markov chain Monte Carlo sampling for hidden Markov models. Sequential Monte
Carlo methods are well-established importance sampling techniques for approximating the joint
smoothing distribution in general hidden Markov models; see, for example, Doucet et al. (2000),
Del Moral (2004) and Doucet & Johansen (2011) for applications and supporting theoretical
results. In a seminal paper of Andrieu et al. (2010), this key strength of sequential Monte Carlo
simulation was exploited to construct new Markov chain Monte Carlo algorithms which are
collectively called particle Markov chain Monte Carlo methods. We will consider a specific
particle Markov chain Monte Carlo algorithm called particle Gibbs sampling; see also Chopin
& Singh (2015). The particle Gibbs algorithm of Andrieu et al. (2010) defines, via a sequential
Monte Carlo construction, a Markov kernel which has the joint smoothing distribution as its
invariant distribution. It updates samples of all the state variables X1, . . . , Xn as one block, aiming
to mimic the behaviour and thus also the efficiency of an ideal sampler. Although standard Gibbs
steps can be interleaved to jointly infer the unknown model parameters, we shall focus on the
central problem of simulating the latent states from the joint smoothing distribution.

Some recent theoretical results support this approach of mimicking the ideal sampler and its
good observed performance: Chopin & Singh (2015) showed that the particle Gibbs kernel is
uniformly ergodic. The precise rate of convergence of the iterated particle Gibbs kernel to its
stationary distribution was established by Lindsten et al. (2015) and Andrieu et al. (2017), who
showed that the number of particles N must increase linearly with the number of observations, n,
for its convergence rate not to deteriorate. This effect is also clearly visible in practice (Lindsten
& Schön, 2013; Chopin & Singh, 2015) and is related to the path-degeneracy of sequential Monte
Carlo samplers. As a result, using N ∝ n, the particle Gibbs kernel has a computational cost of
n2 per iteration, which is impractical when n is large.

1·2. Summary of main results and related work

The particle Gibbs algorithm samples all n hidden states jointly in one block. However, just as
Gibbs sampling can update the latent variables one state at a time, particle Gibbs sampling can
be used as a partially blocked sampler by jointly updating blocks of L consecutive state variables
at a time. This possibility was mentioned in Andrieu et al. (2010, p. 294) but without further
elaboration. Specifically, there was no mention of the greatly improved stability of the sampler,
which is our main interest here. As we will show, using particle Gibbs sampling in a partially
blocked manner results in a stable mixing rate with a cost per iteration that is linear in the number
of latent states.

We now give a simplified interpretation of our results. The main insight we exploit is that
blocking can also be used to control the convergence properties of the exact, or ideal, blocked
Gibbs sampler for a hidden Markov model. In Theorems 1 and 2 we show that, under certain
forgetting properties of the model, it is possible to select a blocking scheme with overlapping
blocks such that after k complete sweeps, the error between the law of the samples and the target
distribution φ is

∣∣φ( f )− μ(Pk
Idealf )

∣∣ � constant × (λIdeal)
k

n∑
i=1

OSCi( f ),
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where PIdeal is the Markov kernel defined by one complete sweep of the blocked Gibbs sampler,
f : X n → R is some test function and OSCi( f ) measures how much f varies when only its ith
component is perturbed; see (7). We show that the rate λIdeal ∈ (0, 1) is independent of n and
improves as the overlap between blocks is increased. If we replace exact Gibbs sampling from
each block with particle Gibbs sampling, the rate becomes λPG = λIdeal + constant × ε(N , L)
where 0 � ε(N , L) � 1 quantifies the effect of departing from the ideal blocked Gibbs sampler;
see Theorem 3. Specifically, ε depends only on N and L but crucially not on the number of
latent states n; ε ↓ 0 as the particle number N increases, i.e., as the particle Gibbs kernel
better approximates the ideal block sampler, but ε ↑ 1 as the blocks are made larger to include
more latent variables in them. In Theorem 3 we also analyse different blocking schemes, one of
which is straightforwardly parallelizable. In light of these properties, the number of particles N
and the block size L can be chosen independently of the number of observations n so that the
convergence rate of blocked particle Gibbs sampling should not deteriorate even as n increases.
As increasing n requires more blocks, the cost per complete sweep of blocked particle Gibbs
sampling will increase only linearly with n as opposed to quadratically for nonblocked particle
Gibbs sampling. Thus, blocking is better for long time series, i.e., when Xt is observed over a
longer time rather than at a higher frequency. Our analysis is based on Wasserstein estimates;
see, e.g., Wang & Wu (2014) and Rebeschini & van Handel (2014). Wang & Wu (2014) study
the convergence properties of a Gibbs sampler in high dimensions under a Dobrushin condition.
Our work is in the same vein, but we verify a related condition for blocked Gibbs sampling for
hidden Markov models. Furthermore, we study the convergence of the nonideal blocked particle
Gibbs sampler, to which the results of Wang & Wu (2014) do not apply.

Refined particle Gibbs algorithms that incorporate explicit updates of the particle ancestry,
either as part of the forward sequential Monte Carlo recursion (Lindsten et al., 2014) or in a
separate backward recursion (Whiteley, 2010), have been developed. These modified particle
Gibbs samplers have been shown to work well empirically with few particles and to be largely
robust with respect to n. Nevertheless, to date, no theoretical guarantee of the stability of these
algorithms has been given; nor are they easily parallelizable.

2. HIDDEN MARKOV MODELS AND BLOCKED GIBBS SAMPLERS

We assume that the Markov chain (Xt , Yt) on X × Y has the transition probability kernel

R{(x, y), A} =
∫
ν1(dx′)ν2(dy′)m(x, x′)g(x′, y′)I[(x′,y′)∈A],

where I is the indicator function and m(x, x′) is the transition density of the Markov chain
Xt : t ∈ N+ with respect to the dominating measure ν1. We further assume that the conditional
density of Yt given Xt = xt with respect to the dominating measure ν2 is g(xt , yt) and denote
the initial distribution of X1 by μ. Recall that y1, . . . , yn is a fixed observation sequence and
we seek to sample from the joint smoothing distribution, that is, the conditional distribution
of X1, . . . , Xn given Y1 = y1, . . . , Yn = yn. The algorithms and results to be presented also
apply to inhomogeneous models where the transition density of (Xt , Yt) is dependent on time t;
Assumption 1 below would have to be modified for this case.

Before giving the algorithmic statements for the blocked Gibbs samplers that are analysed in
this article, we introduce some notation. Let I = {1, . . . , n} be the index set of the latent variables
X1, . . . , Xn. Let X n be the n-fold Cartesian product of the set X . Given x = (xi : i ∈ I ) ∈ X n

and J ⊂ I , let xJ = (xi : i ∈ J ) ∈ X |J |, i.e., the restricted vector. We also write x−i as
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shorthand for xI\{i}. The complement of J in I is denoted by J c = I \ J . Given aJ and bJ c , let
x = 〈aJ , bJ c〉 = 〈bJ c , aJ 〉 ∈ X n be such that xJ = aJ and xJ c = bJ c .

We will analyse the stability of our samplers under the following set of strong, but standard,
mixing assumptions (Del Moral, 2004; Lindsten et al., 2015; Andrieu et al., 2017).

Assumption 1. There exist positive constants σ− and σ+ and an integer h � 1 such that
m(x, x′) � σ+ for all x, x′ ∈ X and∫

ν1(dx2) · · · ν1(dxh)

h∏
t=1

m(xt , xt+1) � σ−, x1, xh+1 ∈ X ,

and there exists a constant δ � 1 such that supx g(x, y) � δ1/h inf x g(x, y) for all y ∈ Y .

We can write the density of the joint smoothing distribution as

φ(x1, . . . , xn) = 1

p(y1, . . . , yn)
μ(x1)g(x1, y1)

n∏
t=2

m(xt−1, xt)g(xt , yt), (1)

where p(y1, . . . yn) = ∫
μ(dx1)g(x1, y1)

∏n
t=2 m(xt−1, xt)g(xt , yt)ν1(dx2) · · · ν1(dxn) and the

same symbol φ is used for both the joint smoothing distribution and its density. Let φJ
x be a

version of the regular conditional distribution of the variables XJ conditionally on XJ c = xJ c

under φ in (1). For instance, for J = {s, . . . , u} with s > 1 and u < n,

φJ
x (xs, . . . , xu) ∝ m(xu, xu+1) p(xs, . . . , xu | xs−1, ys, . . . , yu) (2)

= m(xu, xu+1)

p(ys, . . . , yu | xs−1)

u∏
j=s

m(xj−1, xj) g(xj, yj).

In (2) we have used the symbol p as a generic density function which is identified by its arguments,
and we will occasionally use this notation for brevity when no confusion is likely. For instance,
φJ

x (xs, . . . , xu) = p(xs, . . . , xu | xs−1, xu+1, ys, . . . , yu).
The Markov property of the hidden Markov model implies that φJ

x depends on x only through
the boundary points x∂J , where ∂J denotes the set of indices constituting the boundary of the
set J ,

∂J = {t ∈ J c : t + 1 ∈ J or t − 1 ∈ J }.
The Gibbs sampler samples from the joint smoothing distribution φ by iteratively sampling from
its conditional distributions. Let J = {J1, . . . , Jm} be a cover of I . A blocked, deterministic-scan
Gibbs sampler proceeds by sampling from the conditional densities φJ

x (J ∈ J ) in turn in some
prespecified order. For instance, assume that we apply the blocks in the order J1, J2 etc. and that
the initial configuration of the sampler is x0 ∈ X n. Then the Gibbs sampler produces the Markov
chain {X (k) : k ∈ N} with X (0) = x0, and given

X (lm + k − 1) = x ∈ X n (l ∈ N; k ∈ {1, . . . , m}) (3)

we set X (lm + k) = X ′ where X ′
J c

k
= xJ c

k
and where we simulate X ′

Jk
∼ φ

Jk
x (·). More generally,

we can simulate X ′
J from some kernel QJ (x, ·)with the conditional distribution φJ

x as its invariant
measure; that is, for any x ∈ X n,∫

φJ
x

(
dx′

J

)
QJ (〈xJ c , x′

J 〉, A) = φJ
x (A). (4)
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Fig. 1. A blocking scheme satisfying Assumptions 2 and 3.

Since φJ
x depends on x only through the boundary points x∂J , it is natural to assume that QJ (x, ·)

depends on x only through xJ∪∂J . For notational convenience, we define J + = J ∪ ∂J for any
subset J ⊂ I . Thus, for any (x, z) ∈ X n × X n we have QJ (x, A) = QJ (〈xJ + , zI\J +〉, A). We write
QJ (xJ + , dx′

J ) in place of QJ (x, dx′
J ) when we wish to to emphasize the dependence of the kernel

on the components in J + of the current configuration x. When QJ (x, dx′
J ) = φJ

x (dx′
J ) for every

J ∈ J , we refer to the sampler as an ideal Gibbs sampler. It follows that the Markov kernel that
corresponds to updating the block J is

PJ (x, dx′) =
{
φJ

x (dx′
J )× δxJ c (dx′

J c) for the ideal Gibbs kernel, (5)

QJ (xJ + , dx′
J )× δxJ c (dx′

J c) for the nonideal Gibbs kernel. (6)

The subsets in J can be an arbitrary cover of I . However, certain blocking schemes are likely
to be of greater practical interest and these schemes therefore deserve some extra attention. To
exemplify this, we consider the following restrictions on the blocks in J .

Assumption 2. Each J ∈ J is an interval, i.e., J = {s, . . . , u} for some 1 � s � u � n.
Furthermore, the blocks J1, . . . , Jm are ordered in the following way: for any 1 � j < k � m,
min(Jj) < min(Jk) and max(Jj) < max(Jk).

Assumption 3. Consecutive blocks may overlap but nonconsecutive blocks do not overlap and
are separated; that is, for 1 � j < k � m with k − j � 2, max(Jj) < min(Jk)− 1.

In addition to ordering the blocks according to their minimum element, Assumption 2 avoids
the case where one block is a strict subset of some other block. Assumption 3 requires that Jk−1
and Jk+1 not cover Jk . Figure 1 illustrates a blocking scheme that satisfies both assumptions.

DEFINITION 1. When Assumption 2 holds, the left-to-right Gibbs kernel is defined to be
P = PJ1 · · · PJm. When Assumptions 2 and 3 hold, the parallel Gibbs kernel is defined to be
P = PoddPeven where{

Podd = PJ1PJ3 · · · PJm ,

Peven = PJ2PJ4 · · · PJm−1 ,
or

{
Podd = PJ1PJ3 · · · PJm−1 ,

Peven = PJ2PJ4 · · · PJm ,

for odd or even m, respectively.

The first Gibbs sampling scheme is a systematic sweep through the blocks from left to right,
and P is the kernel corresponding to one complete sweep. The second blocking scheme updates
all the odd-numbered blocks first and then all the even-numbered blocks. It is called parallel
Gibbs sampling and is important since it is possible to update all the odd blocks in parallel,
followed by a parallel update of all the even blocks, because two consecutive odd or even blocks
are separated by at least one element in I . Figure 1 shows this typical scenario for the parallel
Gibbs sampler.

Downloaded from https://academic.oup.com/biomet/article-abstract/104/4/953/4554443
by University of Cambridge user
on 10 January 2018



958 S. S. SINGH, F. LINDSTEN AND E. MOULINES

In § 4 we use particle Gibbs sampling to define the kernels QJ (xJ + , dx′
J ) for each J , and the

particle Gibbs kernel is known to be reversible (Chopin & Singh, 2015). Hence it is simple to
define reversible block samplers.

LEMMA 1. Let J = {J1, . . . , Jm} be an arbitrary cover of I , and for each J ∈ J let PJ (x, dx′) =
QJ (xJ + , dx′

J ) × δxJ c (dx′
J c) be the Gibbs kernel, possibly nonideal, that updates block J only.

Assume that QJ is reversible with respect to φJ
x for all J ∈ J . Then

φ(dx)× (
PJ1 · · · PJm

)
(x, dx′) = φ(dx′)× (

PJm · · · PJ1
)
(x′, dx).

For example, for the parallel scheme, the kernel (PoddPeven + PevenPodd)/2 is reversible.
Lemma 1 can be used to define other reversible samplers.

3. CONVERGENCE OF THE IDEAL BLOCK SAMPLERS

3·1. Preliminaries, notation, and definitions

For a function f : X n → R, the oscillation with respect to the ith coordinate is

OSCi( f ) = sup
{x,z∈X n: x−i=z−i}

|f (x)− f (z)|. (7)

Let OSC( f ) = supx,z∈X n |f (x)− f (z)| be the oscillation of f . Then

|f (x)− f (z)| �
∑
i∈I

OSCi( f )I[xi |=zi]. (8)

For a matrix A with elements Ai,j, ‖A‖∞ = maxi
∑

j |Ai,j| is a submultiplicative norm, i.e.,
‖AB‖∞ � ‖A‖∞‖B‖∞. Letμ and ν be two probability measures on X and let	 be a probability
measure on X × X ; 	 is a coupling of μ and ν if

∫
	(· , dx) = μ(·) and

∫
	(dx, ·) = ν(·).

We review some techniques for the convergence analysis of Markov chains; see, e.g., Follmer
(1982). Let P be a Markov kernel on X n. The nonnegative matrix W is a Wasserstein matrix for
P if for any function f of finite oscillation,

OSCj(Pf ) �
∑
i∈I

OSCi( f )Wi,j (j ∈ I ). (9)

If P and Q are Markov kernels with Wasserstein matrices V and W , respectively, then WV is
a Wasserstein matrix for the kernel PQ. The convergence rate of a Markov chain Monte Carlo
procedure can be characterized in terms of a corresponding Wasserstein matrix for the Markov
transition kernel through the following result. For any probability distributions μ and ν and any
coupling 	 of μ and ν, let ψj = ∫

	(dx, dz)I[xj |=zj], which is the probability under the coupling
	 of elements j not being equal. The function (x, x′) → I[x |=x′] on X × X is assumed to be
measurable; for example, this would be satisfied if the σ -algebra of subsets of X is countably
generated and separable. Then, for any function f of finite oscillation and any k � 1,

∣∣μPkf − νPkf
∣∣ �

∑
i,j∈I

OSCi( f )(W k)i,jψj �
{∑

i∈I

OSCi( f )

}
‖W‖k∞

(
max
j∈I

ψj

)
. (10)

This result follows directly from (8), (9) and the remark following it, namely the fact that W k is a
Wasserstein matrix for Pk . It follows from (10) that ‖W‖∞ < 1 implies geometric convergence.
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3·2. Wasserstein estimates for the ideal block sampler

Our convergence results for the ideal and for the particle Gibbs samplers rely on constructions
of Wasserstein matrices for the ideal Gibbs kernels. In fact, the particle Gibbs block sampler can
be viewed as an ε-perturbation of the ideal block sampler and this is exploited in the convergence
analysis below. Let PJ denote the ideal Gibbs kernel that updates block J only, as defined in
(5), and let W J be a Wasserstein matrix for PJ . The following lemma, proved in the Appendix,
reveals the structure of W J .

LEMMA 2. A Wasserstein matrix for the ideal Gibbs kernel updating block J can be chosen to
satisfy

W J
i,j =

⎧⎪⎨
⎪⎩

I[i=j], i ∈ J c, j ∈ I ,

0, i ∈ J , j ∈ I \ ∂J ,

×, i ∈ J , j ∈ ∂J ,

(11)

where × denotes elements that lie in the interval [0, 1].
For an interval J = {s, . . . , u}, it follows that

W J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · ·
1
× 0 · · · 0 ×··· ··· · · · ··· ···× 0 · · · 0 ×

1 · · ·
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with obvious modifications for the boundary blocks, i.e., when s = 1 and/or u = n. Blank entries
of W J correspond to zeros. The square of zeros corresponds to rows i ∈ J and columns j ∈ J . The
columns of × entries correspond to W J

i,j with i ∈ J and j ∈ ∂J . The interpretation of components
that are either 0 or 1 is noteworthy, as these cannot be improved further; the smaller the row
sum of the Wasserstein matrix the better. For example, Lemma 2 tells us that when the states x
and z differ in a single component, say xj |= zj, and if j ∈ J , then this error is not propagated
when computing the difference PJ f (x) − PJ f (z). In this sense the given Wasserstein matrices
are elementwise minimal.

It remains to compute the nonzero, off-diagonal elements of W J . The strong, but standard, mix-
ing conditions in Assumption 1 allow the remaining undeclared elements of W J to be expressed
in terms of the mixing coefficients of the model.

LEMMA 3. Suppose that Assumptions 1 and 2 hold, and let J = {s, . . . , u} and

α = 1 − {
δ(1−h)/h}σ−

σ+
∈ [0, 1),

where h, δ, σ− and σ+ are defined in Assumption 1. Then the matrix W J defined in (11) with

W J
i,j =

{
α�h−1(i−j)�, j = s − 1, s > 1,

α�h−1(j−i)�, j = u + 1, u < n,
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for i ∈ J and j ∈ ∂J is a Wasserstein matrix for the ideal Gibbs block-transition kernel PJ .

The proof is given in the Supplementary Material.

3·3. Convergence of the ideal block sampler

We start with a general geometric convergence result which holds for an arbitrary cover J
of I .

Assumption 4. Let ∂ = ⋃
J∈J ∂J be the set of all boundary points. For all J ∈ J ,

maxi∈J∩∂
∑

j∈∂J W J
i,j � λ < 1.

THEOREM 1. Let J = {J1, . . . , Jm} be an arbitrary cover of I and let P = PJ1 · · · PJm be the
kernel of one complete sweep of the ideal Gibbs sampler. For each J ∈ J , let W J be chosen
as in Lemma 2 and let W = W Jm · · · W J1 be the corresponding Wasserstein matrix for P . If
Assumption 4 holds, then for k � 1, ‖Wk‖∞ � λk−1‖W‖∞.

See the Supplementary Material for the proof.
The following result now characterizes the convergence of the law of the sampled output of

the ideal block sampler.

COROLLARY 1. Let μ and ν be two probability distributions on X n and let 	 be an arbitrary
coupling of μ and ν. Under the same conditions as in Theorem 1, for any k � 1 and any f of
finite oscillation,

∣∣μPk f − νPk f
∣∣ � ‖W‖∞λk−1

(
max
j∈I

∫
	(dx, dz)I[xj |=zj]

) ∑
i∈I

OSCi( f ).

Remark 1. Corollary 1 clarifies two important issues. Firstly, if we are interested only in
certain fixed-dimensional marginals of the joint smoothing distribution, then the convergence rate
is independent of the dimension n of the joint smoothing distribution. Secondly, for convergence
in total variation norm of the law of the sampled process {X (k) : k ∈ N} in (3) to the full joint
smoothing distribution, the bound on the error is O(nλk), i.e., the error grows only linearly in n.
For any other general f , linear-in-n complexity holds only if

∑
i∈I OSCi( f ) is bounded in n.

Under the conditions of Lemma 3 we can clearly see the benefit of blocking for verifying
Assumption 4. As an illustration, let h = 1 in Assumption 1. The condition for contraction in
Assumption 4 requires that for any i ∈ J ∩ ∂ , assuming J = {s, . . . , u} is an internal block,∑

j∈∂J

W J
i,j = αi−(s−1) + α(u+1)−i < 1, (12)

where α ∈ [0, 1) is defined in Lemma 3. First of all, it is possible to ensure
∑

j∈∂J W J
i,j < 1 for

any i ∈ J by increasing the block size L = u − s + 1. Indeed, the maximum of (12) for i ∈ J
is attained for i = s or i = u, for which

∑
j∈∂J W J

i,j = α + αL, which is less than 1 for L large
enough. Secondly, Lemma 3 also reveals the benefit of using overlapping blocks. Since we only
need to control (12) for i ∈ J ∩ ∂ , we can select the blocking scheme so that the set of boundary
points ∂ excludes indices i close to the boundary of block J . Consequently, by using overlapping
blocks we can control both terms in (12) and thus the overall convergence rate of the algorithm
by increasing L.
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Theorem 1 assumes no specific structure for J other than it being a cover. As such, it cannot
provide a sharper estimate of contraction since it caters for all blocking structures. In order to
refine the estimate we impose the blocking structure of Assumptions 2 and 3, as illustrated in
Fig. 1, and study the effect of block size and overlap on convergence. Theorem 2 improves the
estimate of the decay of errors per complete sweep from λ in Theorem 1 to λ2 for the blocking
structure of Fig. 1.

THEOREM 2. Suppose that Assumptions 2, 3 and 4 hold. For the ideal parallel Gibbs sampler,

‖Wk‖∞ � ‖W‖∞λ2(k−1),

‖W‖∞ � 2 and λ is defined as in Assumption 4. For the ideal left-to-right Gibbs sampler,

‖Wk‖∞ � ‖W‖∞βk−1,

‖W‖∞ � 1 + λ, β = maxk∈{2,...,m} λak + bk , ak = W Jk
∂+Jk−1,∂−Jk

, and bk = W Jk
∂+Jk−1,∂+Jk

.

The proof can be found in the Supplementary Material.
For example, let each block be the same length L, and let the overlap between all adjacent

blocks Jk−1, Jk ∈ J be fixed, |Jk−1 ∩ Jk | = p. When Assumption 1 holds, bk = α�h−1(L−p)�,
ak = α�h−1(p+1)� and λ = α�h−1(L−p)� +α�h−1(p+1)�. There is parity in the two rates of Theorem 2
as L increases while p is fixed, since β/λ2 → 1.

4. CONVERGENCE OF THE BLOCKED PARTICLE GIBBS SAMPLER

4·1. The particle Gibbs construction of QJ

The particle Gibbs sampler of Andrieu et al. (2010) is a Markov chain Monte Carlo sampler
for simulating from the joint state and parameter posterior distribution of a state space model.
It does so by iteratively simulating the model parameter from its conditional distribution, i.e., a
standard Gibbs sampling step, and simulating the system states from the particle Gibbs kernel,
which is a Markov kernel that preserves the invariance of the full joint smoothing distribution for
a fixed value of the model parameter. We omit the routine step that updates the static parameter
and in Algorithm 1 describe how the standard particle Gibbs algorithm needs to be modified to
target the conditional density φJ

x ; Algorithm 1 defines the nonideal block transition kernel (6).
Algorithm 1 is a sequential Monte Carlo-based construction of a Markov kernel on X |J |. The

algorithm associates with each xJ + a probability distribution on X |J |, denoted by QJ
N (xJ + , ·),

where N is the number of particles used in the underlying sequential Monte Carlo sampler; that
is, QJ

N (xJ + , A) = pr(X ′
J ∈ A)where X ′

J is the output of Algorithm 1. A straightforward extension
of Theorem 5 of Andrieu et al. (2010) shows that QJ

N has φJ
x as its invariant distribution in the

sense of (4). Invariance holds for any N � 1, although N � 2 is required for the kernel to be
ergodic (Andrieu et al., 2010; Lindsten et al., 2015; Andrieu et al., 2017). We briefly explain
Algorithm 1; for more discussion of the particle Gibbs algorithm see Andrieu et al. (2010).

Algorithm 1. Particle Gibbs kernel QJ
N (xJ + , dx′

J ) with invariant distribution φJ
x for non-

boundary block J = {s, . . . , u}.
Input: Observations yJ , fixed boundary states x∂J and input block states xJ .

Draw X i
s ∼ rs(xs−1, ·) for i = 1, . . . , N − 1 and set X N

s = xs.
Set W i

s = ws(xs−1, X i
s ) for i = 1, . . . , N ; see (13).
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For t = s + 1 to u
Draw Ai

t with pr(Ai
t = j) = W j

t−1/
∑N
=1 W 

t−1 for i = 1, . . . , N − 1.

Draw X i
t ∼ rt(X

Ai
t

t−1, ·) for i = 1, . . . , N − 1. Set X N
t = xt and AN

t = N .

Set W i
t = wt(X

Ai
t

t−1, X i
t ) for i = 1, . . . , N .

Set X i
s:t = (X

Ai
t

s:t−1, X i
t ) for i = 1, . . . , N .

Set W̃ i
u = W i

u × m(X i
u, xu+1) for i = 1, . . . , N .

Draw K with pr(K = j) = W̃ i
u/

∑N
=1 W̃ 

u for j ∈ {1, . . . , N }.
Output X ′

J = X K
J .

The internal steps of the particle Gibbs kernel, specifically the initialization and for-loop
of Algorithm 1, can be interpreted as approximating the sequence of target distributions
p(xs, . . . , xt | xs−1, ys, . . . , yt) (t = s, . . . , u) sequentially by constructing the collections of par-
ticles X i

s:t and weights W i
t (i = 1, . . . , N ; t = s, . . . , u). We use Xs:t to denote a trajectory in

state space from time s to time t, i.e., Xs:t = (Xs, . . . , Xt). The initialization simulates particles
X i

s ∼ rs(xs−1, ·) (i = 1, . . . , N − 1) independently from the proposal density rs(xs−1, ·). The
proposal density may depend on the fixed observation sequence as well as the fixed endpoint
xu+1, but we omit the explicit dependence from the notation for brevity. The N th particle is
set deterministically to the kernel’s input value: X N

s = xs. This N -particle empirical measure is
meant to approximate p(xs | xs−1, ys). To correct for the discrepancy between the proposal density
and this target density, importance weights are computed as in standard sequential Monte Carlo
sampling: W i

s = ws(xs−1, X i
s ) (i = 1, . . . , N ), where the weight function is

wt(xt−1, xt) = g(xt , yt)m(xt−1, xt)

rt(xt−1, xt)
. (13)

The weighted particles (X i
s , W i

s ) (i = 1, . . . , N ) now form an approximation of the target density
p(xs | xs−1, ys). The remaining steps of Algorithm 1 can be understood similarly via induction.
That is, assume that the weighted samples (X i

s:t−1, W i
t−1) (i = 1, . . . , N ) approximate the target

p(xs, . . . , xt−1 | xs−1, ys, . . . , yt−1) at time t − 1. This empirical approximation is then sampled
and extended in the first two lines of the for-loop and then reweighted, in the third line of the
for-loop, to correct for the discrepancy between the importance sampling proposal and the target
p(xs, . . . , xt | xs−1, ys, . . . , yt). At the final iteration of block J , we need to take into account the
fact that the target distribution is φJ

x (xs, . . . , xu) = p(xs, . . . , xu | xs−1, xu+1, ys, . . . , yu) and not
p(xs, . . . , xu | xs−1, ys, . . . , yu), the two being related through (2). In other words, we need to take
into account the conditioning on the fixed boundary state xu+1, which contributes via the term
m(X i

u, xu+1) to the final weight W̃ i
u. After completing the for-loop, components in block J of the

particle Gibbs sampler input, namely xJ , are updated with a draw from the particle approximation
of φJ

x , which is denoted by X ′
J .

Algorithm 1 is a basic particle Gibbs sampler and can be made more efficient (Andrieu et al.,
2010; Chopin & Singh, 2015). Specific to the blocked particle Gibbs sampler is that the algorithm
may be adapted to the fixed boundary points xs−1 and xu+1. Both the proposal distributions and the
intermediate target distributions may depend on these boundary states, as long as the final target
distribution is φJ

x ; we use this type of adaptation in the numerical illustration in § 5. Additionally,
the mixing of the particle Gibbs kernel can be improved significantly by updating the ancestor
indices AN

t (t = s + 1, . . . , u) either as part of the for-loop in Algorithm 1 (Lindsten et al., 2014)
or in a separate backward recursion (Whiteley, 2010). Although we do not elaborate on the use of
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these modified particle Gibbs algorithms in this work, the stability results of the blocked particle
Gibbs sampler presented in the subsequent sections also hold when the particle Gibbs kernel is
replaced by one of these modified algorithms, which might result in better empirical performance.
The reason is that our results follow from the uniform minorization of the particle Gibbs kernel,
which, as pointed out by Lindsten et al. (2015, § 3), also holds for the algorithms of Lindsten
et al. (2014) and Whiteley (2010).

4·2. Convergence of the particle Gibbs block sampler

We now discuss the convergence properties of the particle Gibbs block sampler. In Theorem 3
we state a main result that parallels Theorem 2 for the blocked particle Gibbs sampler. For the sake
of interpretability, we specialize the result to the case of a common block size L and a common
overlap p between successive blocks. A version of Theorem 3 with neither this assumption nor
strong mixing is presented in the Appendix; see Theorems A1 and A2, of which Theorem 3 is a
corollary.

Assumption 5. For all J ∈ J , |J | = L; and for all consecutive Jk−1, Jk ∈ J , |Jk−1 ∩ Jk | = p.
The number of states n of the joint smoothing distribution satisfies n = (L − p)m + p.

THEOREM 3. Suppose that Assumptions 1, 2, 3 and 5 hold. Let P denote the Markov kernel
corresponding to one complete sweep of either the parallel sampler or the left-to-right sampler,
and assume that each block is updated by simulating from the particle Gibbs kernel as detailed in
Algorithm 1 using the proposal r(x, x′) = m(x, x′). Let μ and ν be two probability distributions
on X n, and let 	 be an arbitrary coupling of μ and ν. Then, for any f of finite oscillation and
any k � 1,

∣∣μPk f − νPk f
∣∣ � λk

PG ×
{∫

	(dx, dz)I[x |=z]
} ∑

i∈I

OSCi( f ), (14)

where for the parallel sampler,

λPG � λ(β ∨ 1)+ ε{2λ+ 25ε + 8(β ∨ 1)}, (15)

and for the left-to-right sampler,

λPG � λ+ α�h−1(L−p+1)� + 2ε
3(β ∨ 1)+ 1 + λ

1 − 2ε − α�h−1(p+1)� ,

with

β = α�h−1� + α�h−1(L−p+1)� � 2, ε = 1 −
{

1 − 1

c(N − 1)+ 1

}L

,

provided that λ = 2α�h−1(p+1)� < 1 and 2ε+ α�h−1(p+1)� < 1. The constant c in the definition of
ε is specified in Proposition A1 and is independent of n, N , L and p.

The proof is given in the Appendix.
Theorem 3 also applies to the ideal sampler upon setting ε = 0. In terms of sufficiency for

contraction, the requirement that the non-ε terms of this theorem be less than 1 is stronger than
Assumption 4; this should not be surprising since the analysis is tailored to the nonideal particle
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Gibbs kernel and thus is inherently more conservative. For common block length L and overlap p,
Assumption 4 requires α�(p+1)/h� + α�(L−p)/h� < 1. Nevertheless, the non-ε terms of Theorem 3
can be controlled by increasing the overlap of blocks and then increasing the block size with the
overlap fixed. Alternatively, if p is a constant fraction of L, then λ tends to zero as L increases.
Once L and p are fixed, N can be increased to ensure that λPG < 1 independently of n.

5. NUMERICAL ILLUSTRATION

We illustrate the blocked particle Gibbs samplers on a time-varying autoregressive model
commonly used for audio processing (Godsill et al., 2004). The model, which violates the strong
mixing assumption and has a nontrivial latent state structure, is intentionally chosen to illus-
trate that the intuition and conclusions from the theory presented here may generalize to more
challenging situations. Let the signal {Zt : t ∈ N+} be a Pth order Gaussian autoregressive
process

Zt =
P∑

j=1

at,jZt−j + Et , Et ∼ N {0, exp(2ξt)},

with time-varying coefficients at = (at,1, . . . , at,P)
T and log standard deviation ξt where ξt follows

a first-order Gaussian autoregressive model, p(ξt | ξt−1) = N (ξt | ηξt−1, σ 2
ξ ). The coefficients

at are parameterized using partial correlation coefficients ρt ∈ R
P (Friedlander, 1982) with

truncated Gaussian first-order autoregressive dynamics,

p(ρt | ρt−1) ∝ N (ρt | θρt−1, σ 2
ρ I )I[maxj{|ρt,j |}<1].

Constraining each component to the interval (−1, 1) ensures the stability of the model and there
is a one-to-one mapping between at and ρt . The signal Zt is observed in noise, Yt = Zt + Vt ,
with Vt ∼ N (0, σ 2

v ). The static parameters of the model are assumed to be known, with values
given in the Supplementary Material. The latent process Xt = (

Zt , ρt , ξt
)T ∈ R

P+2 is Pth-order
Markov. The Supplementary Material details a straightforward generalization of the blocked
particle Gibbs samplers to take into account this lag-P dependence at the block boundaries.

We use a simulated dataset with n = 2000 and P = 4. The methods considered are: (i) standard
particle Gibbs by Andrieu et al. (2010); (ii) particle Gibbs with ancestor sampling by Lindsten
et al. (2014); and (iii) the proposed parallel block sampler with different block sizes L and
overlaps p, where (L, p) ∈ {(10, 0), (50, 0), (50, 10)}. The Supplementary Material contains full
implementation details, as well as results for the right-to-left block sampler, which performs
similarly to the parallel sampler. All methods used N = 100 particles in the underlying particle
filters and have similar computational costs per complete sweep, except for the block sampler
with overlap p = 10, which costs approximately 25% more. Sampling efficiency is measured
by the mean squared jump distance (Pasarica & Gelman, 2010), which is computed for each
component of xt and at each time-point, based on 10 000 iterations. The results for ξt are shown
in Fig. 2. The other variables were found to behave similarly; see the Supplementary Material.

The particle Gibbs sampler suffers from path-degeneracy and is stuck for all time-points
t < 1600; clearly N = 100 is insufficient for this problem. However, the other samplers appear
to have stable mixing. For the block sampler without overlap, i.e., p = 0, the jump distance drops
close to the block boundaries, owing to the performance limitation of the ideal block sampler
without overlapping blocks. This issue is mitigated by taking p > 0: comparing L = 50 and p = 0
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Fig. 2. Mean squared jump distance for ξt for particle Gibbs ( ) with ancestor sampling ( ). Parallel block particle
Gibbs: L = 10, p = 0 ( ); L = 50, p = 0 ( ); L = 50, p = 10 ( ). Axis zoomed in to 1200 � t � 2000 for

clarity.

with L = 50 and p = 10 shows, as expected, that increasing the overlap will enhance mixing,
owing to the better mixing of the ideal sampler; the error ε of (15) is not expected to improve since
N is unchanged. The block samplers perform significantly better than particle Gibbs with ancestor
sampling, probably due to the use of a more efficient proposal mechanism, not available to the
unblocked implementation, as explained in the Supplementary Material. This is in addition to the
benefits of a more explicit convergence theory and the possibility for parallelization. Assuming
N is given by a fixed computational budget, the parameters L and p can be chosen to maximize
the ratio of the effective sample size, which is the total number of samples produced divided
by the integrated autocorrelation time, to the total running time. The search could be started by
first tuning L with p = 0 based on the efficient sample size for the block conditionals, and then
increasing p until there is no noticeable improvement. Alternatively, L could be selected a priori
and N tuned independently for each block.
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illustration in § 5.

APPENDIX

Proof of Lemma 2

From (5) we have PJ (x, dx′) = φJ
x (dx′

J )δxJ c (dx′
J c). A candidate Wasserstein matrix W J can be found via

a coupling argument. For j ∈ I and any pair (x, z) such that x−j = z−j and xj |= zj, let 	J
j,x,z be a coupling
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of φJ
x and φJ

z . Then

∣∣PJ f (x)− PJ f (z)
∣∣ �

∫
	J

j,x,z(dx′
J , dz′

J )δxJ c (dx′
J c)δzJ c (dz′

J c)|f (x′)− f (z′)|

�
∑
i∈I

OSCi( f )
∫
	J

j,x,z(dx′
J , dz′

J )δxJ c (dx′
J c)δzJ c (dz′

J c)I[x′
i |=z′i ]

=
∑
i∈J

OSCi( f )
∫
	J

j,x,z(dx′
i, dz′

i)I[x′
i |=z′i ] +

∑
i∈J c

OSCi( f )I[xi |=zi],

where the second line follows from (8). Since x−j = z−j, at most one term from the sum over J c will be
nonzero and hence

∑
i∈J c OSCi( f )I[xi |=zi] = I[j∈J c]OSCj( f ). Therefore, for i ∈ J set

W J
i,j = sup

{x,z∈X n: x−j=z−j }

∫
	J

j,x,z(dx′
i, dz′

i)I[x′
i |=z′i ], (A1)

and for i /∈ J set W J
i,j = I[i=j∈J c]. Furthermore, since φJ

x depends on x only through the boundary points x∂J ,
it follows that for j /∈ ∂J we have φJ

x = φJ
z . Therefore, for j /∈ ∂J , the coupling 	J

j,x,z can be made perfect:
	J

j,x,z(dx′
J , dz′

J ) = φx(dx′
J )δx′

J
(dz′

J ), that is,
∫
	J

j,x,z(dx′
i, dz′

i)I[x′
i=z′i ] = 1 for any i ∈ J and j /∈ ∂J . Therefore,

it is evident from (A1) that W J
i,j = 0 for i ∈ J and j ∈ I \ ∂J .

Proof of the convergence of the particle Gibbs block sampler

This subsection is dedicated to the proof of Theorem 3. It provides a more general version of Theorem 3
without the common block length and overlap structure of Assumption 5. Let Ŵ J be a Wasserstein matrix
for the nonideal block transition kernel defined in (6). By an analogous argument to that in Lemma 2, it
follows that Ŵ J has a similar structure to W J but with possibly nonzero entries for rows i ∈ J and columns
j ∈ J . This motivates the following assumed structure.

Assumption A1. For each J ∈ J let W J be a matrix satisfying (11). For some constant ε ∈ [0, 1) and
for all J ∈ J , let the matrix Ŵ J with elements Ŵ J

i,j = W J
i,j + ε I[i∈J ,j∈J+] (i, j ∈ I ) be a Wasserstein matrix

for the nonideal transition kernel (6) which updates block J .

Proposition A1 below shows that Assumption A1 holds for the particle Gibbs kernel with W J being a
Wasserstein matrix for block J of the ideal sampler as in Lemma 3; ε depends on the block size |J | and
particle number N but is independent of the data length n and the specific observations pertaining to each
block, which is the key to the stability of the particle Gibbs block sampler when n → ∞ but with N fixed.

THEOREM A1. Suppose that Assumptions 2, 3 and A1 hold and that the number of blocks m = |J | is
odd. Let J−k = ⋃

J∈J \{Jk } J and L = maxJ∈J |J |. Let Ŵ be the Wasserstein matrix of one complete sweep
of the nonideal parallel sampler defined analogously to Theorem 1. Then

(Ŵ1)i �

⎧⎪⎨
⎪⎩
λ2 + ε{λ(L + 4)+ ε(L + 2)2 + L(1 ∨ β)}, i ∈ J c

−k , k even,

λ+ ε (L + 2), i ∈ J c
−k , k odd,

λβ + ε{β(L + 2)+ 2λ+ ε (L + 2)2 + L(1 ∨ β)}, i ∈ Jk ∩ J−k , k even,

where

λ = max
Jk ∈J

max
i∈J c−k

W Jk
i,∂−Jk

+ W Jk
i,∂+Jk

, β = max
J∈J

max
i∈J

∑
j∈∂J

W J
i,j

and W J1
i,∂−J1

= W Jm
i,∂+Jm

= 0 by convention.
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For the proof see the Supplementary Material.

THEOREM A2. Suppose that Assumptions 2, 3 and A1 hold, and let J−k = ⋃
J∈J \{Jk } J , L = maxJ∈J |J |

and L1 = maxk∈{2,...,m} |Jk−1 ∩ Jk |. Let Ŵ be the Wasserstein matrix of one complete sweep of the nonideal
left-to-right sampler. Then

(Ŵ1)i �
{
λ+ cε, i ∈ J c

−k , k = 1, . . . , m,

λ′ + 2cε, i ∈ Jk−1 ∩ Jk , k = 2, . . . , m,

where

λ = max
Jk ∈J

max
i∈J c−k

W Jk
i,∂+Jk

1 − W Jk
i,∂−Jk

, λ′ = max
k∈{2,...,m}

max
i∈Jk−1∩Jk

λW Jk
i,∂−Jk

+ W Jk
i,∂+Jk

,

β = max
J∈J

max
i∈J

∑
j∈∂J

W J
i,j, γ = max

k∈{2,...,m}
max

i∈Jk ∩J c
k−1

W Jk
i,∂−Jk

, c = L(β(λ ∨ 1) ∨ 1)+ 1 + λ

1 − (L1 + 1)ε − γ
,

provided that γ + (L1 + 1)ε < 1. As before the convention is W J1
i,∂−J1

= W Jm
i,∂+Jm

= 0.

The proof is given in the Supplementary Material.
In order to prove Theorem 3 we now use Lemma 3 to identify the constants in Theorems A1 and

A2. However, a technical detail is how to handle the dependence on the maximum block size L and, in
Theorem A2, the maximum overlap L1 as well. Indeed, a direct application of Theorems A1 and A2 would
suggest that the norm of Ŵ grows, respectively, quadratically and linearly with εL. To avoid this issue we
will make use of the following trick: when applying Theorems A1 and A2 we do not consider the original
hidden Markov model formulation but rather an equivalent model that lumps consecutive states together,
thus effectively reducing the size of the blocks. As illustrated in Fig. 1, each block can be split into three
distinct sections: the left overlap, the middle of the block, and the right overlap. The exceptions are the end
blocks, which are split into two sections. By viewing each section as a single lumped state, we reduce the
block size to 3 and the maximum overlap to 1. For this scheme, the lumped states �1 = (X1, . . . , XL−p)

and �2 = (XL−p+1, . . . , XL) are the two sections of block 1, while �2, �3 = (XL+1, . . . , X2L−2p) and
�4 = (X2L−2p+1, . . . , X2L−p) are the three lumped states of block 2, and so on.

DEFINITION A1. The �-system groups the random variables X1, . . . , Xn of the X -system into
�1, . . . ,�2m−1, where Assumption 5 implies n = (L − p)m + p, the end blocks are �1 = (X1, . . . , XL−p)

and �2m−1 = (Xn−(L−p)+1, . . . , Xn), and the intermediate blocks are

�2i = X(L−p)i+1, . . . , X(L−p)i+p (1 � i < m),

�2i−1 = X(L−p)(i−1)+p+1, . . . , X(L−p)i (1 < i < m).

The index set for the �-system is I� = {1, . . . , 2m − 1} and the cover J� of I� has m sets, with set k being
J�,k = {2k − 2, 2k − 1, 2k} ∩ I�.

To find a Wasserstein matrix for the �-system we note that any conditional density of the states �i

(i ∈ J�,k ), conditionally on the boundaries of the block J�,k and the observation pertaining to that block,
is coupled analogously to the X -system; see the proof of Lemma 3 in the Supplementary Material. Anal-
ogously to Lemma 3, a Wasserstein matrix for block J�,k of the �-system is the (2m − 1) × (2m − 1)
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matrix

W k
� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1· · ·
1

α�h−1� 0 0 0 α�h−1(L−p+1)�

α�h−1(p+1)� 0 0 0 α�h−1(p+1)�

α�h−1(L−p+1)� 0 0 0 α�h−1�

1
· · ·

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A2)

Here the square of zeros corresponds to rows and columns in the set {2k − 2, 2k − 1, 2k}, with obvious
modifications for k = 1 or k = 2m − 1. The proof is omitted as it is similar to that of Lemma 3.

The final ingredient for proving Theorem 3 is to verify Assumption A1 for the particle Gibbs kernel.

PROPOSITION A1. Suppose that Assumption 1 holds and that the bootstrap proposal kernel r(x, x′) =
m(x, x′) is used in Algorithm 1. Then for any J = {s, . . . , u} ⊆ I with u � s and any N � 2,

QJ
N (xJ+ , dx′

J ) � {1 − ε(N , |J |)}φJ
x (dx′

J ),

where 1−ε(N , L) = [1−{c(N − 1)+ 1}−1]L, c = (2δσ+/σ− −1)−1 ∈ (0, 1], and δ, σ− and σ+ are defined
in Assumption 1.

If, moreover, Assumptions 2, 3 and 5 also hold, then W k
� (k = 1, . . . , m) defined in (A2) is a Wasserstein

matrix, based on the �-system, for the ideal Gibbs kernel that updates block Jk . A Wasserstein matrix for
the particle Gibbs kernel QJk

N is the matrix Ŵ k
� with elements

(Ŵ k
�)i,j = (W k

�)i,j + ε(N , |Jk |)I[2k−2�i�2k]I[2k−3�j�2k+1]. (A3)

See the Supplementary Material for the proof.
We emphasize that the lumping of state variables is used only for the sake of analysis, to improve the

contraction rates in Theorems A1 and A2 by avoiding a dependence on the block size. For all practical
purposes the lumping has no effect: when implementingAlgorithm 1 we still use the original state variables.
Consequently, lumping does not affect the ergodicity or the convergence rate of the particle Gibbs kernel.
In particular, ε in (A3) depends on the size of block k as expressed in the X -system, which is |Jk | and not
|J�,k | as for the lumped �-system. We conclude by putting the pieces together to prove Theorem 3.

Proof of Theorem 3

Theorem 3 is proved by applying Theorems A1 and A2 to the �-system. The bound (14) is established
by using (10) for the �-system: for any coupling 	 of μ and ν with (�, �̌) ∼ 	,

∣∣μPk f − νPk f
∣∣

�
{

2m−1∑
i=1

sup
{�,�̌∈X n:�−i=�̌−i}

|f (�)− f (�̌)|
}

‖W�‖k
∞ max

j∈{1,...,2m−1}

∫
	(d�, d�̌)I[�j |=�̌j ].

Since (�1, . . . ,�2m−1) ∈ X n, we can crudely bound the sum by
∑n

i=1 sup{x,y∈X n:x−i=y−i} |f (x)− f (y)|. The

final term is also crudely bounded by
∫
	(d�, d�̌)I[�j |=�̌j ] �

∫
	(d�, d�̌)I[� |=�̌].

Now it remains to derive the expression for λPG for both the parallel and left-to-right cases. We detail the
parallel case only, which uses Theorem A1 for the�-system, as the left-to-right case follows by analogous
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arguments. Theorem A1 is applicable to the �-system since the �-system satisfies Assumptions 2, 3 and
A1; the fact that it satisfies Assumption A1 follows from Proposition A1. Each block J�,k of the �-system
has three elements, except for the initial and final blocks which have two elements each. The specific
values of λ and β in Theorem A1 follow from this simple three-element block structure and the declared
Wasserstein matrix in (A2). The coefficient of the ε-term in (15) follows from a trivial bound on the three
separate ε-coefficients given in Theorem A1 using L = 3.
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