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ABSTRACT 18 

 19 

Communicative complexity is a key behavioural and ecological indicator in the study of animal 20 

cognition. Much attention has been given to measures such as repertoire size and syntactic structure in 21 

both bird and mammal vocalisations, as large repertoires and complex call combinations may give an 22 

indication of the cognitive abilities both of the sender and receiver. However, many animals 23 

communicate using a continuous vocal signal that does not easily lend itself to be described by 24 

concepts such as "repertoire". For example, dolphin whistles and wolf howls both have complex 25 

patterns of frequency modulation, so that no two howls or whistles are quite the same. Is there a sense 26 

in which some of these vocalisations may be more "complex" than others? Can we arrive at a 27 

quantitative metric for complexity in a continuously varying signal? Such a metric would allow us to 28 

extend familiar analyses of communicative complexity to those species where vocal behaviour is not 29 

restricted to sequences of stereotyped syllables. We present four measures of complexity in 30 

continuous signals (Wiener Entropy, Autocorrelation, Inflection Point Count, and Parsons Entropy), 31 

and examine their relevance using example data from members of the genus Canis. We show that 32 

each metric can lead to different conclusions regarding which howls could be considered complex or 33 

not. Ultimately, complexity is poorly defined and researchers must compare metrics to ensure that 34 

they reflect the properties for which the hypothesis is being tested. 35 

 36 
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INTRODUCTION 39 

 40 

Vocal complexity is considered an important property of animal communication (Freeberg and Krams 41 

2015; Larson 2004; McCowan et al. 2002; Pollard and Blumstein 2012), despite being poorly defined, 42 

with little agreement how complexity should be quantified (Edmonds 1999). Despite this, complexity 43 

has been used to explain different aspects of animal behaviour. For instance, evidence exists in several 44 

bird species that females choose mates at least partially on the basis of the complexity of male song 45 

(Darolová et al. 2012; Hiebert et al. 1989), and other males may use complexity cues to make conflict 46 

escalation decisions (Leitão et al. 2006). It has been postulated that birdsong complexity acts as an 47 

index signal; being positively correlated with nutritional competence and cognitive abilities, and 48 

negatively correlated with early life stress (Nowicki et al. 2002). Similarly, recent studies have 49 

suggested that a correlation exists between communicative complexity and social complexity, such 50 

that species with more complex social systems also have more complex communicative interactions 51 

(Freeberg and Krams 2015; Krams et al. 2012; Pollard and Blumstein 2012). This in turn could shed 52 

light on possible evolutionary pathways to the development of language as an adaptation of highly 53 

complex social groups in early hominins (Seyfarth and Cheney 2014). 54 

Communicative complexity can also have practical implications for the identification of and 55 

discrimination between similar sub-populations where complexity varies geographically (Briefer et al. 56 

2010; Kershenbaum et al. 2012). While many species can distinguish between the vocalisations of in-57 

group and out-group individuals, e.g. wolves Canis lupus (Palacios et al. 2015; Zaccaroni et al. 2012), 58 

elephants Loxodonta africana (O’Connell-Rodwell et al. 2007), and multiple bird species (Nakagawa 59 

et al. 2001; Radford 2005), it is often not clear what vocal cues are being used to make this 60 

discrimination, and complexity characteristics may play a role (Briefer et al. 2008). Geographic 61 

differences in vocal complexity may be particularly noticeable where ecological conditions lead to 62 

differences in food availability, cognitive development, and hence vocal repertoire size (Byers and 63 

Kroodsma 2009; Kipper et al. 2006; Pfaff et al. 2007). In parallel, researchers can make use of 64 

differences in repertoire size, for example, to distinguish between sub-populations of birds and 65 
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mammals (Gwilliam et al. 2008; Pitcher et al. 2012). Clearly, vocal complexity is an important 66 

phenomenon with far ranging implications for the study of animal communication. 67 

Previous studies of vocal complexity have focussed largely on birdsong, because of three essential 68 

properties that make this communication modality particularly tractable: (a) most birdsong can be 69 

divided into discrete syllables or notes (Marler and Slabbekoorn 2004); (b) there exists a simple 70 

metric - repertoire size - for measuring purported complexity (Byers and Kroodsma 2009); and (c) the 71 

well-established role of birdsong in mate choice provides the opportunity for manipulative as well as 72 

correlative experiments to be carried out, quite clearly demonstrating the role of song complexity in 73 

enhancing fitness (Searcy 1992). Even when birdsong is open-ended so that repertoire cannot 74 

adequately be defined, for example in the northern mockingbird Mimus polyglottos (Gammon 2014), 75 

the discrete nature of the song syllables means that other measurements of communicative complexity 76 

can be used, most notably Shannon entropy (Briefer et al. 2010; Da Silva et al. 2000; Kershenbaum 77 

2013). Although some animals from other taxa have vocal communication systems that are similarly 78 

discrete, e.g. rock hyrax Procavia capensis (Kershenbaum et al. 2012), or are closed-ended, e.g. 79 

several primates (Cäsar et al. 2012; Zuberbühler 2002), outside of passerine birds they are the 80 

exception rather than the rule. Indeed, the vocal communication system of some species consists 81 

entirely of signals whose properties are continuously varying, and with such signals the existing 82 

concepts of complexity (e.g. based on repertoire and entropy) cannot be applied. For example, 83 

considerable empirical evidence supports the existence of semantic information in the whistles of 84 

bottlenose dolphins Tursiops truncatus; in particular, the use of signature whistles to signal individual 85 

identity (Fripp et al. 2005; Kershenbaum et al. 2013; Quick and Janik 2012; Sayigh et al. 1999). 86 

However, dolphin whistles are relatively long and unbroken tonal signals that are continuously 87 

frequency modulated. Similarly, wolf howls are continuous frequency modulated signals that have 88 

been shown to contain individual identity information (Palacios et al. 2007; Root-Gutteridge et al. 89 

2014; Tooze et al. 1990), but cannot be classified into stereotyped categories. One possible 90 

interpretation of complexity, which may or may not be intuitive to the reader, is that the frequency of 91 

a simple signal varies little, or predictably, with time, whereas a complex signal varies greatly, and 92 

unpredictably. The reader may examine Figure 1, which shows several examples of wolf howls and 93 
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decide which howls are simple and which complex. However, although some howls may appear 94 

intuitively more complex than others, the lack of an objective definition of complexity for such 95 

signals renders the judgement unhelpful. As such, previous studies of information content in 96 

continuously varying animal vocal signals have had to make use of alternative techniques, example 97 

for measuring similarity between pairs of vocalisations, rather than quantifying characteristics of the 98 

vocalisations themselves (Kershenbaum et al. 2013).  99 

Complexity in itself is poorly defined (Edmonds 1999), and as a result any particular use of the term 100 

in examining animal behaviour is liable to be criticised. In particular, information theoretical 101 

definitions of complexity based on concepts such as entropy are often regarded with suspicion by 102 

biologists, because the most complex (highest entropy) signals are in fact random signals - something 103 

that most ethologists would consider to be non-complex (Suzuki et al. 2005). We agree that defining 104 

complexity is difficult, however we hope to mitigate this difficulty somewhat by insisting that 105 

researchers should examine and understand what kind of signal a particular definition of complexity 106 

would deem either complex or non-complex. It would then be possible to determine whether a 107 

particular definition of complexity meets the demands of discriminating between signals in relation to 108 

the study’s hypotheses.  109 

In this paper, we aim to show how concepts of continuous complexity can be measured using different 110 

approaches, and we illustrate how use of a particular complexity metric can lead to different 111 

conclusions from using other metrics. We present four candidate complexity metrics and compare 112 

their performance against each other, identifying which kinds of signals each particular metric would 113 

indicate to be “complex” or “not complex”. We recognise that in drawing up a proposed metric of 114 

complexity for continuous signals, it is inevitable that subjective interpretations of the complexity or 115 

simplicity of a signal must necessarily influence the decisions a researcher makes in designing an 116 

experiment. Rather than attempt to avoid this subjective tendency, we hope to formalise it somewhat, 117 

by presenting a range of complexity metrics, along with illustration of their significance for signals of 118 

different types. That way, researchers can choose a metric that captures the "kind of" complexity for 119 

which they are searching; providing a quantitative measure for an essentially subjective property. 120 

 121 
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 122 

METHODS 123 

 124 

We describe below four quantitative metrics that have been previously used for quantifying 125 

complexity in continuous signals: Wiener Entropy, Autocorrelation, Inflection Point Count, and 126 

Parsons Entropy. For each of these metrics, we define how they are computed and explain in what 127 

way they could be considered to be measures of complexity in a continuous signal, giving detailed 128 

examples using simulated waveforms as shown in Figure 2. As each of our proposed metrics 129 

measures quite different features of acoustic signals, it is constructive to illustrate the behaviour of 130 

each metric by showing examples of signals with both high and low metric values, as this provides an 131 

indication of which signal features are being emphasised by each metric. We do this using example 132 

acoustic signals drawn from an empirical data set consisting of 2,014 coded canid howls from 16 133 

different species and subspecies, as described in a previous work (Kershenbaum et al. 2016). We 134 

calculated each complexity metric for each howl and then plot on a time-frequency graph the three 135 

howls with the lowest metric values, and the three howls with the highest values. 136 

 137 

Wiener Entropy 138 

Wiener Entropy, or spectral flatness, has been proposed as a measure of the complexity of birdsong 139 

elements, and has been applied to the analysis of increasing complexity during the process of song 140 

learning in juvenile birds (Baker and Logue 2003; Tchernichovski et al. 2000). Wiener Entropy is a 141 

measure of the extent to which a signal contains a mixture of frequencies, as opposed to a single 142 

frequency or tone. As such, a value of 0 represents a single sine wave, and a value of 1 indicates white 143 

noise, in which all frequencies are equally represented. To calculate the Wiener Entropy, we first 144 

perform a Fourier transform to calculate the spectral power P present at each of N distinct frequency 145 

bins. The formal definition is given as the ratio of the geometric means of the spectral powers to the 146 

arithmetic mean: 147 
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 148 

Wiener Entropy can be applied to the signal spectrum, where P(f) corresponds to the FFT of the input 149 

waveform (column C in Figure 2), or to the spectrographic representation of the signal, where P(f) 150 

corresponds to F(t) (column B in Figure 2). The former definition also measures the entropic 151 

contribution of background noise and discards any information on temporal variation in frequency, 152 

therefore, we calculate Wiener Entropy only on the dominant signal frequency, i.e. column B in 153 

Figure 2. In addition, we square-root transform this metric for normality. 154 

 155 

Autocorrelation 156 

Autocorrelation (Figure 2, column D) measures the self-similarity of a signal, and so quantifies the 157 

extent to which the signal contains repetitions of the same pattern, or is varied without similarity 158 

(Stoica and Moses 2005). The autocorrelation sequence of a signal consisting of N discrete samples, 159 

F(1...N) is measured by shifting the signal by time lag l and calculating the correlation between the 160 

shifted and the unshifted signals: 161 

𝑎𝑐(𝑙) = ∑𝐹(𝑛) ∙ 𝐹(𝑛 − 𝑙)

𝑁

𝑛=0

 162 

The Autocorrelation metric is then calculated as the sum of ac(l) for all l. As with Weiner entropy, we 163 

measure the repetitiveness of the howl frequency modulation, rather than flatness per se, by 164 

calculating autocorrelation on the dominant signal frequency in the spectrogram. In addition, we log-165 

transform this metric for normality. 166 

 167 

Inflection points 168 

A number of studies, particularly with cetaceans, have measured vocal complexity by counting the 169 

number of inflection points in a vocalisation (Janik et al. 1994; May-Collado and Wartzok 2008). A 170 

more complex signal, in this context, is a signal in which the frequency is changing direction 171 

(rising/falling) often (e.g. Figure 2, panel 4B). In keeping with these studies, we define the number of 172 
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inflection points as the count of changes in gradient direction of the vocalisation. To ensure that this 173 

complexity metric takes continuous values, we divide the number of inflection points by the length of 174 

the signal, which also standardises the metric, to remove the correlation between vocalisation length 175 

and complexity that would otherwise be present. In addition, we square-root transformed this metric 176 

for normality. Simplified Matlab code for counting the number of inflection points in a vector X is 177 

shown below: 178 

1. g=gradient(X); 179 

2. s=sign(g); 180 

3. d=g(1:end-1)~=g(2:end); 181 

4. C=sum(d); 182 

The above algorithm (1) measures the gradient at each point, (2) determines the sign of the gradient 183 

(positive, increasing, or negative, decreasing), (3) tests whether the sign of the gradient at this point is 184 

different from the sign of the gradient at the next point, which would indicate a change in direction, 185 

and (4) counts the number of such changes in direction. 186 

 187 

Parsons Entropy 188 

The Parsons code is a reduced representation of a varying signal, used primarily for music retrieval 189 

systems (Downie 2003; Parsons and Levin 1975). However, a recent study showed that dolphin 190 

signature whistles can be represented as Parsons codes, while maintaining much of the individual 191 

identity information (Kershenbaum et al. 2013). To convert a continuous signal to a Parsons code, we 192 

divide the signal into a fixed number of slices, and record whether the frequency from one slice to the 193 

next is rising, falling, or remaining constant. To increase the descriptive power of the Parsons code, 194 

we can distinguish between rises and falls of different magnitude, classifying the 10% of the largest 195 

magnitude changes as “big rise” or “big drop” (Müllensiefen and Frieler 2004; Pauws 2002), and thus 196 

dividing changes in pitch into seven categories: big rise, medium rise, small rise, no change, small 197 

drop, medium drop, big drop (Figure 3). The implementation of this coding is described more fully in 198 

(Kershenbaum et al. 2013). The continuous signal has now been converted into a series of discrete 199 

characters from a finite alphabet of seven step categories, and so we can then calculate the simple 200 
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Shannon entropy (Cover and Thomas 1991) as is often done with stereotyped signals, where P(n) is 201 

the probability of occurrence of step category n. We refer to this entropy metric that measures the 202 

unpredictability of the Parsons code as the “Parsons Entropy”. 203 

𝑃𝐸 = −∑𝑃(𝑛) log7 𝑃(𝑛)

7

𝑛=1

 204 

 205 

As each of the four metrics Wiener Entropy, Autocorrelation, Inflection Point Count, and Parsons 206 

Entropy are all purported to measure the same property - signal complexity -  the metrics may 207 

potentially measure similar features of the acoustic signals. Therefore, we test directly for correlation 208 

between the different metrics by calculating the Pearson's correlation coefficient between each pair of 209 

metrics. All analyses were carried out in Matlab R2014b (The Mathworks, Inc). 210 

 211 

 212 

RESULTS 213 

 214 

Complexity of simulated waveforms 215 

The values of the four metrics for each of the five waveforms in Figure 2 are shown in Figure 4. All 216 

metrics gave the constant frequency (1) the lowest score, representing the simplest waveform. The 217 

random waveform (5) received the highest scores from three of the metrics, Wiener Entropy, 218 

Inflection Point Count, and Parsons Entropy, indicating (as with traditional entropy measures) that 219 

randomness is interpreted as high complexity. Autocorrelation was low for the random waveform. 220 

The oscillating frequency (4) scored highly for complexity with all metrics (especially 221 

Autocorrelation and Parsons Entropy), consistent with the intuitive interpretation of this as a complex 222 

signal. However, the two-frequency waveform (2) received similar Wiener Entropy and 223 

Autocorrelation scores to constantly increasing frequency (3), but notably higher scores than (3) for 224 

Inflection Point Count and Parsons Entropy. Indeed, both Inflection Point Count and Parsons Entropy 225 

considered the constantly increasing frequency (3) to be approximately as complex as the constant 226 

frequency (1). 227 
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 228 

Complexity of wolf howls 229 

Examples of howls with the lowest, and highest values of each of the complexity metrics are shown in 230 

Figure 5. Wiener Entropy and Autocorrelation illustrate the difficulty of traditional metrics as 231 

indicators of complexity. It is not clear that the howls with the lowest Wiener Entropy or 232 

Autocorrelation are necessarily less complex by subjective interpretation than those with high Wiener 233 

Entropy or Autocorrelation. A low Wiener Entropy score is achieved by a signal possessing a single 234 

frequency (i.e. approximating a part of a sine wave), whereas high Wiener Entropy score is achieved 235 

by flat signals, which are transformed by FFT to a mixture of a large number of frequencies, and 236 

hence high entropy. Neither appear to be particularly complex by intuitive definition. Low 237 

Autocorrelation scores are achieved by irregular but not repetitive signals, and such irregularity is a 238 

promising trait of complexity; however high Autocorrelation scores are achieved by signals with a 239 

single frequency, which does not appear to be either complex or simple. 240 

In contrast, the number of inflection points seems an intuitive measure of complexity, as high 241 

Inflection Point Count howls are very varied, whereas low Inflection Point Count howls appear 242 

simpler. However, some howls with low Inflection Point Count still have considerable variation in 243 

frequency. Parsons Entropy also detects subjectively complex howls, and those with low Parsons 244 

Entropy appear subjectively simple; specifically, the frequency of these simple howls varies 245 

monotonically. 246 

  247 

Colinearity among complexity metrics 248 

Weak correlations existed between all metrics (Figure 6), however, a stronger negative correlation 249 

was found between Wiener Entropy and Parsons Entropy (R=-0.38). Taken with the other differences 250 

found between metrics, there does not appear to be grounds for describing any pair of metrics as co-251 

varying, and the metrics appear to be measuring different aspects of complexity. 252 

 253 

 254 

DISCUSSION 255 
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 256 

We have illustrated the similarities and differences between four different metrics, each of which 257 

could be considered a quantitative measure of complexity in a continuously varying signal. Despite 258 

the poorly defined nature of signal complexity, we have provided the reader with both quantitative 259 

comparisons, and qualitative illustrations of the result of using each of these metrics in the evaluation 260 

of the complexity of simulated signals and natural of canid howls. 261 

All metrics distinguished clearly between a constant flat frequency, and a randomly varying signal, 262 

with all metrics except Autocorrelation placing the random signal at the most complex end of the 263 

quantitative scale. Researchers will need to consider whether or not the characterisation of a random 264 

signal as "complex" (a definition taken from the field of entropy and information theory) is consistent 265 

with the hypotheses that they are testing. In contrast to Wiener Entropy, Inflection Point Count, and 266 

Parsons Entropy, Autocorrelation gave a higher score to a regularly varying signal than to the random 267 

one. Parsons Entropy also gave a much higher value for a regularly varying signal than for the flat, 268 

rising, and random frequencies, indicating that Parsons Entropy, which measures changes in slope, is 269 

a good metric for measuring the extent to which a signal changes with time - either regularly or 270 

irregularly. When examining actual howls qualitatively, both Inflection Point Count and Parsons 271 

Entropy appeared to distinguish between howls that the authors felt looked "simple" (i.e. varying in 272 

frequency in a constant way) and those that looked "complex" (i.e. varying in an inconsistent way 273 

with time), although clearly this subjective distinction may not be globally applicable. When 274 

examining the example howls for low and high Wiener Entropy and Autocorrelation, there did not 275 

appear to be as much of a subjective difference in complexity. However, the essence of these results is 276 

to provide the comparison, rather than to impose subjective conclusions, and Figure 5 makes this 277 

comparison clearly. 278 

Despite the fact that complexity in vocal signals of any kind remains poorly defined (Kershenbaum 279 

2013), the concept of complexity is still widely used for investigating questions of proximal behaviour 280 

(Darolová et al. 2012; Demartsev et al. 2014; Gustison and Bergman 2016), ultimate fitness (Freeberg 281 

et al. 2012; Ord et al. 2012; Pollard and Blumstein 2012), and drivers of the evolution of social 282 

systems (Bergman and Beehner 2015; Freeberg and Krams 2015; Krams et al. 2012). Even if we 283 
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accept the definition of entropy as a proxy for complexity (Doyle et al. 2008), it is not clear how such 284 

a metric can be applied to continuously varying signals. We have shown that multiple approaches are 285 

possible, each with its benefits and disadvantages. For example, counting the number of inflection 286 

points is a useful method for identifying highly frequency modulated signals, but can become 287 

overwhelmed in the presence of a highly random signal. Parsons Entropy may suffer less from this 288 

constraint, as the signal is divided into discrete segments. Wiener Entropy measures the noisiness of a 289 

signal, but can misinterpret a simple upsweep as complex as it contains many frequencies, albeit 290 

spread through time. Autocorrelation is a powerful tool for detecting repetition, but returns a low 291 

value for asymmetric changes in frequency. 292 

We have no objective gold-standard of complexity to compare to our metrics and to indicate whether 293 

a particular metric truly captures the property of complexity or not. Yet we believe that our study has 294 

merit precisely because it allows quantification of the subjective measure for which researchers may 295 

be searching. If an oscillating signal is the nature of complexity being tested, then Inflection Point 296 

Count or Parsons Entropy may be the best metric to use. However, if for a particular hypothesis, 297 

randomness is best rejected as not complex, then perhaps Autocorrelation is a better-suited metric. It 298 

is vital for researchers to understand the implications of their choice of a particular complexity metric, 299 

rather than to make use of a metric whose properties may be unknown, and perhaps surprising. Our 300 

approach of defining a quantitative metric also has the advantage of enabling clearer comparisons 301 

between different study systems that may use similar but non-quantitative assessments of vocalisation 302 

type. Qualitative descriptions of frequency modulations in continuous signals, e.g. "flat", "rising", 303 

"step up" (Hallberg 2007; Palacios et al. 2007) are useful, but difficult to compare between studies. 304 

Vocal signal complexity is likely an important property in the communication of many species, 305 

including birds (Briefer et al. 2010; Darolová et al. 2012; Freeberg 2008; Kipper et al. 2006; Leitão et 306 

al. 2006), amphibians (Larson 2004; Narins and Capranica 1978), terrestrial mammals (Demartsev et 307 

al. 2014; Gustison and Bergman 2016; Schlenker et al. in press) and cetaceans (Doyle et al. 2008; 308 

Ferrer-i-Cancho and McCowan 2009; Garland et al. 2013; Nash and Bowles 2011), and also human 309 

language (Ferrer-i-Cancho 2005; Ferrer-i-Cancho and Solé 2003; Kershenbaum et al. 2014; 310 

Montemurro and Zanette 2015). Complexity is a difficult property to measure, particularly when the 311 
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signals are continuously varying, rather than a sequence of discrete notes. To investigate questions 312 

such as the connection between social complexity and vocal complexity, appropriate measures of 313 

complexity must be found (Freeberg and Krams 2015; Kershenbaum 2013). Species with 314 

continuously varying vocalisations, such as wolves and dolphins, share many of the properties of 315 

particular interest in the investigation of the evolution of communication. Wolves and dolphins in 316 

particular are highly social and cooperative, as well as having intelligent problem-solving abilities 317 

(wolves: Mech and Boitani 2010; Mech et al. 2015, dolphins: Gazda et al. 2005; King and Janik 2015; 318 

Wells 2003), and so it would be unfortunate if a quantitative assessment of their vocal complexity 319 

were neglected.  320 

We have shown that multiple metrics do exist for capturing the complexity of these vocalisations, and 321 

we have provided quantitative tools to assess the suitability of the different types of metrics. We 322 

encourage researchers to make use of such quantitative measures when testing hypotheses in these 323 

and similar species, thereby extending the investigation of complex communication in animals to 324 

those species not previously amenable to quantitative analysis. 325 

 326 
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FIGURES 517 

 518 

 519 

Figure 1. Six examples of wolf howls, with time on the x-axis and frequency on the y-axis. All howls 520 

show some pattern of rising and falling frequencies, but the determination of which howl is most 521 

complex appears wholly subjective. 522 

 523 
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 524 

Figure 2. Simulated sounds demonstrating the relationship between waveform, spectrogram, 525 

spectrum, and autocorrelation. The first column (A) shows five different waveforms: (1) constant 526 

frequency sine wave; (2) rapid doubling in frequency; (3) constantly increasing in frequency; (4) 527 

oscillating frequency; and (5) random waveform. The second column (B) shows the frequency of the 528 

waveform with time. Column (C) shows overall spectra for these waveforms: a single peak where one 529 

frequency is present (1), two peaks where two frequencies exist (2), a range of frequencies in (3) and 530 

(4), and all frequencies present in the case of white noise (5). Column (D) shows the autocorrelation 531 

of the spectrogram. 532 

 533 
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 535 

Figure 3: Example of a Parsons code representation of a vocal signal (blue). The time-course is 536 

divided into ten equal sections (red), and the frequency change for each section is recorded only as 537 

"big rise", "small rise", "no change", "small drop", or "big drop". 538 

 539 
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 540 

Figure 4. Complexity scores for the four metrics, for each of the five waveforms shown in Figure 2. 541 

The bar charts are normalised for comparison by subtracting the mean and dividing by the standard 542 

deviation. 543 

 544 
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 545 

Figure 5. Examples of howls with low metric values (top row), and high metric values (bottom row), 546 

for each of the four metric types. Each plot shows those three sample howls with the highest or lowest 547 

values for each particular metric (not necessarily the same sample howls for each metric). The y-axis 548 

indicates frequency deviation from the median value of each howl, to allow a clear comparison 549 

between howls of differing frequencies. 550 

 551 



25 
 

 552 

Figure 6. Pairwise correlation between each of the metrics. The red line indicates line of best fit, and 553 

R and p values given in the title of each plot are for Pearson correlation. 554 
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