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Abstract

In the past several decades quantum computation has become a rapidly developing research
area. The properties particular to quantum systems such as superposition of quantum states,
wave function collapse, and quantum entanglement have shone a path to a type of ultra-high-
speed and powerful computation that could never be achieved with classical computers, even
modern supercomputers. However, there are requirements for building a practical quantum
computer and practical schemes of quantum computing usually have to make trade-offs
between different requirements. In an ideal case, we would have a quantum computer
consisting of many entangled quantum bits (qubits) that have long decoherence times and
effective schemes to initialise, control and measure the quantum bits. However, existing
implementations of quantum computers have to compromise between different requirements,
and we have not yet achieved a quantum computer with full capacity as described in theory. At
the same time, the development of solid state physics has brought many new possibilities for
quantum computation. The recently discovered topological insulator (TI) has been proposed
as a useful material potentially for spintronics and quantum computation owing to its unique
topologically-protected surface states. In this thesis, we will investigate theoretically and
numerically whether it is possible to construct a suitable two-level quantum system in a TI
for quantum computation. We investigate schemes to initialise, control and measure the
quantum bits in an ultra-thin TI film.

The thesis is structured as follows: Chapter 1 serves as an introduction to quantum
computation, in which we introduced the concept of the Bloch sphere and the requirements for
quantum computing and give a brief review of actively researched physical implementations.
In Chapter 2, we will focus on the material we use for the physical implementation in this
thesis - a 3D TI. We will introduce some concepts essential for the understanding of TIs
such as the topological phase and then concentrate on the low energy limit which we used
throughout the thesis. In the last part we introduce Floquet-Bloch theory, which is useful for
the study of a time-periodic Hamiltonian. In Chapter 3, we introduce the numerical methods
used in the study: the finite difference method for spatial discretisation, the staggered leapfrog
method and Floquet matrix method for temporal discretisation. In Chapter 4, we present our
work for constructing a static charge qubit in the TI system, and effective schemes to initialise,
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control and measure a qubit. In Chapter 5, we present our work for constructing a static spin
qubit in the TI system and effective schemes to initialise, control and measure a qubit. In
Chapter 6 we extend our TI system to include time-periodic fields and present our work for
constructing different types of charge qubit and spin qubit in this system, together with an
effective scheme to initialise, control and measure a qubit. In Chapter 7, we summarise our
work and propose possible work to be done on this topic in the future.
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Chapter 1

Introduction

1.1 Introductory remarks

In 1936, Alan Turning proposed a mathematical model of an automatic machine. This is
a universal machine that can operate under a set of rules and produce a specific output for
a given input [110]. Nowadays, the computer has become a common and important tool
that pervades society from scientific research to our daily life. Thanks to the development
of semiconductor physics, we can make smaller and higher quality electronic chips that
are the core of a computer. However, scientists have realised that we are approaching the
limit of the power that a classical computer can reach. Is it possible to pursue even greater
computational power? The answer might be linked to another important breakthrough in
science at the beginning of the 20th century - the discovery of quantum mechanics. After
the very first proposals of quantum computing by Benio[11], Manin[79], Feynman[31] and
Deutsch [25], research on how to exploit quantum properties of a system for information and
computation purposes has never ceased. The quantum properties - superposition of quantum
states, wavefunction collapse, and quantum entanglement would potentially make quantum
computing far more powerful than the current computers in solving some specific problems
requiring a huge amount of bits and time. However, it is not easy to build such a machine.
Many physical platforms have been proposed to build a quantum computer such as quantum
computers based on photonic qubits [120], trapped ions [33], semiconductor quantum dots
[43] and superconducting quits (IBM Q Experience). Each has its own advantages and
drawbacks. Any particular platform provides a trade-off between different requirements,
such as long decoherence times, qubit controllability and integrability of the system with
current techniques (see [86] for a detailed discussion). Those factors together determine the
ultimate scalability of an implementation. Until now, there is not yet a qualifying quantum
computer that is ready for the demands of today’s computing industry.
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However, the field of quantum computing is not developed on its own. Development
of other fields such as quantum information, quantum communication and semiconductor
physics have contributed enormously to the field and have brought with them new energy.
In this thesis, we will study such an example. Bi2Se3, identified as a 3D time-reversal
invariant topological insulator just a decade ago [126], shows intriguing properties of electron
conduction on its surfaces when interfaced with a trivial insulator such as air. In particular,
the electrons flowing on its surfaces show helical spin texture and are immune to time-reversal
invariant local perturbations [3]. TIs have stimulated the field of condensed matter physics
and are actively under research [107] [51] [93] [34]. It is proposed to be potentially useful
for the applications in spintronics and quantum computation [51]. In this thesis, we will
investigate how to use TI (Bi2Se3 specifically) as a physical platform for quantum computing
and study how to initialise, control and read out a single quantum bit.

In the rest of this chapter, we will introduce some basic concepts for quantum computation
and the requirements for a valid quantum computation proposal. Then we will briefly review
some physical implementations for quantum computing under active research.

1.2 A general background on quantum computation

The bit (binary digits) is the essential concept in classical computation and classical infor-
mation. It is represented by a binary number, usually denoted as 0 and 1. Every piece of
information stored in a classical computer is represented by a bit. In quantum computation
and quantum information, an analogy to a bit is called a quantum bit, qubit for short. It is
represented by |0i and |1i. Unlike the classical bits which only take values of 0 or 1, as the
heads and tails of a coin, a qubit can take any intermediate states between |0i and |1i and
forms a linear combination (superposition) of the two:

|Fi= a |0i+b |1i , (1.1)

with the normalisation condition:

|a|2 + |b |2 = 1. (1.2)

|0i and |1i are two orthogonal quantum states and they form a two-dimensional vector space.
a and b are sometimes called amplitudes. Every time we measure a qubit, the wavefunction
will collapse into |0i or |1i, with a probability |a|2 and |b |2. If we measure the same qubit
state repeatedly, we would be able to extract the information of the linear combination
amplitudes of the qubit. This capability of superposition of quantum states, together with
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quantum entanglement, extensively enrich the information that can be stored in a quantum
system and make them so powerful. To illustrate this, we can compare the information stored
in a classical computer of n bits and in a quantum register of n qubits. The information
stored in n bits can be described by an array of length n, while for the quantum computer, an
n-qubits entangled quantum state can produce 2n different results, thus the length of array
required goes exponentially as 2n. Therefore, if we have 400 qubits, we have an equivalent
classical bits array of length 2400, which has exceeded the number of atoms in the whole
universe!

This extraordinary capability of storing a huge amount of information in a quantum
system is only the tip of the iceberg. Qubits also provide a possibility to do multiple
operations simultaneously and can accomplish some tasks that are impossible on a classical
computer. In order to exploit the power of qubits in a quantum calculation, specific algorithms
are required. Those quantum algorithms have provided quantum computers with advantages
over classical computers in specific tasks. Some famous examples are Shor’s factorisation
algorithm [103], the Deutsch-Jozsa algorithm [24], or Grover’s algorithm for database search
[45].

1.2.1 The Bloch sphere

The Bloch sphere is a geometric representation of a qubit state (Fig. 1.1). It provides a
useful tool to visualise a single qubit state and it is a fantastic platform to test ideas in
quantum computation and quantum information. A point on the Bloch sphere represents
a pure quantum state, while a point inside the Bloch sphere represents a mixed quantum
state. A pure quantum state is represented by a single state vector, while a mixed quantum
state is a statistical ensemble of pure states. A mixed state can be represented by a density
matrix and it appears when the complete information of the entire system is inaccessible. For
example, when the quantum system under investigation is entangled with its surroundings,
the states of the environment are inaccessible. We need to use mixed states to represent
the entanglement of the quantum state with its surroundings. The mixed state represents
the decoherence of a qubit due to interaction with its environment. In this thesis, our focus
is on understanding how to control a single qubit in a pure quantum state. Consideration
of decoherence is beyond the scope of the thesis. This is partly because the complexity it
would add to the analysis and partly because decoherence mechanisms in TI materials are
simply not known at the present time. The Bloch sphere is therefore our main playground to
investigate TI single qubits. We should notice that the Bloch sphere is designated for a single
qubit, and there are no simple geometric representations for multiple qubits. A qubit state on
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Fig. 1.1 A Bloch sphere, figure taken from [100]
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the Bloch sphere is described by:

|Fi= cos
✓

q
2

◆
|0i+ eif sin

✓
q
2

◆
|1i . (1.3)

The state |0i and state |1i are on the north and south pole respectively. All of the linear
combinations of the two states are located on the Bloch sphere between the poles. The Bloch
sphere is important in experiments describing single-qubit rotation. To define a qubit rotation,
we need to define a rotational axis and the centre of rotation on the Bloch sphere. If we want
to rotate a qubit to an arbitrary position on the Bloch sphere, we need to do two rotations
with respect to to two orthogonal axes according to Euler’s rotation theorem. In this thesis,
we decide to study the standard sx, sy and sz rotations which are rotations to the x, y, z axes,
separately. The rotational matrices of the three rotations are [85]:
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Rz =
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2 0
0 ei q

2

!
. (1.6)

1.2.2 The five requirements for quantum computation

In 2000, DiVincenzo has proposed five requirements for the physical implementation of a
quantum computer [27]. They are:

• I. A scalable system with well-defined qubit states. A quantum computer must contain
multiple qubits and each qubit can be well characterised in a quantum two-level system.
As introduced at the beginning of this section, a qubit is written as a linear combination
of the basis states |0i and |1i in the two-dimensional complex vector space. A two-
qubit state is written as a linear combination of the basis states |00i, |01i, |10i, |11i in
the four-dimensional complex vector space. The system should be capable to contain a
collection of N qubits that span a 2N dimensional complex vector space. A single qubit
should be well characterised. This means several different things. We need to know
the internal Hamiltonian of a qubit and the corresponding eigenstates and energies.
Also, if there are other energy levels in the system, we need to know the coupling of
the qubit states (i.e. |0i and |1i) with these states and minimise the probability of the
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qubit to go to these states. We need to know the interaction of the qubit with other
qubits and with the external field that is used to manipulate the qubit.

• II. The ability to initialise the qubits to a fiducial state. Before we start a computational
task, we need to set the qubit in a known state. This is a prerequisite for computation
since we cannot manipulate an unknown state to output a trustful result. In quantum
computation, this is important also for another reason. Quantum error correction
requires a continuous fresh supply of qubits in a low-entropy state. Moreover, how
fast the qubits can be set to a fiducial state is also of interest. There are in general two
ways to bring a qubit to a fiducial state such as |0i. If the qubit state is the ground state
of the system, we can let the system cool down naturally. Otherwise, we can make a
measurement which projects the qubit on to the state of interest or apply some external
pulses to rotate a state into the desired one.

• III. Longer decoherence time than the gate operating time. Decoherence characterises
the interactions of the qubit with its environment. A simplified definition for this time is
that it is the characteristic time for a qubit in a pure state a |0i+b |1i to be transformed
into the mixed state r = |a|2 |0ih0|+ |b |2 |1ih1| entangled with the environment (a
more detailed general discussion on this topic can be found in [85]). Apart from the
interaction of a single qubit with its surroundings, the possibility of decoherence of the
correlated neighbouring qubits should be considered as well. Because decoherence
is identified as the principal mechanism for the emergence of classical behaviour in
a quantum system, we need to keep the decoherence time long enough to maintain
the quantum properties of the system for our intent. The decoherence times link to
different degrees of freedom of the qubit and some are irrelevant to the property we
are interested in for the state to be a qubit (e.g. the position of a spin qubit), therefore
it is the relevant decoherence time that is important. The relevant decoherence time
should be much longer than the gate operation time for quantum computation and it is
found that a successful quantum computing calculation can be performed if a relevant
decoherence time is 104-105 times the operation time [92].

• IV. A universal set of quantum logic gates. The requirement for performing an arbitrary
calculation is at the core of quantum computation. We need to be able to perform
unitary transformations on the qubits to bring them to desired states. These unitary
transformations are implemented physically as quantum logic gates. Fortunately, any
arbitrary unitary transformations can be decomposed into a sequence of single-qubit
transformations and two-qubit transformations [22]. It is thus possible to define a
universal set of quantum gates with a finite number of quantum gates [6] [26]. However,
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in reality, the gates are not perfect and both systematic and random errors need to
be taken into consideration in the implementation. We need to keep those errors
small enough such that the error correction schemes are effective to produce reliable
computation outcomes from these unreliable gates. One more complication is that the
error correction requires a fully parallel operation. This means that we need to be able
to address fractions of qubits in the implementation of gate operations simultaneously.
Another factor to consider is that the controlling apparatus are made of quantum
mechanical parts as well. Therefore, we need to carefully check that they do not
produce any undesired entanglement with our quantum computer.

• V. A qubit-specific measurement capability. Finally, we need to be able to read out the
computational result, which means that we need to be able to measure the specific qubit.
In an ideal case, we desire the measurement of a qubit to be isolated and not dependent
on its surroundings nor the nearby qubits. At the same time, measuring a qubit does
not cause any changes in other parts of the quantum computer. We say that this ideal
measurement has a quantum efficiency of 100%. In reality, the quantum efficiency is
always less than this value. However, the quantum efficiency can be less than 100%
for quantum computation: there is a trade-off between quantum efficiency and other
computational resources. For example, the quantum efficiency of a single-bit output
can be improved by repeating the calculation more times or copying the qubit value
on a particular basis; however, this increases the computational costs of other aspects.
If the measurement can be accomplished in a timescale of 10�4 of the decoherence
time, its repeated application is beneficial to simplify the process of quantum error
correction.

1.2.3 Quantum logic gates

A quantum register is constructed from a quantum circuit consisting of wires and quantum
logic gates. Wires can carry around information while quantum logic gates can manipulate a
state and change it from one form to another. In classical computation, a small set of logic
gates (AND, OR, NOT, etc.) is sufficient to do an arbitrary calculation and we say that the set
of logic gates is universal for computation [85]. In a quantum computer, it is also possible to
define a universal set of quantum logic gates for quantum computation [6] [26]. It has been
proven that a set of quantum logic gates consisting of single-qubit logic gates and entangled
two-qubit logic gates is a sufficient set of universal quantum gates to approximate an arbitrary
operation to any desired accuracy for a n-qubit system [22]. There are various choices for the
universal set of quantum gates. Here we illustrate a universal set of quantum gates consisting



8 Introduction

of three gates [85]: the Hadamard gate H, the phase-shift R(p/4) gate and the controlled not
(cNOT) gate. The first two gates act on a single qubit basis (|0i , |1i)T and are written as:

H =
1p
2

 
1 1
1 �1

!
, (1.7)

R(p/4) =

 
1 0
0 i

!
. (1.8)

The controlled not(cNOT) gate acts on the two-qubit basis (|00i , |01i , |10i , |11i)T and is
written as:

CNOT =

0

BBB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCCA
. (1.9)

Quantum Control Theory

The main aim of this thesis is to understand how to control the rotation of a single qubit on
the Bloch sphere and move it through a desired angle about a given direction. The general
approach to this type of problem is quantum control theory. This theory concerns how a
quantum system can be driven to a desired state by control methods [52] [8] [10]. Quantum
control theory studies how to establish systematic methods to perform a control task via
specifying a path in parameter space [54]. There are various control strategies under the
topic of quantum control theory, such as coherent control, variable structure control and
incoherent control [54]. The latter two strategies are involved when the quantum system is
not controllable using coherent control along [54]. There is also a control strategy based on
variational analysis with Floquet theory [116] [10]. This strategy can be very helpful for
designing the temporal pulses with simple shapes and a few frequency components [10]. In
this thesis we use basic elements of quantum control theory [54] that allow us to consider the
effect of a finite rise time in the application of a control pulse. It was not found necessary
to go beyond this level of sophistication to achieve > 99% fidelity for each of the qubits
considered.

1.2.4 Physical realisations

In previous subsections, we have discussed a qubit as an abstract mathematical object that
is mapped to real physical objects in quantum systems. Here we introduce some physical
platforms for quantum computing that are under active research nowadays. For those
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interested in this topic, more details on these physical implementations can be found in [33]
and [68].

• Trapped Ions. Trapped-ion quantum computers are made of ions or charged atomic
particles confined and suspended in free space by electromagnetic fields, either by a
combination of electric and magnetic fields (Penning trap) [23], or by a time-dependent
electric field (Paul trap)[89]. Because the qubits are made of individual ions, they are
free of manufacturing defects and form very reliable qubits. The decoherence times
are typically in the range of seconds and even longer [68]. They are very promising
for building high-quantum-efficiency quantum computers. A significant technical
challenge lies in maintaining the radiation control for a satisfying precision for the
qubit manipulation [86]. In 2018, scientists can create a controllable 20-qubit entangled
system based on trapped ions [33].

• Photon. Photons are appealing for quantum information because they interact relatively
weakly with their environment; this means potentially long decoherence time for
quantum computation. Besides, a photon can travel over long distances without losing
coherence. This makes it perfect in long-distance quantum communication [123]. A
photonic qubit is in general made of the two polarisation states of a photon. Photons
in many ways are good for making qubits; their single-qubit gates can be performed
with standard optical devices and they have long decoherence time. However, because
they interact weakly, it is difficult to implement two-qubit gates [104]. In linear-optical
quantum computing, a strategy to overcome this problem is to use a combination of
single-photon operations and measurements which create an effective strong interaction
that can be used to perform two-qubit gates ( see [61] for a detailed review on linear-
optical quantum computing). Significant technical progress with realising photonic
quantum computation has been made in the past years such as lower photon loss rates
approaching the requirement of quantum error correction and high-efficiency photon
detectors [119] [2]. The main problem that is still difficult to solve is to develop a
source that produces triplets of entangled photons efficiently [33]. By the time of 2018,
an 18-qubit entangled photonic quantum computing system (with six photons and three
degrees of freedom) has been proposed [120].

• Semiconductor Quantum Dots. Semiconductor qubits can be classified into two
kinds depending on whether they are addressed optically or electrically. Optically
gated qubits are optical active impurities or quantum dots that can induce strong
interactions between photons. They significantly improve the capabilities of photonic
qubits [33]. Some examples are the nitrogen-vacancy (NV) centre in diamond [37]
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and self-assembled quantum dots [84]. The requirement for controlling each qubit
individually with optical access poses constraints on the qubit densities, thus making
very difficult to scale up the qubits to a large number [33]. However, this optical
gated qubit is useful as an interface between material-based qubits and photonic qubits
in quantum communication [123]. Electrically gated qubits on the other hand, have
the potential to be scaled up to large amounts because of their small size and similar
fabrication techniques to classical electronics. These qubits are defined and operated
by applying voltages to lithographically defined metal gates on semiconductor surfaces
[74]. However, the current hurdle for the field of electrically gated semiconductor
qubits is to develop reliable and high-fidelity two-qubit gates [33]. At the same time,
measurement precision needs to be improved and measurement methods need to be
compatible with a large qubit array size.

• Superconductors. Superconducting quantum computing uses superconducting elec-
tronic circuits for quantum computation. A superconducting resonator is coupled to a
nonlinear inductor to form an artificial atom at low temperatures: those artificial atoms
have quantised energy [33]. The two lowest levels can be accessed in a controllable
manner and a superconducting qubit is constructed with these states. The decoherence
times of the qubits with the best fabrication techniques are around 100 microseconds
today in simple single-mental-layered devices [33]. Several different ways to arrange
the inductor, capacitor and Josephson junctions play a trade-off game between simpler
control of the system and better isolation of qubits and control of performing quantum
gates. However, unlike natural atoms, the superconducting qubits have manufacturing
variations. Therefore, the control processor must be able to calibrate the system and
the computational resources grow significantly fast when the qubit system is scaled up,
which is the major challenge in the field of superconducting quantum computing. By
2018, IBM has announced a 16-qubit processor based on superconducting qubits.

1.3 The TI qubit

The main reason that TIs are considered to be promising materials for quantum computing
and spintronics is the robustness of their surface states. These surface states are topologically
protected by a combination of the spin-orbit coupling and the time-reversal symmetry in
the material (more details about TIs can be found in Ch. 2) [46] [122] [14] [55] [64]
[35]. These surface states are protected from backscattering from non-magnetic impurities
and they exhibit weak anti-localisation [95] [42]. These properties make TI surface states
robust against perturbations from their surroundings, which is highly desired in fault-tolerant
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quantum computing. Strictly speaking, TI qubits are similar to semiconductor qubits. It is
likely that they can be fabricated using standard techniques such as electron-beam lithography
and etching to form a TI quantum dot. Moreover, the TI qubit (a two-level system) is defined
naturally when the thickness of a TI is reduced below a critical value [71] or by using a
parallel ferromagnetic layer [30]. This reduces the number of Schottky surface gates used
and thus reduces the disturbance from surrounding gates. However, the TI qubit is a new
idea, with four new types presented in this thesis for the first time, and there are therefore no
experimental results to show the performance. The possible decoherence mechanisms in bulk
TI materials are still under investigation [70] [53]. In this thesis, we will explore whether a
TI qubit is feasible and how to control single-qubit rotations from a theoretical and numerical
perspective. Consideration of decoherence and the two-qubit interaction fall outside the
scope of this work. With limited computational resources, it made sense to first find all
possible types of qubit in TI systems and show how they can be controlled. Decoherence
can most simply be modelled by introducing random errors into multiple runs and leads to
an exponential decrease in the amplitude of the off-diagonal elements in the qubit density
matrix. This will be part of future research once the potential error mechanisms are better
known. Modelling the two-qubit interaction for a realistic double-dot system was beyond our
group’s computational resources at the time of writing.

1.4 Summary and outline

In this chapter we introduced the fundamental concepts of quantum computing and the
requirements for physically implementing a quantum computer. Then we reviewed some
active implementations for quantum computing.

The rest of this thesis is organised as follows: in Ch. 2, we will provide some knowledge
on the essential concepts used to understand the topological aspect of TI and an introduction
to Bi2Se3 with the focus on a low energy model proposed by Liu et al. [72]. We will present
a detailed discussion on how this model was derived from the crystal’s atomic states. Then
we will talk about the Floquet-Bloch theory which is useful for studying a time-periodic
system. In Ch. 3, we will present a brief description of the numerical methods we used to
approach the problems in the thesis. In Ch. 4 - Ch. 6 we study four different types of TI qubit
which are: a static charge qubit (Ch. 4), a static spin qubit (Ch. 5)and two Floquet qubits (Ch.
6). A summary of the present work and a discussion of further work are presented in Ch. 7.





Chapter 2

Theoretical Background

2.1 Introduction

This chapter aims to provide the reader with a general understanding of the theory underlying
topological insulators (TIs) and relevant methods used to study it throughout this thesis.
This chapter is divided into two main parts: in the first part we discuss essential concepts
to understand a topological insulator followed by a detailed discussion of the model TI
Hamiltonian used throughout this thesis. We then discuss Floquet-Bloch theory. This is
important in the study of TIs under a periodic field.

2.2 Topological insulators

In 1980, von Klitzing et al. discovered the quantum hall effect (QHE) in a high-mobility 2D
semiconductor under a strong magnetic field [58]. This phenomenon was later recognised by
Thouless, Kohmoto, Nightingale, and den Nijs (TKNN) [106] to be topological, in the sense
that the Hilbert space of the QHE has an associated non-trivial topology, which distinguishes
it from that of an ordinary band insulator. They identified a topological number that is
associated with this non-trivial topology - the TKNN number (also now referred to as the first
Chern number). This is a single example of many different topological phases that exist [99].
Its discovery was the first in the new field of topological condensed matter. One such exciting
discovery is the time-reversal-invariant topological insulators. TI can exist in a 2D material or
a 3D material. The bulk-edge correspondence ensures that gapless conducting edge/surface
states appear at the boundary of a TI and a trivial insulator. Because the time-reversal (TR)
symmetry is preserved in a TI, these edge/surface states are protected and cannot be disturbed
by local perturbation in the material. This protection against backscattering means that
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TIs have potential applications in low-power electronics and other quantum devices. In
this section, I will provide a brief introduction to the concepts of topological band theory
for formally determining a topological phase. The focus will be on the 3D topological
insulator which is the topic of this thesis. I will then introduce the model Hamiltonian of a
3D topological insulator constructed by Liu et al [72], which is the fundamental model we
used throughout this thesis. This section provides a short presentation of relevant theories
and methods. Interested readers are directed to read these reviews [3] [48][47] for more
details.

2.2.1 Essential concepts for topological insulators

In order to understand the topological significance of a TI, we will introduce some important
concepts in the topological band theory following the approach of Bernevig and Hughes [13].

Berry Phase

The Berry phase is an important concept in the discussion of topological phases. It represents
an accumulated quantum-mechanical phase when the wavefunction is going around the k
space in a close loop [15]. It is the foundation of a topological invariant which is used to
identify the non-trivial topological phase.

Considering a quantum system H(R(t)) with time-dependent parameters R(t), when we
change the system H(R(t)) adiabatically, we can write out the instantaneous eigenstates
|f(R(t))i of the system H as:

H(R(t)) |f(R(t))i= E(R(t)) |f(R(t))i . (2.1)

The time-dependent Schrodinger equation for the system is:

H(R(t)) |F(t)i= ih̄
d
dt

|F(t)i . (2.2)

When a system is evolving adiabatically, the eigenstates will maintain themselves and does
not cross each other, and we have:

|F(t)i= e�iq(t) |f(R(t))i . (2.3)

Here, the phase term eiq(t) is the only degree of freedom of the eigenstate when the
system is changing adiabatically.
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Substituting 2.3 into 2.2, we arrive at:

E(R(t)) |f(R(t))i= ih̄(�i
d
dt

q(t)+ d
dt
) |f(R(t))i , (2.4)

taking scalar product with hf(R(t))|, we have:

E(R(t))� ih̄hf(R(t)| d
dt
|f(R(t)i= h̄

d
dt

q(t). (2.5)

Therefore phase q(t) is:

q(t) = 1
h̄

Z t

0

h
E(R(t))� ihf(R(t)| d

dt
|f(R(t)i

i
dt. (2.6)

The first part on RHS represents a trivial dynamical phase, which only depends on the
energy of the eigenstate. The second part represents a non-trivial phase - the Berry phase g .
It contains information about how the wavefunction of the state evolves with R.

|F(t)i= ei 1
h̄
R t

0 E(R(t))dteig |f(R(t))i ,

g ⌘ i
Z t

0
hf(R(t)| d

dt
|f(R(t)idt.

(2.7)

From Eq. 2.7 we can see the Berry phase is not dependent on time explicitly. By a change of
variables, we have:

g = i
Z end of cycle

0
hf(R)| d

dR
|f(R)idR. (2.8)

Therefore, if the system goes back to its original state at time T , the eigenstate |f(R(t))i
will be same as the eigenstate |f(R(t = 0))i, with an extra phase e�iq(t) at most.

Time reversal symmetry (TRS)

The effect of time-reversal (TR) operator Q is to reverse the arrow of time. Therefore it
affects all quantities associated with the direction of time flow but it does not affect any
spatial quantities, and [Q,X] = 0. For a half-spin system, the TR operator is written as:

Q =�isyK, (2.9)

where sy is the y component of the spin operator and K is the complex conjugate operator.
The spin is rotated by p degrees under the effect of TR operator and by applying Q twice,
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the spin goes back to its original state but with a phase of �1. Therefore, we have:

Q2 =�1. (2.10)

Also, we have:

hf |Q|yi=�hy|Q|fi ,
hQf |Qyi= hy|fi .

(2.11)

These properties of the TR operator stated above enable us to arrive at the Kramer
theorem in a TRS preserved Bloch system. In a crystal Hamiltonian H, a general solution is
written as:

H |fnki= Enk |fnki , (2.12)

and
|fnki= eik·x |unki . (2.13)

unk is an eigenstate of the Bloch Hamiltonian. When H preserves TRS, we have :

H(�k) = QH(k)Q�1. (2.14)

This identity means that in a TRS preserved system, we have a pair of states with E(�k) =
E(k) called a Kramer Pair. Because the Brillouin zone is periodic, at the boundary of
Brillouin zone and G point (which are called TRIM points), +k and �k are degenerate (see
Fig. 2.1). In a topological non-trivial system with TRS, the Kramer pair will ’switch partner’
[3]. As a result, the surface states are guaranteed to cross any Fermi energy inside the bulk
gap, forming Dirac cone structures (Fig. 2.1).

2.2.2 The Bi2Se3 family of topological insulators and their effective low

energy models

In 2009, Zhang et al. [126] discovered a family of 3D time-reversal-invariant TI materials:
Bi2Se3, Bi2Te3 and Sb2Te3. In fact, it is not the first time those materials are discovered.
Those materials have been considered as good thermalelectric materials in history [82]. Due
to the strong spin-orbit coupling effect present in these materials, the valence band and
conducting band are inverted, just like the HgTe/CdTe quantum well heterostructures [65],
and gapless helical states are formed on the surface of the materials.
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Fig. 2.1 a) A TRS preserved system with a trivial topological number; b) a TRS preserved
system with a non-trivial topological number (figure adapted from [3]).

Crystal structure and atomic basis

Bi2Se3 family of TIs are layered, stoichiometric crystals. They share the same rhombohedral
crystal structure with the space group D5

3d(R3̄m) [126]. Here we take Bi2Se3 as an example.
Each layer of Bi2Se3 is a triangle lattice consisting of a layer of purely Bi atoms or Se
atoms. The Bi layer and Se layer grow alternatively on each other and form a five-layer
structure (along the z direction in Fig. 2.2). This five-layer structure is tightly bonded together
and form a unit cell of the crystal. This five-layer structure is the fundamental unit of the
crystal structure of a TI and is called a quintuple layer (QL for short). The QLs are stacked
together and form a complete Bi2Se3 crystal. The QLs are held together by the van der Waals
force, which is much weaker than the bonding force between two atomic layers within a QL.
Understanding the electronic states formed in a TI is important to understand its non-trivial
electronic structure. From here we would like to guide the reader through a construction
of the electronic states formed in TI from the atomic states of Bi and Se atoms. (A figure
summarising the steps of constructing the electronic states from atomic orbits is Fig. 2.3.)
The atomic configuration of Bi is 6s26p3 and that of Se is 4s24p4. The outermost p orbitals
play an important role in the bonding of Bi and Se. Each atomic Bi (or Se) has three p
orbitals: px, py, pz. The coupling between the neighbouring layers are the strongest. From
Fig. 2.2, we see that a Bi and Se atom are always neighbours; therefore, a coupling is induced
between their p orbits. This coupling pushes the energy levels of Bi atoms up and the energy
levels of Se atoms down. Because the central Se atomic layer is coupled to two Bi atomic
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Fig. 2.2 The crystal structure of Bi2Se3, adapted from [126].

layers, it is different from the other two Se atomic layers in Fig. 2.2 and found to be lower in
energy. Then, owing to the inversion symmetry in Bi2Se3, the electronic states in Bi2Se3 are
also eigenstates of the Parity operator. Therefore, the atomic states between Bi (Se) atoms in
the next neighbour layer combine into bonding and anti-bonding states with definite parity
as:

��P1±x,y,z
↵
=

1p
2
(
��Bx,y,z

↵
⌥
��B0

x,y,z
↵
), (2.15)

��P2±x,y,z
↵
=

1p
2
(
��Sx,y,z

↵
⌥
��S0x,y,z

↵
). (2.16)

The upper index indicates the parity of the |P1(P2)i state. Because the crystal has a layered
structure, the energy of pz orbits would be slightly different from px and py orbits: this
effect is called crystal field splitting. It is also found that the

��P1+z
↵

and
��P2�z

↵
orbits are

near the Fermi level. In the last step, spin-orbit coupling (SOC) is considered and spin is
included. The atomic SOC Hamiltonian is written as: Ĥso = l s ·L, where l depends on the
electrostatic potential of the atom. The states of the px and py orbits are combined into p±
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Fig. 2.3 The steps in the construction of the electronic states of a TI from atomic orbits,
adapted from [72]. There are four steps needed to understand the band structure of a Bi2Se3:
(I) the hybridization of the atomic orbitals of Bi and Se; (II) the formation of bonding and
antibonding orbitals due to the inversion symmetry; (III) the crystal field splitting; (IV) the
influence of the SOC.
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with definite orbital angular momentum L written for convenience as:

|P1(2)+i=� 1p
2
(|P1(2)xi+ i

��P1(2)y
↵
), (2.17)

|P1(2)�i=
1p
2
(|P1(2)xi� i

��P1(2)y
↵
). (2.18)

By introducing SOC to the system, a coupling is introduced between the P± and Pz orbits, and
sz and Lz are no longer good quantum numbers in the system. Since total angular momentum
along z (Jz) is still conserved, we can re-express the basis states as eigenstates of Jz (this
will be discussed in more detail in 2.2.2). SOC in fact lowers the

��P1+z
↵

levels and raises
the

��P2�z
↵

levels (which are now mixed with P± states) and cause the valence band and
conduction band to cross each other. This band inversion is crucial to the appearance of
gapless surface states in a TI. The states

��P2�+,±1
2
↵

and
��P1+�,±1

2
↵

are found to be the four
states near the fermi level. Those states form the basis of the low energy model Hamiltonian
used to describe physics near the Fermi level.

Low-energy model Hamiltonian

The model Hamiltonian studied throughout this thesis is based on the low-energy model
Hamiltonian of the Bi2Se3 family of 3D Topological insulators developed by Liu et al. 2010
[72]. In this paper [72], the model Hamiltonian is constructed using k ·p theory and symmetry
principles. The results of these two methods are found to be consistent. We state the model
Hamiltonian here. Readers that are interested in a detailed derivation are referred to [72].

Liu’s Model Hamiltonian to describe the low-energy physics of Bi2Se3, Bi2Te3 and
Sb2Te3 is:

H0 =C(k)I4 +M(k)G5 +B0G4kz +A0(G1ky �G2kx), (2.19)

where I4 is 4⇥4 identity matrix and:
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G5 =

0

BBB@

1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 �1

1

CCCA
, G4 =

0

BBB@

0 �i 0 0
i 0 0 0
0 0 0 �i
0 0 i 0

1

CCCA
,

G1 =

0

BBB@

0 0 0 �i
0 0 �i 0
0 i 0 0
i 0 0 0

1

CCCA
, G2 =

0

BBB@

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

1

CCCA
,

C(k) =C0 +C1k2
z +C2|k|||2,

M(k) = M0 +M1k2
z +M2|k|||2,

k|| = kx � iky.

The G matrices in the model Hamiltonian are derived from symmetry principles. The
constants C0, C1, C2, M0, M1, M2, A0 and B0 are material-dependent parameters derived from
the k.p theory. These parameters can be obtained either from the scattering experiments
(optical matrix elements) or via ab initio calculations [72]. The values of those parameters
used throughout this thesis are adapted from Liu’s paper [72] and are present in Ch. 2. In
general, C(k) represents the kinetic energy term of the electrons in the material, and changing
C0 can shift the energy levels of the topological insulator but does not change the relative
energy difference of individual bands. M(k) represents the effects of spin-orbit coupling to
the electron kinetics in these materials. M0 and M1 are important parameters to determine
the topological phase of a TI [73]. M0M1 < 0 induces a bulk band inversion at the G point.
In a TI, this comes from spin-orbit coupling, which drags the atomic basis

��P1+�,±1
2
↵

of
Bi down and pushes the atomic basis

��P2�+,±1
2
↵

of Se up (see Fig. 2.3). M0M1 > 0 and
M0M1 < 0, therefore, distinguish two different topological phases. The first order term A0

represent a Rashba-type spin-orbit interaction which gives rise to the distinguishable property
of the surface states of a TI - the spin-momentum-locking helical spin texture. B0 induces a
coupling between the atomic basis of Bi and Se atoms with the same spin. It is important for
the formation of localised states on the surfaces.
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Basis of total angular momentum and spin measurement

As mentioned previously in this section, the basis states can be written in terms of eigenstates
of total angular momentum along the z direction as SOC is included. Here we will discuss
this further, which is important for constructing the spin operator matrices of the system.
Followed the discussion in the previous section, we can write px and py orbits as:

|P1(2)+i=� 1p
2
(|P1(2)xi+ i

��P1(2)y
↵
), (2.20)

|P1(2)�i=
1p
2
(|P1(2)xi� i

��P1(2)y
↵
). (2.21)

Therefore, the matrix form of H +Hso (H is the TI Hamiltonian without SOC) can be
written as:

H +Hso =

0

BBBBBBBBB@

ELx(y) +
l
2 0 0 0 0 0

0 ELx(y)� l
2

lp
2

0 0 0

0 lp
2

ELz 0 0 0

0 0 0 ELz
lp

2
0

0 0 0 lp
2

ELx(y)� l
2 0

0 0 0 0 0 ELx(y) +
l
2

1

CCCCCCCCCA

.

The basis states are: (|L, p+,"i , |L, p+,#i , |L, pz,"i , |L, pz,#i , |L, p�,"i , |L, p�,#i)T .
L = P1+,P2�, ELx(y),z are the energy values of the states

��L, p(x(y),z)
↵

and l is the SOC
coupling determined by Hso. If we rewrite the Hamiltonian in a diagonal form, the new basis
is:

|1i= |L, p+,"i ,
|2i= uL

+ |L, pz,"i+ vL
+ |L, p+,#i ,

|3i= uL
� |L, pz,"i+ vL

� |L, p+,#i ,
|4i= uL

+ |L, pz,#i+ vL
+ |L, p�,"i ,

|5i= uL
� |L, pz,#i+ vL

� |L, p�,"i ,
|6i= |L, p�,#i , (2.22)
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where the values uL
± and vL

± can be obtained by diagonalising the 2⇥2 matrix

 
ELx(y)� l

2
lp

2
lp

2
ELz

!
.

Because Hso commutes with jz, the basis can be written in terms of jz. Since |L, p±i=
|L, l = 1,ml =±1i and |L, pzi = |L, l = 1,ml = 0i, we can identify that |L, p+,"i and
|L, p�,#i are the highest and lowest eigenstates of the total angular momentum operator
along the z direction, respectively:

|L, p+,"i=
����L,

3
2
,
3
2

�
, (2.23)

|L, p�,#i=
����L,

3
2
,�3

2

�
. (2.24)

The remaining states
��L, j,m j

↵
can be obtained by applying the ladder operator j⌥ to the

states in Eq. 2.23 and Eq. 2.24. The full set of basis states in terms of eigenstates of J2 and
jz is:

|L, p+,"i=
����L,

3
2
,
3
2

�
,

|L, p+,#i=
1p
3
(

����L,
3
2
,
1
2

�
+
p

2
����L,

1
2
,
1
2

�
),

|L, pz,"i=
1p
3
(
p

2
����L,

3
2
,
1
2

�
�
����L,

1
2
,
1
2

�
),

|L, pz,#i=
1p
3
(

����L,
1
2
,�1

2

�
+
p

2
����L,

3
2
,�1

2

�
),

|L, p�,"i=
1p
3
(�

p
2
����L,

1
2
,�1

2

�
+

����L,
3
2
,�1

2

�
),

|L, p�,#i=
����L,

3
2
,�3

2

�
. (2.25)

By relating the basis in Eq. 2.25 and the basis states in Eq. 2.22, we can express basis of
the atomic TI Hamiltonian in terms of basis states of the total angular momentum along the z
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direction ( jz):

|1i=
����L,m j =

3
2

�
= |L, p+,"i ,

|2i=
����L+,m j =

1
2

�
= uL

+ |L, pz,"i+ vL
+ |L, p+,#i ,

|3i=
����L�,m j =

1
2

�
= uL

� |L, pz,"i+ vL
� |L, p+,#i ,

|4i=
����L+,m j =�1

2

�
= uL

+ |L, pz,#i+ vL
+ |L, p�,"i ,

|5i=
����L�,m j =�1

2

�
= uL

� |L, pz,#i+ vL
� |L, p�,"i ,

|6i=
����L,m j =�3

2

�
= |L, p�,#i .

Therefore, it can be seen immediately that the electronic states are eigenstates of jz. The
double degenerated states

��P2�+,m j =±1
2
↵

and
��P1+�,m j =±1

2
↵

are the four states that are
closest to the Fermi level.

After discussing the atomic origins of the electronic states of TI, we will look at how
this is linked to measuring spin of TI surface states. We now know that the Jz operators with
respect to the basis of the model Hamiltonian are (h̄ = 1):

jx =

0

BBB@

0 0 1
2 0

0 0 0 1
2

1
2 0 0 0
0 1

2 0 0

1

CCCA
, jy =

0

BBB@

0 0 � i
2 0

0 0 0 � i
2

i
2 0 0 0
0 i

2 0 0

1

CCCA
, jz =

0

BBB@

1
2 0 0 0
0 1

2 0 0
0 0 �1

2 0
0 0 0 �1

2

1

CCCA
.

The operators ĵx, ĵy and ĵz have the same form as the spin operators ŝx, ŝy and ŝz for
a single electron in a two-site system with spin, s ⌦ t , where s is the spin matrices and
t is the identity matrix for the two-site system. In fact, in Bi and Se, uL

± � vL
±, with

|u|2 = 0.75, |v|2 = 0.25 for Bi and |u|2 = 0.98, |v|2 = 0.02 for Se. Therefore, the basis states
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to construct the 4⇥4 model Hamiltonian of TI are approximately:

|y1i=
����P1+�,m j =

1
2

�
⇡
��P1+�, pz,"

↵
, (2.26)

|y2i=
����P2�+,m j =

1
2

�
⇡
��P2�+, pz,"

↵
, (2.27)

|y3i=
����P1+�,m j =�1

2

�
⇡
��P1+�, pz,#

↵
, (2.28)

|y4i=
����P2�+,m j =�1

2

�
⇡
��P2�+, pz,#

↵
. (2.29)

This basis set is used throughout this thesis, and the corresponding spin operators are the
same as jx, jy, jz.

2.3 Fundamentals of Floquet-Bloch theory

In 1965 Shirley [102] proposed a method to solve a time-periodic Hamiltonian in crystals
called Floquet-Bloch theory. Floquet-Bloch theory is suitable for the study of strongly driven
periodic quantum systems because it respects the periodicity of the perturbation at all levels
of approximation, and avoids the occurrence of linear or non-periodic time-varying terms in
the time variable [56].

A general periodic Time-Dependent Schrödinger Equation is written as:

ih̄
∂F(~r, t)

∂ t
= HF(~r, t), (2.30)

where H(t +T ) = H(t), and T is the period of the system. According to the Floquet-Bloch
theorem, there exists solutions to the equation 2.30 that have the form:

F(~r, t) = e�iea t/h̄ua(~r, t), (2.31)

where ua(~r, t +T ) = ua(~r, t).
The solution is similar to a Bloch solution in a spatially periodic system, with a phase term of
�ieat/h̄ and a periodic function ua(~r, t). Substituting the solution 2.31 into equation 2.30,
we arrive at:

(H � ih̄
∂
∂ t

)ua(~r, t) = eaua(~r, t). (2.32)
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HF = (H � ih̄ ∂
∂ t ) is called the Floquet Hamiltonian, ea is a quasi energy called the Floquet

energy and u(~r, t) is called a Floquet state. The general solution to Eq. 2.30 is written as:

F(~r, t) = Â
a

aae�iea t/h̄ua(~r, t). (2.33)

Most Floquet Hamiltonians need to be solved numerically; exact solutions exist only for
a few of them [56]. The numerical method to solve a Floquet Hamiltonian will be discussed
in Ch. 3. In this thesis, we will solve the Floquet Hamiltonian numerically.

2.4 Summary

In this chapter, we provide some background information to understand topological insulators
together with an introduction to the model Hamiltonian we used throughout the thesis. Then
we introduced the Floquet-Bloch theory to study time-periodic TI systems in this thesis.



Chapter 3

Numerical Methods

In this thesis, the TI Hamiltonian under consideration are four simultaneous ordinary differ-
ential equations (ODEs) with the edges along the z direction. There is no simple analytical
way to solve these simultaneous equations, not to mention adding time dependence to it.
Therefore in this thesis we choose to solve the problems numerically. In this Chapter, I
will introduce the main numerical methods used to approach the problems related to the
topological insulator systems in this thesis. We will discuss the finite difference method used
for spatial discretisation and then two different methods (the Floquet Bloch method and the
staggered leapfrog method) for solving the time-dependent Schrödinger equation.

3.1 Spatial discretisation

3.1.1 Finite difference method

The finite difference method is a numerical method used to find approximate solutions to
derivatives of a differential equation defined over the region of interest with some boundary
conditions. It is a common discretisation method used in numerical studies. The continuous
variable of the differential equation is replaced by a finite number of lattice sites with
the boundaries properly defined. The derivatives are replaced by the difference operators
expressed using the values of f (x) on these lattice sites and these difference operators are
derived from the truncated Taylor expansion. If we consider the Taylor expansion of f (x)
with x being a continuous variable, we have for f (x+h) and f (x�h):
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f (x+h) = f (x)+h f 0(x)+
h2

2
f 00(x)+ . . .+

hn

n!
f n(x)+ . . . , (3.1)

f (x�h) = f (x)�h f 0(x)+
h2

2
f 00(x)+ . . .+(�1)n hn

n!
f n(x)+ . . . . (3.2)

By subtracting Eq. 3.1 and Eq. 3.2, we obtain the difference operator of first order
derivative:

f 0(x) =
f (x+h)� f (x�h)

2h
� 1

2

•

Â
n=1

h2n

(2n+1)!
f 2n+1(x). (3.3)

By adding Eq. 3.1 and Eq. 3.2, we obtain the difference operator of second order
derivative:

f 00(x) =
f (x+h)�2 f (x)+ f (x�h)

h2 �
•

Â
n=1

h2n

(2n+2)!
f 2n+2(x). (3.4)

The first term in Eq. 3.3 and Eq. 3.4 are the approximations for the first and second order
derivatives, while the second terms represent the truncation error of this method and are of
h2 for both cases.

By replacing the continuous variable x with the lattice site index nx and specifying the
values of f (x) only with these points and h being the distance between the neighbouring sites,
we have expressed the derivatives with the values defined on those discrete lattice sites only.

3.2 Temporal discretisation

3.2.1 The Floquet matrix method

The Floquet mode solutions can be obtained by solving Floquet matrix. Here I will illustrate
the method with a two site model as an example:

H(t) =

 
E cos(wt) �D

�D �E cos(wt)

!
, (3.5)

with w = 2p
T . This can be written in terms of Pauli matrices:

H(t) = E cos(wt)sz �Dsx =
E
2
(eiwt + e�iwt)sz �Dsx. (3.6)
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Because the Hamiltonian H(t) and the Floquet modes are periodic in time, we can write
the Floquet modes in terms of a Fourier series of time t:

u(t) =
•

Â
n=�•

aneinwt . (3.7)

To write out the Floquet matrix, we notice that

e±iwtu(t) =
•

Â
n=�•

an⌥1einwt . (3.8)

Substituting 3.7 into 2.32, we obtain a set of simultaneous equations:

•

Â
n=�•

(
E
2

sz(an+1 +an�1)�Dsxan +nh̄wan)einwt = ea h̄
•

Â
n=�•

aneiwt . (3.9)

And
E
2

sz(an+1 +an�1)�Dsxan +nh̄wan = h̄eaan. (3.10)

Writing this in matrix form we have:

H =

2

66666664

. . . . . . . . . . . . . . . . . . . . .
0 E

2 sz (n�1)h̄w �Dsx
E
2 sz 0 0 0

0 0 E
2 sz nh̄w �Dsx

E
2 sz 0 0

0 0 0 E
2 sz (n+1)h̄w �Dsx

E
2 sz 0

. . . . . . . . . . . . . . . . . . . . .

3

77777775

, (3.11)

where n is infinite. This Hamiltonian can be solved numerically by defining a finite number
of Fourier components n used in the calculation. The Ân=m

n=1 |an|2 of this finite set of Fourier
components should be ⇡ 1. A suitable number m can be found in practice by running the
simulations with different n and monitoring the norm of the output states.

3.3 The staggered leapfrog method

In the previous section, we have discussed the Floquet-Bloch method to solve a periodically
time-varying system. This method is effective to study time-periodic wavefunctions in a
quantum system under a periodic field. However, to understand the immediate effect of
external fields (pulses) on the time evolution of a specific quantum state, we need another
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method describing how the state is influenced by sudden changes at any desired instance.
Therefore, we employ the staggered leapfrog method for this task in the thesis.

A general non-relativistic time-dependent Schrödinger’s equation (TDSE) is written as:

ih̄
∂F(~r, t)

∂ t
= HF(~r, t). (3.12)

Time evolution of wavefunction |Fti can be expressed as:

|F(t1)i= Û(t1, t0) |F(t0)i , (3.13)

where Û(t1, t0) is the time-evolution operator connecting the quantum state |Fi at t1 and t0,
and is expressed with the time-ordering T as:

Û(t1, t0) = T
�

exp
⇥
� i

h̄

Z t1

t0
Ĥ(t)dt

⇤ 
. (3.14)

However, 3.12 and 3.13 are difficult to solve in general and analytical solutions can
only be found for simple cases. The continuous variable t in the integral together with the
complex time ordering T need to be replaced by finite and manageable approximations.

One way to do this is via the Trotter expansion[109]. By using the semi-group property
of Û(t1, t0), we have:

Û(t1, t0) = Û(t1, t1/2)Û(t1/2, t0). (3.15)

The time-evolution operator can be further discretised into N pieces,with smaller and smaller
Dt. For an evenly spaced discretization Dt = t1�t0

N , the propagator can be written as a product
of time-evolution operators:

Û(t1, t0) =
N�1

’
n=0

Ûn, (3.16)

where Ûn = Û(tn+1, tn) and t0 = 0, t1 = NDt. If the time interval Dt is sufficiently small, we
can assume that Ĥ is approximately constant over Dt. Therefore, the propagator is written as:

Û(t +Dt, t) = exp
�
� iĤ(t)Dt

h̄
�
. (3.17)

However, the resultant propagator is still difficult to solve due to the large number of spatial
dimensions of the Hamiltonian used in this thesis. Therefore, we need to further approximate
the exponent in Eq. 3.17 via a feasible numerical approach.

Since an exponential function can be written as a Taylor expansion, we have:
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Û(t +Dt, t) = 1� iĤDt
h̄

+ · · · . (3.18)

Then, the question is how to estimate of |F(t +Dt)i using the Taylor terms in Eq.
3.18. In this thesis, we apply the staggered leapfrog method to solve this problem. The
staggered leapfrog method [4][78] is an iteration method that approximates the wavefunction
|F(t +Dt)i at t +Dt with the values of |Fi of the two previous time steps t and t �Dt. Using
the first two terms in Taylor expansion in Eq. 3.18, we have :

|F(t +Dt)i= |F(t �Dt)i�2
iĤ(t)Dt

h̄
|F(t)i+O(Dt)3. (3.19)

Therefore, we can see that the truncation error of the staggered leapfrog method is of order
Dt3. Because this is an iteration method, the stability must be checked. The von Neumann
stability analysis [118] suggests that a computational error is e(t) = |F(t)i�

��F̄(t)
↵
, where

|F(t)i is the wavefunction of the staggered leapfrog method and
��F̄(t)

↵
is the exact solution.

Following the analysis, the stability criterion for the staggered leapfrog method is:

Dt  h̄
Emax

. (3.20)

Emax is the highest eigenenergy of the instantaneous Hamiltonian Ĥ. Moreover, we should
be aware that the evolution operator used in the staggered leapfrog method is not strictly
norm-preserving since there is a truncation error of O(Dt)3. However, as long as the norm
is preserved to a good extent, the staggered leapfrog method provide a good approximation
of the quantum state at t +Dt. The norm is monitored in the simulation to guarantee this
condition. The accuracy can be further improved by applying the Visschers staggered-time
method [117]. The wavefunction is written in terms of its imaginary and real parts v(t) and
u(t) respectively, which are calculated at slightly different, staggered times:

|F(t)i= u(t)+ iv(t +
Dt
2
). (3.21)

The corresponding probability density r(t) is:

r(t) = |u(t)|2 + |v(t +Dt)v(t �Dt)|2. (3.22)

Eq. 3.21 and Eq. 3.22 provides a cancellation of the errors, therefore the conservation of
probability density is improved. This method simplifies to the standard method when Dt ! 0.
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3.4 Summary

In this chapter, we provided an introduction to the numerical methods used throughout the
thesis. These are the finite difference method for spatial discretisation, the Floquet matrix
method and the staggered leapfrog method for temporal discretization. We will use these
numerical methods in the following chapters.



Chapter 4

A Charge Qubit in an Ultra-thin

Topological Insulator Film

4.1 Introduction

Although research on topological insulators is still at earlier stages of mainly theoretical
studies owing to the challenges in fabrication, it is still of great interest to investigate potential
applications of TIs because of their intriguing and beneficial properties. In Ch. 2, we have
learnt that because of the preservation of TR symmetry and strong spin-orbit-coupling, the
electrons on the Dirac cone are topologically protected. This protection is robust, and the
electrons are immune to non-magnetic local perturbation. In quantum computation and
quantum information, one of the major challenges to build a practical quantum computer are
the inevitable random interactions of the qubit with its surroundings [124] [98]. This happens
during operation and measurement. Scientists have endeavoured to solve this problem and
quantum error correction (QEC) is the name given to the techniques that address this question
[12] [60] [105]. The threshold of a fault-tolerant quantum computing process might be as
high as 3% in theory if the computational resources are unconstrained [12] [60] [105] [68].
At the same time, scientists are searching for new physical implementations for quantum
computation [108] [81] [94] [83] [80].

In this Chapter, we define and investigate quantum control of a new type of charge qubit
in a topological insulator system, with a focus on single-qubit operations. The two-qubit
operation is beyond the scope of this thesis but it will be discussed briefly at the end of this
chapter in section 4.4. Together with the expected long decoherence time in TI protected
by its topology, we hope this qubit would offer a new possibility for a feasible fault-tolerant
quantum computer. The rest of this chapter is divided into three sections. In section 4.2, we
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discuss how to construct the system numerically from the model Hamiltonian presented in
Ch. 2 and how the state in an ultra-thin TI is affected by its thickness, in both cases with and
without an electric field. Then in section 4.3 we continue to explore a suitable pair of states
of a charge qubit and investigate how to initialise, rotate and read out a single qubit. In the
last section 4.5, we address some experimental related questions and challenges and offer
some possible solutions.

4.2 System

4.2.1 Model Hamiltonian

In order to simulate a TI thin film with an external electric field, we exploit Liu’s model
Hamiltonian introduced in Chapter 2 and implement a time-independent electric field term in
it along the z direction. The Hamiltonian of a TI with an electric field is:

H =C(k)I4 +M(k)G5 +B0G4kz +A0(G1ky �G2kx)�E(z)I4, (4.1)

with I4 is 4⇥4 identity matrix and:

G5 =

0

BBB@

1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 �1

1

CCCA
, G4 =

0

BBB@

0 �i 0 0
i 0 0 0
0 0 0 �i
0 0 i 0

1

CCCA
,

G1 =

0

BBB@

0 0 0 �i
0 0 �i 0
0 i 0 0
i 0 0 0

1

CCCA
, G2 =

0

BBB@

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

1

CCCA
.

C(k) =C0 +C1k2
z +C2|k|||2,

M(k) = M0 +M1k2
z +M2|k|||2,

k|| = kx � iky.

The last term stands for the energy difference across the thin film of the external electric
field (it is along the z direction) in units of eV . From the Hamiltonian 4.1 we see that it no
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longer commutes with z. We apply an open boundary condition and replace kz by:

kz !�i∂z.

The resultant simultaneous linear equations are :

Ff 00
1 �B0f 0

2 +Af1 +Df4 = ef1,

Gf 00
2 +B0f 0

1 +Bf2 +Df3 = ef2,

Ff 00
3 �B0f 0

4 +D⇤f2 +Af3 = ef3,

Gf 00
4 +B0f 0

3 +D⇤f1 +Bf4 = ef4.

A =C0 � eEz+M0 +C2|k|||2 +M2|k|||2,
B =C0 � eEz�M0 +C2|k|||2 �M2|k|||2,
D = A0(ikx + ky),

F =C1 �M1,

G =C1 +M1.

The Hamiltonian is then solved using the finite difference method described in Ch.3. This
can be written as a numerical matrix:

nz = 1 nz = 2 nz = 3 nz = 4 nz = 5

H�1 H0 +2S H+1 0
... nz = 2

0 H�1 H0 +3S H+1
... nz = 3

... 0 H�1 H0 +4S H+1 nz = 4

where H0 is the sub-matrix for on-site interaction at nzth lattice site and H0 =
D
~fnz

���H
��� ~fnz

E
.

H±1 is the sub-matrix for interaction of the lattice site nz with its nearest neighbour and
H±1 =

D
~fnz±1

���H
��� ~fnz

E
. ~fnz = f1,f2,f3,f4 is the four-basis wave vector at the nzth site.

S = (Enzmax �Enz1)/n is the electric field gradient along the z direction, with Enzmax being the
electric energy at the top surface and Enz1 being the electric energy at the bottom surface. n
is the total number of sites along the z direction.
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Fig. 4.1 Band gap energy of a gapped Dirac cone vs the thickness of a TI thin film, from
1QL to 6QL. The energy E decreases with the thickness of the TI thin film.

4.2.2 Quantum confinement effects in ultra-thin TIs

According to the Pauli exclusion principle, two electrons cannot occupy a state with the
same quantum numbers (eg k, sz). However, this ’happens’ in a topological insulator with
surface states at the G point (kx = ky = 0) due to the spatial separation of the states and
bulk-edge correspondence. As the thickness is reduced, the surface states physically overlap
and tunnelling occurs between them. The hybridisation of the surface states opens up a
gap in the Dirac cone and the massless fermions become massive. This property of TIs
has been well-known in the literature [73] [71] [127]. We will call the resultant hybridised
states ’surface states’ since they are hybridised surface states. The gap width varies with the
thickness of the TI thin film, which in our model it i’s found to increase when the thickness
of a TI is decreased (see Fig. 4.1).

The appearance of surface states can be understood in terms of the model Hamiltonian of
a TI in Eq. 2.19 of Ch. 2. For simplicity, we look at the states at the G point. We first turn off
the coupling between the atomic Bi and Se basis states with the same spin, i.e. we set B0 = 0.
The model produces four bands with a double degeneracy in spin; we call them

��P1+�,±1
2
↵

(the hole sub-bands) and
��P2�+,±1

2
↵

(the electron sub-bands). These states are localised bulk
states. No surface states appear as the thickness is varied (we call it d in the thesis). When
we turn on B0, the coupling between

��P1+�,
1
2(�

1
2)
↵

and
��P2�+,

1
2(�

1
2))

↵
causes a mixing
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Fig. 4.2 Spatial distributions of the wave function densities of a spin down ’surface state’
(|S1i) on the hole band at the G point in a 5QL TI thin film. |y1|2 to |y4|2 are the wave
function densities of the basis states |y1i to |y4i of the TI Hamiltonian in Eq. 4.1. The
detailed electronic states of |y1i to |y4i are shown in Eq. 2.26. The wave function densities
of |y1i and |y2i are equal to zero. The wave function density of the ’surface state’ spans
over the whole thickness of TI, with two peaks near the surfaces.

between the basis states with the same spin, producing a pair of bonding and anti-bonding
orbits; this explains the shape of the surface-state wave function in a gaped TI. From the
plots (Fig. 4.2 - Fig. 4.5) we can see that each state consists of four wave components; this is
because the original tight-binding Hamiltonian is constructed from a Hilbert space of the four
atomic basis states described above. Owing to B0, the resultant states at the G point have two
non-zero wave components with sz =±1

2 . Looking at each wave component individually,
we see that it is either a bonding or anti-bonding type orbit. The model can be viewed as a
double quantum well. When B0 = 0, the tunnelling coefficients between two sub-wells are
zero and the sub-wells are uncoupled; when B0 6= 0, the tunnelling coefficient is non-zero
and a mixing between the states in the sub-wells leads to the bonding and anti-bonding orbits.
Although the states extend over the whole TI along the z direction, the maximum density
is always about 0.5QL beneath the surfaces. As the thickness increases, the surface states
become nearly degenerate with DE = 10�11eV and the tunnelling coefficient becomes very
small (see Fig. 4.6).
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Fig. 4.3 Spatial distributions of the wave function densities of a spin up ’surface state’ (|S2i)
on the hole band at the G point in a 5QL TI thin film. |y1|2 to |y4|2 are the wave function
densities of the basis states |y1i to |y4i of the TI Hamiltonian in Eq. 4.1. The detailed
electronic states of |y1i to |y4i are shown in Eq. 2.26. The wave function densities of |y3i
and |y4i are equal to zero. The wave function density of the ’surface state’ spans over the
whole thickness of TI, with two peaks near the surfaces.
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Fig. 4.4 Spatial distributions of the wave function densities of a spin up ’surface state’ (|S3i)
on the electron band at the G point in a 5QL TI thin film. |y1|2 to |y4|2 are the wave function
densities of the basis states |y1i to |y4i of the TI Hamiltonian in Eq. 4.1. The detailed
electronic states of |y1i to |y4i are shown in Eq. 2.26. The wave function densities of |y3i
and |y4i are equal to zero. The wave function density of the ’surface state’ spans over the
whole thickness of TI, with two peaks near the surfaces.
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Fig. 4.5 Spatial distributions of the wave function densities of a spin down ’surface state’
(|S4i) on the electron band at the G point in a 5QL TI thin film. |y1|2 to |y4|2 are the wave
function densities of the basis states |y1i to |y4i of the TI Hamiltonian in Eq. 4.1. The
detailed electronic states of |y1i to |y4i are shown in Eq. 2.26. The wave function densities
of |y1i and |y2i are equal to zero. The wave function density of the ’surface state’ spans
over the whole thickness of TI, with two peaks near the surfaces.
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Fig. 4.6 Spatial distributions of the wave function densities of a spin down surface state at
the G point in a 30QL TI thin film. |y1|2 to |y4|2 are the wave function densities of the basis
states |y1i to |y4i of the TI Hamiltonian in Eq. 4.1. The detailed electronic states of |y1i to
|y4i are shown in Eq. 2.26. The wave function densities on |y1i and |y2i are equal to zero.
The wave function density of the surface state is localised near the surfaces.
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Fig. 4.7 Spatial distributions of the wave function densities of a spin down surface state at the
G point in a 100QL TI thin film. |y1|2 to |y4|2 are the wave function densities of the basis
states |y1i to |y4i of the TI Hamiltonian in Eq. 4.1. The detailed electronic states of |y1i to
|y4i are shown in Eq. 2.26. The wave function densities of |y1i and |y2i are equal to zero.
The wave function density of the surface state is localised near the surface.
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Fig. 4.8 Spatial distributions of the wave function densities of a surface state at kx = 0.01,
ky = 0 on the hole band with its spin pointing almost perpendicular (sy = �0.49) to its
direction of motion, in a 5QL TI thin film. |y1|2 to |y4|2 are the wave function densities of
the basis states |y1i to |y4i of the TI Hamiltonian in Eq. 4.1. The detailed electronic states
of |y1i to |y4i are shown in Eq. 2.26. The wave function density of the surface state spans
over the whole thickness of the TI thin film and is mostly concentrated near one surface.

In the large d limit (e.g. 100QL), the tunnelling coefficients become infinitesimally small
and the two ’sub-wells’ are almost decoupled. Therefore, the surface state is localised on one
surface (Fig. 4.7). Also, we notice that the majoeity of the wave function density is localised
around the Se atom (P2), while only a small contribution comes from the Bi atom (P1) for
surface states at the G point.

For the k values away from the G, the situation is complicated due to the addition of the
linear spin-orbit coupling term. The resultant states have four non-zero wave components
(Fig. 4.8-4.11). The surface states are influenced by both the coupling between the Bi
and Se atomic states with same spin, and the Bi and Se atomic states with opposite spin.
The former (coefficient B0) causes the formation of localised states on surfaces, while
the latter (coefficient A0) induces the spin-momentum locking. Because the Hamiltonian
maintains a three-fold rotation symmetry in the xy plane, we will pick the surface states at
kx = 0.01Å�1

,ky = 0 as our example. (Fig. 4.8-4.11) At a thickness of 5QL, the majority of
the wave function density of a surface state is localised around atomic Se states with sz =±1

2
with equal weights therefore the combined state almost lies in the sxsy plane with sy ± 1

2 for
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Fig. 4.9 Spatial distributions of the wave function densities of a surface state at kx = 0.01,
ky = 0 on the hole band with its spin pointing almost perpendicular (sy = 0.49) to its direction
of motion, in a 5QL TI thin film. |y1|2 to |y4|2 are the wave function densities of the basis
states |y1i to |y4i of the TI Hamiltonian in Eq. 4.1. The detailed electronic states of |y1i to
|y4i are shown in Eq. 2.26. The wave function density of the surface state spans over the
whole thickness of the TI thin film and is mostly concentrated near one surface.
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Fig. 4.10 Spatial distributions of the wave function densities of a surface state at kx = 0.01,
ky = 0 on the electron band with its spin pointing almost perpendicular (sy =�0.44) to its
direction of motion, in a 5QL TI thin film. |y1|2 to |y4|2 are the wave function densities of
the basis states |y1i to |y4i of the TI Hamiltonian in Eq. 4.1. The detailed electronic states
of |y1i to |y4i are shown in Eq. 2.26. The wave function density of the surface state spans
over the whole thickness of the TI thin film and is mostly concentrated near one surface.
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Fig. 4.11 Spatial distributions of the wave function densities of a surface state at kx = 0.01,
ky = 0 on the electron band with its spin pointing almost perpendicular (sy = 0.44) to its
direction of motion, in a 5QL TI thin film. |y1|2 to |y4|2 are the wave function densities of
the basis states |y1i to |y4i of the TI Hamiltonian in Eq. 4.1. The detailed electronic states
of |y1i to |y4i are shown in Eq. 2.26. The wave function density of the surface state spans
over the whole thickness of the TI thin film and is mostly concentrated near one surface.
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Fig. 4.12 Spatial distributions of the wave function densities of a surface state at kx = 0.01,
ky = 0 on the electron band with its spin pointing perpendicular (sy =

1
2) to its direction of

motion, in a 30QL TI thin film. |y1|2 to |y4|2 are the wave function densities of the basis
states |y1i to |y4i of the TI Hamiltonian in Eq. 4.1. The detailed electronic states of |y1i to
|y4i are shown in Eq. 2.26. The wave function density of the surface state is localised near
one surface.

the specific states shown in this example. We can see that the wave function densities on
the basis states have different shapes. Using Fig. 4.8 as an example, |y2(z)|2 is zero near
the surface at QL = 0 while |y4(z)|2 has a tail. This is because the surface state at the G
point has a non-zero wave component on |y4i and a zero wave component on |y2i. When
moving away from the G point along the x direction, |y2(z)|2 and |y4(z)|2 both increase due
to A0. The shape of |y2(z)|2 is a result of a combined effect of spin-orbit coupling and B0

term, while increase of the wave component on y4 is solely owing to spin-orbit coupling.
The spin-momentum locking is perturbed due to the significance of B0 in an ultra-thin TI
film, so the resultant state is not a pure eigenstate of ŝx operator (we will talk about spin in
detail in chapter 5). Therefore, we conclude that the surface states in an ultra-thin TI film
are a combined effect of spin-orbit coupling and the quantum confinement effect. When
d increases and tunnelling becomes insignificant, the wavefunctions of surface states have
exactly the same weight and shape on the atomic basis with opposite spin, recovering the
perfect spin-momentum locking (Fig. 4.12).



48 A Charge Qubit in an Ultra-thin Topological Insulator Film

4.2.3 Effects of a perpendicular electric field

When an electric field along the z direction is applied to the ultra thin TI film, the degenerate
spin bands split - this is called Stark effect. The splitting is proportional to the strength of the
electric field.

The electric field couples the surface states on the electron band and the hole band with
the same spin and k values (Fig. 4.13 and 4.14 ). This is the fundamental mechanism for the
charge-qubit operation used to rotate a TI charge qubit on a Bloch sphere. The single qubit
rotation will be discussed in detail in the following section.

When the strength of the electric field becomes too high, the surface state is pushed
towards the bulk and coupled with bulk states (Fig. 4.15 and Fig. 4.16). Therefore, we need
to keep this in mind and only use an electric field with a moderate strength.

A point to note is that we use E to represent the electric field throughout this chapter,
which is the potential energy difference of the electric field across the thickness of the film.
The electric field strength is proportional to E since the film is kept at a constant thickness to
study a single qubit.

4.3 Single-qubit study

In order to study the quantum control of a charge qubit, we need to define a suitable two-level
system. We learnt from the previous section that the there are four surface states at the Gpoint
(see Fig.4.2 Fig.4.3 Fig.4.4 Fig.4.5). |S1i is defined as a surface state on the hole band with
sz =�1

2 . |S2i is defined as a surface state on the hole band with sz =
1
2 . |S3i is defined as

a surface state on the electron band with sz =
1
2 . |S4i is defined as a surface state on the

electron band with sz =�1
2 . It is natural to define the qubit state F0 as a state where most

charge density is located on the bottom surface (where QL = 0) and state F1 as a state where
most charge density is on the top surface (where QL = d). We have learnt from above that
a perpendicular electric field will couple the states on the hole and electron bands with the
same quantum number (k, sz etc.). In this chapter, we decided to use the spin up ’surface
state’ on the hole band (see Fig. 4.3) and the spin up ’surface state’ on the electron band (see
Fig. 4.4) in a 5QL TI. We will call these states |S2i and |S3i respectively. By combining
the two states in two different ways as :|S2i±|S3i, we obtain a pair of states located on the
top/bottom surfaces (Fig. 4.17 and Fig. 4.18). In this chapter, we define our qubit as :
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Fig. 4.13 Spatial distributions of the wave function densities of a spin up ’surface state’ on the
hole band at the G point in a 5QL TI thin film, with an electric field (E = 0.00875eV, note:
E is the potential energy difference of the electric field across the thickness of the film, and
we use this to represent the electric field throughout this chapter. The electric field strength is
proportional to E.) applied in the z direction. |y1|2 to |y4|2 are the wave function densities of
the basis states |y1i to |y4i of the TI Hamiltonian in Eq. 4.1. The detailed electronic states
of |y1i to |y4i are shown in Eq. 2.26. The wave function densities of |y3i and |y4i are
equal to zero. The wave function density of the ’surface state’ spans over the whole thickness
of the TI, with most densities being near the surfaces.
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Fig. 4.14 Spatial distributions of the wave function density of a spin up ’surface state’ on the
electron band at the G point in a 5QL TI thin film, with an electric field (E = 0.00875eV
note: E is the potential energy difference of the electric field across the thickness of the
film, and we use this to represent the electric field throughout this chapter. The electric field
strength is proportional to E.) applied in the z direction. |y1|2 to |y4|2 are the wave function
densities of the basis states |y1i to |y4i of the TI Hamiltonian in Eq. 4.1. The detailed
electronic states of |y1i to |y4i are shown in Eq. 2.26. The wave function densities of |y3i
and |y4i are equal to zero. The wave function density of the ’surface state’ spans over the
whole thickness of the TI, with most densities being near the surfaces.
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Fig. 4.15 Spatial distributions of the wave function densities of a ’surface state’ at kx = 0.01,
ky = 0 on the electron band with its spin pointing almost perpendicular (sy = �0.44) to
its direction of motion, in a 5QL TI thin film, with an electric field (E = 1eV, note: E is
the potential energy difference of the electric field across the thickness of the film, and we
use this to represent the electric field throughout this chapter. The electric field strength is
proportional to E.) applied in the z direction. |y1|2 to |y4|2 are the wave function densities of
the basis states |y1i to |y4i of the TI Hamiltonian in Eq. 4.1. The detailed electronic states
of |y1i to |y4i are shown in Eq. 2.26. The wave function densities of |y3i and |y4i are
equal to zero. The wave function density is localised near one surface with nodes, indicating
that the electron is excited to a higher energy state.
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Fig. 4.16 Spatial distributions of the wave function densities of a ’surface state’ at kx = 0.01,
ky = 0 on the electron band with its spin pointing almost perpendicular (sy = 0.44) to its
direction of motion, in a 5QL TI thin film, with an electric field (E = 1eV, note: E is the
potential energy difference of the electric field across the thickness of the film, and we
use this to represent the electric field throughout this chapter. The electric field strength is
proportional to E.) applied in the z direction. |y1|2 to |y4|2 are the wave function densities of
the basis states |y1i to |y4i of the TI Hamiltonian in Eq. 4.1. The detailed electronic states
of |y1i to |y4i are shown in Eq. 2.26. The wave function densities of |y3i and |y4i are
equal to zero. The wave function density is localised near one surface with nodes, indicating
that the electron is excited to a higher energy state.
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Fig. 4.17 Spatial distributions of the wave function densities of |F0i at the G point in a 5QL
TI thin film. It is a combinational state of the ’surface states’ in Fig.4.3 (|S2i) and Fig. 4.4
(|S3i), where |F0i= |S2i� |S3i. |y1|2 to |y4|2 are the wave function densities of the basis
states |y1i to |y4i of the TI Hamiltonian in Eq. 4.1. The detailed electronic states of |y1i to
|y4i are shown in Eq. 2.26. The wave function densities of |y3i and |y4i are equal to zero.
The wave function density corresponding to |F0i is localised on one surface.
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Fig. 4.18 Spatial distributions of the wave function densities of |F1i at the G point in a 5QL
TI thin film. It is a combinational state of the ’surface states’ in Fig.4.3 (|S2i) and Fig. 4.4
(|S3i), where |F1i= |S2i+ |S3i. |y1|2 to |y4|2 are the wave function densities of the basis
states |y1i to |y4i of the TI Hamiltonian in Eq. 4.1. The detailed electronic states of |y1i to
|y4i are shown in Eq. 2.26. The wave function densities of |y3i and |y4i are equal to zero.
The wave function density corresponding to |F1i is localised on one surface.
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|F0i=
1p
2
(|S2i� |S3i), (4.2)

|F1i=
1p
2
(|S2i+ |S3i). (4.3)

A general state on Bloch sphere is:

|Fi= cos
✓

q
2

◆
|F0i+ sin

✓
q
2

◆
|F1ieif . (4.4)

The thickness of a TI thin film is also an important factor when choosing a pair of suitable
states. As in the case for charge qubits in a double quantum well, when the sub-wells are too
close together, the states are overlapped. The combined states are no longer centred on one
side and part of wave function density leaks into other surface, as the case QL = 1 shown in
Fig. 4.19; this would increase the difficulty to measure the qubit accurately. Alternatively,
when the TI becomes too thick, the gap is too small to separate the two levels and thermal
excitation will introduce unwanted couplings between the qubit states, which increases the
error rate of the qubit system. Therefore, it is a trade-off between the two factors when
choosing a suitable thickness to establish our charge qubit system in TI. In this chapter, we
choose a 5QL TI as our system to study a charge qubit.

Another factor to consider is the valid range of k values to use for the qubit system. This
is related to setting up a suitable Fermi level in an experiment. As we see from Fig. 4.4 and
Fig. 4.10, the state is symmetric around the centre at the G point. Away from the G point, the
state is no longer symmetric, with a growing tail of the atomic state with opposite spin owing
to spin-orbit effect. The resultant state is insensitive to the electric field due to the spin-orbit
effect and is difficult to do qubit operations with it. Therefore, we need to select states in
a range of k close to the G point. We find that within our model, a state with |k| value up
to 0.0002Å�1 (with spin < sz >= 0.498) is still a good state for qubit operation. A way to
determine whether a state can be a good qubit state is by measuring its spin. If the spin is
mostly along sz, then the effect of quantum confinement is dominant and the state is suitable.
Otherwise, spin-orbit coupling is significant and the state is not suitable for charge qubit
operations.

When the electron is in a combined state of a two-level system, the phase of the state will
vary periodically in time. An electron in a combined state can be written as:

|Fi= e�ieS2 t/h̄(a |S2i+bei(eS2�eS3)t/h̄ |S3i). (4.5)

From equation 4.5, we see that |Fi will experience a periodic phase variation inversely
proportional to the energy difference of the two levels |eS2 � eS3 |. This sets up a time scale
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Fig. 4.19 Spatial distributions of the total wave function density (|y1|2+ |y2|2+ |y3|2+ |y4|2)
of a ’surface state’ at the G point in TI thin films of various thickness (1QL - 5QL). |y1|2 to
|y4|2 are the wave function densities on the basis states |y1i to |y4i of the TI Hamiltonian
in Eq. 4.1. The detailed electronic states of |y1i to |y4i are shown in Eq. 2.26. The figure
indicates that the thinner the TI thin film is, the more the wave function density of the electron
spread out across the TI thin film.
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Fig. 4.20 Oscillation period of a TI thin film initially in the |F0i state vs various thickness
(1QL - 5QL). The period increases with the thickness of TI thin film, since the band gap
energy decreases with the thickness of TI thin film.

for the operation time of a qubit rotation on the Bloch sphere. In Fig. 4.20, we can see that
the operation time is on a scale of (10�3-10�1 ps); more specifically, it is 0.3626ps for 5 QL
TI.

4.3.1 Initialisation

In a quantum computation experiment, we always need to initialise our qubit into a known
state so we can decide what operation will be applied to it later in the experiment. In the rest
of this chapter, we choose to study a localised qubit in a TI quantum dot (i.e. the quantum
states at k = 0). Here we choose the initial state to be |F0i (Fig. 4.17). This can be done by
setting the Fermi level in or below the gap of the Dirac cone; then the hole bands of the Dirac
cone are filled while the electron bands are empty. When we apply a static electric field to the
TI system, the electron will be excited to a combined state of F0 and F1. By applying a pulse
with suitable strength for an appropriate time duration, the electron will go to state F0. In our
simulation, it is found to be a pulse of E = 0.00875eV (note: here, E is the potential energy
difference of the electric field across the thickness of the film, and we use this to represent the
electric field throughout this chapter. The electric field strength is proportional to E.) , and
duration t = 0.13ps.The spin is preserved during this electric dipole transition. Alternatively,
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Fig. 4.21 Traces of a single qubit rotation on a Bloch sphere when a static electric field is
applied perpendicular to the TI thin film, with E being the energy difference across the film
between 0eV and 0.00875eV and E1 < E2. The traces indicate that the rotation is governed
by a single rotational matrix with an axis lying in the xz plane. When there is no electric field
applied, the trace is a rotation with respect to the x axis (blue trace). When the electric field
switches on, the rotational axis tilts from the x axis and becomes a combination of rotations
with respect to the x and z axes (the cases E = E1 and E = E2 correspond to the green and
orange traces, respectively.). As the electric field increases, the rotational axis tilts toward
the z axis. Note that the Bloch sphere is drawn at 90% size to clarify the diagram.

an electron can be injected into the electron band of the system. In order to find the suitable
strength and time duration of the pulse, we need to understand how the qubit is rotated under
a static perpendicular electric field on the Bloch sphere. We apply a static electric field
perpendicular to the TI quantum dot with the various energy differences between the top and
bottom surfaces ((0�0.07eV)) and find that the qubit rotates in a close circle on the Bloch
sphere (Fig. 4.21). The axis of the circle always goes through the centre of the Bloch sphere
and lies on the xz plane. This rotation is independent of the initial position of the qubit on
the Bloch sphere. Because the axis always lies in the xz plane irrespective of the strength, a
qubit starting from a surface state (e.g. |S2i) will rotate into states |F0i or |F1i at half of the
rotational period. Therefore, if we find a pulse such that the rotational axis is at 45� with
respect to the z axis, after half of the rotational period the qubit will be exactly at |F0i (or
|F1i, depending on the direction of the electric field). The angle of the axis with respect to z
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Fig. 4.22 Traces of a single qubit rotation on a Bloch sphere when a static electric field is
applied perpendicular to the TI thin film, with E being the energy differences across the
film larger than 0.0525eV (blue trace: 0.0525eV, orange trace: 0.0530eV, yellow trace:
0.0535eV, purple trace: 0.0540eV and green trace: 0.0545eV). The traces are no longer
circular since the electronic fields are too large which significantly modifies the states during
the operation. Note that the Bloch sphere is drawn at 90% size to clarify the diagram.

axis is found to be inversely proportional to the strength applied (Fig. 4.23). When there is
no field applied to the system, the qubit rotates spontaneously following a closed circle with
the rotational axis at 90�(see Fig. 4.21). This rotation is described by equation 4.5. We can
see that as the field becomes larger, the angle is closer to zero. However, from Fig. 4.22 and
section 4.2.3, we see that the qubit does not follow a circular trace any longer when the field
becomes too high and the bulk states may interact with the qubit. Therefore, we need to keep
the electric field at a moderate strength to reduce the error rate during operation.

4.3.2 Qubit operation

In order to rotate the qubit to an arbitrary location on a Bloch sphere, we need to manipulate
the qubit with respect to two orthogonal axes. From the last subsection 4.3.1, we see that
when there is no field present, the qubit rotates with respect to the x axis, achieving the sx

rotation. The rotational period is proportional to the band gap width and was shown in Fig.
4.20 for TIs of various thickness. The equation of this rotation for a state on the same path
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Fig. 4.23 Angle of the rotational axis with respect to the z axis when a static electric field is
applied perpendicular to the TI thin film; qr is the conventional polar angle used in spherical
coordinate systems. qr decreases with E, the energy difference across the film.

with F0 and F1 is:

|Ft 0 i= R̂x(q ,f) |Ft0i , (4.6)

= cos
✓

qt 0

2

◆
|F0i+ sin

✓
qt 0

2

◆
eift0 |F1i . (4.7)

The rotation operator R̂x(q ,f) only changes the q angle: Dq = wx(t 0 � t0), where wx is the
angular frequency of the qubit rotation without the field. Because wx is proportional to the
band gap width, it is easy to obtain in an experiment via the relation wx =

(Eelectron�Ehole)
h̄ .

In subsection 4.3.1 we saw that when a static electric field is applied, the qubit undergoes
a rotation in a closed circle on the Bloch sphere (Fig. 4.21). We note here that the Bloch
spheres in the thesis are plotted at 90% size to clarify the single-qubit rotation diagrams.
However, the rotational axis is not orthogonal to the x axis and it has a finite component
along the x axis in general (Fig. 4.23). Theoretically, we should be able to rotate the qubit
with respect to the z axis when the electric field is sufficiently large. But according to our
numerical simulation, the result in Fig. 4.22 shows that when the electric field is too large
the circular trace is significantly distorted, so we need to find an alternative effective sz or sy

rotation. By applying the electric field in the opposite direction, we find that the rotational
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Fig. 4.24 Traces of single qubit rotations with a static electric field applied perpendicular to
the TI thin film (blue trace, blue dotted line with arrow being the rotational axis) and the
same field applied in a reverse direction (orange trace, orange dotted line with arrow being
the rotational axis). The rotational axis is reflected with respect to the z axis. Note that the
Bloch sphere is drawn at 90% size to clarify the diagram.

axis is reflected symmetrically to the z axis (Fig. 4.24). Therefore, if we apply a pulse with
linear +E and �E, we may be able to cancel out the rotation with respect to the x axis.
However, this is not trivial, and we were not able to find a two-part pulse that outputs an
effective sz rotation. Inspired by a previous study in double quantum well in our group, we
decided to study whether a three-part pulse can accomplish an effective sz rotation. A sz

rotation on a Bloch sphere is:

|Ft 0 i= R̂z(q ,f) |Ft0i , (4.8)

= cos
✓

qt0
2

◆
|F0i+ sin

✓
qt0
2

◆
ei(ft0) |F1i , (4.9)

which only changes the phase angle f .
We find that a three-part pulse is able to accomplish a position-independent effective sz

rotation (Fig. 4.26). The pulse consists of three linear pulses at the same strength (Fig. 4.25).
We apply a linear pulse E for a duration t1, then reverse the direction of the field (-E) for a
duration t2, and then switching back to E for a duration t1; in this way, we are able to perform
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Fig. 4.25 Three-part electric pulse used to achieve an effective sz rotation. A static electric
field of E = 0.00875eV is applied perpendicular to the TI thin film in the first part of the
pulse, followed by the same field applied in the opposite direction. The third part of the pulse
is identical to the first part of the pulse, with the same time duration. The second part of the
pulse is significantly longer than the first (and third) part of the pulse in this specific case.
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Fig. 4.26 Trace (orange colour) of an effective 180�sz rotation on the Bloch sphere, for
a qubit initially at q = 90�,f = 0�. The blue pointer indicates the ending position of the
rotation. q and f are the conventional polar and azimuthal angles used in spherical coordinate
systems. Note that the Bloch sphere is drawn at 90% size to clarify the diagram.

an effective sz rotation. Like for the initialisation pulse, the strength of the electric field and
the duration t1 and t2 need to be chosen carefully.

We will now show how the pulse works to give an effective sz rotation. From Fig. 4.27
we see that the qubit first rotates along the path t1 for a time t = t1, then rotates along the
path t2 for t = t2, and eventually rotates along the path t3 for t = t3 (t3 = t1). By observing
the effective trace, we can see that all of the three parts of the pulse contribute to the sz

rotation, while the second and third part are chosen carefully to cancel out the extra rotation
along the x axis: t1 and t2 need to be matched to completely cancel out the sx rotation. We
keep the strength fixed, set the duration t1 and find a matching duration of t2. We choose to
study a qubit at F0 at t = 0 since, according to Eq. 4.8, |Ft 0 i= |F0i, it is easy to measure
experimentally. Because reversing the direction of the field of a moderate strength always
yields a rotation with respect to a reflected axis, we decide to use the pulse with the same
initialisation strength of E = 0.00875eV, which gives an axis of 45� with respect to the z
axis. Pulses with other strengths are able to accomplish an effective sz rotation as well as
a matching t1 and t2 (see Fig. 4.28). A correct duration t2 is found by applying a two-part
pulse being the first part equal to t1 with +E, the second part equal to TE with�E, where TE
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Fig. 4.27 Trace of an effective sz rotation for a qubit initially at q = 0�, f = 0� [following
the direction of the path t1 ! t2 ! t3(t3 = t1)]. q and f are the conventional polar and
azimuthal angles used in spherical coordinate systems. The qubit returns to its original state
as expected. The rotation is achieved by applying a three-part pulse shown in Fig. 4.25. The
static field is applied perpendicular to the TI thin film for t1. Then the field’s direction is
reversed for t2 and is switched back for t1. Note that the Bloch sphere is drawn at 90% size
to clarify the diagram.
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Table 4.1 t1, t2 and Df in an effective sz rotation. t1 and t2 are the time durations of the
three-part pulse shown in Fig. 4.25 and f is the conventional azimuthal angles used in
spherical coordinate systems.

t1(ps) 0.007 0.013 0.020 0.026 0.033 0.040 0.046 0.053 0.060
t2(ps) 0.251 0.245 0.242 0.240 0.239 0.240 0.244 0.248 0.253
f(�) 26 51 73 93 112 128 142 157 170

is the total time to complete a full rotation under a static field �E, so the qubit will return to
the same position at the end of duration t1. By searching for Ft1+t2 along the path satisfying
the condition: qt1+t2 = qt1 , we find the corresponding time t2. From Fig. 4.29 we see that this
is, in fact, the time duration to go to the other crossing point B for two individual rotations
with axis 1 and axis 1’ and the same initial position at (A = Ft1); t2 is the time duration to go
to B along path 2 from A. Here we show some matching t1 and t2 values (table 4.1) and the
corresponding phase angle rotated in Fig. 4.30.

The operation time and Df of an effective sz rotation both increase with t1 in general.
(Fig. 4.31). A total time of 0.31ps accomplishes a rotation close to 180�. In fact, we do not
need to further increase t1 to achieve a rotation of more than Df = 180� but we can simply
reverse the direction of the field while keeping t1 and t2 the same. The resultant rotation at
t = t1 + t2 will have Df 0 =�Df .

Fidelity is an important concept in the study of qubit control and is defined for the TI
qubit as:

Ft0,t1 = |
⌦
Fq ,f

��Ft1
↵
|2. (4.10)

Fq ,f is the corresponding state on the Bloch sphere after a designed rotation. The fidelity
of an effective sz rotation with rotational angle at Df = 93� is shown in Fig. 4.32. The
fidelity of this rotation is as high as 99.9% (Fig. 4.32). The small errors could come from the
numerical calculations since the staggered leapfrog method is an approximation method. This
confirms that the effective sz rotation for the TI charge qubit is indeed position-independent
and this three-part pulse is able to accomplish an effective sz rotation with very high fidelity.

4.3.3 Read-out

In order to measure the qubit, the coefficients on a Bloch sphere in Eq. 4.4 need to be related
to measurable properties. For a charge qubit in a TI quantum dot, the TI quantum dot is
sandwiched between a source electrode and a drain electrode [50] (More information about
the experimental set-up of the TI quantum dot will be discussed in the following section.).
When an electron tunnels to the source/drain electrode, it causes a change in the source-drain
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Fig. 4.28 Two traces of the effective 158� sz rotations for the qubit initially at F0 (blue trace;
note that sz rotation adds an overall phase to the qubit at F0, which can be ignored) and at
q = 90�, f = 0� (orange trace). q and f are conventional polar and azimuthal angles used
in spherical coordinate systems. The pulse applied is the three-part pulse shown in Fig. 4.25
with the magnitude |E|= 0.01653eV. Note that the Bloch sphere is drawn at 90% size to
clarify the diagram.
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Fig. 4.29 Two traces of a single qubit rotation with different types of electric field pulses
for the qubit at F0. Blue trace: a full circular single qubit rotation with a static electric
field applied perpendicular to the TI thin film. Yellow trace: a single qubit rotation under
a two-part pulse, which consist of two static but opposite electric fields(at the same energy
difference across the film, E, as path 1). The first part of the pulse is applied for t1 and the
second part of the pulse is applied during a whole period for a full circular rotation. This
figure is useful to find the corresponding t2 in the three-part pulse(Fig. 4.25) for sz rotation.
The time taken for the qubit on path 2 to point A on the Bloch sphere is recorded as t1 and
the time duration taken from A to B on path 2 is the corresponding time t2 (the longer orange
route goes over the sphere in the figure). Note that the Bloch sphere is drawn at 90% size to
clarify the diagram. The inset shows the pulse profiles to achieve the two traces.
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Fig. 4.30 Dq in an effective sz rotation vs t1. q is the conventional polar angle used in
spherical coordinate systems and t1 is the time duration of the first part of three-part pulse
shown in Fig. 4.25.

Fig. 4.31 Total operation time of an effective sz rotation vs t1. t1 is the time duration of the
first part of three-part pulse shown in Fig. 4.25.
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Fig. 4.32 Fidelity of an effective sz rotation for Df = 93� vs various qubit states (in the range
of q 2 [0�,180�], f 2 [0�,350�]) on the Bloch sphere. q and f are conventional polar and
azimuthal angles used in spherical coordinate systems. This figure shows that the effective
sz is indeed universal and position-independent. The fidelity is extremely high, which is over
99.9%.
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current. Ie = Im � IB, where Ie, Im and IB being, respectively, the current caused by a single
electron, the current measured and the source-drain current where there is no electron. In
this section, we assume IB = 0 for simplicity. The measurement is done by measuring the
current Ie. We define the current I0 as the current flowing into the electrode attached to the top
surface of TI and I1 as the current flowing into the electrode attached to the bottom surface.
Because the qubit states we use are located on top/bottom surfaces, the wave function can be
written as:

F0(z) = FT 0(z)+FB0(z), (4.11)

F1(z) = FT 1(z)+FB1(z), (4.12)

where FT 0(1) and FB0(1) are wave function with all of the electron density located on the
top/bottom surfaces.

Since F0(z) and F1(z) are orthogonal, we have:
Z z

�z
F0(z)⇤F1(z)dz =

Z z

�z
FT 0(z)⇤FT 1(z)dz+

Z z

�z
FT 0(z)⇤FB1(z)dz+ (4.13)

Z z

�z
FB0(z)⇤FT 1(z)dz+

Z z

�z
FB0(z)⇤FB1(z)dz (4.14)

= 0, (4.15)

and Z z

�z
FT 0(z)⇤FB1(z)dz =

Z z

�z
FB0(z)⇤FT 1(z)dz = 0. (4.16)

Since there is no overlap between wave functions located on the top and bottom surfaces.
Z z

�z
FT 0(z)⇤FT 1(z)dz =�

Z z

�z
FB0(z)⇤FB1(z)dz. (4.17)

For a general qubit state on the Bloch sphere, we can write:

F(z) = aF0(z)+bF1(z), (4.18)

= a(FT 0(z)+FB0(z))+b (FT 1(z)+FB1(z)). (4.19)

where a = cos
�q

2
�

and b = sin
�q

2
�
eif .

To measure the probability of F on the top surface, we have:

PT =
Z z

0
F(z)⇤F(z)dz =

Z z

0
(a⇤F⇤

T 0(z)+b ⇤F⇤
T 1(z))(aFT 0(z)+bFT 1(z))dz, (4.20)
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which can be written as:

PT = |a|2P0 + |b |2P1 +a⇤b
Z z

0
F⇤

T 0(z)FT 1(z)dz+ab ⇤
Z z

0
F⇤

T 1(z)FT 0(z)dz. (4.21)

The integrals P0 and P1 can be obtained by measuring the current through the top surface
when the qubit is in the state F0 or F1. The latter two terms are the overlap of F0 and
F1 on the top surface. Recalling Eq. 4.2 and making use of the values of

R z
0 S2⇤S3dz and

R z
0 S2⇤S2dz:

Z z

0
S2⇤S3dz =

1
4
(P1 �P0 +

Z z

0
F⇤

T 0(z)FT 1(z)dz�
Z z

0
F⇤

T 1(z)FT 0(z)dz), (4.22)
Z z

0
S2⇤S2dz =

1
4
(P1 +P0 +

Z z

0
F⇤

T 0(z)FT 1(z)dz+
Z z

0
F⇤

T 1(z)FT 0(z)dz). (4.23)

We have the overlapping integrals:

P01 =
Z z

0
F⇤

T 0(z)FT 1(z)dz = 2
Z z

0
S2⇤S3dz+2

Z z

0
S2⇤S2dz�P1, (4.24)

P10 =
Z z

0
F⇤

T 1(z)FT 0(z)dz =�2
Z z

0
S2⇤S3dz+2

Z z

0
S2⇤S2dz�P0. (4.25)

Recall |a|2 + |b |2 = 1. a and b then can be calculated from Eq. 4.21.
At the G point, since the wave functions of the qubit state F0 and F1 are mirror image of

each other, we have:
P01 = P10 = 0. (4.26)

Eq. 4.21 then reduces to:
PT = |a|2P0 + |b |2P1. (4.27)

PT can be simply related to |a| and |b | as:

|a|2 = P1 �PT

P1 �P0
, (4.28)

|b |2 = PT �P0

P1 �P0
. (4.29)

(4.30)

The current I0 through the top surface is proportional to PT as I0 = nPT , where n is the current
density. Therefore, the probability of finding an electron on the top surface is directly linked
to the superposition coefficients of the qubit state. Hence, we are able to read the output of
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the wave function of a charge qubit in TI and, therefore, fulfils the DiVincenzo criterion V
(see Ch.1).

4.4 The two-qubit gate

The two-qubit operation for TI quantum dots is analogous to that implemented in semicon-
ductor double quantum dots. It can be realised by electrostatically coupling two adjacent TI
quantum dots, as proposed for semiconductor quantum dots in [101] and [36], or driven by
microwaves [90] or acoustic waves [7]. For example, the two-qubit interaction Hamiltonian
for two TI quantum dots positioned in parallel in the two-qubit logic state basis |00i, |01i,
|10i, |11i can be described by:

H =
J
4

s1
z ⌦s2

z , (4.31)

where J =UT T +UBB �UT B �UT B is the electrostatic coupling between the two quantum
dots. UT T , UBB and UT B are the electrostatic coupling energies of the two quantum dots with
electrons staying on the top, bottom, or top and bottom surfaces of TI quantum dot 1 and TI
quantum dot 2. They can be related to the capacitance of the relevant part of the quantum
dot by a capacitance model [111]. UT T (BB) = e2CT T (BB)/C2

S and UT B = e2CT B/C2
S, where

CT T (BB) is the capacitance between top (bottom) surfaces of the TI quantum dots, CS is the
total capacitance of a single TI quantum dot and CT B is the capacitance between the top and
bottom surface of TI quantum dot 1 and TI quantum dot 2. Detailed computation using an
electrostatic interaction between TI qubits was beyond the resources of the group. It would
have required tens of millions of position basis states. This work is now being considered for
our GPU servers.

4.5 Discussion and summary

In this chapter we have proposed a static charge qubit in an ultra-thin TI fulfilling the
DiVincenzo’s criteria I, II, IV, V. (Ch. 1) This is a charge qubit of high fidelity (99.9%) which
can be read out easily using conventional techniques, such as with a quantum point contact
or a single-electron transistor [44]. A possible experimental setup for this TI quantum dot is
described in Hayashi’s paper [49] for their semiconductor double quantum dot, with a source
and a drain electrode. In the case of a TI quantum dot, there is no need to implement gates to
define the quantum dot. This simplifies the procedure of manufacturing a quantum dot in TI.
The source-drain voltage is used for the initialisation, single-qubit operation and measurement
process. Like other semiconductor quantum dots, decoherence is expected to occur in a



4.5 Discussion and summary 73

TI quantum dot. TI quantum dots are a new research field so there is no experimental
measurement of decoherence times of a TI qubit and the underlying decoherence mechanisms
are under active research [53] [70]. However, given the similarity to a semiconductor quantum
dot, a rough estimate of the decoherence time would be longer than 100ns [49], which is the
decoherence time of a GaAs quantum dot. The difference in decoherence time is attributed
to the weak coupling of the isolated qubit to the noise from quantum fluctuations of charge
in the surrounding gates and a reduction in the obtention of high-frequency noise to travel
down to the qubit [49]. Because we do not need many gates to define a TI quantum dot,
the decoherence time could be longer than the GaAs case where the background charge
fluctuation and noise in the gate voltages are a significant cause of decoherence. Also,
because of the topological protection of a TI, we would expect this qubit to have longer
decoherence time. In this section we will discuss some questions related to realising such
a qubit in an experiment. From section 4.3 we see that the operation time is of order of
0.1ps, which would require a fast pulse. Although it is desirable to have fast qubits, which
allow for high speed calculation and fits error correction schemes, the operation time of a
few 0.1ps is beyond the capability of controlling apparatus. Typical electric field pulsing
times are in a range of a few tens to thousands of picoseconds [50]. Although the operation
time can be increased by using a smaller electric field, it is still much lower than the range
of the operation times we desire. One way to solve this problem is to run the operation for
multiple periods additional to the operation time, i.e. t 01 = t1 +nTE where TE is the period
of the qubit rotation under a static electric field of the same strength. In this way, we can
control the operation time to be in the range that controlling apparatus can manage and yet
still be very fast. The same is true for the electric field strength: since the qubit can rotate
in any direction on a Bloch sphere under a moderate electric field with a carefully designed
pulse operation times t1 and t2, we are able to design a pulse within the equipment capacity
in terms of strength and pulse operation time. The next question we will consider is the
energy of qubit. If we inject an electron with an energy of the quantum state of the electron
band at the G point, we will have a qubit of a single electron. From subsection 4.3.3, we
know the qubit state F0 and F1 at the G point are mirror images of each other and have zero
wave function density on the opposite surface. This offers a convenient way to measure the
qubit in an experiment. If we inject a wave packet of electrons with the same energy (the
momentum k can be different) to one of the surfaces, we have prepared the electrons in one
of the qubit states. In fact those electrons can be viewed as a single qubit since they have
same behaviour under an electric pulse on their Bloch sphere. Indeed, at small k values, the
qubits are almost identical (Fig. 4.33 and Fig. 4.34). In this way, we can obtain a stronger
tunnelling current since the density of state in the momentum space is proportional to k2.
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Fig. 4.33 Spatial distributions of the total wave function density (|y1|2+ |y2|2+ |y3|2+ |y4|2)
of combined states F0 (as in Eq. 4.2) at various kx positions with a fixed |k|= 0.00005Å�1

in a 5QL TI thin film. |y1|2 to |y4|2 are the wave function densities on the basis states |y1i
to |y4i of the TI Hamiltonian in Eq. 4.1. The detailed electronic states of |y1i to |y4i are
shown in Eq. 2.26. The spatial distributions of those qubits are almost overlapped.

However, as mentioned in subsection 4.3.3 and Fig.4.15 and Fig. 4.16, a small tail increment
owing to the spin-orbit effect. In the valid qubit range, we have calculated the overlap of
|hS2|S3i |2 and |hS3|S3i |2 at |k| = 0.00005Å�1 on the top surfaces, and find it to be 0.11
and 0.13, respectively. Therefore, the overlap is small enough and could possibly be omitted
in a measurement.

In this Chapter, we have proposed an implementation scheme of a charge qubit in an
ultra-thin TI. A single qubit rotation can be controlled by electric pulses. We have shown
that the charge qubit can be initialised, rotated arbitrarily on a Bloch sphere, and read out.
This qubit is similar to a charge qubit in a double quantum well and can be manufactured as
a quantum dot.
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Fig. 4.34 Spatial distributions of the total wave function density (|y1|2+ |y2|2+ |y3|2+ |y4|2)
of combined states F1 (as in Eq. 4.2) at various kx positions with a fixed |k|= 0.00005Å�1

in a 5QL TI thin film. |y1|2 to |y4|2 are the wave function densities on the basis states |y1i
to |y4i of the TI Hamiltonian in Eq. 4.1. The detailed electronic states of |y1i to |y4i are
shown in Eq. 2.26. The spatial distributions of those qubits are almost overlapped.





Chapter 5

A Spin Qubit in An Ultra-thin TI Film

5.1 Introduction

Since the discovery of a spin in the Stern-Gerlach experiment in 1921, the study of spin
physics has never ceased. As an internal degree of freedom of a particle, it has led to many
interesting fundamental phenomena and new discoveries in physics. One famous example is
the quantum spin hall effect [63]. Thanks to the development of techniques related to spin
physics, we can measure and control this internal degree of freedom of a particle and create a
different type of qubit other than a charge qubit. Since the first proposals of using a nuclear
spin [39] or an electron spin in a quantum dot [74] for quantum computing in 1997, the study
of a spin qubit has been a very active research field [29] [19] [59]. Spin states of particles are
promising for quantum computation and quantum-information processing, and have been
studied in various physical systems [1] [28] [113]. There are two main types of spin qubits:
the first one makes use of a nuclear spin [39], while the second one exploits electron spins in
confined quantum dots [74]. In an ultra-thin TI quantum dot, we can define a spin type of
qubit with electrons on surface states with opposite spins that are separated by a hybridisation
gap. The prominent decay channels for spin qubits is the spin-orbit interaction and hyperfine
interaction [59] [57] [32]. Decay through the spin-orbit interaction is a phonon-mediated
process that will relax the qubit to the lower energy state in the two-level system and it
is considered to be the major source of decoherence for electron spin qubits [59]. It has
been calculated in [57] that the relaxation time is, T1 µ h̄(De)4

(gµBB)5 , where De is the band gap
difference of the two-level system and gµBB is the Zeeman splitting induced by the magnetic
field. For an ultra-thin TI, T1 ⇡ 0.01s under a magnetic field as large as 1T. It should be
noticed that when the magnetic field becomes very large, the relaxation time is increased
rather than decreased [40], because the phonon size becomes much smaller than the quantum
dot, and the phonon-induced effects average out when integrating over the whole electron
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wavefunction [59] [40]. Moreover, as the charge qubit (Ch. 4), we found the spin qubit in an
ultra-thin TI are very fast in terms of single qubit rotations and operation time tp ⌧ T1.

In this chapter, we will investigate how to use the electrons on the gapped Dirac cone
for a single-spin-qubit study and how external pulses move the qubit on its Bloch Sphere.
Advanced quantum control of the corresponding two-qubit operation is beyond the scope
of this thesis but will be discussed briefly at the end of this chapter in Sec. 5.5. We will
start the chapter by introducing the modified TI Hamiltonian with an in-plane magnetic field
and discuss the effect of the magnetic field on the states in Sec. 5.2. Then we will define
a suitable two-level system for studying a spin qubit in Sec. 5.3, followed by the study of
initialisation, quabit rotation and qubit measurement in Sec. 5.3.1 - Sec. 5.3.3. In the last
Sec. 5.5, we discuss some experimental related questions and possible solutions.

5.2 System

5.2.1 Model Hamiltonian

When a magnetic field is applied to a topological insulator, there are two type of effects to
be considered. The first one is the orbit effect and the second one is the Zeeman effect. In
this chapter, we apply an in-plane static magnetic field to an ultra-thin TI film and study how
the surface states change with this field. The model Hamiltonian of a TI with an in-plane
magnetic field is:

H = H0(k
0+

eA

h̄
)+HZe, (5.1)

here H0 is the original TI Hamiltonian described in chapter 2 with k substituted of
by k

0+ eA

h̄ , where A represents the vector field. k
0+ eA

h̄ is the Peierls substitution [77]
representing the orbit effect of a magnetic field. The Zeeman splitting is represented by an
extra Hamiltonian HZe.

Because H0 preserves the in-plane rotational symmetry along the z direction, the choice
of the direction of a magnetic field on the xy plane makes no difference physically. The effect
of the field along different directions can be related by rotating the reference frame on the
xy plane. In this chapter, we decide to consider a magnetic field along the y direction. We
have chosen a gauge in which the vector field A = (Bz,0,0) and kx = k0x +

eBz
h̄ . The resultant

Hamiltonian still commutes with kx and ky, but no longer commutes with kz. The modified
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terms in the Hamiltonian H0 are:

C(k) =C0 +C1k2
z +C2k2

y +C2(k0x +
eBz
h̄

)2,

M(k) = M0 +M1k2
z +M2k2

y +M2(k0x +
eBz
h̄

)2,

A0 = A0,

B0 = B0.

Then we add an atomic Zeeman term to our model Hamiltonian H0(k0x). The atomic
Zeeman Hamiltonian is:

HZe =�µ ·B =�
µB(ge f J)

h̄
·B, (5.2)

where µ is the magnetic moment, µB is the Bohr magneton, J is the total angular momentum
operator, ge f is the effective gyromagnetic ratio of Bi2Se3 and B is the magnetic field. In
fact, the effective gyromagnetic ratio of Bi2Se3 is different for different atomic orbits, as
we will see soon. HZe commutes with the total angular momentum J

2 and jz. Following the
discussion on basis states in Ch. 2, we know that the basis of H0 are eigenstates of the total
angular momentum jz. Therefore, the Zeeman term for our TI model can be written as:

HZe =
µB

h̄
(Bx · jx +By · jy +Bz · jz). (5.3)

Here, Ji(i= x,y,z) are the matrices of the total angular momenta along the x, y and z directions
(discussed in Ch. 2) multiplied by the effective g-factor for Bi2Se3. The values are adapted
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from [72] (See table. 5.2.1). In matrix form, Ji(i = x,y,z) are:

Jx =

0

BBB@

0 0 h̄
2g1p 0

0 0 0 h̄
2g2p

h̄
2g1p 0 0 0

0 h̄
2g2p 0 0

1

CCCA
,

Jy =

0

BBB@

0 0 �ih̄
2 g1p 0

0 0 0 �ih̄
2 g2p

ih̄
2 g1p 0 0 0

0 ih̄
2 g2p 0 0

1

CCCA
,

Jz =

0

BBB@

h̄
2g1z 0 0 0

0 h̄
2g2z 0 0

0 0 �h̄
2 g1z 0

0 0 0 �h̄
2 g2z

1

CCCA
.

The adapted effective g-factor values are:

g1p g2p g1z g2z

�4.12 4.80 �25.4 4.10

We can see that absolute values of the entries in Jx and Jy are the same in Bi2Se3 and this
confirms that the direction of the in-plane magnetic field makes no physical difference to the
system. Then we apply the finite difference method described in Chap. 3 to H in Eq. 5.1 and
obtain the numerical Hamiltonian for a TI thin film under a magnetic field:

Table 5.1 Numerical Hamiltonian of a TI under a magnetic field

nz = 1 nz = 2 nz = 3 nz = 4 nz = 5

H 0
0,z=1 +HZe H+1 0

...
... nz = 1

H�1 H 0
0,z=2 +HZe H+1 0

... nz = 2

0 H�1 H 0
0,z=3 +HZe H+1

... nz = 3
... 0 H�1 H 0

0,z=4 +HZe H+1 nz = 4

5.2.2 Effects of an in-plane magnetic field

When a static in-plane magnetic field is applied to a TI with well separated surfaces, the
Dirac cone splits along the direction that is perpendicular to the field (Fig. 5.1). This can
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Fig. 5.1 Band structure of a 40QL TI thin film with an in-plane static magnetic field (By =
10T) along the kx axis and ky = 0. The Dirac cones located on the opposite surfaces split
along the perpendicular direction of electron motion owing to the effect of the magnetic field.

be understood by thinking about the magnetic force experienced by electrons moving under
a perpendicular magnetic field. The vector potential Ax = Bz creates a gradient along the z
direction for the electrons moving in the x direction. Therefore, the Dirac cones located on
the top and bottom surfaces are shifted in the momentum space along the kx direction by
different amounts. The Zeeman effect creates a splitting between the spin degenerate bands,
which lifts the spin-down electronic bands and lowers the spin-up electronic bands. However,
the Zeeman effect is less significant than the orbit effect for a moderate magnetic field in a
TI thin film.

In an ultra-thin TI where the Dirac cones are gapped, the orbital effect causes the Dirac
cones to be shifted in the kx direction. Because the hybridised surface states are expanded
over both surfaces, the two cones are shifted by almost the same amount. The slight difference
is owing to the different distribution over the z axis. The Zeeman effect causes a splitting in
spin-up and spin-down bands (Fig. 5.2).

From Chapter 4 we know that the states on the gaped Dirac cone are governed by two
different effects - hybridisation and spin-orbit coupling. For states near the G point, the
hybridisation effect dominates and the states show features of bonding and anti-bonding
orbits. On the other hand, for states far away from the G point, the spin-orbit coupling
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Fig. 5.2 Band structure of a 3QL TI thin film with an in-plane static magnetic field (By = 10T,
red dots) and without the field (black dots) along the kx axis and ky = 0. The Dirac cones are
hybridised and gapped in the 3QL TI thin film, and the degenerate spin levels split owing to
the effect of the magnetic field.
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Fig. 5.3 False colour plot of an electron band of a 3QL TI thin film with the colours
indicating the energy levels (in units of eV) in the kx � ky plane. The electron band is one of
the degenerate spin bands of the gapped Dirac cone. The arrow indicates spin orientation of
the energy state at that point in the momentum space. The figure shows that the electron band
posing a circular symmetry in kx � ky plane. The spin is perpendicular to the direction of
motion of the electron and most of the spins rotate clockwise. There are a few spins rotating
anticlockwise since the spin bands are degenerate.

dominates and states are more localised on one side. The spin of the states in those regions
show different features as well (Fig. 5.3). In regions near the G point (the centre in Fig.
5.3), the states are hybridised. Therefore, the sx and sy components of such states are very
small and the spin aligns almost the sz direction: this can be seen more clearly from Fig.
5.6. In the region away from the G point, the spin-orbit coupling dominates and the states
maintain the spin-momentum locking property. It is also worth mentioning that although the
spin-orbit coupling dominates in the region that is away from the G point, those states are
still influenced by the hybridisation. Therefore, they have larger < sz > values compared to
those on an intersecting Dirac cone.

When an in-plane magnetic field is applied to the system, the spins of states are affected
by the field and show interesting features. The degenerate gaped Dirac cone (electron bands
and hole bands) splits into two. Fig. 5.4 and Fig. 5.5 show the lower electron band and
the lower hole band. From Fig. 5.4 and Fig. 5.5, we see that the spins of the states form a
pattern that is symmetric around the kx = 0 axis. On the electron band (Fig. 5.4), the spins
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form a pattern that is like the field lines repelling each other around the kx = 0 axis. On the
hole band (Fig. 5.5), the spins form a pattern that is like the field lines attracting each other
around the kx = 0 axis. Along the kx = 0 axis, the spins align with the magnetic field in the
sy direction. This feature is due to the splitting of the degenerate bands according to their
sy components. The states with +< sy > values go to the lower band while the states with
�< sy > values go to the upper band. From the comparison of the sy component of a hole
band with/without a field (see Fig. 5.11 and Fig. 5.12) we can see that the sy component is
positive everywhere on the hole band under a magnetic field By, but it has positive values
and negative values when there is no field. The spin-momentum locking property of the
bands is still preserved to some extent but the degenerate bands split according to their sy

components. Therefore, the helical spin texture is symmetric around the kx = 0 axis. With
the magnetic field, states near theG point where hybridisation dominates, tend to have their
spin aligned with the direction of the field (the sy direction) (Fig. 5.10) and the resultant sz

component becomes zero (Fig. 5.8). Moving away from the G point, where the spin-orbit
coupling dominates, spin-momentum locking is preserved to some extent (apart from the
kx = 0 axis). Therefore, an in-plane magnetic field will cause the sy components of the states
to increase and it splits the degenerate bands with respect to their sy components.

5.3 Single-qubit study

In order to do a spin-qubit study, we need to choose a suitable pair of states. The states
should have opposite spins and be separated by an energy gap. From the last section, we
learnt that, under an in-plane magnetic field, the states near the G points would lie in the
direction that is parallel or anti-parallel to the field, while the states away from the G point
still have some features of spin-momentum locking. We need to be able to operate the qubits
using the magnetic field. It is desired to have a pair of states that will respond to the field
effectively; therefore, we are interested in the region dominated by the hybridisation effect.
We chose the states near the G point as our qubit state since the spin is maximally along the z
direction and it responds to the field effectively (see Fig. 5.6 and fig. 5.7). The states in the
region |k| <= 0.00025Å�1 are suitable for the spin qubit study (Fig. 5.14 and Fig. 5.13).
The states at the G point have the maximum sz components at sz =±1

2 . In this chapter we
define our qubit using the states at the G point in a 3QL TI, which are:

|F0i= |S2i , (5.4)

|F1i= |S4i . (5.5)
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Fig. 5.4 False colour plot of an electron band of a 3QL TI thin film with an in-plane static
magnetic field By = 0.2T on the kx � ky plane. The colours indicate the energy levels (in
units of eV). The arrow indicates the spin orientation of the energy state at that point in the
momentum space. The degenerate electron bands split with respect to their spin component
sy, with all sy > 0 energy states on the same band. The figure is viewed perpendicularly to
the kx � ky plane from above. The spins of states located at ky > 0 possesses negative sz
components and, thus, go into the plane. The figure shows that the electron band possesses a
circular symmetry on the kx � ky plane.
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Fig. 5.5 False colour plot of a hole band of a 3QL TI thin film with an in-plane static magnetic
field By = 0.2T on the kx � ky plane. The colours indicate the energy levels (in units of eV).
The arrow indicates the spin orientation of the energy state at that point in the momentum
space. The degenerate electron bands split with respect to their spin component sy, with all
sy > 0 energy states on the same band. The figure is viewed perpendicularly to the kx � ky
plane from above. The spins of states located at �0.02 < ky < 0, �0.018 < kx < 0.018
possesses negative sz components and, thus, go into the plane. The figure shows that the
hole band possesses a circular symmetry near the G point and an octagonal symmetry when
moves away from the G point on the kx � ky plane.
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Fig. 5.6 False colour plot of the < sz > values of the states on an electron band of a 3QL TI
thin film on the kx � ky plane. The colours indicate the values of < sz > (h̄ = 1). The < sz >
values are larger for the states near the G point.

Fig. 5.7 False colour plot of the < sz > values of the states on a hole band of a 3QL TI thin
film on the kx � ky plane. The colours indicate the values of < sz > (h̄ = 1). The < sz >
values are larger for the states near the G point.
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Fig. 5.8 False colour plot of the < sz > values of the states on an electron band of a 3QL TI
thin film with an in-plane static magnetic field By = 0.2T on the kx � ky plane. The colours
indicate the values of < sz > (h̄ = 1). The < sz > values are significantly reduced when a
magnetic field is applied.



5.3 Single-qubit study 89

Fig. 5.9 False colour plot of the < sy > values of the states on an electron band of a 3QL TI
thin film on the kx � ky plane. The colours indicate the values of < sy > (h̄ = 1). The < sy >
values are positive for states at kx < 0 and negative for states at kx > 0.

Here, |S2i and |S4i are the eigenstates of the gapped Dirac cone of an ultra-thin TI of 3QL
(see Fig. 5.15 and Fig. 5.16) defined in Sec. 4.3. A general state on the Bloch sphere is
written as:

|Fi= cos
✓

q
2

◆
|F0i+ eif sin

✓
q
2

◆
|F1i . (5.6)

5.3.1 Initialisation

In this chapter, we decide to study a localised spin qubit in a TI quantum dot (i.e the quantum
states at k = 0). Because the spin qubits |F0i and |F1i are eigenstates of an ultra-thin TI, it is
easier to initialise than a charge qubit. We can control the Fermi level to be in the middle of
or below the gap. Then the spin qubit is initialised in the hole band at thermal equilibration at
a sufficiently low temperature. Alternatively, the qubit can be initialised by optical pumping
[5].
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Fig. 5.10 False colour plot of the < sy > values of the states on an electron band of a 3QL TI
thin film with an in-plane static magnetic field By = 0.2T on the kx � ky plane. The colours
indicate the values of < sy > (h̄ = 1). The < sy > values are positive for all states on this
band and larger at those points near the ky = 0 axis.
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Fig. 5.11 False colour plot of the < sy > values of the states on a hole band of a 3QL TI
thin film with an in-plane static magnetic field By = 0.2T on the kx � ky plane. The colours
indicate the values of < sy > (h̄ = 1). The < sy > values are positive for all states on this
band and larger at those points near the ky = 0 axis.
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Fig. 5.12 False colour plot of the < sy > values of the states on a hole band of a 3QL TI
thin film on the kx � ky plane. The colours indicate the values of < sy > (h̄ = 1). The < sy >
values are positive for states at kx < 0 and negative for states at kx > 0.

Fig. 5.13 False colour plot of the < sz > values of the states on an electron band of a 3QL TI
thin film on the kx � ky plane. The colours indicate the values of < sz > (h̄ = 1). The < sz >
values are larger for states near the G point and sz =

1
2 at the G point.
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Fig. 5.14 False colour plot of the < sz > values of the states on a hole band of a 3QL TI
thin film on the kx � ky plane. The colours indicate the values of < sz > (h̄ = 1). The < sz >
values are larger for states near the G point and sz =�1

2 at the G point.

5.3.2 Qubit manipulation

In this section we study how to manipulate the spin qubit on the Bloch sphere. Like with
the charge qubit, the combined states a |F0i+b |F1i ,a 6= 0,b 6= 0 will evolve in time as
the phase varies periodically. From the blue trace in Fig. 5.17 and Fig. 5.18, we see this is
equivalent to a sz rotation on the Bloch sphere. We note here that the Bloch spheres in the
thesis are plotted at 90% size to clarify the single-qubit rotation diagrams. The period of this
sz rotation is short in terms of a qubit operation (0.1ps in a 3QL TI) and it depends on the
energy difference of the states we use. The period Tres of the sz rotation of a spin qubit has
the same dependence vs thickness as the sx rotation of a charge qubit (Fig. 4.20).

When a magnetic field is applied to the system, the qubit will rotate on the Bloch sphere.
When we apply a static field to the qubit, the resultant trace is different from the trace of a
charge qubit under a static electric field. From Fig. 5.17 we see that the trace is a spiral rather
than a closed circle. The higher the magnitude of the magnetic field, the more it deviates
from a closed circular path. From Fig. 5.19 we see that Df vs different field strength is very
small and periodic with a period close to Tres. If we consider the change of f in the rotating
frame of a Bloch sphere spinning around z axis at wres (Fig. 5.20), we see that the rotation
under a static field can be resolved into a sz rotation at ⇡ wres plus a rotation with an axis on
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Fig. 5.15 Spatial distributions of wave function densities of a spin down ’surface state’ on the
hole band at the G point in a 3QL TI thin film with energy equal to 0.2067eV. |y1|2 to |y4|2
are the wave function densities of the basis states |y1i to |y4i of the TI Hamiltonian in Eq.
4.1. The detailed electronic states of |y1i to |y4i are shown in Eq. 2.26. The wave function
densities on |y1i and |y2i are equal to zero. The wave function density of the ’surface state’
spans over the whole thickness of TI, with two peaks near the surfaces. This is the logic state
F0 defined for the qubit study in this chapter.
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Fig. 5.16 Spatial distributions of wave function densities of a spin up ’surface state’ on the
electron band at the G point in a 3QL TI thin film,with energy equals to 0.2731eV. |y1|2 to
|y4|2 are the wave function densities of the basis states |y1i to |y4i of the TI Hamiltonian
in Eq. 4.1. The detailed electronic states of |y1i to |y4i are shown in Eq. 2.26. The wave
function densities of |y3i and |y4i are equal to zero. The wave function density of the
’surface state’ spans over the whole thickness of TI, with two peaks near the surfaces. This is
the logic state F1 defined for the qubit study in this chapter.
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Fig. 5.17 Traces of single qubit rotations with an in-plane static magnetic field applied to the
TI thin film at various strengths: B = 0 (blue), B = 3.3T (orange), B = 6.7T (yellow) and
B = 10T (purple). Note that the Bloch sphere is drawn at 90% size to clarify the diagram.

the xy plane. The resultant rotation of a linear pulse is position-dependent. Therefore, we
continue to study whether a pulse sequence can promote a (effective) sy rotation. We study
some linear pulse sequences which consist of two/three linear pulses of the same strength as
the charge qubit case (Ch. 4). We find that a two-part pulse can produce effective sy rotations
on some positions but not on the whole Bloch sphere.

Now we study whether a cosine pulse can produce an effective sx or sy rotation. The
trace of the qubit under such pulse is also a spiral but the increment in q is even compared
with the linear pulse (Fig. 5.21). We find that a cosine pulse at wres can produce an effective
sy rotation at nTres (see Fig. 5.22 and Fig. 5.23), where n 2 Z. This is an effective rotation
with high fidelity which is position independent (Fig. 5.28). By changing the amplitude of
the field, we can promote rotations of different angles (Fig.5.27). From Fig. 5.27 and Fig.
5.26, we can see that the angle rotated in this sy rotation is proportional to the magnitude |B|;
however, the higher the magnitude, the higher f is. This means that the state deviates more
from a sy rotation; nevertheless, the fidelity is still high and acceptable even for a field as
high as 23T (Fig. 5.28). To understand what the cosine pulse does to the qubit, we can view
the rotation in the rotating frame at wres. We see that the path overlapping with the path of a
sy rotation at nTres (Fig. 5.25). This explains why the effective sy rotation occurs at nTres; at
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Fig. 5.18 Dq in a single qubit rotation with an in-plane static magnetic field at various
strengths during a time 2Tres. q is the conventional polar angle used in a spherical coordinate
system. Tres is the natural period of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes
back to its original position on the Bloch sphere when there is no field applied. The figure
shows that the q angle changes periodically on the Bloch sphere with a changing amplitude.
q does not change when there is no field applied.
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Fig. 5.19 Df in a single qubit rotation with an in-plane static magnetic field at various
strengths during a time 2Tres. f is the conventional azimuthal angle used in a spherical
coordinate system. Tres is the natural period of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0
that goes back to its original position on the Bloch sphere when there is no field applied.
The figure shows that the f angle changes periodically on the Bloch sphere with a slight
difference in periodicity with the field strength.
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Fig. 5.20 Df in a single qubit rotation in a rotating frame at wres to the z axis, with an in-plane
static magnetic field at various strengths during a time 2Tres. f is the conventional azimuthal
angle used in a spherical coordinate system. Tres and wres are the natural period and frequency
of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its original position on
the Bloch sphere when there is no field applied. The figure shows that the f angle is almost
constant on the rotating Bloch sphere. The large jump to the next step (Df = 360�) occurs
when the Bloch sphere completes a whole period of rotation.
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Fig. 5.21 Traces of single qubit rotations with an in-plane oscillating magnetic field applied
to the TI thin film at various initial positions on the Bloch sphere. The traces (blue: q =
0�,f = 0�, purple: q = 45�,f = 0�, orange: q = 90�,f = 0� and yellow: q = 180�,f = 0�)
show that the change in latitude of single qubit rotations with the oscillating magnetic field is
evener than with a static field. q and f are the conventional polar and azimuthal angles used
in a spherical coordinate system. The inset shows the shape of the pulse. Note that the Bloch
sphere is drawn at 90% size to clarify the diagram.

t = nTres, the rotating Bloch sphere overlaps with the Bloch sphere of our static spin qubits.
From the pulses studied above, we can understand the effect of a magnetic field as: when
we apply an in-plane magnetic field to the qubit, the natural rotation does not stop. This is
unlike the case of the TI charge qubit. The qubit will continue rotating spontaneously with
an extra effect owning to the magnetic field. Larger angles can be achieved by waiting for
longer times.

What if we change the frequency of the field? If the frequency of the pulse is higher
than wres, we can see from the Fig. 5.29 that the qubit tends to rotate around a smaller and
smaller region as the frequency increases when we view it in the rotating frame. There is
no effective sy or sx rotation found when a pulse of high frequency is applied. On the other
hand, if the frequency is less than wres, the qubit rotates along a different axis (Fig. 5.30).
However, because of the mismatch of the frequency with the rotational frame, the angle
rotated is position-dependent.
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Fig. 5.22 The trace of an effective sy rotation (orange) at the initial position q = 30� and
f = 45� on the Bloch sphere with an in-plane oscillating magnetic field applied to the TI thin
film for 3Tres. q and f are the conventional polar and azimuthal angles used in a spherical
coordinate system. Tres is the natural period of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0
that goes back to its original position on Bloch sphere when there is no field applied. The
blue trace indicates a sy rotation. The initial and final positions of the orange trace are on the
trace of a sy rotation. Note that the Bloch sphere is drawn at 90% size to clarify the diagram.
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Fig. 5.23 The trace of an effective sy rotation (orange) with the initial position q = 90� and
f = 0� on the Bloch sphere with an in-plane oscillating magnetic field applied to the TI thin
film for 3Tres. q and f are the conventional polar and azimuthal angles used in a spherical
coordinate system. Tres is the natural period of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0
that goes back to its original position on Bloch sphere when there is no field applied. The
blue trace indicates a sy rotation. The initial and final positions of the orange trace are on the
trace of a sy rotation. Note that the Bloch sphere is drawn at 90% size to clarify the diagram.
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Fig. 5.24 Traces of effective sy rotations from F0 on the Bloch sphere, with an in-plane
oscillating magnetic field of various strengths applied to the TI thin film for Tres. Tres is the
natural period of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its original
position on the Bloch sphere when there is no field applied. The traces (blue: B = 15T,
orange: B = 16T, yellow: B = 17T, purple: B = 18T and green: B = 19T) show that the
stronger the field is, the larger the change in latitude of the qubit is. Note that the Bloch
sphere is drawn at 90% size to clarify the diagram.
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Fig. 5.25 Traces of effective sy rotations from F0 on the Bloch sphere (same conditions
as Fig. 5.24) viewed in a rotating frame at wres to the z axis with an in-plane oscillating
magnetic field of various strengths applied to the TI thin film for Tres. Tres and wres are the
natural period and frequency of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes
back to its original position on the Bloch sphere when there is no field applied. The traces
(blue: B = 15T, orange: B = 16T, yellow: B = 17T, purple: B = 18T and green: B = 19T)
show that the stronger the field is, the larger the change in latitude of the qubit is. Note that
the Bloch sphere is drawn at 90% size to clarify the diagram.
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Fig. 5.26 Df in an effective sy rotation during a time t = Tres vs the in-plane oscillating
magnetic field strengths. f is the conventional azimuthal angle used in a spherical coordinate
system. Tres is the natural period of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes
back to its original position on Bloch sphere when there is no field applied. The figure shows
that Df increases with the field strength.
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Fig. 5.27 Dq in an effective sy rotation for a t = Tres duration vs the in-plane oscillating
magnetic field strengths. q is conventional polar angle used in spherical coordinate system.
Tres is the natural period of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 to goes back to
its original position on Bloch sphere when there is no field applied. The figure shows that
Dq increases linearly with the field strength.
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Fig. 5.28 Fidelity of effective sy rotations at B = 23T for a t = Tres duration. Fidelity of
an effective sy rotation with an in-plane oscillating magnetic field of 23T vs various qubit
states (in the range q 2 [0,180�], f 2 [0,350�]) on the Bloch sphere for Tres. q and f are
the conventional polar and azimuthal angles used in a spherical coordinate system. Tres is
the natural period of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its
original position on Bloch sphere when there is no field applied. The figure shows that Dq
increases linearly with the field strength. This figure shows that the effective sy is indeed
universal and position-independent. The fidelity is extremely high, which is over 99.99%.
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Fig. 5.29 Traces of single qubit rotations from F0 on the Bloch sphere viewed in a rotating
frame at wres to the z axis with an in-plane oscillating magnetic field of various frequency
applied (blue: w = wres, orange: w = 2wres, yellow: w = 3wres, purple: w = 4wres and
light blue: w = 5wres) to the TI thin film for Tres. Tres and wres are, respectively, the natural
period and frequency of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its
original position on Bloch sphere when there is no field applied. The traces show that the
higher the frequency of field is, the smaller the change in latitude of the qubit is. Note that
the Bloch sphere is drawn at 90% size to clarify the diagram.
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Fig. 5.30 Traces of single qubit rotations from F0 on the Bloch sphere viewed in a rotating
frame at wres to the z axis with an in-plane oscillating magnetic field of various frequency
applied (blue: w = 0, orange: w = 1

4wres, yellow: w = 1
2wres purple: w = 3

4wres and green:
wres) to the TI thin film for Tres. Tres and wres are, respectively, the natural period and
frequency of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its original
position on Bloch sphere when there is no field applied. The traces indicate that when the
frequency is smaller than the natural frequency wres, the qubit follows an effective rotation
on a different axis. However, this rotation is position-dependent. Note that the Bloch sphere
is drawn at 90% size to clarify the diagram.
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5.3.3 Read-out

In this section we discuss how to link the coefficients a and b in Eq. 5.6 on the Bloch sphere
to some quantities that can be measured physically. There are various ways to measure the
spin of an electron (both directly and indirectly) in the literature [38] [96] [9]. For example,
read-out of a single spin qubit in a quantum dot can be achieved by combing spin-to-charge
conversion with real-time single-charge detection [97] [114] [76]. We know that F0 is a spin
up state with sz =

1
2 and F1 is a spin down state with sz = �1

2 . We can measure the spin
current flowing through the leads attached to the top/bottom surfaces to find the proportion
of F0 and F1 of the resultant state.

From Fig. 5.15 and Fig. 5.16, we see that F0 and F1 are symmetric around the centre
in the z direction. Therefore, we can measure the spin current through one surface. We can
write the states as:

F0(z) = FT 0(z)+FB0(z), (5.7)

F1(z) = FT 1(z)+FB1(z). (5.8)

The current through top surface related to the states are:

IT 0 = IT 0#+ IT 0", (5.9)

IT 1 = IT 1#+ IT 1". (5.10)

Where IT X# and IT X" (for X = 0,1) are the spin currents with sz =# and sz =" corresponding
to the states F0 and F1 on the top surface. The spin current (IT 0#, IT 0", IT 1#, IT 1") related
to those states can be measured at the initialisation since we can prepare the qubit in those
states. Since the current I is proportional to the electron density of a state, the spin current
through the top surface for a general state is :

IT =
1
2
(|a|2IT 0 + |b |2IT 1), (5.11)

=
1
2
(|a|2(IT 0#+ IT 0")+ |b |2(IT 1#+ IT 1")). (5.12)

Because we also have the relation

|a|2 + |b |2 = 1, (5.13)
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we can obtain the coefficients (|a|2 and |b |2) by solving Eq. 5.11 and Eq.5.13 simultaneously.
We obtain:

|a|2 =
2IT � IT 1# � IT 1"

IT 0#+ IT 0" � IT 1# � IT 1"
, (5.14)

|b |2 =
2IT � IT 0# � IT 0"

IT 1#+ IT 1" � IT 0# � IT 0"
. (5.15)

If we use the state at the G point for spin qubit, the Eq. 5.9 and Eq. 5.10 are:

IT 0 = IT 0#, (5.16)

IT 1 = IT 1". (5.17)

And we have:

|a|2 =
2IT � IT 1"
IT 0# � IT 1"

, (5.18)

|b |2 =
2IT � IT 0#
IT 1" � IT 0#

. (5.19)

5.4 The two-qubit gate

The two-qubit gate could be realised in the same way as for semiconductor quantum dots
[74]. The electrons with opposite spins in neighbouring TI quantum dots (one electron in
each dot) can interact by exchange interaction [74]. The interaction can be described by the
Heisenberg Model as:

H = JS1 ⌦S2. (5.20)

J is the exchange energy and S1(2) is the spin of the electron in quantum dot 1(2). In
experiments, this two-qubit gate can be implemented by gating a tunnelling barrier between
two neighbouring TI quantum dots and operated electrically as proposed in paper [74]. There
are also other methods to operate a two-qubit gate, such as using microwaves [115] or
acoustic waves [7] [69], or optical control [21]. The computational overhead in modelling
this type of qubit is even greater than for the charge qubit.

5.5 Discussion and summary

In this chapter we have discussed a spin qubit in an ultra-thin TI film that fulfils the require-
ments of DiVincenzo criteria (I, II, IV, V). A possible experimental setup would be similar to
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the setup of a single spin qubit in a double quantum dot in paper [66], where the quantum
dot defined by gates is replaced by a sufficiently thin topological insulator quantum dot.
The oscillating magnetic field that drives the qubit rotation can be generated by applying a
radio-frequency (RF) signal to an on-chip coplanar stripline (CPS) positioned near the TI dot
[66]. Then, we will talk about some possible issues linked to experimental situations. We
know that the frequency of the oscillating magnetic field is linked to the natural frequency
of the two-level system and it is a few GHz. This frequency is very high for the current
experimental condition. Because the frequency is inverse proportional to the thickness of TI,
one way to reduce the frequency is to use a thicker TI film. The amplitude of a time-varying
magnetic field is also a limiting factor in experiments. However, from Fig. 5.27 we learnt that
the angle rotated at each period is proportional to the amplitude |B|. Because this is an ultra-
fast operation of a few 0.1ps, a small magnetic field would be desirable to rotate the qubit for
significant angles. This allows the apparatus to produce controllable pulses. Moreover, the
smaller the amplitude of a field, the higher the fidelity would be. Therefore, we would desire
an oscillating magnetic field with high frequency and a small amplitude. Decoherence is an
important issue to consider for a quantum computer. For a spin qubit in a quantum dot, there
are various sources of decoherence. The fluctuations in the gate voltages and magnetic fields
can be regarded as extrinsic sources of decoherence and those can be reduced with improved
electronics [19]. However, there are also intrinsic sources of decoherence. The electronic
spin can couple to phonons in the surrounding lattice or fluctuate by spin-orbit interactions
[59]. In addition to this, the electronic spin can interact with the surrounding nuclear spins
via contact hyperfine interaction [59]. Given the similarity of a spin qubit in a TI quantum
dot to a spin qubit in a semiconductor quantum dot, the decoherence time at low magnetic
fields ( 100mT) is estimated to be about 1µs [91] [67] and it is possible to increase the
decoherence time by multiple-pulse Carr–Purcell–Meiboom–Gill echo sequence [17]. The
next question to think about is the accompanying current produced in the experiment when a
time-varying magnetic field is applied to the system. We know that a magnetic field in the y
direction will produce a EMF along the edges in the xz plane. This is equivalent to a voltage
along the edges. This voltage causes the states to move along the edges but does not affect
their spin. In this case, we need to measure both the top and bottom surfaces to obtain the
coefficients:

|a|2 =
IT + IB � IT 1# � IT 1" � IB1# � IB1"

IT 0#+ IT 0"+ IB0#+ IB0" � IT 1# � IT 1" � IB1# � IB1"
, (5.21)

|b |2 =
IT + IB � IT 0# � IT 0" � IB0# � IB0"

IT 1#+ IT 1"+ IB1#+ IB1" � IT 0# � IT 0" � IB0# � IB0"
. (5.22)
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In this chapter, we studied a static spin qubit constructed using the surface states with
opposite spin in an ultra-thin TI film. We found that the qubit can be initialized and rotate
to an arbitrary position on a Bloch Sphere if we choose the pulse strength and frequency
carefully. Also, the spin qubit can be measured by measuring the spin current flowing on the
top/bottom surface.





Chapter 6

Field Dressing TIs And Floquet TI

Qubits

6.1 Introduction

In recent years, the fast development of laser and ultra-fast spectroscopy techniques have
enabled scientists to gain more control of a quantum system that is out of equilibrium. Floquet
engineering - a concept that can date back to the times of the inverse Faraday effect [112], is
beneficial from this technical development and interests in this field is growing fast in recent
years [88] [62] [87] [16]. Floquet engineering is the subject of controlling a quantum system
with time-periodic driving fields and it has provided a useful tool to study non-equilibrium
systems. Floquet-Bloch theory[102] is the core of this subject. In single-body problems,
Floquet-Bloch theory maps a time-dependent Hamiltonian to a stationary Hamiltonian with
one extra dimension of discrete Fourier modes (we call it nh̄w here, n 2 Z). This dimension
comes from the time periodicity of the system, which is analogous to the crystal momentum
space in a spatially periodic system. This nh̄w can be considered as a fictitious electric field
along the extra dimension and it is important in the classification of topological phases in
non-equilibrium quantum system [41] [88]. If the fictitious field (h̄w) is small, the system
can be thought of as a lattice problem in higher dimensions in a weak electric field [88] [41].
The Floquet-Bloch states produced are not just mathematical structures indicating how the
field interacts with the system. They can be observed in experiments. The Floquet-Bloch
states on the surface of a topological insulator has been observed in 2013 [121]. In this
chapter, we apply the Floquet-Bloch theory to ultra-thin TI films under two different periodic
fields separately and study the quasi states in the region where w is small. We found that
a carefully tuned small periodic field at a frequency matching the energy difference of the



116 Field Dressing TIs And Floquet TI Qubits

two states (if we set h̄ = 1) can couple the desired surface states in a static TI and produce
two types of quasi electronic states suitable for quantum computation. This completes our
study of various types of qubit systems in a topological insulator. These Floquet TI qubits are
simple to control since a single qubit rotation is fully controlled by adjusting the amplitude
of the field, which can be achieved using standard Amplitude Modulation techniques [20].
Moreover, a recent paper has pointed out that the Floquet-engineered quantum states are more
robust to external noise acting on the qubit, and can be prepared with a high fidelity [18].
These advantages make the Floquet TI qubit an interesting topic to study. The rest of this
chapter is divided into two parts according to the types of time-periodic field applied to the
ultra-thin TI film. We study a Floquet charge qubit in an ultra-thin TI film in a time-periodic
electric field in section 6.2 and a Floquet spin qubit in an ultra-thin TI film in a time-periodic
magnetic field in section 6.3.

6.2 Floquet charge qubits

6.2.1 Model Hamiltonian

The model Hamiltonian of a topological insulator thin film with a periodically time-varying
electric field is constructed using the Floquet method described in Ch. 2. The time-dependent
Schrödinger equation of the system is:

ih̄
d
dt

|Fi= H 0 |Fi , (6.1)

H 0 = H0 �E0(z)cos(wt). (6.2)

Here E0(z)cos(wt) is the time-periodic electric field in the z direction. E0 is the electric
energy difference per unit length in the z direction. H0 is the model Hamiltonian of topological
insulator (Eq. 2.19) in Ch. 2. Like the case studied in Ch. 4, the Hamiltonian no longer
commutes with kz. Therefore we replace kz with � ∂

∂ z . Since the Hamiltonian satisfying:
H 0(t,r) = H 0(t+T,r+R), we can apply the Floquet-Bloch ansatz in Ch. 2:

��Fa,k(r,z, t)
↵
=

eikr�iea,kt/h̄
��ua,k(r, t)

↵
f(z). a is the band index. k is the wave vector, and r = (x,y).

Substituting the ansatz into Eq. 6.1, we map the time-dependent Schrödinger equation to an
eigenvalue equation in which t and k are both parameters:

HF
��ua,k

↵
= ea,k

��ua,k
↵
, (6.3)

HF = H 0 � ih̄
∂
∂ t

. (6.4)
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Here u is periodic in r and t, and is called a Flqouet-Bloch state. ea,k is called the quasienergy
and determines how the wave function Fa,k(r,z, t) evolves in time. The time dependent part
u(t) can be written in terms of its Fourier components:

u(t) =
•

Â
n=�•

aneinwt , (6.5)

while the time varying term in 6.2 is written as:

cos(wt)u(t) =
1
2
(eiwt + e�iwt)u(t), (6.6)

=
1
2

•

Â
n=�•

(an�1einwt +an+1einwt). (6.7)

The Hamiltonian HF then can be viewed as the outer product of the composed Hilbert
space: Htemp ⌦H0(z). Htemp is the Fourier space of u(t) and H0(z) includes all the spatial
information. The Hamiltonian HF is then solved numerically using the Floquet matrix
method described in Ch. 3. The numerical matrix is written as:

n =�2 n =�1 n = 0 n =+1 n = 2

H0 �2h̄w H+1 0
...

... n =�2

H�1 H0 � h̄w H+1 0
... n =�1

0 H�1 H0 H+1

... n = 0
... 0 H�1 H0 + h̄w H+1 n =+1

Here H0 and H±1 are sub-matrices representing interactions with the Fourier components in
temporal space Htemp, with H0 =

D
~fnz2,n

���H
��� ~fnz1,n

E
and H±1 =�1

2E0(nz2Dz)
D

~fnz1,n±1

��� ~fnz1,n

E
,

being H the original TI Hamiltonian 2.19. The term H±1 represents the time-varying field in
Eq 6.2. Here we can see that the time dependent interaction with the field is included in the
off-diagonal blocks and the time evolution of the Fourier states are included as nh̄w in the
central diagonal blocks of the numerical matrix 6.2.1. The index acts like a fictitious electric
field along the Fourier dimension n. The resultant numerical solutions are of the form:

~fnz,n = {f1,�i,f2,�i, ...fz,�i,f2,�i+1, ...fz,i}. (6.8)

where i and z are indices of the Fourier components and lattice sites respectively. The
corresponding Floquet-Bloch state with quasi-energy ea,n is

ua,k,n(z, t) =
m=i

Â
m=�i

ameimwt ��fnz,n
↵
, (6.9)
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and the time dependent Floquet solution to Eq. 6.1 is

|Fk(z, t)i= e�iea,n,t/h̄ua,k,n(z, t). (6.10)

A general solution is :
|Fk(z, t)i= Â

a
bae�iea,nt/h̄ua,k,n(z). (6.11)

6.2.2 Ultra-thin TI under a periodic electric field

By applying the Floquet method we have converted a time dependent Schrödinger equation to
an eigenvalue problem. By solving the numerical matrix in Table 6.2.1, we obtain the Floquet
states ua,n and their quasi energies ea,n. From Fig. 6.1 and Fig. 6.2 we can see that the quasi
energy forms a band plot that is similar to the band structure plot of a semiconductor. The
is due to the fact that now we have many copies of a stationary band. This is because that
when we solve the Floquet matrix in Table 6.2.1, we obtain a group of Floquet solutions ua,n

which have quasi energy
ea,n = ea,0 +nh̄w. (6.12)

Therefore, we have n replicas of the quasi energy state ua,k,0 with energy differences
of nh̄w . Those states represent the same time dependent physical solution as in Eq. 6.10.
From Fig 6.1 and 6.2 we also notice that these quasi-bands show a familiar gapped Dirac
cone structure with multiple replicas. This is because the quasienergy ea is a function of
the parameters |E| and w . |E| is the amplitude of the potential energy difference of the
electric field across the thickness of the film and w is the field frequency. We use |E| (and
E for a static field) to represent the electric field throughout this chapter. The electric field
strength is proportional to |E| since the film is kept at a constant thickness to study a single
qubit. When the interaction |E| is small (in a perturbation region), ea,0 ⇡ ea , where ea is the
eigenenergy of the original Hamiltonian H0. en,a ! ea +nh̄w as |E|! 0. If the interaction
|E| is very high, the states are distorted. Interesting features appear when we apply a field
at the frequency that equals the energy difference between two levels w =

ea�eb
h̄ (where

ea > eb ). If |E|= 0, the states can intersect each other when ea +(n�1)h̄w = eb +(nh̄w).
When |E| 6= 0, the interaction operator will couple the states if they belong to the same
symmetry group and develop into avoided crossings. This happens when we apply a resonant
driving field with frequency wres =

De
h̄ to the ultra-thin TI, where De is the energy difference

of two surface states on the gapped Dirac cone. The energy levels eS1(S2) and eS4(S3) belong
to the same symmetry group (|S1i to |S4i are defined in Sec. 4.3). At, w =

eS1(S2)�eS4(S3)
h̄ , the
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Fig. 6.1 Floquet band structure of a 5QL TI thin film with a perpendicular oscillating electric
field at w = 10wres along the kx axis. The Floquet bands are replicas of the bare TI bands
without a field. wres is the natural frequency of a combined state a |F0i+b |F1i ,a 6= 0,b 6=
0 that goes back to its original position on the Bloch sphere when there is no field applied.
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Fig. 6.2 Floquet band structure of the Gapped Dirac cone in a 5QL TI thin film with a
perpendicular oscillating electric field at wres along the kx axis. The Floquet bands are
replicas of the bare TI bands without a field. wres is the natural frequency of a combined state
a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its original position on the Bloch sphere
when there is no field applied. The figure shows that when w = wres, the Floquet states are
very close to each other with a small gap.
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quasienergies are related as:

eS1(S2),0 +nh̄wres = eS4(S3),0 +(n�1)h̄wres. (6.13)

When |E| 6= 0, the quasi-states will interact and develop into avoided crossings.
Now we are at the point to study how the wavefunction Fn,SX responds to the periodic

electric field. Like the quasi energies, Fn,SX depends on the parameters of |E| and w as well.
We will take the Floquet states F1,S1 and F0,S4 as our example, where the original states
FS1 and FS4 are defined in Ch. 4. Starting from a stationary state FSX0 and adiabatically
switching on the interacting field, we will transfer the system into a quasienergy state Fn,SX

(Fig. 6.3). The interaction can be divided into three different regimes according to w .
|E| in all cases (if not mentioned specifically) is kept in the perturbation region to avoid
wavefunction mixing with bulk bands (distortion).

At the region where w ⌧ wres, e1,S1 < e0,S4 for |E| 6= 0. The quasi-states are similar to
these static states under a static field and there is no interaction between the two states since
they are far apart in terms of quasienergy. As |E|! 0, the quasi-states will recover the shape
of the time-independent states of H0.

At the region where w ⇡ wres, switching on/off the interacting field amplitude |E|
generates two different regimes of interaction. If the amplitude |E| ! 0, e1,S1 = e0,S4

and the two levels intersect each other so the quasi-states are F1,S1 = ei(eS1+wt)/h̄FS10 and
F0,S4 = eieS4/h̄FS40. If the amplitude |E| 6= 0, e1,S1 6= e0,S4. Since FS1 and fS4 belong to the
same symmetry group, the two levels will repel each other and form an avoided crossing
when the quasienergies are close to each other. This is why we see an anti-crossing when
|E| 6= 0 in Fig 6.2. The resultant states are combined states of FS1 and fS4. From Fig 6.3
we can see that e1,S1 < (>)e0,S4 at w < (>)wres; therefore, the Floquet states F1,S1 and f0,S4

exhibit jump discontinuities at the resonant frequency. The Floquet states near the resonant
frequency are partially combined and have a maximal superposition at wres(Fig. 6.4 and Fig.
6.5).

At the region where w � wres, the frequency is too high for the system to react in time.
The Landau-Zener transition [125] occurs and the Floquet states are decoupled (the off-
diagonal blocks become insignificant). Regardless of the amplitude |E| (in the perturbation
regime), the Floquet states are frozen and look like the time-independent states of a bare
system H0. When |E| becomes very high, the states are distorted and mix with the bulk
bands.
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Fig. 6.3 A diagram illustrates the trend of quasienergies e0,S4 and e1,S1 of Floquet states F0,S4
and F1,S1, respectively, vs the frequency w for interaction amplitudes |E|= 0 and |E| 6= 0,
note: |E| is the amplitude of the potential energy difference of the electric field across the
thickness of the film, and we use this to represent the electric field throughout this chapter.
The electric field strength is proportional to |E|. When the frequency w ! 0 and w � wres,
the Floquet energies e0,S4 and e1,S1 are closer to the case of energy states without an applied
field. When the frequency w ! wres, the Floquet energies of the two states get closer to each
other but behave differently in the cases of interaction amplitudes |E|= 0 and |E| 6= 0. In the
case |E|= 0, they will intersect with each other; however, if |E| 6= 0, an anti-crossing occurs
and the two states swap.
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6.2.3 Floquet charge qubit definition

From the discussion above, we learnt that with a field at driving frequency h̄w ⇡ De and
of a proper chosen magnitude, the field-dressing system produces a pair of Floquet states
located on the top/bottom surfaces. The pair of Floquet states are the combined surface states
of the bare system and they evolve in time following Eq. 6.10. However, just like the Rabi
oscillation of a two-level system, the degree of coupling of the bare states depends on the
amplitude and frequency of the electric field. When the frequency of the field is close to
the Rabi frequency (w = De

h̄ ), the coupling increases dramatically and the resultant Floquet
states become more localised on the opposite surfaces. Amplitude is also an important factor
to the degree of coupling; however, it is less effective compared to the frequency. In an
experiment we should first tune the frequency of the field to a value near w = De

h̄ , and then
tune the amplitude of the field to refine the qubit. The amplitude should be small so that the
interaction of the state with the electric field is insignificant and the interaction of the two
states is primary. In this case, we can obtain a pair of combined states like those found in
the static TI system without any field in Ch. 4. In order to exploit these Floquet states as a
qubit state, we aim to create a pair of states that are maximally localised on the top/bottom
surfaces like the combined states in a bare TI in Ch. 4. With a field of a matching frequency
(w = 0.011n.u) and amplitude (|E| = 0.00064eV , where |E| is amplitude of the potential
energy difference of the electric field across the thickness of the film. We use it to represent
the electric field throughout the chapter. The electric field strength is proportional to |E|.), we
are able to obtain a pair of qubit states (u0 and u1) which have identical spatial profiles to the
static qubit states (f0 and f1) in Ch. 4 at t = 0, with an overlap hu0|f0i= 1 and hu1|f1i= 1
(Fig. 6.4 and Fig. 6.5). It is worth mentioning that the frequency is slightly less than the
energy difference De of the bare system given that the interaction of a single state with the
field makes the quasienergy slightly different from the corresponding energies in a static
system.

The Floquet states evolve in time (See Fig. 6.6 and Fig. 6.7). At any instance, the
Floquet-state pair forms a mirror image of each other and the overlap between them is always
zero (that is, they are orthogonal to each other at any time). This property enables us to define
a new type of charge qubit states in a field-dressing TI: we call them the Floquet charge
qubit. Unlike the static charge qubit studied in Ch. 4, they are dynamic and evolve in time.
Therefore, the Bloch sphere defined with this Floquet-charge-qubit pair is also rotating in
time. The qubit states are defined as
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Fig. 6.4 Spatial distributions of wave function densities of u0(t = 0) at the G point in a 5QL
TI thin film.This state is obtained by applying a perpendicular oscillating electric field with
w = wres and a small amplitude |E| = 0.00064eV (the amplitude of the potential energy
difference across the film), similar to the combinational state of the ’surface states’ in Fig.4.17.
However, unlike the charge qubit studied in Ch. 3, u0(t) is time dependent. |y1|2 to |y4|2
are the wave function densities of the basis states |y1i to |y4i of the TI Hamiltonian in
Eq. 4.1. The detailed electronic states of |y1i to |y4i are shown in Eq. 2.26. The wave
function densities of |y1i and |y2i are equal to zero. The wave function density of u0(t = 0)
is localised on one surface.

|F0(t)i= e�ieu0 t/h̄ |u0(t = 0)i , (6.14)

|F1(t)i= e�ieu1 t/h̄ |u1(t = 0)i . (6.15)

A general state on the dynamical Bloch sphere is:

F(t) = aF0(t)+bF1(t). (6.16)

In this chapter, we decide to study the qubit states at the G point in a 5QL TI. It should be
noticed that just like the static qubit, the Floquet qubit are spin degenerate; therefore we have
two-qubit states available at the same energy at the G point. In this chapter, we study a charge
qubit with sz =�1

2 .
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Fig. 6.5 Spatial distributions of wave function densities of u1(t = 0) at the G point in a 5QL
TI thin film.This state is obtained by applying a perpendicular oscillating electric field with
w = wres and a small amplitude |E| = 0.00064eV (the amplitude of the potential energy
difference across the film). It is similar to the combinational state of the ’surface states’ in
Fig.4.18. However, unlike the charge qubit studied in Ch. 3, u1(t) is time dependent. |y1|2
to |y4|2 are the wave function densities of the basis states |y1i to |y4i of the TI Hamiltonian
in Eq. 4.1. The detailed electronic states of |y1i to |y4i are shown in Eq. 2.26. The wave
function densities of |y1i and |y2i are equal to zero. The wave function density of u1(t = 0)
is localised on one surface.
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Fig. 6.6 Time evolution of u0(t) in the TI thin film for Tres. Tres is the natural period of a
combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its original position on the
Bloch sphere when there is no field applied. The vertical axis is time (in picoseconds) and
the horizontal one is depth in the TI thin film. The colour indicates the electron density. The
yellow colour indicates that the electron is located on the top surface of the thin film at t = 0.
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Fig. 6.7 Time evolution of u1(t) in the TI thin film for Tres. Tres is the natural period of a
combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its original position on the
Bloch sphere when there is no field applied. The vertical axis is time (in picoseconds) and
the horizontal one is depth in the TI thin film. The colour indicates the electron density. The
yellow colour indicates that the electron is located on the bottom surface of the thin film at
t = 0.
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Fig. 6.8 Two traces of a single qubit rotation with/without an oscillating electric field applied
perpendicular to the TI thin film. Blue trace: a full circular single qubit rotation when there
is no electric field applied to the TI thin film. Orange trace: a single qubit rotation when an
oscillating electric field with wres is applied perpendicularly to the TI thin film. wres is the
natural frequency of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its
original position on the Bloch sphere when there is no field applied. The traces are viewed in
a static frame, with u0(t = 0) (u1(t = 0)) being the north (south) pole of the Bloch sphere.
This figure indicates that the paths overlap near the poles and that path 2 deviated from path
1 near the equator. Note that the Bloch sphere is drawn at 90% size to clarify the diagram.

6.2.4 Single-qubit study

The initialisation process is similar to initialise a static charge qubit. We keep the Fermi level
below or in the middle of the surface band gap and then apply an oscillating electric field to
the system. When the field frequency w approaches w ⇡ De

h̄ , we will see a tunnelling current
periodically appearing on the top (or bottom) surface. This current reaches a maximum when
the Floquet states are equally combined surface states (see Eq. 6.14 and Eq. 6.15). If the
surface states are not equally combined, we can see that the current density does not vanish
periodically. When we see a periodically disappearing current flowing on one surface, we
have prepared an Floquet qubit at |0i or |1i.

We know that the Bloch sphere of a Floquet qubit is rotating. Therefore, any operation
applied to the qubit is with respect to the time-varying Bloch sphere. When there is no
field applied, the qubit will rotate spontaneously like the static charge qubit in Chap. 4;
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however, the trace is slightly different from the trace with a driving field (Fig. 6.8). We
note that the Bloch spheres in the thesis are plotted at 90% size to clarify the single-qubit
rotation diagrams. We compare the two paths and find they are slightly different when the
qubit is close to the equator on the Bloch sphere; this is because the driving field has a finite
amplitude which perturbs the state. The field is maximum when the qubit is at the equator on
the Bloch sphere, so the states are perturbed because of this electric bias. In order to be able
to rotate the qubit to an arbitrary position on the Bloch Sphere, we study whether we can
realise two rotations with respect to two orthogonal axes.

The first rotation we discuss here is the sx rotation. Since the Bloch sphere is rotating,
we cannot obtain this rotation by turning off the field as in the case of a static TI charge qubit.
However, since we know that the qubit rotates on the Bloch sphere following a closed circle
with axis in the x direction, we can relabel the state at time t 0 as t = 0 which is equivalent to
a sx rotation. We first define u0 and u1 as the static wave functions shown in Fig. 6.4 and
Fig. 6.5. We can either turn off the field or wait for a time duration t = t1 and then relabel
the time t = t1 ! t = 0. After a time t1, the qubit has rotated over an angle of wxt1 along the
x axis, with wx = wres the natural frequency of the qubit system.

sz and sy rotations are more difficult to achieve. If we apply a static field with amplitude
|E| to the system, the path of the qubit rotation is more complicated than the one in the static
case since the Bloch sphere is rotating continuously (Fig. 6.9 and Fig. 6.10). The trace is
in fact a periodic rotation with respect to the axis r on the xz plane, with wr µ |E|, plus a
continuous sx rotation with wx =

De
h̄ . The path depends on the relative frequencies wx and

wr. Therefore, it is difficult to define a standard way to perform sz and sy rotations with a
static field. We now turn to look at a square pulse and explore how the qubit rotates with
respect to it.

From Fig 6.9 and Fig. 6.10 we see that a smaller electric field produces a smaller change
in q during the same time period. This is closer to a desired sz rotation but Dq is position
dependent (See Fig. 6.10). Therefore, we decide to apply a square pulse with a small
amplitude (we used |E|= 0.002eV) to the qubit. We found that when a square pulse with
the positive part and negative part set to be the same duration (T

4 ) is applied, Dq is more
or less cancelled out and we have a nearly effective sz rotation (Fig 6.11). From Fig. 6.12
and Fig. 6.13 we see that at T

2 and T (T = 2p
wx

), the values of Dq are closer to zero and
the ones for Df are almost the same. Although there is still a position-dependent finite Dq
left (with a maximum difference of 2.58� in Fig. 6.12), we see that an alternative linear
pulse can produce a nearly effective sz rotation at times T

2 and T . Inspired by this pulse, we
decide to continue to study whether a cosine pulse would be better to induce a high-fidelity
effective sz rotation. We keep the electric field amplitude the same for comparison and vary



130 Field Dressing TIs And Floquet TI Qubits

Fig. 6.9 Two traces of a single qubit rotation with a static electric field (E = 0.00875eV, and
E is the potential energy difference across the film) applied perpendicularly to the TI thin film
for a whole period Tres starting at two different positions (blue: q = 0�, f = 0� and orange:
q = 30�, f = 0� ). Tres is the natural period of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0
that goes back to its original position on the Bloch sphere when there is no field applied. The
traces are viewed in a static frame, with u0(t = 0) (u1(t = 0)) being the north (south) pole of
the Bloch sphere. Note that the Bloch sphere is drawn at 90% size to clarify the diagram.
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Fig. 6.10 Traces of a single qubit rotation with a static electric field (E = 0.002eV, and E is
the potential energy difference across the film) applied perpendicularly to the TI thin film for
a whole period Tres for a qubit starting at different positions. Tres is the natural period of a
combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its original position on the
Bloch sphere when there is no field applied. The traces are viewed in a static frame, with
u0(t = 0) (u1(t = 0)) being the north (south) pole of the Bloch sphere. Note that the Bloch
sphere is drawn at 90% size to clarify the diagram.
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Fig. 6.11 Traces of a single qubit rotation with a square electric field pulse (E =±0.002eV,
and E is the potential energy difference across the film) applied perpendicularly to the TI
thin film for a qubit starting at different positions. The electric field swaps the direction
at every interval of time T

4 and lasts for t = Tres. Tres is the natural period of a combined
state a |F0i+ b |F1i ,a 6= 0,b 6= 0 that goes back to its original position on the Bloch
sphere when there is no field applied. The traces are viewed in a static frame, with u0(t = 0)
(u1(t = 0)) being the north (south) pole of the Bloch sphere. The inset shows the shape of
the pulse. Note that the Bloch sphere is drawn at 90% size to clarify the diagram.
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Fig. 6.12 Dq in a single qubit rotation with a square electric field pulse (E =±0.002eV, and
E is the potential energy difference across the film) applied perpendicularly to the TI thin film
for a qubit starting at different positions. q is the conventional polar angle used in spherical
coordinate systems. The electric field swaps the direction at every interval of time T

4 and
lasts for t = Tres. Tres is the natural period of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0
that goes back to its original position on the Bloch sphere when there is no field applied. The
traces are viewed in a static frame, with u0(t = 0) (u1(t = 0)) being the north (south) pole of
the Bloch sphere.



134 Field Dressing TIs And Floquet TI Qubits

Fig. 6.13 Df in a single qubit rotation with a square electric field pulse (E = ±0.002eV,
and E is the potential energy difference across the film) applied perpendicularly to the
TI thin film for a qubit starting at different positions. f is the conventional azimuthal
angle used in spherical coordinate systems. The electric field swaps the direction at every
interval of time T

4 and lasts for t = Tres. Tres is the natural period of a combined state
a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its original position on the Bloch sphere
when there is no field applied. The traces are viewed in a static frame, with u0(t = 0)
(u1(t = 0)) being the north (south) pole of the Bloch sphere.
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Fig. 6.14 Traces of a single qubit rotation with an oscillating electric field (|E|= 0.002eV,
where |E| is the amplitude of the potential energy difference across the film, w = wres)
applied perpendicularly to the TI thin film during a time Tres for a qubit starting at different
positions. Tres and wres are, respectively, the natural period and frequency of a combined
state a |F0i+ b |F1i ,a 6= 0,b 6= 0 that goes back to its original position on the Bloch
sphere when there is no field applied. The traces are viewed in a static frame, with u0(t = 0)
(u1(t = 0)) being the north (south) pole of the Bloch sphere. The inset shows the shape of
the pulse. Note that the Bloch sphere is drawn at 90% size to clarify the diagram.
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the frequency. We first apply a pulse at the driven frequency: wd = De
h̄ . We see that a cosine

pulse at w = wd is able to produce a path that is similar to Fig. 6.11, with a smaller Dq at
time T

2 and T (See Fig. 6.14). The fidelity of this rotation is very high (Fig. 6.15). We must
notice that this cosine pulse produces effective sz rotations at t = nT

2 with a discrete angle
f . In order to obtain other rotational angles we need to change the field amplitude |E| or
wait for more periods. We choose to study two points at q = 90�, f = 0�, 90� since, from
6.15, we can see that lowest fidelity of sz rotations appear when the qubit is near the equator.
From Fig. 6.16 and Fig. 6.19 we see that Df obeys a linear relation with |E| (the potential
energy difference across the film of the field). By reversing the direction of the oscillating
field (equivalent to adding a phase p to the cosine term) we are able to obtain sz rotations of
other angles. The fidelity of a sz rotation decreases when the field amplitude |E| increases
given that Dq becomes larger as |E| increases (see Fig.6.17 and Fig. 6.20). However, this
fidelity is still high enough (99.75%) for a pulse at |E|= 0.005eV and it produces a rotation
of f = 90� (f = 117� when the electric field is out of phase respect to with the driving
field). Therefore, we are able to produce position-independent high-fidelity rotations for
most angles by simply changing the amplitude of the field or by adding a p phase to the
driving field. Larger angles can be obtained by keeping the pulse for two full periods. At
lower frequencies (w < D

h̄ ), we are not able to find effective sz rotations.
Then next question is to study how the qubit rotates if we apply pulses with different

frequency. Recalling from subsection 6.2.2, when w � De
h̄ the field varies too fast and

the state enters the Landau-Zener regime. We found that the qubit follows the path of a
sz rotation at higher frequencies at time t = nT

2 (Fig. 6.22 and Fig. 6.23). The higher
the frequency, the better the fidelity of the rotation is. However, it is difficult to achieve
experimentally since the frequencies are too high and beyond the capacity of experimental
apparatus. Also we should notice that at moderate frequencies, Dq shows an oscillating
behaviour with a local minimum at integer numbers of w0, the driving frequency.

Measuring this Floquet qubit is similar to measuring a static TI charge qubit discussed in
Ch. 4. We can measure the tunnelling current through the top/bottom surfaces and relate it to
the coefficients a and b in Eq. 6.16. We notice that because the qubit states F0(t) and F1(t)
are varying in time, the currents I related to the state F0(t) and F1(t) are also time-dependent
and should be recorded as I(t). We need to define an initial time t0 and measure the dynamic
currents I0(t) and I1(t) for a whole period. Then, we can use the corresponding electron
densities I0(t 0) and I1(t 0) at time t 0 to perform a measurement at t 0. Also, I0(t) and I1(t) are
important for the sx rotation since this one is achieved by relabelling the initial time t.



6.2 Floquet charge qubits 137

Fig. 6.15 Fidelity of an effective sz rotation for Df = 22� vs various qubit states (in the range
q 2 [0�,180�], f 2 [0�,350�]) on the Bloch sphere with an oscillating electric field (|E|=
0.002eV, where |E| is the amplitude of the potential energy difference across the film, w =
wres) applied perpendicularly to the TI thin film for Tres. q and f are the conventional polar
and azimuthal angles used in spherical coordinate systems. Tres and wres are, resepectively,
the natural period and frequency of a combined state a |F0i+ b |F1i ,a 6= 0,b 6= 0 that
goes back to its original position on the Bloch sphere when there is no field applied. This
figure shows that the effective sz is indeed universal and position-independent. The fidelity
is extremely high, which is over 99.7%.
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Fig. 6.16 Df in an effective sz rotation with an oscillating electric field at various amplitudes
(|E| = 0� 0.005eV, where |E| is the amplitude of the potential energy difference across
the film, w = wres) applied perpendicularly to the TI thin film for Tres for a qubit starting at
q = 90�, f = 0� (blue) and q = 90�, f = 90� (orange). q and f are the conventional polar
and azimuthal angles used in spherical coordinate systems. Tres and wres are, respectively,
the natural period and frequency of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes
back to its original position on the Bloch sphere when there is no field applied. The figure
shows that Df in the effective sz rotation increases with the electric field amplitude and it
has the same effect for the qubit at different positions. The blue point (f = 90�) and orange
point (f =�270�) at |E|= 0.005eV refers to the same position on the Bloch sphere.
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Fig. 6.17 Dq in an effective sz rotation with an oscillating electric field at various amplitudes
(|E| = 0� 0.005eV, where |E| is the amplitude of the potential energy difference across
the film, w = wres) applied perpendicularly to the TI thin film for Tres for a qubit starting at
q = 90�, f = 0� (blue) and q = 90�, f = 90� (orange). q and f are the conventional polar
and azimuthal angles used in spherical coordinate systems. Tres and wres are, respectively,
the natural period and frequency of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes
back to its original position on the Bloch sphere when there is no field applied. The figure
shows that Dq in the effective sz rotation increases with the electric field amplitude; this
reduces the fidelity of the effective sz rotation.
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Fig. 6.18 Fidelity of an effective sz rotation with an oscillating electric field at various
amplitudes (|E|= 0�0.005eV, where |E| is the amplitude of the potential energy difference
across the film, w = wres) applied perpendicularly to the TI thin film for Tres for a qubit
starting at q = 90�, f = 0� (blue) and q = 90�, f = 90� (orange). q and f are the
conventional polar and azimuthal angles used in spherical coordinate systems. Tres and wres
are, respectively, the natural period and frequency of a combined state a |F0i+b |F1i ,a 6=
0,b 6= 0 that goes back to its original position on the Bloch sphere when there is no field
applied. The figure shows that fidelity of the effective sz rotation decreases with the electric
field amplitude.
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Fig. 6.19 Df in an effective sz rotation with an oscillating electric field at various amplitudes
(|E| = 0� 0.005eV, where |E| is the amplitude of the potential energy difference across
the film, w = wres) applied perpendicularly to the TI thin film for Tres for a qubit starting at
q = 90�, f = 0� (blue) and q = 90�, f = 90� (orange). The pulse is p radians out of phase
with respect to the pulse used to obtain the figure Fig.6.16. q and f are the conventional polar
and azimuthal angles used in spherical coordinate systems. Tres and wres are, respectively,
the natural period and frequency of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes
back to its original position on the Bloch sphere when there is no field applied. The figure
shows that Df in the effective sz rotation increases with the electric field amplitude and has
the same effect for the qubit at different positions.
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Fig. 6.20 Dq in an effective sz rotation with an oscillating electric field at various amplitudes
(|E| = 0� 0.005eV, where |E| is the amplitude of the potential energy difference across
the film, w = wres) applied perpendicularly to the TI thin film for Tres for qubit starting at
q = 90�, f = 0� (blue) and q = 90�, f = 90� (orange). The pulse is p radians out of phase
with respect to the pulse used to obtain the figure Fig.6.17. q and f are the conventional polar
and azimuthal angles used in spherical coordinate systems. Tres and wres are, respectively,
the natural period and frequency of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes
back to its original position on the Bloch sphere when there is no field applied. The figure
shows that Dq in the effective sz rotation increases with the electric field amplitude; this
reduces the fidelity of the effective sz rotation.
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Fig. 6.21 Fidelity of an effective sz rotation with an oscillating electric field at various
amplitudes (|E|= 0�0.005eV, where |E| is the amplitude of the potential energy difference
across the film, w = wres) applied perpendicular to the TI thin film for Tres for a qubit starting
at q = 90�, f = 0� (blue) and q = 90�, f = 90� (orange). q and f are the conventional polar
and azimuthal angles used in spherical coordinate systems. The pulse is p radians out of phase
with respect to the pulse used to obtain the figure Fig.6.18. Tres and wres are, respectively, the
natural period and frequency of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes
back to its original position on the Bloch sphere when there is no field applied. The figure
shows that the fidelity of the effective sz rotation decreases with the electric field amplitude.



144 Field Dressing TIs And Floquet TI Qubits

Fig. 6.22 Dq in a single qubit rotation with an oscillating electric field at various frequencies
(wres to 10wres, |E|= 0.002eV, where |E| is the amplitude of the potential energy difference
across the film) applied perpendicularly to the TI thin film for Tres for qubit starting at
q = 90�, f = 0� (blue) and q = 90�, f = 90� (orange). q and f are the conventional polar
and azimuthal angles used in spherical coordinate systems. Tres and wres are, respectively,
the natural period and frequency of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes
back to its original position on the Bloch sphere when there is no field applied. The figure
shows that Dq in the single qubit rotation decreases in an oscillating style with the electric
field frequency.
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Fig. 6.23 Df in a single qubit rotation with an oscillating electric field at various frequencies
(wres to 10wres,|E|= 0.002eV, where |E| is the amplitude of the potential energy difference
across the film) applied perpendicularly to the TI thin film for Tres for a qubit starting at
q = 90�, f = 0� (blue) and q = 90�, f = 90� (orange). q and f are the conventional polar
and azimuthal angles used in spherical coordinate systems. Tres and wres are, respectively,
the natural period and frequency of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes
back to its original position on the Bloch sphere when there is no field applied. The figure
shows that Df in the single qubit rotation decreases dramatically when the field frequency is
larger than wres.
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6.2.5 Discussion

In this section we have studied a dynamic charge qubit that can be defined in an ultra-
thin TI film under a periodic electric field.The experimental setup, the two-qubit gate and
decoherence mechanisms are similar to those of the charge qubit discussed in Ch. 4. This
qubit is different from a traditional charge qubit since the Bloch sphere is rotating all the
time. This rotation matches the free rotation of the system and gives an advantage to the
Floquet qubit. When performing an experiment, we can pause the experiment at any time
and resume it at a later time. We can do this by recording the time as t1, turn on the driving
field and resume the operation at a later time t1 +nT , where T is the period of a free rotation
and n 2 Z. Because the Bloch sphere is rotating, pausing the operation and turning on the
driving field makes the qubit state rotate with the Bloch sphere. In the rotating frame, the
qubit is stationary. At a later time t1 +nT , the qubit is back to the place where it was on the
static Bloch sphere at t = 0; this is convenient for experimental situations. The next question
is the accompanying magnetic field. We know that when a current is passing through an area,
a magnetic field is generated in the surrounding area according to Ampère’s circuital law.
Because the TI film is bulk insulating and we are only interested in the surface states, we can
view the model as a magnetic field around a wire with AC current. The resultant magnetic
field is:

5⇥B = µ0e0
∂E

∂ t
, (6.17)

where µ0 and e0 are the vacuum permeability and vacuum permittivity respectively, and
µ0e0 =

1
c2 . For an electric field Ecos(wt) in the z direction, the resultant magnetic field is

proportional to the strength of the electric field: B µ 1
c2 Ew . Therefore, we need to use a small

field and a frequency to avoid the magnetic field becoming too high. Since the magnetic is
located on the xy plane, it does not break the overall TR symmetry so a small magnetic field
would not affect the resultant qubit states.

6.3 Floquet spin qubit

6.3.1 Model Hamiltonian

The model Hamiltonian of a TI thin film with a periodically time-varying magnetic field is
constructed using the Floquet method described in Ch. 2. The time dependent Schrödinger
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equation of the system is :

ih̄
d
dt

|Fi= H 0 |Fi , (6.18)

H 0 = H0(k+
eA(t)

h̄
)+Hze(B(t)). (6.19)

A(t) and B(t) are the vector potentials in the z direction and magnetic field in the y direction,
respectively. H0 is the original tight-binding model Hamiltonian of a topological insulator in
Ch. 2. H 0 does not commute with kz and we replace kz with � ∂

∂ z . Since we are dealing with
a Hamiltonian periodic in both space and time, we can apply Floquet-Bloch theory to solve
it in the composed Hilbert space Htemp ⌦H0(z) like a stationary Hamiltonian. By applying
the Floquet-Bloch ansatz:

��Fa,k(r,z, t)
↵
= eikr�iea,kt/h̄

��ua,k(r, t)
↵

f(z), where a is the band
index and k is the wave vector r = (x,y), we get:

HF
��ua,k

↵
= ea,k

��ua,k
↵
, (6.20)

HF = H 0 � ih̄
∂
∂ t

. (6.21)

Then we use the Floquet matrix method (Ch. 3) to solve the Hamiltonian HF . The numerical
matrix is:

n =�2 n =�1 n = 0 n =+1 n = 2

H0 �2h̄w H+1 0
...

... n =�2

H�1 H0 � h̄w H+1 0
... n =�1

0 H�1 H0 H+1

... n = 0
... 0 H�1 H0 + h̄w H+1 n =+1

Here H0 and H±1 are sub-matrices representing the interactions between the Fourier compo-
nents in temporal space Htemp, with H0 =

D
~fnz2,n

���H
��� ~fnz1,n

E
and H±1 =

D
~fnz2,m

���H( eBz1
h̄ )+Hze

��� ~fnz1,n

E
.

H contains all the spatial information and it is the numerical matrix of H0 (original time-
independent tight-binding Hamiltonian) and H±1 contains terms that vary in time. The
Peierls substitution stands for the orbit effect of the magnetic field and Hze is the Zeeman
Hamiltonian. The time-dependent interaction with the field is included in the off-diagonal
blocks and the time evolution of the Fourier states are included as nh̄w on the central di-
agonal blocks of the numerical matrix 6.3.1. The time dependent Floquet solution and its
corresponding energy are:

|Fk(z, t)i= e�ien,a t/h̄un,a,k(z, t), (6.22)
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en,a = ea +nh̄w. (6.23)

6.3.2 Ultra-thin TI under a periodic magnetic field

Similar to the case when a periodic electric field is applied, the Floquet Hamiltonian produces
quasienergy bands that are replicas of bands in a stationary Hamiltonian. When h̄w < De ,
where De is the energy difference between bands in a static system, the Floquet modes ea,n

are grouped together (Fig. 6.24 and Fig. 6.25). If h̄w � De , the Floquet modes are further
apart and we can distinguish the shape of energy bands of the original system. We can
recognise the gapped Dirac cone in Fig. 6.27 and Fig. 6.26. In this thesis, we are more
interested in the region where h̄w ⇡ De , with De = |eS1(S2)� eS3(S4)|, specifically (|S1i to
|S4i are defined in Sec. 4.3). |eS1(S2)� eS3(S4)| is the energy difference of a pair of surface
states from the electron band and hole band with opposite spins (see Ch. 5). From here, we
will study how the surface states change under a periodic magnetic field. When we apply a
periodic magnetic field to the system we will obtain a group of Floquet solutions instead of
the stationary states. Each time-dependent Floquet solution contains a few Floquet states
(modes) with a quantised quasienergy difference of nh̄w .

The Floquet states will respond to the periodic magnetic field as in the case of a periodic
electric field. This response depends on the frequency w and amplitude |B| (Fig. 6.28). We
have chosen a pair of Floquet states F0,S1 and F�1,S3 as our example states to show how
these states change with respect to w and |B|.

At the region where w ⌧ wres, the states behave rather like two eigenstates of a TI under
a magnetic field. As |B|! 0, the Floquet states recover the shape of the individual states
found in a static TI without any field.

In the region where w ⇡ wres, when there is no interaction (|B|= 0), the states are exactly
like the bare states in a static system with energies eS1 and eS3 � h̄w . When the interaction is
switched on, the state F0,S1 interacts with F�1,S3 at h̄w ⇡ en,S1 � en�1,S3. This interaction
produces a pair of combined states at the same energy, which is different from the case
discussed in the previous section of a Floquet charge qubit. When the quasi energies of two
Floquet states equal each other in the case of an electric-field dressing TI, the combined
states will split into two different energy levels and form an avoided crossing. In the case of
a magnetic-field dressing TI, the combined Floquet states have equal quasi energies because
they have different spins. F0,S1(F�1,S3) also interacts with F0,S2(F�1,S4) because of the
coupling induced by the magnetic field. This interaction tends to split the degenerate Floquet
states F0,S1(F�1,S3) and F0,S2(F�1,S4) and form a pair of states with their spins aligned in
the y direction. When the interaction |B| is small, the coupling between F0,S1 and F0,S2 is
weak and the interaction between F0,S1 and F�1,S3 is more significant. The resultant states
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Fig. 6.24 Floquet band structure of a 5QL TI thin film with an in-plane oscillating magnetic
field at |B|= 1T and w < wres along the kx axis. The Floquet bands are replicas of the bare TI
bands without a field. wres is the natural frequency of a combined state a |F0i+b |F1i ,a 6=
0,b 6= 0 that goes back to its original position on the Bloch sphere when there is no field
applied.



150 Field Dressing TIs And Floquet TI Qubits

Fig. 6.25 Floquet band structure of a 5QL TI thin film with an in-plane oscillating magnetic
field at |B|= 1T and w < wres along the ky axis. The Floquet bands are replicas of the bare TI
bands without a field. wres is the natural frequency of a combined state a |F0i+b |F1i ,a 6=
0,b 6= 0 that goes back to its original position on the Bloch sphere when there is no field
applied.
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Fig. 6.26 Floquet band structure of a 5QL TI thin film with an in-plane oscillating magnetic
field at |B|= 1T and w �wres along the kx axis. The Floquet bands are replicas of the bare TI
bands without a field. wres is the natural frequency of a combined state a |F0i+b |F1i ,a 6=
0,b 6= 0 that goes back to its original position on the Bloch sphere when there is no field
applied.
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Fig. 6.27 Floquet band structure of a 5QL TI thin film with an in-plane oscillating magnetic
field at |B|= 1T and w �wres along the kx axis. The Floquet bands are replicas of the bare TI
bands without a field. wres is the natural frequency of a combined state a |F0i+b |F1i ,a 6=
0,b 6= 0 that goes back to its original position on the Bloch sphere when there is no field
applied.
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Fig. 6.28 A diagram illustrates the trend of the quasienergies e�1,S3 and e0,S1 of Floquet
states F�1,S3 and F0,S1 vs frequency w for interaction amplitudes |B|= 0 and |B| 6= 0. When
the frequency w ! 0 and w � wres, the Floquet energies e�1,S3 and e0,S1 are closer to
those energy states obtained without applying a field. When the frequency w ! wres, the
Floquet energies of the two states get closer and behave differently in the cases of interaction
amplitudes |B|= 0 and |B| 6= 0. In the case of |B|= 0 they will intersect with each other at
w = wres. However, if |E| 6= 0, they will intersect with each other at w < wres.
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are like the combined states FS1 ±FS3 found in a static TI system without any field. When
|B| is increased, the coupling between the states F0,S1 and F0,S2 increases and eventually
dominates compared to the interaction between F0,S1 and F�1,S3. The resultant states will
be spilt into a pair of states with their spins aligned in the y direction (sy =±1

2).
In the region where w � wres, the states F0,S1 and F�1,S3 are far apart; therefore, the

states cannot interact with each other and there is no coupling between the two states. The
state F0,S1 would only couple with the state F0,S2 and the coupling increases with |B|. At
large |B| (e.g. |B|= 1T), the states are similar to the eigenstates under a static magnetic field
with spin component sy =±1

2 .

6.3.3 Floquet spin qubit definition

We know from the last subsection that, under a periodic magnetic field, the states |S1i and
|S3i will form n Floquet modes with energies eS1 +nh̄w and eS3 +nh̄w , where n depends on
the number of Fourier components used in the calculation. All of these Floquet modes refer
to the same physical state. At the resonant frequency wres, Fn,S1 and fn�1,S3 will couple to
form n�1 pairs of combined Floquet states. With a small magnetic field, these states are
like the combined states |S1i±|S3i in a bare system without any field. These states can be
used for quantum computing since they are on the same Bloch sphere as the spin qubit states
studied in Ch. 5. Therefore, we define our Floquet spin qubit states |F0i and |F1i as:

F0(t) = eie0,S1t/h̄F0,S1, (6.24)

F1(t) = eie�1,S3t/h̄F�1,S3. (6.25)

These states are dynamic with their phase varying in time. The time evolution of these states
is the same as the one for the combined static states S1±S3. The electron density is constant
over time (Fig. 6.29 and Fig. 6.30). In this chapter, we have chosen a pair of Floquet states
in 5QL TI under a periodic magnetic field along the y direction with w = 0.0113 (natural
units =n.u) and |B|= 0.0011T.

6.3.4 Single-qubit study

The initialisation of the qubit state can be performed by controlling the Fermi level within
or below the gap, then by applying an in-plane periodic magnetic field. As we tune the
frequency to w = wres and increase the amplitude gradually, the qubit will transit from an
eigenstate on the surface band of a TI to a Floquet state in the field dressing TI. The spin
current measured on the top and bottom surfaces will be equal and there is a 50% probability
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Fig. 6.29 Time evolution of u0(t) in the TI thin film for Tres. Tres is the natural period of a
combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its original position on the
Bloch sphere when there is no field applied.The vertical axis is time (in picoseconds) and the
horizontal axis is depth in the TI thin film. The colour indicates the electron density. The
yellow colour indicates that the electron is located on the bottom surface of the thin film at
t = 0. The figure shows that the electron density of the state is constant in time. The spin of
u0(t) rotates in the plane along with the electron motion’s (xy plane) and oppose to u1(t).
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Fig. 6.30 Time evolution of u1(t) in the TI thin film for Tres. Tres is the natural period of a
combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its original position on the
Bloch sphere when there is no field applied.The vertical axis is time (in picoseconds) and the
horizontal axis is depth in the TI thin film. The colour indicates the electron density. The
yellow colour indicates that the electron is located on the bottom surface of the thin film at
t = 0. The figure shows that the electron density of the state is constant in time. The spin of
u1(t) rotates in the plane along with the electron motions (the xy plane) and oppose to u0(t).
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to measure sz =
1
2 and sz =�1

2 . At this point we prepare the qubit in a state shown in Fig.
6.29 or in Fig. 6.30; this qubit state can be used for the Floquet-spin-qubit study.

Then we shall look at how to manipulate the qubit on the dynamic Bloch sphere. As in
the case of a Floquet charge qubit, the Flqouet-spin-qubit states are combined states of the
eigenstates on the electron and hole bands in a static TI. They evolve in time (Eq. 6.24 and
Eq. 6.25) in the same way as a combined state. This natural time evolution is equivalent to a
sx rotation in the static frame at t = 0. Because the Bloch sphere is rotating along the x axis,
we can relabel the states to achieve the sx rotation like the case of a Floquet charge qubit and
Dq µ wrest.

Now we shall show how a magnetic field pulse affects the qubit and how to perform a sz

or sy rotation with it. We find that if we apply a static field to the Floquet qubit, the path is
complicated and position-dependent. In general, a linear pulse cannot produce an effective
Df , but it produces an effective Dq . However, Dq is small even for strong magnetic fields
(Fig. 6.31). We note here that the Bloch spheres in the thesis are plotted at 90% size to clarify
the single-qubit rotation diagrams. We know that the Floquet spin qubit is a combined state
of the spin qubit states F0 and F1 studied in Ch. 5. Therefore, they are on the same Bloch
sphere. The only difference is that the Floquet Bloch sphere is rotating rather than being
static. In the case of a spin qubit, we can drive the qubit to do an effective sy rotation by
applying a cosine pulse at w = wres and find that this also works for the Floquet spin qubit.
We also find that a cosine pulse at the same frequency as the driving field can produce an
effective position-independent sz rotation at nTres, where Tres is the period of the natural
rotation of the Bloch sphere. The path is very similar to the sz rotation for a Floquet charge
qubit studied in the previous section 6.2 (Fig. 6.32). The fidelity of this rotation is extremely
high (Fig. 6.35) and is a discrete effective sz rotation. Different angles of the rotation
can be obtained by tuning the amplitude of the magnetic field |B| (Fig. 6.34). Since Df
increases linearly with |B|, then it is convenient to deduce and find the desired angle by trying
a few different amplitudes. We need to notice that the fidelity decreases with |B| (Fig.6.33).
However, it is still good enough to cover most angles in the case of our Floquet qubit in a
5QL TI. By applying the cosine wave with a phase difference of p radians to the driving
field, we can achieve rotations of different angles as well (see Fig. 6.34) with Dfp =�Df0.
If we decrease (or increase) the frequency of the magnetic field, we are unable to obtain
effective sz rotations. From Fig. 6.36 and Fig. 6.37 we can see that at high frequencies the
magnetic field cannot rotate the qubit effectively. On the other hand, at lower frequencies
Df can change to some degree. However, the deviation in q is larger at frequencies lower
than wres. The closer the frequency is to wres, the better the fidelity of the effective sz is.
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Fig. 6.31 Traces of a single qubit rotation with an in-plane static magnetic field (B = 1T)
applied to the TI thin film for a whole period Tres on the Bloch sphere for a qubit starting
at different positions. Tres is the natural period of a combined state a |F0i+b |F1i ,a 6=
0,b 6= 0 that goes back to its original position on the Bloch sphere when there is no field
applied. The traces are viewed in a static frame, with u0(t = 0) (u1(t = 0)) being the north
(south) pole of the Bloch sphere. Note that the Bloch sphere is drawn at 90% size to clarify
the diagram.

Therefore, we conclude that the frequency of the operation pulse should be the same as the
driving field for a high fidelity effective sz rotation on the Bloch sphere.

The measurement method of this Floquet spin qubit is similar to the method used for a
static spin qubit in Ch. 5. The difference is that the spin current density needs to be measured
for a whole period since the Floquet qubit is changing in time. Therefore, by measuring the
spin current over a period, we have obtained the information of the qubit states |F0i and
|F1i at every instance. This will allow us to read out the qubit at any time. This continuous
measurement is also important for the sx rotation since we can define the time t = t1 as the
initial time for a state rotated by wrest1 along the x axis.

6.3.5 Discussion

In this section we have studied a Floquet spin qubit in an ultra-thin TI under an in-plane
periodic magnetic field. The experimental setup, the two-qubit gate and decoherence mech-
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Fig. 6.32 Traces of a single qubit rotation with an in-plane oscillating magnetic field (|B|=
0.5T, wres) applied to the TI thin film for a whole period Tres on the Bloch sphere for a qubit
starting at different positions. Tres and wres are, respectively, the natural period and frequency
of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its original position on
the Bloch sphere when there is no field applied. The traces are viewed in a static frame, with
u0(t = 0) (u1(t = 0)) being the north (south) pole of the Bloch sphere. The inset shows the
shape of the pulse. Note that the Bloch sphere is drawn at 90% size to clarify the diagram.



160 Field Dressing TIs And Floquet TI Qubits

Fig. 6.33 Fidelity of an effective sz rotation of a qubit starting at q = 90�, f = 0� on
the Bloch sphere with an in-plane oscillating magnetic field of various |B| and frequency
w = wres applied to the TI thin film for Tres. q and f are the conventional polar and azimuthal
angles used in spherical coordinate systems. Tres and wres are, respectively, the natural period
and frequency of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its original
position on the Bloch sphere when there is no field applied. Blue points: The cosine pulse is
in phase with respect to the driving field. Orange points: The cosine pulse is at p radians out
of phase with respect to the driving field. The fidelity of the qubit is high (> 97.5%) and it
decreases with the field strength.
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Fig. 6.34 Df in an effective sz rotation of a qubit starting at q = 90�, f = 0� on the Bloch
sphere with an in-plane oscillating magnetic field of various |B| and frequency w = wres
applied to the TI thin film for Tres. q and f are the conventional polar and azimuthal angles
used in spherical coordinate systems. Tres and wres are, respectively, the natural period and
frequency of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its original
position on the Bloch sphere when there is no field applied. Blue points: the cosine pulse is
in phase with respect to the driving field. Orange points: the cosine pulse is at p radians out
of phase with respect to the driving field. The Df in an effective sz rotation increases with
the field strength.
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Fig. 6.35 Fidelity of an effective sz rotation for Df = 11� vs various qubit states (in the
range of q 2 [0�,180�], f 2 [0�,350�]) on the Bloch sphere with an in-plane oscillating
magnetic field (|B| = 0.5T, w = wres) applied to the TI thin film for Tres. q and f are the
conventional polar and azimuthal angles used in spherical coordinate systems. Tres and wres
are, respectively, the natural period and frequency of a combined state a |F0i+b |F1i ,a 6=
0,b 6= 0 that goes back to its original position on the Bloch sphere when there is no field
applied. This figure shows that the effective sz is indeed universal and position-independent.
The fidelity is extremely high, which is over 99.999%.
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(a)

(b)

Fig. 6.36 Dq (a) and Df (b) in a single qubit rotation with an oscillating magnetic field at
various frequencies (w = wres to 5wres, where w0 = wres, and |B|= 0.5T) of a qubit state at
q = 90�,f = 90� vs time for Tres. q and f are the conventional polar and azimuthal angles
used in spherical coordinate systems. Tres and wres are, respectively, the natural period and
frequency of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its original
position on the Bloch sphere when there is no field applied.
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(a)

(b)

Fig. 6.37 Dq (a) and Df (b)in a single qubit rotation with an oscillating magnetic field at
various frequencies (w = wres to 5wres, where w0 = wres, and |B|= 0.5T) of a qubit state at
q = 90�,f = 0� vs time for Tres. q and f are the conventional polar and azimuthal angles
used in spherical coordinate systems. Tres and wres are, respectively, the natural period and
frequency of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its original
position on the Bloch sphere when there is no field applied.
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(a)

(b)

Fig. 6.38 Dq (a) and Df (b) in a single qubit rotation with an oscillating magnetic field at
various frequencies (w = 0 to wres, where w0 = wres, and |B| = 0.5T) of a qubit state at
q = 90�,f = 90� vs time for Tres. q and f are the conventional polar and azimuthal angles
used in spherical coordinate systems. Tres and wres are, respectively, the natural period and
frequency of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its original
position on the Bloch sphere when there is no field applied.



166 Field Dressing TIs And Floquet TI Qubits

(a)

(b)

Fig. 6.39 Dq (a) and Df (b) in a single qubit rotation with an oscillating magnetic field at
various frequencies (w = 0 to wres, where w0 = wres, and |B| = 0.5T) of a qubit state at
q = 90�, f = 0� vs time for Tres. q and f are the conventional polar and azimuthal angles
used in spherical coordinate systems. Tres and wres are, respectively, the natural period and
frequency of a combined state a |F0i+b |F1i ,a 6= 0,b 6= 0 that goes back to its original
position on the Bloch sphere when there is no field applied.
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anisms are similar to those for the charge qubit discussed in Ch. 5. When the field is at
the resonant frequency with h̄w = De , where De is the band gap energy between the two
states on the surface bands, this field will drive the system into a field dressing system and
produce Floquet states. The Floquet states are the result of the coherent interaction between
the field and TI system. The advantage of this Floquet qubit is that it allows us to pause the
operation at any time and resume it later. However, there are still many experimental issues
to be explored and solved. As an example, when we apply a periodic magnetic field to the
system, a small electric field is generated according to Faraday’s law of induction. Since
we are interested in surface states and the bulk of a TI is insulating, we can simply view the
problem as a wire loop along the xz direction with a magnetic field in the y direction. The
voltage V produced is proportional to the rate of change of the magnetic flux encircled by the
region:

V =�DFB

Dt
, (6.26)

with B = B0 cos(wt), which implies that V µ AB0w . Therefore, V can be minimised by
constructing a small size system. Also, we should notice that this would be a transverse
electric field so it will not cause the state to be transfered from one boundary to another
through the bulk and, the spin of the qubit state would not be changed by this electric field.
Therefore, as long as we confine our qubit in some region, we can still measure the qubit as
before.

6.4 Summary

In this chapter we studied two types of dynamic qubit in an ultra-thin TI film under a
periodic electric field and magnetic field. The qubits are defined as dynamic states in the
field-interacting TIs. We are able to initialise, rotate the qubit to an arbitrary position on a
Bloch sphere and read out the qubit in both cases. Therefore, we have completed our study
of various qubit systems found in ultra-thin TI films.





Chapter 7

Conclusion and Future Work

The ultimate aim of this thesis is to study whether an ultra-thin TI film is a suitable platform
for quantum computing in terms of initialising, controlling, and measuring a single qubit.
This investigation provides an initial theoretical and numerical study of TI qubits under ideal
experimental conditions. However, further investigation needs to be carried out, preferably
combined with experiments to investigate how to realise the qubit systems in practice. In this
chapter, we will summarise our results in the thesis and outline possible further investigation
in this area.

7.1 Summary

We have introduced essential concepts to study quantum computing and presented the
requirements for building a quantum computer in Ch. 1. We briefly reviewed some active
platforms for quantum computation, progress and current challenges in each. We introduced
essential concepts in topological field theory which is useful to understand the topological
significance of a TI, the low-energy model Hamiltonian of a TI used throughout the thesis, and
the Floquet-Bloch theory to study a TI under time-periodic fields in Ch. 2. We introduced the
numerical methods used in the thesis in Ch. 3. We presented our results on the investigation
of a static charge qubit in an ultra-thin TI film in Ch. 4. We found a static charge qubit
that is ultra-fast in terms of operation time and we can generate a position-independent
qubit rotation of any desired angles with an electric field control, which is important in
single-qubit operations. We can initialise the qubit and measure it at the end of the operation.
We investigate a static spin qubit in an ultra-thin TI film in Ch. 5. As the case for the charge
qubit, the spin qubit is found to be fast in terms of single-qubit operations. The spin qubit
can be initialised and perform position-independent rotations using oscillating magnetic
fields. The angle rotated depends on the field strength. We can initialise the qubit and
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measure it at the end of the operation. We investigated two types of qubits in field-interacting
ultra-thin TI films in Ch. 6. We studied a dynamic charge qubit defined in an ultra-thin TI
with a time-periodic electric field. We found that the qubit can be initialised, operated by
the standard Amplitude Modulation techniques and measured. We investigated a dynamic
spin qubit in an ultra-thin TI under a time-periodic magnetic field. We found that the qubit
can be initialised and rotated to arbitrary positions on a Bloch sphere by suitable operation
schemes and measured. We have completed our exploration of various qubit systems in an
ultra-thin TI film. This is an important first step towards the realisation of using TI systems
for quantum computing. This thesis investigates whether we can make a single qubit in an
ultra-thin TI film that satisfies the DiVincenzo criteria. There are still many things to explore
in this area.

7.2 Future work

In this section, we will discuss possible further investigations in the area. An obvious one is to
study in detail how to implement a two-qubit operation in these qubit systems. This is crucial
for universal quantum computation. Understanding decoherence mechanisms is also crucial.
Experiments investigating decoherence need to be done to push this field forward. Since
TI quantum dots are similar to semiconductor quantum dots, the decoherence mechanism
could be similar. For a charge qubit, one can study the cotunneling effect in a TI quantum
dot; this causes a qubit in the antibonding state to go to the bonding state [49]. The transition
rate Gcot = (8/h)D(h̄G)2/U2, with h̄ being the reduced Plank’s constant, D is the energy
difference of the two-level system, G is tunnelling rate into the source and drain and U is the
electrostatic coupling energy between states |f0i and |f1i. Another significant and intrinsic
decoherence mechanism in a semiconductor quantum dot is the electron-phonon interaction
[49]. The decoherence rate Gsb predicted by spin-boson model is Gsb =

4
p gDcoth(D/2kBTLat),

where g is a dimensionless coupling constant, D is the energy difference of the two-level
system and TLat is the lattice temperature. By considering those models and carrying out
experiments, one can have a better understanding of the decoherence time in a TI quantum
dot; this is important for the realization of a TI quantum dot. In a TI, owing to the strong
spin-orbit coupling effect, backscattering is forbidden, and this leads to weak anti-localisation
in a TI [75], which enhances the conductivity and potentially improves the decoherence time.
Moreover, the geometry of a quantum dot is interesting to study. In this thesis, we used
localised states at k = 0 as our qubits and have ignored the physical shape of the quantum dot.
However, the spatial distribution of surface states on the xy plane is interesting to study and
may provide useful information in the design of a quantum dot in an experiment. Moreover,



7.2 Future work 171

controlling the gap size by external voltages and doping are also of research interest since the
pulsing frequency is determined by the gap size. The periodic fields discussed in the thesis
might be difficult to obtain owing to experimental limitations, and one may be interested in
studying whether a laser field or microwaves could be good substitutes. There are still many
possibilities regarding the potential of TI qubits as they are topologically protected qubits
with high-fidelity-qubit-operation gates in theory. Therefore, further investigations of this
area are worth researching.
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