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We give bijections between bipolar-oriented (acyclic with unique
source and sink) planar maps and certain random walks, which show
that the uniformly random bipolar-oriented planar map, decorated
by the “peano curve” surrounding the tree of left-most paths to the
sink, converges in law with respect to the peanosphere topology to a√

4/3-Liouville quantum gravity surface decorated by an independent
Schramm-Loewner evolution with parameter κ = 12 (i.e., SLE12).
This result is universal in the sense that it holds for bipolar-oriented
triangulations, quadrangulations, k-angulations, and maps in which
face sizes are mixed.
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1. Introduction.

1.1. Planar maps. A planar map is a planar graph together with an em-
bedding into R2 so that no two edges cross. More precisely, a planar map is
an equivalence class of such embedded graphs, where two embedded graphs
are said to be equivalent if there exists an orientation preserving homeo-
morphism R2 → R2 which takes the first to the second. The enumeration
of planar maps started in the 1960’s in work of Tutte [70], Mullin [57], and
others. In recent years, new combinatorial techniques for the analysis of
random planar maps, notably via random matrices and tree bijections, have
revitalized the field. Some of these techniques were motivated from physics,
in particular from conformal field theory and string theory.

There has been significant mathematical progress on the enumeration
and scaling limits of random planar maps chosen uniformly from the set of
all rooted planar maps with a given number of edges, beginning with the
bijections of Cori–Vauquelin [10] and Schaeffer [59] and progressing to the
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existence of Gromov–Hausdorff metric space limits established by Le Gall
[43] and Miermont [45].

There has also emerged a large literature on planar maps that come
equipped with additional structure, such as the instance of a model from
statistical physics, e.g., a uniform spanning tree, or an Ising model con-
figuration. These “decorated planar maps” are important in Euclidean 2D
statistical physics. The reason is that it is often easier to compute “crit-
ical exponents” on planar maps than on deterministic lattices. Given the
planar map exponents, one can apply the KPZ formula to predict the analo-
gous Euclidean exponents.1 In this paper, we consider random planar maps
equipped with bipolar orientations.

1.2. Bipolar and harmonic orientations. A bipolar (acyclic) orientation
of a graph G with specified source and sink (the “poles”) is an acyclic ori-
entation of its edges with no source or sink except at the specified poles. (A
source (resp. sink) is a vertex with no incoming (resp. outgoing) edges.) For
any graph G with adjacent source and sink, bipolar orientations are counted
by the coefficient of x in the Tutte polynomial TG(x, y), which also equals
the coefficient of y in TG(x, y); see [12] or the overview in [19]. In particular,
the number of bipolar orientations does not depend on the choice of source
and sink as long as they are adjacent. When the source and sink are adja-
cent, there are bipolar orientations precisely when the graph is biconnected,
i.e., remains connected after the removal of any vertex [44]. If the source
and sink are not adjacent, adjoining an edge between the source and sink
does not affect the number of bipolar orientations, so bipolar orientations
are counted by these Tutte coefficients in the augmented graph.

Let G be a finite connected planar map, with no self-loops but with mul-
tiple edges allowed, with a specified source and sink that are incident to the
same face. It is convenient to embed G in the disk so that the source is at
the bottom of the disk (and is denoted S, for south pole), the sink is at the
top (and is denoted N, for north pole), and all other vertices are in the inte-
rior of the disk (see Figure 1). Within the disk there are two faces that are
boundary faces, which can be called W (the west pole) and E (the east pole).
Endowing G with a bipolar orientation is a way to endow it and its dual
map G∗ with a coherent notion of “north, south, east, and west”: one may
define the directed edges to point north, while their opposites point south.

1This idea was used by Duplantier to derive the so-called Brownian intersection expo-
nents [15], whose values were subsequently verified mathematically by Lawler, Schramm,
and Werner [39, 40, 41] in an early triumph of Schramm’s SLE theory [60]. An overview
with a long list of references can be found in [16].
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Fig 1. Left: A planar map embedded in a disk with two boundary vertices, with a north-
going bipolar orientation. Right: The dual bipolar-oriented planar map, which has two
boundary dual vertices on the disk. Middle: Primal and dual bipolar-oriented maps to-
gether. The dual orientations are obtained from the primal orientations by rotating the
arrows left.

Each primal edge has a face to its west (left when facing north) and its east
(right), and dual edges are oriented in the westward direction (Figure 1).

Given an orientation of a finite connected planar map G, its dual orien-
tation of G∗ is obtained by rotating directed edges counterclockwise. If an
orientation has a sink or source at an interior vertex, its dual has a cycle
around that vertex. Suppose an orientation has a cycle but has no source
or sink at interior vertices. If this cycle surrounds more than one face, then
one can find another cycle that surrounds fewer faces, so there is a cycle
surrounding just one face, and the dual orientation has either a source or
sink at that (interior) face. Thus an orientation of G is bipolar acyclic pre-
cisely when its dual orientation of G∗ is bipolar acyclic. The east and west
poles of G∗ are the source and sink respectively of the dual orientation (see
Figure 1).

One way to construct bipolar orientations is via electrical networks. Sup-
pose every edge of G represents a conductor with some generic positive
conductance, the south pole is at 0 volts, and the north pole is at 1 volt.
The voltages are harmonic except at the boundary vertices, and for generic
conductances, provided every vertex is part of a simple path connecting the
two poles, the interior voltages are all distinct. The harmonic orientation
orients each edge towards its higher-voltage endpoint. The harmonic orien-
tation is clearly acyclic, and by harmonicity, there are no sources or sinks at
interior vertices. In fact, for any planar graph with source and sink incident
to the same face, any bipolar orientation is the harmonic orientation for
some suitable choice of conductances on the edges [1, Thm. 1], so for this
class of graphs, bipolar orientations are equivalent to harmonic orientations.

Suppose that a bipolar-oriented planar map G has an interior vertex in-
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cident to at least four edges, which in cyclic order are oriented outwards,
inwards, outwards, inwards. By the source-free sink-free acyclic property,
these edges could be extended to oriented paths which reach the boundary,
and by planarity and the acyclic property, the paths would terminate at four
distinct boundary vertices. Since (in this paper) we are assuming that there
are only two boundary vertices, no such interior vertices exist. Thus at any
interior vertex, its incident edges in cyclic order consist of a single group
of north-going edges followed by a single group of south-going edges, and
dually, at each interior face the edges in cyclic order consist of a single group
of clockwise edges followed by a single group of counterclockwise edges.

In particular, each vertex (other than the north pole) has a unique “west-
most north-going edge,” which is its NW edge. The NW tree is the directed
tree which maps each vertex (other than the north pole) to its NW edge,
and maps each edge to the vertex to its north. Geometrically, the NW tree
can be drawn so that each NW edge is entirely in the NW tree, and for each
other edge, a segment containing the north endpoint of the edge is in the
NW tree (see Figure 2). We define southwest, southeast, and northeast trees
similarly.

We will exhibit (see Theorems 2.1 and 2.2) a bijection between bipolar-
oriented planar maps (with given face-degree distribution) and certain types
of random walks in the nonnegative quadrant Z2

≥0. This bijection leads to
exact enumerative formulae as well as local information about the maps
such as degree distributions. For previous enumerative work on this model,
including bijections between bipolar-oriented planar maps and other objects,
see e.g. [19, 7, 6, 18].

1.3. SLE and LQG. After the bijections our second main result is the
identification of the scaling limit of the bipolar-oriented map with a Liouville
quantum gravity (LQG) surface decorated by a Schramm-Loewner evolution
(SLE) curve, see Theorem 4.1.

We will make use of the fact proved in [14, 49, 21] that an SLE-decorated
LQG surface can be equivalently defined as a mating of a correlated pair
of continuum random trees (a so-called peanosphere; see Section 4.2) where
the correlation magnitude is determined by parameters that appear in the
definition of LQG and SLE (namely γ and κ′).

The scaling limit result can thus be formulated as the statement that a
certain pair of discrete random trees determined by the bipolar orientation
(namely the northwest and southeast trees, see Section 1.2) has, as a scaling
limit, a certain correlated pair of continuum random trees. Although LQG
and SLE play a major role in our motivation and intuition (see Section 4.2),
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we stress that no prior knowledge about these objects is necessary to un-
derstand either the main scaling limit result in the current paper or the
combinatorial bijections behind its proof (Sections 2 and 3).

Before we move on to the combinatorics, let us highlight another point
about the SLE connection. There are several special values of the parameters
κ and κ′ = 16/κ that are related to discrete statistical physics models.
(SLEκ with 0 < κ ≤ 4 and SLE16/κ are closely related [72, 13, 50, 55],
which is known as SLE-duality.) These special {κ, κ′} pairs include {2, 8} (for
loop-erased random walk and the uniform spanning tree) [42], {8/3, 6} (for
percolation and Brownian motion) [68, 38], {3, 16/3} (for the Ising and FK-
Ising model) [69, 9], and {4, 4} (for the Gaussian free field contours) [61, 62].
The relationships between these special {κ, κ′} values and the corresponding
discrete models were all discovered or conjectured within a couple of years
of Schramm’s introduction of SLE, building on earlier arguments from the
physics literature. We note that all of these relationships have random planar
map analogs, and that they all correspond to {κ, κ′} ⊂ [2, 8]. This range is
significant because the so-called conformal loop ensembles CLEκ [63, 66]
are only defined for κ ∈ (8/3, 8], and the discrete models mentioned above
are all related to random collections of loops in some way, and hence have
either κ or κ′ in the range (8/3, 8]. Furthermore, it has long been known
that ordinary SLEκ does not have time reversal symmetry when κ > 8 [58]
(see [55] for the law of the time-reversal of such an SLEκ process), and it
was thus widely assumed that discrete statistical physics systems would not
converge to SLEκ for κ > 8 [8].

In this paper the relevant {κ, κ′} pair is {4/3, 12}. This special pair
is interesting in part because it lies outside the range [2, 8]. It has been
proposed, based on heuristic arguments and simulations, that “activity-
weighted” spanning trees should have SLE scaling limits with κ anywhere in
the range [4/3, 4) and κ′ anywhere in the range (4, 12] [36]. In more recent
work, subsequent to our work on bipolar orientations, using a generalization
of the inventory accumulation model in [65], the activity-weighted spanning
trees on planar maps were shown to converge to SLE-decorated LQG in the
peanosphere topology for this range of κ, κ′ [35].

We will further observe that if one modifies the bipolar orientation model
by a weighting that makes the faces more or less balanced (in terms of their
number of clockwise and counterclockwise oriented boundary edges), one can
obtain any κ ∈ (0, 2) and any κ′ ∈ (8,∞). In a companion to the current
paper [37], we discuss a different generalization of bipolar orientations that
we conjecture gives SLE for κ ∈ [12− 8

√
2, 4) and κ′ ∈ (4, 12 + 8

√
2].

In this article we consider an opposite pair of trees (NW-tree and SE-
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tree). It is also possible to consider convergence of all four trees (NW, SE,
NE, and SW) simultaneously: this is done in the recent article [34].

1.4. Outline. In Sections 2 and 3 we establish our combinatorial results
and describe the scaling limits of the NW and SE trees in terms of a cer-
tain two-dimensional Brownian excursion. In Section 4 we explain how this
implies that the uniformly random bipolar-oriented map with n edges, and
fixed face-degree distribution, decorated by its NW tree, converges in law
as n→∞ to a

√
4/3-Liouville quantum gravity sphere decorated by space-

filling SLE12 from ∞ to ∞. This means that, following the curve which
winds around the NW tree, the distances to the N and S poles scale to an
appropriately correlated pair of Brownian excursions. We also prove a cor-
responding universality result: the above scaling limit holds for essentially
any distribution on face degrees (or, dually, vertex degrees) of the random
map.

Acknowledgements. R.K. was supported by NSF grant DMS-1208191 and
Simons Foundation grant 327929. J.M. was supported by NSF grant DMS-
1204894. S.S. was supported by a Simons Foundation grant, NSF grant
DMS-1209044, and EPSRC grants EP/L018896/1 and EP/I03372X/1. We
thank the Isaac Newton Institute for Mathematical Sciences for its support
and hospitality during the program on Random Geometry, where this work
was initiated. We thank Nina Holden for comments on a draft of this paper.
We also thank an anonymous referee for a helpful set of comments which
led to many improvements.

2. Bipolar-oriented maps and lattice paths.

2.1. From bipolar maps to lattice paths. For the bipolar-oriented planar
map in Figure 1, Figure 2 illustrates its NW tree (in red), SE tree (in blue),
and the interface path (in green) which winds between them from the south
pole to the north pole. The interface path has two types of steps:

1. Steps that traverse an edge (between red and blue sides).
2. Steps that traverse an interior face from its maximum to its minimum.

Face steps can be subcategorized according to the number of edges on
the west and east sides of the face, where the maximum and minimum
vertex of a face separate its west from its east. If a face has i+ 1 edges
on its west and j + 1 edges on its east, we say that it is of type (i, j).

Observe that each face step has edge steps immediately before and after it.
Let E be the set of edges of the planar map, which we order e0, . . . , e|E|−1

according to the green path going from the south pole S to the north pole
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Fig 2. Left: A map with a bipolar orientation, embedded so each edge is oriented “up-
ward” (i.e., in the direction along which the vertical coordinate increases). Middle: Set
of oriented edges can be understood as a tree, the northwest tree, where the parent of each
edge is the leftmost upward oriented edge it can merge into. If we reverse the orientations
of all edges, we can define an analogous tree (blue) and embed both trees (using the British
convention of driving on the left side) so that they don’t cross each other. Right: We then
add a green path tracing the interface between the two trees. Each edge of the interface
moves along an edge of the map or across a face of the map. For illustration purposes,
faces are numbered by the order they are traversed by the green path, but it is the traversals
of the edges of the green path that correspond to steps of the lattice path.

N. For each edge et, let Xt be distance in the blue tree from the blue root
(S) to the lower endpoint of et, and let Yt be the distance in the red tree
from the red root (N) to the upper endpoint of et. Suppose the west outer
face has m + 1 edges and the east outer face has n + 1 edges. Then the
sequence {(Xt, Yt)}0≤t≤|E|−1 defines a walk or lattice path that starts at
(0,m) when t = 0 and ends at (n, 0) when t = |E| − 1, and which remains
in the nonnegative quadrant. If there is no face step between et and et+1,
then the walk’s increment (Xt+1, Yt+1)− (Xt, Yt) is (1,−1). Otherwise there
is exactly one face step between et and et+1; if that face has i+ 1 edges on
its west and j + 1 edges on its east, then the walk’s increment is (−i, j), see
Figure 3.

For the example in Figure 2, the walk starts at (0, 2) and ends at (3, 0).

2.2. From lattice paths to bipolar maps. The above construction can be
reversed, constructing a bipolar-oriented planar map from a lattice path of
the above type.

We construct the bipolar-oriented planar map by sewing edges and ori-
ented polygons according to the sequence of steps of the path. Let mi,j

denote a step of (−i, j) with i, j ≥ 0, and me denote a step of (1,−1).
It is convenient to extend the bijection, so that it can be applied to any
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2-gons

triangles

quadrilaterals

pentagons

hexagons

(1,−1) = no-face increment

Fig 3. Lattice path increments.

sequence of these steps, not just those corresponding to walks remaining in
the quadrant. These steps give sewing instructions to augment the current
“marked bipolar map”, which will be a slightly more general object.

A marked bipolar map is a bipolar-oriented planar map together with
a “start vertex” on its western boundary which is not at the top, and an
“active vertex” on its eastern boundary which is not at the bottom, such
that the start vertex and every vertex below it on the western boundary has
at most one downward edge, and the active vertex and every vertex above it
on the eastern boundary has at most one upward edge. We think of the edges
on the western boundary below the start vertex and on the eastern boundary
above the active vertex as being “missing” from the marked bipolar map:
they are boundaries of open faces that are part of the map, but are not
themselves in the map.

Fig 4. The process of sewing oriented polygons and edges to obtain a bipolar-oriented
planar map. The intermediate structures are marked bipolar-oriented planar maps,
which may have some edges missing on the boundaries. The sequence of steps is:
me,m0,2,m1,0,m0,1,me,me,m1,1,m0,1,me,me,me,me,m1,0,m2,1,me.

Initially the marked bipolar map consists of an oriented edge whose lower
endpoint is the start vertex and whose upper endpoint is the active vertex.
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Each me and mi,j move adds exactly one edge to the marked bipolar map.
The mi,j moves also add an open face (and then adds in the southeastern
edge)..

The me moves will sew an edge to the current marked bipolar map up-
wards from the active vertex and move the active vertex to the upper end-
point of the new edge. If the eastern boundary had a vertex above the
active vertex, the new edge gets sewn to the southernmost missing edge on
the eastern boundary, and otherwise there is a new vertex which becomes
the current top vertex.

The mi,j moves will sew an open face with i + 1 edges on its west and
j+ 1 edges on its east, sewing the north of the face to the active vertex and
the west of the face to the eastern boundary of the marked bipolar map, and
then sew an edge to the southernmost east edge of the new face; the new
active vertex is the upper vertex of this edge. We can think of mi,j as being
composed of two submoves, a move fi,j which sews the open polygon to the
structure, with the top of the polygon at the old active vertex, and with
the new active vertex at the bottom of the polygon, followed by a regular
me move. If there are fewer than i + 1 edges below the (old) active vertex,
then the new face gets sewn to as many of them as there are, the start
vertex is no longer at the bottom, and the remaining western edges of the
face are missing from the map. As seen in the proof of Theorem 2.2 below,
this happens when the walk goes out of the positive quadrant; these western
edges will remain missing for any subsequent steps.

The final marked bipolar map is considered a (unmarked) bipolar-oriented
planar map if the start vertex is at the south and the active vertex is at the
north, or equivalently, if there are no missing edges.

Theorem 2.1. The above mapping from sequences of moves from {me}∪
{mi,j : i, j ≥ 0} to marked bipolar maps is a bijection.

Proof. Consider a marked bipolar map obtained from a sequence of
moves. The number of edges present in the structure determines the length
of the sequence. If that length is positive, then the easternmost downward
edge from the active vertex was the last edge adjoined to the structure. If
this edge is the southernmost edge on the eastern boundary of a face, then
the last move was one of the mi,j ’s, and otherwise it was me. Since the last
move and preceding structure can be recovered, the mapping is an injection.

Starting from an arbitrary marked bipolar map, we can inductively define
a sequence of moves as above by considering the easternmost downward edge
from the active vertex. This sequence of moves yields the original marked
bipolar map, so the mapping is a surjection.
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Next we restrict this bijection to sequences of moves which give valid
bipolar-oriented planar maps. A sequence of moves can of course be encoded
as a path.

Theorem 2.2. The above mapping gives a bijection from length-(`− 1)
paths from (0,m) to (n, 0) in the nonnegative quadrant having increments
(1,−1) and (−i, j) with i, j ≥ 0, to bipolar-oriented planar maps with ` total
edges and m+1 and n+1 edges on the west and east boundaries respectively.
A step of (−i, j) in the walk corresponds to a face with degree i + j + 2 in
the planar map.

Note that for triangulations, the relevant increments are (1,−1), (−1, 0)
and (0, 1). In this case, for a path of length `, the number of steps of each
type is determined (and equal to `/3 +O(1)).

Proof. When we make a walk (Xt, Yt)t≥0 in Z2 started from (X0, Y0)
using these moves, not necessarily confined to the quadrant, by induction

Xt −X0 = −1 + (# non-missing edges on the eastern boundary)

− (# missing edges on the western boundary)

and

Yt − Y0 = 1 + (# missing edges on the eastern boundary)

− (# non-missing edges on the western boundary) .

When the walk is started at (0,m), the start vertex remains at the south
pole precisely when the first coordinate always remains nonnegative. In this
case, there are no missing edges on the western boundary, so the final number
of non-missing edges on the eastern boundary is n+ 1.

Suppose that we reverse the sequence of moves, and replace each mi,j

with mj,i, to obtain a new sequence. Write each mi,j as the face move fi,j
followed by me. Recall that the initial structure was an edge; we may instead
view the initial structure as a vertex followed by an me move. Written in this

way, if the old sequence is mk0+1
e fi1,j1m

k1+1
e fi2,j2 · · ·m

kq+1
e , the new sequence

is m
kq+1
e · · · fj2,i2mk1+1

e fj1,i1m
k0+1
e . We then see that the structure obtained

from the new sequence is the same as the structure obtained from the old
sequence but rotated by 180◦, and with the roles of start and active vertices
reversed.

Using this reversal symmetry with our previous observation, it follows that
the active vertex is at the north pole precisely when the second coordinate
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achieves its minimum on the last step (it may also achieve its minimum
earlier), and the number of (non-missing) edges on the western boundary is
m+ 1.

If we wish to restrict the face degrees, the bijection continues to hold
simply by restricting the set of allowed steps of the paths.

We can use the bijection to prove the following result:

Theorem 2.3. Any finite bipolar-oriented planar map which has no self-
loops or pairs of vertices connected by multiple edges has a straight-line pla-
nar embedding such that edges are oriented upwards, i.e., in the direction of
increasing y-coordinate, as in Figure 2.

Proof. If the bipolar-oriented planar map has a face with more than 3
sides, then let v1, . . . , v4 denote four of its vertices in cyclic order. The map
could contain the edges (v1, v3) or (v2, v4), embedded outside the face, but
it cannot contain both of them without violating planarity. We may adjoin
an edge which the graph does not already contain, embed it within the face,
and then orient it so that the augmented planar map is bipolar-oriented.
By repeating this process, we see that we may assume that the map is a
triangulation.

Given a bipolar-oriented triangulation without multiple edges between
vertices, we can convert it to a walk using the bijection, and then convert it
back to a bipolar triangulation again using the bijection. When converting
the walk back to a triangulation, we do so while maintaining the following
geometric property: We require that every edge, missing or non-missing, be
embedded as a straight line oriented upwards. We also require that every
pair of vertices on the right boundary of the closure of the structure have a
“line-of-sight” to each other, unless the structure contains an edge (missing
or non-missing) connecting them. By “having a line-of-sight”, we mean that
the open line segment connecting the vertices is disjoint from the closure of
the structure.

It’s trivial to make the initial structure satisfy the geometric property.
Edge moves trivially maintain the geometric property. Since the graph does
not contain multiple edges connecting vertices, the move m1,0 (adjoining
a leftward triangle) connects two vertices that are within line-of-site, so it
also maintains the geometric property. The move m0,1 adjoins a rightward
triangle and necessarily makes the right boundary non-concave. However,
for any pair of vertices on the right boundary that are within line-of-sight
of each other, we may place the new vertex of the triangle sufficiently close
to its left edge that the line-of-sight is not obstructed, and since there are
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only finitely many pairs of vertices on the right boundary, we may embed
the new triangle so that the geometric property is maintained.

By induction the final structure satisfies the geometric property, so it is
a straight-line embedding with edges oriented upwards.

2.3. Path scaling limit. What happens if we consider a random bipolar-
oriented planar map such as the one in Figure 2, where we fix the left
boundary length (3 in Figure 2), the right boundary length (4 in Figure 2),
and the total number ` of edges (16 in Figure 2)? We consider the limiting
case where the boundary lengths are fixed and ` → ∞. What can one say
about the limiting joint law of the pair of trees in Figure 2 in this situation?

In light of Theorem 2.2, understanding this limiting law amounts to un-
derstanding the limiting law of its associated lattice path. For example, if
the map is required to be a triangulation, we should consider a random walk
of length `−1 with steps (1,−1), (−1, 0) and (0, 1), each chosen with proba-
bility 1/3 (by the comment after the statement of Theorem 2.2) conditioned
to start and end at certain fixed values, and to stay in the nonnegative
quadrant.

It is reasonable to expect that if a random walk on Z2 converges to Brow-
nian motion with some non-degenerate diffusion matrix, then the same ran-
dom walk conditioned to stay in a quadrant (starting and ending at fixed
locations when the number of steps gets large) should scale to a form of
the Brownian excursion, i.e., a Brownian bridge constrained to stay in the
same quadrant (starting and ending at 0). The recent work [17, Theorem
4] contains a precise theorem of this form, and Proposition 2.4 below is a
special case of this theorem. (The original theorem is for walks with a di-
agonal covariance matrix, but supported on a generic lattice, which implies
Proposition 2.4 after applying a linear transformation to the lattice.)

Recall that the period of a random walk on Z2 is the smallest integer
p ≥ 1 such that the random walk has a positive probability to return to zero
after kp steps for all sufficiently large integers k > 0.

Proposition 2.4. Let ν be a probability measure supported on Z2 with
expectation zero and moments of all orders. Let p ≥ 1 denote the period
of the random walk on Z2 with step distribution ν. Suppose that for given
zstart, zend ∈ Z2

≥0, for some ` there is a positive probability path in Z2
≥0 from

zstart to zend with ` steps from ν. Suppose further that for any R > 0 there
is a point z ∈ Z2

≥0 that is distance at least R from the boundary of the
quadrant, such that there is a path from zstart to z to zend with steps from ν
that remains in the quadrant Z2

≥0. For sufficiently large n with n ≡ ` mod p,
consider a random walk zstart = S0, S1, . . . , Sn = zend from zstart to zend with
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increments chosen from ν, conditioned to remain in the quadrant Z2
≥0. Then

the law of Sbntc/
√
n converges weakly w.r.t. the L∞ norm on [0, 1] to that of

a Brownian excursion (with diffusion matrix given by the second moments
of ν) into the nonnegative quadrant, starting and ending at the origin, with
unit time length.

In fact in this statement we do not need ν to have moments of all orders; it
suffices that | · |α has ν-finite expectation, for a positive constant α defined
in [17]. The constant α depends on the angle of the cone L(R2

≥0), where

L : R2 → R2 is a linear map for which L(Sn) scales to a constant multiple of
standard two-dimensional Brownian motion. In the setting of Theorems 2.5
and 2.6 below, L can be the map that rescales the (1,−1) direction by 1/

√
3

and fixes the (1, 1) direction. In this case, the cone angle is π/3 and α = 3.
The correlated Brownian excursion (X,Y ) in R2

≥0 referred to in the state-
ment of Proposition 2.4 is characterized by the Gibbs resampling property,
which states that the following is true. For any 0 < s < t < 1, the condi-
tional law of (X,Y ) in [s, t] given its values in [0, s] and [t, 1] is that of a
correlated Brownian motion of time length t− s starting from (X(s), Y (s))
and finishing at (X(t), Y (t)) conditioned on the positive probability event
that it stays in R2

≥0. The existence of this process follows from the results of
[67]; see also [20].

Now let us return to the study of random bipolar-oriented planar trian-
gulations. By Theorem 2.2 these correspond to paths in the nonnegative
quadrant from the y-axis to the x-axis which have increments of (1,−1)
and (0, 1) and (−1, 0). Fix the boundary lengths m + 1 and n + 1, that
is, fix the start (0,m) and end (n, 0) of the walk, and let the length ` get
large. Note that if ν is the uniform measure on the three values (1,−1)
and (0, 1) and (−1, 0), then the ν-expectation of an increment (X,Y ) of the
(unconstrained) walk is (0, 0). Furthermore, (in the unconstrained walk) the
variance of X−Y is 2 while the variance of X+Y is 2/3, and the covariance
of X − Y and X + Y is zero by symmetry. Thus the variance in the (1,−1)
direction is 3 times the variance in the (1, 1) direction. The scaling limit of
the random walk will thus be a Brownian motion with the corresponding
covariance structure. We can summarize this information as follows:

Theorem 2.5. Consider a uniformly random bipolar-oriented triangu-
lation, sketched in the manner of Figure 2, with fixed boundary lengths m+1
and n+ 1 and with the total number of edges given by `. Let S0, S1, . . . , S`−1
be the corresponding lattice walk. Then Sb`tc/

√
` converges in law (weakly

w.r.t. the L∞ norm on [0, 1]), as `→∞ with ` ≡ −m−n+ 1 mod 3, to the
Brownian excursion in the nonnegative quadrant starting and ending at the
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origin, with covariance matrix

(
2/3 −1/3
−1/3 2/3

)
. (This is the covariance ma-

trix such that if the Brownian motion were unconstrained, the difference and
sum of the two coordinates at time 1 would be independent with respective
variances 2 and 2/3.)

In particular, Theorem 2.5 holds when the lattice path starts and ends
at the origin, so that the left and right sides of the planar map each have
length 1. In this case, the two sides can be glued together and treated as a
single edge in the sphere, and Theorem 2.5 can be understood as a statement
about bipolar maps on the sphere with a distinguished south to north pole
edge.

Next we consider more general bipolar-oriented planar maps. Suppose we
allow not just triangles, but other face sizes. Suppose that for nonnegative
weights a2, a3, . . ., we weight a bipolar-oriented planar map by

∏∞
k=2 a

nk
k

where nk is the number of faces with k edges, and we use the convention
00 = 1. (Taking ak = 0 means that faces with k edges are forbidden.) For
maps with a given number of edges, this product is finite. Then we pick a
bipolar-oriented planar map with ` edges with probability proportional to
its weight; the normalizing constant is finite, so this defines a probability
measure if at least one bipolar map has positive weight.

To ensure that such bipolar maps exist, there is a congruence-type condi-
tion involving the number of edges ` and the set of face sizes k with positive
weight ak. We also use an analytic condition on the set of weights ak to
ensure that random bipolar maps are not concentrated on maps dominated
by small numbers of large faces. When both these conditions are met, we
obtain the limiting behavior as `→∞.

Theorem 2.6. Suppose that nonnegative face weights a2, a3, . . . are given,
and ak > 0 for at least one k ≥ 3. Let

(1) b = gcd
(
{k ≥ 1 : a2k > 0} ∪ {2k + 1 ≥ 3 : a2k+1 > 0}

)
.

Consider a bipolar-oriented planar map with fixed boundary lengths m+1 and
n+ 1 and with the total number of edges given by `, chosen with probability
proportional to the product of the face weights. If m+ n is odd and all face
sizes are even, or if

(2) 2× (`− 1) ≡ m+ n mod b ,

does not hold, then there are no such maps; otherwise, for ` large enough
there are such maps. Let S0, S1, . . . , S`−1 be the corresponding lattice walk.
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Suppose
∑

k akz
k has a positive radius of convergence R, and

(3) 1 ≤
∞∑
k=2

(k − 1)(k − 2)

2
akR

k .

Then for some finite λ with 0 < λ ≤ R

(4) 1 =

∞∑
k=2

(k − 1)(k − 2)

2
akλ

k .

Suppose further λ < R, or λ = R but also
∑

k k
4akR

k < ∞. Then as
`→∞ while satisfying (2), the scaled walk Sb`tc/

√
` converges in law (weakly

w.r.t. the L∞ norm on [0, 1]), to the Brownian excursion in the nonnegative
quadrant starting and ending at the origin, with covariance matrix that is a

scalar multiple of

(
2/3 −1/3
−1/3 2/3

)
.

Furthermore, the walk is locally approximately i.i.d. in the following sense:
fix J > 0 and suppose that for some ` > J we sample M uniformly from
{1, . . . , ` − J}, and consider the sequence given by the first J moves after
the M th step; then as ` → ∞ the law of this sequence converges in total
variation to that of an i.i.d. sequence, in which move mi,j occurs with prob-
ability ai+j+2λ

i+j/C and move me occurs with probability λ−2/C, and C is
a normalizing constant.

Remark 2.7. The constraint (3) is to ensure that (4) can be satisfied,
which will imply that the lattice walk has a limiting step distribution that
has zero drift. The constraint that λ < R, or λ = R but also

∑
k k

4akR
k <∞

implies that the limiting step distribution has finite third moment. When
the weights a2, a3, . . . do not satisfy these constraints, the random walk
excursion does not in general converge to a Brownian motion excursion.
Can one characterize bipolar-oriented planar maps in these cases? Can the
inequality

∑
k k

4akλ
k <∞ be replaced with

∑
k k

3akλ
k <∞ (finite second

moment for the step distribution)?

Remark 2.8. Theorem 2.6 applies to triangulations (giving Theorem 2.5
except for the scalar multiple in the covariance matrix), quadrangulations,
or k-angulations for any fixed k, or more generally when one allows only a
finite set of face sizes. The bound (3) is trivially satisfied in these cases since
the radius of convergence is R =∞.

Remark 2.9. In the case where 1 = a2 = a3 = · · · , i.e., the uniform
distribution on bipolar-oriented planar maps, the radius of convergence is
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R = 1, and λ = 1/2, so Theorem 2.6 applies. The step distribution ν of the
walk is

ν{(−i, j)} =

{
2−i−j−3 i, j ≥ 0 or i = j = −1

0 otherwise.

In this case it is also possible to derive the distribution ν for uniformly ran-
dom bipolar-oriented planar maps using a different bijection, one to non-
crossing triples of lattice paths [19].

Remark 2.10. Under the hypotheses of Theorem 2.6, with pk defined
as in (6) below, dividing (5) by C shows that in a large random map a
randomly chosen face has degree k with limiting probability

P(face has degree k)→ (k − 1)pk
1− p0

.

Proof of Theorem 2.6. Since the right-hand side of (4) increases mono-
tonically from 0 and is continuous on [0, R), (3) implies the existence of a
solution λ ∈ (0, R] to (4). Since ak > 0 for some k ≥ 3, λ <∞.

Next let a0 = 1 and define

(5) C =
a0
λ2

+

∞∑
k=2

(k − 1)akλ
k−2 ,

which by our hypotheses is finite, and define

(6) pk =
akλ

k−2

C
.

Then (dividing (5) by C) the pk’s define a random walk (Xt, Yt) in Z2,
which assigns probabilities p0 and pi+j−2 to steps me and mi,j respectively
(recall that there are k − 1 possible steps of type mi,j where i+ j = k − 2,
corresponding to a k-gon).

If we pick a random walk of length `−1 from zstart to zend weighted by the
ak’s, it has precisely the same distribution as it would have if we weighted
it by the pk’s instead, because the total exponent of λ for a walk from zstart
to zend is yend−xend− ystart +xstart, and because the total exponent of C is
` − 1. The advantage of working with the pk’s rather than the ak’s is that
they define a random walk, which, as we verify next, has zero drift.

The drift of Xt + Yt is zero by symmetry. The drift of Xt − Yt is

(7) 2p0 −
∑
k≥2

(k − 2)(k − 1)pk
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which is zero by the definition of pk and (4).
Next we determine the period of the walk in Z2. Consider the antidiagonal

direction Yt − Xt. A move of type me decreases this by 2, and a move of
type mi,j , corresponding to a k-gon with k = i+ j+ 2, increases it by k− 2.
For even k, consider the special case of a move of type mk/2−1,k/2−1. This
type of move followed by k/2 − 1 moves of type me returns the walk to
its start after k/2 total moves. For odd k, consider another special case: a
move of type mk−2,0 and a move of type m0,k−2 followed by k − 2 moves
of type me returns the walk to its start after k total moves. So we see that
the period of the walk is no larger than b as defined in (1). If the period
were smaller, then we could consider a minimal nonempty set of t moves for
which Yt − Xt = Y0 − X0 and b - t. Such a minimal set would contain no
k-gon moves for even k (since we could remove a k-gon move and k/2 − 1
type me moves to get a smaller set), and at most one k-gon move for any
given odd k (since for odd k we can remove k-gon moves in pairs along with
k − 2 type me moves to get a smaller set). Let k1, . . . , kr be these odd k’s.
There are (k1 + · · · + kr − 2r)/2 me moves, for a total of (k1 + · · · + kr)/2
moves. Then 2t = k1 + · · · + kr, and since b | k1, . . . , b | kr, we have b | 2t.
Since r ≥ 1, b | k1, so b is odd, and so in fact b | t. Hence both the walk
(Xt, Yt) and its projection Yt −Xt are periodic with period b.

For a face of size k, let q(k) = k/2 if k is even and q(k) = k if k is odd. The
period b is an integer linear combination of finitely many terms q(k1) < · · · <
q(ks) where aki > 0. We claim that any multiple of b which is at least (s−
1)q(ks)

2 is a nonnegative-integer linear combination of q(k1), . . . , q(ks). To
see this, let c be a multiple of b that is at least (s−1)q(ks)

2. We may write c =∑s
i=1 βiq(ki) where βi ∈ Z; suppose that we choose the coefficients β1, . . . , βs

to maximize the sum of the negative coefficients. If some coefficient βi is
negative, then there is another coefficient βj for which βjq(kj) ≥ q(ks)

2 >
q(ki)q(kj), in which case we could decrease βj by q(ki) and increase βi by
q(kj) to increase the sum of the negative coefficients. This completes the
proof of the claim. Thus the period of the walk in Z2 (not confined to the
quadrant) is b.

Suppose a walk in Z2 starts at (0,m) and goes to (n, 0) after t = ` − 1
steps. Consider the walk’s projection in the antidiagonal direction: (Yt −
Xt) − (Y0 −X0) = −m − n. If m + n is even, then the projected walk can
reach its destination after (m+ n)/2 me moves, and since b is the period, it
follows that `−1 ≡ (m+n)/2 mod b. If m+n is odd, then for the walk to have
positive probability there must be some odd k with ak > 0. The projected
walk can reach its destination after an mk−2,0 move and (m+ n+ k − 2)/2
me moves, and since b is the period of the walk (and b is a multiple of k, by
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definition of b), ` − 1 ≡ (m + n + k)/2 mod b. In either case, the existence
of such a walk implies 2(`− 1) ≡ m+ n mod b.

If there are only even face sizes and m + n is odd, there are no walks
from (0,m) to (n, 0). Otherwise, whether m + n is even or there is an odd
face size, we can first choose face moves to change the Xt + Yt coordinate
from m to n, and then follow them by some number of me moves to change
the Yt − Xt coordinate to −n. We may then follow these moves by a path
from (n, 0) to itself with length given by any sufficiently large multiple of b.
Thus, for any sufficiently large ` with 2 (` − 1) ≡ m + n mod b, there is a
walk within Z2 (not confined to the quadrant) from (0,m) to (n, 0).

Next pick a face size k ≥ 3 for which ak > 0. For s ≥ 0, the above
walk in Z2 from (0,m) to (n, 0) can be prepended with (m2

0,k−2m
k−2
e )s and

postpended with (mk−2
e m2

k−2,0)
s, and it will still go from (0,m) to (n, 0).

For some sufficiently large s, the walk will not only remain in the quadrant
but will also travel arbitrarily far from the boundary of the quadrant, which
gives the paths required by Proposition 2.4.

The variances of X − Y and X + Y are respectively

(8) Var[X − Y ] = 4p0 +
∑
k≥2

(k − 2)2(k − 1)pk,

and

(9) Var[X+Y ] =
∑
k≥2

pk((k−2)2+(k−4)2+· · ·+(−k+2)2) =
∑
k≥2

pk×2

(
k

3

)
,

which are both positive and finite by our hypotheses. Using the zero-drift
condition (7), we may combine (8) and (9) to obtain

Var[X − Y ] =
∑
k≥2

(k − 2)(k − 1)k pk =
∑
k≥2

pk 6

(
k

3

)
= 3 Var[X + Y ].

Then we apply Proposition 2.4. Since the ratio of variances is 3, we need
the walk’s step distribution to have a finite third moment (see the comments
after Proposition 2.4). Since there are |k − 1| steps of type pk, the third
moment of the step distribution is finite when∑

k≥2
pkk

4 =
1

C

∑
k≥2

akλ
k−2k4 <∞

which is implied by our hypotheses. Hence by Proposition 2.4 the scaling
limit of the walk is a correlated Brownian excursion in the quadrant.
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The local approximate i.i.d. nature of the walk follows from a standard
entropy maximization argument (Cramer’s theorem implies that if the steps
were i.i.d. the probability that the empirical pattern density for length-J
blocks of moves differs from its expectation by any fixed amount would
decay exponentially; however under this i.i.d. law the probability that the
walk stays in the quadrant and has the desired starting and ending points
has a power law decay, which means that even conditioned on staying in the
quadrant, the pattern density is sufficiently well concentrated in the `→∞
limit.)

Remark 2.11. If one relaxes the requirement that the probabilities as-
signed by the step distribution ν be the same for all increments correspond-
ing to a given face size, one can find a ν such that the expectation is still
(0, 0) and when (X,Y ) is sampled from ν, the law is still symmetric w.r.t. re-
flection about the line y = −x but the variance ratio Var[X−Y ]/Var[X+Y ]
assumes any value strictly between 1 and ∞. Indeed, one approaches one
extreme by letting (X,Y ) be (close to being) supported on the y = −x
antidiagonal, and the other extreme by letting (X,Y ) be (close to being)
supported on the x- and y-axes far from the origin (together with the point
(1,−1)). The former corresponds to a preference for nearly balanced faces
(in terms of the number of clockwise and counterclockwise oriented edges)
while the latter corresponds to a preference for unbalanced faces.

Remark 2.12. In each of the models treated above, it is natural to
consider an “infinite-volume limit” in which lattice path increments indexed
by Z are chosen i.i.d. from ν. The standard central limit theorem then implies
that the walks have scaling limits given by a Brownian motion with the
appropriate covariance matrix.

3. Bipolar-oriented triangulations.

3.1. Enumeration. The following corollary is an easy consequence of the
bijection. The formula itself goes back to Tutte [71]; Bousquet-Melou gave
another proof together with a discussion of the bipolar orientation interpre-
tation [7, Prop. 5.3, eqn. (5.11) with j = 2].

Corollary 3.1. The number of bipolar-oriented triangulations of the
sphere with ` edges in which S and N are adjacent and marked is (with
` = 3n)

B` =
2 (3n)!

(n+ 2)! (n+ 1)!n!
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(and zero if ` is not a multiple of 3).

Proof. In a triangulation 2E = 3F so the number of edges is a multi-
ple of 3. Since S and N are adjacent, there is a unique embedding in the
disk so that the west boundary has length 1 and the east boundary has
length 2. The lattice walks as discussed there go from (0, 0) to (1, 0). It
is convenient to concatenate the walk with a final m1,0 step, so that the
walks are from (0, 0) to (0, 0) of length ` and remain in the first quad-
rant; moreover the number of steps of each type must be equal. Applying a

shear

(
1 0
1 1

)
, the walks with steps me,m0,1,m1,0 become walks with steps

(1, 0), (0, 1), (−1,−1) which remain in the domain y ≥ x ≥ 0. Replacing
these steps by (1, 0, 0), (0, 1, 0), (0, 0, 1) respectively, this is the number of
walks from (0, 0, 0) to (n, n, n) with steps (1, 0, 0), (0, 1, 0), (0, 0, 1) remain-
ing in the domain y ≥ x ≥ z. These are the so-called 3D Catalan numbers,
see A005789 in the OEIS.

3.2. Vertex degree. Using the bijection between paths and bipolar-oriented
maps, we can easily get the distribution of vertex degrees of a large bipolar-
oriented triangulation.

Proposition 3.2. In a large bipolar-oriented planar triangulation with
fixed boundary lengths m+ 1 and n+ 1, as the number of edges ` tends to ∞
with `+m+n ≡ 1 mod 3, the limiting in-degree and out-degree distributions
of a random vertex are independent and geometrically distributed (starting
at 1) with mean 3.

Proof. We examine the construction of bipolar-oriented planar maps
when the steps give triangles. Any new vertex or new edge is adjoined to
the marked bipolar map on its eastern boundary, which we also call the
frontier.

A new vertex is created by an m0,1 move, or an me move if there are
currently no frontier vertices above the active vertex, and when a vertex is
created it is the active vertex. Each subsequent move moves frontier vertices
relative to the active vertex, so let us record their position with respect to
the active vertex by integers, with positive integers recording the position
below the active vertex and negative integers recording the position above
it. See Figure 5.

The following facts are easily verified.

1. A vertex moves off the frontier exactly when it is at position 1 and an
m1,0 move takes place.

https://oeis.org/A005789
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2

1

0

-1

3

2

1

0

1

0

-1

2

1

-1

-2

0

frontier before move after me after m1,0 after m0,1

Fig 5. Action of the three moves me,m1,0,m0,1 on the frontier. The vertex positions
(relative to the active vertex) are shown.

2. me moves increase the index of vertices by 1.
3. m0,1 moves decrease the index of a vertex by 1 if it is non-positive,

else leave it fixed.
4. m1,0 moves decrease the index by 1 if it is ≥ 2, else leave it fixed (if

the index is 1 it is moved off of the frontier).
5. Except for the start vertex of the initial structure, whenever a vertex

is created, its in-degree is 1 and its out-degree is 0.
6. The in-degree of a vertex increases by 1 each time it visits position 0,

the out-degree increases each time it visits position 1.

The transition diagram is summarized here:

0 1 2 3 · · ·−1−2−3· · ·

vertex off frontier

vertex created

me

m1,0

me

m0,1

m1,0

me

m0,1

m1,0

me

m0,1

m1,0

me

m0,1

m0,1

me

m1,0

m0,1

me

m1,0

m0,1

me

m1,0 m1,0

For the purposes of computing the final in-degree and out-degree of a ver-
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tex, we can simply count the number of visits to 0 before its index becomes
positive, and then count the number of visits to 1 before it is absorbed in
the interior of the structure.

Since m and n are held fixed as `→∞, almost all vertices in the bipolar
map are created by m0,1 moves. By the local approximate i.i.d. property of
the walk proved in Theorem 2.6, we see that the moves in the transition
diagram above converge weakly to a Markov chain where each transition
occurs with probability 1/3.

The Markov chain starts at 0, and on each visit to 0 there is a 1/3 chance
of going to 1 and a 2/3 chance of eventually returning to 0. On each visit to 1,
there is a 1/3 chance of exiting and a 2/3 chance of eventually returning to 1.
In the Markov chain, the number of visits to 0 and 1 are a pair of independent
geometric random variables with minimum 1 and mean 3, which in view of
fact 6 above, implies the proposition.

4. Scaling limit.

4.1. Statement. In order to prove that random discrete objects converge
to random continuous objects, one has to specify what that convergence
means. Typically, one begins by describing a topological space that includes
both the discrete objects and the continuous objects as elements.

As we discuss in Section 4.2 below, many kinds of discrete and contin-
uum tree-decorated surfaces can be naturally encoded by pairs of interface
functions, such as the (Xt, Yt) process in this paper.

Let C = C([0, 1],R2) be the space of continuous functions from [0, 1] to
R2 with the uniform metric (sup-norm metric). Let C be the corresponding
weak topology on the set SC of probability measures on C. One way to say
that a sequence of random discrete tree-decorated surfaces converge to a
random continuum tree-decorated surface is to say that the laws of the cor-
responding interface functions converge as elements of (SC , C). This property
in fact defines a topology on the space of tree-decorated surfaces (with pa-
rameterized interface functions), called the peanosphere topology: We define
in section 4.2 a map g that takes a (discrete or continuous) tree-decorated
surface of the type we consider here to an element of C. The g−1 pullback
of the sup-norm topology on C is the peanosphere topology on a space that
includes both discrete and continuous tree-decorated surfaces. Theorem 4.1
below is a statement about convergence in law w.r.t. this topology. Note
that (since C is a topology on measures) it is not necessary that g be defined
for every conceivable tree-decorated surface, as long as it is defined for a.a.
tree-decorated surfaces that arise in the random models we are considering.

At this point the reader may object: if Theorem 4.1 is in essence a state-
ment about the scaling limits of random interface functions, it may seem
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like an unnecessary bit of semantics to interpret it as a statement about
the convergence of the random tree-decorated surfaces themselves (in the
peanosphere topology). On the other hand, there are good mathematical
reasons to consider this interpretation. This is because there are various
other topologies (involving Gromov-Hausdorff metrics, conformal embed-
dings, etc.) w.r.t. which discrete tree-decorated surfaces have been conjec-
tured to converge to their continuous counterparts, and it is often the case in
this subject that once one has convergence in one topology, one can extend
the convergence to other topologies without having to start from scratch
(and some specific examples of results along these lines are cited below).

The proof of Theorem 4.1 is an easy computation upon application of the
infinite-volume tree-mating theory introduced in [14], a derivation of the
relationship between the SLE/LQG parameters and a certain variance ratio
in [14, 21], and a finite volume elaboration in [49]. As mentioned above, we
will explain this further in Section 4.2 just below.

Theorem 4.1. The scaling limit of the bipolar-oriented planar map with
its interface curve, with fixed boundary lengths m+1 and n+1, and number
of edges ` → ∞ (with a possible congruence restriction on `, m, and n
to ensure such maps exist), with respect to the peanosphere topology, is a√

4/3-LQG sphere decorated by an independent SLE12 curve.

We remark that the peanosphere topology is neither coarser nor finer than
other natural topologies, including in particular those that we discuss in the
Section 4.2.

Proof of Theorem 4.1. In Section 2.3 it was shown that the interface
function for the bipolar-oriented random planar map converges as `→∞ to
a Brownian excursion (X,Y ) in the non-negative quadrant having covariance

matrix (up to scale)

(
2/3 −1/3
−1/3 2/3

)
, that is X−Y and X+Y are independent,

and Var[X − Y ] = 3Var[X + Y ].
The fact that the limit is a Brownian excursion implies, by [14, Theo-

rem 1.13] and the finite volume variant in [49] and [21, Theorem 1.1], that
the scaling limit in the peanosphere topology is a peanosphere, that is, a
γ-LQG sphere decorated by an independent space-filling SLEκ′ , for a cer-
tain γ, κ′. The values γ, κ′ are determined by the covariance structure of the
limiting Brownian excursion. The ratio of variances Var[X−Y ]/Var[X+Y ]
takes the form

(10) (1 + cos[4π/κ′])/(1− cos[4π/κ′]).
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This relation was established for κ′ ∈ (4, 8] in [14], and more generally for
κ′ ∈ (4,∞) in [21].2 Setting it equal to 3 and solving we find κ′ = 12. For
this value of κ′ we have γ =

√
16/κ′ =

√
4/3.

Remark 4.2. If the covariance ratios vary as in Remark 2.11, then the
κ′ values varies between 8 and ∞. In other words, one may obtain any
κ′ ∈ (8,∞), and corresponding γ =

√
16/κ′, by introducing weightings that

favor faces more or less balanced.

Remark 4.3. The infinite-volume variant described in Remark 2.12 cor-
responds to the mated pair of infinite-diameter trees first described in [14],
which in turn corresponds to the so-called γ-quantum cone described in the
next subsection.

t

Xt

C−Yt

Fig 6. Gluing together a pair of CRTs to obtain a topological sphere. Illustration of the
peanosphere construction. (This figure first appeared in [14].)

4.2. Peanosphere background. The purpose of this section is to give a
brief description of how Liouville quantum gravity (LQG) surfaces [16] dec-
orated by independent SLE processes can be viewed as matings of random
trees which are related to Aldous’ continuum random tree (CRT) [2, 3, 4].

2There is as yet no analogous construction corresponding to the limiting case κ′ = 4,
where (10) is zero so that Var(X − Y ) = 0 and X = Y a.s. It is not clear what such
a construction would look like, given that space-filling SLEκ′ has only been defined for
κ′ > 4, not for κ′ = 4, and the peanosphere construction in Section 4.2 is trivial when the
limiting Brownian excursion is supported on the diagonal x = y.
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The results that underlie this perspective are established in [14, 49], building
on prior results from [16, 64, 63, 50, 51, 52, 55].

Recall that if h is an instance of the Gaussian free field (GFF) on a planar
domain D with zero-boundary conditions and γ ∈ (0, 2), then the γ-LQG
surface associated with h of parameter γ is described by the measure µh on
D which formally has density eγh with respect to Lebesgue measure. As h
is a distribution and does not take values at points, this expression requires
interpretation. One can construct this measure rigorously by considering
approximations hε to h (by averaging the field on circles of radius ε) and
then take µh to be the weak limit as ε→ 0 of εγ

2/2ehε(z)dz where dz denotes
Lebesgue measure on D; see [16]. If one has two planar domains D1, D2, a
conformal transformation ϕ : D1 → D2, an instance of the GFF h2 on D2,
and lets

(11) h1 = h2 ◦ ϕ+Q log |ϕ′| where Q =
2

γ
+
γ

2

then the γ-LQG measure µh2 associated with h2 is a.s. the image under
ϕ of the γ-LQG measure µh1 associated with h1. A quantum surface is an
equivalence class of fields h where we say that two fields are equivalent if
they are related as in (11).

This construction generalizes to any law on fields h which is absolutely
continuous with respect to the GFF. The results in this article will be related
to two such laws [64, 14]:

1. The γ-quantum cone (an infinite-volume surface).
2. The γ-LQG sphere (a finite-volume surface).

We explain how they can both be constructed with the ordinary GFF h as
the starting point.

The γ-quantum cone can be constructed by the following limiting proce-
dure starting with an instance of the GFF h as above. Fix a constant C > 0
and note that adding C to h has the effect of multiplying areas as mea-
sured by µ by the factor eγC . If one samples z ∈ D according to µ and then
rescales the domain so that the mass assigned by µh+C to B(z, 1) is equal
to 1 then the law one obtains in the C → ∞ limit is that of a γ-quantum
cone. (The construction given in [64, 14] is more direct in the sense that a
precise recipe is given for sampling from the law of the limiting field.) That
is, a γ-quantum cone is the infinite-volume γ-LQG surface which describes
the local behavior of an γ-LQG surface near a µh-typical point.

The (unit area) γ-LQG sphere can also be constructed using a limiting
procedure using the ordinary GFF h as above as the starting point. This
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construction works by first fixing C > 0 large, ε > 0 small, and then con-
ditioning on the event that the amount of mass that µ assigns to D is in
[eγC , eγ(C+ε)], so that the amount mass assigned to D by µh−C is in [1, eγε],
then sends first C →∞ and then ε→ 0. (The constructions given in [14, 49]
are more direct because they involve precise recipes for sampling from the
law of the limiting h.) One can visualize this construction by imagining
that conditioning the area to be large (while keeping the boundary values
of h constrained to be 0) leads to the formation of large a bubble. In the
C →∞ limit, the opening of the bubble (which is the boundary of the do-
main) collapses to a single point, and it turns out that this point is typical
(i.e., conditioned on the rest of the surface its law is given by that of the
associated γ-LQG measure).

In [14, 49], it is shown that it is possible to represent various types of γ-
LQG surfaces (cones, spheres, and disks) decorated by an independent SLE
as a gluing of a pair of continuous trees. We first explain a version of this
construction in which γ =

√
2 and the surface is a unit-area LQG sphere

decorated with an independent SLE8. Let X and Y be independent one-
dimensional Brownian excursions parameterized by [0, 1]. Let C be large
enough so that the graphs of X and C − Y are disjoint, as illustrated in
Figure 6. We define an equivalence relation ∼ on the rectangle R = [0, 1]×
[0, C] by declaring to be equivalent points which lie on either:

1. horizontal chords either entirely below the graph of X or entirely above
graph of C − Y (green lines in Figure 6), or

2. vertical chords between the graphs of X and C − Y (red lines in Fig-
ure 6).

We note that under ∼, all of ∂R is equivalent so we may think of ∼ as an
equivalence relation on the two-dimensional sphere S2. It is elementary to
check using Moore’s theorem [56] (as explained in [14, Section 1.1]) that al-
most surely the topological structure associated with R/∼ is homeomorphic
to S2. This sphere comes with additional structure, namely:

1. a space-filling path3 η′ (corresponding to the projection of the path
which follows the red lines in Figure 6 from left to right), and

2. a measure µ (corresponding to the projection of Lebesgue measure on
[0, 1]).

We refer to this type of structure as a peanosphere, as it is a topological
sphere decorated with a path which is the peano curve associated with a

3As explained just below, η′ is related to an SLEκ′ curve with κ′ > 4. We use the
convention here from [50, 51, 52, 55], which is to use a prime whenever κ′ > 4.
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space-filling tree.
The peanosphere associated with the pair (X,Y ) does not a priori come

with an embedding into the Euclidean sphere S2. However, it is shown in
[14, 49] that there is a canonical embedding (up to Möbius transformations)
of the peanosphere associated with (X,Y ) into S2, which is measurable with
respect to (X,Y ). This embedding equips the peanosphere with a conformal
structure. The image of µ under this embedding is a

√
2-LQG sphere, see

[14, 49] as well as [11, 5]), and the law of the space-filling path η′ is the
following natural version of SLE8 in this context [55]: If we parameterize
the
√

2-LQG sphere by the Riemann sphere Ĉ, then η′ is equal to the weak
limit of the law of an SLE8 on B(0, n) from −in to in with respect to
the topology of local uniform convergence when parameterized by Lebesgue
measure. (The construction given in [55] is different and is based on the
GFF.) The random path η′ and the random measure µ are coupled together
in a simple way. Namely, given µ, one samples from the law of the path by
first sampling an SLE8 (modulo time parameterization) independently of µ
and then reparameterizing it according to µ-area (so that in t units of time
it fills t units of µ-area).

This construction generalizes to all values of κ′ ∈ (4,∞). In the more
general setting, we have that γ =

√
κ where κ = 16/κ′ ∈ (0, 4), and the

pair of independent Brownian excursions is replaced with a continuous pro-
cess (X,Y ) from [0, 1] into R2

≥0 which is given by the linear image of a
two-dimensional Brownian excursion from the origin to the origin in the
Euclidean wedge of opening angle

θ =
πγ2

4
=
πκ

4
=

4π

κ′

see [14, 49, 21]. (In the infinite-volume version of the peanosphere con-
struction, the Brownian excursions (X,Y ) are replaced with Brownian mo-
tions, and the corresponding underlying quantum surface is a γ-quantum
cone [14].)

The main results of [14, 49] imply that the information contained in the
pair (X,Y ) is a.s. equivalent to that of the associated SLEκ′-decorated γ-
LQG surface. More precisely, the map f from SLEκ′-decorated γ-LQG sur-
faces to Brownian excursions is almost everywhere well-defined and almost
everywhere invertible, and both f and f−1 are measurable.

The peanosphere construction leads to a natural topology on surfaces
which can be represented as a gluing of a pair of trees (a space-filling tree
and a dual tree), as illustrated in Figure 6. Namely, such a tree-decorated
surface is encoded by a pair of continuous functions (X,Y ) where X (resp.
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Y ) is given by the interface function of the tree (resp. dual tree) on the
surface. We recall that the interface function records the distance of a point
on the tree to the root when one traces its boundary with unit speed. We
emphasize that both continuum and discrete tree-decorated surfaces can be
described in this way. In the case of a planar map, we view each edge as a
copy of the unit interval and use this to define “speed.” Equivalently, one
can consider the discrete-time interface function and then extend it to the
continuum using piecewise linear interpolation. Applying a rescaling to the
planar map corresponds to applying a rescaling to the discrete pair of trees,
hence their interface functions. If we have two tree-decorated surfaces with
associated pairs of interface functions (X,Y ) and (X ′, Y ′), then we define
the distance between the two surfaces simply to be the sup-norm distance
between (X,Y ) and (X ′, Y ′).

The peanosphere approach to SLE/LQG convergence (i.e., identifying a
natural pair of trees in the discrete model and proving convergence in the
topology where two configurations are close if their tree interface functions
are close) was introduced in [65, 14] to deal with infinite-volume limits of
FK-cluster-decorated random planar maps, which correspond to κ ∈ [2, 4)
and κ′ ∈ (4, 8]. Extensions to the finite volume case and a “loop structure”
topology appear in [22, 33, 32, 24].

Since bipolar-oriented planar maps converge in the peanosphere topology
to SLE12-decorated

√
4/3-LQG, we conjecture that they also converge in

other natural topologies, such as

• The conformal path topology defined as follows. Assume we have se-
lected a method of “conformally embedding” discrete planar maps in
the sphere. (This might involve circle packing, Riemann uniformiza-
tion, Tutte embedding, or some other method.) Then the green path
in Figure 2 becomes an actual path: a function ηn from [0, 1] to the
unit sphere (where n is the number of lattice steps) parameterized so
that at time k/n the path finishes traversing its kth edge. An SLE12-
decorated

√
4/3-LQG sphere can be described similarly by letting η

be the SLE path parameterized so that a t fraction of LQG volume is
traversed between times 0 and t. (Note that the parameterized path
η encodes both the LQG measure and the SLE path.) The conformal
path topology is the uniform topology on the set of paths from [0, 1]
to the sphere. The conjecture is that ηn converges to η weakly w.r.t.
the uniform topology on paths. See [16, 64] for other conjectures of
this type. Recently, the first convergence statement of this type was
proved for the so-called “mated-CRT maps” using the Tutte embed-
ding in [31].
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• The Gromov–Hausdorff–Prokhorov–uniform topology on metric mea-
sure spaces decorated with a curve. So far, convergence in this topol-
ogy has only proved in the setting of a uniformly random planar map
decorated by a self-avoiding walk (SAW) to SLE8/3 on

√
8/3-LQG

in [23, 25, 26] and and also decorated by a percolation to SLE6 on√
8/3-LQG [29, 27, 30, 28]. These works use as input the conver-

gence of uniformly random planar maps to the Brownian map [43, 45]
and the construction of the metric space structure of

√
8/3-LQG

[54, 46, 47, 53, 48, 49]. It is still an open problem to endow γ-LQG
with a canonical metric space structure for γ 6=

√
8/3 and to prove

this type of convergence result for random planar maps with other
models from statistical physics.

An interesting problem which illustrates some of the convergence issues
that arise is the following: In the discrete setting, the interface functions
between the NW and SE trees determine the bipolar map which in turn
determine the interface functions between the NE and SW trees. Likewise,
in the continuous setting, the interface functions (a Brownian excursion)
between the NW and SE trees a.s. determine the SLE-decorated LQG which
in turn a.s. determine the interface function (another Brownian excursion)
between the NE and SW trees.

Conjecture 4.4. The joint law of both NW/SE and NE/SW interface
functions of a random bipolar-oriented planar map converges to the joint law
of both NW/SE and NE/SW interface functions of SLE12-decorated

√
4/3-

LQG.

One might expect to be able to approximate the discrete NW/SE interface
function with a continuous function, obtain the corresponding continuous
NE/SW function, and hope that this approximates the discrete NE/SW
function. One problem with this approach is that while the maps f−1 and
f are measurable, they are (presumably almost everywhere) discontinuous,
so that even if two interface functions are close, it does not follow that
the corresponding measures and paths are close. However, since Brownian
excursions are random perturbations rather than “worst case” perturbations
of random walk excursions, we expect the joint laws to converge despite the
discontinuities of f and f−1.

Update: Conjecture 4.4 has been proven in [34].

5. Open question. In addition to questions regarding strengthening
the topology of convergence, which are discussed at the end of Section 4.2,
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it would be interesting to extend the theory to other surface graphs, such
as the torus, or a disk with four boundary vertices which are alternately
source, sink, source, sink.
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plane bipolar orientations. Sém. Lothar. Combin., 61A:Article B61Ah, 2009/11.

[7] Mireille Bousquet-Mélou. Counting planar maps, coloured or uncoloured. In Surveys
in combinatorics 2011, London Math. Soc. Lecture Note Ser. #392, pages 1–49.
Cambridge Univ. Press, 2011.

[8] John Cardy. SLE for theoretical physicists. Ann. Physics, 318(1):81–118, 2005.

[9] Dmitry Chelkak, Hugo Duminil-Copin, Clément Hongler, Antti Kemppainen, and
Stanislav Smirnov. Convergence of Ising interfaces to Schramm’s SLE curves. C. R.
Math. Acad. Sci. Paris, 352(2):157–161, 2014.

[10] Robert Cori and Bernard Vauquelin. Planar maps are well labeled trees. Canad. J.
Math., 33(5):1023–1042, 1981.
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[13] Julien Dubédat. Duality of Schramm–Loewner evolutions. Ann. Sci. Éc. Norm.
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