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Summary

This thesis deals with the analysis and numerical simulation of anisotropic nonlinear

partial differential equations (PDEs) and dynamical systems in biology. It is divided

into two parts, motivated by the simulation of fingerprint patterns and the modelling

of biological transport networks.

The first part of this thesis deals with a class of interacting particle models with

anisotropic repulsive-attractive interaction forces and their continuum counterpart.

These models are motivated by the simulation of fingerprint databases, which are

required in forensic science and biometric applications. In existing interacting par-

ticle models, the forces are isotropic and the continuum limits of these particle

models are given by nonlocal aggregation equations with radially symmetric poten-

tials. The central novelty in the models we consider is an anisotropy induced by an

underlying tensor field. This innovation does not only lead to the ability to describe

real-world phenomena more accurately, but also renders their analysis significantly

harder compared to their isotropic counterparts. We discuss the role of anisotropic

interaction, study the steady states and present a stability analysis of line patterns.

We also show numerical results for the simulation of fingerprints, based on discrete

and continuum modelling approaches.

The second part of this thesis focuses on a new dynamic modeling approach on a

graph for biological transportation networks which are ubiquitous in living systems

such as leaf venation in plants, blood circulatory systems, and neural networks.

We study the existence of solutions to this model and propose an adaptation so

that a macroscopic system can be obtained as its formal continuum limit. For

the spatially two-dimensional rectangular setting we prove the rigorous continuum

limit of the constrained energy functional as the number of nodes of the underlying

graph tends to infinity and the edge lengths shrink to zero uniformly. We also show

the global existence of weak solutions of the macroscopic gradient flow. Results

of numerical simulations of the discrete gradient flow illustrate the convergence to

steady states, their non-uniqueness as well as their dependence on initial data and

model parameters. Based on this model we propose an adapted model in the cellular

context for leaf venation, investigate the model analytically and show numerically

that it can produce branching vein patterns.
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Chapter 1

Introduction

Partial differential equations (PDEs) and dynamical systems are essential tools for

the mathematical modelling of biological, socio-economic and physical processes.

The use of PDE models in these applications has become an active research area in

the last decades, allowing us to extend the boundaries of mathematical knowledge

and advancing the understanding of real-world problems of practical importance.

Through mathematical analysis and computer simulations, we can gain new insights

into the qualitative properties of the underlying mathematical models which result

in a better understanding of complex phenomena in nature such as biological pattern

formation. Equally important, these new and challenging PDE models lead to intra-

disciplinary research, involving modelling, PDE theory, dynamical systems, graph

theory and numerical simulations.

In this thesis, we focus on PDEs and dynamical system for studying pattern

formation in nature. Many of these mathematical models can be derived from mi-

croscopic systems. Examples of microscopic modelling approaches include models

describing the interaction of a large number of individuals or graph-based models

consisting of a large number of nodes and edges. For the analysis of these mod-

els, it is often very useful to consider a coarse graining procedure resulting in the

corresponding macroscopic model, usually based on nonlinear PDEs. Since pat-

tern formation in nature is often anisotropic, we consider anisotropic models for

describing the formation of these complex patterns more accurately.

This thesis is divided into two parts: Part I (Chapters 2–5) is motivated by

the simulation of fingerprint patterns. We consider a class of interacting particle

models with anisotropic repulsive-attractive interaction forces and their continuum

counterpart. In Part II (Chapters 6–8), we study mathematical models for biological

1



Introduction

transportation networks describing living systems such as leaf venation in plants,

blood circulatory systems, and neural networks. The mathematical formulation is

based on a dynamic modelling approach on a graph in the discrete setting and its

continuous counterpart which is rigorously proven in this thesis.

1.1 Anisotropic interaction equations

Nonlocal interaction models are mathematical models describing the collective be-

haviour of large numbers of individuals where each individual can interact not

only with its close neighbours but also with individuals far away. These models

serve as basis for biological aggregation and have given us many tools to under-

stand the fundamental behaviour of collective motion and pattern formation in

nature. For instance, these mathematical models are used to explain the com-

plex phenomena observed in nature [BCC`08a, BT11, Bir07, CDF`03, CFRT10,

CCG`10, DM08, DSKT01, DCBC06, EKWG98, MEK99, PEK99, PS84]. Some

continuum models have been derived from individual based descriptions [BCC08b,

BDP06, BCM00, BCM07, FHK11, TB04, TBL06, vBUKB12], see also the reviews

[CFTV10, KCB`13], leading to an understanding of the stability of patterns at

different levels [ABCvB14, BSK`15, CHM14a, CHM14b, KSUB11].

1.1.1 Collective behaviour in nature

There are many examples both from the living and the non-living world for the rich

behaviour in systems consisting of a large number of interacting agents of similar

size and body type. Examples of collective behaviour in macroscopic living systems

include swarms of insects (locusts, ants, bees, . . . ), schools of fish and flocks of

birds, while on the microscopic level common phenomena include the collective

behaviour of cells and bacteria. Mathematical models provide a promising starting

point for understanding the formation of these complex patterns in nature and the

behavioural traits of the individuals.

One of the key features of many of these models is the social communication

between individuals at different scales, i.e. each individual can interact not only

with its neighbours but also with individuals further away. This can be described

by short- and long-range interactions [BT11, EKWG98, MEK99].

An example for an anisotropic interaction model is the Kücken-Champod model

[KC13] for simulating fingerprint patterns based on the interaction of certain cells.

2



1.1. Anisotropic interaction equations

(A) Marching locusts (B) Colony of army ants (C) School of fish

(D) Swarms of birds (E) Herd of zebra (F) Swarming of E. coli

Figure 1.1: Collective behavior in nature. Figure from [LXXZ18].

The simulation of fingerprints is not only of great interest in the biological commu-

nity, but also in forensic science and increasingly in biometric applications where

large fingerprint databases are required for developing, validating and comparing

the performance of fingerprint identification algorithms. Unfortunately, the collec-

tion of large databases of real fingerprints is usually very cost-intensive, requires

time and effort, and in many countries is constrained by laws addressing data pro-

tection and privacy. Therefore it is vital to simulate large fingerprint databases on

a computer.

An extensive literature [CLMS16, DM86, Irm10, KC13, MM89, MJM92, Wer11]

in the biological community suggests that fingerprint patterns are formed due to

the interaction of mechanical stress, trophic factors from incoming nerves and inter-

actions between so-called Merkel cells. Merkel cells are epidermal cells that appear

in the volar skin at about the 7th week of pregnancy. From that time onward they

start to multiply and organise themselves in lines exactly where the primary ridges

arise [KC13].

The development of fingerprints can be described by three phases [KC13]. In

the first phase, growth forces in the epidermis and shrinkage of volar pad create
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compressive mechanical stress, modelled by Kücken and Newell [KN04, KN05]. The

rearrangement of Merkel cells from a random configuration into parallel ridges along

the lines of smallest compressive stress forms the second phase. This phase can be

regarded as the actual pattern forming process, was first modelled by Kücken and

Champod [KC13], and is studied in Chapter 3. In the third phase, the primary

ridges are induced by the Merkel cells.

Figure 1.2: Development of Merkel cell distribution by Kim and Holbrook: Merkel
cells appear at about the 7th week of pregnancy, multiply and arrange in lines at
about the 10th week. Figure from [KH95].

Since the first phase of the fingerprint development has already been successfully

been modelled by Kücken and Newell [KN04, KN05], while the third phase can eas-

ily be modelled based on the second phase of the fingerprint development, we focus

on the second phase in the following where the stress field from the first phase is

assumed as a given input. Mathematically, the formation of fingerprints can then

be described as the interaction of a large number of the Merkel cells [KC13], which

align themselves according to certain interaction forces and form our fingerprint

lines. The central novelty in this model, leading to realistic patterns as observed

in nature, is an anisotropy induced by the underlying stress field. That is, the cell

interactions depend additionally on the size of the stress field at the cell locations.

This additional anisotropy results in a more complicated, but also more realistic

interaction model which is based on a substantial body of biological literature and

experimental data. These anisotropic interaction models can be regarded as a chal-

lenging generalisation of the popular class of isotropic interaction models.

4



1.1. Anisotropic interaction equations

1.1.2 Isotropic interaction models

Isotropic interaction models have already been studied extensively studied in liter-

ature. In its simplest form, isotropic interaction models are considered with radial

interaction potentials [BCLR13b]. The resulting patterns are found as stationary

points of the N particle interaction energy

Epx1, . . . , xNq “
1

2N2

N
ÿ

j,k“1
k‰j

W pxj ´ xkq (1.1)

where W pdq “ W p|d|q denotes the radially symmetric interaction potential and

xj “ xjptq P Rn for j “ 1, . . . , N denote the positions of the particles at time t ě 0

[BSK`15, KSUB11]. The associated gradient flow reads:

dxj
dt

“
1

N

N
ÿ

k“1
k‰j

F pxj ´ xkq (1.2)

where F pxj ´ xkq is a conservative force, aligned along the distance vector xj ´ xk

with F pdq “ ´∇W pdq.
When the number of individuals is large as in many biological applications, it

becomes essential to use continuum models for the evolution of the density of the

individuals. Denoting the density of particles at location x P Rn and at time t ą 0

by ρ “ ρpt, xq the interaction energy is given by

Wrρs “ 1

2

ˆ
R2

pW ˚ ρq pxqρpdxq

and the continuum equation corresponding to (1.2), also referred to as the aggrega-

tion equation [BCL09, BSK`15, KSUB11, Lau07], reads

ρt `∇ ¨ pρuq “ 0, u “ ´∇W ˚ ρ (1.3)

where u “ upt, xq is the macroscopic velocity field. The aggregation equation (1.3)

whose well-posedness has been proved in [BLR11] has extensively been studied

recently, mainly in terms of its gradient flow structure [AGS05, CMV03, CMV06,

LT04, Vil03], the blow-up dynamics for fully attractive potentials [BCL09, BLL12,

CDFF`11, CJLV16], and the rich variety of steady states [BCLR13a, BCLR13b,

BCY14, BT11, BLL12, CCP15, CDM16, CFF`12, CFP12, FR10, FR11, Rao12,
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vBU12, vBUKB12].

Recently, there has been a trend to connect the microscopic and the macroscopic

descriptions via kinetic modeling, see for instance [BS12, CFRT10, HT08] for differ-

ent kinetic models in swarming [FHT11, HL09] for the particle to hydrodynamics

passage and [KMT15] for the hydrodynamic limit of a kinetic model.

If the radially symmetric potential W pdq “ W p|d|q is purely attractive, e.g. W

is an increasing function with W p0q “ 0, the density of the particles converges to

a Dirac Delta function located at the centre of mass of the density [BD08]. In this

case, the Dirac Delta function is the unique stable steady state and a global attractor

[CDFF`11]. Under certain conditions the collapse towards the Dirac Delta function

can take place in finite time [BCL09, BGL12, BL07, CDFF`11].

In biological applications, however, it is not sufficient to consider purely at-

tractive potentials since the inherently nonlocal interactions between the individ-

ual entities occur on different scales [BT11, EKWG98, MEK99]. These interac-

tions are usually described by short-range repulsion to prevent collisions between

the individuals as well as long-range attraction that keeps the swarm cohesive

[MEKBS03, OL01]. The associated radially symmetric potentials W , also referred

to as repulsive-attractive potentials, first decrease and then increase as a function of

the radius. These potentials lead to possibly more complex steady states than the

purely attractive potentials and can be considered as a minimal model for pattern

formation in large systems of individuals [BCLR13b].

The 1D nonlocal interaction equation with a repulsive-attractive potential has

been studied in [FR10, FR11, Rao12]. The authors show that the behaviour of

the solution strongly depends on the regularity of the interaction potential. More

precisely, the solution converges to a sum of Dirac masses for regular interaction,

while it remains uniformly bounded for singular repulsive potentials.

Pattern formation for repulsive-attractive potentials in multiple dimensions is

studied in [BSK`15, KSUB11, vBU12, vBUKB12]. The authors perform a linear

stability analysis of ring equilibria and derive conditions on the potential to classify

the different instabilities. This analysis can also be used to study the stability of

flock solutions and mill rings in the associated second-order model, see [ABCvB14]

and [CHM14b] for the linear and nonlinear stability of flocks, respectively. A nu-

merical study of the N particle interaction model for specific repulsion-attraction

potentials [BSK`15, KSUB11] outlines a wide range of radially symmetric patterns

such as rings, annuli and uniform circular patches, while exceedingly complex pat-

terns are also possible. In particular, minimisers of the interaction energy (1.1), i.e.,
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stable stationary states of the microscopic model (1.2), can be radially symmetric

even for radially symmetric potentials. This has been studied and discussed by

instabilities of the sphere and ring solution in [BSK`15, vBU12, vBUKB12]. The

convergence of radially symmetric solutions towards spherical shell stationary states

in multiple dimensions is discussed in [BCLR13b]. Another possibility to produce

concentration in lower dimensional sets is to use potentials which are not radially

symmetric. This has been explored recently in the area of dislocations in the two-

dimensional case in [MRS19] and its n-dimensional generalisation in [CMM`19].

Moreover, the nonlocal interaction equation in heterogeneous environments (where

domain boundaries are also allowed) is investigated in [WS15]. Besides, interaction

energies with boundaries have been studied in [CSW16].

Nonlocal interaction models have been studied for specific types of repulsive-

attractive potentials [BCLR13a, CCH14b, CFP17, CH17, CJLV16, FHK11]. In

[BCLR13a] the dimensionality of the patterns is analysed for repulsive-attractive

potentials that are strongly or mildly repulsive at the origin, i.e., potentials with

a singular Laplacian at the origin satisfying ∆W pdq „ ´|d|´β as d Ñ 0 for some

0 ă β ă n in n dimensions and potentials whose Laplacian does not blow up at the

origin satisfying W pdq „ ´|d|α as dÑ 0 for some α ą 2, respectively. In [FHK11] a

specific example of a repulsive-attractive potential is studied, given by a Newtonian

potential for the repulsive and a polynomial for the attractive part, respectively.

Isotropic patterns and clustering have been studied in different contexts. In

[MT14] the authors review a general class of models for self-organised dynamics

and show that the tendency to bond more with those who are different rather than

with those who are similar is crucial in the clustering process. Bourne, Peletier et

al. study pattern formation and pattern evolution in various contexts, see [BPR14,

BPT14, PV10] for instance.

1.1.3 Anisotropic interaction models

In most models the interactions are assumed to be isotropic for simplicity. However,

pattern formation in nature is usually anisotropic [Bal09]. Motivated by the simu-

lation of fingerprint patterns, we consider a class of interacting particle models with

anisotropic interaction forces in this thesis. By considering anisotropic interaction

forces, the isotropic interaction models can be generalised to anisotropic interac-

tion models. In particular, these anisotropic interaction models capture important

swarming behaviours, neglected in the simplified isotropic interaction model, such
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as anisotropic steady states.

Since we are interested in pattern formation in the plane, we consider an evo-

lutionary particle model with an anisotropic interaction force in two dimensions.

More precisely, we generalise the extensively studied model (1.2) by considering an

N particle model of the form

dxj
dt

“
1

N

N
ÿ

k“1
k‰j

F pxj ´ xk, T pxjqq (1.4)

where F pxj´xk, T pxjqq P R2 describes the force exerted from xk on xj. Here, T pxjq

denotes a tensor field at location xj which is given by

T pxq :“ χspxq b spxq ` lpxq b lpxq (1.5)

for orthonormal vector fields s “ spxq, l “ lpxq P R2 and χ P r0, 1s.

As in the standard particle model (1.2) we assume that the force F pxj ´ xk, T pxjqq

is the sum of repulsion and attraction forces. In (1.2), attraction and repulsion forces

are aligned along the distance vector xj ´ xk so that the total force F pxj ´ xkq is

also aligned along xj ´ xk. In the extended model (1.4), however, the orientation of

F pxj ´ xk, T pxjqq depends not only on the distance vector xj ´ xk but additionally

on the tensor field T pxjq at location xj. More precisely, the attraction force will

be assumed to be aligned along the vector T pxjqpxj ´ xkq. Since T depends on a

parameter χ P r0, 1s the resulting force direction is regulated by χ. In particular,

alignment along the distance vector xj´xk is included in (1.4) for χ “ 1. The addi-

tional dependence of (1.4) on the parameter χ in the definition of the tensor field T

introduces an anisotropy to the equation. This anisotropy leads to more complex,

anisotropic patterns that do not occur in the simplified model (1.2). Due to the

dependence on parameter χ the force F is non-conservative in general so that it

cannot be derived from a potential. However, most of the analysis of the interaction

models in the literature relies on the existence of an interaction potential as out-

lined above. A particle interaction model of the form (1.4) with a non-conservative

force term that depends on an underlying tensor field T appears not to have been

investigated mathematically in the literature yet. It seems that there are not many

results currently available in the field of anisotropies. Evers et al. model anisotropy

by adding weights to the interaction terms [EFR15]. Since the weights depend on

the velocities themselves, the equation for velocities becomes implicit. This intro-

8
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duces a fair number of new issues, such as discontinuous solutions. Hence, small

inertia regularisation are introduced and studied in the follow-up paper [EFS17].

Note that the model in [EFR15, EFS17] is related to the model we consider in this

work if one introduces a tensor field T as the velocity direction.

Due to the generality of the formulation of the anisotropic interaction model (1.4)

a better understanding of the pattern formation in (1.4) can be regarded as a first

step towards understanding anisotropic pattern formation in nature. An example of

an N particle model of the form (1.4) is the model introduced by Kücken and Cham-

pod [KC13], describing the formation of fingerprint patterns based on the interac-

tion of Merkel cells and mechanical stress in the epidermis [Irm10]. Even though the

Kücken-Champod model [KC13] seems to be capable to produce transient patterns

that resemble fingerprint patterns, the pattern formation of the Kücken-Champod

model and its dependence on the model parameters have not been studied analyti-

cally or numerically before. In particular, the long-time behaviour of solutions to the

Kücken-Champod model and its stationary solutions have not been understood yet.

However, stationary solutions to the Kücken-Champod model are of great interest

for simulating fingerprints since fingerprint patterns only change in size and not in

shape after we are born so that every person has the same fingerprints from in-

fancy to adulthood. Clearly, fingerprint patterns are of great importance in forensic

science. Besides, they are increasingly used in biometric applications. Hence, un-

derstanding the model, proposed in [KC13], and in particular its pattern formation

result in a better understanding of the fingerprint pattern formation process.

In Section 1.1.3, we describe a general formulation of the anisotropic micro-

scopic model, relate it to the Kücken-Champod particle model in Section 1.1.4 and

formulate the corresponding mean-field PDE.

General formulation of the anisotropic model

In this section, we consider N particles at positions xj “ xjptq P R2, j “ 1, . . . , N,

at time t. The evolution of the particles can be described by (1.4) with initial data

xjp0q “ xinj , j “ 1, . . . , N . Here, F pxj ´ xk, T pxjqq denotes the total force that

particle k exerts on particle j subject to an underlying stress tensor field T pxjq

at xj, describing the local stress field. The dependence on T pxjq is based on the

experimental results [KH95] where an alignment of the particles along the local

stress lines is observed, i.e., the evolution of particle j at location xj depends on the
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the local stress tensor field T pxjq. Note that model (1.4) can be rewritten as

dxj
dt

“ vj

vj “
1

N

N
ÿ

k“1
k‰j

F pxj ´ xk, T pxjqq.
(1.6)

Starting with Newton’s second law of the form

dxj
dτ

“ vj

m
dvj
dτ

` λvj “ F j

where we assume that the particles have identical mass m, λ denotes the coefficient

of friction and F j is the total force acting on particle j, rescaling in time τ “ m
ελ
t

for small ε ą 0 yields

ελ

m

dxj
dt

“ vj

ελ
dvj
dt
` λvj “ F j.

Setting Fj :“ 1
λ
F j where the rescaled total force Fj on particle j is given by the

sum of all interaction forces exerted by other particles, i.e.,

Fj “
1

N

N
ÿ

k“1
k‰j

F pxj ´ xk, T pxjqq.

Further we set xj :“ ελ
m
xj and vj :“ vj, resulting in the rescaled second order model:

dxj
dt

“ vj

ε
dvj
dt
“ ´vj `

1

N

N
ÿ

k“1
k‰j

F pxj ´ xk, T pxjqq
(1.7)

for small ε ą 0. Starting from (1.7) the first order model (1.6) was justified and

formally derived in [BV05]. Note that (1.7) reduces to (1.6) if the inertia term

is neglected, corresponding to small response times of the individuals. However,

setting ε “ 0 corresponds to instantaneous changes in velocities which need to

10
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be justified rigorously. In [FS15] the authors proved the rigorous limit from the

isotropic second order model (1.7) to the isotropic first order model (1.6) as εÑ 0

based on a classical Tikhonov theorem for ODEs, see e.g. [Ver05, Theorem 8.1]. A

classical hypothesis is the C1 regularity of F with respect to x and v which can

be relaxed to Lipschitz continuous functions F . However, this assumption is not

sufficient and the anisotropy of the model might lead to troubles. In [EFS17], the

authors consider an anisotropic aggregation model and derive its vanishing inertia

limit. In this case, however, the classical result by Tikhonov is no longer valid,

mainly because the anisotropy depends on the velocity variable and the roots of the

limiting equation can be lost. For the anisotropic interaction model (1.6) considered

in this work the anisotropies only involve positions and for ε “ 0 we have a unique

root

vj “
1

N

N
ÿ

k“1
k‰j

F pxj ´ xk, T pxjqq,

i.e., we have an isolated root. Further, the root is positively stable and its domain

of influence is tpx1, . . . , xNqu ˆ R2N . For further details see [FS15].

The total force F in the particle model (1.4) is given by

F pd “ dpxj, xkq, T pxjqq “ FApd, T pxjqq ` FRpdq, (1.8)

for the distance vector dpxj, xkq “ xj´xk P R2. Here, FR denotes the repulsion force

that particle k exerts on particle j and FA is the attraction force exerted on particle

j by particle k. The tensor field T pxjq at xj encodes the direction of the fingerprint

lines at xj and is given by T pxjq “ χspxjq b spxjq ` lpxjq b lpxjq with χ P r0, 1s.

Here, s “ spxjq P R2 and l “ lpxjq P R2 are orthonormal vectors, describing the

directions of smallest and largest stress, respectively. Then the force is given by

F pd “ dpxj, xkq, T pxjqq “ fsp|d|qpspxjq ¨ dqspxjq ` flp|d|qplpxjq ¨ dqlpxjq (1.9)

for coefficient functions fs and fl.

Defining WRpdq :“ WRp|d|q and WApdq :“ WAp|d|q where WRprq and WAprq

satisfy

W
1

Rprq “ ´fRprqr and W
1

Aprq “ ´fAprqr (1.10)
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the attractive and repulsive forces are given by

FRpd “ dpxj, dkqq “ ´∇WRpdq “ fRp|d|qd,

FApd “ dpxj, xkq, T pxjqq “ ´T pxjq∇WApdq “ fAp|d|qT pxjqd,
(1.11)

respectively. In particular, we have

FRpdq “ fRp|d|qd (1.12)

and

FApd “ dpxj, xkq, T pxjqq “ fAp|d|qT pxjqd (1.13)

for the repulsive and attractive forces FR and FA, respectively. The direction of

the interaction forces is determined by the parameter χ P r0, 1s in the definition of

T . For χ “ 1 we have T pxjq “ I for the two-dimensional unit matrix I and the

attraction force between two particles is aligned along their distance vector, while

for χ “ 0 the attraction between two particles is oriented along l. Depending on

the choice of the coefficient functions fR and fA in (1.10) the forces are repulsive or

attractive according to the following local definition:

Definition 1 (Strictly repulsive (attractive) forces). Let the vector field G “ Gpx, yq

be a continuous interaction force, i.e., the vector Gpx, yq is the force which is exerted

on x by y. Then G at x in direction x´ y is strictly repulsive (attractive) if

Gpx, yq ¨ px´ yq ą 0 pă 0q.

The meaning of this definition is the following. Let y be fixed and let X “ Xptq

be the trajectory given by

dX

dt
“ GpX, yq, Xp0q “ x,

then |Xptq ´ y| is locally at t “ 0 strictly monotonically increasing (decreasing).

To guarantee that FR and FA are repulsion and attractive forces, we make as-

sumptions on the coefficient functions fR and fA in (1.10).

Assumption 1. We assume that fR : R2 Ñ R and fA : R2 Ñ R denote smooth,

12
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integrable coefficient functions satisfying

fRp|d|q ě 0 and fAp|d|q ď 0 for all d P R2, (1.14)

such that the total interaction force F in (1.8) exhibits short-range repulsion and

long-range attraction forces along l, i.e., there exists a da ą 0 such that

pfA ` fRqp|d|q ď 0 for |d| ą da and pfA ` fRqp|d|q ą 0 for 0 ď |d| ă da.

Also, F P C1 has bounded total derivatives, i.e., there exists some L ě 0 such that

sup
x,x1PR2

|DxF pdpx, x
1
q, T pxqq| ď L and sup

x,x1PR2

|Dx1F pdpx, x
1
q, T pxqq| ď L,

where Dx denotes the total derivative with respect to x. This implies that F is

Lipschitz continuous in both arguments. In particular, F grows at most linearly at

infinitely.

Remark 1. In the well-posedness results by Bertozzi et al. [BLR11] the authors

consider mildly singular potentials WR and WA in the isotropic case χ “ 1 satisfying

WRprq,WAprq »

$

&

%

rα, r ! 1

expp´βrq, r " 1

where α, β ą 0 in two spatial dimensions. These conditions can be restated as

fRprq, fAprq »

$

&

%

rα´2, r ! 1

expp´βrq, r " 1.

The range 0 ă α ă 2 lies outside the hypothesis in Assumption 1 and falls outside

the scope of this chapter. However, this case is extremely interesting since it mod-

els singular attractive and repulsive interactions in aggregation models where the

limiting Newtonian case α Œ 0 is the most interesting one regarding its physical

consequences. There is an extensive scientific activity related to isotropic singular

(first and second order) interactions, see for instance [CCH14c, HJ15, Jab14, JW16,

MP18, PS17, ST17] and the references therein. Note that the restriction to Lips-

chitz and bounded forces in Assumption 1 is sufficient (see e.g. [JW16]) for proving

the rigorous mean-field limit, but one can also show the mean-field limit for mildly

singular interactions including the range 0 ă α ă 2 in the isotropic case χ “ 1, see
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[CCH14c, HJ15] and related papers. Hence, it would be interesting to address these

mildly singular interactions in the anisotropic case χ P r0, 1q and compare it with

the results for isotropic mildly singular interactions.

Note that we recover a potential attractive interaction in FA if, and only if,

T pxjq “ I (i.e., the isotropic case χ “ 1), as shown in Remark 2.

Remark 2 (Existence of an interaction potential). For the existence of interaction

potentials for the attractive force FA we restrict ourselves to spatially homogeneous

tensor fields first. Let χ P r0, 1s, set l “ p1, 0q and s “ p0, 1q, and let T̃ “ χs̃bs̃`l̃b l̃

denote a spatially homogeneous tensor field for orthonormal vectors l̃, s̃ P R2. Then,

s̃ “ Rθs and l̃ “ Rθl, (1.15)

where the angle of rotation θ and the corresponding rotation matrix Rθ are given by

θ “

$

&

%

arccosps̃2q s̃1 ă 0

2π ´ arccosps̃2q s̃1 ą 0
, and Rθ “

¨

˚

˝

cospθq ´ sinpθq

sinpθq cospθq

˛

‹

‚

, (1.16)

respectively, and we have T̃ “ RθTR
T
θ with T “ χsb s` l b l. Hence,

FApd, T̃ q “ fA p|d|q

¨

˚

˝

cos2 pθq ` χ sin2 pθq p1´ χq sin pθq cos pθq

p1´ χq sin pθq cos pθq χ cos2 pθq ` sin2 pθq

˛

‹

‚

d

by (1.10) and (1.11), where d “ pd1, d2q P R2. The condition

BpFAq1
Bd2

“
BpFAq2
Bd1

for FA being a conservative force implies

cos2
pθq ` χ sin2

pθq “ χ cos2
pθq ` sin2

pθq and p1´ χq sin pθq cos pθq “ 0,

which can only be satisfied simultaneously for χ “ 1 and θ P r0, 2πq arbitrary. Thus,

the attraction force for spatially homogeneous tensor fields is conservative for χ “ 1

only and the associated potential is radially symmetric. This also implies that there

exists a potential for χ “ 1 for any tensor field, while for χ P r0, 1q there exists

no potential. In particular, a potential that is not radially symmetric cannot be

14



1.1. Anisotropic interaction equations

constructed for the attraction force FA for χ P r0, 1q.

The associated mean-field model for the distribution function ρ “ ρpt, xq at

position x P R2 and time t ě 0 can be derived rigorously in the 1-Wasserstein

metric from the microscopic model (1.4) following the procedure described in [Gol16,

CCH14c]. The Cauchy problem for the mean-field PDE reads

Btρpt, xq `∇x ¨ rρpt, xq pF p¨, T pxqq ˚ ρpt, ¨qq pxqs “ 0 in R` ˆ R2 (1.17)

with initial condition ρ|t“0 “ ρin in R2.

Remark 3. Similarly as for the rigorous inertia limit ε Ñ 0 of the second order

model (1.7) to the first order model (1.6) in the discrete setting one can consider the

mean-field limit for N Ñ 8 associated with the second order discrete model (1.7)

and derive the hydrodynamic limit εÑ 0 to the mean-field PDE (1.17). The second

order mean-field limit for N Ñ 8 is given by

εBtfε ` εv ¨∇xfε `∇v ¨ rpF p¨, T pxqq ˚ ρεq fε ´ vfεs “ 0 in R` ˆ R2
ˆ R2

where fε “ fεpt, x, vq is the density of individuals at position x P R2 with velocity

v P R2 and

ρεpt, xq “

ˆ
R2

fεpt, x, vq dv

is the macroscopic density. The hydrodynamic limit εÑ 0 to the first order macro-

scopic macroscopic PDE (1.17) can be shown as in [FS15]. Besides, one might study

aggregation equations from first principles not only for regular interactions but also

for mildly singular ones, see [NPS01] and in another context [BBNS07].

1.1.4 Kücken-Champod particle model

Kücken and Champod introduced a particle model in [KC13] modelling the forma-

tion of fingerprint patterns by describing the interaction between so-called Merkel

cells on a domain Ω Ď R2. Merkel cells are epidermal cells that appear in the volar

skin at about the 7th week of pregnancy. From that time onward they start to

multiply and organise themselves in lines exactly where the primary ridges arise.

The model introduced in [KC13] models this pattern formation process as the rear-

rangement of Merkel cells from a random initial configuration into roughly parallel

ridges along the lines of smallest compressive stress. The Kücken-Champod particle

15
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model [KC13] can be regarded as an example of (1.4). For a spatially homogeneous

tensor field T straight parallel ridges, e.g.

T “

¨

˚

˝

1 0

0 χ

˛

‹

‚

,

can be produced and, more generally, this type of models can be considered for

studying the pattern formation. For more realistic patterns the tensor field is gen-

erated from 3D finite element simulations [KN04, KN05] or from images of real

fingerprints. The coefficient function fR defined by the potential WR (1.10) in the

definition of the repulsion force FR (1.11) in the Kücken-Champod model (1.4) is

given by

fRpdq “ pα|d|
2
` βq expp´eR|d|q (1.18)

for d P R2 and nonnegative parameters α, β and eR. The coefficient function fA in

(1.10) in the definition of the attraction force (1.11) is given by

fApdq “ ´γ|d| expp´eA|d|q (1.19)

for d P R2 and nonnegative constants γ and eA. For the case that the total force

(1.8) exhibits short-range repulsion and long-range attraction along l, we choose the

parameters as follows:

α “ 270, β “ 0.1, γ “ 35, eA “ 95, eR “ 100, χ P r0, 1s. (1.20)

The coefficient functions (1.18) and (1.19) for the repulsion and attraction forces

(1.11) in the Kücken-Champod model (1.4) are plotted in Figure 1.3(A) for the

parameters in (1.20) and one can easily check that they satisfy Assumption 1. If not

stated otherwise, we consider the parameter values in (1.20) for the force coefficient

functions (1.18) and (1.19) in the following. The interaction forces between two

particles with distance vectors d “ rl and d “ rs for a constant r P R are given by

F pdq “ fRpdqd` fApdqTd “

$

&

%

pfRprq ` fAprqqrl if d “ rl

pfRprq ` χfAprqqrs if d “ rs.
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1.2. Partial differential equations for biological networks

Figure 1.3(B) shows the total interaction force along l and s, respectively, i.e.,

F prlq ¨ l “ pfRprq ` fAprqqr and F prsq ¨ s “ pfRprq ` χfAprqqr, (1.21)

as a function of r for χ “ 0.2, while the corresponding coefficient functions are

illustrated in Figure 1.3(A). For the choice of parameters in (1.20) repulsion dom-

inates for short distances along l to prevent the collision of particles. Besides, the

total force exhibits long-range attraction along l whose absolute value decreases

with the distance between particles. Along s the particles are always repulsive for

χ “ 0.2, independent of the distance, though the repulsion force gets weaker for

longer distances.

(A) Force coefficients fR and fA (B) Total force coefficients along l and s

Figure 1.3: Coefficients fR in (1.18) and fA in (1.19) of repulsion and attraction
forces (1.11), respectively, as well as the total interaction force along l and s for
χ “ 0.2 given by (1.21) and its coefficients (i.e., fA ` fR and 0.2fA ` fR) for
parameter values in (1.20).

1.2 Partial differential equations for biological net-

works

Network formation and transportation networks are ubiquitous in both social and

biological systems. To determine the network performance, a complex trade-off

involving cost, transport efficiency, and fault tolerance can be considered.
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1.2.1 Biological transport networks

An important class of transportation networks are biological systems such as leaf ve-

nation in plants, angiogenesis of blood vessels and neural networks which transport

electric charge. These biological systems continuously adapt to their environment

and balance the cost of producing an efficient network with the consequences of even

limited failure. Since biological transportation networks develop without centralised

control [TTS`10] and have been fine-tuned by many cycles of evolutionary selection

pressure, they can be regarded as optimal solutions of the underlying transportation

problems where cost, efficiency, and resilience are appropriately balanced [Cor10].

Great interest has been shown for these phenomena from different scientific com-

munities including biologists, engineers, physicists and computer scientists, partic-

ularly in terms of understanding natural networks and their optimal transport of

fluids, materials and information [BHD`07, RFL`05, YDG`00, CC95]. Inspired by

biological phenomena, mathematical models and methods for transportation net-

works can be developed which has recently become a major research area. Examples

include neural networks, genetic algorithms and efficient search routines from ant

colony optimisation algorithms [CDM`96] or biologically inspired models for adap-

tive transportation network development based on slime mould growth [TTS`10].

(A) Leaf venation (B) Slime mold growth and rail network

Figure 1.4: Examples of transportation networks. Subfigures from [KSmHM10,
TTS`10].

Traditionally, models describing biological transportation networks have been

based on discrete frameworks such as mathematical graph theory and discrete en-

ergy optimisation, where the energy consumption within the network is minimised

18



1.2. Partial differential equations for biological networks

under the constraint of constant total material cost [BM07, BCF`00, Dur06]. These

discrete mathematical models can be classified into static and dynamic modelling

approaches, where the latter ones account for the adaptation of networks to fluctu-

ations in the flow. For biological transportation networks such as blood circulation

systems, it is well known that they continuously adapt their structures to meet the

changing metabolic demand of the tissue. In particular, experiments have shown

that blood vessels can sense the wall shear stress [PHBB86] and adapt their diam-

eters accordingly [HCR12]. Hence, dynamic models are required for the accurate

description of biological transportation networks. An example of such a dynamic

model for adaptive regulation of wall shear stress has been introduced in [KBT84]

where the adaptation of the vessel radius of a blood vessel network is formulated as

minimizing the energy consumption of the network.

One of the main research questions are structural and topological properties of

the optimal networks such as existence of loops and tree-like structures, and con-

nectivity of the network. Connectivity of the underlying network is required for

efficient transport of material, while loop structures are great benefits for animals

and plants. For instance, loops are important in mitigating damages of networks

[KSmHM10] and optimizing energy consumption with fluctuating flow distributions

[Cor10]. Therefore, biological transportation networks for leaf venation or angio-

genesis are connected structures containing many loops [Cor10, LBJ08, ND97]

A new approach to dynamic modelling of transportation networks has recently

been introduced by Hu and Cai [HC13]. They propose a purely local dynamic adap-

tation model, based on mechanical laws. In particular, this model responds only

to local information and can naturally incorporate fluctuations in the flow. The

mathematical description of this model consists of a large system of ordinary differ-

ential equations on a graph coupled with a linear system of equations. Differential

equations on graphs and networks are not only crucial for modelling biological or

social transportation networks, but also play an important role in many data sci-

ence and machine learning tasks, and can be regarded as the key area of research for

solving data problems such as linking graph and the associated macroscopic models

via Γ-convergence.

A different modelling approach based on macroscopic physical laws was intro-

duced in [Hu13]. This continuum model consists of a very complex system of non-

linear partial differential equations (PDEs) and because of its unusual coupling this

leads to many still open mathematical questions.
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1.2.2 Microscopic model

In this section we describe the microscopic model introduced by Hu and Cai [HC13]

and reformulated in [ABH`17]. Let G “ pV,Eq be an undirected connected graph,

consisting of a finite set of vertices V and a finite set of edges E where the number of

vertices is denoted by n “ |V|. We assume that any pair of vertices is connected by

at most one edge and a vertex is not connected to itself by an edge. We denote the

edge between vertices i P V and j P V by pi, jq P E. Since the graph is undirected we

refer by pi, jq and pj, iq to the same edge. For each edge pi, jq P E of the graph G we

consider its length and its conductivity, denoted by Lij “ Lji ą 0 and Cij “ Cji ě 0,

respectively. In the following, we assume that the lengths Lij ą 0 are given as a

datum and fixed for all pi, jq P E. The conductivities Cij are subject to the energy

optimisation and adaptation process. We assume that initially all edges in E have

strictly positive conductivities. In each vertex i P V we have the pressure Pi P R.

The pressure drop between vertices i P V and j P V connected by an edge pi, jq P E
is given by

p∆P qij :“ Pj ´ Pi. (1.22)

Note that the pressure drop is antisymmetric, i.e., by definition, p∆P qij “ ´p∆P qji.

The oriented flux (flow rate) from vertex i P V to j P V is denoted by Qij; again,

we have Qij “ ´Qji. For biological networks, the Reynolds number of the flow is

typically small and the flow is predominantly in the laminar (Poiseuille) regime.

Then the flow rate between vertices i P V and j P V along edge pi, jq P E is

proportional to the conductance Cij and the pressure drop p∆P qij “ Pj ´ Pi,

Qij :“ Cij
Pj ´ Pi
Lij

for all pi, jq P E. (1.23)

The local mass conservation in each vertex is expressed in terms of the Kirchhoff

law

´
ÿ

jPNpiq

Cij
Pj ´ Pi
Lij

“ Si for all i P V. (1.24)

Here Npiq denotes the set of vertices connected to i P V through an edge, and

S “ pSiqiPV is the prescribed strength of the flow source (Si ą 0) or sink (Si ă 0)

at vertex i. Clearly, a necessary condition for the solvability of (1.24) is the global
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1.2. Partial differential equations for biological networks

mass conservation

ÿ

iPV

Si “ 0, (1.25)

which we assume in the following. Given the vector of conductivities C “ pCijqpi,jqPE,

the Kirchhoff law (1.24) is a linear system of equations for the vector of pressures

P “ pPiqiPV. With the global mass conservation (1.25), the linear system (1.24)

is solvable if and only if the graph with edge weights C “ pCijqpi,jqPE is connected

[ABH`17], where only edges with positive conductivities Cij ą 0 are taken into

account (i.e., edges with zero conductivities are discarded). Note that the solution

is unique up to an additive constant.

Hu and Cai [HC13] propose an energy cost functional consisting of a pumping

power term and a metabolic cost term. According to the Joule’s law, the power

(kinetic energy) needed to pump material through an edge pi, jq P E is proportional

to the pressure drop p∆P qij “ Pj ´ Pi and the flow rate Qij along the edge, i.e.,

p∆P qijQij “
Q2
ij

Cij
Lij.

The metabolic cost of maintaining the edge is assumed proportional to its length

Lij and a power of its conductivity Cγ
ij, with an exponent γ ą 0 of the network.

For instance, in blood vessels the metabolic cost is proportional to the cross-section

area of the vessel [Mur26a]. Modelling the blood flow by Hagen-Poiseuille’s law,

the conductivity is proportional to the square of the cross-section area, implying

γ “ 1{2 for blood vessel systems. For models of leaf venation the material cost is

proportional to the number of small tubes, which is proportional to Cij, and the

metabolic cost is due to the effective loss of the photosynthetic power at the area

of the venation cells, which is proportional to C
1{2
ij . Consequently, the effective

value of γ typically used in models of leaf venation lies between 1{2 and 1, [HC13].

Consequently, the energy cost functional is given by

ErCs :“
ÿ

pi,jqPE

ˆ

QijrCs
2

Cij
`
ν

γ
Cγ
ij

˙

Lij, (1.26)

where QijrCs is given by (1.23) with pressures calculated from the Kirchhoff’s law

(1.24), and ν ą 0 is the so-called metabolic coefficient. Note that every edge of the

graph G is counted exactly once in the above sum.
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1.2.3 Macroscopic model

A macroscopic model for describing the fluid transport in general biological net-

works has recently been introduced in [Hu13] and is based on phenomenological

considerations such as laws of porous medium flow. This model has been studied in

[AAFM16, HMP15, HMPS16, ABH`17] and is given by

´∇ ¨ rprI`mbmq∇ps “ S, (1.27)

Bm

Bt
´D2∆m´ c2

pm ¨∇pq∇p` |m|2pγ´1qm “ 0, (1.28)

where p “ ppt, xq P R is the scalar pressure of the fluid transported within the

network and m “ mpt, xq P Rd is the vector-valued conductance in d P t1, 2, 3u

space dimensions. Here, D2 ě 0 denotes the diffusivity, c2 ą 0 is the activation

parameter and γ P R. The scalar function r “ rpxq ě r0 ą 0 describes the isotropic

background permeability of the medium, I is the identity matrix and S “ Spxq

models sources and sinks where S is assumed to be time-independent for simplicity.

The PDE system (1.27)–(1.28) is posed on a bounded domain Ω Ă Rd, d P t1, 2, 3u,

with smooth boundary BΩ subject to homogeneous Dirichlet boundary conditions

for m and p:

mpt, xq “ 0, ppt, xq “ 0 for x P BΩ, t ě 0. (1.29)

Besides, we prescribe an initial condition for m:

mpt “ 0, xq “ m0
pxq for x P Ω. (1.30)

The macroscopic model (1.27)–(1.28) is derived in [ABH`17], based on macro-

scopic physical laws, and we repeat the arguments here. Let the network domain

Ω Ă Rd be occupied by a porous medium in which a fluid moves with velocity

ν “ νpt, xq P Rd. Here, ν is assumed to be a smooth function. Let ρ “ ρpt, xq

denote the mass density of the fluid and assume that the fluid is injected into or

expelled from the medium at rate S “ Spxq, then the density satisfies the mass-

continuity equation

Bρ

Bt
`∇ ¨ pρνq “ ρS.

Moreover, we assume that the fluid is quasi-incompressible, i.e. the fluid density is
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1.2. Partial differential equations for biological networks

constant along the trajectories, implying

Dρ

Dt
“
Bρ

Bt
` ν ¨∇ρ “ 0.

It follows from the mass-continuity equation that

∇ ¨ ν “ S. (1.31)

Besides, the velocity ν is given by

ν “ ´Prms∇p (1.32)

by Darcy’s law for slow flow in porous media. Here, p P R is the scalar fluid pressure

and Prms denotes the permeability tensor that depends on the network conductance

vector m P Rd. Assuming that Prms is of the form

Prms “ rI`mbm

where I is the identity matrix and the isotropic background permeability of the

medium is denoted by the scalar function r “ rpxq ě r0 ą 0, then combining (1.31),

(1.32) results in the Poisson equation (1.27), i.e.

´∇ ¨ rprI`mbmq∇ps “ S.

Note that (1.27) with boundary conditions (1.29) has a unique weak solution p “

prms P H1
0 pΩq for each m P L8pΩq. Further note that for p “ prms the formal

L2-gradient flow of the energy

Ẽrms “ 1

2

ˆ
D2
|∇m|2 ` c2

p∇prms ¨ Prms∇prmsq ` |m|
2γ

γ
dx, (1.33)

constrained by the Poisson equation (1.27), is given by the parabolic reaction-

diffusion equation (1.28), i.e.

Btm “ D2∆m` c2
pm ¨∇pq∇p´ |m|2pγ´1qm.

Equation (1.28) governs the evolution of the network conductance m P Rd. The term

D2∆m describes random effects in the network structure. The term c2pm ¨∇pq∇p
with activation parameter c2 is called the activation term and represents a driving
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force in the direction of the pressure gradient ∇p. The term ´|m|2pγ´1qm is the

algebraic relaxation term and represents the functional derivative of the metabolic

cost of maintaining the network.

The main mathematical interest of the PDE system for network formation is

aroused by the highly unusual coupling of the elliptic equation (1.27) for the pres-

sure p to the reaction-diffusion equation (1.28) for the conductance vector m. In

particular, the PDE system (1.27)– (1.28) represents the formal L2pΩq-gradient

flow associated with the highly non-convex energy function Ẽrms in (1.33) where

p “ prms P H1
0 pΩq is the unique solution of the Poisson equation (1.27) for m given,

subject to homogeneous Dirichlet boundary conditions (1.29). The energy Ẽrms
is nondecreasing along smooth solutions of (1.27)–(1.28) and it has been shown in

[HMP15] that

d

dt
Ẽrmptqs “ ´

ˆ
Ω

ˆ

Bm

Bt
pt, xq

˙2

dx.

In [HMP15] the following analytical results were established for the PDE system

(1.27)–(1.28) with boundary conditions (1.29) and initial data (1.30) for the case

γ ě 1:

• Existence of global in time weak solutions in the energy space

• Existence and uniqueness of local in time mild solutions

• Existence of nontrivial (i.e. m ı 0) stationary states and their stability anal-

ysis (nonlinear stability in the one dimensional setting, linearised stability in

the multidimensional case)

• Limit D Ñ 0 in the one dimensional setting

The analysis of the network formation system (1.27)–(1.28) has been extended

in [HMPS16] by providing the following results:

• Existence of global in time weak solutions in the energy space for 1{2 ď γ ă 1

and of local in time mild solutions for 1{2 ď γ ă 1

• Analysis of the system in the one dimensional setting: finite time breakdown

of solutions for γ ă 1{2, infinite time extinction for 1{2 ď γ ď 1 with small

sources, nonlinear stability analysis for γ ě 1{2 and D “ 0

• Construction of stationary solutions in the case γ “ 1 and D “ 0
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Besides, extensive numerical examples for the PDE system (1.27)–(1.28) have

been provided in [AAFM16, ABH`17, HMPS16], based on a mixed finite element

discretisation. In [ABH`17] the phase transition behaviour of a microscopic model,

given by

dCij
dt

“

ˆ

QijrCs
2

C2
ij

´ νCγ´1
ij

˙

Lij (1.34)

and constrained by (1.24), has been studied with respect to the parameter γ nu-

merically by solving a constrained energy minimisation.

Note that the macroscopic model (1.27)–(1.28) has only been derived based on

the above phenomenological consideration. However, a rigorous derivation of the

model, based on the microscopic modelling approach in Section 1.2.2, is still an open

question. This motivates to establish the rigorous limit of the microscopic model

in Section 1.2.2 which is formally derived in Chapter 6 and rigorously proven in

Chapter 7.

1.3 Contributions

The recent, rapid advances in modern biology heavily rely on fundamental mathe-

matical techniques and, in particular, on PDEs, an essential tool for the mathemat-

ical modelling of biological, socio-economic and physical processes. In this thesis,

we focus on two important PDE models in biology, motivated by the simulation of

fingerprints and the formation of biological transport networks. Through mathe-

matical analysis and computer simulations, we have gained new insights into the

qualitative properties of the underlying mathematical models which have resulted in

a better understanding of complex phenomena in nature such as biological pattern

formation. Equally important, these new and challenging PDE models have led to

intra-disciplinary research, involving modelling, PDE theory, dynamical systems,

graph theory and numerical simulations. This research has opened up a whole new

range of fascinating mathematical problems, which we have studied by developing

new mathematical tools.

In Part I, we focus on a class of interacting particle models with anisotropic

repulsive-attractive interaction forces motivated by anisotropic pattern formation

in nature. An example of this class of models is the Kücken-Champod model for

describing the formation of fingerprint patterns which is not only of great interest

in the biological community, but also in forensic science and increasingly in bio-
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metric applications where large fingerprint databases are required for developing,

validating and comparing the performance of fingerprint identification algorithms.

In most existing models, the forces are isotropic and particle models lead to non-

local aggregation PDEs with radially symmetric potentials. The central novelty

in the models we consider is an anisotropy induced by an underlying tensor field,

cf. Figure 1.5(A). This innovation does not only lead to the ability to describe

real-world phenomena more accurately, but also renders their analysis significantly

harder compared to their isotropic counterparts. We discuss the role of anisotropic

interaction in these models by considering both the particle model and its contin-

uum counterpart, present a stability analysis of line patterns, investigate the role of

nonlinear diffusion on the widening of line patterns, and show numerical results for

the simulation of fingerprints.

(A) Fingerprint model (anisotropy and stationary solution) (B) Biological transport model

Figure 1.5: Numerical simulation results for the fingerprint (A) and the biological
transport network models (B).

Part II deals with transportation networks which are ubiquitous in living systems

such as leaf venation in plants, blood circulatory systems, and neural networks.

Understanding the development, function, and adaptation of biologic transportation

networks has been of long-standing interest in the scientific community due to the

complexity of the models. A new discrete dynamic modelling approach on a graph

has recently been introduced by Hu and Cai [HC13] to describe the formation of

biological transport networks. The main mathematical interest of this dynamical

model stems from the highly unusual coupling of a system of ODEs whose solution

is defined on the edges of a graph to a linear system on the nodes of the graph. In

particular, the linear system is only solvable under certain conditions and due to

the coupled defining equations on both nodes and edges of the graph it is not clear

under which assumptions a limit model can be derived. We study the existence of

solutions to this model and propose an adaptation so that a macroscopic system
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can be obtained as its formal continuum limit. For the spatially two-dimensional

rectangular setting we prove the rigorous continuum limit of the constrained energy

functional as the number of nodes of the underlying graph tends to infinity and

the edge lengths shrink to zero uniformly. We also show the global existence of

weak solutions of the macroscopic gradient flow. Results of numerical simulations

of the discrete gradient flow (cf. Figure 1.5(B)) illustrate the convergence to steady

states, their non-uniqueness as well as their dependence on initial data and model

parameters. Based on this model we propose an adapted model in the cellular

context for leaf venation, investigate the model analytically and show numerically

that it can produce branching vein patterns.

The results in this thesis have been published or submitted to journals [BDK`18,

CDKS18, CDKS19, DGH`19, HKM19a, HKM19b, HJKM19] and conference pro-

ceedings [Kre18, KM17] and have been presented at several national and interna-

tional conferences. A detailed statement of originality and contribution is provided

at the beginning of each chapter and a summary is given below:

• Chapter 2 is based on article [BDK`18] which is in collaboration with Martin

Burger, Bertram Düring, Peter A. Markowich and Carola-Bibiane Schönlieb,

and published in Mathematical Models and Methods in the Applied Sciences.

• Chapter 3 is based on article [DGH`19] which is in collaboration with Bertram

Düring, Carsten Gottschlich, Stephan Huckemann and Carola-Bibiane Schönlieb,

and published in the Journal of Mathematical Biology.

• Chapter 4 is based on article [CDKS18] which is in collaboration with José A.

Carrillo, Bertram Düring and Carola-Bibiane Schönlieb, and published in the

SIAM Journal on Applied Dynamical Systems.

• Chapter 5 is based on article [CDKS19] which is in collaboration with José A.

Carrillo, Bertram Düring and Carola-Bibiane Schönlieb, and to be submitted

for publication.

• Chapter 6 is based on article [HKM19a] which is in collaboration with Jan

Haskovec and Peter A. Markowich, and to appear in Communications in Math-

ematical Sciences.

• Chapter 7 is based on article [HKM19b] which is in collaboration with Jan

Haskovec and Peter A. Markowich, and published in Communications in Par-

tial Differential Equations.
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• Chapter 8 is based on article [HJKM19] which is in collaboration with Jan

Haskovec, Henrik Jönsson and Peter A. Markowich, and to appear in the

Proceedings of the Royal Society A.

1.4 Outline

1.4.1 Organisation of the thesis

This thesis deals with anisotropic nonlinear PDE models and dynamical systems in

biology and is the union of seven papers [BDK`18, CDKS18, CDKS19, DGH`19,

HJKM19, HKM19a, HKM19b], resulting from the collaborations of myself with Mar-

tin Burger, José A. Carrillo, Bertram Düring, Carsten Gottschlich, Jan Haskovec,

Stephan Huckemann, Henrik Jönsson, Peter A. Markowich and Carola-Bibiane

Schönlieb. This thesis divided into two parts:

• Part I (Chapters 2–5) is motivated by the simulation of fingerprint patterns

and deals with a class of anisotropic interaction equations, based on the work

in [BDK`18, CDKS18, CDKS19, DGH`19].

• Part II (Chapters 6–8) focuses on mathematical models for biological trans-

portation networks describing living systems such as leaf venation in plants,

blood circulatory systems, and neural networks, and is based on the research

in [HJKM19, HKM19a, HKM19b].

Each of the Chapters 2–8 is based on one of these papers. We give an overview

about the results of each chapter in this section. Finally, we conclude and give an

outlook on current and possible future research in Chapter 9.

1.4.2 Outline of Part I

In Part I (Chapters 2–5), we consider a class of interacting particle models with

anisotropic repulsive-attractive interaction forces and its continuum counterpart

where the orientations of the forces depend on an underlying tensor field. An exam-

ple of this class of models is the so-called Kücken–Champod model describing the

formation of fingerprint patterns. This class of models can be regarded as a gen-

eralisation of a gradient flow of a nonlocal interaction potential which has a local

repulsion and a long-range attraction structure. In contrast to isotropic interaction
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1.4. Outline

models the anisotropic forces in our class of models cannot be derived from a po-

tential. The underlying tensor field introduces an anisotropy leading to complex

patterns which do not occur in isotropic models.

In Chapter 2, we investigate the role of the anisotropy which can be characterised

by one parameter in the model. We study the variation of this parameter, describ-

ing the transition between the isotropic and the anisotropic model, analytically and

numerically. We analyse the equilibria of the corresponding mean-field partial differ-

ential equation and investigate pattern formation numerically in two dimensions by

studying the dependence of the parameters in the model on the resulting patterns.

In Chapter 3, we consider an anisotropic interaction model for simulating fin-

gerprint patterns. Evidence suggests that both the interaction of so-called Merkel

cells and the epidermal stress distribution play an important role in the formation

of fingerprint patterns during pregnancy. To model the formation of fingerprint

patterns in a biologically meaningful way these patterns have to become station-

ary. For the creation of synthetic fingerprints it is also very desirable that rescaling

the model parameters leads to rescaled distances between the stationary fingerprint

ridges. Based on these observations, as well as the model introduced by Kücken

and Champod we propose a new model for the formation of fingerprint patterns

during pregnancy. In this anisotropic interaction model, the interaction forces not

only depend on the distance vector between the cells and the model parameters,

but additionally on an underlying tensor field, representing a stress field. This de-

pendence on the tensor field leads to complex, anisotropic patterns. We study the

resulting stationary patterns both analytically and numerically. In particular, we

show that fingerprint patterns can be modelled as stationary solutions by choosing

the underlying tensor field appropriately.

In Chapter 4, we consider the stability of straight line patterns. Stable line

patterns play a crucial role in the pattern formation of the anisotropic interaction

model and are also important for the simulation of fingerprint patterns. For a given

spatially homogeneous tensor field, we show that there exists a preferred direction

of straight lines, i.e. straight vertical lines can be stable for sufficiently many par-

ticles, while many other rotations of the straight lines are unstable steady states,

both for a sufficiently large number of particles and in the continuum limit. For

straight vertical lines we consider specific force coefficients for the stability analysis

of steady states, show that stability can be achieved for exponentially decaying force

coefficients for a sufficiently large number of particles, and relate these results to

the Kücken-Champod model for simulating fingerprint patterns. The mathematical
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analysis of the steady states is completed with numerical results.

In Chapter 5, we study the equilibria of an anisotropic, nonlocal aggregation

equation with nonlinear diffusion which does not possess a gradient flow structure.

Here, the anisotropy is induced by an underlying tensor field. We derive equi-

librium conditions for stationary line patterns which can be reformulated as the

minimisers of a regularised energy functional if the underlying tensor field is spa-

tially homogeneous. For spatially homogeneous tensor fields, we show the existence

of energy minimisers, establish Γ-convergence of the regularised energy functionals

as the diffusion coefficient vanishes, and prove the convergence of minimisers of the

regularised energy functional to minimisers of the non-regularised energy functional.

Further, we investigate properties of stationary solutions on different domains. Fi-

nally, we prove weak convergence of a numerical scheme for the numerical solution

of the anisotropic, nonlocal aggregation equation with nonlinear diffusion and any

underlying tensor field, and show numerical results.

1.4.3 Outline of Part II

In Part II (Chapters 6–8), we consider a discrete mathematical formulation for

describing the formation of biological transportation networks. This model is based

on a dynamic modelling approach on a graph which has recently been introduced by

Hu and Cai [HC13]. The main mathematical interest of this dynamical model stems

from the highly unusual coupling of a system of ODEs whose solution is defined on

the edges of a graph to a linear system on the nodes of the graph. This model

can also be reformulated as the minimisation of an energy consumption function

constrained by a linear system on a graph.

In Chapter 6, we study the global existence of solutions of a discrete (ODE based)

model on a graph. We propose an adaptation of this model so that a macroscopic

(PDE based) system can be obtained as its formal continuum limit. We prove

the global existence of weak solutions of the macroscopic PDE model. Finally,

we present results of numerical simulations of the discrete model, illustrating the

convergence to steady states, their non-uniqueness as well as their dependence on

initial data and model parameters.

In Chapter 7, we study the rigorous limit of the discrete model. For the spatially

two-dimensional rectangular setting we prove the rigorous continuum limit of the

constrained energy functional as the number of nodes of the underlying graph tends

to infinity and the edge lengths shrink to zero uniformly. The proof is based on
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reformulating the discrete energy functional as a sequence of integral functionals and

proving their Γ-convergence towards the respective continuum energy functional.

In Chapter 8, we propose an adapted model in the cellular context for leaf vena-

tion. The plant hormone auxin controls many aspects of the development of plants.

One striking dynamical feature is the self-organisation of leaf venation patterns

which is driven by high levels of auxin within vein cells. The auxin transport is

mediated by specialised membrane-localised proteins. Many venation models have

been based on polarly localised efflux-mediator proteins of the PIN family. Here,

we investigate a modeling framework for auxin transport with a positive feedback

between auxin fluxes and transport capacities that are not necessarily polar, i.e.

directional across a cell wall. Our approach is derived from a discrete graph-based

model for biological transportation networks, where cells are represented by graph

nodes and intercellular membranes by edges. The edges are not a-priori oriented

and the direction of auxin flow is determined by its concentration gradient along

the edge. We prove global existence of solutions to the model and the validity of

Murray’s law for its steady states. Moreover, we demonstrate with numerical simu-

lations that the model is able connect an auxin source-sink pair with a mid-vein and

that it can also produce branching vein patterns. A significant innovative aspect

of our approach is that it allows the passage to a formal macroscopic limit which

can be extended to include network growth. We perform mathematical analysis of

the macroscopic formulation, showing the global existence of weak solutions for an

appropriate parameter range.
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Chapter 2

Anisotropic pattern formation

Originality and contribution

This chapter follows [BDK`18], written in collaboration with Martin Burger, Bertram

Düring, Peter A. Markowich and Carola-Bibiane Schönlieb. While my co-authors

proposed the study of the model and provided guidance and advice, [BDK`18] is

primarily my own original work and nearly all the results, including analysis and

simulations, were obtained by myself.

Chapter summary

In this chapter, we consider a class of interacting particle models with anisotropic,

repulsive–attractive interaction forces whose orientations depend on an underlying

tensor field. An example of this class of models is the so-called Kücken–Champod

model describing the formation of fingerprint patterns. This class of models can be

regarded as a generalisation of a gradient flow of a nonlocal interaction potential

which has a local repulsion and a long-range attraction structure. In contrast to

isotropic interaction models the anisotropic forces in our class of models cannot be

derived from a potential. The underlying tensor field introduces an anisotropy lead-

ing to complex patterns which do not occur in isotropic models. This anisotropy

is characterised by one parameter in the model. We study the variation of this pa-

rameter, describing the transition between the isotropic and the anisotropic model,

analytically and numerically. We analyse the equilibria of the corresponding mean-

field partial differential equation and investigate pattern formation numerically in

two dimensions by studying the dependence of the parameters in the model on the
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resulting patterns.

2.1 Introduction

The goal of this chapter is to study the equilibria of the particle model (1.4), i.e.

dxj
dt

“
1

N

N
ÿ

k“1
k‰j

F pxj ´ xk, T pxjqq, (2.1)

and the associated mean-field PDE (1.17), i.e.

Btρpt, xq `∇x ¨ rρpt, xq pF p¨, T pxqq ˚ ρpt, ¨qq pxqs “ 0 in R` ˆ R2, (2.2)

analytically and numerically. This can be achieved by investigating the existence of

equilibria analytically. Since numerical simulations are crucial for getting a better

understanding of the patterns which can be generated with the Kücken-Champod

model we investigate the impact of the model parameters on the resulting transient

and steady patterns numerically. In particular, we study the transition of steady

states with respect to the parameter χ. Based on the results in this chapter we study

the solution to the particle model for non-homogeneous tensor fields, simulate the

fingerprint pattern formation process and model fingerprint patterns with certain

features in Chapter 3.

Note that the modelling involves multiple scales which can be seen in several

different ways. Given the particle model in (2.1) we consider the associated particle

density to derive the mean-field limit. Here, the interaction force exhibits short-

range repulsion and long-range attraction. The direction of the attraction force

depends on the parameter χ which is responsible for different transient and steady

state patterns. More precisely, ring equilibria obtained for χ “ 1 evolve into ellipse

patterns and stripe patterns as χ decreases. Besides, large-time asymptotics are

considered for determining the equilibria.

This chapter is organised as follows. In Section 2.2 the solution to the mean-field

PDE (2.2) is analysed. More precisely, we discuss the impact of the parameter χ

on the force alignment and on the solution to the model. Besides, we study the

impact of spatially homogeneous tensor fields and we show that the equilibria to

the mean-field PDE (2.2) for any spatially homogeneous tensor field can be regarded

as a coordinate transform of the tensor field T “ χs b s ` l b l where s “ p0, 1q
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2.2. Analysis of the model

and l “ p1, 0q for any parameter χ P r0, 1s. Hence, we can restrict ourselves to this

specific tensor field T for the analysis. We investigate the existence of equilibria

to the mean-field PDE (2.2) whose form depend on the choice of χ. Under certain

assumptions we show that for χ “ 1 there exists at most one radius R ą 0 such

that the ring state of radius R is a nontrivial equilibrium mean-field PDE (2.2)

for spatially homogeneous tensor fields and uniqueness can be guaranteed under an

additional assumption, while for χ P r0, 1q the ring state is no equilibrium. For

χ P r0, 1s and R ą 0 sufficiently small there exists at most one r ą 0 such that

an ellipse with major axis R ` r and minor axis R whose major axis is aligned

along s is an equilibrium. Besides, the shorter the minor axis of the ellipse, the

longer the major axis of possible ellipse steady states and the smaller the value

of χ the longer the major and the shorter the minor axis of the possible ellipse

equilibrium. Section 2.3 contains a description of the numerical method and we

discuss the simulation results for the particle model (2.1). The numerical results

include an investigation of the stationary solutions and their dependence on different

parameters in the model, including the impact of the parameter χ and the associated

transition between the isotropic and anisotropic model. Besides, we compare the

numerical with the analytical results.

2.2 Analysis of the model

We analyze the equilibria of the mean-field PDE (2.2) in terms of the parameter

χ P r0, 1s for the general formulation of the model, i.e., the total force is given by

(1.8) where the repulsion and the attraction forces are defined in (1.11).

2.2.1 Interpretation of the total force

The alignment of the attraction force, defined in (1.11), and thus the pattern for-

mation strongly depend on the choice of the parameter χ P r0, 1s. For χ “ 1 the

total force F in (1.8) can be derived from a radially symmetric potential and the

mean-field PDE (2.2) reduces to the isotropic interaction equations (1.3). In par-

ticular, the solution to (2.2) is radially symmetric for χ “ 1 for radially symmetric

initial data [BGL12].

For χ P r0, 1q the attraction force FA of the form (1.11) is not conservative by

Remark 2 and can be written as the sum of a conservative and a non-conservative

37



Anisotropic pattern formation

force, given by FA “ FA,1 ` FA,2 with

FA,1pdq “ fAp|d|qd

and

FA,2pd, T pxjqq “ fAp|d|qpT pxjq ´ Iqd “ fAp|d|q pχ´ 1q pspxjq ¨ dq spxjq,

where d ” dpxj, xkq :“ xj ´ xk and I denotes the two-dimensional identity matrix.

In particular, FA,1 does not depend on χ and is equal to the attraction force in (1.11)

with χ “ 1. Since the coefficient function fApχ ´ 1q of FA,2 is nonnegative, FA,2

is a repulsion force aligned along spxjq and leads to an additional advection along

spxjq compared to the case χ “ 1. This repulsion force along spxjq is the larger, the

smaller χ. In particular, for the force coefficients fA and fR in the Kücken-Champod

model (2.1), given by (1.19) and (1.18) with parameters in (1.20), the total force

along s is purely repulsive for χ sufficiently small as illustrated in Figure 2.1.

For the spatially homogeneous tensor field T “ χsb s` lb l with l “ p1, 0q and

s “ p0, 1q the solution is stretched along the vertical axis for χ ă 1. The smaller

the value of χ, the larger the repulsion force and the more the solution is stretched

along the vertical axis. For χ sufficiently small stretching along the entire vertical

axis is possible for solutions to the particle model (2.1) because of purely repulsive

forces along s.

(A) Along l (B) Along s

Figure 2.1: Total force along l and s given by (1.21) for coefficients fA in (1.19) and
fR in (1.18) of the attraction and the repulsion force for parameter values in (1.20),
respectively) for different values of χ.
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2.2.2 Impact of spatially homogeneous tensor fields

Let χ P r0, 1s and consider the spatially homogeneous tensor field T “ χsb s` lb l

with l “ p1, 0q and s “ p0, 1q. The solution of the particle model (2.1) for any

spatially homogeneous tensor field T̃ is a coordinate transform of the solution of the

particle model (2.1) for the tensor field T . Similarly, for the analysis of equilibria

of the microscopic model (2.1) for T̃ it is sufficient to study the equilibria of (2.1)

for T . For a similar statement for the mean-field PDE (2.2) we define the concept

of an equilibrium state.

Definition 2 (Equilibrium state of (2.2)). A Borel probability measure µ P PpR2q

is said to be an equilibrium state of the mean-field PDE (2.2) if

K P L1
loc pdµq and K “ 0 on supppµq µ-a.e. (2.3)

where K “ F p¨, T q ˚ µ µ-a.e.

An equilibrium state of the mean-field equation (2.2) for any spatially homo-

geneous tensor field T̃ is the coordinate transform of an equilibrium state to the

mean-field equation (2.2) for the tensor field T . For detailed computations see

Appendix 2.A.

2.2.3 Existence of equilibria

Based on the discussion on the action of the total force in Section 2.2.1 possible

shapes of equilibria of the mean-field PDE (2.2) depend on the choice of the pa-

rameter χ P r0, 1s. To analyze the equilibria of the mean-field PDE (2.2) in two

dimensions for any spatially homogeneous tensor field, it is sufficient to consider the

tensor field T “ χsb s` l b l with l “ p1, 0q and s “ p0, 1q in the sequel as outlined

in Section 2.2.2. Note that the forces along l are assumed to be repulsive-attractive,

while the forces along s depend significantly on the choice of χ and may be re-

pulsive, repulsive-attractive-repulsive or repulsive-attractive. Further note that the

forces only depend on the distance vector for spatially homogeneous tensor fields.

To simplify the analysis, we make the following assumption on F in addition to

Assumption 1 in this section:

Assumption 2. We assume that F is strictly decreasing along l and s on the

interval r0, des for some de ą da where da is defined in Assumption 1. In particular,

there exits de ą da such that χfA`fR is strictly decreasing on r0, des for all χ P r0, 1s.
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Assumption 2 is clearly satisfied for the force coefficients (1.18) and (1.19) in the

Kücken-Champod model (2.1) with parameter values in (1.20), cp. Figure 2.2. With

this choice of parameters we have da » 0.0029 and for de “ 0.0126 the monotonicity

property of the force holds in r0, des uniformly with respect to χ P r0, 1s.

Figure 2.2: Coefficients fA ` fR for parameter values in (1.20).

Ellipse pattern

Solutions to the the mean-field PDE (2.2) for T “ χsb s` lb l with l “ p1, 0q and

s “ p0, 1q are stretched along the vertical axis by the discussion in Section 2.2.1.

This motivates us to consider an ellipse whose major axis is parallel to the vertical

axis. Because of the spatial homogeneity of the tensor field it is sufficient to restrict

ourselves to probability measures with centre of mass p0, 0q.

Definition 3. Let R ą 0 and let r ě 0. The ellipse state whose minor and major

axis are of lengths R and R ` r, respectively, is the probability measure which is

uniformly distributed on

#

x “ px1, x2q P R2 :
´x1

R

¯2

`

ˆ

x2

r `R

˙2

“ 1

+

.

We denote this probability measure by δpR,rq.

First, we restrict ourselves to nontrivial ring states δpR,0q of radius R ą 0, i.e.,

we consider the special case of ellipse states where r “ 0. The existence of ring

equilibria for repulsive-attractive potentials that do not decay faster than 1{d2 as

d Ñ 8 has already been discussed in [BCLR13b]. However, the force coefficients

(1.18) and (1.19) in the Kücken-Champod model [KC13] decay exponentially fast
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2.2. Analysis of the model

as dÑ 8. Besides, a repulsive-attractive potential exists for χ “ 1 only by Remark

2. To analyse the ring equilibria we distinguish between the two cases χ “ 1 and

χ P r0, 1q, starting with the case χ “ 1.

Lemma 1. Let χ “ 1. The probability measure δpR,0q is a nontrivial ring equilibrium

to (2.2) for radius R ą 0 if and only if

ˆ π

0

pfA ` fRq

ˆ

R
b

p1´ cosφq2 ` sin2 φ

˙

p1´ cosφq dφ “ 0. (2.4)

Proof. By symmetry of the domain one obtains that Kpxq “ pF p¨, T pxqq ˚ δpR,0qqpxq

is rotation invariant for χ “ 1. We have

KpRθxq “ Kpxq, x P R2,

for every angle θ P R, where Rθ stands for the counter-wise rotation matrix with

angle θ in (1.16). In particular, for every x in the circle of radius R one has

Kpxq “ KppR, 0qq. Hence, it suffices to show for χ “ 1 that there exists R ą 0

such that

pF p¨, T q ˚ δpR,0qqppR, 0qq “

ˆ 2π

0

F pRp1´ cosφ,´ sinφq, T qR dφ “ 0

for nontrivial ring equilibria. By using the simplified form of

F pd, T q “ pfA ` fRqp|d|qd

for χ “ 1 a change of variables yields

ˆ 2π

π

F pRp1´ cosφ,´ sinφq, T qR dφ “

ˆ π

0

F pRp1´ cosφ, sinφq, T qR dφ

due to the odd symmetry of the sine function at π. Hence, the second component of

the integral
´ 2π

0
F pRp1´ cosφ,´ sinφq, T qR dφ is zero and we can restrict ourselves

to the first component, implying that it is sufficient to show the existence of R ą 0

such that

R2

ˆ π

0

pfA ` fRq

ˆ

R
b

p1´ cosφq2 ` sin2 φ

˙

p1´ cosφq dφ “ 0.

Since we are interested in nontrivial ring equilibria with radius R ą 0 the condition

finally reduces to (2.4).
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Proposition 1. Let χ “ 1. There exists at most one radius R̄ P p0, de
2
s such that

the ring state δpR̄,0q of radius R̄ is a nontrivial equilibrium to the mean-field PDE

(2.2). If

ˆ π

0

pfA ` fRq

ˆ

de
2

b

p1´ cosφq2 ` sin2 φ

˙

p1´ cosφq dφ ă 0 (2.5)

there exists a unique R̄ P pda
2
, de

2
s such that the ring state δpR̄,0q of radius R̄ is a

nontrivial equilibrium.

Proof. Consider the left-hand side of (2.4) as a function of R denoted by GpRq.

By deriving GpRq with respect to R and using Assumption 2 one can easily see

that GpRq is strictly decreasing as a function of R on r0, de
2
s. Note that Gp0q ą 0,

GpRq ą 0 for R ď da
2

and fA, fR are continuous by Assumption 1 on the total force.

Since (2.5) is equivalent to Gpde
2
q ă 0 this concludes the proof.

One can easily check that (2.5) is satisfied for the force coefficients (1.18) and

(1.19) in the Kücken-Champod model (2.1) with parameter values in (1.20) if de

is the argument of the minimum of fA ` fR, see Assumption 2. In particular, this

implies that there exists a unique nontrivial ring equilibrium of radius R P pda
2
, de

2
s

to the mean-field PDE (2.2) for the forces in the particle model for χ “ 1.

The case χ P r0, 1q can be analysed similarly as the one for χ “ 1 for ring

patterns except that some of the symmetry arguments do not hold.

Proposition 2. Let χ P r0, 1q. There exists no R P p0, de
2
s such that the ring state

δpR,0q is an equilibrium to the mean-field PDE (2.2).

Proof. For χ “ 1, pF p¨, T q ˚ δpR,0qqppR, 0qq “ 0 is equivalent to (2.4) by Lemma 1,

based on the property pF p¨, T q ˚ δpR,0qqppR, 0qq ¨ s “ 0. Since

F pd, T q “ fAp|d|qpd1, χd2q ` fRp|d|qd

where d “ pd1, d2q, (2.4) also has to be satisfied for χ P r0, 1q. Similarly as in the

proof of Lemma 1 one can show that

pF p¨, T q ˚ δpR,0qqpp0, Rqq “

ˆ 2π

0

F pRp´ cosφ, 1´ sinφq, T qR dφ “ 0

42



2.2. Analysis of the model

is equivalent to

ˆ 3π{2

π{2

pχfA ` fRq
´

R
a

cos2 φ` p1´ sinφq2
¯

p1´ sinφq dφ “ 0 (2.6)

for R ą 0. Note that (2.4) is equivalent to (2.6) for χ “ 1 by symmetry so that

the equilibrium of radius R P p0, de
2
s from Proposition 1 satisfies (2.4) and (2.6)

simultaneously for χ “ 1. However, (2.4) and (2.6) are not satisfied simultaneously

for any R P p0, de
2
s and any χ P r0, 1q which concludes the proof.

Next, we analyse the ellipse pattern.

Corollary 1. Let χ P r0, 1s be given and define

w1pφ,R, rq “
b

R2p1´ cosφq2 ` pR ` rq2 sin2 φ,

w2pφ,R, rq “
b

R2 sin2 φ` pR ` rq2 cos2 φ,

w3pφ,R, rq “
a

R2 cos2 φ` pR ` rq2p1´ sinφq2.

Then, necessary conditions for a stationary ellipse state δpR,rq where R, r ě 0 are

given by

ˆ π

0

pfA ` fRq pw1pφ,R, rqqR p1´ cosφqw2pφ,R, rq dφ “ 0 (2.7)

and

ˆ 3π{2

π{2

pχfA ` fRq pw3pφ,R, rqq pR ` rq p1´ sinφqw2pφ,R, rq dφ “ 0. (2.8)

Proof. For ellipse equilibria we require pF p¨, T q ˚ δpR,rqqppR, 0qq “ 0 implying

ˆ 2π

0

F ppRp1´ cosφq,´pR ` rq sinφq, T q
b

R2 sin2 φ` pR ` rq2 cos2 φ dφ “ 0.

Since e2 ¨pF p¨, T q˚δpR,rqqppR, 0qq “ 0 by symmetry for any χ P r0, 1q where e2 “ p0, 1q

and

F pd, T q “ pfAp|d|q ` fRp|d|qq

¨

˚

˝

1 0

0 χ

˛

‹

‚

d
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this implies that it is sufficient to require (2.7) where

w2pφ,R, rq “
b

R2 sin2 φ` pR ` rq2 cos2 φ.

Similarly,

pF p¨, T q ˚ δpR,rqqpp0, R ` rqq

“ C

ˆ 2π

0

F pp´R cosφ, pR ` rqp1´ sinφqq, T qw2pφ,R, rq dφ

“ 0

for a normalisation constant C reduces to the necessary condition (2.8).

In the sequel, we denote the left-hand side of (2.7) by GpR, rq.

Assumption 3. Given r P r0, deq we assume that there exists Rint P p0, Req such

that

d

dR
GpR, rq ą 0 for R P p0, Rintq and

d

dR
GpR, rq ă 0 for R P pRint, Req .

Remark 4. Since Gp0, rq “ 0 and Assumption 3 implies that for r P r0, deq given we

have GpR, rq ą 0 for all R P p0, Rintq. Besides, the uniqueness of stationary ellipse

states δpR,rq for R P pRint, Req for given r P r0, deq is guaranteed by Assumption 3.

We have the following existence result for nontrivial ellipse states, including rings

for R ą 0 and r “ 0.

Corollary 2. Let r P r0, deq and let Re ą 0 such that

w1pφ,R, rq ď de for all φ P r0, πs, R P r0, Res (2.9)

is satisfied and assume that

ˆ π

0

pfA ` fRq pw1pφ,R, rqq p1´ cosφq
`

R2
e `Rer cos2 φ

˘

dφ ă 0. (2.10)

holds. Further define

G1pR, rq “

ˆ π

0

pfA ` fRq pw1pφ,R, rqq p1´ cosφq dφ

44



2.2. Analysis of the model

and

G2pR, rq “

ˆ π

0

pfA ` fRq pw1pφ,R, rqq p1´ cosφq cos2 φ dφ.

If r satisfies

min tG1p0, rq, G2p0, rqu ą 0 (2.11)

there exists an R P p0, Req such that the necessary condition (2.7) for a nontriv-

ial stationary ellipse state δpR,rq to the mean-field PDE (2.2) are satisfied. For r

satisfying

max tG1p0, rq, G2p0, rqu ă 0 (2.12)

there exists no R P p0, Req such that the ellipse δpR,rq is an equilibrium to the mean-

field PDE (2.2) and the trivial ellipse state δp0,rq is the only equilibrium. If, for

r P r0, deq given, Assumption 3 is satisfied, then there exists a unique R P pRint, Req

such that the necessary condition (2.7) for a nontrivial stationary ellipse state δpR,rq

is satisfied.

Remark 5. Condition (2.9) is related to the assumption that fA ` fR is strictly

decreasing on r0, des in Assumption 2. Condition (2.10) can be interpreted as the

long-range attraction forces being larger than the short-range repulsion forces. Be-

sides, given r P r0, deq condition (2.12) can be interpreted as the attractive forces

being too strong for the existence of a stationary ellipse patterns δp0,rq and hence

for any stationary ellipse pattern δpR,rq for R ě 0 because the forces are attractive

for R sufficiently large. Condition (2.11) implies that the forces are too repulsive

along the vertical axis for a stationary ellipse state δp0,rq, but as R increases the

forces become more attractive which may result in stationary ellipse state δpR,rq for

R ą 0. Assumption 3 relaxes condition (2.11), but requires additionally that Gp¨, rq

first increases and then decreases to guarantee the uniqueness of a stationary ellipse

pattern. In Figure 2.3(A) the function G is evaluated for certain values of r P r0, deq

for the forces in the particle model (2.1) and one can clearly see that Assumption 3

is satisfied and there exists a unique zero R ą 0, as stated in Corollary 2.

Proof. Let r P p0, deq be given. Note that the left-hand side of (2.9) is equal to

w1pφ,R, rq for all φ P r0, πs and w1pφ,R, rq P r0,maxt2R,R ` rus for all φ P r0, πs.

Since fA ` fR is strictly decreasing on r0, des by Assumption 2 we only consider

R ě 0 such that w1pφ,R, rq P r0, des for all φ P r0, πs. Clearly, there exists Re ą 0
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such that (2.9) is satisfied.

Since w2 pφ,R, rq „ R ` r cos2 φ we approximate (2.7) by

ˆ π

0

pfA ` fRq pw1pφ,R, rqq p1´ cosφq
`

R2
`Rr cos2 φ

˘

dφ “ 0 (2.13)

Note that pfA ` fRq pw1pφ,R, rqq p1´ cosφq for φ P p0, πq is strictly decreasing as

a function of R because fA ` fR is a strictly decreasing function by Assumption 2

and w1pφ,R, rq is strictly increasing in R for φ P p0, πq fixed. Hence, G1pR, rq is

strictly decreasing in R and has a unique zero R1 P r0, Res, provided r ě 0 sat-

isfies G1p0, rq ą 0 and (2.10). Similarly, one can argue that G2pR, rq is strictly

decreasing in R and has a unique zero R2 P r0, Res if r ě 0 such that G2p0, rq ą 0

and (2.10) are satisfied. The left-hand side of (2.13) is the rescaled sum of G1

and G2 where id2
¨G1p¨, rq as a function of R is nonnegative on r0, R1s and neg-

ative on pR1, Res, while id ¨ rG2p¨, rq as a function of R is nonnegative on r0, R2s

and negative on pR2, Res. In particular, the left-hand side of (2.13) has a zero

R P rmintR1, R2u,maxtR1, R2us on p0, Req if r ě 0 satisfies (2.11) and (2.10), while

there exists no zero on p0, Req if r ě 0 satisfies (2.12). If Assumption 3 is satisfied,

then Gp¨, rq with r P r0, deq given has a zero at R “ 0 and at an R P p0, deq because

Gp¨, rq ą 0 on p0, Rintq, Gp¨, rq strictly decreasing on pRint, Req and GpRe, rq ă 0 by

(2.10). This concludes the proof.

Since the equilibrium condition (2.7) for trivial ellipse states with R “ 0 is

clearly satisfied for all r ě 0 we rewrite GpR, rq “ RgpR, rq for a smooth function g

and require gp0, rq “ 0. Since we are interested in nontrivial states, i.e., r ą 0, we

define

ḡprq “

ˆ π

0

pfA ` fRq pr| sinφ|q p1´ cosφq | cosφ| dφ “ 0

and and it is sufficient to require ḡprq “ 0 for an r ą 0. Note that ḡprq ą 0 for all

r P p0, das since fA ` fR is repulsive on r0, das. Assuming that ḡpdeq ă 0 which is

a natural condition for long-range attraction forces being stronger than short-range

repulsive forces there exists a unique r̄ P p0, deq such that ḡpr̄q “ 0 because ḡ strictly

decreases on p0, deq. Besides, the necessary condition (2.8) reduces to

ˆ 3π{2

π{2

pχfA ` fRq pr̄|1´ sinφ|q p1´ sinφq | cosφ| dφ “ 0.
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2.2. Analysis of the model

Since fA ď 0 and fR ě 0 by the definition of the attractive and repulsive force, cf.

Assumption 1, there exists a unique χ̄ P p0, 1q such that condition (2.8) is satisfied,

given by

χ̄ “ ´

´ 3π{2

π{2
fR pr̄|1´ sinφ|q p1´ sinφq | cosφ| dφ´ 3π{2

π{2
fA pr̄|1´ sinφ|q p1´ sinφq | cosφ| dφ

ą 0. (2.14)

Note that χ̄ ă 1 by the assumption that the long-range attraction forces are stronger

than the short-range repulsive forces. In summary, we have the following result.

Lemma 2. There exists a unique r̄ P p0, deq such that the necessary condition (2.7)

for a stationary ellipse state δp0,r̄q with ḡpr̄q “ 0 is satisfied. In this case, the second

necessary condition (2.8) is satisfied for a unique χ̄ P r0, 1s, defined by (2.14).

Assumption 4. Assume that

(i) If GpR̃, r̃q “ 0 for R̃ ą 0, r̃ ě 0, then GpR̃, rq ă 0 for r ą r̃.

(ii) There exists R ą 0 such that GpR, 0q ă 0.

(iii) For all R ą 0 there exists r ě 0 such that GpR, rq ă 0.

Remark 6. Note that (1) in Assumption 4 implies that if the equilibrium condition

for an ellipse state is satisfied for a specific tuple pR̃, r̃q, then the forces are too

attractive for any ellipse state pR̃, rq with longer major axis R̃`r ě R̃` r̃ for r ě r̃.

Condition (2) in Assumption 4 together with Assumption 3 implies the existence of

a ring equilibrium. Besides, (3) in Assumption 4 states that for an ellipse state with

a minor axis of length R ą 0 one can choose the major axis R ` r sufficiently long

so that the given forces are too attractive for the ellipse state δpR,rq to be stationary.

Note that one can easily check that these assumptions are satisfied for the forces in

the Kücken-Champod model with parameters in (1.20).

Proposition 3. Let 0 ď r1 ă r2 ă de and let R1, R2 ě 0 such that

w1pφ,R, rq ď de for all φ P r0, πs, R P r0,maxtR1, R2us

and the necessary condition (2.7) for δpR1,r1q and δpR2,r2q being stationary ellipse

states are satisfied. Suppose that Assumption 4 and Assumption 3 hold. Then,

R1 ą R2, i.e., the longer the major axis of the stationary ellipse state, the shorter

the minor axis. Besides, there exists a continuous function qptq “ pRptq, rptqq for
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t P r0, 1s where Rptq is strictly decreasing, rptq is strictly increasing, qp0q “ p0, r̄q

for the pseudo-ellipse state δp0,r̄q with r̄ ą 0 in Lemma 2 and qp1q “ pR̄, 0q for the

unique ring state of radius R̄ in Proposition 1.

Proof. Note that Gp0, rq “ 0 for all r ě 0. Further note that pfA` fRqp0q ą 0 since

F is a short-range repulsive, long-range attractive force by Assumption 1, implying

that for all R P p0, da{4s and all r P r0, da{4s we have GpR, rq ą 0. By continuity and

since GpR, 0q ă 0 for some R ą 0 there exists R̃ ą 0 such that GpR̃, 0q “ 0. Besides,

Assumption 4 implies that GpR̃, rq ă 0 for all r ą 0. In particular, GpR̃, r1q ă 0

and GpR̃, r2q ă 0 for r2 ą r1 ą 0 implies together with Assumption 3 that there

exists a unique R̃1 P r0, R̃q such that GpR̃1, r1q “ 0 which implies that GpR̃1, r2q ă 0

and that there exists R̃2 P r0, R̃1q such that GpR̃2, r2q “ 0.

In Figure 2.3(B) the tuples pR, rq are plotted such that the necessary condition

(2.7) for ellipse equilibria is satisfied. In particular, these tuples pR, rq can be

determined independently from χ from (2.7).

Corollary 3. Let HpR, r, χq denote the left-hand side of (2.8) and assume that

Hpq1, q2, 1q is strictly increasing where the function qptq “ pq1ptq, q2ptqq, t P r0, 1s, is

defined in Proposition 3. For every tuple pR, rq with R, r ě 0 such that the condition

(2.7) is satisfied there exists a unique χ P r0, 1s so that (2.8) is also satisfied. If

additionally Hpq1, q2, χq is strictly decreasing for all χ P rχ̄, 1s then there exists a

unique tuple pR, rq such that the corresponding ellipse pattern δpR,rq is an equilibrium

for any given χ P rχ̄, 1s. In particular, there exists a continuous, strictly increasing

function p “ pptq for t P r0, 1s with pp0q “ χ̄ and pp1q “ 1 such that for t P r0, 1s

given the ellipse state δpq1ptq,q2ptqq is stationary for a unique value of the parameter

χ “ pptq. In other words, the smaller the value of χ P rχ̄, 1s the longer the major

and the shorter the minor axis for ellipse equilibria, i.e., the smaller the value of χ

the more the ellipse is stretched along the vertical axis.

Proof. Note that (2.8) can be rewritten as

ˆ π

0

pχfA ` fRq pw3pφ` π{2, R, rqq pR ` rq p1´ cosφqw2pφ` π{2, R, rq dφ “ 0

(2.15)

where

w3pφ` π{2, R, rq “
b

R2 sin2 φ` pR ` rq2p1´ cosφq2.
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In particular, (2.15) is equal to (2.7) for χ “ 1 and r “ 0, i.e., Hpq1p1q, q2p1q, 1q “ 0.

However, for any tuple pR, rq with r ą 0 satisfying (2.7) we have HpR, r, 1q ă 0

since Hpq1, q2, 1q is strictly increasing on r0, 1s and Hpq1p1q, q2p1q, 1q “ 0. Besides,

Hpq1, q2, 0q ą 0 on r0, 1s since by the definition of the repulsive force coefficient

in Assumption 1 we have 1 ´ cosφ ě 0 on r0, πs, fR ě 0 and w2 ě 0. Since

Hpq1ptq, q2ptq, ¨q is strictly decreasing as a function of χ for any t P r0, 1s fixed by the

properties of the attractive force coefficient in Assumption 1 for each t P r0, 1s there

exists a unique χ P r0, 1s by continuity of H such that the tuple qptq “ pq1ptq, q2ptqq

satisfies condition (2.8).

To show that for any χ P rχ̄, 1s there exists a unique tuple pR, rq such that

δpR,rq is a stationary ellipse state note that HpR̄, 0, 1q “ 0 by the definition of R̄ in

Proposition 1 and HpR̄, 0, χq ą 0 for χ P p0, 1s since HpR̄, 0, ¨q strictly decreasing.

Similarly, Hp0, r̄, χ̄q “ 0 and Hp0, r̄, χq ă 0 for all χ P pχ̄, 1s. Since Hpq1, q2, χq

is strictly increasing for any χ P rχ̄, 1s by assumption the function Hpq1, q2, χq for

χ P rχ̄, 1s fixed has a unique zero, i.e., there exists a unique tuple pR, rq such that

δpR,rq is a stationary ellipse state. Besides, if δpR1,r1q and δpR2,r2q are stationary ellipse

states with R1 ă R2 and r1 ą r2 for χ1, χ2 P rχ̄, 1s, respectively, then χ1 ă χ2 since

there exist t1, t2 P r0, 1s with t1 ă t2 such that qpt1q “ pR1, r1q and qpt2q “ pR2, r2q

and Hpq1, q2, χq strictly increasing for any χ P rχ̄, 1s.

In Figure 2.3(C) the functional Hpq1, q2, χq is evaluated for different values of χ

and one can see that for every χ there exists a unique tuple pR, rq such that the

equilibrium condition (2.8) is satisfied. The eccentricity e “
a

1´ pR{pR ` rqq2 of

the ellipse is illustrated as a function of χ in Figure 2.3(D) and one can see how

the eccentricity increases as χ decreases which corresponds to the evolution of the

ring pattern into a stationary ellipse pattern whose minor axis becomes shorter and

whose major axis becomes longer as χ decreases, proven in Corollary 3.

The existence of steady states is essential for getting an insight into the properties

of the model. In order to explain the emergent behavior of the model, it is necessary

to study the stability of the equilibrium and classify the convergence to equilibria

in terms of initial data. This will be subject to future research.

To sum up, we have discussed the existence of stationary ellipse patterns to the

mean-field PDE (2.2) with the spatially homogeneous tensor field with s “ p0, 1q

and l “ p1, 0q in this subsection. Under certain assumptions on the interaction

forces we showed:

• Existence and uniqueness of (non-trivial) ring steady states for at most one
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(A) Evaluation of LHS of (2.7) (B) Tuples pR, rq

(C) Evaluation of LHS of (2.8) (D) e “ epχq

Figure 2.3: Tuples pR, rq for stationary ellipse patterns to the mean-field equation
(2.2) satisfying equilibrium conditions (2.7) and (2.8) for different values of χ and
eccentricity e as a function of χ for the forces in the particle model for parameter
values in (1.20).
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radius R ą 0 for χ “ 1

• Non-existence of ring steady states for χ P r0, 1q

• Existence of ellipse steady states for χ P r0, 1q:

– For any χ sufficiently close to 1, there exists a unique length for both

major and minor axis of the stationary ellipse pattern.

– Smaller values of χ lead to a longer major and a shorter minor axis of

the ellipse equilibrium.

Stripe pattern

Based on the discussion in Section 2.2.1 for the tensor field T “ χsb s` lb l with

l “ p1, 0q and s “ p0, 1q, we consider different shapes of vertical stripe patterns in

R2 and discuss whether they are equilibria.

Definition 4. Let the centre of mass be denoted by xc “ pxc,1, xc,2q P R2. Then we

define the measure δpxc,1,¨q by

δpxc,1,¨qpAq “ λ pAX ptxc,1u ˆ Rqq

for all measurable sets A Ă R2 where λ denotes the one-dimensional Lebesgue mea-

sure.

The measure δpxc,1,¨q is a locally finite measure, but not a probability measures

and satisfies condition (2.3) for equilibria of the mean-field PDE (2.2) for any force

satisfying Assumption 1 and any χ P r0, 1s since F px´x1, T q “ ´F p´px´x1q, T q for

all x, x1 P R2. Note that fully repulsive forces along the vertical axis are necessary

for the occurrence of stable stripe patterns δpxc,1,¨q. Further note that as χ decreases

the attraction forces disappear along the vertical direction and the mass leaks to

infinity driven by purely repulsive forces along the vertical axis so that δpxc,1,¨q cannot

be the limit of an ellipse pattern. Hence, vertical lines are not stable equilibria with

Definition 2 for the particle model (2.1) posed in the plane.

To obtain measures concentrating on vertical lines as solutions to the particle

model (2.1) and to guarantee the conservation of mass under the variation of pa-

rameter χ, we consider the associated probability measure on the two-dimensional

unit torus T2 instead of the full space R2. Another possibility to obtain measures

51



Anisotropic pattern formation

concentrating on vertical lines as solutions is to consider confinement forces, see

[MRS19, CMM`19].

Solutions to the mean-field PDE (2.2) satisfying condition (2.3) include measures

which are uniformly distributed on certain intervals along the vertical axis, i.e., on

tx “ px1, x2q P R2 : x1 “ xc,1, x2 P ra, bsu for some constants a ă b, as well as

measures which are uniformly distributed on unions of distinct intervals. The former

occur if the total force is repulsive-attractive so that the attraction force restricts

the stretching of the solution to certain subsets of the vertical axis. The latter

which look like dashed lines parallel to the vertical axis can be realised by repulsive-

attractive-repulsive forces, i.e., repulsive-attractive forces may lead to accumulations

on subsets of the vertical axis while the additional repulsion force acting on long

distances is responsible for the separation of the different subsets.

After considering these one-dimensional patterns, the question arises whether

the corresponding two-dimensional vertical stripe pattern of width ∆ satisfies the

equilibrium condition (2.3) for any ∆ ą 0. Let ∆ ą 0 and consider the two-

dimensional vertical stripe pattern of width ∆, given by

g∆pxq “ g∆px1, x2q “

$

&

%

1
∆
, x1 P

“

xc,1 ´
∆
2
, xc,1 `

∆
2

‰

,

0, otherwise.

We assume that g∆ satisfies the equilibrium condition (2.3) for the mean-field PDE

(2.2), i.e., g∆ pF ˚ g∆q “ 0, implying

ˆ
rxc,1´∆

2
,xc,1`

∆
2 sˆR

F px´ x1, T q dx1 “ 0 for all x P

„

xc,1 ´
∆

2
, xc,1 `

∆

2



ˆ R.

By linear transformations this reduces to

ˆ
r´∆

2
,∆

2 sˆR
F ppx1, 0q ´ x

1, T q dx1 “ 0 for all x1 P

„

´
∆

2
,
∆

2



.

Since F px´ x1, T pxqq “ ´F p´px´ x1q, T pxqq for all x, x1 P R2 we have

e1 ¨

ˆ
r´∆

2
,∆

2 sˆR
F ppx1, 0q ´ x

1, T q dx1 “ 0 for all x1 P

„

´
∆

2
,
∆

2


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and symmetry implies

e1 ¨

ˆ
rx1,∆´x1sˆR

F px1, T q dx1 “ 0 for all x1 P

„

0,
∆

2

˙

. (2.16)

Hence the equilibrium state can only occur for special choices of the interaction

force F . In general, (2.16) is not satisfied and thus g∆ is not an equilibrium state

of the mean-field PDE.

2.3 Numerical methods and results

In this section, we investigate the long-time behavior of solutions to the particle

model (2.1) and the pattern formation process numerically and we discuss the nu-

merical results by comparing them to the analytical results of the model in Section

2.2. These numerical simulations are necessary for getting a better understanding

of the long-time behavior of solutions to the particle model (2.1) and its stationary

states. Since the mean-field limit shows that the particle method is convergent with

a order given by N´1{2 lnp1 `Nq (see [FG15, Gol16]) it is sufficient to use particle

simulations instead of the mean-field solvers.

We consider the domain Ω “ T2 where T2 is the 2-dimensional unit torus that

can be identified with the unit square r0, 1q ˆ r0, 1q Ă R2 with periodic boundary

conditions. To guarantee that particles can only interact within a finite range we

assume that they cannot interact with each other if they are separated by a distance

of at least 0.5 in each spatial direction, i.e., for i P t1, 2u and all x P Ω we require that

F px´x1, T pxqq ¨ ei “ 0 for |x´x1| ě 0.5 where ei denotes the standard basis for the

Euclidean plane. This property of the total interaction force F in (1.8) is referred

to as the minimum image criterion [Erc97]. Note that the coefficient functions fR

and fA in (1.18) and (1.19) in the particle model (2.1) satisfy the minimum image

criterion if a spherical cutoff radius of length 0.5 is introduced for the repulsion and

attraction forces.

Remark 7 (Minimum image criterion). The minimum image criterion is a natural

condition for large systems of interacting particles on a domain with periodic bound-

ary conditions. In numerical simulations, it is sufficient to record and propagate only

the particles in the original simulation box. Besides, the minimum image criterion

guarantees that the size of the domain is large enough compared to the range of the

total force. In particular, non-physical artefacts due to periodic boundary conditions
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are prevented.

2.3.1 Numerical methods

To solve the N particle ODE system (2.1) we consider periodic boundary conditions

and apply either the simple explicit Euler scheme or higher order methods such as

the Runge-Kutta-Dormand-Prince method, all resulting in very similar simulation

results.

2.3.2 Numerical results

We show numerical results for the particle model (2.1) on the domain Ω “ T 2 where

the force coefficients are given by (1.18) and (1.19). In particular, we investigate

the patterns of the corresponding stationary solutions. Unless stated otherwise we

consider the parameter values in (1.20) and the spatially homogeneous tensor field

T “ χsb s` lb l with l “ p1, 0q and s “ p0, 1q. Besides, we assume that the initial

condition is a Gaussian with mean µ “ 0.5 and standard deviation σ “ 0.005 in

each spatial direction.

Dependence on the initial distribution

The stationary solution to (2.1) for N “ 1200 particles is shown in Figure 2.4 for

χ “ 0.2 and χ “ 0.7, respectively, for different initial data. One can clearly see that

the long-time behaviour of the solution depends on the chosen initial conditions and

the choice of χ. As discussed in Section 2.2.1 the absence of attraction forces along

s “ p0, 1q for χ “ 0.2 leads to a solution stretched along the entire vertical axis

and particles in a neighbourhood of these line patterns are attracted. For χ “ 0.7

the domain of attraction is significantly smaller and the particles remain isolated

or build small clusters if they are initially too far apart from other particles. This

results in many accumulations of smaller numbers of particles for χ “ 0.7. Note that

these accumulations have the shape of ellipses for χ “ 0.7 which is consistent with

the analysis in Section 2.2, independent of the choice of the initial data. Because of

the significantly larger number of clusters for randomly uniformly distributed initial

data the resulting ellipse patterns consist of fewer particles compared to Gaussian

initial data with a small standard deviation. Since initial data spread over the entire

simulation domain leads to multiple copies of the patterns which occur for concen-

trated initial data, this motivates to consider concentrated initial data for getting a
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better understanding of the patterns which can be generated. In the sequel we re-

strict ourselves to concentrated initial data so that all particles can initially interact

with each other. Besides, it is sufficient to consider smaller numbers of particles to

get a better understanding of the formation of the stationary pattern to increase the

speed of convergence. Further note that for χ “ 0.2 and randomly uniformly dis-

tributed initial data the convergence to the stationary solution, illustrated in Figure

2.5, is very slow which implies that the fingerprint formation might also be slow.

However, the particle model (2.1) is able to generate very interesting patterns over

time t, as shown in Figure 2.5. Besides, it is of interest how the resulting patterns

depend on the initial data and whether the ellipse pattern is stable for χ “ 0.7. In

Figure 2.6(A) we consider N “ 600 particles and Gaussian initial data with mean

µ “ 0.5 and standard deviation σ “ 0.005 in each spatial direction. Given the

initial position of the particles for the simulation in Figure 2.6(A) we perturb the

initial position of each particle j by δZj where Zj is drawn from a bivariate standard

normal distribution and δ P t0.0001, 0.001, 0.01, 0.1u. The corresponding stationary

patterns are illustrated in Figures 2.6(B) to 2.6(E) and one can clearly see that the

ellipse pattern is stable under small perturbations.

(A) χ “ 0.2 (B) χ “ 0.7 (C) χ “ 0.7, enlarged (D) χ “ 0.7, enlarged

Randomly uniformly distributed

(E) χ “ 0.2 (F) χ “ 0.7 (G) χ “ 0.7, enlarged (H) χ “ 0.7, enlarged

Gaussian with σ “ 0.05

Figure 2.4: Stationary solution to the particle model (2.1) forN “ 1200 and different
initial data for χ “ 0.2 (left) and χ “ 0.7 (right).
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(A) t “ 0 (B) t “ 50000 (C) t “ 110000 (D) t “ 710000

Figure 2.5: Numerical solution to the particle model (2.1) for N “ 1200 and ran-
domly uniformly distributed initial data for χ “ 0.2 and different times t.

(A) δ “ 0 (B) δ “ 0.0001 (C) δ “ 0.001 (D) δ “ 0.01 (E) δ “ 0.1

Figure 2.6: Stationary solution to the particle model (2.1) for N “ 600 and Gaussian
initial data (µ “ 0.5, σ “ 0.005) in each spatial direction (left) and perturbation
of the initial position of each particle j by δZj where Zj is drawn from a bivariate
standard normal distribution and δ P t0.0001, 0.001, 0.01, 0.1u (right).

Evolution of the pattern

In Figure 2.7, the numerical solution of the particle model (2.1) on Ω “ T2 for

N “ 1200 is shown for χ “ 0, χ “ 0.2 and χ “ 1.0 for different times t for Gaussian

initial data with mean µ “ 0.5 and standard deviation σ “ 0.005 in each spatial

direction. Compared to the initial data one can clearly see that the solution for

χ “ 0 and χ “ 0.2, respectively, is stretched along the vertical axis, i.e., along

s “ p0, 1q, as time increases. This is consistent with the observations in Section

2.2.1 since the forces along the vertical axis for χ “ 0 and χ “ 0.2 are purely

repulsive. In contrast, the long-range attraction forces for χ “ 1 prohibit stretching

of the solution and the isotropic forces for χ “ 1 lead to ring as stationary solution

whose radius is approximately 0.0017. The different sizes of the stationary patterns

are also illustrated in Figure 2.7 where the solutions for χ “ 0 and χ “ 0.2 are

shown on the unit square, while a smaller axis scale is considered for χ “ 1 because

of the small radius of the ring for χ “ 1. Besides, the convergence to the equilibrium

state is very fast for χ “ 1 compared to χ “ 0 and χ “ 0.2.
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(A) χ “ 0 (B) χ “ 0.2 (C) χ “ 1

Figure 2.7: Numerical solution to the particle model (2.1) for different times t and
different values of χ for N “ 1200 and Gaussian initial data (µ “ 0.5, σ “ 0.005)
in each spatial direction .

Dependence on parameter χ

In this section we investigate the dependence of the equilibria to (2.1) on the param-

eter χ which strongly influences the pattern formation. Given N “ 600 particles

which are initially equiangular distributed on a circle with centre p0.5, 0.5q and ra-

dius 0.005 the stationary solution to (2.1) is displayed for different values of χ in

Figures 2.8 and 2.9. Note that the same simulation results are shown in Figures 2.8

and 2.9 for different axis scales. In Figure 2.8 one can see that the size of the pat-

tern is significantly larger for small values of χ due to stretching along the vertical

axis (cf. Section 2.2). For small values of χ the stationary solution is a 1D stripe

pattern of equally distributed particles along the entire vertical axis, while for larger

values of χ the stationary solution can be a shorter vertical line or accumulations

in the shape of lines and ellipses. The stationary patterns for different values of χ

(A) χ “ 0.08 (B) χ “ 0.24 (C) χ “ 0.40 (D) χ “ 0.56 (E) χ “ 0.72

Figure 2.8: Comparison of the size of the stationary solution to the particle model
(2.1) for different values of χ where N “ 600 and the initial data is equiangular
distributed on a circle with centre p0.5, 0.5q and radius 0.005.

are enlarged in Figure 2.9 by considering different axis scales. As χ increases the

stationary pattern evolves from a straight line into a standing ellipse and finally

into a ring for χ “ 1.0. Since the same particle numbers and the same initial data,
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as well as the same parameters except for the parameter χ are considered in these

simulations, the different stationary patterns strongly depend on the choice of χ.

Note that the length of the minor axis of the ellipse increases as χ increases, while

the length of the major axis of the ellipse gets shorter. Further note that we have a

continuous transition of the stationary patterns as χ increases due to the smooth-

ness of the forces and the continuous dependence of the forces on parameter χ in

the particle model (2.1).

(A) χ “ 0.12 (B) χ “ 0.16 (C) χ “ 0.20 (D) χ “ 0.24 (E) χ “ 0.28

(F) χ “ 0.32 (G) χ “ 0.36 (H) χ “ 0.40 (I) χ “ 0.44 (J) χ “ 0.48

(K) χ “ 0.52 (L) χ “ 0.56 (M) χ “ 0.60 (N) χ “ 0.64 (O) χ “ 0.68

(P) χ “ 0.72 (Q) χ “ 0.76 (R) χ “ 0.80 (S) χ “ 0.84 (T) χ “ 0.88

Figure 2.9: Stationary solution to the particle model (2.1) for different values of
χ where N “ 600 and the initial data is equiangular distributed on a circle with
centre p0.5, 0.5q and radius 0.005.

Dependence on parameter eR

In Figure 2.10 the stationary solution to (2.1) for N “ 1200 and χ “ 0.2 is shown

for different values of eR where a ring of radius 0.005 with centre p0.5, 0.5q is chosen
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2.3. Numerical methods and results

as initial data. One can clearly see that the size of accumulations increases for eR

increasing due to strong long-range repulsion forces for smaller values of eR. Besides,

the stationary solution is spread over the entire domain for smaller values of eR. The

spreading of the solution along the entire horizontal axis can be explained by the fact

that for smaller values of eR the total force along l, i.e., along the horizontal axis, is

no longer short-range repulsive and long-range attractive, but short-range repulsive,

medium-range attractive and long-range repulsive and the long-range repulsion is

the stronger the smaller the value of eR.

(A) eR “ 40 (B) eR “ 50 (C) eR “ 60 (D) eR “ 70 (E) eR “ 80

Figure 2.10: Stationary solution to the particle model (2.1) for χ “ 0.2 and different
values for eR where N “ 1200 and the initial data is equiangular distributed on a
circle with centre p0.5, 0.5q and radius 0.005.

Dependence on the size of the attraction force

In this section, we assume that the total force is given by

F pd, T q “ δFApd, T q ` FRpdq

for δ P r0, 1s for the spatially homogeneous tensor field T “ χs b s ` l b l with

l “ p1, 0q and s “ p0, 1q instead of (1.8). We consider N “ 600 particles which are

initially equiangular distributed on a circle with centre p0.5, 0.5q and radius 0.005

and we investigate the influence of the size of the attraction force FA on stationary

patterns by varying its coefficients. While the force is repulsive for small values of

δ, resulting in a stationary solution spread over the entire domain, stripe patterns

and ring patterns for χ “ 0.2 and χ “ 1, respectively, arise as stationary patterns

as δ increases as shown in Figures 2.11. Note that the radius of the stationary ring

pattern decreases as δ increases due to an increasing attraction force.

Dependence on the size of the repulsion force

In this section, we consider a force of the form F pd, T q “ FApd, T q ` δFRpdq for

δ P r0, 1s for the spatially homogeneous tensor field T “ χsbs` lb l with l “ p1, 0q
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(A) δ “ 0.1 (B) δ “ 0.3 (C) δ “ 0.5 (D) δ “ 0.7 (E) δ “ 0.9

(F) δ “ 0.1 (G) δ “ 0.3 (H) δ “ 0.5 (I) δ “ 0.7 (J) δ “ 0.9

Figure 2.11: Stationary solution to the particle model (2.1) for force
F pd, T q “ δFApd, T q ` FRpdq for different values of δ (i.e., different sizes of the at-
traction force FA) where χ “ 0.2 and χ “ 1 (for different axis scalings) in the first
and second row, respectively, where N “ 600 and the initial data is equiangular
distributed on a circle with centre p0.5, 0.5q and radius 0.005.

and s “ p0, 1q instead of (1.8) and we consider N “ 600 particles which are initially

equiangular distributed on a circle with centre p0.5, 0.5q and radius 0.005. The

stationary solution to (2.1) for χ “ 0.2 stretches along the vertical axis as δ increases

due to an additional repulsive force as illustrated in Figure 2.12. For χ “ 1, the

radius of the ring pattern increases as δ, see Figure 2.13.

(A) δ “ 0.1 (B) δ “ 0.3 (C) δ “ 0.5 (D) δ “ 0.7 (E) δ “ 0.9

Figure 2.12: Stationary solution to the particle model (2.1) for χ “ 0.2 and force
F pd, T q “ FApd, T q ` δFRpdq for different values of δ (i.e., different sizes of the re-
pulsion force FR) where N “ 600 and the initial data is equiangular distributed on
a circle with centre p0.5, 0.5q and radius 0.005.

Dependence on the tensor field

In Figures 2.14 and 2.15 the numerical solution to the particle model (2.1) for

N “ 600, χ “ 0.2 and randomly uniformly distributed data is shown for different

non-homogeneous tensor fields T “ T pxq and different times t. Since s “ spxq and
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Figure 2.13: Stationary solution to the particle model (2.1) for χ “ 1 and force
F pd, T q “ FApd, T q ` δFRpdq for different values of δ (i.e., different sizes of the re-
pulsion force FR) where N “ 600 and the initial data is equiangular distributed on
a circle with centre p0.5, 0.5q and radius 0.005.

l “ lpxq are assumed to be orthonormal vectors, the vector field s “ spxq and the

parameter χ determine the tensor field T “ T pxq. One can clearly see in Figure 2.14

that the particles are aligned along the lines of smallest stress s “ spxq. However,

these patterns are no equilibria. The evolution of the numerical solution for different

tensor fields is illustrated in Figure 2.15.

2.3.3 Discussion of the numerical results

In this section, we study the existence of equilibria and their stability of the particle

model (2.1) for the spatially homogeneous tensor field T “ χs b s ` l b l with

l “ p1, 0q and s “ p0, 1q and compare them with the numerical results.

Ellipse

As outlined in Section 2.2.1 the anisotropic forces for χ P r0, 1q lead to an additional

advection along the vertical axis compared to the horizontal axis for the given tensor

field T . Hence, possible stationary ellipse patterns are stretched along the vertical

axis for χ P r0, 1q. Besides, this advection leads to accumulations within the ellipse

pattern, i.e., the distances of the particles are much longer along the vertical lines

(e.g. at the left or right side of the ellipse) than along the horizontal lines (e.g. at

the top or bottom of the ellipse). As in Section 2.2.3 we denote the length of the

minor and major axis of the ellipse state by R and R ` r, respectively.

First, we consider ring patterns of radius R ą 0. We identify R2 with C and
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(A) Example 1 (B) Example 2

(C) Example 3 (D) Example 4

Figure 2.14: Different non-homogeneous tensor fields T “ T pxq given by s “ spxq
(left) and the numerical solution to the particle model (2.1) at time t “ 40000 for
χ “ 0.2, T “ T pxq and randomly uniformly distributed initial data (right).

(A) s “ spxq (B) t “ 40000 (C) t “ 200000 (D) t “ 400000

Example 5

(E) s “ spxq (F) t “ 40000 (G) t “ 200000 (H) t “ 400000

Example 6

Figure 2.15: Different non-homogeneous tensor fields T “ T pxq given by s “ spxq
(left) and the numerical solution to the particle model (2.1) at different times t
for χ “ 0.2, T “ T pxq, N “ 600 and randomly uniformly distributed initial data
(right).
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2.3. Numerical methods and results

consider the ansatz

x̄k “ x̄kpRq “ xc `R exp

ˆ

2πik

N

˙

, k “ 0, . . . , N ´ 1 (2.17)

with centre of mass xc, i.e., the particles are uniformly distributed on a ring of

radius R with centre xc. The radius R ą 0 has to be determined such that the

ansatz functions x̄j “ x̄jpRq satisfy

N
ÿ

k“1
k‰j

F px̄kpRq ´ x̄jpRq, T q “ 0 (2.18)

for all j “ 0, . . . , N ´ 1. Denoting the left-hand side of (2.18) by GjpRq, then

GjpRq is highly nonlinear and zeros of Gj can only be determined numerically. By

symmetry and appropriate periodic extension of the force F outside the unit square

r´0.5, 0.5s2 (see Section 4.2 for more details), it is sufficient to determine the zeros

of G0 for χ “ 1. Since =G0pRq “ 0 for all R ą 0 by the definition of F the condition

simplifies to finding R ą 0 such that <G0pRq “ 0. Using Newton’s algorithm the

unique nontrivial zero of <G0 can be computed as R̄ « 0.0017 for the forces (1.18)

and (1.19) in the particle model (2.1) with parameter values from (1.20), N “ 600

and a fixed centre of mass xc. Hence, given xc (2.17) with radius R̄ is the unique ring

equilibrium for χ “ 1 and R̄ coincides with the radius of the numerically obtained

ring equilibrium in Section 2.3.2. Based on a linearised stability analysis [Tur52] one

can show numerically that the ring pattern is stable for χ “ 1 for the forces in the

particle model for parameters in (1.20) and N “ 1200. Since <Gj is independent

of χ with unique zero R̄ and χfA ď 0, this implies that there exists no R ą 0

such that =GjpR̄q “ 0 for all j “ 0, . . . , N for any χ P r0, 1q, i.e., the ring solution

(2.17) is no equilibrium for χ P r0, 1q and any R ą 0. This is consistent with the

analysis of the mean-field PDE (2.2) in Section 2.2 and with the numerical results

in Section refsec:numericalresults.

For the general case of an ellipse where r ě 0 we identify R2 with C and regard

the equiangular ansatz

x̄k “ x̄kpr, Rq “ xc `R cos

ˆ

2πk

N

˙

` ipR ` rq sin

ˆ

2πk

N

˙

, k “ 0, . . . , N ´ 1,

(2.19)

where the distances of the particles are longer along vertical than along horizontal
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lines. An ellipse equilibrium has to satisfy

N
ÿ

k“1
k‰j

F px̄kpR, rq ´ x̄jpR, rq, T q “ 0 (2.20)

for all j “ 0, . . . , N ´ 1. Tuples pR, rq such that (2.19) is a possible equilibria

to (2.1) can be determined numerically from <G0pR, rq “ 0, where GjppR, rqq for

j P t0, . . . , N ´ 1u denotes the left-hand side of (2.20). For the force coefficients

(1.18) and (1.19) in the particle model for parameter values (1.20) and N “ 600,

the condition in (2.20) implies that the larger r the smaller R, i.e., as r increases

the ring of radius R evolves into an ellipse whose major axis of length 2pR ` rq

gets longer and whose minor axis of length 2R gets shorter as r increases. The

numerically obtained tuples pR, rq are shown in Figure 2.16(A). Besides, it follows

from plugging the definition of the total force for spatially homogeneous tensor fields

into (2.20) that each tuple pR, rq can be associated to an equilibrium for at most

one value of χ. Further note that by Section 2.2.1 the additional advection along

the vertical axis is the stronger the smaller the value of χ, implying that r increases

as χ decreases. Hence, we can conclude that for a given value of χ there exists at

most one tuple pR, rq such that the ansatz (2.19) is an equilibrium to (2.1). This

can also be justified by evaluating =GN{4pR, rq as a function of radius pairs pR, rq

for fixed values of χ for N “ 600 particles. The eccentricity e “
a

1´ pR{pR ` rqq2

of the stationary ellipse pattern as a function of the parameter χ is shown in Figure

2.16(B). Note that these observations are consistent with the numerical results in

Section 2.3.2. Further note that the shape of the relation between R and r as well

as the eccentricity curve in Figures 2.16(A) and 2.16(B) is similar to the ones in

the continuous case, shown in Figures 2.3(B) and 2.3(D). However, there are small

differences between the radius pairs for the discrete and the continuous case which

is due to the additional functional determinant that has to be considered if the

corresponding integrals in (2.7) and (2.8) are discretised.

Single straight vertical line

Because of the observations in Section 2.2.1 a natural choice for line patterns are

vertical lines. Identifying R2 with C results in the ansatz

x̄k “ xc ` i
2k ´ 1

2N
, k “ 0, . . . , N ´ 1, (2.21)
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(A) Tuples pR, rq (B) e “ epχq

Figure 2.16: Tuples pR, rq for stationary ellipse patterns to (2.1) with ansatz (2.19)
and eccentricity e as a function of χ for N “ 600 and the forces in the particle
model for parameter values in (1.20).

for a single straight vertical line with the centre of mass xc. One can easily see

that ansatz (2.21) defines an equilibrium of (2.1) for all values χ P r0, 1s where the

minimum image criterion is crucial to guarantee that (2.21) is an equilibrium for

even values of N . Based on a linearised stability analysis [Tur52] one can show

that (2.21) is a stable equilibrium of (2.1) for N “ 1200 for χ P r0, 0.27s which is

consistent with the numerical results in Section 2.3.2.

Clusters

The numerical results in Section 2.3.2 crucially depend on the choice of the parame-

ter values. As seen in Figure 2.10 the smaller the value of eR the more the particles

are spread over the entire domain. Note that the coefficient of the repulsive force

is given by (1.18) so that smaller values of eR correspond to a slower exponential

decay and hence larger repulsion forces, resulting in a larger number of clusters.

It would be very interesting to explore the dependence of the coefficients on the

number of clusters in the steady state further. In future research, one might also

study analytically how the number of clusters and structures depend on the cutoff

radius.

2.A Detailed computations of Section 2.2.2

Let T̃ “ χs̃b s̃` l̃b l̃ denote a spatially homogeneous tensor field for orthonormal

vectors l̃, s̃ P R2. Given l “ p1, 0q, s “ p0, 1q and angle of rotation θ in (1.16), then
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T̃ “ RθTR
T
θ with T “ χsb s` l b l and rotation matrix Rθ in (1.16).

Let xj “ xjptq, j “ 1, . . . , N , denote the solution to the microscopic model (2.1)

on R2 for the tensor field T and define

x̃jptq “ xc `Rθpxjptq ´ xcq, j “ 1, . . . , N

where xc denotes the centre of mass. Then, x̃j “ x̃jptq, j “ 1, . . . , N , is a solution

to the microscopic model (2.1) on R2 for the tensor field T̃ . Besides, given an

equilibrium x̄j, j “ 1, . . . , N , to (2.1) on R2 for the tensor field T , then

¯̃xj “ xc `Rθpx̄j ´ xcq, j “ 1, . . . , N,

is an equilibrium to (2.1) on R2 for the tensor field T̃ .

We show that x̃j, j “ 1, . . . , N , solves (2.1) for the tensor field T̃ . Since

xj, j “ 1, . . . , N, solves (2.1) for the tensor field T , we have

dxj
dt

“
ÿ

k‰j

fAp|d|q rχ ps ¨ dq s` pl ¨ dq ls ` fRp|d|qd

for all j “ 1, . . . , N where dpxj, xkq “ xj ´ xk. Note that x̃j ´ x̃k “ Rθpxj ´ xkq

and |x̃j ´ x̃k| “ |xj ´ xk|. Using (1.15) as well as the fact that Rθ is an orthogonal

matrix we get

χ ps̃ ¨ px̃j ´ x̃kqq s̃`
´

l̃ ¨ px̃j ´ x̃kq
¯

l̃ “ Rθ rχ ps ¨ pxj ´ xkqq s` pl ¨ pxj ´ xkqq ls .

Setting d̃px̃j, x̃kq “ x̃j ´ x̃k this implies

dx̃j
dt

“
ÿ

k‰j

fA

´ˇ

ˇ

ˇ
d̃
ˇ

ˇ

ˇ

¯ ”

χ
´

s̃ ¨ d̃
¯

s̃`
´

l̃ ¨ d̃
¯

l̃
ı

` fR

´ˇ

ˇ

ˇ
d̃
ˇ

ˇ

ˇ

¯

d̃

for all j “ 1, . . . , N , i.e., x̃j, j “ 1, . . . , N , solves (2.1) for the tensor field T̃ .

Similarly, one can show that ¯̃xj is an equilibrium to (2.1) for the tensor field T̃ ,

given that x̄j, j “ 1, . . . , N , is an equilibrium to (2.1) for the tensor field T .

We turn to equilibria of the mean-field equation (2.2) for spatially homogeneous

tensor fields now. Let ρ “ ρpdxq denote an equilibrium state to the mean-field PDE

(2.2) on R2 for the tensor field T and define

ρ̃pxq “ ρ
`

xc `R
´1
θ px´ xcq

˘

a.e. (2.22)
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where xc denotes the centre of mass. Then, ρ̃ is an equilibrium state to (2.2) for

the tensor field T̃ .

To show this result note that for x P R2 we have

pF p¨, T q ˚ ρ̃q pxc `Rθpx´ xcqq

“

ˆ
R2

F pxc `Rθpx´ xcq ´ pxc `Rθpx´ x
1
cqq , T̃ qρpdx

1
q

“

ˆ
R2

”

fRp|x´ x
1
|qRθpx´ x

1
q

` fAp|x´ x
1
|q

´

χ ps̃ ¨ pRθpx´ x
1
qqq s̃`

´

l̃ ¨ pRθpx´ x
1
qq

¯

l̃
¯ı

ρpdx1q

“ Rθ pF p¨, T q ˚ ρq pxq

where the first equality follows from (2.22) and the substitution rule. The def-

initions of the repulsion and attraction forces in (1.11) are used in the second

equality and (1.15) is inserted in the third equality. Since x P supppρ̃q implies

x P supppρpxc `R
´1
θ p¨ ´ xcqqq and

pF p¨, T q ˚ ρ̃q pxq “ Rθ pF p¨, T q ˚ ρq
`

xc `R
´1
θ px´ xcq

˘

,

ρ̃ is an equilibrium state to (2.2) for the tensor field T̃ provided that ρ is an equi-

librium state to (2.2) for the tensor field T .
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Chapter 3

Simulation of fingerprint patterns

Originality and contribution

This chapter follows [DGH`19], written in collaboration with Bertram Düring,

Carsten Gottschlich, Stephan Huckemann and Carola-Bibiane Schönlieb. While

my co-authors proposed the study of the model and provided guidance and advice,

[DGH`19] is primarily my own original work and nearly all the results, including

analysis and simulations, were obtained by myself.

Chapter summary

Evidence suggests that both the interaction of so-called Merkel cells and the epi-

dermal stress distribution play an important role in the formation of fingerprint

patterns during pregnancy. To model the formation of fingerprint patterns in a bio-

logically meaningful way these patterns have to become stationary. For the creation

of synthetic fingerprints it is also very desirable that rescaling the model parame-

ters leads to rescaled distances between the stationary fingerprint ridges. Based on

these observations, as well as the model introduced by Kücken and Champod we

propose a new model for the formation of fingerprint patterns during pregnancy.

In this anisotropic interaction model the interaction forces not only depend on the

distance vector between the cells and the model parameters, but additionally on

an underlying tensor field, representing a stress field. This dependence on the ten-

sor field leads to complex, anisotropic patterns. We study the resulting stationary

patterns both analytically and numerically. In particular, we show that fingerprint

patterns can be modelled as stationary solutions by choosing the underlying tensor
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field appropriately.

3.1 Introduction

Large databases are required for developing, validating and comparing the per-

formance of fingerprint indexing and identification algorithms. The goal of these

algorithms is to search and find a fingerprint in a database (or providing the search

result that the query fingerprint is not stored in that database). The database

sizes for fingerprint identification can vary between several thousand fingerprints

e.g. watchlists in border crossing scenarios or hundreds of millions of fingerprints in

case of the national biometric ID programme of India.

Clearly, fingerprint identification is of great importance in forensic science and

is increasingly used in biometric applications. Unfortunately, collecting databases

of real fingerprints for research purposes is usually very cost-intensive, requires time

and effort, and in many countries, it is constrained by laws addressing important

aspects such as data protection and privacy. Therefore, it is very desirable to avoid

all these disadvantages by simulating large fingerprint databases on a computer.

Modelling fingerprint patterns and creating synthetic fingerprint images is not

only of great interest to the community of biometric and forensic researchers, as

well as practitioners, but also to the biological community. The SFinGe method

[CEMM00] has been proposed to this end by Cappelli et al. in 2000. This method

can produce fingerprint images which look realistic enough to deceive attendees of a

pattern recognition conference, however, systematic differences between real finger-

prints and synthetic images by SFinGE regarding the minutiae pattern have been

found which allow to distinguish between the two [GH14]. Recently, the realistic

fingerprint creator (RFC) [IHG15] has been suggested to overcome the issue of un-

realistic minutiae distributions. SFinGe and RFC are both based on Gabor filters

[Got12] for image creation. A different approach to fingerprint creation has been

introduced by Kücken and Champod in [KC13]. They strive to directly model the

process of fingerprint pattern formation as it occurs in nature and their approach

is inspired by existing knowledge from biology, anatomy and dermatology. Two

commonalities of Gabor filters based and biology-inspired approaches are that both

start with random initial conditions and both perform changes in an iterative fash-

ion. Kücken and Champod suggest a model describing the formation of fingerprint

patterns over time based on the interaction of certain cells and mechanical stress in

the epidermis [Irm10].
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In principle, a nature-inspired model nourishes the hope of producing more re-

alistic fingerprints and potentially also to gain insights into the process of natural

fingerprint pattern formation. Based on an extensive literature [CLMS16, DM86,

Irm10, KC13, MM89, MJM92, Wer11] in the biological community we consider fin-

gerprint patterns formed due to the interaction of mechanical stress, trophic factors

from incoming nerves and interactions between so-called Merkel cells.

As described in Section 1.1.1, the fingerprint development based on the rear-

rangement of Merkel cells was first modelled by Kücken and Champod [KC13].

They propose that Merkel cells are the missing link between the stress distribution

in the epidermis and the developing pattern due to their mechanosensing ability.

For their mathematical description they use an agent-based model to describe the

pattern formation process in the second phase of the fingerprint development where

the underlying stress field from the first phase [KN04, KN05] is considered as an

input. Due to the lack of specific information not all details of their model can

be confirmed by experimental observations. Hence, they aim to propose a model

as simple as possible that captures the essence of the interaction between Merkel

cells and stress distribution. For instance, the sensitivity of their model to initial

conditions is consistent with the long standing belief that the pattern arrangement

is unique and even for identical twins the fingerprints are different. However, the

resulting patterns in the model proposed by Kücken and Champod [KC13] do not

seem to be stationary which is desirable for describing the formation of fingerprints

accurately.

Note that a large range of models exist in literature for describing biological pat-

tern formation, including reaction-diffusion models [KM10, Tur91, WK91] and the

elastic instability mechanism, see [Bal09, KM94, Mei82] for good summaries on this

topic. A generic partial differential equation, well-known for its pattern-forming be-

haviour, is the Swift-Hohenberg (SH) equation [SH77]. It produces patterns which

are locally stripe-like, and upon inspection of simulations (e.g. [SLT`15]), it seems

that SH equations can, in principle, produce any patterns occurring in fingerprints,

including defects such as triradii and loops in the fingerprint vernacular, and minu-

tiae ends. To the best knowledge of the authors, however, SH equations have never

been studied for actual fingerprint simulations. Besides, the well-known existence of

an underlying stress field [KN04, KN05] is not included in these pattern formation

models.

To describe the central phase of the fingerprint development process, i.e. the re-

arrangement of Merkel cells in the second of the three phases, as accurate as possible
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the underlying stress field, created in the first phase of the fingerprint development

process, has to be considered as an input of our class of models. Motivated by the ap-

proach by Kücken and Champod we propose a general class of evolutionary particle

models with anisotropic, biology-inspired interaction forces in two space dimensions.

In contrast to the Kücken-Champod model, our forces are bio-inspired and we are

able to show that fingerprint patterns can be obtained as stationary solutions to our

model, an important feature of a biologically meaningful fingerprint development

model [Gal92, MMJP09, YJ15]. Indeed, the stability of line patterns was the focus

of most studies analysing effects of growth on fingerprints. Sir Francis Galton was

among the first to demonstrate scientifically the permanence of the configuration of

individual ridges and furrows [Gal92]. These findings were subsequently confirmed

in intensive pediatric research such as [Bab91].

In our model, we consider a tensor field, modelling the underlying (inhomoge-

neous) stress field, as one of the inputs of our interaction forces. Besides, the inter-

action force between two Merkel cells depends on the distance vector between these

two cells. We model the coefficient functions of the interaction forces as damped har-

monic oscillators, a well-established modelling assumption in cell biology. Besides,

this choice reflects the exponential decay of the interaction over larger distances, im-

plying that interactions over very large distances can be neglected, and reinforces an

interplay between repulsive and attractive forces as the distance between two cells

increases. This choice of the interaction forces is consistent with the general mod-

elling assumption that interaction forces should be short-range repulsive to avoid

collisions between cells, and attractive over larger distances to obtain cell accumula-

tions. Note that a similar model is proposed in Chapter 2 and its stationary states

are studied both analytically and numerically in the spatially homogeneous case.

Our class of models can be regarded as an biology-inspired adaptation of the

Kücken-Champod model [KC13] and we describe our modelling assumptions in de-

tail, resulting in a reproducible pattern formation for fingerprints. We show that

the resulting stationary patterns depend strongly on the underlying tensor field and

the given initial conditions. Perturbations in the initial configuration of the Merkel

cells result in perturbed stationary patterns. This situation is analogous to the fin-

gerprints in identical twins who have very similar fingerprints in terms of direction

of the ridges and qualitative features of fingerprint lines, but the exact location of

ridges and minutiae differs [JPP02, SSF06, TCYT12]. Since environmental (within

the mother’s womb) and genetic conditions are almost identical for twins the dif-

ferences in defect location are solely due to small perturbations such as the initial
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configuration of the Merkel cells and the stress field in the epidermis [KC13], im-

plying that the fingerprint patterns of underlying identical tensor fields are different

but similar. More varied fingerprints can be obtained by changing the underlying

tensor field in the model.

In this chapter, we consider the particle model introduced in Chapter 1, given

by N interacting particles on a domain Ω Ă R2 whose positions xj “ xjptq P Ω,

j “ 1, . . . , N, at time t satisfy (1.4), i.e.

dxj
dt

“
1

N

N
ÿ

k“1
k‰j

F pxj ´ xk, T pxjqq, (3.1)

equipped with initial data xjp0q “ xinj , j “ 1, . . . , N . The term F pxj´xk, T pxjqq in

(3.1) denotes the force which a particle at position xk exerts on a particle at position

xj. This force depends on an underlying stress tensor field T pxjq at location xj. The

existence of such a tensor field T pxjq is based on the experimental results in [KH95]

where an alignment of the particles along the local stress lines is observed. We

define the tensor field T pxjq by the directions of smallest stress at location xj by a

unit vector field s “ spxq P R2 and introduce a corresponding orthonormal vector

field l “ lpxq P R2, representing the directions of largest stress. Then the force is

given by (1.9) for coefficient functions fs and fl.

In the previous work on the Kücken-Champod model [KC13] and its generali-

sation in Section 1.1.3 a dynamical system of ordinary differential equations of the

form (3.1) was considered where the force that particle k exerts on particle j is

given by (1.8) i.e. the sum of repulsion and attraction forces, FR and FA, respec-

tively. Here, the attraction force depends on the underlying tensor field T pxjq at

xj, modelling the local stress field. The matrix T pxjq encodes the direction of the

fingerprint lines at xj, defined by (1.5) for χ P r0, 1s and orthonormal vector fields

s “ spxq, l “ lpxq P R2. For studying the pattern formation with an underlying

spatially homogeneous tensor field T producing straight parallel ridges, e.g.

T “

¨

˚

˝

1 0

0 χ

˛

‹

‚

,

is considered. The repulsion and attraction forces in the Kücken-Champod model

[KC13] and its generalisation in Section 1.1.3 are of the form (1.12) and (1.13),
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respectively. Note that the direction of the attraction force FA and hence also the

direction of the total force F are regulated by the parameter χ in the definition

of the tensor field T . The parameter χ introduces an anisotropy to the equation

leading to complex, anisotropic patterns.

For χ “ 1 the model (3.1) with interaction forces of the form (1.8) for repul-

sion and attraction force (1.12) and (1.13) reduces to a gradient flow (1.2) and

F pdq “ ´∇W pdq for a radially symmetric interaction potential W . The contin-

uum equation associated with the isotropic particle model (1.2) is given by (1.3).

This continuum model, referred to as the aggregation equation has been studied

extensively recently, mainly in terms of its gradient flow structure, the blow-up

dynamics for fully attractive potentials and the rich variety of steady states, see

[AGS05, BCLR13a, BCLR13b, BCY14, BT11, BCL09, BLL12, vBU12, vBUKB12,

CCP15, CDM16, CDFF`11, CFP12, CFF`12, CJLV16, CMV03, CMV06, FR10,

FR11, LT04, Rao12, Vil03] and the references therein. There has been a trend

recently to connect the microscopic and the macroscopic descriptions via kinetic

modelling, see for instance [BS12, CFRT10, HT08] for different kinetic models in

swarming, [FHT11, HL09] for the particle to hydrodynamics passage and [KMT15]

for the hydrodynamic limit of a kinetic model. It seems that not many results are

currently available in the field of anisotropies. In [EFR15, EFS17] anisotropy is

modelled by adding weights to the interaction terms. One can show that the model

in [EFR15, EFS17] is related to our model if a tensor field T is introduced as the

velocity direction.

Fingerprint simulation results are shown for certain model parameters in [KC13]

where the underlying tensor field is constructed based on fingerprint images using

the NBIS package from the National Institute of Standards and Technology. How-

ever, [KC13] is purely descriptive, the choice of parameters is not discussed and

the model (3.1) was not studied mathematically. The model (3.1) was studied an-

alytically and numerically for the first time in [BDK`18] (cf. Chapter 2). Here, we

justify why the particles align along the vector field lines s provided the parameter

χ is chosen sufficiently small so that the total force is purely repulsive along s. Be-

sides, the authors investigate the stationary states to the particle model (3.1) for a

spatially homogeneous underlying tensor field where the chosen model parameters

are consistent with the work of Kücken and Champod in [KC13]. For the simula-

tion of fingerprints, however, non-homogeneous tensor fields have to be considered,

making the analysis of the model significantly more difficult. No analytical results

of the long-time behaviour of (3.1) for non-homogeneous tensor fields are currently
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available. Besides, numerical results for the given model parameters and different

non-homogeneous tensor fields are shown over time in Chapter 2 and one can clearly

see that the resulting patterns are not stationary. The simulation results for realistic

tensor fields for the simulation of fingerprints in [KC13] seem to be far away from

being stationary too. This is illustrated in Figure 9 in [KC13] where snapshots of

the solution are shown for a spatially homogeneous tensor field which should have

been parallel lines for steady states. In the biological community, however, it is well-

known that fingerprint patterns with their ridge lines and minutiae configuration

are determined during pregnancy and remain the same during lifetime (as long as

no fingerprint alterations occur). Hence, we are particularly interested in stationary

solutions of the system (3.1).

The goal of this chapter is to develop an efficient algorithm for creating synthetic

fingerprint patterns as stationary solutions of an evolutionary dynamical system of

the form (3.1) as illustrated in Figure 3.1(D) for the underlying tensor field in Figure

3.1(C).

(A) Original (B) s with original (C) s (D) Stationary

Figure 3.1: Original fingerprint image and lines of smallest stress s “ spxq for
the reconstructed tensor field T “ T pxq with an overlying mask of the original
fingerprint image in black, as well as stationary solution to the interaction model
(3.1) for interaction forces of the form (1.9) and randomly uniformly distributed
initial data.

As a first step we study the existence of stationary solutions to (3.1) for spatially

homogeneous underlying tensor fields and extend these results to certain spatially

inhomogeneous tensor fields. Based on these analytical results as well as the stability

analysis of line patterns in [CDKS18] we can expect stable stationary patterns along

the vector field s. Since the solutions to the particle model (3.1) with the parameters

suggested by Kücken and Champod do not seem to be stationary, we investigate

the impact of the interaction forces on the resulting pattern formation numerically.

In particular the size of the total attraction force plays a crucial role in the pattern

formation. We adjust the model parameters accordingly and simulate fingerprints

which seem to be close to being stationary, resulting in an extension of the numerical
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results in Chapter 2 for inhomogeneous tensor fields. Based on real fingerprint

images as in Figure 3.1(A) we determine the underlying tensor field T with lines

of smallest stress s by extrapolating the direction field outside of the fingerprint

image based on [GMM09]. In Figure 3.1(B) we overlay a mask of the original

fingerprint image on the estimated tensor field with direction field s and in Figure

3.1(C) only the direction field s is shown. Besides, we include a novel method for

the generation of the underlying tensor fields in our numerical simulations which is

based on quadratic differentials as a global model for orientation fields of fingerprints

[HHM08].

In the fingerprint community major features of a fingerprint, called minutiae,

are of great interest. Examples include ridge bifurcation, i.e. a single ridge dividing

into two ridges. We study how they evolve over time, both heuristically and numer-

ically. Finally, we propose a new bio-inspired model for the creation of synthetic

fingerprint patterns which not only allows us to simulate fingerprint patterns as sta-

tionary solution of the particle model (3.1) but also adjust the distances between the

fingerprint lines by rescaling the model parameters. This is the first step towards

modelling fingerprint patterns with specific features in the future.

Studying the model (3.1) and in particular its pattern formation result in a better

understanding of the fingerprint pattern formation process. Due to the generality

of the formulation of the anisotropic interaction model (3.1) this can be regarded

as an important step towards understanding the formation of fingerprints and may

be applicable to other anisotropic interactions in nature.

This chapter is organised as follows. In Section 3.2 the Kücken-Champod model

[KC13] is introduced and we propose a new bio-inspired modelling approach. Sec-

tion 3.3 deals with the existence of steady states to (3.1) in the form of parallel,

equidistant lines for spatially homogeneous tensor fields and its extension to locally

spatially homogeneous tensor fields, implying that measurable quantities, such as

the almost constant distance between the stationary line patterns, can be predicted

with the model. In Section 3.4 we adapt the parameters in the force coefficients

(1.18) and (1.19) of the Kücken-Champod model in such a way that fingerprint

patterns can be obtained as stationary solutions to the particle model (3.1). Based

on these results, we propose the bio-inspired model, described in Section 3.2, to

simulate fingerprints with variable distances between the fingerprint lines. For the

creation of realistic fingerprints we consider a novel methods for obtaining the under-

lying tensor field based on quadratic differentials as well as images of real fingerprint

data.
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3.2 Description of the model

In the sequel, we consider particle models of the form (3.1) where the force F is of

the form (1.9) or (1.8) where the repulsion and attraction forces are given by (1.12)

and (1.13), respectively.

3.2.1 Kücken-Champod model

In the paper [KC13] and Chapter 2, systems of evolutionary differential equations

of the form (3.1) as introduced in Chapter 1 are considered where the total force,

the attraction and the repulsion forces are of the forms (1.8), (1.12) and (1.13),

respectively, and the underlying tensor field T is defined as (1.5). The coefficient

functions fR and fA of the repulsion force FR (1.12) and the attraction force (1.13)

in the Kücken-Champod model are given by (1.18) and (1.19) for nonnegative con-

stants α, β, γ, eA and eR, and, again, d “ dpxj, xkq “ xj´xk P R2. To be consistent

with the work of Kücken and Champod [KC13] we assume that the total force (1.8)

exhibits short-range repulsion and long-range attraction along l and we choose the

parameters in an initial study as (1.20) where we set χ “ 0.2. These parameters

are chosen in such a way that the resulting plots of the force coefficients are as

close as possible to the ones shown by Kücken and Champod in [KC13]. Here, the

parameter χ P r0, 1s determines the direction of the interaction. For χ “ 1 the

attraction force between two particles is aligned along their distance vector, while

for χ “ 0 the attraction between two particles is oriented exactly along the lines of

largest stress (cf. Chapter 2).

In Figure 3.2(A) the coefficient functions (1.18) and (1.19) for the repulsion and

attraction forces (1.12) and (1.13) in the Kücken-Champod model (3.1) are plotted

for the parameters in (1.20) with χ “ 0.2.

The sums of the coefficients of the forces fR ` fA and fR ` χfA for χ “ 0.2 are

illustrated in Figure 3.2(B). Note that fR ` fA and fR ` χfA are the force coeffi-

cients along l and s, respectively. For the choice of parameters in (1.20) repulsion

dominates for short distances along the lines of largest stress to prevent the collision

of particles and the force is long-range attractive along the lines of largest stress

leading to accumulations of the particles. The absolute value of the attractive force

decreases with the distance between particles. Along the lines of smallest stress the

particles are always repulsive for χ “ 0.2, independent of the distance, though the

repulsion force gets weaker for longer distances.
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(A) Force coefficients fR and fA (B) Total force coefficients

Figure 3.2: Coefficients fR in (1.18) and fA in (1.19) of repulsion force (1.12) and
attraction force (1.13), respectively, as well as total force coefficients along the lines
of largest and smallest stress for χ “ 0.2 (i.e. fA ` fR and 0.2fA ` fR, respectively)
for parameter values in (1.20) with χ “ 0.2.

3.2.2 Bio-inspired model

We propose a system of ordinary differential equations of the form (3.1) where the

forces are of the form (1.9). Note that plugging the repulsion and attraction forces

(1.12) and (1.13) as well as the definition (1.5) of the tensor field T into the force

term (1.8) results in forces of the form (1.9). Hence, we replace the coefficient

functions fA and fR by some more general coefficient functions fs and fl which are

related to the force coefficients fA and fR in the Kücken-Champod model, and are

of the form

fs “ χfA ` fR, fl “ fA ` fR.

We model the force coefficients fs and fl in (1.9) as solutions to a damped

harmonic oscillator. Like for the coefficient functions (1.18), (1.19) in the Kücken-

Champod model we consider exponentially decaying forces describing that short-

range interactions between the particles are much stronger than long-range inter-

actions. Besides, the repulsion and attraction forces suggested in the Kücken-

Champod model dominate on different regimes. For a more unified modelling

approach one may regard this interplay of repulsion and attraction forces as oscilla-

tions. This motivates to model the force coefficients fs and fl in (1.9) as solutions

to a damped harmonic oscillator which is also a common modelling approach in cell

biology [PKTG12, pages 21-23]. Hence, we consider the following ansatz functions
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for the force coefficients fs and fl:

fspdq “ c exppes1 |d|q ` cs sin

ˆ

π|d|

as

˙

exppes2 |d|q,

flpdq “ c cos

ˆ

π|d|

al

˙

exppel1 |d|q ` cl sin

ˆ

π|d|

al

˙

exppel2 |d|q

(3.2)

for real parameters c, cs, cl, es1 , es2 , el1 , el2 , as, al. The constants es1 , es2 , el1 , el2 control

the decay rates of the force coefficients. Since the force coefficients fs and fl both

vanish over large distances, this implies that the constants es1 , es2 , el1 , el2 are all

negative. Note that c, cs, cl are scaling parameters for the size of the interaction

forces. Since fs has to be an exponentially decaying, repulsive force coefficient (i.e.

fs ě 0) with (possibly) small adaptations, we require that the term c exppes1 |d|q

decays exponentially fast and dominates in the definition of fs. Hence, we assume

that c is a nonnegative constant with |c| ą |cs|. The force coefficient fl is assumed

to be short-range repulsive, long-range attractive. Since the cosine function can be

regarded as a short-range repulsive, long-range attractive function, this implies that

c is nonnegative, consistent with the assumptions before, and |c| ą |cl|. Besides, we

control the frequency of the oscillations along s and l by positive constants as, al,

respectively. A possible parameter choice satisfying the above assumptions is given

by

c “ 0.1, cs “ ´0.05, es1 “ ´65.0, es2 “ ´100.0, as “ 0.03

cl “ 0.005, el1 “ ´160.0, el2 “ ´40.0, al “ 0.022
(3.3)

and we will see that for this parameter choice it is possible to obtain stationary

fingerprint patterns and that rescaling of the coefficient functions fs and fl leads

to stationary patterns with scaled line distances. The force coefficients fs and fl

for the parameters in (3.3) are shown in Figure 3.3. In comparison with the force

coefficients FA ` fR and 0.2fA ` fR along l and s, respectively, the force fs along

s is also purely repulsive, while the force fl is less attractive which is necessary for

obtaining stationary patterns as discussed in Section 3.4.2.

3.2.3 General setting

In this chapter, we consider the particle model (3.1) with force terms of the form

F pxj ´ xk, T pxjqq, such as (1.9) and (1.8). As in Chapter 2 we consider the do-

main Ω “ T2 where T2 is the 2-dimensional unit torus that can be identified with
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Figure 3.3: Coefficients fs and fl in (3.2) for parameter values in (3.3).

the quotient of the unit square r0, 1q ˆ r0, 1q Ă R2. This induced periodicity has

proven to be very useful to simulate interactions on microscopic scales where the

simulation domain is large compared to the size of the interacting particles. Be-

sides, this periodicity is the natural choice in terms of the mathematical analysis

and the derivation of the associated macroscopic model. Note that the particles

on the domain Ω are separated by a distance of at most 0.5 due to the periodicity.

Motivated by this we require for j P t1, 2u and all x P Ω

F px´ x1, T pxqq ¨ ej “ 0 for |x´ x1| ě 0.5 (3.4)

where ej denotes the standard basis for the Euclidean plane. The forces satisfy this

assumption if a spherical cutoff radius of length 0.5 is introduced for the forces in

(1.9) or (1.8), respectively. This assumptions guarantees that the size of the domain

is large enough compared to the range of the total force. In particular, non-physical

artefacts due to periodic boundary conditions are prevented. A cutoff radius is also

very useful to make numerical simulations more efficient. Since our model describes

the second phase of the fingerprint development [KC13], i.e. the rearrangement of

Merkel cells from a random configuration into parallel ridges, we consider randomly

uniformly distributed initial data on the torus T2 in the numerical simulations.

3.3 Mathematical analysis of steady states

To use the particle system (3.1) for the simulation of fingerprints it is of great

interest to have a better understanding about the form of the steady states. The

steady states are formed by a number of lines which are referred to as ridges. As
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discussed in Section 3.2 we consider purely repulsive forces along s. In this section,

we study the existence of steady states for the particle model (3.1) for spatially

homogeneous and certain inhomogeneous tensor fields T analytically. The stability

of these line patterns is further investigated in [CDKS18]. In particular, the authors

show that line patterns for purely repulsive forces along s can only be stable if the

patterns are aligned in direction of the vector field s.

3.3.1 Spatially homogeneous tensor field

For spatially homogeneous tensor fields T it is sufficient to restrict ourselves to

the tensor field given by s “ p0, 1q and l “ p1, 0q since stationary solutions to the

Kücken-Champod model for any other tensor field can be obtained by coordinate

transform as shown in Chapter 2. Further note that steady states are translation

invariant, i.e. if x1, . . . , xN is a steady state, so is x1 ` z, . . . , xN ` z for any z P R2.

Hence it is sufficient to consider one specific constellation of particles for analysing

the steady states of (3.1). Because of the stability analysis in [CDKS18] we restrict

ourselves to line patterns along s “ p0, 1q, i.e. we consider patterns of vertical lines.

Note that two-dimensional vertical stripe pattern of width ∆ for any ∆ ą 0 do

not satisfy the steady state condition by the analysis in Chapter 2, i.e. stable line

patterns are one-dimensional structures.

Proposition 4. Given |d| P p0, 1s such that n :“ 1
|d|
P N and let N P N be given such

that N
n
P N. Then n parallel equidistant vertical lines of distance |d| of N

n
uniformly

distributed particles along each line are a steady state to the particle model (3.1) for

forces of the form (1.9) or (1.8) where the repulsion and attraction forces are of the

form (1.12) and (1.13), respectively.

Note that the choice of the distance |d| of the parallel vertical lines is consistent

with the periodic boundary conditions.

Proof. Because of the translational invariance of steady states it is sufficient to

consider any n equidistant parallel vertical lines of N
n

particles distributed uniformly

along each line. Without loss of generality we assume that the positions of the

particles are given by

x̄j “

˜

`

j ´ j mod N
n

˘

n
N

n
,
j mod N

n
N
n

¸

“
1

N

ˆ

j ´ j mod
N

n
, n

ˆ

j mod
N

n

˙˙

P R2.
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Because of the periodic boundary conditions of the domain as well as the fact

that the particles are uniformly distributed along parallel lines, it is sufficient to

require that

N´1
ÿ

k“1

F px̄N ´ x̄k, T px̄Nqq “ 0 (3.5)

for steady states of the particle model (3.1). Note that for forces of the form (1.9)

or (1.8) where the repulsion and attraction forces are of the form (1.12) and (1.13),

respectively, we have

F pd, T px̄Nqq “ ´F p´d, T px̄Nqq for all d P R2. (3.6)

As a first step we show that

N
n
´1
ÿ

k“1

F px̄N ´ x̄k, T px̄Nqq “ 0. (3.7)

Note that x̄k P t0uˆr0, 1s for k “ 1, . . . , N
n

and x̄N “ p0, 0q by the periodic boundary

conditions, i.e. we consider all the particles of the vertical line with x1-coordinate

x1 “ 0. If N
n

is odd, then (3.7) is satisfied by the balance of forces (3.6). For even
N
n

we have

F px̄N ´ x̄k, T px̄Nqq “ ´F px̄N ´ x̄N
n
´k, T px̄Nqq

for k “ 1, . . . , N
2n
´ 1. Besides,

F px̄N ´ x̄ N
2n
, T px̄Nqq “ 0

since |x̄N ´ x̄ N
2n
| “ 0.5 and the assumption of the finite range of the forces in (3.4),

implying that (3.7) is satisfied. If there is an odd number n of parallel equidistant

vertical lines, then the condition for steady states (3.5) is satisfied by (3.6). For

n even, the forces due to particles on the vertical lines at x1 “ k|d| balances the

interaction forces due to particles on the vertical lines at x1 “ pn ´ kq|d| for k “

1, . . . , n
2
´ 1 by (3.6), so it suffices to consider the particles on the vertical line at
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x1 “
n
2
|d|, i.e. the particles at positions x̄k for k “ N

2
, . . . , N

2
` N

n
´ 1. Note that

N
2
`N
n
´1

ÿ

k“N
2

F px̄N ´ x̄k, T px̄Nqq “ 0

since |x̄N ´ x̄k| ě 0.5 for k “ N
2
, . . . , N

2
` N

n
´ 1 and the assumption of the finite

range of the forces in (3.4). This implies that the condition for steady states (3.5) is

satisfied. Hence, x̄1, . . . , x̄N form a steady state of the microscopic model (3.1).

Corollary 4. Given d P p0, 1s such that n :“ 1
d
P N and let N P N be given such that

N
n
P N. Then n parallel, but not equidistant, vertical lines of N

n
uniformly distributed

particles along each line are not a steady state to the particle model (3.1) for forces

of the form (1.9) or (1.8) where the repulsion and attraction forces are of the form

(1.12) and (1.13), respectively.

Remark 8. Even though parallel, equidistant lines form a steady state for any

distance |d| the line patterns in Proposition 4 are not stable for every |d| P p0, 1s.

The maximum distance between parallel equidistant lines is given by the cutoff radius

Rc of the force coefficient fl or, equivalently, by the distance Rc such that flp|d|q

vanishes for all |d| ě Rc. In particular, a steady state of parallel, equidistant lines

of distance Rc is also stable under perturbations. This implies that a steady state to

(3.1) of parallel, equidistant vertical lines for a given choice of force coefficients fs

and fl can be transformed into a steady state of parallel, equidistant vertical lines

with a different line distance by rescaling the force coefficients appropriately.

3.3.2 Non-constant tensor fields

Many non-constant tensor fields can locally be regarded as spatially homogeneous

tensor fields. Note that by the assumptions in Section 3.2.3 we consider forces of

finite range. In particular, we have local forces for the forces (1.9) with coefficients

(3.2) and parameters (3.3) as well as for forces of the form (1.8) with force coef-

ficients (1.18), (1.19) and parameters (1.20) with χ “ 0.2. Applying the results

from Proposition 4 and Corollary 4 to a locally spatially homogeneous tensor field

implies that the resulting steady states are locally parallel, equidistant line patterns

where the distance of the line patterns crucially depends on the range of the inter-

action forces. In particular, this suggests that the steady states to (3.1) are given by

roughly parallel, equidistant lines whose distance is almost constant. By rescaling
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the force coefficients the (almost constant) distance between parallel lines can be

adapted. This shows that the almost constant distance between (stationary) ridges

can be predicted with the model.

3.4 Simulation of fingerprint patterns

In this section we investigate how to simulate fingerprint patterns by extending

the theoretical and the numerical results in Chapter 2. In particular, we consider

more realistic tensor fields for the formation of fingerprint patterns and study the

dependence of the parameter values in the Kücken-Champod model on the resulting

fingerprints.

3.4.1 Local fields in a fingerprint image

In order to use the particle model (3.1) to simulate fingerprint patterns a realistic

tensor field is needed. It is well known that fingerprints are composed of two key

directional features known as cores and deltas which can be regarded as local fields

of a fingerprint orientation field. Hence, we consider the construction of the tensor

fields for these two features first.

In [HHM08], Huckemann et al. propose to use differential equations (or more

generally quadratic differentials) which naturally define analytic orientation fields

on planar surfaces. The orientation field is composed of several local fields where

each local field is generated by a singular point of that field: A core is the endpoint

of a single line (cp. Figure 3.4(B)) and a delta occurs at the junction of three lines

(cp. Figure 3.4(A)).

For the mathematical description of a local field, we identify R2 with the complex

plane C. For simplicity we consider the origin ζ “ 0 as the only singular point, but

the idea can be extended to arbitrary singular points ζ P C. As outlined in [HHM08]

one can model the local field near the singular point ζ “ 0 by considering the initial

value problem

zprq 9zprq2 “ φprq, zpr0q “ z0, (3.8)

for a smooth, positive function φ “ φprq P R, r P R, and initial value z0 P C. Start-

ing from z0 the solution z “ zprq P C for r P R can be regarded as a parametrisation

of a curve in C, and varying z0 results in multiple curves. For φ “ 2
3

the solution to
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the differential equation (3.8) is given by

zprq “
´

r ` z
3{2
0

¯2{3

, (3.9)

but, in fact, the shape of the solution curves does not change for reparametrisations,

provided φ ą 0. By considering a fixed function φ and varying z0 P C, the associated

solution curves form a delta at the origin (ζ “ 0) as illustrated in Figure 3.4(A).

Hence, we require z 9z2 ą 0 for a delta at the origin. Note that z “ |z| exppiargpzqq

where argpzq denotes the principal argument of the complex number z P C. Further

note that 9z{} 9z} can be regarded as the unit vector in the direction of the smallest

stress. As outlined in Section 3.2 the direction of smallest stress is denoted by

the unit vector s “ spzq for z P R2 implying that spzq “ expp´iargpzq{2q. Thus,

the lines of smallest stress on a domain Ω Ă C can be obtained by evaluating

expp´iargpzq{2q for all z P Ω. Note that expp´iargpzq{2q and ´ expp´iargpzq{2q

result in the same lines of the stress field.

(A) Delta (B) Core

Figure 3.4: Solution curves (3.9) and (3.11) to the initial value problems (3.8) and
(3.10), respectively, generating fields of quadratic differentials for a delta and a core.

Similarly, for a positive function φ, the initial value problem

1

zprq
9zprq2 “ φprq, zpr0q “ z0, (3.10)

generates a field with a core at the origin. Up to reparameterisation the solution is

given by

zprq “
´

r ` z
1{2
0

¯2

, (3.11)
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and the solution curves are illustrated for different initial conditions z0 P C in Fig-

ure 3.4(B). This leads to the condition 9z2{z ą 0 for a core at the origin, implying

spzq “ exppiargpzq{2q since, as before, ˘ exppiargpzq{2q result in the same lines.

Further note that a delta or a core at any ζ P C can be obtained by linear transfor-

mation. In Figure 3.5 the tensor field for a delta and a core at the singular point

p0.5, 0.5q are plotted on the unit square r0, 1s2.

(A) s for delta (B) s for core

Figure 3.5: Lines of smallest stress s “ spxq of tensor fields T for a delta and a core.

3.4.2 Numerical methods

In this section, we describe the general setting for investigating the long-time be-

haviour of solutions to the particle model (3.1), motivated by Chapter 2.

We consider the particle model (3.1) where the forces are of the form (1.9) or

(1.8) and investigate the patterns of the corresponding stationary solutions. As in

Chapter 2 and outlined in Section 3.2.3 we consider the domain Ω “ T2, i.e. the

unit square r0, 1q ˆ r0, 1q Ă R2 with periodic boundary conditions, and we consider

a cutoff of the forces as in (3.4) to make the simulations more efficient.

To solve the N particle ODE system (3.1) we apply either the simple explicit

Euler scheme or higher order methods such as the Runge-Kutta-Dormand-Prince

method, all resulting in very similar simulation results. For the numerical simula-

tions we consider ∆t “ 0.2 for the size of the time step.

3.4.3 Numerical study of the Kücken-Champod model

Using the tensor fields introduced in Section 3.4.1 we consider the interaction model

(3.1) with forces of the form (1.8) to simulate fingerprint patterns. Here, the repul-
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sion and attraction forces are of the forms (1.12) and (1.13) with force coefficients

(1.18) and (1.19), respectively, and we consider the parameters in (1.20) with χ “ 0.2

to make the simulations as close as possible to the model suggested by Kücken and

Champod in [KC13]. It is well known that fingerprints develop during pregnancy

and stay the same afterwards provided no fingerprint alterations occur. In order to

simulate biologically meaningful fingerprints we aim to model fingerprint patterns

as stationary solution to the particle model (3.1). Based on the analysis of steady

states in Section 3.3 it is possible to obtain stationary patterns consisting of mul-

tiple roughly parallel ridges along the lines of smallest stress. However, the force

coefficients need to be chosen appropriately so that the resulting patterns are also

stable. For the simulations in Figure 3.6 we consider the tensor field for the delta

constructed in Section 3.4.1 and depicted in Figure 3.5(A). One can clearly see in

(A) t “ 2 ¨ 104 (B) t “ 4 ¨ 104 (C) t “ 6 ¨ 104 (D) t “ 8 ¨ 104

(E) t “ 10 ¨ 104 (F) t “ 20 ¨ 104 (G) t “ 30 ¨ 104 (H) t “ 40 ¨ 104

Figure 3.6: Numerical solution to the Kücken-Champod model (3.1) for N “ 600
and χ “ 0.2 at different times t where the stress field represents a delta and the
cutoff radius is 0.5.

Figure 3.6 that the particles are aligned along the lines of smallest stress s “ spxq

initially, but the patterns dissolve over time and the simulation results have little

similarity with fingerprint patterns over large time intervals. Besides, the patterns

are clearly no stable steady states in Figure 3.6. Hence, the question arises why the

patterns simplify so much over time for non-homogeneous tensor fields in contrast to

the stationary patterns arising for spatially homogeneous tensor fields, cf. Chapter

2, and how this can be prohibited.

To study the long-time behaviour of the numerical solution, it is desirable to have
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efficient numerical simulations and of course efficient simulations are also necessary

to to simulate fingerprints based on cell interactions in practice. In Section 3.2.3 we

introduced a cutoff radius for the forces, given by (3.4), in order to deal with the

periodic boundary conditions. Since the forces in the Kücken-Champod model (3.1)

decrease exponentially, the interaction force between two particles is very small if

their distance is sufficiently large. This is also illustrated in Figure 3.2(A) for the

parameters in (1.20) with χ “ 0.2. Hence, defining the cutoff radius as 0.1 changes

the values of the forces only slightly, but it allows us to compute the numerical

solution to the Kücken-Champod model (3.1) by using cell lists [AT89]. The idea of

cell lists is to subdivide the simulation domain into cells with edge lengths greater

than or equal to the cutoff radius of the interaction forces. All particles are sorted

into these cells and only particles in the same or neighbouring cells have to be

considered for interactions. This results in significantly faster simulations since we

only have to consider those particle pairs with relevant sizes of the interaction forces.

Note that the cutoff radius has an impact on the number of lines that occur in the

solution as shown in Figure 3.7 in comparison to a cutoff radius of 0.5 in Figure 3.6.

In particular the cutoff radius should not be chosen to small because this prevents

the accumulation of particles.

The simulation results for the Kücken-Champod model (3.1) in Figures 3.6 and

3.7 illustrate that the particles align in roughly parallel lines along the lines of small-

est stress initially, but the number of roughly parallel lines decreases as time goes on.

In particular, the complex patterns that occur initially are not stationary. We can

expect a similar behaviour (i.e. initial alignment along the lines of smallest stress

of the stress tensor field and subsequent accumulation) of the numerical solution if

the parameters in the coefficient functions of the repulsion and attraction force in

(1.18) and (1.19) are slightly changed provided they are repulsive along the lines

of smallest stress, as well as short-range repulsive and long-range attractive along

the lines of largest stress. Denoting the directions of smallest and largest stress by

s and l, respectively, the transition of the initial pattern of multiple lines to fewer

and fewer lines along s suggests that the attraction forces are very strong resulting

in an accumulation of the particles. Note that this transition is also observed for

the long-time behaviour of the numerical solution to the Kücken-Champod model

(3.1) for spatially homogeneous tensor fields in Chapter 2 where lines merge over

time until finally a steady state of equidistant parallel lines is reached.

In Figure 2.15 in Chapter 2 we showed the numerical solution to (3.1) for a

piecewise spatially homogeneous tensor field, randomly uniformly distributed initial
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(A) t “ 20000 (B) t “ 40000 (C) t “ 60000 (D) t “ 600000

Cutoff radius 0.02

(E) t “ 20000 (F) t “ 40000 (G) t “ 60000 (H) t “ 600000

Cutoff radius 0.04

(I) t “ 20000 (J) t “ 40000 (K) t “ 60000 (L) t “ 600000

Cutoff radius 0.06

Figure 3.7: Numerical solution to the Kücken-Champod model (3.1) for different
cutoff radii for N “ 600 and χ “ 0.2 at different times t where the stress field
represents a delta.
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data and N “ 600, resulting in stationary line patterns along the lines of smallest

stress s “ spxq. In particular, this tensor field is not smooth. This suggests that

smoothness and periodicity are not necessary to obtain stationary solutions aligned

along the lines of smallest stress.

The big impact of the choice of the attraction force along the lines of largest

stress can be seen by considering Figure 2.11. Here, we assume that the total force

is given by F pd, T q “ δFApd, T q `FRpdq for δ P r0, 1s for the spatially homogeneous

tensor field T “ χs b s ` l b l with l “ p1, 0q, s “ p0, 1q and χ “ 1 instead of the

definition of F as the sum of FA and FR in (1.8), i.e. we vary the size of the attraction

force and consider a radially symmetric force F . In Figure 2.11 the steady states to

the interaction mode (3.1) are shown for different factors δ of the attraction force

FA, where N “ 600 and initial data distributed equiangularly on a circle with centre

p0.5, 0.5q and radius 0.005 is considered. One can see in Figure 2.11 in Chapter 2

that δ “ 0.1 results in a stationary solution spread over the entire domain, while

ring patterns arise as δ increases. The intermediate state, occurring for δ “ 0.3,

is of interest in the sequel, as it is an example of a more complex pattern and in

particular not all the particles accumulate on one single ring as for δ “ 0.5, δ “ 0.7

and δ “ 0.9 due to too attractive forces.

The forces considered in Figure 2.11 and given by δfA ` fR along the lines of

largest stress are plotted in Figure 3.8 for different values of δ. As observed in the

stationary states in Figure 3.8, the force along the lines of largest stress is purely

repulsive for δ “ 0.1, medium- and long-range attractive for δ ě 0.5, as well as

medium-range attractive and long-range repulsive for δ “ 0.3. In particular, the

medium-range attractive forces for δ “ 0.3 are significantly smaller than for larger

values of δ.

3.5 A new model for simulating fingerprints

Based on the analysis of stationary states in Section 3.3 as well as the numerical

investigation of the Kücken-Champod model in Section 3.4.3 we propose a new

modelling approach for the interaction forces which can be used for simulating the

formation of fingerprints based on cell interactions. In particular, fingerprints are

obtained as stationary states to the model. As a next step we propose a bio-inspired

model for the creation of synthetic fingerprint patterns which can not only be used

to model the formation of fingerprints as stationary solutions but also allows to

adjust the ridge distances of the fingerprint lines.
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(A) Normal scaling (B) Zoom

Figure 3.8: Total force coefficients δfA ` fR along the lines of largest stress for
different values of δ and different scaling.

3.5.1 Stationary patterns

In this section we investigate how fingerprints can be obtained as stationary solutions

to the Kücken-Champod model (3.1) where the coefficients of the repulsive and

attractive forces are given by (1.18) and (1.19), respectively.

Adaptation of the forces in the Kücken-Champod model

Repulsive forces along the lines of smallest stress are an excellent choice to guarantee

that the particles form patterns along the lines of smallest stress. Hence we can

consider the repulsive coefficient function 0.2fA ` fR for the force along s with the

parameter values in (1.20) with χ “ 0.2 where the coefficient functions fA and fR

of the attraction and repulsion force are given by (1.18) and (1.19), respectively.

Short-range repulsion forces along the lines of largest stress prevent collisions of

the particles and medium-range attraction forces are necessary to make the parti-

cles form aggregates. However, the long-range forces should not be attractive for

modelling complex patterns since strong long-range attraction forces prevent the oc-

currence of multiple roughly parallel lines as stationary solutions. Motivated by the

more complex stationary pattern for δ “ 0.3 in Figure 2.11 and its desired structure

of the forces along the lines of largest stress (short-range repulsive, medium-range

attractive, long-range repulsive as depicted in Figure 3.8) we consider the coefficient

function 0.3fA ` fR along the lines of largest stress for the parameters in (3.13).

Hence, the total force F is given by (1.8) where the repulsion force FR is defined as
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(1.18) and the attraction force FA with coefficient function (1.19) has the new form

FApd “ dpxj, xkq, T pxjqq “ fAp|d|qT pxjq “ fAp|d|q p0.3pl ¨ dql ` χps ¨ dqsq (3.12)

where we set T pxjq “ 0.3pl ¨ dql` χps ¨ dqs and we consider the parameter values in

(3.13) with χ “ 0.2.

In Figures 3.9, 3.10 and 3.11 the numerical solutions for the repulsive force (1.12),

the attractive force (3.12) and different realistic tensor fields are illustrated. The

tensor fields in Figure 3.9 are given by a delta and a core, respectively, introduced

in Section 3.4.1, while we consider a combination of deltas and cores for the tensor

fields in Figures 3.10 and 3.11. As desired the particles align in roughly parallel

lines along the vector field s “ spxq and because of long-range repulsion forces

these nice patterns are not destroyed over time. Further note that the numerical

solution in Figures 3.9, 3.10 and 3.11 is shown for very large times so that it can

be regarded as stationary. In particular, this implies that the adapted forces can be

used to simulate fingerprint pattern and more generally any complex patterns is in

principal preserved over time.

After this adaptation of the forces it is desirable to use the original definition

of the forces (1.8) with repulsion and attraction force given by (1.12) and (1.13),

respectively, instead of an attraction force of the form (3.12). Along l the attraction

force (3.12) can be regarded as 0.3fA where fA is the attraction force along l in the

original definition of the attraction force FA in (1.13). Note that the parameter γ

in the definition of the attractive force coefficient fA in (1.19) is a multiplicative

constant. Hence, we multiply the original value of γ in (1.20) by 0.3, resulting in

α “ 270, β “ 0.1, γ “ 10.5, eA “ 95, eR “ 100, χ “ 0.2, (3.13)

and consider the original definition of the forces in (1.8), (1.12) and (1.13). The

forces along the lines of smallest and largest stress are plotted for the parameters

in (3.13) in Figure 3.12(B). Note that they are of the same form as the adapted

forces (1.8), (1.12) and (3.12) for the original parameter values (3.13), shown in

Figure 3.12(A). Because of the same structure of the forces we can expect similar

simulation results. In Figure 3.13 the numerical solution is shown for two examples,

a delta, as well as a combination of a core and a delta. One can clearly see that

the particles align along the lines of smallest stress and the resulting patterns are

preserved over time. Similarly, one can obtain any complex pattern as stationary
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(A) s (B) t “ 40 ¨ 104 (C) t “ 100 ¨ 104 (D) t “ 160 ¨ 104

(E) t “ 220 ¨ 104 (F) t “ 280 ¨ 104 (G) t “ 340 ¨ 104 (H) t “ 400 ¨ 104

Delta

(I) s (J) t “ 40 ¨ 104 (K) t “ 100 ¨ 104 (L) t “ 160 ¨ 104

(M) t “ 220 ¨ 104 (N) t “ 280 ¨ 104 (O) t “ 340 ¨ 104 (P) t “ 400 ¨ 104

Core

Figure 3.9: Tensor fields T “ T pxq for delta (subfigures (A)-(H)) and core (subfig-
ures (I)-(P)) given by s “ spxq and the numerical solution to the extended Kücken-
Champod model (3.1) with attraction force (3.12) at different times t for χ “ 0.2,
N “ 600, T “ T pxq and randomly uniformly distributed initial data.
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(A) s (B) t “ 40 ¨ 104 (C) t “ 100 ¨ 104 (D) t “ 160 ¨ 104

(E) t “ 220 ¨ 104 (F) t “ 280 ¨ 104 (G) t “ 340 ¨ 104 (H) t “ 400 ¨ 104

Example 1

(I) s (J) t “ 40 ¨ 104 (K) t “ 100 ¨ 104 (L) t “ 160 ¨ 104

(M) t “ 220 ¨ 104 (N) t “ 280 ¨ 104 (O) t “ 340 ¨ 104 (P) t “ 400 ¨ 104

Example 2

Figure 3.10: Different non-homogeneous tensor fields T “ T pxq (Example 1 in
subfigures (A)-(H), Example 2 in subfigures (I)-(P)) given by s “ spxq and the
numerical solution to the extended Kücken-Champod model (3.1) with attraction
force (3.12) at different times t for χ “ 0.2, N “ 600, T “ T pxq and randomly
uniformly distributed initial data.
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(A) s (B) t “ 40 ¨ 104 (C) t “ 100 ¨ 104 (D) t “ 160 ¨ 104

(E) t “ 220 ¨ 104 (F) t “ 280 ¨ 104 (G) t “ 340 ¨ 104 (H) t “ 400 ¨ 104

Example 3

Figure 3.11: Non-homogeneous tensor field T “ T pxq given by s “ spxq and the
numerical solution to the particle model (3.1) with attraction force (3.12) at different
times t for χ “ 0.2, N “ 600, T “ T pxq and randomly uniformly distributed initial
data.

solution to the Kücken-Champod model (3.1) by adapting the underlying tensor

field. In particular, this implies that the Kücken-Champod model (3.1) with forces

defined by (1.8), (1.12) and (1.13) for the parameters in (3.13) can be used to

simulate fingerprint patterns which are in principal preserved over time.

The long-time behaviour of the numerical solutions to the adapted particle model

(3.1) with model parameters (3.13) is investigated in Figure 3.14 where the numerical

solution at large times t is illustrated for the tensor field in Example 5 in Figure 3.13.

Note that the pattern changes only slightly over large time intervals, demonstrating

that these patterns are close to being stationary. This slow convergence to steady

states, especially for inhomogeneous underlying tensor fields, can also be seen for

other pattern forming systems such as the patterns in the SH equation where the

time until the steady state is reached is roughly of the order of what is called the

horizontal diffusion time [Nij18].

Pattern formation based on tensor fields from real fingerprints

In this section, we investigate how to simulate fingerprint patterns based on realistic

tensor fields. As proposed in [KC13] the tensor field is constructed based on real

fingerprint data. The tensor field is estimated by a combination of the line sensor
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(A) 0.3fA ` fR for values in (3.13) (B) fA ` fR for values in (3.13)

Figure 3.12: Total force coefficients 0.2fA ` fR along the lines of smallest stress, as
well as 0.3fA ` fR for parameter values in (3.13) and fA ` fR for parameter values
in (3.13) along the lines of largest stress, respectively.

method [GMM09] and a gradient based method as described in [GS12, Section 2.1].

Given some real fingerprint data the aim is to construct the vector field s “ spxq

for all x P Ω as the tangents to the given fingerprint lines. This is based on the idea

that the lines of smallest stress are given by s and the solution to the interaction

model (3.1) aligns along s. Let θ “ θpxq denote the angle between the vertical axis

and the direction of lines of smallest stress s “ spxq at location x, then it is sufficient

to consider the principal arguments θ P r0, πq only. Note that for any x P Ω and

any given θpxq we can reconstruct spxq as pcospθpxq, sinpθpxqqq since spxq are defined

to be unit vectors. In Figure 3.15 fingerprint data, the estimated arguments θ for

constructing the tensor field and the lines of smallest stress s “ spxq of the tensor

field are shown. Note that the lines of smallest stress s “ spxq of the tensor field

and the fingerprint lines in the real fingerprint image coincide.

Considering the tensor field T “ T pxq shown in Figure 3.15 the associated

numerical solution is plotted for two realisations of uniformly distributed initial

data in Figure 3.16. One can clearly see that the particles align along the lines of

smallest stress s “ spxq. Besides, Figure 3.16 illustrates that we obtain similar,

but not exactly the same patterns for different realisations of random uniformly

distributed initial data. This is consistent with the well-known fact that everyone

has unique fingerprints and even the fingerprints of twins can be distinguished even

if the general patterns may seem to be quite similar at first glance [CLMS16].

To quantify the distance to the steady state we consider the change of the posi-
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(A) s (B) t “ 40 ¨ 104 (C) t “ 100 ¨ 104 (D) t “ 160 ¨ 104

(E) t “ 220 ¨ 104 (F) t “ 280 ¨ 104 (G) t “ 340 ¨ 104 (H) t “ 400 ¨ 104

Example 4

(I) s (J) t “ 40 ¨ 104 (K) t “ 100 ¨ 104 (L) t “ 160 ¨ 104

(M) t “ 220 ¨ 104 (N) t “ 280 ¨ 104 (O) t “ 340 ¨ 104 (P) t “ 400 ¨ 104

Example 5

Figure 3.13: Different non-homogeneous tensor fields T “ T pxq (Example 4 in
subfigures (A)-(H), Example 5 in subfigures (I)-(P)) given by s “ spxq and the
numerical solution to the adapted particle model (3.1) for the parameters in (3.13)
at different times t for χ “ 0.2, N “ 600, T “ T pxq and randomly uniformly
distributed initial data.
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(A) t “ 5 ¨ 107 (B) t “ 10 ¨ 107 (C) t “ 15 ¨ 107 (D) t “ 20 ¨ 107

(E) t “ 25 ¨ 107 (F) t “ 30 ¨ 107 (G) t “ 35 ¨ 107 (H) t “ 40 ¨ 107

Figure 3.14: Long-time behaviour of the numerical solution to the adapted particle
model (3.1) for the parameters in (3.13) at different times t for χ “ 0.2, N “ 600,
the tensor field T “ T pxq in Example 5 in Figure 3.13 and randomly uniformly
distributed initial data.

(A) Original (B) θ (C) s

Figure 3.15: Original fingerprint image as well as arguments and lines of smallest
stress s “ spxq for the reconstructed tensor field T “ T pxq.
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(A) t “ 15 ¨ 106 (B) t “ 30 ¨ 106 (C) t “ 45 ¨ 106 (D) t “ 60 ¨ 106

Example 6

(E) t “ 15 ¨ 106 (F) t “ 30 ¨ 106 (G) t “ 45 ¨ 106 (H) t “ 60 ¨ 106

Example 7

Figure 3.16: Numerical solution to the adapted particle model (3.1) for the param-
eters in (3.13) at different times t for χ “ 0.2, the realistic tensor field T “ T pxq in
Figure 3.15 and two realisations of randomly uniformly distributed initial data.

tions xj of the particles in successive time steps, given by

τptq “
N
ÿ

j“1

}xjpt`∆tq ´ xjptq}L1 . (3.14)

In Figure 3.17 we show the error τ between successive time steps for the numerical

solution in Example 6 in Figure 3.16 to the adapted particle model (3.1). After a

sharp initial decrease the total change in positions of the particles is approximately

1.0 ¨10´5, i.e. the movement of the particles is roughly 1.7 ¨10´8 between time steps.

Interpretation of the pattern formation

In the simulations for spatially homogeneous tensor fields in 2 as well as for realistic

tensor fields in Figures 3.9, 3.10, 3.11, 3.13, 3.14, 3.16 one can see bifurcations in

the solution pattern for certain time steps. More precisely, there exist points where

two roughly parallel lines merge with a third roughly parallel line from the other

side. These patterns are in the form of the letter ‘Y’. The evolution of one of these

bifurcations is shown in Figure 3.18 for the underlying tensor field in Example 6 in
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Figure 3.17: Error τ in (3.14) between successive time steps for the numerical
solution in Example 6 in Figure 3.16 to the adapted particle model (3.1) for the
parameters in (3.13) at different times t and the realistic tensor field T “ T pxq in
Figure 3.15.

Figure 3.16. Note that all these lines are aligned along the lines of smallest stress s

of the tensor field and these bifurcations move towards the two neighbouring lines

over time. This behaviour can be explained by attraction forces along the lines of

largest stress over medium range distances, i.e. as soon as the distance between the

particles along the lines of largest stress l is small enough they attract each other.

In particular, the particles close to the bifurcation on the two neighbouring lines

are the first ones to ‘feel’ the attraction force along l and the two roughly parallel

lines start merging close to the bifurcation. Hence, the single line on the other side

of the bifurcation gets longer over time and the bifurcation moves towards the two

parallel lines. While the two roughly parallel lines get shorter over time until they

are finally completely merged, resulting in one single line. Since the movement of

the particles is mainly along l there is a different particle at the bifurcation at each

time step. While the particles on the line in the middle roughly remain at the same

position apart from realigning along the lines of smallest stress s. This realignment

along s is due to the additional number of particles which are aligned along one

single line after the merging, as well as due to the repulsive forces along s spreading

the particles to make use of the space along s and to avoid high particles densities

after merging.

3.5.2 Varying the ridge distance

Motivation for a new model

The results in Section 3.5.1 illustrate that it is possible to simulate realistic finger-

prints with the adapted particle model (3.1) for the parameters in (3.13). As seen
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3.5. A new model for simulating fingerprints

Figure 3.18: Evolution of the bifurcations in the numerical solution to the adapted
particle model (3.1) for the parameters in (3.13) for the non-homogeneous tensor
field T “ T pxq in Example 6 in Figure 3.16 at different times t and randomly
uniformly distributed initial data.

in the figures, there is some variability in ridge distances and in view of realistic

biometric applications, it is of great interest to control them. Note that the total

force F in (1.8), given by the sum of repulsion and attraction force FR and FA of

the form (1.12) and (1.13), respectively, can be rewritten as

F pdpxj, xkq, T pxjqq “ rχfAp|d|q ` fRp|d|qs ps ¨ dqs` rfAp|d|q ` fRp|d|qs pl ¨ dql

(3.15)

by using the definition of the tensor field T in (1.5) and the definition of the distance

vector dpxj, xkq “ xj ´ xk P R2. The coefficient functions of the repulsion and

attraction forces (1.18) and (1.19), respectively, are plotted along s and l for the

parameters in (3.13) in Figure 3.12(B). In particular, this motivates us to consider

interaction forces of the form (1.9).

We are interested in rescaling the forces now to vary the distances between the

fingerprint lines, i.e. we consider F pηdpxj, xkq, T pxjqq where η ą 0 is the rescaling

factor. For η “ 1 we recover the same solution patterns as in Section 3.5.1, while

the distances between the fingerprint lines become larger for η P p0, 1q and smaller

for η ą 1. Note that the force coefficient fA ` fR along l is repulsive over long

distances. For η “ 1, the case that has been considered so far, this is fine for the

given parameters in (3.13). For η ą 1, however, the scaling results in repulsive

interaction forces along l for particles with shorter distances between each other.

Besides, short-range forces have a stronger impact on the interactions. Hence, these

short-range repulsive interaction forces prevent the accumulation of particles along
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l, resulting in several clusters. Note that the forces along s are purely repulsive so

that rescaling by any η does not change the nature of the forces.

In order to prevent this behaviour and to obtain an interaction model that can

be used for different rescalings, the forces need to be changed slightly so that we

have very small attractive forces along l for η “ 1. This does not influence the

pattern formation for η “ 1, but for rescaling by η ą 1 we can obtain the desired

line patterns with smaller distances between each other. In order to achieve this,

we consider a straight-forward approach first. We consider two cutoffs c1 and c2

and define the adapted force F piece-wise such that for |d| ă c1 the force F is of

the form (3.15) as before while for |d| ą c2 we consider an attraction force tending

to zero as d Ñ 8. To obtain a continuous force we consider a linear interpolation

of the force on rc1, c2s. Setting

fp|d|, χq :“ χfAp|d|q ` fRp|d|q

we consider the force coefficients f̄s and f̄l for interaction forces of the form (1.9)

where the force coefficients are defined as

f̄lpdq “

$

’

’

’

&

’

’

’

%

fp|d|, 1q |d| ă c1

fpc1, 1q `
|d|´c1
c2´c1

p´fpc2, 1q ´ fpc1, 1qq |d| P rc1, c2s

´fp|d|, 1q |d| ą c2

(3.16)

and

f̄spdq “ fp|d|, χq. (3.17)

Here, we consider the parameter values c1 “ 0.06, c2 “ 0.07 and the parameters in

the force coefficients (1.18), (1.19) are given by (3.13). The force coefficient fl along

l for |d| ą c2 is obtained by multiplying the original force along l by ´1. This is

based on the fact that the force coefficient fpd, 1q is repulsive for large distances

along l for the parameters in (3.13). In Figure 3.19 the force coefficients f̄l and f̄s

in (3.16) and (3.17), respectively, are shown. In particular, the piecewise definition

of f̄l only has a small influence of the form. In Figure 3.20, the stationary solution

to the particle model (3.1) for interaction forces of the form (1.9), force coefficients

(3.16), (3.17), parameter values (3.13), the underlying tensor field T “ T pxq in

Figure 3.15 and different rescaling factors η is shown and one can clearly see that

η ą 1 leads to smaller ridge distances whereas η ă 1 results in larger ridge distances.
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In particular, the interaction model (3.1) with interaction forces of the form (1.9)

and force coefficients in (3.16) and (3.17) can be used to simulate fingerprints with

variable ridge distances. Due to the smaller distances between the fingerprint lines

for η “ 1.2 this leads to a larger number of fingerprint lines on the given domain.

Due to this increased number of lines it is desirable to run simulations with larger

numbers of particles. However, particle simulations can only be applied efficiently

as long as the total particle number is not too large. In order to solve this remedy

one can introduce the density ρ “ ρpt, xq associated with the particle positions and

consider the associated macroscopic model (1.17). In Chapter 5, advanced numerical

methods for solving the macroscopic model (1.17) with anisotropic interaction forces

are developed for simulating fingerprint patterns.

(A) Normal scaling (B) Zoom

Figure 3.19: Total force coefficients f̄l and f̄s, defined in (3.16) and (3.17) respec-
tively, for interaction forces of the form (1.9) and parameter values (3.13).

(A) η “ 0.8 (B) η “ 1.0 (C) η “ 1.2

Figure 3.20: Stationary solution to the interaction model (3.1) for interaction forces
of the form (1.9), force coefficients (3.16), (3.17), parameter values (3.13), the realis-
tic tensor field T “ T pxq in Figure 3.15 and N “ 2400 particles initially distributed
uniformly at random.
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A bio-inspired model for simulating stationary fingerprints with variable

ridge distances

In this section, we consider interaction forces of the form (1.9) as before with the

aim of simulating fingerprints with variable ridge distances based on a bio-inspired

approach. The coefficient functions fl and fs in (3.16) and (3.17), respectively,

are defined piecewise and it is desirable to obtain a closed form for the coeffi-

cient functions. As before we consider exponentially decaying forces describing that

short-range interactions between the particles are much stronger than long-range

interactions. Since the forces are repulsive and attractive on different regimes, this

interplay between repulsion and attraction forces can be regarded as oscillations.

Motivated by this, we model the force coefficients fs and fl in (1.9) as solutions

to a damped harmonic oscillator. Note that harmonic oscillators are a common

modelling approach in cell biology and the force coefficients fl, fs are given by (3.2)

and are shown in Figure 3.21 for the parameters in (3.3) in comparison with the

piecewise defined force coefficients f̄l, f̄s for the parameters in (3.13). Note that

the parameters (3.3) are chosen in such a way that the coefficient functions fl, fs

of the harmonic oscillator approximate the piecewise defined coefficient functions

f̄l, f̄s in (3.16),(3.17), respectively. In Figure 3.22 the stationary patterns to (3.1)

for different rescaling factors η are shown. As expected the larger the value of η the

smaller the distances between the fingerprint lines and the more lines occur.

Figure 3.21: Coefficients fl and fs in (3.2) for parameter values in (3.3) as well as
piecewise defined coefficients f̄l and f̄s in (3.16),(3.17).

Whole fingerprint simulations

In Figure 3.23 we construct tensor fields from real fingerprint data based on the

methods discussed in Section 3.5.1. We consider a whole fingerprint image shown
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3.5. A new model for simulating fingerprints

(A) η “ 0.6 (B) η “ 0.8 (C) η “ 1.0 (D) η “ 1.2

Figure 3.22: Stationary solution to the interaction model (3.1) for interaction forces
of the form (1.9), force coefficients (3.2), parameter values (3.3), the realistic tensor
field T “ T pxq in Figure 3.15, different force rescaling factor η and N “ 2400
particles initially distributed uniformly at random.

in Figure 3.23(A) and determine the underlying tensor field by estimating the ar-

guments θ “ θpxq for every x P Ω. Since we consider the domain Ω “ T2 we

extend the tensor field via extrapolation from the original fingerprint image in Fig-

ure 3.23(A), based on [GMM09]. In Figures 3.23(B) and 3.23(C) the arguments

θ “ θpxq are shown and the arguments θ are overlayed by the mask of the original

fingerprint in black in Figure 3.23(B). Since spxq is a unit vector and hence uniquely

determined by its argument θpxq we reconstruct the lines of smallest stress spxq as

pcospθpxq, sinpθpxqqq in Figures 3.23(D) and 3.23(E), and overlay the direction field s

by the original fingerprint image in black in Figure 3.23(D). We run simulations for

these realistic tensor fields using our new bio-inspired model (3.1) with interaction

forces of the form (1.9), force coefficients (3.2) inspired from harmonic oscillators

and parameter values in (3.3) for randomly uniformly distributed initial data and

N “ 2400 particles. Note that the patterns are preserved over time.

In conclusion, fingerprints with variable ridge distances can obtained as station-

ary solutions to our bio-inspired model. We consider harmonic oscillators as force

coefficients, a well-established modelling approach in biology. Due to lack of ex-

perimental data the exact form of the interaction forces, including the parameter

choices, cannot be validated with experiments. For this reason, the parameters are

chosen such that certain observations are satisfied and the general model formu-

lation of the model allows to consider a large class of models. As part of future

work, the numerical results can be tested for realness. The distinction between real

and synthetics could be based on [GH14] where histograms of minutiae and ridge

frequencies are considered. Another procedure for distinguishing real and synthetic

fingerprints is based on the underlying stress field only [IGHO18].
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(A) Original (B) θ and original (C) θ (D) s and original

(E) s (F) η “ 0.6 (G) η “ 0.8 (H) η “ 1.0

Figure 3.23: Original fingerprint image, arguments and lines of smallest stress s “
spxq for the reconstructed tensor field T “ T pxq with an overlying mask of the
original fingerprint image in black, as well as stationary solution to the interaction
model (3.1) for interaction forces of the form (1.9), force coefficients (3.2), parameter
values (3.3) and N “ 2400 particles initially distributed uniformly at random.
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Chapter 4

Stability analysis of line patterns

Originality and contribution

This chapter is based on the paper [CDKS18] in collaboration with José A. Carrillo,

Bertram Düring and Carola-Bibiane Schönlieb. While my co-authors proposed the

study of the model and provided guidance and advice, [CDKS18] is primarily my

own original work and nearly all the results, including analysis and simulations,

were obtained by myself.

Chapter summary

Motivated by the formation of fingerprint patterns, we consider a class of interact-

ing particle models with anisotropic, repulsive-attractive interaction forces whose

orientations depend on an underlying tensor field. This class of models can be

regarded as a generalisation of a gradient flow of a nonlocal interaction potential

which has a local repulsion and a long-range attraction structure. In addition, the

underlying tensor field introduces an anisotropy leading to complex patterns which

do not occur in isotropic models. Central to this pattern formation are straight

line patterns. For a given spatially homogeneous tensor field, we show that there

exists a preferred direction of straight lines, i.e. straight vertical lines can be stable

for sufficiently many particles, while many other rotations of the straight lines are

unstable steady states, both for a sufficiently large number of particles and in the

continuum limit. For straight vertical lines we consider specific force coefficients for

the stability analysis of steady states, show that stability can be achieved for expo-

nentially decaying force coefficients for a sufficiently large number of particles, and
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relate these results to the Kücken-Champod model for simulating fingerprint pat-

terns. The mathematical analysis of the steady states is completed with numerical

results.

4.1 Introduction

In biological applications, the interactions determined by the force F or, equiva-

lently, the interaction potential W , are usually described by short-range repulsion,

preventing collisions between the individuals, as well as long-range attraction, keep-

ing the swarm cohesive [MEKBS03, OL01]. In this case, the associated radially

symmetric potentials W first decrease and then increase as a function of the radius.

Due to the repulsive forces these potentials lead to possibly more steady states than

the purely attractive potentials. In particular, these repulsive-attractive potentials

can be considered as a minimal model for pattern formation in large systems of

individuals [BCLR13b, KCB`13] and the references therein.

Pattern formation in multiple dimensions is studied in [BSK`15, KSUB11, vBU12,

vBUKB12, CHM14a] for repulsive-attractive potentials. The instabilities of the

sphere and ring solutions are studied in [BSK`15, vBU12, vBUKB12]. The lin-

ear stability of ring equilibria is analysed and conditions on the potential are de-

rived to classify the different instabilities. A numerical study of the N -particle

interaction model for specific repulsion-attraction potentials is also performed in

[BSK`15, KSUB11] leading to a wide range of radially symmetric patterns such

as rings, annuli, and uniform circular patches, as well as more complex patterns.

Based on this analysis the stability of flock solutions and mill rings in the associated

second order model can be studied, see [ABCvB14] and [CHM14b] for the linear

and nonlinear stability of flocks, respectively.

In this chapter, we consider a generalisation of the particle model (1.2) by intro-

ducing an anisotropy given by a tensor field T . This leads to an extended particle

model of the form (1.4), i.e.

dxj
dt

“
1

N

N
ÿ

k“1
k‰j

F pxj ´ xk, T pxjqq, (4.1)

where we prescribe initial data xjp0q “ xinj , j “ 1, . . . , N , for given scalars xinj , j “

1, . . . , N . A special instance of this model has been introduced in [KC13] for sim-

ulating fingerprint patterns. The particle model in its general form (4.1) has been
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studied in [BDK`18, DGH`19]. Here, the position of each of the N particles at

time t is denoted by xj “ xjptq P R2, j “ 1, . . . , N, and F pxj ´ xk, T pxjqq denotes

the total force that particle k exerts on particle j subject to an underlying stress

tensor field T pxjq at xj, given by (1.5) for orthonormal vector fields s “ spxq and

l “ lpxq P R2 and χ P r0, 1s. Here, the outer product vbw for two vectors v, w P R2

equals the matrix multiplication vwT and results in a matrix of size R2,2. The pa-

rameter χ introduces an anisotropy in the direction s in the definition of the tensor

field.

For repulsive forces along s and short-range repulsive, long-range attractive

forces along l the numerical simulations in [BDK`18] suggest that straight ver-

tical line patterns formed by the interacting particles at positions xj are stable for a

certain spatially homogeneous tensor field, specified later. In this chapter, we want

to rigorously study this empirical observation by providing a linear stability analysis

of such patterns where particles distribute equidistantly along straight lines.

The stability analysis of steady states of the particle model (4.1) is important

for understanding the robustness of the patterns that arise from applying (4.1) for

numerical simulation, for instance, as for its originally intended application to finger-

print simulation in [KC13]. Indeed, in what follows, we will show that for spatially

homogeneous tensor fields T the solution formed by a number of vertical straight

lines (referred to as ridges) is a stationary solution, whereas ridge bifurcations, i.e.

a single ridge dividing into two ridges as typically appearing in fingerprint patterns,

is not.

The aim of this chapter is to prove that sufficiently large numbers of particles

distributed equidistantly along straight vertical lines are stable steady states to the

particle model (4.1) for short-range repulsive, long-range attractive forces along l

and repulsive forces along s. All other rotations of straight lines are unstable steady

states for this choice of force coefficients for a sufficiently large number of particles

and for the continuum limit. We focus on this very simple class of steady states

as a first step towards understanding stable formations that can be achieved by

model (4.1). Note that the continuum straight line is a steady state of the associ-

ated continuum model (1.17), see [BDK`18], but its asymptotic stability cannot be

concluded from the linear stability analysis for finitely many particles.

This chapter is organised as follows. In Section 4.2 we describe a general formu-

lation of an anisotropic interaction model, based on the model proposed by Kücken

and Champod [KC13]. Section 4.3 is devoted to a high wave number stability anal-

ysis of line patterns for the continuum limit N Ñ 8, including vertical, horizontal,
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and rotated straight lines for spatially homogeneous tensor fields. Due to the in-

stability of arbitrary rotations except for vertical straight lines for the considered

tensor field we focus on the stability analysis of straight vertical lines for particular

forces for any N P N in Section 4.4. Section 4.5 illustrates the form of the steady

states in the case the derived stability conditions are not satisfied.

4.2 Description of the model

In this section, we describe a general formulation of the anisotropic microscopic

model (4.1) and relate it to the Kücken-Champod particle model [KC13]. Kücken

and Champod consider the particle model (4.1) where the total force F is given

by (1.8) for the distance vector dpxj, xkq “ xj ´ xk P R2. Here, FR denotes the

repulsion force that particle k exerts on particle j and FA is the attraction force

particle k exerts on particle j. The repulsion and attraction forces are of the form

(1.12) and (1.13), respectively, with coefficient functions fR and fA, where, again,

d “ dpxj, xkq “ xj´xk P R2. Note that the repulsion and attraction force coefficients

fR, fA are radially symmetric. The direction of the interaction forces is determined

by the parameter χ P r0, 1s in the definition of T in (1.5). Motivated by plugging

(1.5) into the definition of the total force (1.8), we consider a more general form of

the total force, given by (1.9) where the total force is decomposed into forces along

the direction s and along the direction l. In particular, the force coefficients in the

Kücken-Champod model (4.1) with repulsive and attractive forces FR and FA in

(1.12) and (1.13), respectively, can be recovered for

flp|d|q “ fAp|d|q ` fRp|d|q and fsp|d|q “ χfAp|d|q ` fRp|d|q.

Since a steady state of the particle model (4.1) for any spatially homogeneous

tensor field T̃ can be regarded as a coordinate transform of the steady state of the

particle model (4.1) for the tensor field T (see [BDK`18] for details), we restrict

ourselves to the study of steady states for the spatially homogeneous tensor field T

given by the orthonormal vectors s “ p0, 1q and l “ p1, 0q, i.e.

T “

¨

˚

˝

1 0

0 χ

˛

‹

‚

. (4.2)

The total force in the Kücken-Champod model (1.8) and the generalised total force
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(1.9) reduce to

F pdq “

¨

˚

˝

pfAp|d|q ` fRp|d|qq d1

pχfAp|d|q ` fRp|d|qq d2

˛

‹

‚

(4.3)

and

F pdq “

¨

˚

˝

flp|d|qd1

fsp|d|qd2

˛

‹

‚

for d “ pd1, d2q P R2, (4.4)

respectively, for the spatially homogeneous tensor field T in (4.2).

In the following, we consider the particle model (4.1) on the torus T2 or, equiv-

alently, on the unit square r0, 1s2 with periodic boundary conditions. This can be

achieved by considering the full force (4.4) on r´0.5, 0.5s2, extending it periodi-

cally on R2, and requiring that the force coefficients are differentiable and vanish

on Br´0.5, 0.5s2 for physically realistic dynamics. That is, we use (4.4) to define its

periodic extension F̄ : R2 Ñ R2 by

F̄ pdq :“ F pdq for d P r´0.5, 0.5s2,

F̄ pd` kq :“ F̄ pdq for d P r´0.5, 0.5s2, k P Z2.
(4.5)

Then, the particle model (4.1) can be rewritten as

dxj
dt

“
1

N

N
ÿ

k“1
k‰j

F̄ pxj ´ xkq (4.6)

for xj P R2, where the right-hand side can be regarded as the force acting on particle

j. We require that the force F̄ has to vanish for any d P Br´0.5, 0.5s2 to avoid

interactions between periodic replicates of the particles, implying that flp0.5q “

fsp0.5q “ 0 for fl, fs in (4.4) and hence flp|d|q “ fsp|d|q “ 0 for d P R2 with |d| “ 0.5.

Thus, we require that F̄ pdq “ 0 for all d P Br´0.5, 0.5s2 for physically relevant forces.

To guarantee that the resulting force coefficient is differentiable which is required

for the stability analysis we construct a differentiable approximation of the given

force coefficient f by considering fp|d|q for |d| ď 0.5 ´ ε for some ε ą 0, a cubic

polynomial on p0.5 ´ ε, 0.5q and the constant zero function for |d| ě 0.5 such that

the resulting function is continuously differentiable on p0,8q. Motivated by this,
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we also consider smaller values of the cutoff radius Rc P p0, 0.5s and adapt the force

coefficients as

f εp|d|q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

fp|d|q, |d| P r0, Rc ´ εs,

f 1pRc ´ εq
´

p|d|´Rcq3

ε2
`
p|d|´Rcq

2

ε

¯

`fpRc ´ εq
´

2 p|d|´Rcq
3

ε3
` 3 p|d|´Rcq

2

ε2

¯

, |d| P pRc ´ ε, Rcq,

0, |d| ě Rc.

(4.7)

Note that this definition results in a differentiable function whose absolute value

and its derivative vanish for |d| “ Rc. This is in analogy to the notion of cutoff and

is only a small modification compared to the original definition provided fpsq for

s P pRc ´ ε, Rcq is of order Opεq and f 1pRc ´ εq is of order Op1q. In this case, both

the original force coefficients and its adaptation f ε are of order Opεq on pRc´ε, Rcq.

Further note that the interaction forces on distances |d| ! Rc ´ ε are significantly

larger than on pRc ´ ε, Rcq and, hence, the dynamics are mainly determined by

interactions of range |d| ! Rc. In particular, this allows us to replace fl and fs in

(4.4) by differentiable approximations f εl and f εs , defined as in (4.7), if necessary.

Note that the assumption to consider the unit square r0, 1s2 with periodic bound-

ary conditions is not restrictive and by rescaling in time our analysis extends to any

domain r0, δs2 with a cutoff radius Rc P p0,
δ
2
s for δ P R`, where the cutoff of any

force coefficient f is defined in (4.7).

The coefficient function fR of the repulsion force FR in (1.12) in the Kücken-

Champod model is originally of the form

fRp|d|q “ pα|d|
2
` βq expp´eR|d|q (4.8)

for d P R2 and nonnegative parameters α, β, and eR. The coefficient function fA of

the attraction force FA in (1.13) is of the form

fAp|d|q “ ´γ|d| expp´eA|d|q (4.9)

for d P R2 and nonnegative constants γ and eA. To be as close as possible to

the work by Kücken and Champod [KC13] we assume that the total force (1.8)

exhibits short-range repulsion and long-range attraction along l and one can choose

the parameters as in (1.20) as proposed in [BDK`18]. Based on the adaptations

of the force coefficients in (4.7), we consider the modified Kücken-Champod force
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coefficients in the following, given by

f εRp|d|q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

fRp|d|q, |d| P r0, Rc ´ εs,

f 1RpRc ´ εq
´

p|d|´Rcq3

ε2
`
p|d|´Rcq

2

ε

¯

`fRpRc ´ εq
´

2 p|d|´Rcq
3

ε3
` 3 p|d|´Rcq

2

ε2

¯

, |d| P pRc ´ ε, Rcq,

0, |d| ě Rc,

(4.10)

and

f εAp|d|q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

fAp|d|q, |d| P r0, Rc ´ εs,

f 1ApRc ´ εq
´

p|d|´Rcq3

ε2
`
p|d|´Rcq

2

ε

¯

`fApRc ´ εq
´

2 p|d|´Rcq
3

ε3
` 3 p|d|´Rcq

2

ε2

¯

, |d| P pRc ´ ε, Rcq,

0, |d| ě Rc.

(4.11)

Here, fR, fA are very small in a neighbourhood of the cutoff Rc “ 0.5 for the

parameters in (1.20) or, more generally, for eR and eA sufficiently large. Since the

derivatives f 1R and f 1A also contain the exponential decaying terms expp´eR|d|q and

expp´eA|d|q, respectively, and are scaled by a factor Opεq in (1.18) and (1.19),

respectively, the differences between f εR and fR, and f εA and fA, respectively, are

very small compared to the size of the interaction forces at distances |d| ! Rc ´ ε

and the total force exerted on particle xj, given by the right-hand side of (4.6). In

particular, f εR, f
ε
A can be regarded as differentiable approximations of fR, fA.

For the particle model (4.6) with differentiable coefficient functions f εR, f
ε
A and

parameters (1.20), we plot the original coefficient functions fR, fA of the total force

(4.3) for a spatially homogeneous underlying tensor field T with s “ p0, 1q and

l “ p1, 0q in Figure 4.1. However, note that fR « limεÑ0 f
ε
R and fA « limεÑ0 f

ε
A.

Moreover, we show the resulting coefficient functions χfA ` fR with χ “ 0.2 and

fA ` fR along s “ p0, 1q and l “ p1, 0q, respectively, in Figure 4.1. Note that the

repulsive force coefficient fR is positive and the attractive force coefficient fA is

negative. Repulsion dominates for short distances along l to prevent collisions of

the particles. Besides, the total force exhibits long-range attraction along l whose

absolute value decreases with the distance between particles. Along s, the particles

are purely repulsive for χ “ 0.2 and the repulsion force gets weaker for longer

distances.
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Figure 4.1: Coefficients fR in (4.8) and fA in (4.9) of repulsion force (1.12) and
attraction force (1.13), respectively, as well as the force coefficients along s “ p0, 1q
and l “ p1, 0q (i.e. fA ` fR and 0.2fA ` fR) for parameter values in (1.20).

4.3 Stability/instability of straight lines

In this section, we consider the total force F̄ in (4.5), defined on R2 by periodic

extension of F on r´0.5, 0.5s2 in (4.4). This total force F̄ can be described by

(periodically extending) a short-range repulsive, long-range attractive force coeffi-

cient fl along l and a purely repulsive force coefficient fs along s. Without loss of

generality we may assume that the force coefficients fl, fs are differentiable since

otherwise they may be replaced by f εl , f
ε
s , defined as in (4.7) for given functions

fl, fs. Motivated by this we require the following.

Assumption 5. Let fl, fs be continuously differentiable functions on r0,8q. Let

fs be purely repulsive, i.e. fs ě 0 with fsp0q ą 0 for s P r0, Rcq and fspsq “ 0 for

s ě Rc, implying
´ Rc

0
fs ds ą 0. Further let fl be short-range repulsive, long-range

attractive with flpRcq “ 0.

As shown in [BDK`18] for the analysis of steady states with general spatially

homogeneous tensor fields, it is sufficient to restrict ourselves to the spatially ho-

mogeneous tensor field T with s “ p0, 1q and l “ p1, 0q in the following.

4.3.1 Straight line

In this section, we consider line patterns as steady states which were observed in the

numerical simulations in [BDK`18]. For xj P R2, j “ 1, . . . , N , evolving according
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4.3. Stability/instability of straight lines

to the particle model (4.6), we have

d

dt

N
ÿ

j“1

xj “ 0,

implying that the centre of mass is conserved. Hence, we can assume without loss

of generality that the centre of mass is in Z2. By identifying R2 with C, we make

the ansatz

x̄k “
k

N
exppiθq`pθq, k “ 1, . . . , N. (4.12)

Here, θ denotes the angle of rotation. The length of the line pattern is denoted by

` “ `pθq ą 0 and can be regarded as a multiplicative factor with `p0q “ `
`

π
2

˘

“ 1

and `
`

π
4

˘

“ `
`

3π
4

˘

“
?

2. Note that it is sufficient to restrict ourselves to θ P r0, πq

since ansatz (4.12) for θ and θ` kπ with k P Z leads to the same straight line after

periodic extension on R2 and hence also on the torus T2. Depending on the choice

of θ, ansatz (4.12) might lead to multiple windings on the torus T2. To guarantee

that ansatz (4.12) satisfies the periodic boundary conditions, we require that the

winding number of the straight lines in (4.12) is a natural number and hence we

can restrict ourselves to ansatz (4.12) on the torus T2 for θ P A, where

A :“

"

0,
π

4
,
π

2
,
3π

4

*

Y

"

ψ P
´

0,
π

4

¯

Y

ˆ

3π

4
, π

˙

: cotpψq P Z
*

Y

"

ψ P

ˆ

π

4
,
3π

4

˙

: tanpψq P Z
*

.

(4.13)

Note that considering the torus T2 as the domain, i.e. the unit square with periodic

boundary conditions or, equivalently, R2 by periodic extension, is not restrictive due

to the discussion in Section 4.2.

For a single vertical straight line we have θ “ π
2

and ansatz (4.12) reduces to

x̄k “
k

N
i, k “ 1, . . . , N, (4.14)

and for a horizontal line with θ “ 0 we have

x̄k “
k

N
, k “ 1, . . . , N. (4.15)

Note that the winding number is one for (4.12) with θ P
 

0, π
4
, π

2
, 3π

4

(

, while the
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winding number is larger than one for θ P Az
 

0, π
4
, π

2
, 3π

4

(

. Translations of the

ansatz (4.12) result in steady states with a shifted centre of mass. Besides, paral-

lel equidistant straight line patterns, obtained from considering (4.12) for a fixed

rotation angle (4.13) and certain translations, may also lead to steady states.

For equilibria x̄j P R2, j “ 1, . . . , N, to the particle model (4.6) we require that

1

N

N
ÿ

k“1
k‰j

F̄ px̄j ´ x̄k, T q “ 0 for all j “ 1, . . . , N.

Setting x̄k for k P Z as in (4.12), we have F̄ px̄j ´ x̄kq “ F̄ px̄j ´ x̄k`nNq for j, k “

1, . . . , N and any n P Z by the periodicity of F̄ . Since the particles are uniformly

distributed along straight lines by ansatz (4.12), it is sufficient to require

N´1
ÿ

k“1

F̄ px̄N ´ x̄k, T q “ 0 (4.16)

for steady states. Note that F̄ px̄N´x̄k, T q “ ´F̄ px̄N´x̄N´k, T q for k “ 1, . . . , rN{2s´

1 and for N even we have F̄ px̄N ´ x̄N{2, T q “ 0 by the definition of the cutoff Rc.

Hence, (4.16) is satisfied for the ansatz (4.12) for θ P A, provided the length `pθq

of the lines is set such that the particles are distributed uniformly along the entire

axis of angle θ.

4.3.2 Stability conditions

In this section we derive stability conditions for equilibria of the particle model

(4.6), based on a linearised stability analysis. The real parts of the eigenvalues of a

stability matrix play a crucial role and we denote the real part of eigenvalue λ P C
by <pλq in the following.

Proposition 5. For finite N P N, the steady state x̄j, j “ 1, . . . , N , of the particle

model (4.6) is asymptotically stable if the eigenvalues λ of the stability matrix

M “Mpj,mq “

ˆ

I1pj,mq I2pj,mq

˙

P C2,2, (4.17)
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satisfy <pλq ă 0 for all j “ 1, . . . , N and m “ 1, . . . , N ´ 1, where

I1pj,mq “
1

N

ÿ

k‰j

p1´ exppimpφk ´ φjqqq
BF̄

Bd1

px̄j ´ x̄kq

“
1

N

ÿ

k‰j

ˆ

1´ exp

ˆ

2πimpk ´ jq

N

˙˙

BF̄

Bd1

px̄j ´ x̄kq,

I2pj,mq “
1

N

ÿ

k‰j

p1´ exppimpφk ´ φjqqq
BF̄

Bd2

px̄j ´ x̄kq

“
1

N

ÿ

k‰j

ˆ

1´ exp

ˆ

2πimpk ´ jq

N

˙˙

BF̄

Bd2

px̄j ´ x̄kq

(4.18)

for j “ 1, . . . , N and m “ 1, . . . , N .

Proof. Let x̄j, j “ 1, . . . , N, denote a steady state of (4.6). We define the pertur-

bation gj “ gjptq, hj “ hjptq P R of x̄j by

xj “ x̄j `

¨

˚

˝

gj

hj

˛

‹

‚

, j “ 1, . . . , N.

Linearising (4.6) around the steady state x̄j gives

d

dt

¨

˚

˝

gj

hj

˛

‹

‚

“
1

N

ÿ

k‰j

pgj ´ gkq
BF̄

Bd1

px̄j ´ x̄kq `
1

N

ÿ

k‰j

phj ´ hkq
BF̄

Bd2

px̄j ´ x̄kq. (4.19)

We choose the ansatz functions

gj “ ζg pexppimφjq ` expp´imφjqq , hj “ ζh pexppimφjq ` expp´imφjqq ,

j “ 1, . . . , N, m “ 1, . . . , N,

where ζg “ ζgptq, ζh “ ζhptq, and φj “
2πj
N

. Note that gj, hj P R for all j “ 1, . . . , N

and

N
ÿ

j“1

exppimφjq “
N
ÿ

j“1

ˆ

exp

ˆ

2πim

N

˙˙j

“

$

&

%

0, m “ 1, . . . , N ´ 1,

N, m “ N,
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since φj are the roots of rN “ 1 and

N´1
ÿ

j“0

rj “
1´ rN

1´ r
.

This implies

N
ÿ

j“1

gjptq “
N
ÿ

j“1

hjptq “

$

&

%

0, m “ 1, . . . , N ´ 1,

N, m “ N,

for all times t ě 0, i.e. the centre of mass of the perturbations gj, hj is preserved.

We have

gj ´ gk “ ζg pexppimφjq ` expp´imφjqq p1´ exppimpφk ´ φjqqq ,

hj ´ hk “ ζh pexppimφjq ` expp´imφjqq p1´ exppimpφk ´ φjqqq .

Plugging this into (4.19) and collecting like terms in exppimφjq, expp´imφjq results

in

d

dt

¨

˚

˝

ζg

ζh

˛

‹

‚

“
ζg
N

ÿ

k‰j

p1´ exppimpφk ´ φjqqq
BF̄

Bd1

px̄j ´ x̄kq

`
ζh
N

ÿ

k‰j

p1´ exppimpφk ´ φjqqq
BF̄

Bd2

px̄j ´ x̄kq,

i.e.

d

dt

¨

˚

˝

ζg

ζh

˛

‹

‚

“M

¨

˚

˝

ζg

ζh

˛

‹

‚

, (4.20)

where the stability matrix M P C2,2 is defined in (4.17). The ansatz ζg “ ξg exppλtq,

ζh “ ξh exppλtq solves the system (4.20) for any eigenvalue λ P C of the stability

matrix M “ Mpj,mq. Note that the stability matrix M is the zero matrix for

m “ N and any j “ 1, . . . , N . Hence, we have λ “ 0 form “ N and all j “ 1, . . . , N ,

corresponding to translations along the vertical and horizontal axes. Thus, the

straight line x̄j, j “ 1, . . . , N, is stable if <pλq ă 0 for any j “ 1, . . . , N and

m “ 1, . . . , N ´ 1.

118



4.3. Stability/instability of straight lines

4.3.3 Stability of a single vertical straight line

To study the stability of a single vertical straight line of the form (4.14) we determine

the eigenvalues of the stability matrix (4.17) and derive stability conditions for

steady states x̄j, j “ 1, . . . , N, satisfying (4.16). In the continuum limit N Ñ 8 the

steady state condition (4.16) becomes

ˆ 0.5

´0.5

F pp0, sq, T q ds “

ˆ 0.5

´0.5

F̄ pp0, sq, T q ds “ 0.

Due to the cutoff radius Rc P p0, 0.5s it is sufficient to require

ˆ Rc

´Rc

F pp0, sq, T q ds “ 0 (4.21)

for equilibria. This condition is clearly satisfied for forces of the form (4.4) and in

particular for forces of the form (4.3).

Theorem 1. For finite N P N, the single vertical straight line (4.14) is an asymp-

totically stable steady state of the particle model (4.6) with total force (4.4) if

<pλi,Npmqq ă 0 for i “ 1, 2 and all m “ 1, . . . , N ´ 1, where the eigenvalues

λi,N “ λi,Npmq of the stability matrix (4.17) are given by

λ1,Npmq “
1

N

N´1`rN
2

s
ÿ

k“rN
2

s

flp|dNk|q

ˆ

1´ exp

ˆ

2πimk

N

˙˙

,

λ2,Npmq “
1

N

N´1`rN
2

s
ÿ

k“rN
2

s

pfsp|dNk|q ` f
1
sp|dNk|q|dNk|q

ˆ

1´ exp

ˆ

2πimk

N

˙˙

(4.22)

with

dNk “

¨

˚

˝

0

N´k
N

˛

‹

‚

for k P N. Denoting the cutoff radius by Rc P p0, 0.5s, steady states satisfying

the steady state condition (4.21) in the continuum limit N Ñ 8 are unstable if

<pλipmqq ą 0 for some m P N and some i P t1, 2u, where the eigenvalues λi “
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λipmq, i “ 1, 2, of the stability matrix (4.17) are given by

λ1pmq “

ˆ Rc

´Rc

flp|s|q p1´ exp p´2πimsqq ds,

λ2pmq “

ˆ Rc

´Rc

pfsp|s|q ` f
1
sp|s|q|s|q p1´ exp p´2πimsqq ds.

(4.23)

In particular,

<pλ1qpmq “ 2

ˆ Rc

0

flpsq p1´ cos p´2πmsqq ds,

<pλ2qpmq “ 2

ˆ Rc

0

pfspsq ` f
1
spsqsq p1´ cos p´2πmsqq ds.

(4.24)

Proof. For the spatially homogeneous tensor field T , defined by s “ p0, 1q and

l “ p1, 0q, the derivatives of the total force (4.4) are given by

BF̄

Bd1

pdq “

¨

˚

˝

flp|d|q ` f
1
l p|d|q

d2
1

|d|

f 1sp|d|q
d1d2

|d|

˛

‹

‚

,
BF̄

Bd2

pdq “

¨

˚

˝

f 1l p|d|q
d1d2

|d|

fsp|d|q ` f
1
sp|d|q

d2
2

|d|

˛

‹

‚

(4.25)

for d “ pd1, d2q P r´0.5, 0.5s2 and its periodic extension BF̄
Bdi
pd ` kq “ BF̄

Bdi
pdq for

i “ 1, 2, d P r´0.5, 0.5s2, and k P Z2. Note that fl, fs are differentiable due to the

smoothing assumptions at the cutoff Rc in (4.7) and their derivatives vanish for

d P r´0.5, 0.5s2 with |d| ě Rc. Using ansatz (4.14) for a single vertical straight line,

we obtain

BF̄

Bd1

pdjkq “

¨

˚

˝

flp|djk|q

0

˛

‹

‚

,

BF̄

Bd2

pdjkq “

¨

˚

˝

0

fsp|djk|q ` f
1
sp|djk|q|djk|

˛

‹

‚

(4.26)

for djk P r´0.5, 0.5s2 and note that BF̄
Bdi
pdjkq “

BF̄
Bdi
pdj,k`nNq for i “ 1, 2, j, k “

1, . . . , N , and n P N. This implies that the particles along the straight vertical line

are indistinguishable and it suffices to consider j “ N . The entries (4.18) of the
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stability matrix (4.17) are given by

I1pmq “
1

N

N
ÿ

k“1

ˆ

1´ exp

ˆ

2πimk

N

˙˙

BF̄

Bd1

pdNkq ,

I2pmq “
1

N

N
ÿ

k“1

ˆ

1´ exp

ˆ

2πimk

N

˙˙

BF̄

Bd2

pdNkq .

Note that for k “ rN
2

s, . . . , N , we have dNk P t0u ˆ r0, 0.5s Ă r´0.5, 0.5s2, im-

plying that the derivatives of F̄ are given by (4.26), where F̄ pdN,rN
2

sq “ 0 by the

definition of the cutoff Rc for N even. Since BF̄
Bdi
pdNkq “

BF̄
Bdi
pdN,N`kq for i “ 1, 2,

k “ 1, . . . , rN{2s ´ 1, and dN,N`k P t0u ˆ p´0.5, 0q Ă r´0.5, 0.5s2, we can replace

the sum over k P t1, . . . , Nu by the sum over k P trN
2

s, . . . , N ´ 1 ` rN
2

su, resulting

in

I1pmq “
1

N

N´1`rN
2

s
ÿ

k“rN
2

s

ˆ

1´ exp

ˆ

2πimk

N

˙˙

BF̄

Bd1

pdNkq ,

I2pmq “
1

N

N´1`rN
2

s
ÿ

k“rN
2

s

ˆ

1´ exp

ˆ

2πimk

N

˙˙

BF̄

Bd2

pdNkq .

(4.27)

Note that the stability matrix (4.17) is a diagonal matrix whose eigenvalues are

the non-trivial entries in (4.27) and are given by (4.22). Since the sums in (4.27)

are Riemannian sums, we can pass to the continuum limit N Ñ 8. Note that
k
n
P r0.5, 1.5s for k P trN

2
s, . . . , N ´ 1 ` rN

2
su appears in the entries of the stability

matrix (4.27). For passing to the limit N Ñ 8 in (4.27), we consider the domain

of integration r0.5, 1.5s and do a change of variables resulting in

Iipmq “

ˆ 1.5

0.5

BF̄

Bdi
pp0, 1´ sqq p1´ exp p2πimsqq ds

“

ˆ 0.5

´0.5

BF̄

Bdi
pp0, sqq p1´ exp p´2πimsqq ds

“

ˆ 0.5

´0.5

BF

Bdi
pp0, sqq p1´ exp p´2πimsqq ds

for i “ 1, 2 and all m P N. Clearly the stability matrix (4.17) with entries Ii, i “ 1, 2,

is again a diagonal matrix and the eigenvalues λi “ λipmq, i “ 1, 2, in (4.23) are

given by the diagonal entries of the stability matrix (4.17).

Remark 9. In Theorem 1 we study the stability of the straight vertical line for the
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dynamical system (4.6) for a finite number of particles N , where the differentiability

of F̄ at the cutoff Rc is necessary for the definition of the eigenvalues in the discrete

setting in (4.22). Note that we cannot conclude stability/instability if <pλipmqq ď 0

for i “ 1, 2 and all m “ 1, . . . , N ´ 1. By the assumptions on the force coefficients

fs, fl in Assumption 5 we can pass to the continuum limit N Ñ 8 in the definition

of the eigenvalues of the stability matrix and study the stability of the steady states

of the particle model (4.6) in the continuum limit N Ñ 8. If there exists m P N
for some i P t1, 2u such that <pλipmqq ą 0, then the steady state is unstable in

the continuum limit. However, if <pλipmqq ď 0 for i P t1, 2u and all m P N
stability/instability of the steady state cannot be concluded since it is difficult to

give general conditions for <pλipmqq Ñ σ as m Ñ 8 with σ “ 0 or σ P R´zt0u.
If σ “ 0, we cannot say anything about the stability/instability of the steady state

in the continuum setting; see also similar discussions for the stability/instability of

delta-rings in the continuum setting in [Sim14] and the discussion after Theorem

2.1 in [BSK`15]. In particular, linear stability for any N P N is not sufficient to

conclude stability in the continuum setting.

Note that the asymmetry in the definition of the eigenvalues (4.24) is due to

the asymmetric steady states in (4.14). For f “ fs “ fl the total force in (4.4)

simplifies to F pdq “ fp|d|qd for d “ pd1, d2q P r´0.5, 0.5s2. In this case, the gradient

of F “ pF1, F2q is a symmetric matrix (compare (4.25)) and, hence, the eigenvalues

of the stability matrix are real. Since

BF1

Bd2

“
BF2

Bd1

there exists a radially symmetric potential W pdq “ wp|d|q such that F “ ´∇W on

r´0.5, 0.5s2. Hence, the stability conditions can be derived in terms of the potential

w and we have

tracep∇F pdqq “ f 1p|d|q|d| ` 2fp|d|q “ ´∆wp|d|q “ λ1 ` λ2

for d P r´0.5, 0.5s2 and the periodic extension F̄ of F can be considered on R2. For

fs “ fl and radially symmetric steady states, this leads to identical conditions for

both eigenvalues λk, k “ 1, 2. For the analysis of these symmetric steady states,

however, it is helpful to consider an appropriate coordinate system such as polar

coordinates for ring steady states as in [BSK`15].

Note that the stability conditions for steady states depend on the choice of the
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coordinate system. Considering derivatives with respect to the coordinate axes as

in (4.25) seems to be the natural choice for straight line patterns, in contrast to

polar coordinates as in [BSK`15].

In the following, we investigate the high wave number stability of straight line

patterns for the particle model (4.6), i.e. the stability of straight vertical lines as

m Ñ 8. This can be studied by considering the limit m Ñ 8 of the eigenvalues

(4.23) of the stability matrix (4.17) associated with the dynamical system (4.20).

Proposition 6. Suppose that the coefficient functions fs and fl are continuously

differentiable on r0,`8q with fsp|d|q “ flp|d|q “ 0 for |d| ě Rc and fs ě 0. The

condition

ˆ Rc

0

flpsq ds ď 0 and fspRcq “ 0 (4.28)

is necessary for the high wave number stability of the single straight vertical line

(4.14), i.e. (4.28) is necessary for the stability of the straight vertical line for any

N P N and in the continuum limit N Ñ 8.

Proof. The eigenvalues (4.23) of the stability matrix (4.17) associated with the

equilibrium of a single vertical straight line are of the form

λpmq “

ˆ Rc

´Rc

fp|s|qp1´ expp´2πimsqq ds

“ 2

ˆ Rc

0

fpsq ds´
1

2πim

ˆ Rc

´Rc

f 1p|s|q expp´2πimsq ds

`
1

2πim
fpRcq pexpp´2πimRcq ´ expp2πimRcqq

for a function f : R` Ñ R with fp|d|q “ 0 for |d| ě Rc. For high wave number

stability we require

ˆ Rc

0

fpsq ds ď 0 and |f 1| is integrable on r0, Rcs.

Then, using the definition of the eigenvalues (4.23) this leads to the conditions

ˆ Rc

0

flpsq ds ď 0 and

ˆ Rc

0

fspsq ` f
1
spsqs ds ď 0. (4.29)

Integration by parts of the second condition in (4.29) leads to fspRcq ď 0 and the

conditions in (4.28) result from fs being repulsive, i.e. fs ě 0.
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Remark 10. The necessary condition fspRcq “ 0 in (4.28) for a stable straight

vertical line is equivalent to the eigenvalue associated with fs to be equal to zero

in the high wave number limit. Hence, stability/instability of straight vertical lines

cannot be concluded in the continuum limit N Ñ 8 from the linear stability analysis.

The first condition in (4.28) implies that the total attractive force over its entire

range is larger than the total repulsive force along l. The second condition in (4.28)

implies that for high wave stability we require the total force at the cutoff radius Rc

should not be repulsive along s which is identical to the assumptions on the cutoff

in (4.7).

In comparison with the high wave number conditions in (4.29) in the proof of

Proposition 6 the integrands for the stability conditions are multiplied by a factor

<p1´ expp´2πimsqq “ 1´ cosp2πmsq P r0, 2s.

Even if the necessary conditions for high wave number stability (4.28) are satisfied,

this does not guarantee that <pλ1pmqq,<pλ2pmqq ď 0 for all m P N and hence nec-

essary stability conditions for the single vertical straight line might not be satisfied

for all m P N.

The general stability conditions for straight vertical lines can be obtained from

the real parts of the eigenvalues (4.23) of the stability matrix (4.17). The condi-

tions (4.28) suggest that stability of the straight line is possible for particular force

coefficient choices. This will be investigated in Section 4.4.

Remark 11. Note that differentiable approximations f εR, f
ε
A of the force coefficients

fR and fA in the Kücken-Champod model are defined in (4.10) and (4.11), respec-

tively. Setting f εl :“ f εA ` f εR and f εs :“ χf εA ` f εR for some 0 ă ε ! Rc and a

parameter χ P r0, 1s such that fs ě 0 on r0, Rcq, we consider f εl , f
ε
s instead of fl, fs

in the definition of the real parts of the eigenvalues (4.24). We obtain the following

for the real parts of the eigenvalues of the stability matrix (4.17) in the Kücken-

Champod model with total force (4.3) and the spatially homogeneous tensor field T

in (4.2):

<pλ1pmqq “ 2

ˆ Rc

0

pf εApsq ` f
ε
Rpsqq p1´ cos p´2πmsqq ds,

<pλ2pmqq “ 2

ˆ Rc

0

pχf εApsq ` f
ε
Rpsq ` χspf

ε
Aq
1
psq ` spf εRq

1
psqq p1´ cos p´2πmsqq ds.

The necessary stability condition (4.28) implies that f εs pRcq “ χf εApRcq ` f
ε
RpRcq “ 0,
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4.3. Stability/instability of straight lines

consistent with the definition of the force coefficients (4.10) and (4.11) in the Kücken-

Champod model. Hence, the necessary condition (4.28) for high wave number sta-

bility of a straight vertical line is satisfied in this case.

4.3.4 Instability of a single horizontal straight line

In this section we investigate the stability of a single horizontal straight line given

by the ansatz (4.15) which follows from (4.12) with θ “ 0.

Theorem 2. For N P N sufficiently large and in the continuum limit N Ñ 8, the

single horizontal straight line (4.15) is an unstable steady state to the particle model

(4.6) for any choice of force coefficients fs and fl of the total force (4.4), provided

the total force is purely repulsive along s on r0, Rcq.

Proof. For a single horizontal straight line, we have

djk “ x̄j ´ x̄k “

¨

˚

˝

j´k
N

0

˛

‹

‚

and the derivatives of the total force are given by

B

Bd1

F̄ pdjkq “

¨

˚

˝

flp|djk|q ` f
1
l p|djk|q|djk|

0

˛

‹

‚

,

B

Bd2

F̄ pdjkq “

¨

˚

˝

0

fsp|djk|q

˛

‹

‚

for djk P r´0.5, 0.5s2. Similarly as in Section 4.3.3 one can show that the eigenvalues

λ1 “ λ1pmq, λ2 “ λ2pmq of the stability matrix (4.17) are given by

λ1pmq “ 2

ˆ Rc

0

pflpsq ` f
1
l psqsq p1´ exp p´2πimsqq ds,

λ2pmq “ 2

ˆ Rc

0

fspsq p1´ exp p´2πimsqq ds
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for a cutoff radius Rc P p0, 0.5s. For high wave number stability we require

flpRcq “
1

Rc

ˆ Rc

0

flpsq ` f
1
l psqs ds ď 0 and

ˆ Rc

0

fspsq ds ď 0.

The forces are assumed to be purely repulsive along s up to the cutoff Rc, i.e. fs ą 0

on r0, Rcq, implying ˆ Rc

0

fspsq ds ą 0.

Hence, the single horizontal straight line is high wave number unstable.

4.3.5 Instability of rotated straight line patterns

In this section we consider the ansatz (4.12) where the angle of rotation θ satisfies

(4.13), resulting in rotated straight line patterns. The entries of the stability matrix

(4.17) are given by

I1pmq “ 2

ˆ Rc

0

BF̄

Bd1

pps cos pθq , s sin pθqqq p1´ exp p´2πimsqq ds,

I2pmq “ 2

ˆ Rc

0

BF̄

Bd2

pps cos pθq , s sin pθqqq p1´ exp p´2πimsqq ds,

where the derivatives of the total force can easily be determined by

B

Bd1

F̄ pdq “

¨

˚

˝

flp|d|q ` f
1
l p|d|q

d2
1

|d|

f 1sp|d|q
d1d2

|d|

˛

‹

‚

,
B

Bd2

F̄ pdq “

¨

˚

˝

f 1l p|d|q
d1d2

|d|

fsp|d|q ` f
1
sp|d|q

d2
2

|d|
,

˛

‹

‚

d P r´0.5, 0.5s2 with the cutoff radius Rc P p0, 0.5s. In particular, the stability

matrix (4.17) is no longer a diagonal matrix in general. To show that the rotated

straight line pattern is unstable for θ P p0, πqzrφ, π´φs for some φ P p0, π
2
q and N P N

sufficiently large and in the continuum limit N Ñ 8, it is sufficient to consider the

high frequency wave limit and show high wave number instability. Denoting the

entries of Ik by Ik1 and Ik2 for k “ 1, 2 with M “ pI1, I2q the high frequency limit
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leads to

I11 “ 2

ˆ Rc

0

flpsq ds` 2

ˆ Rc

0

f 1l psqs cos2
pθq ds,

I12 “ 2

ˆ Rc

0

f 1spsqs sin pθq cos pθq ds,

I21 “ 2

ˆ Rc

0

f 1l psqs sin pθq cos pθq ds,

I22 “ 2

ˆ Rc

0

fspsq ds` 2

ˆ Rc

0

f 1spsqs sin2
pθq ds.

(4.30)

Here, I12 “ I21 “ 0 for θ “ 0 and θ “ π
2
, i.e. for the straight horizontal and the

straight vertical line, respectively. Hence, the eigenvalues of the stability matrix are

given by I11 and I22 in this case whose value are given by

I11 “ 2RcflpRcq, I22 “ 2

ˆ Rc

0

fspsq ds

for θ “ 0 and

I11 “ 2

ˆ Rc

0

flpsq ds, I22 “ 2RcfspRcq

for θ “ π
2
. This leads to the necessary conditions for high wave number stability

for θ “ π
2

in (4.28), while due to Assumption 5 we obtain instability of the straight

horizontal line.

Note that for any θ P r0, πq the eigenvalues λk, k “ 1, 2, are either real or

complex conjugated and thus the sum and the product of λk are real. The condition

<pλkq ď 0, k “ 1, 2, is equivalent to tracepMq “ λ1`λ2 ď 0 and detpMq “ λ1λ2 ě 0.

Hence, we require, for the stability of the rotated straight line,

I11 ` I22 ď 0 and I11I22 ´ I12I21 ě 0. (4.31)

For showing the instability of the rotated straight line with angle of rotation

θ P p0, πqzrφ, π ´ φs for some φ P p0, π
2
q we show that the two conditions in (4.31)

cannot be satisfied simultaneously in this case.

Theorem 3. For N P N sufficiently large and in the continuum limit N Ñ 8, the

single straight line (4.12) where the angle of rotation θ P p0, πqzrφ, π ´ φs for some

φ P p0, π
2
q satisfies (4.13) is an unstable steady state to the particle model (4.6) for

any force coefficients fs and fl satisfying the general conditions for force coefficients

in Assumption 5 and the conditions in (4.28).
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Proof. Note that we have

ˆ Rc

0

f 1spsqs sin2
pθq ds “ sin2

pθq

ˆ

fspRcqRc ´

ˆ Rc

0

fspsq ds

˙

by integration by parts. For θ “ 0 and flpRcq “ 0 we have

I11 ` I22 “ 2RcflpRcq ` 2

ˆ Rc

0

fspsq ds ą 0,

while for θ “ π
2

we have

I11 ` I22 “ 2RcfspRcq ` 2

ˆ Rc

0

flpsq ds ď 0

by (4.28). Hence, there exists φ P p0, π
2
q such that I11 ` I22 ą 0 on p0, φq. Since

cos2pθq “ cos2pπ ´ θq and sin2pθq “ sin2pπ ´ θq we have I11 ` I22 ą 0 on pπ ´ φ, πq,

implying that stability may only be possible on rφ, π ´ φs.

4.4 Stability of vertical lines for particular force

coefficients

We have investigated the high wave number stability for m Ñ 8 in Section 4.3.

Since only vertical straight lines for the considered spatially homogeneous tensor

field T in (4.2) can lead to stable steady states for any N P N we restrict ourselves

to vertical straight lines in the following. As a next step towards proving stability

we now consider the stability for fixed modes m P N.

Due to the form of the eigenvalues in (4.23) no general stability result for the sin-

gle straight vertical line for the particle system (4.6) with arbitrary force coefficients

fs and fl satisfying Assumption 5 can be derived. Thus, additional assumptions on

the force coefficients are necessary.

4.4.1 Linear force coefficients

To study the stability of the single straight vertical line for any N P N, we consider

linear force coefficients satisfying Assumption 5. To guarantee that the force coeffi-

cient is differentiable, required for using the results from Section 4.3, we consider the

differentiable adaptation (4.7) for a given linear force coefficient, leading to a linear
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4.4. Stability of vertical lines for particular force coefficients

force coefficient on r0, Rc ´ εs for some ε ą 0, a cubic polynomial on pRc ´ ε, Rcq,

and the constant zero function for |d| ě Rc. This leads to the following conditions.

Assumption 6. For any ε ą 0 with ε ! Rc, we assume that the force coefficients

are linear on r0, Rc ´ εs, i.e.

f εl p|d|q :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

al|d| ` bl, |d| P r0, Rc ´ εs,

p2bl ` 2Rcal ´ alεq
p|d|´Rcq3

ε3

`p3bl ` 3Rcal ´ 2alεq
p|d|´Rcq

2

ε2
, |d| P pRc ´ ε, Rcq,

0, |d| ě Rc,

f εs p|d|q :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

as|d| ` bs, |d| P r0, Rc ´ εs,

p2bs ` 2Rcas ´ asεq
p|d|´Rcq3

ε3

`p3bs ` 3Rcas ´ 2asεq
p|d|´Rcq

2

ε2
, |d| P pRc ´ ε, Rcq,

0, |d| ě Rc,

(4.32)

for constants al, as, bl, bs. Since f εl and f εs are short-range repulsive, we require

bl ą 0, bs ą 0.

Besides, for physically realistic force coefficients the absolute values of f εl and f εs are

decaying, i.e.

al ă 0, as ă 0.

Note that for the short-range repulsive, long-range attractive force coefficient

fl, we have alRc ` bl ă 0 and in particular alRc ` bl is of order Op1q. Hence, the

adaptation f εl of fl for fl linear is not negligible. However, due to the concentration

of particles along a straight vertical line the adaptation f εl acting along the vertical

axis does not influence the overall dynamics provided 0 ă ε ! Rc. For the force

coefficient fs, the adaption f εs of fs is negligible if asRc`bs is of order Opεq and also

results in the same stability/instability properties numerically; see Section 4.5.2. If

asRc ` bs is of order Op1q, then the adaptation is not negligible, but the numerical

results in Section 4.5.2 illustrate that we obtain the same stability/instability results

for f εs and fs.

Remark 12. Note that the modelling assumptions in Assumptions 5 and 6 can be

applied to linear repulsive and attractive force coefficients f εR and f εA as in (4.32),
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where the total force of the form (4.3) consists of repulsion and attraction forces.

That is, for ε ą 0 we define

f εRp|d|q :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

aR|d| ` bR, |d| P r0, Rc ´ εs,

p2bR ` 2RcaR ´ aRεq
p|d|´Rcq3

ε3

`p3bR ` 3RcaR ´ 2aRεq
p|d|´Rcq

2

ε2
, |d| P pRc ´ ε, Rcq,

0, |d| ě Rc,

f εAp|d|q :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

aA|d| ` bA, |d| P r0, Rc ´ εs,

p2bA ` 2RcaA ´ aAεq
p|d|´Rcq3

ε3

`p3bA ` 3RcaA ´ 2aAεq
p|d|´Rcq

2

ε2
, |d| P pRc ´ ε, Rcq,

0, |d| ě Rc,

(4.33)

for constants aA, aR, bA, bR and we require

f εR ě 0 and f εA ď 0

for all ε ą 0 with ε ! Rc, implying

aRs` bR ě 0 and aAs` bA ď 0 for s P r0, Rcs, (4.34)

and, in particular,

bR ą 0 and bA ă 0. (4.35)

For realistic interaction force coefficients f εR and f εA we assume that their absolute

values decrease as the distance between the particles increases, implying

aR ă 0 and aA ą 0 (4.36)

by the definition of f εR and f εA in (4.33) and by the condition for bR and bA in (4.35).

Combining the assumptions on aA, aR in (4.36) and bA, bR in (4.35), condition (4.34)

reduces to

aRRc ` bR ě 0 and aARc ` bA ď 0.

Further we assume that f εA ` f εR is short-range repulsive, long-range attractive for
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4.4. Stability of vertical lines for particular force coefficients

any ε ą 0 with ε ! Rc, i.e.

pf εA`f
ε
Rqp0q “ bA` bR ą 0, pf εA`f

ε
RqpRc´εq “ paA`aRqpRc´εq` bA` bR ă 0

for all 0 ă ε ! Rc implying

bA ` bR ą 0 and aA ` aR ă 0. (4.37)

For any ε ą 0, the force coefficient χf εA`f
ε
R is purely repulsive along s on r0, Rc´εs

if χ P r0, 1s is sufficiently small since f εR is repulsive. Note that (4.37) implies

χaA ` aR ă 0, χbA ` bR ą 0 for all χ P r0, 1s

by the positivity of bR and by the negativity of aR in (4.35) and (4.36), respectively.

Since

f εl p|d|q “ f εAp|d|q ` f
ε
Rp|d|q “ paA ` aRq |d| ` bA ` bR

and

f εs p|d|q “ χf εAp|d|q ` f
ε
Rp|d|q “ pχaA ` aRq |d| ` χbA ` bR

for |d| P r0, Rc ´ εs, we have

al “ aA ` aR ă 0, as “ χaA ` aR ă 0, bl “ bA ` bR ą 0, bs “ χbA ` bR ą 0

as in Assumption 6.

For investigating the stability of the straight line for any N P N, we consider the

real parts of the eigenvalues in (4.24), i.e.

<pλ1pmqq “ 2

ˆ Rc

0

f εl psq p1´ cos p´2πmsqq ds,

<pλ2pmqq “ 2

ˆ Rc

0

pf εs psq ` spf
ε
s q
1
psqq p1´ cos p´2πmsqq ds.

Note that the coefficient functions of the integrands in the definition of the eigen-

values are given by

f εl psq “ als` bl, f εs psq ` spf
ε
s q
1
psq “ 2ass` bs
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for s P r0, Rc ´ εs with al, as ă 0, bl, bs ą 0, and

f εl psq “ p2bl ` 2Rcal ´ alεq
ps´Rcq

3

ε3
` p3bl ` 3Rcal ´ 2alεq

ps´Rcq
2

ε2
,

f εs psq ` spf
ε
s q
1
psq “ p2bs ` 2Rcas ´ asεq

ps´Rcq
3

ε3
` p3bs ` 3Rcas ´ 2asεq

ps´Rcq
2

ε2

` 3p2bs ` 2Rcas ´ asεq
sps´Rcq

2

ε3

` 2p3bs ` 3Rcas ´ 2asεq
s ps´Rcq

ε2

for s P rRc´ ε, Rcs by Assumption 6. Since f εl psq and f εs psq` spf
ε
s q
1psq are bounded

on rRc ´ ε, Rcs, we obtain

<pλ1pmqq “ 2

ˆ Rc´ε

0

pals` blq p1´ cos p´2πmsqq ds`Opεq,

<pλ2pmqq “ 2

ˆ Rc´ε

0

p2ass` bsq p1´ cos p´2πmsqq ds

`
12pbs `Rcasq

ε

ˆ Rc

Rc´ε

ˆ

sps´Rcq
2

ε2
`
s ps´Rcq

ε

˙

p1´ cos p´2πmsqq ds`Opεq.

(4.38)

Note that spf εs q
1 is of order Op1{εq on rRc ´ ε, Rcs and hence the integral over

rRc ´ ε, Rcs also contributes to the leading order term for <pλ2pmqq. Here, f εl psq

and f εs psq ` spf εs q
1psq are linear functions on r0, Rc ´ εs of the form f |r0,Rc´εs Ñ

R, s ÞÑ as` b for constants a ă 0 and b ą 0. In particular, <pλ1q and the first term

in <pλ2q are of the form

2

ˆ Rc´ε

0

paks` bkq p1´ cos p2πmsqq ds, (4.39)

where

a1 “ al, a2 “ 2as, b1 “ bl, b2 “ bs. (4.40)
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For ease of notation we drop the indices of ak and bk in the following. Note that

ˆ Rc´ε

0

pas` bq p1´ cos p2πmsqq ds

“
2πm pπmpRc ´ εq papRc ´ εq ` 2bq ´ papRc ´ εq ` bq sin p2πmpRc ´ εqqq

4π2m2

`
a´ a cos p2πmpRc ´ εqq

4π2m2
.

(4.41)

In the limit mÑ 8, all terms in the second line of (4.41) vanish except for the first

term. Since Rc ą 0, we require

a ď ´b
2

Rc ´ ε

for high wave number stability for any ε ą 0 with ε ! Rc. In particular, this

condition is consistent with the necessary condition for high wave number stability

in Proposition 6 for arbitrary force coefficients f εs and f εl satisfying Assumption 5.

In the limit εÑ 0, it reduces to

a ď ´b
2

Rc

. (4.42)

Since Rc P p0, 0.5s and b ą 0, (4.42) implies that a ă 0 is necessary for high wave

number stability. Hence, we can assume

a ă 0 and b ą 0

in the following.

Lemma 3. Let b ą 0 and Rc P p0, 0.5s. For ε ą 0, set

gεpmq :“ 2πm
`

πmpRc ´ εq
2
´ pRc ´ εq sinp2πmpRc ´ εqq

˘

` 1´ cosp2πmpRc ´ εqq,

hεpmq :“ 2πm p2πmpRc ´ εq ´ sinp2πmpRc ´ εqqq .

(4.43)

Then,

ˆ Rc´ε

0

pas` bq p1´ cos p2πmsqq ds ď 0 (4.44)
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is satisfied for all m P N and all ε ą 0 with ε ! Rc if and only if a ď a0 with

a0 :“ ´bmax
mPN

hεpmq

gεpmq
ď ´

2b

Rc

ď 0. (4.45)

Proof. Note that the numerator of (4.41) is of the form agεpmq`bhεpmq for functions

gε and hε, defined in (4.43). Condition (4.44) is equivalent to

a ď ´b
hεpmq

gεpmq
for all m P N.

Herein, hεpmq ě 0 for all m ě 0 since hε is an increasing function. Further note

that

g1εpmq “ 2π
`

πmpRc ´ εq
2
´ pRc ´ εq sinp2πmpRc ´ εqq

˘

` 2πm
`

πpRc ´ εq
2
´ 2πpRc ´ εq

2 cosp2πmpRc ´ εqq
˘

` 2πpRc ´ εq sinp2πmpRc ´ εqq

“ 4π2mpRc ´ εq
2
p1´ cosp2πmpRc ´ εqqq

is nonnegative implying that gε is an increasing function with gεp0q “ 0. In partic-

ular, gε and hε are nonnegative functions for all m P N. Hence, (4.44) is satisfied

for all m P N if and only if a ă a0. Note that

lim
mÑ8

hεpmq

gεpmq
“

2

Rc ´ ε
,

implying that

sup
mPN

hεpmq

gεpmq
P R

by the nonnegativity and continuity of gε and hε.

Let Rc P p0, 0.5s and ε ą 0. We have

max
mPN

hεpmq

gεpmq
ě

2πm p2πmpRc ´ εq ´ sinp2πmpRc ´ εqqq

2πm pπmpRc ´ εq2 ´ pRc ´ εq sinp2πmpRc ´ εqqq ` 2

“
2

Rc ´ ε

˜

1`
πm sinp2πmpRc ´ εqq ´

2
Rc´ε

2πm pπmpRc ´ εq ´ sinp2πmpRc ´ εqqq `
2

Rc´ε

¸

for all m P N. Since Rc´ ε P p0, 0.5q there exists m P N such that πm sinp2πmpRc´
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εqq ´ 2
Rc´ε

ą 0 and hence

max
mPN

hεpmq

gεpmq
ą

2

Rc ´ ε
ą

2

Rc

for ε ą 0 with ε ! Rc. For Rc P p0, 0.5q, we obtain

lim
εÑ0

max
mPN

hεpmq

gεpmq
ą

2

Rc

.

For Rc “ 0.5, we have

lim
εÑ0

hεpmq

gεpmq
“

$

&

%

2
Rc
, m even,

4π2Rc
2π2R2

c`
2
m2
ă 2

Rc
, m odd,

implying that

lim
εÑ0

max
mPN

hεpmq

gεpmq
“

2

Rc

.

Hence, a ď a0 is equivalent to the necessary condition (4.42) for high wave number

stability for Rc “ 0.5.

Remark 13. For the stability of line patterns with force coefficients f εs , f
ε
l of the

form (4.32), we require <pλkpmqq ď 0 for k “ 1, 2 for the real parts of the eigenvalues

<pλkpmqq, k “ 1, 2, in (4.38). Note that the nonnegativity of the leading order term

of <pλ1q which is of the form (4.39) is equivalent to condition (4.44) in Lemma

3. Similarly, the nonnegativity of the first term in (4.38) which is also of the form

(4.39) is equivalent to condition (4.44) in Lemma 3.

From the proof of Lemma 3 it follows that

2

Rc

ď max
mPN

hεpmq

gεpmq
. (4.46)

The inequality in (4.46) is strict for Rc ´ ε P p0, 0.5q, i.e. a necessary condition for

(4.44) to hold for Rc ´ ε P p0, 0.5q is given by

a ă ´
2b

Rc

.

For Rc “ 0.5 and ε Ñ 0, condition (4.44) holds for any a ă 0 satisfying the

necessary condition (4.42) for high wave number stability. If the necessary condition

135



Stability analysis of line patterns

(4.42) for high wave number stability is satisfied with equality, i.e. a “ ´ 2b
Rc

, the

leading order term of the left-hand side of (4.38) vanishes for ε Ñ 0 in the high

wave limit and lower order terms have to be considered.

In Figure 4.2, we investigate the scaling factor of a0, defined in (4.45), numer-

ically. In Figure 4.2(A) the quotient h0{g0 is shown as a function of m P N for

different values of the cutoff radius Rc. Note that for smaller values of Rc, the max-

imum of h0{g0 gets larger as shown in Figure 4.2(B). In Figures 4.2(C) and 4.2(D)

we consider the quotient h0{g0 scaled by Rc. Figure 4.2(C) shows that Rch0{g0 Ñ 2

as m Ñ 8, independently of the value of Rc, and that the maximum of Rch0{g0 is

obtained for smaller values of m P N in general. The value of

Rc max
mPN

h0pmq

g0pmq

is shown in Figure 4.2(D) as a function of Rc. In particular, the scaled maximum is

larger than 2 if and only if Rc P p0, 0.5q and is equal to 2 for Rc “ 0.5. Hence, this

numerical investigation is consistent with the results in Lemma 3.

Applying Lemma 3 to the specific form of the stability conditions for a sin-

gle straight vertical line leads to the following stability results for the linear force

coefficients (4.32).

Proposition 7. For Rc P p0, 0.5q, the single straight vertical line is an unstable

steady state of (4.6) for any N P N sufficiently large and in the continuum limit

N Ñ 8, where the forces are of the form (4.4) for any linear coefficient functions

f εs , f
ε
l with 0 ă ε ! Rc such that Assumption 6 is satisfied. In particular, the

single straight vertical line is an unstable steady state for force coefficients f εs , f
ε
l for

Rc P p0, 0.5q in the limit εÑ 0.

Proof. Note that the leading order term of <pλ1pmqq and the first term of <pλ2pmqq

in (4.38) are of the form (4.39) with parameters (4.40). For stability we require

<pλkq ď 0 for k “ 1, 2.

Let us consider the nonnegativity of <pλ2pmqq in (4.38) first. Note that the second

leading order term of <pλ2pmqq in (4.38) can be rewritten as

12pbs `Rcasq

ˆ 0

´1

ppεs`Rcqs
2
` pεs`Rcqsq p1´ cos p2πmpεs`Rcqqq ds

“ ´2pbs `RcasqRc p1´ cos p2πmRcqq `Opεq.
(4.47)
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(A) h0pmq
g0pmq

(B) maxmPN
h0pmq
g0pmq

(C) Rc
h0pmq
g0pmq

(D) Rc maxmPN
h0pmq
g0pmq

Figure 4.2: Scaling factor of a0 in (4.45) as a function of Rc where g0, h0 are defined
in (4.43).
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Hence, <pλ2pmqq is of the form

<pλ2pmqq “
2

4π2m2
p2asg0pmq ` bsh0pmqq ´ 2pbs `RcasqRc p1´ cos p2πmRcqq `Opεq

by (4.41), where g0, h0 are defined in (4.43). For the nonnegativity of the leading

order term of <pλ2pmqq we require

as

ˆ

2g0pmq

4π2m2
´R2

c p1´ cos p2πmRcqq

˙

` bs

ˆ

h0pmq

4π2m2
´Rc p1´ cos p2πmRcqq

˙

ď 0,

which can be rewritten as

asg̃0pmq ` bsh̃0pmq ď 0,

where

g̃0pmq :“ 2πm
`

2πmR2
c cosp2πmRcq ´ 2Rc sinp2πmRcq

˘

` 2´ 2 cosp2πmRcq,

h̃0pmq :“ 2πm p2πmRc cosp2πmRcq ´ sinp2πmRcqq .

For m sufficiently large, we have

asg̃0pmq ` bsh̃0pmq “ 4π2m2R2
c cosp2πmRcqas ` 4π2m2Rc cosp2πmRcqbs `Opmq

and by only considering the leading order term we obtain the condition

Rc cosp2πmRcqas ` cosp2πmRcqbs ď 0.

Note that there exist infinitely many m P N such that cosp2πmRcq ą 0 and such

that cosp2πmRcq ă 0, independently of the choice of Rc P p0, 0.5q. Hence, we can

conclude asRc ` bs “ 0. In this case, the second leading order term of <pλ2pmqq

vanishes by (4.47) and thus, it is sufficient to consider <pλ1pmqq and the first term

of <pλ2pmqq in (4.38). Applying Lemma 3 together with Remark 13 for Rc P p0, 0.5q

to the linear force coefficients f εl , f
ε
s in (4.32) results in the stability conditions

al ă ´
2bl
Rc

and as ă ´
bs
Rc

(4.48)

for any ε ą 0 which are necessary for the nonnegativity of <pλ1pmqq and the (first)

leading order term of <pλ2pmqq. Hence, the single straight vertical line is unstable

for Rc P p0, 0.5q and 0 ă ε ! Rc, both in the continuum limit N Ñ 8 and for any
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N P N sufficiently large. Similarly, we obtain instability of straight vertical line

patterns for force coefficients f εs , f
ε
l for Rc P p0, 0.5q in the limit εÑ 0.

Remark 14. For Rc “ 0.5, we cannot conclude stability/instability of the straight

vertical line for the linear force coefficients in (4.32) with as “ ´
bs
Rc

, while we can

conclude instability for as ‰ ´
bs
Rc

. To see this, note that for Rc “ 0.5 the calculations

in the proof of Proposition 7 imply as “ ´
bs
Rc

as a necessary condition for stability;

from Lemma 3 we obtain

al ď ´
2bl
Rc

and as ď ´
bs
Rc

,

and together with the condition that f εs is purely repulsive we get the necessary

conditions

al ď ´
2bl
Rc

and as “ ´
bs
Rc

(4.49)

for the stability of the straight vertical line. Note that the conditions (4.49) are

consistent with each other since al, as ă 0 and bl, bs ą 0 by Assumption 6 and it is

possible to choose the parameters al, as, bl, bs in such a way that both (4.49) and the

assumptions on the force coefficients f εs , f
ε
l in Assumption 6 are satisfied. In this

case, we have

f εs psq ` spf
ε
s q
1
psq “ asp2s´ 0.5q

for s P r0, 0.5´ εs with as ă 0 and

f εs psq ` spf
ε
s q
1
psq “ ´as

ps´Rcq
3

ε2
´ 2as

ps´Rcq
2

ε
´ 3as

sps´Rcq
2

ε2
´ 4as

s ps´Rcq

ε

for s P r0.5´ ε, 0.5s by Assumption 6. Clearly, the leading order term of <pλ2pmqq

vanishes in the high wave limit m Ñ 8 and lower order terms in ε have to be

considered. An easy computation reveals that

lim
mÑ8

<pλ2pmqq “ 2

ˆ 0.5

0

f εs psq ` spf
ε
s q
1
psq “ 0 (4.50)

for any ε ą 0 and as εÑ 0. Further note that using (4.50), <pλ2pmqq reduces to

<pλ2pmqq “ ´2

ˆ 0.5

0

pf εs psq ` spf
ε
s q
1
psqq cos p2πmsq ds.
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We obtain

ˆ 0.5´ε

0

asp2s´ 0.5q cos p2πmsq ds “

$

&

%

´0.5asε` asε
2 `Opε3q, m P 2N,

´ as
π2m2 ` 0.5asε´ asε

2 `Opε3q, m P 2N` 1,

´as

ˆ 0.5

0.5´ε

˜

ps´Rcq
3

ε2
` 2

ps´Rcq
2

ε

¸

cos p2πmsq ds “

$

&

%

´ 5
12
asε

2 `Opε3q, m P 2N,
5
12
asε

2 `Opε3q, m P 2N` 1,

´3as

ˆ 0.5

0.5´ε

s ps´Rcq
2

ε2
cos p2πmsq ds “

$

&

%

´0.5asε`
3
4
asε

2 `Opε3q, m P 2N,

0.5asε´
3
4
asε

2 `Opε3q, m P 2N` 1,

and

´4as

ˆ 0.5

0.5´ε

s ps´Rcq

ε
cos p2πmsq ds “

$

&

%

asε´
4
3
asε

2 `Opε3q, m P 2N,

´asε`
4
3
asε

2 `Opε3q, m P 2N` 1,

implying that

ˆ 0.5

0

pf εs psq ` spf
ε
s q
1
psqq cos p2πmsq ds “

$

&

%

Opε3q, m P 2N,

´ as
π2m2 `Opε3q, m P 2N` 1.

Since the real part of the largest eigenvalue <pλ2pmqq is zero in the high wave number

limit and it vanishes in the limit ε Ñ 0 for any m P N, we cannot conclude stabil-

ity/instability of the straight vertical line for Rc “ 0.5 and ε ą 0 or ε Ñ 0 in the

continuum limit N Ñ 8 or any N P N sufficiently large. However, the numerical

results in Section 4.5.2 suggest instability for ε ą 0 and in the limit εÑ 0.

Since we have the relations f εl “ f εA ` f εR and f εs “ χf εA ` f εR between the force

coefficients f εl , f
ε
s in the general force formulation (4.4) and the total force (4.3) in

the Kücken-Champod model with repulsive and attractive force coefficients f εR and

f εA, respectively, we have

al “ aA ` aR, as “ χaA ` aR, bl “ bA ` bR, bs “ χbA ` bR.

Hence, Proposition 7 leads to a similar statement for the forces in the Kücken-

Champod model.
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Corollary 5. For Rc P p0, 0.5q the single straight vertical line is an unstable steady

state of (4.6) for any N P N sufficiently large and for the continuum limit N Ñ 8,

where the forces are of the form (4.4) for any choice of parameters in the definition

of the linear coefficient functions f εR, f
ε
A in (4.33) with 0 ă ε ! Rc or ε Ñ 0. For

Rc “ 0.5, the condition

aA ` aR ď ´
2 pbA ` bRq

Rc

and χaA ` aR “ ´
χbA ` bR

Rc

in addition to the assumptions on aA, aR, bA, bR in Remark 12 is necessary for the

stability of the single straight vertical line for force coefficients f εR, f
ε
A, where 0 ă

ε ! Rc or ε Ñ 0. This does not guarantee the stability/instability of the straight

vertical line for force coefficients f εR, f
ε
A with 0 ă ε ! Rc or εÑ 0 for Rc “ 0.5 and

N P N sufficiently large or in the continuum limit N Ñ 8.

4.4.2 Algebraically decaying force coefficients

Since the straight vertical line is unstable for N P N sufficiently large and for N Ñ 8

for the differentiable force coefficient f εs , defined in (4.32) along s, which is linear on

r0, Rc ´ εs for Rc P p0, 0.5q and ε ą 0, we consider faster decaying force coefficients

along s in the following. In this section we consider

fsp|d|q “
c

p1` a|d|qb

for a ą 0, b ą 0, and c ą 0. To obtain a differentiable force coefficient f εs on p0,8q

we consider the modification in (4.7), i.e.

f εs p|d|q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

c

p1`a|d|qb
, |d| P r0, Rc ´ εs,

´ abc
p1`apRc´εqqb`1

´

p|d|´Rcq3

ε2
`
p|d|´Rcq

2

ε

¯

` c

p1`apRc´εqq
b

´

2 p|d|´Rcq
3

ε3
` 3 p|d|´Rcq

2

ε2

¯

, |d| P pRc ´ ε, Rcq,

0, |d| ě Rc,

where Rc P p0, 0.5s. Note that for this algebraically decaying force coefficient f εs , the

necessary condition f εs pRcq “ 0 in (4.28) for high wave number stability of a straight

vertical line is satisfied. To guarantee that the term a|d| for |d| P r0, Rcs dominates

the denominator and to avoid too large jumps we require a " 1 additionally. The

assumption a " 1 also guarantees that f εs pRc ´ εq ! 1. In this case, differences
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between the adaptation f εs and the algebraically decaying force coefficient fs, and

their derivatives pf εs q
1 and f 1s, are small. Without loss of generality we can assume

that c “ 1 since this positive multiplicative constant leads to a rescaled stability

condition but is not relevant for change of sign of the eigenvalues. Hence, we consider

the algebraically decaying force coefficient

f εs p|d|q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1

p1`a|d|qb
, |d| P r0, Rc ´ εs,

´ ab
p1`apRc´εqqb`1

´

p|d|´Rcq3

ε2
`
p|d|´Rcq

2

ε

¯

` 1

p1`apRc´εqq
b

´

2 p|d|´Rcq
3

ε3
` 3 p|d|´Rcq

2

ε2

¯

, |d| P pRc ´ ε, Rcq,

0, |d| ě Rc

(4.51)

in the following.

Proposition 8. For the single straight vertical line to be a stable steady state of

(4.6) with forces of the form (1.8) for any n P N sufficiently large and for the

continuum limit N Ñ 8 with algebraically decaying force coefficients f εs of the form

(4.51) it is necessary that

b ą 1 and
2

apb´ 1q
ă Rc.

Proof. Because of the definition of the eigenvalues (4.24) we consider

ˆ Rc

0

pf εs psq ` spf
ε
s q
1
psqq p1´ cos p´2πmsqq ds

“

ˆ Rc´ε

0

1

p1` asqb`1
p1` asp1´ bqq p1´ cos p´2πmsqq ds`Opεq.

(4.52)

The linear function 1 ` asp1 ´ bq is positive for s P p0, s0q and negative for s P

ps0, Rc ´ εq for all ε ą 0, where

s0 “
1

apb´ 1q
P p0, Rcq,

implying b ą 1. Note that the integral on the right-hand side of (4.52) can be

rewritten as

ˆ Rc´ε

0

gpsq ds “

ˆ s0

0

gpsq ds`

ˆ Rc´ε

s0

gpsq ds
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for any ε ą 0, where

gpsq “
1

p1` asqb`1
p1` asp1´ bqq p1´ cos p´2πmsqq

is nonnegative on r0, s0s and not positive on rs0, Rc ´ εs for any ε ą 0 by the

definition of s0 and the fact that 1´ cos p´2πmsq P p0, 2q. Setting

hpsq “
1

p1` asqb`1
,

note that hpRcq ă hps0q ă hp0q “ 1. A lower bound of the integral can be obtained

by estimating hpsq on r0, s0s by hps0q due to the nonnegativity of the integrand,

and since the integrand changes sign at s0 the factor hpsq can be replaced by its

maximum on rs0, Rc ´ εs for ε ą 0, i.e. by hps0q. Hence, a lower bound of the

integral in (4.52) is given by

1

p1` as0q
b`1

ˆ Rc´ε

0

p1` asp1´ bqq p1´ cos p´2πmsqq ds`Opεq

“
1

p1` as0q
b`1

ˆ

2πm pπmpRc ´ εq pppRc ´ εq ` 2qqq

4π2m2

`
p´ p cos p2πmpRc ´ εqq ´ 2πm pppRc ´ εq ` qq sin p2πmpRc ´ εqq

4π2m2

˙

`Opεq

with p “ ap1 ´ bq and q “ 1, where the explicit computation is analogous to the

discussion of the linear force coefficients in (4.41). For large values of m the first

term of the above right-hand side dominates and we require

pRc ` 2q “ ap1´ bqRc ` 2 ă 0

for all ε ą 0. This concludes the proof.

In the following, we can restrict ourselves to algebraically decaying force coef-

ficients (4.51) with a ą 0, b ą 1 due to Proposition 8. We show that the straight

vertical line (4.14) is an unstable steady state for any N P N sufficiently large and

in the continuum limit N Ñ 8 in this case. Due to the definition of the eigenvalues

in (4.24) in Theorem 1 it is sufficient to show that there exists m P N such that

0 ă

ˆ Rc´ε

0

pf εs psq ` spf
ε
s q
1
psqq p1´ cos p´2πmsqq ds
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for all 0 ă ε ! Rc. This is equivalent to showing that there exists m P N such that

0 ă lim
εÑ0

ˆ Rc´ε

0

1

p1` asqb`1
p1` asp1´ bqq p1´ cos p´2πmsqq ds. (4.53)

is satisfied.

Lemma 4. For any a ą 0, b ą 1, and Rc P p0, 0.5s there exists m P N such that

(4.53) is satisfied.

Proof. We denote the incomplete Gamma function by

Γpy, zq “

ˆ 8

z

sy´1 expp´sq ds

for y P R and z P C. Then the right-hand side of (4.53) can be written as

´
1

4aπm p1` aRcq
b

ˆ

2a sinp´2πmRcq

` <
„

sin

ˆ

2πm

a

˙

mb`1

ˆ

c1Γ

ˆ

´b,
2iπm

a

˙

` c2Γ

ˆ

´b,
2iπp1` aRcqm

a

˙˙

` sin

ˆ

2πm

a

˙

mb

ˆ

c3Γ

ˆ

1´ b,
2iπm

a

˙

` c4Γ

ˆ

1´ b,
2iπp1` aRcqm

a

˙˙

` cos

ˆ

2πm

a

˙

mb`1

ˆ

c5Γ

ˆ

´b,
2iπm

a

˙

` c6Γ

ˆ

´b,
2iπp1` aRcqm

a

˙˙

` cos

ˆ

2πm

a

˙

mb

ˆ

c7Γ

ˆ

1´ b,
2iπm

a

˙

` c8Γ

ˆ

1´ b,
2iπp1` aRcqm

a

˙˙˙

for constants ci P C, i “ 1, . . . , 8, depending on a, b, and Rc, but independent of

m where not all constants ci are equal to zero. Note that all incomplete Gamma

functions above are of the form Γp´y, izq for y, z P R with y, z ą 0. Integration by

parts yields

Γp´y, izq “ pizq´y´1 expp´izq ` p´y ´ 1qΓp´y ´ 1, izq,

where

|Γp´y ´ 1, izq| “

ˇ

ˇ

ˇ

ˇ

ˆ 8

iz

s´y´2 expp´sq ds

ˇ

ˇ

ˇ

ˇ

ď |pizq´y´2 expp´izq|.

In particular, we have

Γp´y, izq “ pizq´y´1 expp´izq
`

1`Oppizq´1
q
˘

,
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implying

<pΓp´y, izqq “ c̃z´y´1
`

1`Opz´1
q
˘

,

where c̃ “ <pi´y´1 expp´izqq P R. This leads to the approximation

<
„

sin

ˆ

2πm

a

˙

mb`1

ˆ

c1Γ

ˆ

´b,
2iπm

a

˙

` c2Γ

ˆ

´b,
2iπp1` aRcqm

a

˙˙

` sin

ˆ

2πm

a

˙

mb

ˆ

c3Γ

ˆ

1´ b,
2iπm

a

˙

` c4Γ

ˆ

1´ b,
2iπp1` aRcqm

a

˙˙

“ c̃1 sin

ˆ

2πm

a

˙

`

1`Opm´1
q
˘

for some constant c̃1 P R. The other terms of the right-hand side of (4.53) can be

rewritten in a similar way, resulting in

´
1

4aπm p1` aRcq
b

ˆ

´2a sinp2πmRcq ` c̃1 sin

ˆ

2πm

a

˙

` c̃2 cos

ˆ

2πm

a

˙

`Opm´1
q

˙

for constants c̃1, c̃2 P R, independent of m. Note that there exist infinitely many m P

N such that c̃1 sin
`

2πm
a

˘

`c̃2 cos
`

2πm
a

˘

ą 0 and such that c̃1 sin
`

2πm
a

˘

`c̃2 cos
`

2πm
a

˘

ă

0. If Rc “
1
a
, the second factor consists of the sum of a sine and a cosine function

of the same period length and hence for Rc P p0, 0.5s given, there exists m P N such

that the second factor is negative and the leading order term of (4.53) is positive.

If the first term in the second factor is of different period length as the second and

third summand, there also exists m P N such that the second factor is negative. In

particular, this implies that there exists an m P N such that (4.53) is satisfied.

Corollary 6. For any cutoff radius Rc P p0, 0.5s the single straight vertical line

is an unstable steady state of (4.6) for any N P N sufficiently large and for the

continuum limit N Ñ 8 with forces of the form (1.8) with algebraically decaying

force coefficients f εs of the form (4.51) with b ą 0 and for any ε ą 0 or in the limit

εÑ 0.

4.4.3 Exponential force coefficients

In this section we consider exponentially decaying force coefficients along s and

short-range repulsive, long-range attractive forces along l such that the necessary

condition (4.28) for high wave number stability is satisfied.
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To express the force coefficient along l in terms of exponentially decaying func-

tions we consider

f εl p|d|q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

cl1 expp´el1 |d|q ` cl2 expp´el2 |d|q, |d| P r0, Rc ´ εs,
ř2
j“1p´εcljelj ` 2cljq expp´eljpRc ´ εqq

p|d|´Rcq3

ε3

`
ř2
j“1p´εcljelj ` 3cljq expp´eljpRc ´ εqq

p|d|´Rcq
2

ε2
, |d| P pRc ´ ε, Rcq,

0, |d| ě Rc,

(4.54)

for parameters cl1 , cl2 , el1 and el2 with el1 ą 0 and el2 ą 0. Note that exponentially

decaying functions are either purely repulsive or purely attractive, depending on the

sign of the multiplicative parameter. Since we require f εl to be short-range repulsive,

long-range attractive we consider the sum of two exponentially decaying functions

here. Without loss of generality we assume that the first summand in (4.54) is

repulsive and the second one is attractive, i.e. cl1 ą 0 ą cl2 . To guarantee that f εl
is short-range repulsive we require cl1 ą |cl2 |. For long-range attractive forces we

require that the second term decays slower, i.e. el1 ą el2 . These assumptions lead

to the parameter choice

cl1 ą 0 ą cl2 , cl1 ą |cl2 |, and el1 ą el2 ą 0. (4.55)

Note that we have

ˆ Rc

0

f εl psq p1´ cos p´2πmsqq ds “

ˆ Rc´ε

0

f εl psq p1´ cos p´2πmsqq ds`Opεq

due to the boundedness of f εl on rRc ´ ε, Rcs and hence it is sufficient to consider

the integral on r0, Rc´εs for ε ą 0 sufficiently small and in the limit εÑ 0. Further

note that for constants c, el P R we obtain

ˆ Rc´ε

0

c expp´elsq ds “ p1´ expp´elpRc ´ εqqq
c

el
.

Hence, we require

p1´ expp´el1pRc ´ εqqq
cl1
el1
` p1´ expp´el2pRc ´ εqqq

cl2
el2
ď 0
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for all ε ą 0 as in the necessary condition for high wave number stability, implying

cl1
el1
ď
|cl2 |

el2
.

Since

ˆ Rc´ε

0

cl1 expp´el1sq p1´ cos p´2πmsqq ds ą 0 ,

ˆ Rc´ε

0

cl2 expp´el2sq p1´ cos p´2πmsqq ds ă 0

for all ε ą 0 and m P N the parameters cl1 , cl2 , el1 , cl2 in (4.55) can clearly be chosen

in such a way that

ˆ Rc´ε

0

f εl psq p1´ cos p´2πmsqq ds ď 0 (4.56)

is satisfied for all m P N and 0 ă ε ! Rc, where f εl is defined in (4.54) with a cutoff

radius Rc P p0, 0.5s. Note that the adaptation f εl of fl is not negligible. However, due

to the concentration of the particles along a straight vertical axis, this adaptation

does not change the overall dynamics.

For the purely repulsive force coefficient f εs we may consider a force coefficient

of the form

f εs : R` Ñ R,

f εs p|d|q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

c expp´es|d|q, |d| P r0, Rc ´ εs,

´ces expp´espRc ´ εqq
´

p|d|´Rcq3

ε2
`
p|d|´Rcq

2

ε

¯

`c expp´espRc ´ εqq
´

2 p|d|´Rcq
3

ε3
` 3 p|d|´Rcq

2

ε2

¯

, |d| P pRc ´ ε, Rcq,

0, |d| ě Rc,

by considering (4.7) for exponentially decaying force coefficients. Since

<pλ2pmqq “ 2

ˆ Rc´ε

0

pf εs psq ` pf
ε
s q
1
psqsq p1´ cos p´2πmsqq ds`Opεq,

we require the nonpositivity of <pλ2pmqq. Note that

ˆ Rc´ε

0

pf εs psq ` pf
ε
s q
1
psqsq p1´ cos p´2πmsqq ds
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“ pRc ´ εq expp´espRc ´ εqq ´
8esπ

2m2

p4π2m2 ` e2
sq

2

´
expp´espRc ´ εqq

p4π2m2 ` e2
sq

2

“

esp4π
2m2

pespRc ´ εq ´ 2q ` e3
spRc ´ εqq cosp2πmpRc ´ εqq

´ 2πmp4π2m2
pespRc ´ εq ´ 1q ` e2

spespRc ´ εq ` 1qq sinp2πmpRc ´ εqq

´pRc ´ εqp4π
2m2

` e2
sq

2
‰

,

implying that we have
´ Rc´ε

0
pf εs psq ` pf

ε
s q
1psqsq p1´ cos p´2πmsqq ds ą 0 for any

ε ą 0 and m P N sufficiently large, i.e. high wave stability cannot be achieved.

However, note that expp´esRcq can be assumed to be very small for es ą 0 suffi-

ciently large. This motivates us to consider a force coefficient function of the form

f εs : R` Ñ R,

f εs p|d|q “

$

’

’

’

&

’

’

’

%

c expp´es|d|q ´ c expp´espRc ´ εqq, |d| P r0, Rc ´ εs,

´ces expp´espRc ´ εqq
´

p|d|´Rcq3

ε2
`
p|d|´Rcq

2

ε

¯

, |d| P pRc ´ ε, Rcq,

0, |d| ě Rc,

(4.57)

with c ą 0 and es ą 0. Here, the first term in (4.57) represents the exponential decay

of the force coefficient. To approximate the high wave number stability condition,

we require fspRc ´ εq “ 0 which can be guaranteed by subtracting the constant

expp´espRc ´ εqq. Note that we can choose es " 1 such that expp´espRc ´ εqq is

a small positive number. Subtracting the constant c expp´espRc ´ εqq as in (4.57)

leads to f εs pRc ´ εq “ 0. This additional constant only changes the force coefficient

f εs slightly and does not change its derivative pf εs q
1 on r0, Rc ´ εs, i.e. f 1s “ pf εs q

1

on r0, Rc ´ εs. Note that the differences between f εs and fs, and pf εs q
1 and f 1s on

rRc ´ ε, Rcs are negligible provided es ą 0 is chosen sufficiently large such that

es expp´espRc ´ εqq ! 1. Thus, we make the following assumption in the following.

Assumption 7. We assume that the purely repulsive, exponentially decaying force

coefficient fs along s is given by (4.57), i.e.

f εs : R` Ñ R,

f εs p|d|q “

$

’

’

’

&

’

’

’

%

c expp´es|d|q ´ c expp´espRc ´ εqq, |d| P r0, Rc ´ εs,

´ces expp´espRc ´ εqq
´

p|d|´Rcq3

ε2
`
p|d|´Rcq

2

ε

¯

, |d| P pRc ´ ε, Rcq,

0, |d| ě Rc,
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where c ą 0 and es " 1. For the forces along l we either consider linear or exponen-

tially decaying force coefficients. For a linear force coefficient we consider (4.49),

i.e.

f εl p|d|q :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

al|d| ` bl, |d| P r0, Rc ´ εs,

p2bl ` 2Rcal ´ alεq
p|d|´Rcq3

ε3

`p3bl ` 3Rcal ´ 2alεq
p|d|´Rcq

2

ε2
, |d| P pRc ´ ε, Rcq,

0, |d| ě Rc,

where we assume that the parameters al, bl satisfy the sign conditions al ă 0, bl ą 0

in Assumption 6 as well as the necessary stability condition along l in (4.49). For an

exponentially decaying force coefficient f εl we assume that f εl is of the form (4.54),

i.e.

f εl p|d|q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

cl1 expp´el1 |d|q ` cl2 expp´el2 |d|q, |d| P r0, Rc ´ εs,
ř2
j“1p´εcljelj ` 2cljq expp´eljpRc ´ εqq

p|d|´Rcq3

ε3

`
ř2
j“1p´εcljelj ` 3cljq expp´eljpRc ´ εqq

p|d|´Rcq
2

ε2
, |d| P pRc ´ ε, Rcq,

0, |d| ě Rc,

for parameters

cl1 ą 0 ą cl2 , cl1 ą |cl2 |, and el1 ą el2 ą 0

as in (4.54)–(4.55) such that the necessary stability condition (4.56) for a straight

vertical line is satisfied for all m P N and 0 ă ε ! Rc.

Theorem 4. For the cutoff radius Rc “ 0.5, the straight vertical line is stable for the

particle model (4.6) for any N P N sufficiently large with the exponentially decaying

force coefficient f εs in (4.57) along s and a linear or exponentially decaying force

coefficient f εl as in Assumption 7 along l in the limit ε Ñ 0. For Rc P p0, 0.5q the

straight vertical line is an unstable steady state to (4.6) for any N P N sufficiently

large and for the continuum limit N Ñ 8 for any exponential decay es ą 0 in the

limit ε Ñ 0. For any 0 ă ε ! Rc, the straight vertical lime is an unstable steady

state for any Rc P p0, 0.5s.

Proof. Due to the assumptions on f εl in Assumption 7 the real part for the first
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eigenvalue in (4.24), given by

<pλ1pmqq “ 2

ˆ Rc´ε

0

f εl psq p1´ cos p´2πmsqq ds`Opεq,

is not positive for any m P N and any 0 ă ε ! Rc sufficiently small. The real part

of the second eigenvalue (4.24) is given by

<pλ2pmqq “ 2

ˆ Rc´ε

0

pf εs psq ` pf
ε
s q
1
psqsq p1´ cos p´2πmsqq ds`Opεq.

For the nonpositivity of <pλ2pmqq it is sufficient to require

ˆ Rc´ε

0

pf εs psq ` spf
ε
s q
1
psqq p1´ cosp2πmsqq ds ď 0, (4.58)

for any ε ą 0 sufficiently small, where the left-hand side is given by

c

ˆ Rc´ε

0

pexpp´essqp1´ essq ´ expp´espRc ´ εqqq p1´ cosp2πmsqq ds

“ ´
ces exp p´espRc ´ εqq

2πm pe2
s ` 4π2m2q

2

“

2πme3
spRc ´ εq cosp2πmpRc ´ εqq

´
`

e3
s ` 4π2e2

sm
2
pRc ´ εq ` 12π2esm

2
` 16π4m4

pRc ´ εq
˘

sinp2πmpRc ´ εqq

`16π3m3 exp pespRc ´ εqq ` 8π3m3
pespRc ´ εq ´ 2q cosp2πmpRc ´ εqq

‰

.

(4.59)

For Rc “ 0.5 we have limεÑ0 sinp2πmpRc´ εqq “ 0 and the right-hand side of (4.59)

simplifies to gεpmqhεpmq where

gεpmq “ ´
ces exp p´espRc ´ εqq

pe2
s ` 4π2m2q

2 ,

hεpmq “
`

e3
spRc ´ εq ` 4π2m2

pespRc ´ εq ´ 2q
˘

cosp2πmpRc ´ εqq

` 8π2m2 exp pespRc ´ εqq .

For determining the limit m Ñ 8 of gεpmqhεpmq note that the leading order term

of gε is m´4 while the highest order term of hε is m2, implying that the product

gεpmqhεpmq, i.e. the right-hand side of (4.59), goes to zero as mÑ 8.
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Note that for Rc “ 0.5 we have

lim
εÑ0

cosp2πmpRc ´ εqq “

$

&

%

1, m even,

´1, m odd.

Let us consider es ą 0 with es ď 4 first, i.e. limεÑ0 espRc ´ εq ď 2. Then,

lim
εÑ0

hεpmq “

$

&

%

e3
sRc ` 4π2m2 pesRc ´ 2` 2 exp pesRcqq , m even,

´e3
sRc ` 4π2m2 p´esRc ` 2` 2 exp pesRcqq , m odd.

Note that limεÑ0 gεpmq ă 0 for all m P N and limεÑ0 hεpmq ą 0 for all even m since

2 exppesRcq ą 2. For m odd, note that the term in brackets is positive and a lower

bound of limεÑ0 hε is given by

´16esRc ` 4π2
p´esRc ` 2` 2 exp pesRcqq ě 8π2

p´esRc ` 1` exp pesRcqq ,

which is clearly positive. Hence, limεÑ0 hεpmq is positive for all m P N and, thus,

we obtain limεÑ0 gεpmqhεpmq ă 0, provided es ď 4 and Rc “ 0.5. This implies that

(4.58) is satisfied for all m P N in this case.

Let us now consider limεÑ0 espRc ´ εq ą 2 with Rc “ 0.5. Note that a lower bound

of limεÑ0 hε is obtained from limεÑ0 cosp2πmpRc ´ εqq ě ´1, leading to the upper

bound

lim
εÑ0

gεpmq
“

´
`

e3
sRc ` 4π2m2

pesRc ´ 2q
˘

` 8π2m2 exp pesRcq
‰

of limεÑ0 gεpmqhεpmq since gεpmq ă 0 for all ε ą 0. This upper bound can be

rewritten as

lim
εÑ0

gεpmq
“

´e3
sRc ` 4π2m2

p´esRc ` 2` 2 exp pesRcqq
‰

.

Note that ´esRc ` 2` 2 exp pesRcq ą 0. Besides,

e3
sRc

4π2 p´esRc ` 2` 2 exp pesRcqq
ă 1

is satisfied for all es ą 4, implying

´e3
sRc ` 4π2m2

p´esRc ` 2` 2 exp pesRcqq ą 0
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for all m P N. Hence, the right-hand side of (4.59), i.e. gεpmqhεpmq, is negative

for all m P N in the limit ε Ñ 0. In particular, this shows that condition (4.58) is

satisfied for all m P N for Rc “ 0.5.

For Rc P p0, 0.5s and ε ą 0 we have sinp2πmpRc ´ εqq ą 0 for countably many

m P N. In particular, there exists δ ą 0 and a countably infinite set N Ă N such

that sinp2πmpRc´εqq ą δ for all m P N . Hence the second term in (4.59) is negative

with upper bound

´
`

e3
s ` 4π2e2

sm
2
pRc ´ εq ` 12π2esm

2
` 16π4m4

pRc ´ εq
˘

δ ă 0

for all m P N . This implies that the right-hand side of (4.59), i.e. gεpmq, hεpmq,

can be estimated from below by

gεpmq

„

´
1

2πm

`

e3
s ` 4π2e2

sm
2
pRc ´ εq ` 12π2esm

2
` 16π4m4

pRc ´ εq
˘

δ

` maxte3
spRc ´ εq ` 4π2m2

pespRc ´ εq ´ 2q,´e3
spRc ´ εq ´ 4π2m2

pespRc ´ εq ´ 2qu

` 8π2m2 exp pespRc ´ εqq



for all m P N and 0 ă ε ! Rc since gεpmq ă 0 for all m P N. Thus, there exists

m0 P N such that the term in square brackets is negative for all m P N with

m ě m0 and all ε ą 0 sufficiently small since the highest order term of power m4

in the square brackets dominates for m large enough. In particular, gεpm0q ă 0 for

ε ą 0 implies that we have found a positive lower bound of the right-hand side in

(4.59) and one can easily show that this positive lower bound also holds in the limit

εÑ 0. Hence, stability cannot be achieved in the case Rc P p0, 0.5s and any ε ą 0,

as well as for Rc P p0, 0.5q and ε Ñ 0, both for N P N sufficiently large and in the

continuum limit N Ñ 8.

Remark 15. For Rc P p0, 0.5q and ε Ñ 0, no stability can be shown analytically.

However, note that an upper bound of the integral

ˆ Rc´ε

0

pf εs psq ` spf
ε
s q
1
psqq p1´ cosp2πmsqq ds (4.60)
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in the necessary stability condition (4.58) is given by

´
ces exp p´espRc ´ εqq

2πm pe2
s ` 4π2m2q

2

“

´2πm
`

e3
spRc ´ εq ` 4π2m2

pespRc ´ εq ´ 2q
˘

´
`

e3
s ` 4π2e2

sm
2
pRc ´ εq ` 12π2esm

2
` 16π4m4

pRc ´ εq
˘

`16π3m3 exp pespRc ´ εqq
‰

“ ´
ces exp p´espRc ´ εqq

2πm pe2
s ` 4π2m2q

2

“

´e3
s ´ 2πe3

spRc ´ εqm´
`

4π2e2
spRc ´ εq ` 12π2es

˘

m2

`
`

´8π3
pespRc ´ εq ´ 2q ` 16π3 exp pespRc ´ εqq

˘

m3
´ 16π4

pRc ´ εqm
4
‰

(4.61)

for any 0 ă ε ! Rc due to (4.59). For exppesRcq " 1 there exists m0 P N of

order exppesRcq " 1 such that the term 16π3m3 exp pesRcq is the dominating term

in the upper bound (4.61) of the integral (4.60) for all m P N with m ď m0. Hence

negativity of the upper bound (4.61) and thus of the integral (4.60) in the necessary

stability condition can be guaranteed for all m ď m0. For m ą m0, however, the

highest order term of power m4 dominates the sum. Since m0 " 1, we have stability

for N P N sufficiently large and for the continuum limit N Ñ 8 for almost all, but

finitely many, Fourier modes for es " 1, Rc P p0, 0.5q, and any ε ą 0 sufficiently

small or in the limit εÑ 0.

The integral (4.60) is explicitly evaluated in (4.59). For large values of m P

N the highest order term in (4.59) is associated with the summand 16π4m4pRc ´

εq sinp2πmpRc ´ εqq and can be written in the form

8π3es expp´espRc ´ εqqpRc ´ εqm
3 sinp2πmpRc ´ εqq

pe2
s ` 4π2m2q

2 .

Here, the numerator increases as m3 for large m while the denominator is of or-

der m4, multiplied by a factor expp´esRcq ! 1, leading to decaying sinusoidal os-

cillations around zero as m increases. Since this approximation is only valid for

m ą m0 " 1 the absolute value of the right-hand side in (4.59) may be so small that

it is numerically zero and one may see stable vertical line patterns for exponentially

decaying force coefficients f εs along s for Rc P p0, 0.5q, ε ą 0 or in the limit ε Ñ 0,

and N P N sufficiently large; see the numerical experiment in Figure 4.6(E).

Corollary 7. Let c1, c2 P R with c1 ą 0, c1 ą |c2| be given. There exist parameters

e2 ě e1 ą 0 such that the straight vertical line is stable for the particle model (4.6)

for N P N sufficiently large for the exponentially decaying force coefficient f εs along
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s given by f εs : R` Ñ R with

f εs p|d|q “

$

’

’

’

&

’

’

’

%

c1 expp´e1|d|q ` c2 expp´e2|d|q ´ c, |d| P r0, Rc ´ εs,

pf εs q
1pRc ´ εq

´

p|d|´Rcq3

ε2
`
p|d|´Rcq

2

ε

¯

, |d| P pRc ´ ε, Rcq,

0, |d| ě Rc,

(4.62)

with

c “ c1 expp´e1pRc ´ εqq ` c2 expp´e2pRc ´ εqq

and a linear or an exponential force coefficient f εl along l as in Assumption 7 for a

cutoff radius Rc “ 0.5. For the continuum limit N Ñ 8, stability/instability cannot

be concluded.

Proof. For the stability of the straight vertical line for N P N sufficiently large we

require that the force coefficient f εs in (4.62) is purely repulsive for any ε ą 0 and

hence at least one of the constants c1, c2 has to be positive. Since we can assume

c1 ą 0 without loss of generality this implies that c1 is a repulsive multiplicative

factor, while the sign of c2 is not given by the assumptions. Thus, we require that

the first term in the definition of f εs in (4.62) decays slower than the second one,

implying 0 ă e1 ď e2. Hence, the conditions on the parameters are verified.

As in the proof of Theorem 4 we evaluate integrals of the form (4.59) where the

term with factor sinp2πmRcq vanishes for our choice of Rc “ 0.5. If c2 ě 0 one

can choose e1, e2 sufficiently large such that the term 16π3m3 exppekRcq, k “ 1, 2,

in the square brackets in (4.59) dominates as in the proof of Theorem 4, leading

to the stability of the vertical straight line for N P N sufficiently large. For c2 ă 0

one can choose e1, e2 sufficiently large such that the term 16π3m3 exppekRcq, k “

1, 2, dominates the square brackets. However, since c1 ą 0 ą c2 we require in

addition that the term with multiplicative factor c1 dominates over the term with

multiplicative factor c2, leading to the condition

´
16π3m3c1e1

2πm pe2
1 ` 4π2m2q

2 `
16π3m3|c2|e2

2πm pe2
2 ` 4π2m2q

2 ă 0

in the limit εÑ 0 which is equivalent to

´c1e1

`

e2
2 ` 4π2m2

˘2
` |c2|e2

`

e2
1 ` 4π2m2

˘2
ă 0.
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Since c1 ą |c2| and e2 ě e1 ą 0 by assumption this condition is satisfied for e2 ą e1

sufficiently large. Hence, stability of the straight vertical line can be achieved for

N P N sufficiently large.

The force coefficient f εs of the form (4.62) along s is motivated by the force

coefficients in the Kücken-Champod model. Here, f εs “ χf εA ` f εR for χ P r0, 1s

where, motivated by this section, f εR, f
ε
A are defined as

f εRp|d|q “

$

’

’

’

&

’

’

’

%

fRp|d|q ´ fRpRc ´ εq, |d| P r0, Rc ´ εs,

f 1RpRc ´ εq
´

p|d|´Rcq3

ε2
`
p|d|´Rcq

2

ε

¯

, |d| P pRc ´ ε, Rcq,

0, |d| ě Rc,

(4.63)

and

f εAp|d|q “

$

’

’

’

&

’

’

’

%

fAp|d|q ´ fApRc ´ εq, |d| P r0, Rc ´ εs,

f 1ApRc ´ εq
´

p|d|´Rcq3

ε2
`
p|d|´Rcq

2

ε

¯

, |d| P pRc ´ ε, Rcq,

0, |d| ě Rc.

(4.64)

This corresponds to the sum of an attractive and a repulsive force coefficient as

in (4.62) for c1 ą 0 ą c2 where the repulsive term, i.e. c1 ą |c2|, dominates. This

motivates that we obtain stability of the straight vertical line for the force coefficients

in the Kücken-Champod model for N P N sufficiently large by considering force

coefficients of the form (4.63), (4.64).

4.4.4 Kücken-Champod model

For the specific forces in the Kücken-Champod model, given by the repulsive and

attractive force coefficients f εR and f εA in (4.63) and (4.64), respectively, we require

the nonpositivity of the real parts of the eigenvalues λk, k “ 1, 2, given by

<pλ1pmqq “ 2

ˆ Rc

0

f εl psq p1´ cos p´2πmsqq ds,

<pλ2pmqq “ 2

ˆ Rc

0

pf εs psq ` spf
ε
s q
1
psqq p1´ cos p´2πmsqq ds

in (4.24) where f εl “ f εA ` f εR and f εs “ χf εA ` f εR. In Figure 4.3 we evaluate <pλkq
numerically for the force coefficients (4.63) and (4.64) in the Kücken-Champod

model for the parameters in (1.20) and a cutoff radius Rc “ 0.5 in the limit εÑ 0.
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Clearly, <pλ1q ď 0, while <pλ2q is negative for small modes m but tends to zero for

large modes m. Investigating the high wave number stability for the forces in the

Figure 4.3: <pλiq in (4.24) as a function of m for the force coefficients f εR in (4.63)
and f εA in (4.64) of repulsion force (1.12) and attraction force (1.13), respectively, for
parameter values in (1.20) in the limit εÑ 0, where f εl “ f εA`f

ε
R and f εs “ χf εA ` f

ε
R

.

Kücken-Champod model can be done analytically. For the general necessary high

wave number condition (4.28) for λ1 we require

ˆ Rc

0

f εl ds ď 0.

Note that

lim
εÑ0

ˆ Rc´ε

0

expp´eRsq
`

αs2
` β

˘

´ γ expp´eAsqs ds

“
α pexpp´eRRcqp´eRRcpeRRc ` 2q ´ 2q ` 2q

peRq3
`
β ´ β expp´eRRcq

eR

´
γ p1´ expp´eARcqpeARc ` 1qq

peAq2

«
2α

peRq3
`

β

eR
´

γ

peAq2

which is clearly negative for the choice of parameters in (1.20). For the high wave

stability we also consider the condition associated with λ2, leading to the condition

ˆ Rc

0

f εs psq ` spf
ε
s q
1
psq ds ď 0.
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We evaluate the integral

ˆ Rc´ε

0

expp´eRsq
`

α
`

3s2
´ eRs

3
˘

` βp1´ eRsq
˘

´ χγ expp´eAsqsp2´ eAsq ds

“ pRc ´ εq rpRc ´ εq rαpRc ´ εq expp´eRpRc ´ εqq ´ χγ expp´eApRc ´ εqqs

` β expp´eRpRc ´ εqqs

“ pRc ´ εq pfRpRc ´ εq ` χfApRc ´ εqq

for fR and fA defined in (4.8) and (4.9), respectively, implying that

ˆ Rc´ε

0

f εs psq ` spf
ε
s q
1
psq ds “ 0

for any ε ą 0. In particular, the straight vertical line is high wave number stable

for any N P N sufficiently large and in the continuum limit N Ñ 8 for the Kücken-

Champod model with force coefficients f εR and f εA in (4.63) and (4.64), respectively,

the parameters in (1.20), and ε Ñ 0. By definition of f εs “ χf εA ` f εR, we have

f εs pRcq “ 0, i.e. the high wave number stability of the straight vertical line (compare

Proposition 6), is satisfied. Note that

lim
εÑ0

χfApRc ´ εq ` fRpRc ´ εq “ 4.8144 ¨ 10´21

for Rc “ 0.5, i.e. the force coefficient χfA ` fR has only slightly been modified to

obtain χf εA ` f
ε
R with pχf εA ` f

ε
Rq
1 « pχf εA ` f

ε
Rq
1, provided eR expp´eRRcq ! 1 and

eA expp´eARcq ! 1.

Note that it is not possible to analyse the stability of the straight vertical line

for all modes m P N for the forces f εR and f εA in (4.63) and (4.64) in the Kücken-

Champod model analytically for all possible parameter values due to the large num-

ber of parameters in the model. Besides, the force coefficients strongly depend on

the choice of parameters. In Corollary 7, however, we investigated the stability of

the straight vertical line for N P N sufficiently large where f εs , restricted to r0, Rc´εs

for some ε ą 0, is the sum of the positive term c1 expp´e1|d|q, the negative term

c2 expp´e2|d|q and a constant to guarantee f εs pRc ´ εq “ 0 where c1 ą |c2| ą 0. Be-

sides, we required e1 ă e2 for the positivity of the sum c1 expp´e1|d|q`c2 expp´e2|d|q

for |d| P r0, Rc ´ εs and showed stability of the straight vertical line for N P N
sufficiently large provided the parameters e1, e2 ą 0 are chosen sufficiently large

enough. In Figure 4.1 the absolute value of the terms χfA and fR, defined in
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(4.8)–(4.9), are plotted for the parameters in (1.20). As in Corollary 7 the positive

term always dominates and the terms χfA and fR have fast exponential decays.

This suggests that the straight vertical line is a stable steady state for the Kücken-

Champod model for N P N sufficiently large with the adopted force coefficient

f εs “ χf εA ` f
ε
R. Besides, the numerical evaluation of the real part of the eigenvalue

λ2 for f εs for ε ą 0, i.e. a differentiable force coefficient with the additional constant

´pχfApRc ´ εq ` fRpRc ´ εqq for |d| P r0, Rc ´ εs leads to nonpositivity of the real

part of the eigenvalue λ2.

4.4.5 Summary

In this section, we summarise the results from the previous subsections on the

stability of the straight vertical line (4.14) of the particle model (4.6) with linear,

algebraically decaying, and exponentially decaying force coefficients for different

values of the cutoff radius Rc P p0, 0.5s. This summary is shown in Table 4.1. Note

that for Rc P p0, 0.5q the straight vertical line is always unstable for large N and

the instability manifests itself by non-equidistant particles along vertical lines.

4.5 Numerical simulations

4.5.1 Numerical methods

As in [BDK`18, DGH`19] we consider the unit square with periodic boundary

conditions as the domain for our numerical simulations if not stated otherwise. The

particle system (4.6) is solved by either the simple explicit Euler scheme or higher

order methods such as the Runge–Kutta–Dormand–Prince method, all resulting in

very similar simulation results. Note that the time step has to be adjusted depending

on the value of the cutoff radius Rc. For efficient numerical simulation we consider

cell lists as outlined in [DGH`19].

4.5.2 Numerical results

Numerical results are shown in Figures 4.4–4.9. For all numerical simulations we

consider N “ 600 particles which are initially equiangular distributed on a circle

with centre p0.5, 0.5q and radius 0.005 as illustrated in Figure 4.4(A). The stationary
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4.5. Numerical simulations

Table 4.1: Stability/instability of the straight vertical line (4.14) for the particle
model (4.6) with force coefficients fs along s and different cutoff radii Rc P p0, 0.5s.

Force coefficient fs along s Rc P p0, 0.5q Rc “ 0.5

Linear force coefficient
(4.32)

Instability for any
N P N sufficiently
large and for N Ñ 8

(see Theorem 7)

Stability or instabil-
ity since stability con-
ditions are satisfied
with equality (see Re-
mark 14)

Algebraically decaying force
coefficient (4.51)

Instability for any
N P N sufficiently
large and for N Ñ 8

(see Corollary 6)

Instability for any
N P N sufficiently
large and for N Ñ 8

(see Corollary 6)

Exponentially decaying
force coefficient (4.57)

Instability for any
N P N sufficiently
large and for N P N
(see Theorem 4), but
stability may be seen
in numerical simu-
lations (see Remark
15)

Stability for any
N P N sufficiently
large (see Theorem 4)
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solution for the linear force coefficient f εs in (4.32), i.e.

f εs p|d|q “ as|d| ` bs, f εl p|d|q “ 0.1´ 3|d|, |d| P r0, Rc ´ εs,

for different values of as, bs, is shown in Figure 4.4 in the limit εÑ 0. As proven in

Section 4.4.1 equidistantly distributed particles along the vertical straight line form

an unstable steady state for N P N sufficiently large for Rc P p0, 0.5q. Hence, the

stationary solutions are no lines of uniformly distributed particles and we obtain

different clusters or line patterns instead. In Figure 4.4(B), we consider Rc “

0.3, resulting in clusters of particles along the vertical axis. For Rc “ 0.5 and

as, bs chosen as as “ ´ bs
Rc

, the requirement in (4.49) for the necessary stability

condition to be satisfied with equality, the real part of one of the eigenvalues of the

stability matrix is equal to zero. The resulting steady states are shown for different

scalings of the parameters as, bs in Figures 4.4(C) and 4.4(D). One can see that

the particles align along a vertical line along the entire interval r0, 1s, but are not

equidistantly distributed along the vertical axis and thus the vertical straight line

is an unstable steady state for any N P N sufficiently large. For as ą ´ bs
Rc

and

as ă ´
bs
Rc

, respectively, with Rc “ 0.5 the corresponding steady states are shown in

Figures 4.4(E) and 4.4(F), resulting in clusters along the vertical axis.

In Figure 4.5, we consider the linear force coefficient f εs in (4.32) for different

values of as, bs, and Rc, where ε “ 0.01 is fixed in contrast to ε Ñ 0 in Figure 4.4,

i.e. we consider the total force (4.4) with linear force coefficients f εl p|d|q “ al|d| ` bl,

f εs p|d|q “ as|d| ` bs for |d| P r0, Rc ´ εs in (4.32) with al “ ´3, bl “ 0.1. In

Figure 4.5(A), we consider the same parameter values as in Figure 4.4(B), i.e.

as “ ´0.2, bs “ 0.1, and Rc “ 0.3, resulting in the same stationary solution for

ε “ 0.01 and ε Ñ 0. In particular, the straight vertical line is unstable both for

ε “ 0.01 and ε Ñ 0. For cutoff radius Rc “ 0.5, we obtain different stationary so-

lutions for ε “ 0.01 and ε Ñ 0. In Figure 4.5(B), we show the stationary solutions

for as “ ´0.2, bs “ 0.1, and Rc “ 0.5 as in Figure 4.4(C), i.e. as “ ´ bs
Rc

. Even

though stability/instability could not be determined analytically the numerical re-

sults illustrate that straight vertical line is unstable both for ε “ 0.01 and ε Ñ 0.

The stationary solution for as “ ´0.1, bs “ 0.1, and Rc “ 0.5 is shown in Figure

4.5(C) for ε “ 0.01 and in Figure 4.4(E) for ε Ñ 0. Our analytical results show

that the stationary solution is unstable in this case which is also consistent with the

numerical results. In particular, we obtain the same instability results for ε “ 0.01

as in Figure 4.4 where the limit εÑ 0 is considered.
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4.5. Numerical simulations

(A) Initial data (B) as “ ´0.2,
bs “ 0.1, Rc “ 0.3

(C) as “ ´0.2,
bs “ 0.1, Rc “ 0.5

(D) as “ ´0.02,
bs “ 0.01, Rc “ 0.5

(E) as “ ´0.1,
bs “ 0.1, Rc “ 0.5

(F) as “ ´0.4,
bs “ 0.1, Rc “ 0.5

Figure 4.4: Stationary solution to the model (4.6) for total force (4.4) with linear
force coefficients f εl p|d|q “ al|d| ` bl, f

ε
s p|d|q “ as|d| ` bs for |d| P r0, Rc´ εs in (4.32)

with al “ ´3, bl “ 0.1, and cutoff radius Rc in the limit εÑ 0.

(A) as “ ´0.2,
bs “ 0.1, Rc “ 0.3

(B) as “ ´0.2,
bs “ 0.1, Rc “ 0.5

(C) as “ ´0.1,
bs “ 0.1, Rc “ 0.5

Figure 4.5: Stationary solution to the model (4.6) for total force (4.4) with linear
force coefficients f εl p|d|q “ al|d| ` bl, f

ε
s p|d|q “ as|d| ` bs for |d| P r0, Rc´ εs in (4.32)

with al “ ´3, bl “ 0.1, and cutoff radius Rc for ε “ 0.01.
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For the exponentially decaying force coefficient f εs along s in (4.57), given by

f εs p|d|q “ c expp´es|d|q ´ c expp´espRc ´ εqq, |d| P r0, Rc ´ εs,

for ε ą 0, we consider the parameter values c “ 0.1 and es “ 100 if not stated

otherwise. The initial data is given by equiangular distributed particles on a circle

with centre p0.5, 0.5q and radius 0.005 in Figure 4.6(A). In Figures 4.6(B)–4.6(F)

the stationary solution for the exponentially decaying force coefficient f εs in the limit

εÑ 0 is shown. As expected, for small values of es and Rc P p0, 0.5q, e.g. es “ 10 as

in Figure 4.6(B), the equidistantly distributed particles along the vertical axis are

an unstable steady state. In this case, the steady state is given by clusters along the

vertical axis and <pλ2pmqq ď 0 for m ă 12 only. For Rc “ 0.5 the straight vertical

line is stable as shown in Figure 4.6(C). Note that the additional constant in the

definition of f εs leads to f εs pRc ´ εq “ f εs pRcq “ 0 and is necessary for the stability

of the straight vertical line. In Figure 4.6(D) we consider f εs without this additional

constant, i.e. f εs p|d|q “ c expp´es|d|q for |d| P r0, Rc ´ εs, where the straight vertical

line is clearly unstable and we have <pλ2pmqq ď 0 for m ă 9 only. If es is chosen

sufficiently large, e.g. es “ 100 as in Figures 4.6(E) and 4.6(F), the straight vertical

line appears to be stable even for Rc ă 0.5. An explicit calculation of the eigenvalues

for Rc “ 0.1 reveals, however, that <pλ2pmqq ď 0 for m ă 73723 only. Note that we

obtain stability for a much larger number of modes as in Figures 4.6(B) and 4.6(D).

This is also consistent with a straight vertical line as steady state in Figure 4.6(F),

while we have clusters as steady states in Figures 4.6(B) and 4.6(D). Further note

that <pλ2p73723qq “ 8.3225 ¨ 10´15 and hence it is numerically zero. As discussed

in Remark 15 this explains why for exppesRcq " 1, e.g. es “ 100 and Rc “ 0.1,

the straight vertical line appears to be stable. Finally, we also obtain the straight

vertical line as a steady state if we consider exponentially decaying force coefficients

f εl p|d|q “ 0.13 expp´100|d|q ´ 0.03 expp´10|d|q instead of f εl p|d|q “ 0.1 ´ 3|d| for

|d| P r0, Rc ´ εs in the limit ε Ñ 0 as shown in Figure 4.6(F). Note that we also

obtain a straight vertical line as a stationary solution in Figures 4.6(E) and 4.6(F)

if f εs p|d|q “ c expp´es|d|q ´ c expp´espRc ´ εqq for |d| P r0, Rc ´ εs is replaced by

f εs p|d|q “ c expp´es|d|q since expp´esRcq ! 1 for es " 1.

In Figure 4.7 the stationary solution is shown on the domain r0, 3s2 instead of

the unit square. Here, we consider the same force coefficients as in Figure 4.6(F), i.e.

exponentially decaying force coefficients along l and s. We define the initial data on

r0, 3s2 by considering the initial data on the unit square, i.e. equiangular distributed
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4.5. Numerical simulations

(A) Initial data (B) es “ 10, Rc “ 0.1, fl lin. (C) es “ 10, Rc “ 0.5, fl lin.

(D) es “ 10, Rc “ 0.5, fl lin.,
no add. constant for fs

(E) es “ 100, Rc “ 0.1, fl lin. (F) es “ 100, Rc “ 0.5, fl exp.

Figure 4.6: Stationary solution to the model (4.6) for total force (4.4) with exponen-
tial force coefficient f εs p|d|q “ c expp´es|d|q ´ c expp´espRc ´ εqq for |d| P r0, Rc ´ εs
along s, defined in (4.57), and f εl p|d|q “ 0.1´ 3|d| or f εl p|d|q “ 0.13 expp´100|d|q ´
0.03 expp´10|d|q for |d| P r0, Rc ´ εs along l with cutoff Rc in the limit εÑ 0.
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particles on a circle with centre p0.5, 0.5q and radius 0.005, and extending these

initial conditions to r0, 3s2 by using the periodic boundary conditions. As expected

we obtain three parallel lines as the stationary solution.

(A) Initial data (B) Rc “ 0.1

Figure 4.7: Stationary solution to the model (4.6) for total force (4.4) with expo-
nential force coefficients f εs p|d|q “ c expp´es|d|q ´ c expp´espRc ´ εqq in (4.57) and
f εl p|d|q “ 0.13 expp´100|d|q ´ 0.03 expp´10|d|q with cutoff Rc on the domain r0, 3s2.

For the underlying tensor field T with s “ p0, 1q and l “ p1, 0q, we have seen that

vertical straight patterns are stable. More generally, stripe states along any angle

can be obtained by rotating the spatially homogeneous tensor field T appropriately.

Examples of rotated stripe patterns are shown in Figure 4.8 where the vector fields

s “ p1, 1q{
?

2, l “ p´1, 1q{
?

2 in Figure 4.8(A), s “ p1, 2q{
?

5, l “ p´2, 1q{
?

5 in

Figure 4.8(B), and s “ p1, 5q{
?

26, l “ p´5, 1q{
?

26 in Figure 4.8(C) are considered.

Due to the periodicity of the forces, the resulting patterns are also periodic.

(A) s “ p1, 1q{
?

2,
l “ p´1, 1q{

?
2

(B) s “ p1, 2q{
?

5,
l “ p´2, 1q{

?
5

(C) s “ p1, 5q{
?

26,
l “ p´5, 1q{

?
26

Figure 4.8: Stationary solution to the model (4.6) for different tensor fields
T , given by s, l, and total force (4.4) with exponential force coefficients
f εs p|d|q “ c expp´es|d|q ´ c expp´espRc ´ εqq for |d| P r0, Rc ´ εs in (4.57) and
f εl p|d|q “ 0.13 expp´100|d|q ´ 0.03 expp´10|d|q for |d| P r0, Rc ´ εs with cutoff Rc “

0.1 in the limit εÑ 0.

Until now, we looked at numerical examples for a stable state aligned along a
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line (or lines). However, the model (4.6) is also able to produce two-dimensional

states which can result as an instability of a vertical line. To obtain two-dimensional

patterns, we vary the force along l. In particular, the force along l has to be less

attractive to avoid the concentration along line patterns. In Figure 4.9, we vary

parameter el1 in the force coefficient f εl p|d|q “ 0.13 expp´el1 |d|q ´ 0.03 expp´10|d|q

for |d| P r0, Rc´ εs. Here, smaller values of el1 lead to stronger repulsive forces over

a short distance, resulting in a horizontal spreading of the solution for the tensor

field T with s “ p0, 1q and l “ p1, 0q.

(A) el1 “ 20 (B) el1 “ 30 (C) el1 “ 50

Figure 4.9: Stationary solution to the model (4.6) for tensor field T with
s “ p0, 1q, l “ p1, 0q and total force (4.4) with exponential force coefficients
f εs p|d|q “ c expp´es|d|q ´ c expp´espRc ´ εqq for |d| P r0, Rc ´ εs, defined in (4.57),
and f εl p|d|q “ 0.13 expp´el1 |d|q ´ 0.03 expp´10|d|q for |d| P r0, Rc ´ εs with cutoff
Rc “ 0.5.
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Chapter 5

Role of nonlinear diffusion on

equilibria: Analysis and numerics

Originality and contribution

This chapter is based on [CDKS19] in collaboration with José A. Carrillo, Bertram

Düring and Carola-Bibiane Schönlieb. While my co-authors proposed the study of

the model and gave advice, [CDKS19] is primarily my own original work and nearly

all the results in [CDKS19], including analysis and simulations, were obtained by

myself. For the numerical simulations I adapted the code in [CCH14a] which was

provided by José A. Carrillo.

Chapter summary

In this chapter, we study the equilibria of an anisotropic, nonlocal aggregation equa-

tion with nonlinear diffusion which does not possess a gradient flow structure. Here,

the anisotropy is induced by an underlying tensor field. We derive equilibrium con-

ditions for stationary line patterns which can be reformulated as the minimisers of a

regularised energy functional if the underlying tensor field is spatially homogeneous.

For spatially homogeneous tensor fields, we show the existence of energy minimis-

ers, establish Γ-convergence of the regularised energy functionals as the diffusion

coefficient vanishes, and prove the convergence of minimisers of the regularised en-

ergy functional to minimisers of the non-regularised energy functional. Further,

we investigate properties of stationary solutions on different domains. Finally, we

prove weak convergence of a numerical scheme for the numerical solution of the

167



Role of nonlinear diffusion on equilibria: Analysis and numerics

anisotropic, nonlocal aggregation equation with nonlinear diffusion and any under-

lying tensor field, and show numerical results.

5.1 Introduction

The derivation, analysis and numerics of mathematical models for collective be-

haviour of cells, animals or humans have recently been receiving increasing atten-

tion. Based on agent-based modelling approaches, a variety of continuum models has

been derived and used to describe biological aggregations such as flocks and swarms

[MEK99, TBL06]. Motivated by the simulation of fingerprint patterns which can be

modelled as the interaction of a large number of cells [BDK`18, KC13], a continuum

model can be derived, given by the anisotropic aggregation equation (1.17), i.e.

Btρpt, xq `∇x ¨ rρpt, xqpF p¨, T pxqq ˚ ρpt, ¨qqpxqs “ 0 in R` ˆ R2, (5.1)

with initial condition ρ|t“0 “ ρin in R2 for some given initial data ρin. Here,

uρpt, xq “ pF p¨, T pxqq ˚ ρpt, ¨qqpxq “

ˆ
R2

F px´ y, T pxqqρpt, yq dy (5.2)

is the velocity field with |uρpt, xq| ď f for the uniform bound f of F where the term

F px´y, T pxqq denotes the force which a particle at position y exerts on a particle at

position x. The left-hand side of (5.1) represents the active transport of the density

ρ associated to a nonlocal velocity field uρ.

The force F depends on an underlying stress tensor field T pxq at location x.

The existence of such a tensor field T pxq is motivated by experimental results for

simulating fingerprints [KH95, KC13], but due to the generality of the definition of

the forces, model (5.1) can be regarded as a prototype for understanding complex

phenomena in nature. Since an alignment of mass along the local stress lines is

observed, we define the tensor field T pxq by the directions of smallest stress at

location x, i.e. we consider a unit vector field s “ spxq P R2 and introduce a

corresponding orthonormal vector field l “ lpxq P R2, representing the directions of

largest stress. The tensor field T pxq at x is given by (1.5), i.e.

T pxq :“ χspxq b spxq ` lpxq b lpxq P R2,2. (5.3)

The parameter χ P r0, 1s in the definition of the tensor field introduces an anisotropy
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in the direction s.

A typical aspect of aggregation models is the competition of social interactions

(repulsion and attraction) between the particles which is also the focus of our re-

search. Hence, we assume that the total force F is given by

F px´ y, T pxqq “ FApx´ y, T pxqq ` FRpx´ yq. (5.4)

Here, FR denotes the repulsion force that a particle at location y exerts on particle

at location x and FA is the attraction force a particle at location y exerts on particle

at location x. The repulsion and attraction forces are of the form

FRpd “ dpx, yqq “ fRp|d|qd

and

FApd “ dpx, yq, T pxqq “ fAp|d|qT pxqd,

respectively, with radially symmetric coefficient functions fR and fA, where, again,

d “ dpx, yq “ x ´ y P R2. An example for the force coefficients fR and fA was

suggested by Kücken and Champod [KC13], given by

fRpdq “ pα|d|
2
` βq expp´eR|d|q (5.5)

and

fApdq “ ´γ|d| expp´eA|d|q (5.6)

for nonnegative constants α, β, γ, eA and eR, and d “ pd1, d2q P R2. We assume

that the total force (5.4) exhibits short-range repulsion and long-range attraction

along l, and only repulsion along s, while the direction of the interaction forces

is determined by the parameter χ P r0, 1s in the definition of T in (5.3). These

assumptions on the force coefficients are satisfied for the parameters proposed in

[DGH`19], given by

α “ 270, β “ 0.1, γ “ 10.5, eA “ 95, eR “ 100, χ “ 0.2. (5.7)

Motivated by plugging (5.3) into the definition of the total force (5.4), we consider
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a more general form of the total force, given by

F pd “ dpx, yq, T pxqq “ fsp|d|qpspxq ¨ dqspxq ` flp|d|qplpxq ¨ dqlpxq (5.8)

for coefficient functions fs and fl, where fs “ fR ` χfA and fl “ fR ` fA for the

Kücken-Champod model.

The macroscopic model (5.1) can be regarded as the macroscopic limit of an

anisotropic particle model as the number of particles N goes to infinity. The N

interacting particles with positions xj “ xjptq P R2, j “ 1, . . . , N, at time t satisfy

(1.4), i.e.

dxj
dt

“
1

N

N
ÿ

k“1
k‰j

F pxj ´ xk, T pxjqq, (5.9)

equipped with initial data xjp0q “ xinj , j “ 1, . . . , N , for given scalars xinj , j “

1, . . . , N . A special instance of this model has been introduced in [KC13] for

simulating fingerprint patterns. The particle model in its general form (5.9) has

been studied in [BDK`18, CDKS18, DGH`19]. In particular, the particles align in

line patterns according to the underlying fields s “ spxq and l “ lpxq [BDK`18,

CDKS18, DGH`19]. Due to the purely repulsive forces along s and the short-range

repulsive, long-range attractive forces along l, we prove for spatially homogeneous

tensor fields that the stationary solution consists of line patterns along s. These sta-

tionary solutions to (5.1) can be regarded as solutions with one-dimensional support

and are constant along s. For general tensor fields, we observe from the numerical

simulations that line patterns can be obtained as stationary solutions.

Since our fingerprint lines do not have a one-dimensional support and, in fact,

have a certain width, we widen the support of the line structures by introducing

a small nonlinear diffusion on the right-hand side of (5.1), leading to the nonlocal

aggregation equation with nonlinear diffusion

Btρpt, xq `∇x ¨ rρpt, xqpF p¨, T pxqq ˚ ρpt, ¨qqpxqs “ δ∇x ¨ pρpt, xq∇xρpt, xqq in R` ˆ R2

(5.10)

where δ ! 1. In particular, for the spatially homogeneous tensor field T with

s “ p0, 1q and l “ p1, 0q straight vertical lines are obtained as stationary solutions

[BDK`18, CDKS18, DGH`19] which can be regarded as constant solutions along the

vertical axis. For solutions of this form, the diffusion term only acts perpendicular
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to the line patterns and not parallel. Hence, a positive diffusion coefficient δ leads

to nonlinear diffusion along the horizontal axis and we expect the widening of the

vertical line profile.

5.1.1 Isotropic aggregation equations

While we consider anisotropic aggregation equations of the form (5.1) in this chapter,

mainly isotropic aggregation equations [BCL09, BSK`15, KSUB11, Lau07] of the

form (1.3), i.e.

ρt `∇ ¨ pρp´∇W ˚ ρqq “ 0 (5.11)

for a radially symmetric interaction potentialW pdq “ W p|d|q with F pdq “ ´∇W pdq,
have been studied in the literature. In particular, the study of the isotropic aggre-

gation equations in terms of its gradient flow structure [AGS05, CMV03, CMV06,

LT04, Vil03], the blow-up dynamics for fully attractive potentials [BCL09, BLL12,

CDFF`11, CJLV16], and the rich variety of steady states [BCLR13a, BCLR13b,

BCY14, BT11, BLL12, CCP15, CDM16, CFF`12, CFP12, FR10, FR11, Rao12,

vBU12, vBUKB12] has attracted the interest of many research groups recently. In

these works, the energy

Epρq “ 1

2

ˆ
Rd

ˆ
Rd
W px´ yq dρpxq dρpyq (5.12)

in the d-dimensional setting plays an important role since it governs the dynamics,

and its (local) minima describe the long-time asymptotics of solutions. Sharp condi-

tions for the existence of global minimisers for a broad class of nonlocal interaction

energies on the space of probability measures have been established in [SST15].

In terms of biological applications, nonlocal interactions on different scales [BT11,

EKWG98, MEK99] are considered for describing the interplay between short-range

repulsion which prevents collisions between individuals, and long-range attraction

which keeps the swarm cohesive [MEKBS03, OL01]. These repulsive-attractive po-

tentials can be considered as a minimal model for pattern formation in large systems

of individuals [BCLR13b]. The 1D nonlocal interaction equation with a repulsive-

attractive potential has been studied in [FR10, FR11, Rao12] where the authors

show that the behaviour of the solution strongly depends on the regularity of the

interaction potential. More precisely, the solution converges to a sum of Dirac

masses for regular interaction, while it remains uniformly bounded for singular re-
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pulsive potentials. Pattern formation for repulsive-attractive potentials in multiple

dimensions is studied in [BSK`15, KSUB11, vBU12, vBUKB12].

It has been observed that even for quite simple repulsive-attractive potentials

the energy minimizers are sensitive to the precise form of the potential and can

exhibit a wide variety of patterns [KHP13, KSUB11, vBUKB12]. Nonlocal inter-

action models have been studied for specific types of repulsive-attractive potentials

[BCLR13a, CCH14b, CFP17, CH17, CJLV16, FHK11]. In [BCLR13a], conditions

for the dimensionality of the support of local minimisers of (5.12) are obtained in

terms of the repulsive strength of the potential W at the origin. Minimizers for the

special class of repulsive-attractive potential which blow up approximately like the

Newtonian potential at the origin have also been studied [CDM16, FHK11].

Very few numerical schemes apart from particle methods have been proposed

to simulate solutions of isotropic aggregation equations after blow-up. The so-

called sticky particle method [CDFF`11] is a convergent numerical scheme, used to

obtain qualitative properties of the solution such as the finite time total collapse.

While numerical results have been obtained in the one-dimensional setting [JV13],

this method is not practical to deal with finite time blow-up and the behavior of

solutions after blow-up in dimensions larger than one. Let the solution to (5.1)

with initial data ρin be denoted by ρ and the solution of the particle model (5.9)

with initial data ρin,N be denoted by ρNptq “ 1
N

řN
j“1 δpx´ xjptqq at time t ě 0. If

F “ ´∇W for some radially symmetric potential W and the initial data satisfies

dW pρ
in, ρin,Nq Ñ 0 as N Ñ 8 in the Wasserstein distance dW , then

sup
tPr0,T s

dW pρptq, ρ
N
ptqq Ñ 0.

for any given T ą 0 [CJLV16]. From the theoretical viewpoint, this is a very nice

result, but in practice a very large number of particles is required for numerical

simulations of the particle model (5.9) to obtain a good control on the error after a

long time. Nevertheless, particle simulations lead to a very good understanding of

qualitative properties of solutions for aggregation equations where collisions do not

happen [BCLR13a, BSK`15, BDK`18, DGH`19, vBU12, vBUKB12]. For the one-

dimensional setting with a nonlinear dependency of the term∇W ˚ρ, a finite volume

scheme for simulating the behaviour after blow-up has been proposed in [JV15] and

its convergence has been shown. Extremely accurate numerical schemes have been

developed to study the blow-up profile for smooth solutions [HB12, HB10]. An

energy decreasing finite volume method for a large class of PDEs including (5.11)
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has been proposed in [CCH14a] and a convergence result for a finite volume scheme

with general measures as initial data has been shown in [CJLV16]. In particular, this

numerical scheme leads to numerical simulations of solutions in dimension greater

than one.

The isotropic aggregation equation (5.11) may also be modified to include linear

or nonlinear diffusion terms [CCY19]. While a linear diffusion term can be used to

describe noise at the level of interacting particles, a nonlinear diffusion term can

be used to model a system of interacting particles at the continuum level, and can

be expressed by a repulsive potential. To see the latter, we consider the potential

Wδ “ W ` δδ0 for a parameter δ ą 0 and the Dirac delta δ0, inducing an additional

strongly localised repulsion. This corresponds to a PDE with nonlinear diffusion

which is given by

ρt `∇ ¨ pρp´∇W ˚ ρqq “ δ∇ ¨ pρ∇ρq.

More generally, adding nonlinear diffusion in (5.11) results in the class of aggregation

equations

ρt `∇ ¨ pρp´∇W ˚ ρqq “ δ∇ ¨ pρ∇ρm´1
q (5.13)

with diffusion coefficient δ ą 0 and a real exponent m ą 1. Of central importance

for studies of (5.13) is its gradient flow formulation [AGS05] with respect to the

energy

Eδpρq “
1

2

ˆ
Rd
ρpW ˚ ρ` δρm´1

q dx. (5.14)

In particular, stationary states of (5.13) are critical points of the energy (5.14).

The existence of global minimisers of (5.14) has recently been studied in [Bed11]

using techniques from the calculus of variations. While radially symmetric and

non-increasing global minimisers exist for m ą 2, the case m “ 2 is critical and

yields a global minimiser only for small enough diffusion coefficients δ ą 0. Burger

et al. [BDFF13] have shown that the threshold for δ is }W }L1 for m “ 2. Energy

considerations have also been employed in [BD08] to study the large time behaviour

of solutions to (5.13) in one dimension. The existence of finite-size, compactly

supported stationary states for the general power exponent m ą 1 is investigated

in [BFH14].
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5.1.2 Contributions

In this chapter, we consider the anisotropic counterparts of the isotropic aggrega-

tion equations (5.11) and (5.13) with m “ 2 which are given by (5.1) and (5.10),

respectively. No gradient flow formulation exists in this case. As a first aim of this

chapter, we derive equilibrium conditions for stationary line patterns of (5.1) and

(5.10) which can be regarded as minimisers of an energy functional, we prove the

convergence of minimisers as δ Ñ 0, and we investigate the dependence of stationary

solutions on the diffusion constant δ. The second aim of this chapter is to investigate

the dependence of the diffusion coefficient δ on stationary solutions numerically by

considering an appropriate numerical scheme for the anisotropic interaction equa-

tion (5.10) without gradient flow structure. The numerical scheme and its analysis

is based on [CCH14a, CJLV16].

This chapter is organised as follows. In Section 5.2, we consider stationary

solutions for general underlying tensor fields, while we restrict ourselves to spatially

homogeneous tensor fields in Section 5.3 whose support is given by line patterns.

For this case, we derive equilibrium conditions which can be reformulated as the

minimisers of an energy functional. We show the existence of energy minimisers, and

prove Γ-convergence of the regularised energies and the convergence of minimisers

of the regularised energies to minimisers of the non-regularised energy functional as

the diffusion coefficient goes to zero. Finally, we consider a numerical scheme for

the anisotropic, nonlocal aggregation equation with nonlinear diffusion (5.10), prove

its weak convergence as the diffusion coefficient goes to zero, and show numerical

results in Section 5.4.

5.2 Stationary solutions for general tensor fields

In this section, we study the equilibria of the nonlocal aggregation equation with

nonlinear diffusion (5.10). Since most applications of (5.10) require measure-valued

solutions, we consider nonnegative solutions ρ ě 0 only.

The stationary solutions ρ8 “ ρ8px, yq for px, yq P R2 satisfy

∇ ¨ rρ8pF p¨, T px, yqq ˚ ρ8 ´ δ∇ρ8qs “ 0 a.e. in R2,

implying that the argument has to be constant a.e. in R2. Since we are interested

in stationary line patterns, the stationary solution ρ8 should satisfy supp ρ8 Ĺ R2
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for small diffusion coefficients δ ą 0 and hence it is sufficient to require

ρ8pF p¨, T px, yqq ˚ ρ8 ´ δ∇ρ8q “ 0 a.e. in R2, (5.15)

or equivalently

F p¨, T px, yqq ˚ ρ8 “ δ∇ρ8 on supppρ8q.

Integrating the first equality in (5.15) with respect to x and the second equality

with respect to y, we obtain

1

δ

ˆ x

x̃

pF p¨, T pξ, yqq ˚ ρ8qpξ, yq dξ ` c1pyq “ ρ8px, yq ´ ρ8px̃, yq,

1

δ

ˆ y

ỹ

pF p¨, T px, ηqq ˚ ρ8qpx, ηq dη ` c2pxq “ ρ8px, yq ´ ρ8px, ỹq,

for px, yq, px̃, yq, px, ỹq P supppρ8q where the functions c1, c2 can be determined

uniquely. This results in the fixed point form

ρ8px, yq “
1
δ

´ x
x̃
F p¨, T pξ, yqq ˚ ρ8pξ, yq dξ ` c1pyq ` ρ8px̃, yq˜

supppρ8q

1
δ

´ x
x̃
F p¨, T pξ, yqq ˚ ρ8pξ, yq dξ ` c1pyq ` ρ8px̃, yq dpx, yq

.

5.3 Stationary solutions for spatially homogeneous

tensor fields

In this section, we consider stationary solutions for spatially homogeneous tensor

fields. While anisotropic forces cannot be associated with a potential in general

and stationary solutions of anisotropic aggregation equations generally cannot be

regarded as minimizers of an energy functional, the idea of this section is to derive

conditions for stationary solutions of (5.1) and (5.10) so that stationary line pat-

terns can be obtained by minimising energy functionals which depend on a scalar

potential. In particular, this dimension reduction will allow us to study the as-

sociated one-dimensional problem instead of the two-dimensional setting. Using

these energy functionals, we show the existence of energy minimisers, establish Γ-

convergence of a regularised energy functional with vanishing diffusion, and prove

the convergence of minimisers of the regularised energy functional to minimisers of

the non-regularised energy functional.
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5.3.1 Notation and assumptions

The aim of this section is to derive a scalar force and its scalar potential in one

variable that can be used to define the associated regularised and non-regularised

energy functionals. For this, we study some properties of stationary solutions for

spatially homogeneous tensor fields first.

As in [BDK`18] one can show that a steady state of (5.10) for any spatially

homogeneous tensor field T̃ is a coordinate transform of a steady state to the mean-

field equation (5.10) for the tensor field T with l “ p1, 0q and s “ p0, 1q. Due

to the choice of the tensor field T , we restrict ourselves to vertical line patterns

as steady states in the following, i.e. we consider stationary solutions which are

constant along the y-direction. To guarantee the existence of probability measures

which are constant along the y-direction, we consider the domain Ω “ Rˆr´0.5, 0.5s

instead of R2 in this section. This assumption on the domain leads to stationary

solutions on Ω of the form

ρ8px, yq “ ρ8px, 0q for a.e. y P r´0.5, 0.5s. (5.16)

Note that this assumption on the domain Ω is not restrictive and by appropriate

rescaling similar results can be obtained for any domain of the form R ˆ ra, bs for

any a, b P R with a ă b.

The special form (5.16) of the stationary solutions motivates the definition of the

space PcpΩq of probability measures which are constant in y-direction. We define

the space PcpΩq by

PcpΩq “
"

ρ P L1
`pΩq :

ˆ
Ω

ρ dpx, yq “ 1, ρpx, yq “ ρpx, 0q for a.e. y P r´0.5, 0.5s

*

.

Denoting the components of F by Fx, Fy for d P Ω, respectively, i.e. F pdq “

pFxpdq, Fypdqq for d P Ω, we extend Fx, Fy and ρ8, defined on Ω, periodically on

R2 with respect to the y-coordinate, if required, so that the convolution integrals

Fxp¨, T q ˚ ρ8, Fyp¨, T q ˚ ρ8 can be evaluated. Since the total force F in (5.8) reduces

to

F pd, T q “

¨

˚

˝

flp|d|qd1

fsp|d|qd2

˛

‹

‚
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for the spatially homogeneous tensor field with l “ p1, 0q and s “ p0, 1q, we have

Fxpdq “ flp|d|qd1 and Fypd, T q “ fsp|d|qd2 for d “ pd1, d2q. For ρ8 satisfying (5.16),

we have Fyp¨, T q ˚ ρ8 “ 0 since Fy is an odd function in the y-coordinate and

Fyp¨, T q ˚ ρ8 is periodically extended along the y-coordinate. In particular, the

second equality in (5.15) is trivial. The convolution Fx ˚ ρ8 is of the form

Fx ˚ ρ8px, yq “

¨

Ω

Fxpw, zqρ8px´ w, y ´ zq dpw, zq

“

¨

Ω

Fxpx´ w, y ´ zqρ8pw, zq dpw, zq

“

ˆ
R
ρ8pw, 0q

ˆ
r´0.5,0.5s

Fxpx´ w, y ´ zq dz dw.

Since a scalar force in one variable is required for a dimension reduction, this mo-

tivates to introduce a scalar odd function G : RÑ R defined by

Gpxq “

ˆ
r´0.5,0.5s

Fxpx, zq dz “ x

ˆ
r´0.5,0.5s

flp
?
x2 ` z2q dz (5.17)

where Gp0q “ 0. Due to the periodic extension of Fx along the y-coordinate, we

have Gpxq “
´
r´0.5,0.5s

Fxpx, y ´ zq dz for any y P r´0.5, 0.5s. Hence, there exists an

interaction potential W : RÑ R which is even and such that

G “ ´
d

dx
W. (5.18)

For the analysis in the following sections, we require rather relaxed conditions on

the potential W :

Assumption 8. For the interaction potential W satisfying (5.18), we require

(A1). W is even, i.e. W pxq “ W p´xq.

(A2). W is continuous.

(A3). W is locally integrable on Ω.

(A4). W pxq Ñ 0 as |x| Ñ 8.

(A5). There exist δ̄ ą 0 and a measure ρ̄ P PcpΩq such that Eδ̄pρ̄q ď 0.

(A6). There exists some xW ą 0 such that

W pxq ď 0 for 0 ď |x| ď xW and W pxq ă 0 for some x P p0, xW q. (5.19)
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Using the potential W , we define the energy functional

Epρ8q :“
1

2

¨

Ω

ρ8pW ˚ ρ8q dpx, yq (5.20)

where W ˚ρ8px, yq is regarded as the convolution with respect to the first coordinate,

i.e.

W ˚ ρ8px, yq “

ˆ
R
W px´ wqρ8pw, yq dw, (5.21)

which is constant with respect to the second coordinate. The regularisation of the

energy E is defined as

Eδpρ8q :“
1

2

¨

Ω

ρ8pW ˚ ρ8 ` δρ8q dpx, yq (5.22)

on PcpΩq.

Remark 16. Note that assumptions (A1), (A2), (A3), (A4) are rather relaxed

conditions and allow us to consider a rather general class of interaction poten-

tials, including the one that can be derived from G based on Fx in the Kücken-

Champod model. In particular, the interaction potential W pxq satisfies W p0q “ 0

and is bounded. Besides, the energy E : PcpΩq Ñ R in (5.22) is weakly lower semi-

continuous with respect to weak convergence of measures.

Assumption (A5) is required for establishing the existence of minimisers of the en-

ergy Eδ in (5.22). In particular, it follows from (A5) that there exists a measure

ρ̄ P PcpΩq such that Eδpρ̄q ď 0 for all 0 ď δ ď δ̄. Assumption (A5) also implies

that there exists x P p0, xW q such that W pxq ă 0.

Assumption (A6) is motivated by the form of the force F in (5.4) which exhibits

short-range repulsion and long-range attraction forces along l. Hence, there exists a

constant da ą 0 such that

pfA ` fRqp|d|q ď 0 for |d| ą da and pfA ` fRqp|d|q ą 0 for 0 ď |d| ă da.

A slightly stronger condition is given by the existence of some xG ą 0 such that

Gpxq ě 0 for 0 ď x ď xG, (5.23)

where G is defined in (5.17). Then, (A6) follows from (5.18). Note that condition
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(5.19) in (A6) is necessary for (A5) for δ ą 0 and sufficient for (A5) for δ ě 0.

Remark 17. Assumption (A5) is not restrictive which is shown by the following

examples for ρ̄ P PcpΩq which satisfies (A5), provided (A6) holds. We consider

ρ̄ “ 1
|QW |

χQW where QW “ r´xW {2, xW {2sˆr´0.5, 0.5s. The non-regularised energy

E in (5.20) is clearly negative and for δ ą 0 sufficiently small, assumption (A5) is

satisfied, provided (A6) holds. More generally, ρ̄ “ 1
|QW px̄q|

χQW px̄q satisfies (A5) for

any x̄ P p0, xW,maxq where

xW,max “ sup

"

x̄ ą 0:

ˆ x̄

0

W psq ds ď 0

*

ą xW

and QW px̄q “ r´x̄{2, x̄{2s ˆ r´0.5, 0.5s, provided (A6) holds.

Another example for measures satisfying (A5) are mollified delta distributions.

Note that ρ̄px, yq “ δpxq P PcpΩq satisfies (A5) for E since

¨

Ω

ρ8pW ˚ ρ8q dpx, yq “ W p0q “ 0.

Further note that for the one-dimensional heat kernel

φpxq “
1
?

4π
exp

ˆ

´
|x|2

4

˙

we consider the rescaled kernel

φεpx, yq “
1
?
ε
φ

ˆ

x
?
ε

˙

.

Due to property (5.19) of W we can choose ε ą 0 and δ ą 0 sufficiently small such

that Eδpφεq ď 0.

The above examples show that for ρ8 with compact, connected support (A5) is

satisfied. Similarly, for any δ ą 0, the first term of the energy functional Eδ in

(5.22) is negative provided the support of ρ8 is sufficiently small in the x-direction

and (A6) holds. Hence, the parameter δ ą 0 can be chosen sufficiently small so

that (A5) is satisfied.
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5.3.2 Equilibrium conditions

Using the interaction potential W , the condition for equilibria in (5.15) can be

reformulated as

ρ8BxpW ˚ ρ8 ` δρ8q “ 0 a.e. in Ω (5.24)

where the convolution W ˚ ρ8 is given by (5.21). Hence, we require

W ˚ ρ8 ` δρ8 “ C on supppρ8q (5.25)

for some constant C P R. Note that we obtain by multiplying (5.25) by ρ8 and

integrating over supppρ8q

¨

supppρ8q

ρ8px, yqW ˚ ρ8px, yq dpx, yq ` δ

¨

supppρ8q

ρ2
8px, yq dpx, yq “ C,

where the unit mass of ρ8 was used. In particular, this shows that C “ Cpδq P R
is uniquely determined and the integral equation (5.25) may be expressed in the

equivalent fixed point form

ρ8px, yq “
C ´W ˚ ρ8˜

supppρ8q

C ´W ˚ ρ8 dpx, yq
.

Clearly, the fixed point form is consistent with (5.16) and the dependence of ρ8 on

δ follows from C “ Cpδq.

It has been shown in [BDFF13] for non-trivial stationary states for purely repul-

sive potentials in the set L2pRdq X PpRdq with d ě 1 that minimisers are sufficient

for solving the equilibrium conditions. A similar results can be shown in our set-

ting of more general potentials and stationary states in the space L2pΩq X PcpΩq
whose elements satisfy (5.16) in addition. In particular, a minimiser of the energy

functional (5.22) is sufficient for solving (5.24).

Proposition 9 (Stationary solutions via energy minimisation). Let ρ8 P L
2pΩq be

a minimiser for the energy functional (5.22) on PcpΩq which is of the form (5.16).

Then, ρ8 satisfies (5.15).
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5.3.3 Existence and convergence of minimisers

Motivated by Proposition 9, we consider the energy functionals E and Eδ, defined

in (5.20) and (5.22). For the existence and convergence of minimisers, we have

to verify that an energy minimising sequence is precompact in the sense of weak

convergence of measures, and prove a Γ-convergence result. For this, we use Lions’

concentration compactness lemma for probability measures [Lio84], [Str00, Section

4.3] and reformulate it to our setting.

Lemma 5 (Concentration-compactness lemma for measures). Let tρnunPN Ă PcpΩq.
Then, there exists a subsequence tρnkukPN satisfying one of the three following pos-

sibilities:

(i) (tightness up to transition) There exists zk P Ω such that for all ε ą 0 there

exists R ą 0 satisfying

ˆ
BRpzkqXΩ

dρnkpx, yq ě 1´ ε for all k;

(ii) (vanishing)

lim
kÑ8

sup
zPΩ

ˆ
BRpzqXΩ

dρnkpx, yq “ 0 for all R ą 0;

(iii) (dichotomy) There exists α P p0, 1q such that for all ε ą 0 there exists R ą 0

and a sequence tzkukPN Ă Ω with the following property:

Given any R1 ą R there are nonnegative measures ρ1
k and ρ2

k such that

0 ď ρ1
k ` ρ

2
k ď ρnk ,

supppρ1
kq Ă BRpzkq X Ω,

supppρ2
kq Ă ΩzBR1pzkq,

lim sup
kÑ8

ˆ
ˇ

ˇ

ˇ

ˇ

α ´

ˆ
Ω

dρ1
kpx, yq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

p1´ αq ´

ˆ
Ω

dρ2
kpx, yq

ˇ

ˇ

ˇ

ˇ

˙

ď ε.

For proving the existence of minimisers of the energy functional (5.22), one can

use the direct method of the calculus of variations and Lemma 5 to eliminate the

cases ‘vanishing’ and ‘dichotomy’ of an energy minimising sequence. The proof of

the existence of minimisers of the regularised energy Eδ in (5.22) is very similar to

the one for the non-regularised energy E , provided in [SST15, Theorem 3.2]:
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Proposition 10 (Existence of minimisers). Suppose W satisfies assumptions (A1),

(A2), (A3) and (A4). Then, the regularised energy Eδ in (5.22) has a global

minimiser in PcpΩq if and only if it satisfies (A5). The non-regularised energy E
in (5.20) has a global minimiser in PcpΩq if and only if (A5) is satisfied for E.

Remark 18. Let δ ą 0 be given. To see the necessity of assumption (A5) for the

existence of minimisers, assume that Eδpρq ą 0 for all ρ P PcpΩq. We consider a

sequence of measures which ‘vanishes’ in the sense of Lemma 5(2). Let

ρpx, yq “ χQ1px, yq,

where Qn denotes the rectangle r´0.5n, 0.5nsˆr´0.5, 0.5s for n ě 1, and χQn denotes

the characteristic function of Qn. We consider the sequence

ρnpx, yq “
1

n
ρ
´x

n
, y
¯

for n ě 1. Then, ρn P PcpΩq and

0 ă Eδpρnq “
1

n2

¨

Qn

ˆ
r´0.5n,0.5ns

W px´ wq dw dpx, yq `
δ

n2

¨

Qn

dpx, yq

“
1

n2

¨

Qn

¨

Qn

W px´ wq dpw, zq dpx, yq `
δ

n

ď
1

n2

¨

Qn

¨

px,0q`Qn

|W pwq| dpw, zq dpx, yq `
δ

n

ď
1

n

¨

˚

˝

¨

QR

|W pxq| dpx, yq `

¨

Q2nzQR

|W pxq| dpx, yq ` δ

˛

‹

‚

ď
CpRq

n
` 2 sup

|x|ěR

|W pxq| `
δ

n

for any R ą 0 where

CpRq :“

¨

QR

|W pxq| dpx, yq.

Due to (A4) we have sup|x|ěR |W pxq| Ñ 0 as R Ñ 0, implying that for any ε ą 0

we can choose R so that 2 sup|x|ěR |W pxq| ă
ε
2
. Then, we can choose n large enough
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so that CpRq`δ
n

ă ε
2

holds. Hence, limnÑ8 Eδpρnq=0, implying

inf
ρPPcpΩq

Eδpρq “ 0.

Since Eδpρq ą 0 for all ρ P PcpΩq, Eδ does not have a minimiser in PcpΩq.

Theorem 5 (Γ-convergence of regularised energies). Suppose that W satisfies (A1),

(A2), (A3) and (A4). The sequence of regularised energies tEδuδą0 Γ-converges

to the energy E with respect to the weak convergence of measures. That is,

• (Liminf) For any tρδuδą0 Ă PcpΩq and ρ P PcpΩq such that ρδ converges

weakly to ρ as δ Ñ 0, we have

lim inf
δÑ0

Eδpρδq ě Epρq.

• (Limsup) For any ρ P PcpΩq there exists a sequence tρδuδą0 P PcpΩq such that

ρδ converges weakly to ρ as δ Ñ 0 and

lim sup
δÑ0

Eδpρδq ď Epρq.

Proof. Step 1 (Liminf): Since W is lower semi-continuous and bounded from below,

the weak lower semi-continuity of the first term in the energy functional Eδ in (5.22)

follows from the Portmanteau Theorem [vdVW96, Theorem 1.3.4], i.e.

lim inf
δÑ0

1

2

¨

Ω

ρδpW ˚ ρδq dpx, yq ě
1

2

¨

Ω

ρpW ˚ ρq dpx, yq.

Together with

lim inf
δÑ0

δ

2

¨

Ω

ρ2
δ dpx, yq ě 0,

the liminf inequality immediately follows.

Step 2 (Limsup): Let µ P PcpΩq be given, let

φpxq “
1
?

4π
exp

ˆ

´
|x|2

4

˙
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denote the one-dimensional heat kernel and define

φδpxq “
1
?
δ
φ

ˆ

x
?
δ

˙

.

Note that φ P C8pΩq, φpx, yq “ φp´x, yq for all px, yq P Ω, φ is constant in y, and

¨

Ω

φ dpx, yq “ 1.

In particular, |φδ| ď
Cφ?
δ

where Cφ denotes the bound of φ. We define the measure

ρδ :“ φδ ˚ ρ which converges weakly to ρ in PcpΩq. Note that

δ

¨

Ω

ρ2
δ dpx, yq ď Cφ

?
δ

¨

Ω

ρδ dpx, yq “ Cφ
?
δ Ñ 0 as δ Ñ 0.

Due to the continuity of W , the term ´
˜
Ω

ρpW ˚ ρq dpx, yq is weakly lower semi-

continuous and

lim sup
δÑ0

1

2

¨

Ω

ρδpW ˚ ρδq dpx, yq ď
1

2

¨

Ω

ρpW ˚ ρq dpx, yq,

resulting in the limsup inequality.

Theorem 6 (Convergence of minimisers). Suppose that W satisfies (A1), (A2),

(A3) and (A4). For any δ̄ ą 0 sufficiently small, suppose that Eδ̄ satisfies (A5)

and let ρδ P PcpΩq be a minimiser of the energy Eδ in (5.22) for all 0 ă δ ď δ̄. Then,

there exists ρ P PcpΩq such that, up to a subsequence and translations, ρδ converges

weakly to ρ as δ Ñ 0, and ρ minimises the energy E over PcpΩq.

Proof. Let tρδuδą0 Ă PcpΩq be a sequence of minimisers of Eδ. For δ̄ ą 0 sufficiently

small, we may assume that Eδpρδq ď 0 for all 0 ă δ ď δ̄ since ρδ minimises Eδ. As

in [SST15, Theorem 3.2] one can eliminate the cases ‘vanishing’ and ‘dichotomy’ in

Lemma 5, implying that there exists a subsequence tρδkukPN satisfying ‘tightness up

to translation’, i.e. there exists zk P Ω such that for all ε ą 0 there exists R ą 0

satisfying

ˆ
BRpzkqXΩ

dρδkpx, yq ě 1´ ε for all k.

We define ρ̃δk :“ ρδkp¨ ´ zkq and hence tρ̃δkukPN is tight. Since Eδkpρδkq “ Eδkrρ̃δks,
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tρ̃δkukPN is also a sequence of minimisers of Eδk and by Prokhorov’s Theorem (cf.

[Bil71, Theorem 4.1]) there exists a further subsequence tρ̃δkukPN, not relabelled,

such that ρ̃δk converges weakly to some measure ρ P PcpΩq as k Ñ 8.

For showing that the measure ρ minimises the energy functional E , we consider

an arbitrary measure µ P PcpΩq. By the limsup inequality in Theorem 5, there

exists a sequence tµδkukPN which converges weakly to µ as k Ñ 8 such that

lim sup
kÑ8

Eδkpµδkq ď Epµq.

Together with the liminf inequality in Theorem 5, this yields

lim
kÑ8
Eδkpµδkq “ Epµq.

Since the sequence of measures ρ̃δk is a minimising sequence of Eδk which converges

weakly to ρ, we obtain, again by the liminf inequality,

Epρq ď lim inf
kÑ8

Eδkpρ̃δkq ď lim inf
kÑ8

Eδkpµδkq “ Epµq.

5.3.4 Properties of stationary solutions

Note that the odd function G, defined by Gpxq “
´
r´0.5,0.5s

Fxpx, zq dz in (5.17), is

nonnegative for x ě 0 for the force Fx in the Kücken-Champod model, see Sec-

tion 5.1 for the precise definition of the force coefficients. Since G “ ´ d
dx
W , we can

make stronger assumptions on G and W than in (5.23) and (5.19), respectively, and

we assume in this subsection that

W 1
pxq “ Gpxq ě 0 for all x ě 0 (5.26)

and

W pxq ď 0 for all |x| ě 0. (5.27)

In particular, the assumptions on the potential W for the one-dimensional results

in [BDFF13] are satisfied and the results also hold for the stationary states ρ8

satisfying (5.16). We obtain:

Corollary 8. Let δ ą 0 be given.
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• If δ ě }W }L1, there exists no stationary solution ρ8 in L2XPcpΩq of the form

(5.16) which satisfies (5.15).

• If δ ă }W }L1, there exists a minimiser ρ8 P L
2XPcpΩq of the energy functional

(5.22) which is symmetric in x, non-increasing on x ě 0, and of the form

(5.16).

To relate the cases δ ă }W }L1 and δ ě }W }L1 to assumption (A5) note that

´

¨

Ω

ρ8W ˚ ρ8 dpx, yq ď }W }L1

¨

Ω

ρ2
8 dpx, yq

by Young’s convolution inequality and property (5.27) of W , implying

Eδpρ8q “
1

2

¨

Ω

ρ8pW ˚ ρ8 ` δρ8q dpx, yq ě
δ ´ }W }L1

2

¨

Ω

ρ2
8 dpx, yq

and hence, a necessary condition for (A5) is given by δ ď }W }L1 .

Due to conditions (5.26) and (5.27), properties of the stationary solution of the

one-dimensional case in [BDFF13] can also be extended to our setting:

Proposition 11. For any given L ą 0 there exists a unique symmetric function ρδ P

C2pr´L,Ls ˆ r´0.5, 0.5sq with unit mass, ρδpx, yq “ ρδpx, 0q for all y P r´0.5, 0.5s,

and Bxρδpx, yq ď 0 for x ě 0, y P r´0.5, 0.5s, such that ρδ solves (5.25) for some

δ “ δpLq ą 0 where C “ 2Eδpρδq in (5.25). Such a function ρδ also satisfies

B2
xρδp0, yq ă 0 for all y P r´0.5, 0.5s. Moreover, δpLq is the largest eigenvalue of the

compact operator

WLrρδspxq : “

ˆ L

0

ρδpw, 0q

ˆ

W px´ wq `W px` wq ´W pL´ wq ´W pL` wq

˙

dw

on the Banach space

YL :“ tρδ P Cpr0, Ls ˆ r´0.5, 0.5sq : ρδpL, yq “ 0 for all y P r´0.5, 0.5su.

The simple eigenvalue δpLq is uniquely determined as a function of L with the

following properties:

(i) δpLq is continuous and strictly increasing with respect to L,

(ii) limLÑ`δ δpLq “ }W }L1,
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5.3. Stationary solutions for spatially homogeneous tensor fields

(iii) δp0q “ 0.

Theorem 7. Let δ ă }W }L1. Then, there exists a unique ρδ P L
2XPcpΩq with unit

mass and zero centre of mass such that (5.24) is satisfied. Moreover,

• ρδ is symmetric in x and monotonically decreasing on x ą 0,

• ρδ P C2psupppρδqq,

• supppρδq is a bounded, connected set in Ω,

• ρδ has a global maximum at x “ 0, and B2
xρδp0, yq ă 0 for all y P r´0.5, 0.5s,

• ρδ is the global minimiser of the energy Eδ in (5.22).

5.3.5 Stationary solutions on the torus

To compare the analytical results to the numerical simulations, we consider the two-

dimensional unit torus T2, or equivalently, the unit square r´0.5, 0.5s2 with periodic

boundary conditions as the domain in this section. For minimisers ρδ of the energy

functional Eδ in (5.22), we require ρ8px, yq “ ρ8px, 0q for all y P r´0.5, 0.5s with

zero centre of mass. Note that the uniform distribution on r´0.5, 0.5s2 also satisfies

these conditions.

In contrast to steady states on Ω “ Rˆ r´0.5, 0.5s in Theorem 7, steady states

on the unit torus may not have connected support and may be composed of finitely

many stripes of equal width and equal distances between each other. To see this,

let us consider minimisers of the non-regularised energy E in (5.20), and suppose

that we have an odd number n of stripes first. Let

ρ8px, yq “
1

n

n
ÿ

k“1

δxkpxq (5.28)

for x1, . . . , xn P p´0.5, 0.5q with x1 ă . . . ă xn. We introduce the general velocity

field V P C1pr´0.5, 0.5sq such that V pxkq “ vk for some given v1, . . . , vn P R. Let

upx, y, sq be a local solution to the Cauchy problem

Bsu` BxpuV q “ 0,

upx, y, 0q “ ρ8px, yq.
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The evolution of the energy E in (5.20) along u at time s “ 0 is given by

d

ds
Epupx, y, sqq

ˇ

ˇ

ˇ

ˇ

s“0

“

ˆ
r´0.5,0.5s2

pW ˚ uqBsu dpx, yq

ˇ

ˇ

ˇ

ˇ

s“0

“

ˆ
r´0.5,0.5s2

ρ8V pW
1
˚ ρ8q dpx, yq

since ρ8p´0.5, yq “ ρ8p0.5, yq “ 0 for all y P r´0.5, 0.5s. Here, appropriate periodic

extensions of W 1 and ρ8 are considered in the convolution integral. Note that

ˆ
r´0.5,0.5s2

ρ8V BxpW ˚ ρ8q dpx, yq “
n
ÿ

k“1

vk

n
ÿ

j“1

W 1
pxk ´ xjq,

and we require d
ds
Epupx, y, sqq

ˇ

ˇ

s“0
“ 0 for minimisers of E for any velocity field V ,

implying

n
ÿ

j“1

W 1
pxk ´ xjq “

n
ÿ

j“1
j‰k

W 1
pxk ´ xjq “ 0, (5.29)

since W 1p0q “ Gp0q “ 0. For general potentials W , this condition can only be

satisfied for equidistant points x1, . . . , xn with

xk “
k

n
´
n` 1

2n
, k “ 1, . . . , n, (5.30)

since W 1pdq “ ´W 1p´dq for d P R2. In particular, any minimiser ρ8 of E of the

form (5.28) with zero centre of mass consisting of an odd number n of parallel lines

has to consist of n equidistant lines at locations xk in (5.30). The single straight

vertical line with zero centre of mass is included in the property of locations xk in

(5.30).

For an even number n of lines, we can proceed in a similar way as above. Con-

dition (5.29) implies that for minimisers ρ8 of E consisting of an even number of

lines the property W 1p´0.5q “ W 1p0.5q “ 0 is required in addition to equidistant

lines at locations xk in (5.30). Note that W 1p´0.5q “ W 1p0.5q “ 0 is equivalent to

flp0.5q “ 0 for the force coefficient fl in the definition of the force Fxpdq “ flp|d|qd.

More generally, for minimizers of E we require the measure

ρ8px, yq “
1

n

n
ÿ

k“1

δxkpxq
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for n P N arbitrary to be a periodic function of period 1
n
. This motivates to consider

measures ρ8 which are periodic of period 1
n

in x for some n P N, constant in y,

and whose support supppρ8q is not connected, i.e. supppρ8q consists of n connected

components Mk, k “ 1, . . . , n, with

Mk “Mj `
k ´ j

n
, j, k P t1, . . . , nu. (5.31)

We further assume that ρ8 is symmetric in x on Mk for k “ 1, . . . , n. Note that for

measures with zero centre of mass, we can assume without loss of generality that

ρ8p´0.5q “ ρ8p0.5q “ 0. For δ ą 0 and ρ8 P L
2pr´0.5, 0.5s2q, we may also consider

the regularised energy Eδ in (5.22). For the evolution of the energy Eδ, we obtain

d

ds
Eδpupx, y, sqq

ˇ

ˇ

ˇ

ˇ

s“0

“

ˆ
r´0.5,0.5s2

pW ˚ u` δuqBsu dpx, yq

ˇ

ˇ

ˇ

ˇ

s“0

“

ˆ
r´0.5,0.5s2

ρ8V BxpW ˚ ρ8 ` δρ8q dpx, yq.

For any velocity field V P C1pr´0.5, 0.5sq which is constant on each connected

component of supppρ8q with vk P R such that V pxq “ vk for all px, yq P Mk for

k “ 1, . . . , n, we have

δ

ˆ
r´0.5,0.5s2

ρ8V Bxρ8 dpx, yq “
δ

2

n
ÿ

k“1

vk

ˆ
Mk

Bxρ
2
8 dpx, yq “ 0

and due to the periodicity of ρ8 we obtain

ˆ
r´0.5,0.5s2

ρ8V BxpW ˚ ρ8q dpx, yq

“

n
ÿ

k“1

vk

ˆ
Mk

ρ8pW
1
˚ ρ8q dpx, yq

“

n
ÿ

k“1

vk

ˆ
Mk

ρ8px, yq
n
ÿ

j“1

ˆ
Mj

W 1
px´ wqρ8pw, zq dpw, zq dpx, yq.

Since W 1 is an odd function, we have

ˆ
Mk

ρ8px, yq

ˆ
Mk

W 1
px´ wqρ8pw, zq dpw, zq dpx, yq “ 0
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and

ˆ
Mk

ρ8px, yq

ˆ
Mk`j

W 1
px´ wqρ8pw, zq dpw, zq dpx, yq

“ ´

ˆ
Mk

ρ8px, yq

ˆ
Mk´j

W 1
px´ wqρ8pw, zq dpw, zq dpx, yq

due to the symmetry of ρ8 in x on each Mk and the translation property (5.31) of

two connected components of supppρ8q. Under the above assumptions, this implies

that ˆ
r´0.5,0.5s2

ρ8V BxpW ˚ ρ8q dpx, yq “ 0

for n odd, while for n even, we have to require in addition that W 1p´0.5q “

W 1p0.5q “ 0, i.e. flp0.5q “ 0, as before. Note that for general potentials W , the

conditions that ρ8 is symmetric in x on Mk, and all connected components Mk of

supppρ8q are of equal size, equidistant, and given by the translation property (5.31)

are necessary for minimisers ρ8 of Eδ for δ ě 0. In particular, this shows that the

energy functionals Eδ and E for probability measures defined on the torus T2 may

have multiple local minimisers due to the dependence on n. The support of these

minimisers may not be connected and may consist of a finite number of connected

components of equal size, satisfying the translation property (5.31). Besides, sym-

metry in x on each connected component Mk is required for minimisers, implying

the periodicity of minimisers in x.

5.4 Numerical scheme and its convergence

5.4.1 Numerical methods

For the numerical simulations, we consider the positivity-preserving finite-volume

method for nonlinear equations with gradient structure proposed in [CCH14a] for

isotropic interaction equations (5.11). We consider the domain R2 and extend the

scheme [CCH14a] to the anisotropic interaction equations with or without diffusion

in (5.10) or (5.1), respectively. This is achieved by replacing ´∇W by F p¨, T q,

requiring additional care in calculating the term pF p¨, T px, yqq ˚ ρpt, ¨qqpx, yq for

px, yq P R2 efficiently.

In two spatial dimensions, we consider a Cartesian grid, given by xi “ i∆x

and yj “ j∆y for i, j P Z. Let Cij denote the cell of the spatial discretisation
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5.4. Numerical scheme and its convergence

Cij “ rxi, xi`1q ˆ ryj, yj`1q, and let the time discretisation be given by tn “ n∆t

for n P Z. Let ρnij denote the approximation of the solution ρptn, xi, yjq to the

anisotropic nonlocal interaction equation with diffusion (5.10) with initial condition

ρ|t“0 “ ρin in R2 for a given probability measure ρin. Note that (5.10) can be

rewritten as

Btρ`∇ ¨ pρuρq “ δ∇ ¨ pρ∇ρq

where uρ is defined in (5.2) with

|uρpt, x, yq| ď f

for the uniform bound f of F . Assuming that ρin P P2pR2q where P2pR2q denotes

the space of probability measures with finite second order moment, we define its

discretisation

ρ0
ij “

1

∆x∆y

¨

Cij

ρin dpx, yq ě 0 (5.32)

for i, j P Z2. Since ρin is a probability measure, the total mass of the system is
ř

i,j ρ
0
ij∆x∆y “ 1 initially. Given an approximating sequence tρnijui,j at time n, we

consider the scheme

ρn`1
ij “ ρnij ´

∆t

∆x

´

puxq
n
i`1{2,jρ

n
i`1{2,j ´ puxq

n
i´1{2,jρ

n
i´1{2,j

¯

´
∆t

∆y

´

puyq
n
i,j`1{2ρ

n
i,j`1{2 ´ puyq

n
i,j´1{2ρ

n
i,j´1{2

¯

`
∆t

2∆x
f
`

ρni`1,j ´ 2ρnij ` ρ
n
i´1,j

˘

`
∆t

2∆y
f
`

ρni,j`1 ´ 2ρnij ` ρ
n
i,j´1

˘

`
δ∆t

2p∆xq2

´

pρni`1,jq
2
´ 2

`

ρnij
˘2
`
`

ρni´1,j

˘2
¯

`
δ∆t

2p∆yq2

´

pρni,j`1q
2
´ 2

`

ρnij
˘2
`
`

ρni,j´1

˘2
¯

(5.33)

for the uniform bound f of the force F and parameter δ ą 0. Here, we use the

notation

ρi`1{2,j “
ρij ` ρi`1,j

2
, ρi,j`1{2 “

ρij ` ρi,j`1

2
,

puxqi`1{2,j “
puxqij ` puxqi`1,j

2
, puyqi,j`1{2 “

puyqij ` puyqi,j`1

2
,

191



Role of nonlinear diffusion on equilibria: Analysis and numerics

where the macroscopic velocity is defined by

puxqij “
1

∆x∆y

ÿ

k,l

ρklpFxq
kl
ij , puyqij “

1

∆x∆y

ÿ

k,l

ρklpFyq
kl
ij (5.34)

with

pFxq
kl
ij “

¨

Ckl

¨

˚

˝

¨

Cij

Fxpx´ x
1, y ´ y1, T px, yqq dpx, yq

˛

‹

‚

dpx1, y1q,

pFyq
kl
ij “

¨

Ckl

¨

˚

˝

¨

Cij

Fypx´ x
1, y ´ y1, T px, yqq dpx, yq

˛

‹

‚

dpx1, y1q

for the components Fx, Fy of F with F “ pFx, Fyq. A change of variable also yields

puxqi`1{2,j “
1

∆x∆y

ÿ

k,l

ρk`1{2,lpFxq
kl
ij , puyqi,j`1{2 “

1

∆x∆y

ÿ

k,l

ρk,l`1{2pFyq
kl
ij .

Note that pFxq
kl
ij and pFyq

kl
ij can be determined explicitly in the numerical simulations

instead of evaluating the integrals, and can also be precomputed for making the

computation of the discretised velocity fields more efficient. Further note that the

last two lines of the numerical scheme (5.33) can be regarded as a discretisation of

the nonlinear diffusion δ∇ ¨ pρ∇ρq “ δ
2
pB2
xρ

2 ` B2
yρ

2q.

5.4.2 Properties of the scheme: conservation of mass, posi-

tivity, convergence

In [CJLV16], the convergence of a finite volume method is shown for general measure

solutions of the (isotropic) aggregation equation with mildly singular potentials. In

this section, we establish a CFL condition for the numerical scheme (5.33) for the

anisotropic aggregation equation (5.10) and prove its weak convergence.

Lemma 6. Let ρin P P2pR2q and define ρ0
ij by (5.32). Then, there exists a constant

r ą 0 such that

sup
n,i,j

ρnij ď r, (5.35)
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and conservation of mass is satisfied for all n, i.e.

ÿ

i,jPZ

ρnij∆x∆y “
ÿ

i,jPZ

ρ0
ij∆x∆y “ 1.

For spatially homogeneous tensor fields, conservation of the centre of mass also

holds, i.e.

ÿ

i,jPZ

xiρ
n
ij “

ÿ

i,jPZ

xiρ
0
ij,

ÿ

i,jPZ

yiρ
n
ij “

ÿ

i,jPZ

yiρ
0
ij.

Proof. The conservation of mass is directly obtained by summing over i and j in

(5.33), and noting that
ř

i,jPZ ρ
0
ij∆x∆y “ 1. In particular, the conservation of mass

implies the uniform boundedness of ρnij, i.e. there exists a constant r ą 0 such that

(5.35) is satisfied. The conservation of the centre of mass follows from a discrete

integration by parts and the fact that pFxq
kl
ij “ ´pFxq

ij
kl for spatially homogeneous

tensor fields.

For proving the convergence of the numerical scheme, a CFL condition is re-

quired:

Lemma 7. Let ρin P P2pR2q and define ρ0
ij by (5.32). Suppose that the force F is

bounded by f , let r ą 0 denote the uniform bound of ρnij in (5.33) from Lemma 6,

and suppose that the condition

ˆ

2f

ˆ

1

∆x
`

1

∆y

˙

` δr

ˆ

1

p∆xq2
`

1

p∆yq2

˙˙

∆t ď 1 (5.36)

is satisfied. Then the sequences defined in (5.33)–(5.34) satisfy

ρnij ě 0, |puxq
n
ij| ď f, |puyq

n
ij| ď f,

for all i, j and n.

Proof. By the definition of the velocity (5.34) and the uniform bound f of the force

F we obtain

|puxq
n
ij| ď ∆x∆yf

ÿ

k,l

ρkl “ f, |puyq
n
ij| ď f (5.37)

for all i, j, n.
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For proving the nonnegativity of the scheme (5.33), note that we can rewrite

(5.33) as

ρn`1
ij “ ρnij

˜

1´
∆t

∆x

˜

puxq
n
i`1{2,j ´ puxq

n
i´1{2,j ` 2f

2

¸

´
∆t

∆y

˜

puyq
n
i,j`1{2 ´ puyq

n
i,j´1{2 ` 2f

2

¸

´
δ∆t

p∆xq2
ρnij ´

δ∆t

p∆yq2
ρnij

¸

` ρni`1,j

∆t

2∆x

´

f ´ puxq
n
i`1{2,j

¯

` ρni´1,j

∆t

2∆x

´

f ` puxq
n
i´1{2,j

¯

` ρni,j`1

∆t

2∆y

´

f ´ puyq
n
i,j`1{2

¯

` ρni,j´1

∆t

2∆y

´

f ` puyq
n
i,j´1{2

¯

`
δ∆t

2p∆xq2
`

pρni`1,jq
2
` pρni´1,jq

2
˘

`
δ∆t

2p∆yq2
`

pρni,j`1q
2
` pρni,j´1q

2
˘

.

(5.38)

We show the nonnegativity of ρnij by induction on n. For n P N given, we assume

that ρnij ě 0 for all i, j P Z. Note that due to condition (5.36), all coefficients in

(5.38) of ρnij, ρ
n
i`1,j, ρ

n
i´1,j, ρ

n
i,j`1 and ρni,j´1 are nonnegative, and the terms in the

last line are also nonnegative. By induction, we deduce ρn`1
ij ě 0 for all i, j P Z.

Next, we consider the convergence of the scheme in a weak topology. Let

MlocpRdq denote the space of local Borel measures on Rd. For ρ P MlocpRdq, we

denote the total variation of ρ by |ρ|pRdq and we denote the space of measures in

MlocpRdq with finite total variation by MbpRdq. The space of measures MbpRdq is

always endowed with the weak topology σpMb, C0q.

Let the characteristic function on some set rn∆t, pn` 1q∆tqˆCij Ă R`ˆR2 be

denoted by χrn∆t,pn`1q∆tqˆCij . For ∆ “ maxt∆x,∆yu, we define the reconstruction

of the discretisation by

ρ∆pt, x, yq “
ÿ

nPZ

ÿ

iPZ

ÿ

jPZ

ρnijχrn∆t,pn`1q∆tqˆCijpt, x, yq,

where the boundedness of ρ∆ independent of ∆ follows from Lemma 6. Using the

definition unij “ ppuxq
n
ij, puyq

n
ijq in (5.34), we obtain

unij “
1

∆x∆y

¨

Cij

F p¨, T px, yqq ˚ ρ∆ptn, ¨qpx, yq dpx, yq
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and

u∆pt, x, yq “
ÿ

nPZ

ÿ

iPZ

ÿ

jPZ

unijχrn∆t,pn`1q∆tqˆCijpt, x, yq.

Theorem 8. Suppose that the continuous force F is bounded by f and that the

tensor field T is continuous. We consider ρin P P2pR2q and define ρ0
ij by (5.32).

Let S ą 0 be fixed, and suppose that the discretisation in time and space satisfies

(5.36). Then, the discretisation ρ∆ converges weakly inMbpr0, SsˆR2q towards the

solution ρ of (5.1) as ∆ “ maxt∆x,∆yu and δ go to 0 such that ∆t satisfies (5.36).

Proof. Lemma 6 implies the nonnegativity of ρnij provided condition (5.36) holds.

Since tρ∆u∆ą0 is a bounded, nonnegative sequence of measures for all t P r0, Ss, con-

servation of mass implies that |ρ∆ptq|pR2q “ 1. Hence, there exists a subsequence,

still denoted by tρ∆u∆ą0, which converges to ρ in the weak topology as ∆t, ∆x and

∆y go to 0 satisfying condition (5.36), i.e.

ˆ S

0

¨

R2

φpt, x, yqρ∆pt, x, yq dpx, yq dtÑ

ˆ S

0

¨

R2

φpt, x, yqρpt, x, yq dpx, yq dt

for all φ P C0pr0, Ss ˆ R2q.

For S ą 0 given, choose ∆t ą 0 and NS P Ną0 such that S “ ∆tNS and condition

(5.36) are satisfied. Let Dpr0, Ss ˆ R2q denote the space of smooth, compactly

supported test functions on r0, Ss ˆ R2 and define

φnij “

ˆ tn`1

tn

¨

Cij

φpt, x, yq dpx, yq dt

such that

ˆ S

0

¨

R2

ρ∆pt, x, yqφpt, x, yq dpx, yq dt “
NS
ÿ

n“0

ÿ

iPZ

ÿ

jPZ

ρnijφ
n
ij.

In particular, we have

ÿ

n,i,j

1

∆t
pρ∆ptn`1, xi, yjq ´ ρ∆ptn, xi, yjqqφ

n
ij “ ´

ÿ

n,i,j

ρnij
φnij ´ φ

n´1
ij

∆t

“ ´

ˆ S

0

¨

R2

ρ∆pt, x, yq
φpt, x, yq ´ φpt´∆t, x, yq

∆t
dpx, yq dt
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Ñ ´

ˆ S

0

¨

R2

ρpt, x, yqBtφpt, x, yq dpx, yq dt

as ∆t, ∆x and ∆y go to 0, where the limit integral follows from φpt, x, yq ´ φpt ´

∆t, x, yq “ Btφpt, x, yq∆t ` Opp∆tq2q, the weak convergence of ρ∆ to ρ and the

boundedness of the measure ρ∆ with a bound not depending on the mesh. Similarly,

ÿ

n,i,j

1

2∆x
pρ∆ptn, xi`1, yjq ´ 2ρ∆ptn, xi, yjq ` ρ∆ptn, xi´1, yjqqφ

n
ij

“

ˆ S

0

¨

R2

ρ∆pt, x, yq
φpt, x`∆x, yq ´ 2φpt, x, yq ` φpt, x´∆x, yq

2∆x
dpx, yq dtÑ 0

as ∆t, ∆x and ∆y go to 0 since |φpt, x ` ∆x, yq ´ 2φpt, x, yq ` φpt, x ´ ∆x, yq| ď

}Bxxφ}8p∆xq
2. Due to the boundedness of the force F p¨, T pxqq, we can show in a

similar way as in [CJLV16] that

ÿ

n,i,j

1

∆x

´

puxq
n
i`1{2,jρ

n
i`1{2j ´ puxq

n
i´1{2,jρ

n
i´1{2,j

¯

φni,j

Ñ ´

ˆ S

0

¨

R2

Bxφpt, x, yqpFxp¨, T px, yqq ˚ ρpt, ¨qqpx, yqρpt, x, yq dpx, yq dt

as ∆t, ∆x and ∆y go to 0 by the continuity of F “ pFx, Fyq and T where Fx denotes

the first component of the force F . Further note that we have

δ
ÿ

n,i,j

1

2p∆xq2

´

pρni`1,jq
2
´ 2

`

ρnij
˘2
`
`

ρni´1,j

˘2
¯

φnij

“ δ
ÿ

n,i,j

1

2p∆xq2
`

ρnij
˘2 `

φni`1,j ´ 2φnij ` φ
n
i´1,j

˘

ď
1

2
δ}Bxxφ}8

ˆ S

0

¨

R2

pρ∆pt, x, yqq
2 dpx, yq dt.

The boundedness of ρ∆, independent of ∆, guarantees that the right-hand side goes

to 0 as δ, ∆t, ∆x and ∆y go to 0.

Multiplying (5.33) by φnij, summing over n, i, j, and taking the limits δ, ∆t, ∆x

and ∆y to 0, we obtain

ˆ S

0

¨

R2

rBtφpt, x, yq `∇φpt, x, yq ¨ pF p¨, T px, yqq ˚ ρpt, ¨qqpx, yqsρpt, x, yq dpx, yq dt “ 0
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in the limit, i.e. ρ is a solution in the sense of distributions of the anisotropic

aggregation equation (5.1).

5.5 Numerical results

In this section, we show simulation results for solving the anisotropic aggregation

equation with nonlinear diffusion (5.10) numerically using the numerical scheme

(5.33). For the numerical simulations, we consider the force coefficients fs and fl

in (5.8) with fs “ fR ` χfA and fl “ fR ` fA as suggested in [DGH`19], where fR

and fA are defined in (5.5) and (5.6). To be consistent with the work of Kücken

and Champod [KC13], we assume that the total force (5.8) defined via the tensor

field T px, yq :“ χspx, yq b spx, yq ` lpx, yq b lpx, yq in (5.3) exhibits short-range

repulsion and long-range attraction along l and repulsion along s. In the following,

we consider the force coefficients fR and fA with the parameter values in (5.7). The

computational domain is given by r´0.5, 0.5s2 with periodic boundary conditions.

5.5.1 Spatially homogeneous tensor fields

In this section, we show stationary solutions to the anisotropic interaction equation

(5.10), obtained with the numerical scheme (5.33), for the spatially homogeneous

tensor field T with s “ p0, 1q and l “ p1, 0q, cf. Figures 5.1–5.4. Note that the

stationary solutions for the tensor field T are constant in y-direction in all these

figures.

The stationary solution to (5.10), obtained with the numerical scheme (5.33)

for different values of the diffusion coefficient δ, is shown in Figure 5.1. Here, we

consider uniformly distributed initial data on a disc of radius R “ 0.05 with centre

p0, 0q on the computational domain r´0.5, 0.5s2, where the spatial discretisation

is given by a grid of size 50 in each spatial direction, and the time step is chosen

according to the CFL condition (5.36). Due to the choice of initial data, this leads to

a single straight vertical line as stationary solution, provided δ is chosen sufficiently

small. As expected, an increase in δ leads to the widening of the single straight

vertical line which is stable for sufficiently small values of δ. For larger values of δ,

e.g. δ “ 5 ¨ 10´7, the uniform distribution is obtained as stationary solution.

In Figure 5.2, we investigate the role of the grid size on the stationary solution

by considering grid sizes of 50, 100 and 200 in each spatial direction for the diffusion

parameter δ “ 10´10 and uniformly distributed initial data on a disc. Clearly, the
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(A) δ “ 10´10 (B) δ “ 5 ¨ 10´8 (C) δ “ 2 ¨ 10´7 (D) δ “ 5 ¨ 10´7

Figure 5.1: Stationary solution to the anisotropic interaction equation (5.10), ob-
tained with the numerical scheme (5.33) on a grid of size 50 in each spatial direction
and different diffusion coefficients δ for the spatially homogeneous tensor field with
s “ p0, 1q and l “ p1, 0q and uniformly distributed initial data on a disc on the
computational domain r´0.5, 0.5s2.

stationary solution is given by a step function in the x-coordinate. Finer grids lead

to step functions with more steps and smaller step heights compared to the grid size

of 50 where only one step occurs.

(A) Grid 50 (B) Grid 100 (C) Grid 200

Figure 5.2: Stationary solution to the anisotropic interaction equation (5.10), ob-
tained with the numerical scheme (5.33) on grids of sizes 50, 100 and 200 in each
spatial direction for the diffusion coefficient δ “ 10´10 for the spatially homogeneous
tensor field with s “ p0, 1q and l “ p1, 0q and uniformly distributed initial data on
a disc on the computational domain r´0.5, 0.5s2.

The stationary solution for grid sizes of 100 and 200 in each spatial direction

and uniformly distributed initial data on the computational domain r´0.5, 0.5s2 is

shown in Figure 5.3, and is given by equidistant, parallel vertical line patterns. Note

that we obtain the same number of parallel lines for the different grid sizes.

In Figure 5.4, we show the stationary solution for uniformly distributed initial

data on the computational domain r´0.5, 0.5s2 for different diffusion coefficients δ.

Note that as δ increases, the stable line patterns become wider and this may result in

a decrease in the number of parallel lines. If δ is larger than a certain threshold, e.g.

198



5.5. Numerical results

(A) Grid 100 (B) Grid 200

Figure 5.3: Stationary solution to the anisotropic interaction equation (5.10), ob-
tained with the numerical scheme (5.33) on grids of sizes 100 and 200 in each spatial
direction for the diffusion coefficient δ “ 10´10 for the spatially homogeneous tensor
field with s “ p0, 1q and l “ p1, 0q and uniformly distributed initial data on the
computational domain r´0.5, 0.5s2.

δ “ 5¨10´9, the parallel line patterns are no longer stable and the stationary solution

is given by the uniform distribution on the computational domain r´0.5, 0.5s2.

(A) δ “ 10´10 (B) δ “ 5 ¨ 10´10 (C) δ “ 10´9 (D) δ “ 5 ¨ 10´9

Figure 5.4: Stationary solution to the anisotropic interaction equation (5.10), ob-
tained with the numerical scheme (5.33) on a grid of size 200 in each spatial direction
and different diffusion coefficients δ for the spatially homogeneous tensor field with
s “ p0, 1q and l “ p1, 0q and uniformly distributed initial data on the computational
domain r´0.5, 0.5s2.

5.5.2 Spatially inhomogeneous tensor fields

In this section, we consider stationary solutions to the anisotropic interaction equa-

tion (5.10), obtained with the numerical scheme (5.33), for different spatially inho-

mogeneous tensor fields.

In Figure 5.5, we consider fingerprint images in Figures 5.5(A) and 5.5(D), use
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these fingerprint images to construct the vector field s “ spx, yq in Figures 5.5(B)

and 5.5(E), and show the resulting stationary solutions for the diffusion coefficient

δ “ 10´10 and uniformly distributed initial data on a grid of size 50 in each spatial

direction in Figures 5.5(C) and 5.5(F), respectively. For the construction of the

tensor field we firstly proceed as in [DGH`19], and then we rescale the tensor field

appropriately to the given grid size.

(A) Original (B) s (C) Stationary solution

(D) Original (E) s (F) Stationary solution

Figure 5.5: Stationary solution to the anisotropic interaction equation (5.10), ob-
tained with the numerical scheme (5.33) on a grid of size 50 in each spatial direction
and diffusion coefficient δ “ 10´10 for different spatially inhomogeneous tensor fields
from real fingerprint images and uniformly distributed initial data on the computa-
tional domain r´0.5, 0.5s2.

In Figure 5.6, we consider the tensor field in Figure 5.5(B) of part of a fingerprint,

and show the numerical solution at different iterations of the numerical scheme

(5.33) on a grid of size 50 in each spatial direction for the diffusion coefficient

δ “ 10´10 and uniformly distributed initial data on the computational domain

r´0.5, 0.5s2. Note that the resulting numerical solution is close to being stationary.

Similarly as in Figure 5.4 for spatially homogeneous tensor fields, we show the

stationary solution for different diffusion coefficients δ in Figure 5.7, where the

spatially inhomogeneous tensor field in Figure 5.5(B) and a grid of size 50 in each

spatial direction are considered. As δ increases, the line patterns become wider,
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(A) n “ 100000 (B) n “ 200000 (C) n “ 300000 (D) n “ 400000

Figure 5.6: Numerical solution to the anisotropic interaction equation (5.10) after
n iterations, obtained with the numerical scheme (5.33) on a grid of size 50 in each
spatial direction with diffusion coefficient δ “ 10´10 for the spatially inhomogeneous
tensor field of part of a fingerprint and uniformly distributed initial data on the
computational domain r´0.5, 0.5s2.

provided the diffusion coefficient δ is below a certain threshold. If δ ą 0 is above

this threshold, e.g. for δ “ 10´9, the uniform distribution is obtained as stationary

solution. Note that this threshold is smaller than the one in Figure 5.4 for spatially

homogeneous tensor fields.

(A) δ “ 10´10 (B) δ “ 5 ¨ 10´10 (C) δ “ 10´9

Figure 5.7: Stationary solution to the anisotropic interaction equation (5.10), ob-
tained with the numerical scheme (5.33) on a grid of size 50 in each spatial direction
for different values of the diffusion coefficient δ for a given spatially inhomogeneous
tensor field and uniformly distributed initial data on the computational domain
r´0.5, 0.5s2.

Motivated by the simulation results in [DGH`19], we consider different rescalings

of the forces in Figure 5.8 to vary the distances between the fingerprint lines, i.e. we

consider F pηdpx, yq, T pxqq where η ą 0 is the rescaling factor. As before, we consider

the diffusion coefficient δ “ 10´10 on a grid of size 50 in each spatial direction and

uniformly distributed initial data on r´0.5, 0.5s2. For η “ 1 we recover the same

stationary solution as in Figure 5.5(C), while the distances between the fingerprint

lines become larger for η P p0, 1q and smaller for η ą 1.
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(A) η “ 0.6 (B) η “ 0.8 (C) η “ 1.2

Figure 5.8: Stationary solution to the anisotropic interaction equation (5.10), ob-
tained with the numerical scheme (5.33) on a grid of size 50 in each spatial direction,
diffusion coefficient δ “ 10´10 and different force rescalings η for a given spatially
inhomogeneous tensor field and uniformly distributed initial data on the computa-
tional domain r´0.5, 0.5s2.
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Chapter 6

ODE- and PDE-based modelling

Originality and contribution

This chapter follows in large parts the paper [HKM19a], written in collaboration

with Jan Haskovec and Peter A. Markowich. While PM proposed the study of the

model and provided guidance and advice, the analysis is mostly joint work by JH

and myself, and all numerical simulations were carried out by myself.

Chapter summary

In this chapter, we study the global existence of solutions of a discrete (ODE-based)

model on a graph describing the formation of biological transportation networks,

introduced by Hu and Cai, which is given by the gradient flow of the energy (1.26),

i.e.

ErCs :“
ÿ

pi,jqPE

ˆ

QijrCs
2

Cij
`
ν

γ
Cγ
ij

˙

Lij, (6.1)

constrained by Kirchhoff’s law (1.24), i.e.

´
ÿ

jPNpiq

Cij
Pj ´ Pi
Lij

“ Si for all i P V. (6.2)

We propose an adaptation of this model so that a macroscopic (PDE-based) system

can be obtained as its formal continuum limit. We prove the global existence of weak

solutions of the macroscopic PDE model. Finally, we present results of numerical

simulations of the discrete model, illustrating the convergence to steady states, their
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non-uniqueness as well as their dependence on initial data and model parameters.

6.1 Introduction

Transportation networks are ubiquitous in living systems such as leaf venation in

plants, mammalian circulatory systems that convey nutrients to the body through

blood circulation, or neural networks that transport electric charge. Understand-

ing the development, function and adaptation of biologic transportation networks

has been a long standing interest of the scientific community [BHD`07, CC95,

RFL`05, YDG`00]. Mathematical modelling of transportation networks is tradi-

tionally based on discrete frameworks, in particular mathematical graph theory and

discrete energy optimisation, where the energy consumption of the network is min-

imised under the constraint of constant total material cost. However, networks and

circulation systems in living organisms are typically subject to continuous adapta-

tion, responding to various internal and external stimuli. For instance, for blood

circulation systems it is well known that throughout the life of humans and animals,

blood vessel systems are continuously adapting their structures to meet the changing

metabolic demand of the tissue. In particular, it has been observed in experiments

that blood vessels can sense the wall shear stress and adapt their diameters ac-

cording to it [HCR12]. Consequently, for biological applications it is necessary to

employ the dynamic class of models.

Motivated by this observation, Hu and Cai [HC13] introduced a new approach to

dynamic modelling of transportation networks. They propose a purely local dynamic

adaptation model based on mechanical laws, consisting of a system of ordinary

differential equations (ODE) on a graph, coupled to a linear system of equations

(Kirchhoff law). In particular, the model responds only to local information and

fluctuations in flow distributions can be naturally incorporated. Global existence

of solutions of the coupled ODE-algebraic system is not trivial and, to our best

knowledge, has not been proved so far. The first goal of this chapter is to close this

gap.

In contrast to the discrete modelling approach, models based on systems of par-

tial differential equations (PDE) can be used to describe formation and adaptation

of transportation networks based on macroscopic (continuum) physical laws. Hu

and Cai proposed a PDE-based continuum model [Hu13] which was subsequently

studied in a series of papers [AAFM16, ABH`17, HMP15, HMPS16]. The contin-

uum model consists of a parabolic reaction-diffusion equation for the conductivity
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field, constrained by a Poisson equation for the pressure field. However, no con-

nection between the discrete (ODE-based) and continuum (PDE-based) models for

biological transportation networks has been established so far.

The second goal of this chapter is to provide a formal continuum limit of an

extension of the Hu and Cai model [HC13] on regular equidistant grids; the rig-

orous limit passage will be studied in Chapter 7. The resulting continuum energy

functional is of the form

Ercs “
ˆ

Ω

∇p ¨ c∇p` ν

γ
|c|γ dx, (6.3)

with the metabolic constant ν ą 0 and metabolic exponent γ ą 0. The energy

functional is defined on the set of nonnegative diagonal tensor fields c “ cpxq on Rd,

c “

¨

˚

˚

˚

˚

˚

˝

c1

. . .

cd

˛

‹

‹

‹

‹

‹

‚

. (6.4)

The symbol |c|γ is defined as
řd
k“1

ˇ

ˇck
ˇ

ˇ

γ
. The scalar pressure p “ ppxq of the fluid

within the network (porous medium) is subject to the Poisson equation

´∇ ¨ pc∇pq “ S, (6.5)

equipped with no-flux boundary condition, and the datum S “ Spxq represents

the intensity of sources and sinks. The formal L2-gradient flow (local dynamic

adaptation model) of the energy (6.3) constrained by (6.5) is of the form

Btc
k
“ pBxkpq

2
´ ν

ˇ

ˇck
ˇ

ˇ

γ´2
ck, k “ 1, . . . , d, (6.6)

subject to homogeneous Dirichlet boundary conditions, and coupled to (6.5). Clearly,

the system suffers from two drawbacks: first, the possible strong degeneracy of the

Poisson equation (6.5), and, second, the fact that (6.6) is merely a family of ODEs,

parametrised by the spatial variable. Therefore, we shall consider a regularisa-

tion/extension of (6.5)–(6.6), where the Poisson equation is of the form

´∇ ¨ pprI` cq∇pq “ S, (6.7)
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where r “ rpxq ě r0 ą 0 is a prescribed function that models the isotropic back-

ground permeability of the medium, and I P Rdˆd is the unit matrix. The second

drawback is addressed by equipping the transient system (6.6) with a linear diffusive

term modelling random fluctuations in the medium,

Btc
k
“ D2∆ck ` pBxkpq

2
´ ν

ˇ

ˇck
ˇ

ˇ

γ´2
ck, k “ 1, . . . , d, (6.8)

subject to homogeneous Dirichlet boundary conditions, whereD2 ą 0 is the constant

diffusivity. Let us note that the model (6.7)–(6.8) is a variant of the tensor-based

model proposed by D. Hu, restricted to the set of diagonal tensors [HC14]. As we

will see in the derivation of the formal continuum limit, diagonal tensors can be

associated with rectangular parallelotopes in the discrete setting.

The third goal of this chapter is to prove the global existence of weak solutions

of the PDE system (6.7)–(6.8). The proof shall rely on the fact that it is a formal

L2-gradient flow of the regularised energy functional

Ercs “
ˆ

Ω

D2
|∇c|2 `∇p ¨ prI` cq∇p` ν

γ
|c|γ dx, (6.9)

where the symbol |∇c|2 is defined as
řd
k“1

ˇ

ˇ∇ck
ˇ

ˇ

2
.

This chapter is organised as follows. In Section 6.2 we describe the discrete

model [HC13] introduced by Hu and Cai, establish its gradient flow structure and

prove the global existence of solutions of the corresponding ODE system coupled

to the Kirchhoff law (linear system of equations). In Section 6.3 we motivate an

adaptation of the Hu-Cai model so that a continuum model can be obtained as

its formal macroscopic limit. We then derive the PDE system (6.5)–(6.6) as the

formal gradient flow of the continuum energy (6.3) and prove the global existence

of solutions for γ ą 1. Finally, results of numerical simulations of the discrete

Hu-Cai model are presented in Section 6.4, illustrating the convergence to steady

states, their non-uniqueness as well as their dependence on initial data and model

parameters.

6.2 Analysis of the microscopic model

In this section, we investigate the microscopic model for describing the formation

of biological networks, introduced in Section 1.2.2.
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6.2.1 Gradient flow

To compute the gradient flow of the energy (6.1) constrained by Kirchhoff’s law

(6.2), we need the following result about the derivative of the pumping term with

respect to the conductivities:

Lemma 8. Let QijrCs “ Cij
Pj´Pi
Lij

for all pi, jq P E as in (1.23), where P is a

solution of the linear system (6.2) with a given vector of conductivities C. Then,

for any fixed pk, lq P E we have

B

BCkl

ÿ

pi,jqPE

QijrCs
2

Cij
Lij “ ´

QklrCs
2

C2
kl

Lkl. (6.10)

Proof. Since

B

BCkl

ÿ

pi,jqPE

QijrCs
2

Cij
Lij “ ´

QklrCs
2

C2
kl

Lkl ` 2
ÿ

pi,jqPE

QijrCs

Cij

BQijrCs

BCkl
Lij,

it is sufficient to show that

ÿ

pi,jqPE

QijrCs

Cij

BQijrCs

BCkl
Lij “ 0.

Let A “ pAijq denote the adjacency matrix of the graph G “ pV,Eq, i.e. its coeffi-

cients are defined by

Aij “

$

&

%

0 if pi, jq R E,

1 if pi, jq P E.
(6.11)

Note that G is an undirected graph, implying Aij “ Aji. Due to the symmetry of

Cij and Lij and antisymmetry of Qij we have

2
ÿ

pi,jqPE

QijrCs

Cij

BQijrCs

BCkl
Lij “

n
ÿ

i“1

n
ÿ

j“1

Aij

ˆ

Pj ´ Pi
Lij

BQijrCs

BCkl

˙

Lij

“

n
ÿ

j“1

Pj

n
ÿ

i“1

Aij
BQijrCs

BCkl
´

n
ÿ

i“1

Pi

n
ÿ

j“1

Aij
BQijrCs

BCkl

“ ´2
n
ÿ

i“1

Pi

n
ÿ

j“1

Aij
BQijrCs

BCkl
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“ ´2
n
ÿ

i“1

Pi
B

BCkl

ÿ

jPNpiq

Qij.

By the definition of the flow rate Qij in (1.23) and Kirchhoff’s law (6.2) we have

´
ÿ

jPNpiq

Qij “ ´
ÿ

jPNpiq

Cij
Pj ´ Pi
Lij

“ Si,

and since the sources/sinks Si are fixed, we conclude

ÿ

pi,jqPE

QijrCs

Cij

BQijrCs

BCkl
Lij “ 0

as required.

Using the result in (6.10) in the above lemma, it is easy to see that for pi, jq P E
the derivative of the energy (6.1) is given by

B

BCij
ErCs “ ´

ˆ

QijrCs
2

C2
ij

´ νCγ´1
ij

˙

Lij.

Therefore, the gradient flow of (6.1) constrained by Kirchhoff’s law (6.2) with re-

spect to the Euclidean distance is given by the ODE system

dCij
dt

“

ˆ

QijrCs
2

C2
ij

´ νCγ´1
ij

˙

Lij, (6.12)

coupled to Kirchhoff’s law (6.2) via the definition of the flow rate (1.23).

The general formulation of a gradient flow of the functional E is of the form

dz

dt
“ ´KrzsE 1rzs or, equivalently, Grzsdz

dt
“ ´E 1rzs,

where E 1pzq is the Fréchet derivative of the energy functional E : Z Ñ R on the

subset Z of a linear space and z P Z. We denote the space of tangent vectors at

a point z P Z by TzZ and the space of cotangent vectors, i.e. the set of all linear

functionals on TzZ, by T ˚z Z. Then, the derivative E 1rzs is a cotangent vector and

Grzs,Krzs are duality maps, mapping tangents to cotangents and vice versa, i.e.

Grzs : TzZ Ñ T ˚z Z and Krzs : T ˚z Z Ñ TzZ, with K “ G´1. See, e.g., [Pel] for

details.

Based on this general formulation, we consider the gradient flow with respect to
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a weighted Euclidean distance and introduce a duality map resulting in the ODE

system of the form

dCij
dt

“

ˆ

QijrCs
2

Cij
´ νCγ

ij

˙

Cα´1
ij Lij, (6.13)

with a fixed exponent α P R, constrained by the Kirchhoff law (6.2). For mod-

elling reasons (see [HC13] and the references therein) we require that the speed of

metabolic decay is an increasing function of the conductivity. Therefore, we impose

α ą 1 ´ γ. In particular, the choice α “ 2 ´ γ leads to the system studied by Hu

and Cai in [HC13]. Note that for α ą 1 ´ γ the solution of (6.13) is nonnegative

for nonnegative initial data. Moreover, we have the dissipation of the energy (6.1)

along the solutions of (6.1), (6.2), since

d

dt
ErCs “ E 1rCs ¨

dC

dt
“ ´

ÿ

pi,jqPE

ˆ

QijrCs
2

Cij
´ νCγ

ij

˙2

Cα´2
ij L2

ij ď 0. (6.14)

6.2.2 Global existence of solutions

We shall prove the global existence of solutions for the ODE system (6.13) coupled

to the Kirchhoff law (6.2) through the definition of the flow rate (1.23). We assume

that the initial datum for C “ Cij is such that the underlying graph is connected,

where only edges with positive conductivity Cij ą 0 are taken into account (i.e.,

edges with zero initial conductivity are discarded and removed from the graph).

This implies that the Kirchhoff law (6.2) is solvable for t “ 0 (uniquely up to an

additive constant) for the pressures. Depending on the values of the exponents

α P R, γ ą 0, we distinguish two cases:

• If γ ` α ě 2, then we have for all pi, jq P E,

dCij
dt

ě ´νLijC
γ`α´1
ij . (6.15)

Then, since the exponent γ`α´1 ě 1, the solutions of (6.13) remain positive

for all t ą 0 (recall that the initial datum is strictly positive for all pi, jq P E).

Consequently, the underlying graph remains connected and the Kirchhoff law

(6.2) remains solvable for all times. Moreover, the terms Cγ
ij and Q2

ij{Cij

remain globally bounded due to the energy dissipation (6.14). Thus, the

solution of the system (6.13), (6.2) exists globally in time.
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• If 0 ă γ ` α ´ 1 ă 1, the solution may exist only locally in time and some of

the conductivities Cij may vanish in finite time. Then the edges with Cij “ 0

are discarded and the connectivity of the graph may be lost, which would

make the Kirchhoff law (6.2) unsatisfiable unless very restrictive conditions

for the source/sink term Si are satisfied. Further note that conductivity is

also motivated by the biological application so that fluids can be transported

through the entire network. However, as we prove below, under rather mild

assumptions on the source/sink term Si, this does not happen, i.e., the Kirch-

hoff law remains solvable and the resulting subgraph remains connected even

after the eventual removal of the edge(s) with vanishing conductivity. Thus,

the solution C “ Cptq can be extended past this time simply by solving a

reduced ODE system with initial datum equal to the ‘terminal’ state with the

respective edge(s) removed.

We start by proving a result stating that if we divide the set of vertices V
into two disjoint parts V1, V2 such that the sources/sinks Si induce a net flux

∆S ‰ 0 between them, then a connection (i.e., at least one edge with positive

conductivity) between V1 and V2 will be maintained along the solutions of

(6.13), (6.2).

Lemma 9. Let γ ą 0 and 0 ă γ`α´1 ă 1. Let the set of vertices V be the disjoint

union V1 Y V2 such that

∆S :“
ÿ

jPV1

Sj “ ´
ÿ

jPV2

Sj ‰ 0. (6.16)

Let rE be the set of edges connecting V1 to V2, i.e.,

rE “ tpi, jq P E; i P V1 , j P V2u,

and assume that Cijpt “ 0q ě 0 for all pi, jq P rE with

ÿ

pi,jqPrE

Cijpt “ 0q ą 0. (6.17)

Then

ÿ

pi,jqPrE

Cijptq ą 0 for all t ą 0 (6.18)
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along the solutions of (6.13), (6.2).

Proof. For contradiction, assume that there exists a T ą 0 such that (6.18) holds

for t ă T and

lim
tÑT´

ÿ

pi,jqPrE

Cijptq “ 0. (6.19)

For t ă T we have

d

dt

ÿ

pi,jqPrE

Cij “
ÿ

pi,jqPrE

`

Q2
ijC

α´2
ij ´ νCγ`α´1

ij

˘

Lij. (6.20)

Since 0 ă γ ` α ´ 1 ă 1, we have for t ă T and each pk, lq P rE the inequality

Cγ`α´1
kl ď

¨

˝

ÿ

pi,jqPrE

Cij

˛

‚

γ`α´1

,

where we used that Cij ě 0 for pi, jq P rE and t ă T . Similarly, since α ´ 2 ă 0, we

have

Cα´2
kl ě

¨

˝

ÿ

pi,jqPrE

Cij

˛

‚

α´2

.

Inserting this into (6.20), we obtain for t ă T ,

d

dt

ÿ

pi,jqPrE

Cij ě

¨

˝

ÿ

pi,jqPrE

Cij

˛

‚

α´2

ÿ

pi,jqPrE

Q2
ijLij ´ ν

¨

˝

ÿ

pi,jqPrE

Cij

˛

‚

γ`α´1

ÿ

pi,jqPrE

Lij. (6.21)

Next, we shall estimate the term
ř

pi,jqPrEQ
2
ijLij from below. Due to Kirchhoff’s

law (6.26), we have for t ă T ,

ÿ

pi,jqPrE

Qij “ ∆S ‰ 0. (6.22)

We claim that for each t ă T there exists an edge pk, lq P rE such that

|Qkl| ě
|∆S|

|rE|
.

213



ODE- and PDE-based modelling

If not, we would have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

pi,jqPrE

Qij

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

pi,jqPrE

|Qij| ă |∆S|,

a contradiction to (6.22). Consequently, for each t ă T we estimate

ÿ

pi,jqPrE

Q2
ijLij ě

|∆S|2

|rE|2
min
pi,jqPrE

Lij.

Inserting this into (6.21), we obtain

d

dt
uptq ě κ1uptq

α´2
´ κ2uptq

γ`α´1, (6.23)

where we denoted

uptq :“
ÿ

pi,jqPrE

Cijptq,

and the constants

κ1 :“
|∆S|2

|rE|2
min
pi,jqPrE

Lij ą 0, κ2 :“ ν
ÿ

pi,jqPrE

Lij ą 0.

Since according to the assumption (6.17) we have up0q ą 0, (6.23) implies that

uptq ě min
!

up0q, pκ1{κ2q
1

γ`1

)

ą 0

for t ă T , a contradiction to (6.19).

Theorem 9. Let γ ą 0 and 0 ă γ ` α ´ 1 ă 1. Assume that (6.16) holds for

any disjoint sets V1,V2 Ă V such that V “ V1 Y V2. Let the initial datum Cijpt “

0q ě 0 be such that the graph induced by edges pi, jq P E with Cijpt “ 0q ą 0 is

connected. Then the graph induced by the solutions Cij “ Cijptq of (6.13), (6.2),

where edges with vanishing conductivities are discarded, remains connected for all

times t ě 0. In particular, solutions of (6.13), (6.2) with removal of edges with

vanishing conductivities exist globally in time.

Proof. Let us show that the graph remains connected for all times, i.e., for each

t ą 0 there exists a path of edges with positive conductivity connecting each pair
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6.3. Derivation and properties of the macroscopic model

of vertices. For contradiction, assume that at time t0 ą 0 no such path exists

connecting a vertex i P V to vertex j P V. Then, collect all vertices connected by

a path to i P V in the set V1, and let V2 :“ VzV1 be its complement. Since i P V
is not connected to j P V at time t0, also V1 is not connected to V2, which is a

contradiction to the statement of Lemma 9.

Consequently, the graph induced by the solutions Cij “ Cijptq of (6.13), (6.2)

never becomes disconnected, and thus, by the fundamental result of the graph theory

[GYZ13], the Kirchhoff law (6.2) is solvable. Moreover, since the terms Cγ
ij remain

globally bounded due to the energy dissipation (6.14), the solution does not blow up.

It can only happen that some Cij vanish in finite time. In this case the corresponding

edge(s) are removed and the solution C “ Cptq is continued by solving a reduced

ODE system. In this way a global solution of the system (6.13), (6.2) is constructed.

Remark 19. The assumption of Theorem 9 that (6.16) holds for any disjoint sets

V1,V2 Ă V such that V “ V1 Y V2 means that the graph cannot be partitioned into

subgraphs with balanced sources/sinks (i.e.,
ř

Si “ 0 over the subgraph). If the

opposite is true, then the ODE system (6.13), (6.2) can be solved separately for each

of the subgraphs (after eventual removal of edges connecting them).

6.3 Derivation and properties of the macroscopic

model

The goal of this section is to derive the formal macroscopic limit of the discrete

model (6.2), (6.1) as the number of nodes and edges tends to infinity, and to study

the existence of weak solutions of the corresponding gradient flow. The limit consists

of an integral-type energy functional coupled to a Poisson equation. We shall show

that the derivation requires an appropriate rescaling of the Kirchhoff law (6.2) and

of the energy functional (6.1). Moreover, we have to restrict ourselves to discrete

graphs represented by regular grids, i.e., tessellation of the domain Ω Ă Rd, d P N,

by congruent identical parallelotopes. This restriction is dictated by the requirement

that the formal gradient flow of the rescaled energy functional, constrained by the

rescaled Kirchhoff law, is of the form (6.12).
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6.3.1 Rescaling of the Kirchhoff law

Let us denote the vertices left and right of vertex i P V along the k-th spatial

dimension by pi´1qk and, resp., pi`1qk. The Kirchhoff law (6.2) is then written as

´

d
ÿ

k“1

ˆ

Ci,pi`1qk

Ppi`1qk ´ Pi
Li,pi`1qk

´ Cpi´1qk,i

Pi ´ Ppi´1qk

Lpi´1qk,i

˙

“ Si for all i P V. (6.24)

Our goal is to identify the Kirchhoff law with a finite difference discretisation of the

Poisson equation (6.5),

´∇ ¨ pc∇pq “ S, (6.25)

where S “ Spxq is a formal limit of the sequence of discrete sources/sinks Si.

Clearly, for this the edge lengths in the left-hand side of (6.24) have to appear

quadratically in the denominator instead of linearly. Alternatively, we can say that

the sources/sinks Si in the right-hand side of (6.24) have to be rescaled appropri-

ately, reflecting the fact that the edges of the graph are inherently one-dimensional

structures. A straightforward calculation reveals that a finite difference discretisa-

tion of (6.25), where c “ cpxq is an appropriate limit of the sequence of discrete

conductivities, is obtained if and only if

2

Lpi´1qk,i ` Li,pi`1qk

“
1

Lpi´1qk,i

“
1

Li,pi`1qk

for all i P V and for all directions k “ 1, . . . , d. Therefore, grid points must be

equidistant in each spatial dimension, and we denote hk ą 0 the grid spacing in

the k-th dimension. The discrete graph is thus identified with a tessellation of

Ω by identical parallelotopes. For simplicity, we restrict ourselves to work with

rectangular parallelotopes (bricks) in the sequel, with edges parallel to the axes. A

generalisation of the result for parallelotopes instead will be given in Remark 20.

The rescaled Kirchhoff law is then written as

´

d
ÿ

k“1

1

hk

ˆ

Ci,pi`1qk

Ppi`1qk ´ Pi
hk

´ Cpi´1qk,i

Pi ´ Ppi´1qk

hk

˙

“ Si for all i P V.

(6.26)
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6.3.2 Rescaling of the discrete energy functional

In order to obtain an integral-type functional in the macroscopic limit of the se-

quence of discrete energy functionals (6.1), they need to be properly rescaled de-

pending on the spatial dimension d P N. In particular, (6.1) has to be replaced

by

ErCs “
ÿ

pi,jqPE

ˆ

QijrCs
2

Cij
`
ν

γ
Cγ
ij

˙

W d
ij, (6.27)

where Wij are some (abstract) weights that scale linearly with the grid spacing.

Before we introduce the formal macroscopic limit of the rescaled discrete functional

(6.27) constrained by the rescaled Kirchhoff law (6.26), let us make the following

observation about the gradient flow (6.27)–(6.26).

Proposition 12. Consider the setting introduced in Section 6.3.1 with the discrete

graph realised as a rectangular tessellation of Ω P Rd. Then the formal gradient flow

(with respect to the Euclidean distance) of the energy functional (6.27) constrained

by the rescaled Kirchhoff law (6.26) is of the type (6.12), i.e.,

dCij
dt

“

ˆ

QijrCs
2

C2
ij

´ νCγ´1
ij

˙

W d
ij, (6.28)

if and only if all the weights Wij are equal.

Proof. Denoting the adjacency matrix (6.11) of the tessellation by A “ pAijq, we

have for any edge pl,mq P E,

BErCs

BClm
“ ´

QlmrCs
2

C2
lm

Wlm ` νC
γ´1
lm Wlm `

1

2

n
ÿ

i“1

n
ÿ

j“1

Aij

ˆ

2QijrCs

Cij

BQijrCs

BClm

˙

W d
ij.

The last term of the right-hand side is equal to

n
ÿ

i“1

n
ÿ

j“1

Aij

ˆ

Pj ´ Pi
Lij

BQijrCs

BClm

˙

W d
ij

“ ´

n
ÿ

j“1

Pj

n
ÿ

i“1

Aij
BQjirCs

BClm

W d
ij

Lij
´

n
ÿ

i“1

Pi

n
ÿ

j“1

Aij
BQijrCs

BClm

W d
ij

Lij

“ ´2
n
ÿ

i“1

Pi

n
ÿ

j“1

Aij
BQijrCs

BClm

W d
ij

Lij
.

(6.29)
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Now note that the rescaled Kirchhoff law (6.26) is in terms of Qij, Lij written as

´
ÿ

jPV

Aij
Qij

Lij
“ Si for all i P V.

Therefore, if (and only if) all the weights Wij are equal to the same value W ą 0,

we have

n
ÿ

i“1

Pi

n
ÿ

j“1

Aij
BQijrCs

BClm

W d
ij

Lij
“

n
ÿ

i“1

PiW
d B

BClm

˜

n
ÿ

j“1

Aij
Qij

Lij

¸

“ 0,

and we obtain (6.28) as the gradient flow.

Note that for the grid consisting of a rectangular tessellation, the natural choice

of the weight Wij ” W is

W d
“

d
ź

k“1

hk, (6.30)

i.e., the area of the rectangles for d “ 2 and the volume of the bricks for d “ 3.

6.3.3 Formal derivation of the macroscopic model

In this section we shall show that the rescaled Kirchhoff law represents a finite

difference discretisation of the Poisson equation (6.5), and that the discrete energy

functional (6.27) with (6.30) is an approximation (Riemann sum) of the integral-type

functional (6.3). We shall work in the setting introduced above, i.e., the discrete

graph is realised as a rectangular tessellation of the rectangular domain Ω P Rd.

Let us consider p “ ppxq a solution of the Poisson equation (6.5),

´∇ ¨ pc∇pq “ S,

subject to the no-flux boundary condition on BΩ. Here c “ cpxq is a given diagonal

permeability tensor field

c “

¨

˚

˚

˚

˚

˚

˝

c1

. . .

cd

˛

‹

‹

‹

‹

‹

‚

,
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with the scalar nonnegative functions ck P CpΩq, k “ 1, . . . , d. The density of

sources/sinks S “ Spxq is given as a datum and satisfies the global mass balance

ˆ
Ω

Spxq dx “ 0.

As already mentioned in Section 6.1, existence of solutions of (6.5) is not guaranteed

due to the possible strong degeneracy of the permeability tensor. However, as we

are interested in a formal derivation only, we assume that p “ ppxq exists as a strong

solution of (6.5), i.e., is at least C2
b on Ω. Moreover, we assume that the elements

of c “ cpxq are at least C1
b on Ω. Since c “ cpxq is diagonal, the left-hand side of

(6.5) can be rewritten as

´∇ ¨ pc∇pq “ ´
d
ÿ

k“1

Bxkpc
k
Bxkpq.

Let Xi P Ω be the physical location of the vertex i P V. Denoting the flux qk :“

ckBxkp, a finite difference approximation of the term Bxkq
k at x “ Xi reads

Bxkq
k
pXiq «

qkpXpi`1{2qkq ´ q
kpXpi´1{2qkq

hk
`Ophkq, (6.31)

where Xpi`1{2qk and, resp., Xpi´1{2qk denotes the midpoint of the edge connecting Xi

to its adjacent vertex to the right and, resp., to the left in the k-th spatial direction.

A finite difference approximation of qk at Xpi`1{2qk reads

qkpXpi`1{2qkq “ ckpXpi`1{2qkq
ppXpi`1qkq ´ ppXpi´1qkq

hk
`Ophkq, (6.32)

where Xpi`1qk , resp., Xpi´1qk denotes the adjacent vertex of Xi to the right and,

resp., to the left in the k-th spatial direction. We discretise qkpXpi´1{2qkq analogously.

Putting (6.31) and (6.32) together and denoting

Ci,pi˘1qk :“ ckpXpi˘1{2qkq, Si :“ SpXiq,

Pi :“ ppXiq, Ppi˘1qk :“ ppXpi˘1qkq,
(6.33)

we conclude that the rescaled Kirchhoff law (6.26) is a first order finite difference

approximation of the Poisson equation (6.5).
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With the choice (6.30) for the weight W , we have for k “ 1, . . . , d and ck P C1
b pΩq,

ˆ
Ω

|ck|γ dx “ W
ÿ

iPV

ˇ

ˇckpXpi`1{2qkq
ˇ

ˇ

γ
`Ophkq.

Moreover, we have

ˆ
Ω

ckpBxkpq
2 dx “ W

ÿ

iPV

ckpXpi`1{2qkq

ˆ

ppXpi`1qkq ´ ppXiq

hk

˙2

`Ophkq.

Therefore, noting that for the rectangular grid the energy functional (6.27) can be

rewritten as

ErCs “
1

2

d
ÿ

k“1

ÿ

iPV

ÿ

jPNpi;kq

ˆ

QijrCs
2

Cij
`
ν

γ
Cγ
ij

˙

hdk,

we have, with the notation (6.33),

ErCs “ Ercs `Ophq,

with the continuum energy defined by (6.3), i.e.,

Ercs “
ˆ

Ω

∇p ¨ c∇p` ν

γ
|c|γ dx, (6.34)

where we recall that the symbol |c|γ is defined as
řd
k“1

ˇ

ˇck
ˇ

ˇ

γ
.

We now calculate the formal L2-gradient flow of the energy (6.3) constrained by

the Poisson equation (6.5).

Lemma 10. The formal L2-gradient flow of the continuum energy functional (6.3)

constrained by the Poisson equation (6.5) is given by (6.6), i.e.,

Btc
k
“ pBxkpq

2
´ ν

ˇ

ˇck
ˇ

ˇ

γ´2
ck.

Proof. Let us calculate the first variation of E in the direction φ where φ denotes a

diagonal matrix with entries φ1, . . . , φd. Using the expansion

prc` εφs “ p0 ` εp1 `Opε2
q, (6.35)
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we have

d

dε
Erc` εφs

ˇ

ˇ

ˇ

ˇ

ε“0

“

d
ÿ

k“1

ˆ
Ω

pBxkp0q
2 φk ` 2ckpBxkp0qpBxkp1q ` ν

ˇ

ˇck
ˇ

ˇ

γ´2
ckφk dx. (6.36)

Multiplying the Poisson equation (6.5) with permeability tensor c ` εφ by p0 and

integration by parts gives

d
ÿ

k“1

ˆ
Ω

`

ck ` εφk
˘

pBxkp0q
2
` εckpBxkp0qpBxkp1q dx “

ˆ
Ω

Sp0 dx`Opε2
q.

Subtracting the identity

d
ÿ

k“1

ˆ
Ω

ck pBxkp0q
2 dx “

ˆ
Ω

Sp0 dx,

we obtain

d
ÿ

k“1

ˆ
Ω

pBxkp0q
2 φk ` ckpBxkp0qpBxkp1q dx “ 0.

Plugging this into (6.36) gives

d

dε
Erc` εφs

ˇ

ˇ

ˇ

ˇ

ε“0

“

d
ÿ

k“1

ˆ
Ω

”

´pBxkp0q
2
` ν

ˇ

ˇck
ˇ

ˇ

γ´2
ck
ı

φk dx.

Remark 20. We can easily generalise to the situation when the grid is realised

by congruent identical parallelotopes with edges in linearly independent directions

θ1, . . . , θd P Rd. Then the coordinate transform ek ÞÑ θk in (6.3)–(6.5), where ek is

the k-th vector of the generic basis of Rd, leads to the transformed continuum energy

functional

Ercs “
ˆ

Ω

∇p ¨ Prcs∇p` ν

γ
|c|γ dx, (6.37)

coupled to the Poisson equation

´∇ ¨ pPrcs∇pq “ S
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with the permeability tensor

Prcs :“
d
ÿ

k“1

ckθk b θk.

The corresponding formal L2-gradient flow is of the form

Btc
k
“ pθk ¨∇pq2 ´ ν

ˇ

ˇck
ˇ

ˇ

γ´2
ck.

For general geometries of discrete networks the derivation of the macroscopic model

is an open problem and one can expect that the associated macroscopic limit depends

on the geometric properties of the network.

6.3.4 Global existence of solutions of a modified macro-

scopic model

As noted in Section 6.1, the model (6.5)–(6.6) suffers from two drawbacks: first, the

Poisson equation (6.5) is possibly strongly degenerate since in general the eigenval-

ues (i.e., diagonal elements) of the permeability tensor c “ cpxq may vanish. To

overcome this problem, we introduce a regularisation of (6.5) of the form

´∇ ¨ pPrcs∇pq “ S, (6.38)

with the permeability tensor

Prcs :“ rI` c, (6.39)

where r “ rpxq ě r0 ą 0 is a prescribed function that models the isotropic back-

ground permeability of the medium, and I P Rdˆd is the unit matrix. Clearly, (6.38)

is uniformly elliptic as long as the eigenvalues of c “ cpxq are nonnegative.

The second drawback is due to the fact that (6.6) is merely a family of ODEs,

parametrised by the spatial variable x P Ω. We cure this problem by introducing a

linear diffusive term modeling random fluctuations in the medium. We thus obtain

Btc
k
“ D2∆ck ` pBxkpq

2
´ ν

ˇ

ˇck
ˇ

ˇ

γ´2
ck, k “ 1, . . . , d, (6.40)

subject to homogeneous Dirichlet boundary data, where D2 ą 0 is the constant

diffusivity. By a simple modification of the proof of Lemma 10 we conclude that the
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system (6.38)–(6.40) represents the formal L2-gradient flow of the energy functional

Ercs “
ˆ

Ω

D2

2
|∇c|2 `∇p ¨ Prcs∇p` ν

γ
|c|γ dx, (6.41)

with Prcs given by (6.39), the symbol |c|γ is defined as
řd
k“1

ˇ

ˇck
ˇ

ˇ

γ
and the symbol

|∇c|2 is defined as
řd
k“1

ˇ

ˇ∇ck
ˇ

ˇ

2
. The gradient flow property is fundamental for

proving the global existence of weak solutions of the PDE system (6.38)–(6.40).

Note that the energy functional (6.41) is highly non-convex suggesting that the weak

solutions may be non-unique. We consider the PDE system on a bounded domain

Ω Ă Rd with smooth boundary BΩ, subject to homogeneous Dirichlet boundary

conditions for c and no-flux boundary conditions for p,

cpt, xq “ 0,
Bp

Bn
pt, xq “ 0 for x P BΩ, t ě 0, (6.42)

where n denotes the exterior normal vector to the boundary BΩ. Moreover, we

prescribe the initial datum for c,

cpt “ 0, xq “ cIpxq for x P Ω, (6.43)

where cI “ cIpxq is a diagonal tensor field in Rdˆd with nonnegative diagonal ele-

ments.

Theorem 10. Let S P L2pΩq, γ ą 1 and cI P H1
0 pΩq

dˆd X LγpΩqdˆd. Then the

system (6.38)–(6.40) subject to the data (6.42)–(6.43) admits a global weak solution

pc, pq such that

c P L8p0,8;H1
0 pΩqq X L

8
p0,8;LγpΩqq, Btc P L

2
pp0,8q ˆ Ωq,

∇p P L8p0,8;L2
pΩqq, c∇p P L8p0,8;L2

pΩqq.
(6.44)

This solution satisfies the energy dissipation inequality

Ercptqs `
d
ÿ

k“1

ˆ t

0

ˆ
Ω

`

Btc
k
ps, xq

˘2
dx ds ď ErcIs for all t ě 0, (6.45)

with Ercs given by (6.41).

For the proof of the above theorem we adopt a strategy similar to [HMP15,
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HMPS16]: For ε ą 0 we introduce the regularised Poisson equation

´∇ ¨ pPεrcs∇pq “ S (6.46)

with the permeability tensor

Pεrcs :“ rI` c ˚ ηε, (6.47)

subject to no-flux boundary data for p. Here, ηε is a nonnegative, radially symmetric

mollifier and the convolution c ˚ ηε is carried out elementwise,

ck ˚ ηεpxq :“

ˆ
Rd
ckpyqηεpx´ yq dy.

Moreover, we regularise (6.40) as follows,

Bck

Bt
“ D2∆ck ` pBxkpq

2
˚ ηε ´ ν

ˇ

ˇck
ˇ

ˇ

γ´2
ck, k “ 1, . . . , d. (6.48)

By a slight adaptation of the proof of Lemma 10 it is easily shown that (6.46)–(6.48)

is the formal L2-gradient flow of the energy

Eεrcs :“

ˆ
Ω

D2

2
|∇c|2 `∇p ¨ Pεrcs∇p` ν

γ
|c|γ dx, (6.49)

where we used the notation

|∇c|2 :“
d
ÿ

k“1

ˇ

ˇ∇ck
ˇ

ˇ

2
, |c|γ :“

d
ÿ

k“1

ˇ

ˇck
ˇ

ˇ

γ
.

For proving the global existence of weak solutions of the regularised system

(6.46)–(6.48) we shall need the following maximum principle for a semilinear PDE.

Lemma 11. Let Ω be an open, bounded subset of Rd. For a fixed T ą 0 denote

ΩT :“ p0, T s ˆ Ω and

C2
1pΩT q :“ tu : ΩT Ñ R | u,∇u,∇2u, Btu P CpΩT qu.

Let γ ą 1 and let u P C2
1pΩT qXCpΩT q be the classical solution of the initial/boundary-
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value problem

$

’

’

’

&

’

’

’

%

Btu “ D2∆u´ ν|u|γ´2u in ΩT ,

u “ 0 on r0, T s ˆ BΩ,

u “ g on tt “ 0u ˆ BΩ,

(6.50)

with the nonnegative initial datum g : Ω Ñ R. Then,

min
ΩT

u ě 0. (6.51)

Proof. Denote UT :“ tpt, xq P ΩT | upt, xq ă 0u. Then UT is an open bounded

subset of ΩT and

Btu´D
2∆u “ ´ν|u|γ´2u ą 0 in UT .

Then using the classical weak maximum principle for the heat equation, see, e.g.,

[Eva10], we have

min
UT

u “ min
BUT

u “ 0.

Consequently, UT “ H and (6.51) holds.

Lemma 12. Let S P L2pΩq and cI P H1
0 pΩq

dˆd X LγpΩqdˆd. Then for each ε ą 0

the regularised system (6.46)–(6.48) subject to the data (6.42)–(6.43) admits a global

weak solution pc, pq satisfying (6.44). The regularised energy (6.49) satisfies

Eεrcptqs `
d
ÿ

k“1

ˆ t

0

ˆ
Ω

`

Btc
k
ps, xq

˘2
dx ds “ EεrcIs for all t ě 0. (6.52)

Proof. We proceed along the lines of the proof of Theorem 2 of [HMP15]. We employ

the Leray-Schauder fixed point theorem in the space L2pp0, T q ˆ Ωq. For a given

diagonal tensor c P L2pp0, T qˆΩq with nonnegative elements we construct a solution

pε P H
1pΩq of the regularised Poisson equation (6.46) with no-flux boundary data

using the Lax-Milgram theorem; note that for ε ą 0 the permeability tensor (6.47)

satisfies Pε P L8pΩq, and uniform ellipticity follows from the assumption r ě r0 ą 0

in Ω. Consequently, we have the uniform bound

}∇pε}L2pΩq ď CΩ }S}L2pΩq for all t ě 0, ε ą 0, (6.53)
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where the constant CΩ depends only on the domain Ω; in particular, it is indepen-

dent of ε ą 0 and c P L2pp0, T q ˆ Ωq.

Existence of weak solutions cε of (6.48) is obtained by a slight adaptation of

Lemma 3 of [HMP15], noting that for ∇p P L2pΩq and ε ą 0 the terms pBxkpq
2
˚ ηε

are bounded in L8pΩq. The nonnegativity of the diagonal entries of cε follows from

the fact that solutions of the semilinear PDE

Btu “ D2∆u´ ν|u|γ´2u

are subsolutions to (6.48). Preservation of nonnegativity of u for nonnegative initial

and boundary data has been established in Lemma 11.

The proof of continuity and compactness of the Schauder fixed point mapping

c ÞÑ pε ÞÑ cε in the space L2pp0, T q ˆ Ωq goes again along the lines of Theorem 2 of

[HMP15], using the so-called weak-strong lemma for the Poisson equation (Lemma

7 of [HMP15]) and compact Sobolev embedding H1pΩq Ă L2pΩq.

The energy identity (6.52) follows by multiplying the Poisson equation (6.46) by

p and integrating by parts,

d
ÿ

k“1

ˆ
Ω

`

r ` ck ˚ ηε
˘

pBxkpq
2 dx “

ˆ
Ω

Sp dx.

Subtracting this from (6.49) we obtain

Eεrcs “
d
ÿ

k“1

ˆˆ
Ω

D2

2

ˇ

ˇ∇ck
ˇ

ˇ

2
´
`

r ` ck ˚ ηε
˘

pBxkpq
2
`
ν

γ

ˇ

ˇck
ˇ

ˇ

γ
dx

˙

` 2

ˆ
Ω

Sp dx.

Integration by parts in suitable terms and using (6.46) then yields

d

dt
Eεrcs “

d
ÿ

k“1

ˆˆ
Ω

´D2∆ckBtc
k
` 2Bxk

``

r ` ck ˚ ηε
˘

Bxkp
˘

Btp´ Btc
k
pBxkpq

2 dx

˙

` ν
d
ÿ

k“1

ˆˆ
Ω

ˇ

ˇck
ˇ

ˇ

γ´1
Btc

k dx

˙

` 2

ˆ
Ω

SBtp dx

“ ´

d
ÿ

k“1

ˆ
Ω

´

D2∆ck ` pBxkpq
2
˚ ηε ´ ν

ˇ

ˇck
ˇ

ˇ

γ´1
¯

Btc
k dx

` 2

ˆ
Ω

p∇ ¨ pPεrcs∇pq ` Sq Btp dx
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“ ´

d
ÿ

k“1

ˆ
Ω

`

Btc
k
˘2

dx.

and an integration in time gives (6.52).

The passage to the limit ε Ñ 0 in (6.46)–(6.48) is based on the uniform apriori

estimates

c P L8p0,8;H1
0 pΩqq X L

8
p0,8;LγpΩqq, Btc P L

2
pp0,8q ˆ Ωq,

∇p P L8p0,8;L2
pΩqq,

a

ck ˚ ηεBxkp P L
8
p0,8;L2

pΩqq, k “ 1, . . . , d,

which follow from the energy identity (6.52) and from (6.53). Then, since a subse-

quence of cε ˚ ηε converges strongly to c in the norm topology of L2pp0, T q ˆ Ωq, a

slight modification of Lemma 7 in [HMP15] gives the strong convergence of pε to p

in L2p0, T ;H1pΩqq with no-flux boundary data where p is the unique solution of the

Poisson equation (6.38) with given c. Thus, pBxkp
εq

2 converges strongly to pBxkpq
2 in

L1 pp0, T q ˆ Ωq and pBxkp
εq

2
˚ηε also converges strongly to pBxkpq

2 in L1 pp0, T q ˆ Ωq.

The limit passage in the metabolic term
ˇ

ˇck
ˇ

ˇ

γ´2
ck can be shown as in Lemma 4 in

[HMP15] due to the uniform boundedness of cε in Lγpp0, T q ˆ Ωq. The energy dis-

sipation inequality (6.45) follows by passing to the limit ε Ñ 0 in (6.52) using the

weak lower semicontinuity of the L2-norm. This concludes the proof of Theorem

10.

6.4 Numerical simulations

In this section we provide results of numerical simulations for the discrete model

introduced in Section 6.2. We implement a minimisation scheme for the discrete

energy (6.1) constrained by the Kirchhoff law (6.2), based on the numerical methods

proposed in [ABH`17].

For the numerical simulations we consider a planar graph G “ pV,Eq whose ver-

tices and edges define a diamond shaped geometry embedded in the two-dimensional

domain Ω “ p0, 2qˆ p´1.5, 0.5q. We consider |V| “ 78 vertices and |E| “ 201 edges.

For vertex i P V let pxi, yiq denote its position. The source S is assumed to be

positive on the subset of vertices

V` :“ ti P V; xi ď 0.1u
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and constant and negative on its complement VzV`. For i P V we set

Si :“

$

&

%

σ`i i P V`

σ´i i P VzV`

where

σ`i :“ 104 exp
`

´10
`

50x2
i ` 10 pyi ` 0.5q4

˘˘

, σ´i :“ ´
1

|VzV`|
ÿ

jPV`
σ`j .

In the sequel we prescribe the initial condition C “
`

Cij

˘

pi,jqPE, unless stated oth-

erwise. We assume Cij :“ 5 for every pi, jq P E on a tree, see Figure 6.1(A), and

Cij :“ 10´10 otherwise.

For solving the constrained energy minimisation problem we consider the follow-

ing iterative procedure:

• Initialisation: For each edge pi, jq P E compute its length Lij and define the

parameters ν :“ 1, τ :“ 0.025 and tol :“ 10´6.

• Step 1 (Pressure): For C given, compute the coefficient matrix B “ pbijq P

Rn´1,n´1 with entries

bij “

$

&

%

´
Cij
L2
ij

pi, jq P E

0 pi, jq R E
, i, j “ 1, . . . , n´ 1, i ‰ j, (6.54)

bii “
ÿ

jPNpiq

Cij
L2
ij

, i “ 1, . . . , n´ 1. (6.55)

and solve via least square minimisation:

min
P
}BP ´ S}2

• Step 2 (Conductivity): For given pressure P and conductivities C find a min-

imiser C of the regularisation

Eτ
rCs :“

}C ´ C}22
2τ

`
ÿ

pi,jqPE

ˆ

QijpCq
2

Cij
` νCγ

ij

˙

Lij (6.56)

of the discrete energy functional (6.1) via interior point method for a regular-

isation parameter τ ą 0.
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• Step 3 (Energy decrease): If
ˇ

ˇEτ rCs ´ Eτ rCs
ˇ

ˇ ą tol, set C :“ C and go back

to step 1.

Note that for τ ą 0 solving (6.56) is equivalent to an implicit Euler step for

(6.13). The choice of the time step τ ą 0 is crucial. On the one hand, the time step

should not be chosen too large so that an accurate solution can be obtained. On the

other hand, choosing τ too small may result in very long simulation times, especially

because the convergence seems to be very slow close to the minimiser, compare Fig-

ure 6.2 where the slow decay of the energy functional is shown. Armijo’s condition

[NW06] suggests a good choice of the parameter τ so that sufficient decrease of the

energy functional is achieved in every time step.

In the sequel we present the energy minima (stationary solutions) obtained by

the above algorithm for different values of γ. For every edge pi, jq P E we plot the

value of the conductivity Cij in terms of the width of the associated edge. In Figure

6.1 we show the steady states under an ε-perturbation of the initial condition C for

γ “ 0.5, i.e., we consider Cij ` ε instead of Cij for all edges pi, jq P E. As shown

in Figure 6.1 the steady states are the same trees for small perturbations, e.g.,

ε ď 0.1, as the tree given by the initial condition in Figure 6.1(A). In particular, the

steady states are stable under small perturbations of the initial condition. For larger

perturbations, e.g., ε P t0.5, 1, 2u, we obtain steady states different from the initial

condition, indicating a phase transition which can be studied further in the future.

This also illustrates that the energy functional (6.1) has multiple local minima and,

consequently, the system (6.13)–(6.2) has non-unique steady states. In particular,

the steady states strongly depend on the choice of the initial data.

In Figure 6.2 the stationary solution of (6.13)–(6.2) and the decay of the energy

functional are shown for different values of γ ą 0. Note that the stationary solution

is a tree for γ “ 0.5 and a full network for γ “ 1.5. This is in agreement with the

observations of [HC13] where a phase transition at γ “ 1 was suggested with steady

states in the form of a tree for γ ă 1 and full networks as steady states for γ ą 1.

In Figure 6.3 we consider initial data in form of a tree, Figure 6.1(A), and close

one of its loops, as shown in Figure 6.3(A). These initial conditions lead to the

steady states in Figure 6.3(B). Note that closing one loop in the initial data leads to

steady states which only differ locally (i.e., in a neighbourhood of the loop) from the

original tree in Figure 6.1(A). Closing one loop in areas of smaller conductivities

in the associated steady state leads to the same tree structure as in the original

initial data in Figure 6.1(A) as shown for the third choice of initial data in Figure

6.3(A). In particular, closing loops at different locations leads to different steady
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(A) Initial data (B) ε “ 10´4 (C) ε “ 10´3 (D) ε “ 10´2

(E) ε “ 0.1 (F) ε “ 0.5 (G) ε “ 1 (H) ε “ 2

Figure 6.1: Stability of steady states under perturbations ε of initial data for the
discrete model.

(A) γ “ 0.5 (B) γ “ 1.5

Figure 6.2: Stationary solution to the discrete model and decrease of energy for
different values of γ ą 0.
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states in general, unless the resulting steady state is the tree in the initial condition

in Figure 6.1(A). This shows again that we obtain trees as steady states for γ “ 0.5,

the steady states are non-unique and the form of the steady states strongly depends

on the given initial data. In particular, loops in the initial data are opened over

time for γ “ 0.5.

(A) Initial data

(B) Associated steady states

Figure 6.3: Stability of steady states when one loop in tree-structured initial data
is closed.

Based on the initial condition in the first picture in Figure 6.3(A) we close more

loops in the neighbourhood of this closed loop in the initial data in Figure 6.4.

Closing iteratively one additional loop results in the initial conditions in Figure

6.4(A) and the associated steady states are depicted in Figure 6.4(B). Note that

closing loops close to the source leads to different steady states. In particular,

closing loops iteratively in the initial data leads to steady states which only differ

locally. More precisely, the resulting steady states all have the same number of

non-zero conductivities. Closing one loop in the initial data results in a steady

state which can be obtained from steady states with the previous initial data by

interchanging a non-zero with a negligible conductivity. In particular, the steady

states strongly depend on the initial data.

In Figure 6.5 the steady states are shown for the same initial data as before (see

Figure 6.5(A)) for different values of the parameter ν ą 0 in the definition of the

energy functional (6.1). As ν increases the form of the steady states remain the

same, i.e., positive conductivities remain positive for different values of ν. However,

the absolute value of the conductivities decreases as ν increases, see Figure 6.5. This

is consistent with the definition of the energy functional (6.1) where the metabolic
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(A) Initial data

(B) Associated steady states

Figure 6.4: Stability of steady states when several loops in tree-structured initial
data are closed in the discrete model.

term is of the form ν
γ
Cγ
ij with γ ą 0.

(A) Initial data (B) ν “ 1 (C) ν “ 100 (D) ν “ 105

Figure 6.5: Steady states for different values of the parameter ν in the energy
functional (6.1).

The absolute value of the initial conductivities is varied in Figures 6.6(A)–6.6(C)

and we show the resulting steady state in Figure 6.6(D). More precisely, we consider

initial data in the form of a tree as before, when only those conductivities C̄ “

pC̄ijqpi,jqPE with positive conductivities C̄ij are considered but vary the absolute

value of the initial conductivities. We consider the initial data C̄ij “ δ for every

edge pi, jq P E on the tree for δ “ 5, 50, 5000, 50000 and C̄ij “ 10´10 otherwise, as

shown in Figure 6.1(A) and Figures 6.6(A)–6.6(C), respectively. All these different

initial data result in the same steady state shown in Figure 6.6(D).

In Figure 6.7, full graphs are considered as initial data and we show the asso-

ciated steady states. We consider C̄ij “ 1 for all pi, jq P E and the perturbed full

graph with C̄ij “ 1`Up0, 1q where Up0, 1q denotes a uniformly distributed random

variable on r0, 1s. The associated steady states are more complex transportation
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(A) δ “ 100 (B) δ “ 103 (C) δ “ 104 (D) Steady state

Figure 6.6: Initial data for the conductivity vector C̄ “ pC̄ijqpi,jqPE in the form of
a tree where each non-zero conductivity C̄ij is of size δ ą 0 (left) all leading to an
identical steady state (right) for the discrete model.

networks.

(A) Full graph (B) Steady state

Figure 6.7: Steady states for full graph and perturbed full graph as initial data in
the discrete model.
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Chapter 7

Rigorous continuum limit

Originality and contribution

This chapter is based on the paper [HKM19b] in collaboration with Jan Haskovec

and Peter A. Markowich. While PM proposed the study of the model and provided

guidance and advice, the results are mostly joint work by JH and myself.

Chapter summary

In this chapter, we study the rigorous limit of the discrete model proposed by

Hu and Cai consisting of an energy consumption function constrained by a linear

system on a graph. For the spatially two-dimensional rectangular setting we prove

the rigorous continuum limit of the constrained energy functional as the number

of nodes of the underlying graph tends to infinity and the edge lengths shrink to

zero uniformly. The proof is based on reformulating the discrete energy functional

as a sequence of integral functionals and proving their Γ-convergence towards the

respective continuum energy functional.

7.1 Introduction

In this chapter we derive the rigorous continuum limit of the discrete network for-

mation model of Hu and Cai [HC13]. The model is posed on an a priori given

graph G “ pV,Eq, consisting of the set of vertices (nodes) V and the set of unori-

ented edges (vessels) E. Any pair of vertices i, j P V is connected by at most one

edge pi, jq P E, such that the corresponding graph pV,Eq is connected. The lengths
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Lij ą 0 of the vessels pi, jq P E are given a priori and fixed. The adjacency matrix

of the graph pV,Eq is denoted by A, i.e., Aij “ 1 if pi, jq P E, otherwise Aij “ 0.

Let us emphasise that by fixing pV,Eq, the set of possible flow directions in the

network is also fixed. For each node j P V we prescribe the strength of source/sink

Sj P R and we adopt the convention that Sj ą 0 denotes sources, while Sj ă 0

sinks. We also allow for Sj “ 0, i.e., no external in- or outgoing flux in this node.

We impose the global mass conservation

ÿ

jPV

Sj “ 0. (7.1)

We denote Cij and, resp., Qij the conductivity and, resp., the flow through the

vessel pi, jq P E. Note that the flow is oriented and we adopt the convention that

Qij ą 0 means net flow from node j P V to node i P V. An overview of the notation

is provided in Table 7.1. We assume low Reynolds number of the flow through

the network, so that the flow rate through a vessel pi, jq P E is proportional to its

conductivity and the pressure drop between its two ends, i.e.,

Qij “ Cij
Pj ´ Pi
Lij

. (7.2)

Local conservation of mass is expressed in terms of the Kirchhoff law,

ÿ

iPV

AijCij
Pj ´ Pi
Lij

“ Sj for all j P V. (7.3)

Note that for any given vector of conductivities C :“ pCijqpi,jqPE, (7.3) represents

a linear system of equations for the vector of pressures pPjqjPV. The system has a

solution, unique up to an additive constant, if and only if the graph with edge weights

given by C is connected [GYZ13], where only edges with positive conductivities are

taken into account (i.e., edges with zero conductivity are discarded).

Assuming that the material cost for an edge pi, jq P E of the network is propor-

tional to a power Cγ
ij of its conductivity, Hu and Cai [HC13] consider the energy

consumption function of the form

ErCs :“
1

2

ÿ

iPV

ÿ

jPV

ˆ

Q2
ij

Cij
`
ν

γ
Cγ
ij

˙

AijLij, (7.4)

where ν ą 0 is the metabolic coefficient and Qij is given by (7.2), where the pressure

236



7.1. Introduction

Table 7.1: Notation. (*) denotes variables that are given as data.

Variable Meaning Related to

Sj p˚q intensity of source/sink vertex j P V

Pj pressure vertex j P V

Lij p˚q length of an edge edge pi, jq P E

Qij flow from j P V to i P V edge pi, jq P E

Cij conductivity edge pi, jq P E

drop
Pj´Pi
Lij

is determined by (7.3). The first part of the energy consumption (7.4)

represents the kinetic energy (pumping power) of the material flow through the

vessels, and we shall call it pumping term in the sequel. The second part represents

the metabolic cost of maintaining the network and shall be called metabolic term.

For instance, the metabolic cost for a blood vessel is proportional to its cross-section

area [Mur26a]. Modelling blood flow by Hagen-Poiseuille’s law, the conductivity of

the vessel is proportional to the square of its cross-section area. This implies γ “ 1{2

for blood vessel systems. For leaf venations, the material cost is proportional to the

number of small tubes, which is proportional to Cij, and the metabolic cost is due

to the effective loss of the photosynthetic power at the area of the venation cells,

which is proportional to C
1{2
ij . Consequently, the effective value of γ typically used

in models of leaf venation lies between 1{2 and 1, [HC13]. Hu and Cai showed that

the optimal networks corresponding to minimisers of (7.3)-(7.4) exhibit a phase

transition at γ “ 1, with a “uniform sheet” (the network is tiled with loops) for

γ ą 1 and a “loopless tree” for γ ă 1, see also [HMR18]. Moreover, they consider

the gradient flow of the energy (7.4) constrained by the Kirchhoff law (7.3), which

leads to the ODE system for the conductivities Cij,

dCij
dt

“

ˆ

Q2
ij

C2
ij

´ νCγ´1
ij

˙

Lij for pi, jq P E, (7.5)

coupled to the Kirchhoff law (7.3) through (7.2). This system represents an adap-

tation model which dynamically responds to local information and can naturally

incorporate fluctuations in the flow.

This chapter focuses on deriving the rigorous continuum limit of the energy

functional (7.3)-(7.4) as the number of nodes of the underlying graph tends to
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infinity and the edge lengths Lij tend uniformly to zero. In a general setting with a

sequence of unstructured graphs this is a mathematically very challenging task. In

particular, one has to expect that the object obtained in the limit will depend on

the structural and statistical properties of the graph sequence (connectivity, edge

directions and density etc.). Therefore, we consider the particular setting where the

graphs correspond to regular equidistant meshes in 1D and 2D. As we explain in

Section 7.3, the energy minimization problem for (7.3)-(7.4) in the one-dimensional

case is in fact trivial, and the form of the limiting functional is obvious. However, we

use this setting as a toy example and carry out the rigorous limit passage anyway.

The reason is that in the 1D setting we avoid most of the technical peculiarities

of the two-dimensional case and we can focus on the essential idea of the method.

Equipped with this insight, we shall turn to the two-dimensional case (Section 7.4),

where the graph is an equidistant rectangular mesh on a square-shaped domain Ω.

In both the 1D and 2D cases, it is necessary to adopt the additional assumption

that the conductivities are a priori bounded away from zero. In particular, we

introduce a modification of the system (7.3)-(7.4) where the conductivities are of

the form r ` Cij, where r ą 0 is a fixed global constant. The reason is that we

need to guarantee the solvability of the Poisson equation (7.10) below, which will

be obtained in the continuum limit. Moreover, in the 2D case, the additive terms in

the energy functional have to be scaled by the square of the edge length Lij. This

is due to the fact that we are embedding the inherently one-dimensional edges of

the graph into two spatial dimensions; see [HKM19a, Section 3.2] for details. Thus,

we shall work with the energy functional

ErCs :“
1

2

ÿ

iPV

ÿ

jPV

ˆ

Q2
ij

r ` Cij
`
ν

γ
pr ` Cijq

γ

˙

AijL
d
ij, (7.6)

where d “ 1, 2 is the space dimension, coupled to the (properly rescaled) Kirchhoff

law

ÿ

iPV

Aijpr ` Cijq
Pj ´ Pi
Lij

“ LjSj for all j P V (7.7)

through

Qij “ pr ` Cijq
Pj ´ Pi
Lij

, (7.8)
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where Lj are (abstract) weights that scale linearly with the mean edge length; see

[HKM19a, Section 3.1] for details about the scaling in (7.7). The main benefit of

this chapter is the rigorous derivation of the limiting energy functional, which for

the two-dimensional case is of the form

Ercs “
ˆ

Ω

∇prcs ¨ prI` cq∇prcs ` ν

γ
p|r ` c1|

γ
` |r ` c2|

γ
q dx, (7.9)

with x “ px, yq P R2 and where prcs P H1pΩq is a weak solution of the Poisson

equation

´∇ ¨ pprI` cq∇pq “ S (7.10)

subject to no-flux boundary conditions on BΩ, where I is the unit matrix and c is

the diagonal 2ˆ 2-tensor

c “

¨

˚

˝

c1 0

0 c2

˛

‹

‚

. (7.11)

Here, S P L2pΩq denotes the source/sink term and in analogy to (7.1) we require´
Ω
S dx “ 0. The derivation is based on three steps:

(i) Establish a connection between the discrete solutions of the Kirchhoff law

(7.7) and weak solutions of the Poisson equation (7.10); see Section 7.3.1 in

1D and Sections 7.4.1, 7.4.2 in 2D.

(ii) Reformulate the discrete energy functional (7.6) as an integral functional de-

fined on the set of bounded functions; see Section 7.3.1 in 1D and Section

7.4.2 in 2D.

(iii) Show that the sequence of integral functionals Γ-converges to the energy

functional (7.9); see Section 7.3.2 in 1D and Section 7.4.3 in 2D. See, e.g.,

[DM93, Bra02] for details about Γ-convergence.

The Γ-convergence opens the door for constructing global minimisers of (7.9)–(7.10)

as limits of sequences of minimisers of the discrete problem (7.6)–(7.7). However,

for this we need strong convergence of the minimisers in an appropriate topology.

In agreement with [HMP15, HMPS16, ABH`17] we introduce diffusive terms into
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Rigorous continuum limit

the discrete energy functionals, modeling random fluctuations in the medium (Sec-

tion 7.3.3 for 1D and Section 7.4.4 in 2D). The diffusive terms provide compactness

of the minimizing sequences in a suitable topology and facilitate the construction

of global minimisers of (7.9)–(7.10).

Let us note that the steepest descent minimization procedure for (7.9)–(7.10)

is represented by the formal L2-gradient flow. This leads to the system of partial

differential equations for c1 “ c1pt, x, yq, c2 “ c2pt, x, yq,

Btc1 “ pBxpq
2
´ νpr ` c1q

γ´1,

Btc2 “ pBypq
2
´ νpr ` c2q

γ´1,
(7.12)

subject to homogeneous Dirichlet boundary data and coupled to (7.10) through

(7.11). The existence of weak solutions and their properties are studied in [HKM19a].

Finally, let us remark that [Hu13] proposed a different PDE system, derived from the

discrete model [HC13] by certain phenomenological considerations (laws of porous

medium flow, see [ABH`17] for details). The system consists of a parabolic reaction-

diffusion equation for the vector-valued conductivity field, constrained by a Poisson

equation for the pressure, and was studied in the series of papers [HMP15, HMPS16,

AAFM16, ABH`17]. However, a rigorous derivation of the model is still lacking;

moreover, no explicit connection to the system (7.12) has been established so far.

7.2 An auxiliary Lemma

Lemma 13. Fix r ą 0, a bounded domain Ω Ă Rd with d ě 1, and S P L2pΩq. Let

pcNqNPN Ă L8pΩq be a sequence of nonnegative, essentially bounded functions on Ω,

such that cN Ñ c P L2pΩq in the norm topology of L2pΩq. Let ppNqNPN Ă H1pΩq be

a sequence of zero-average weak solutions of the Poisson equation

´∇ ¨ ppr ` cNq∇pNq “ S (7.13)

subject to homogeneous Neumann boundary conditions on BΩ. Then ∇pN converges

to ∇p and
?
cN∇pN converges to

?
c∇p strongly in L2pΩq, where p is the zero-

average weak solution of

´∇ ¨ ppr ` cq∇pq “ S (7.14)
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subject to homogeneous Neumann boundary conditions on BΩ. In particular, we

have

lim
NÑ8

ˆ
Ω

pr ` cNq|∇pN |2 dx “

ˆ
Ω

pr ` cq|∇p|2 dx. (7.15)

Remark 21. Note that we do not assume that pcNqNPN is uniformly bounded in

L8pΩq, nor that c P L8pΩq.

Proof. Using pN as a test function in (7.13), due to the nonnegativity of cN , we

have

r
›

›∇pN
›

›

2

L2pΩq
ď

ˆ
Ω

pr ` cNq|∇pN |2 dx “

ˆ
Ω

SpN dx (7.16)

ď
1

2ε
}S}2L2pΩq `

εCP
2

›

›∇pN
›

›

2

L2pΩq
,

where CP is the Poincaré constant. With a suitable choice of ε ą 0 we obtain a

uniform estimate on pN in H1pΩq. Consequently, there exists a subsequence of pN

that converges weakly in H1pΩq to some p P H1pΩq. Since cN Ñ c strongly in L2pΩq,

we can pass to the limit in the distributional formulation of (7.13) to obtain

ˆ
Ω

pr ` cq∇p ¨∇φ dx “

ˆ
Ω

Sφ dx for all φ P C80 pΩq. (7.17)

Noting that (7.16) also implies a uniform bound on
´

Ω
cN |∇pN |2 dx, we have due to

the weak lower semicontinuity of the L2-norm,

ˆ
Ω

pr ` cq|∇p|2 dx ď lim inf
NÑ8

ˆ
Ω

pr ` cNq|∇pN |2 dx ă `8. (7.18)

Consequently, we can use p as a test function in (7.17) to obtain

ˆ
Ω

pr ` cq|∇p|2 dx “

ˆ
Ω

Sp dx.

Therefore, using pN as a test function in (7.13),

lim
NÑ8

ˆ
Ω

pr ` cNq|∇pN |2 dx “ lim
NÑ8

ˆ
Ω

SpN dx “

ˆ
Ω

Sp dx “

ˆ
Ω

pr ` cq|∇p|2 dx,
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which gives (7.15) and, further,

lim sup
NÑ8

ˆ
Ω

|∇pN |2 dx ď lim sup
NÑ8

ˆ
Ω

pr ` cNq|∇pN |2 dx` lim sup
NÑ8

ˆ

´

ˆ
Ω

cN |∇pN |2 dx

˙

“

ˆ
Ω

pr ` cq|∇p|2 dx´ lim inf
NÑ8

ˆ
Ω

cN |∇pN |2 dx.

Now, using (7.18), we have

´ lim inf
NÑ8

ˆ
Ω

cN |∇pN |2 dx “ ´ lim inf
NÑ8

ˆ
Ω

|
?
cN∇pN |2 dx ď ´

ˆ
Ω

|
?
c∇p|2 dx.

Therefore,

lim sup
NÑ8

ˆ
Ω

|∇pN |2 dx ď

ˆ
Ω

|∇p|2 dx,

so that limNÑ8

›

›∇pN
›

›

L2pΩq
“ }∇p}L2pΩq, which directly implies that (a subsequence

of) pN converges towards p strongly in H1pΩq.

7.3 The 1D equidistant setting

In this section we consider the spatially one-dimensional setting of the discrete

network formation problem, where the graph pV,Eq is given as a mesh on the

interval r0, 1s. Moreover, for simplicity we consider the equidistant case, where for

a fixed N P N construct the sequence of meshpoints xi,

xi “ ih for i “ 0, . . . , N, with h :“ 1{N.

We identify the meshpoints xi with the vertices of the graph, i.e., we set V :“

txi; i “ 0, . . . , Nu. The segments pxi´1, xiq connecting any two neighbouring nodes

are identified with the edges of the graph, i.e., E :“ tpxi´1, xiq; i “ 1, . . . , Nu. By

a slight abuse of notation, we shall write i P V instead of xi P V in the sequel,

and similarly i P E instead of pxi´1, xiq P E. Moreover, we shall use the notation

C :“ pCiq
N
i“1 with Ci ě 0 the conductivity of the edge i P E, Pi P R for the pressure

in node i P V and SNi P R for the source/sink in node i P V with
řN
i“1 S

N
i “ 0 by

(7.1). With this notation we rewrite the energy functional (7.6) as EN rCs : RN
` ÞÑ R,

EN
rCs :“ h

N
ÿ

i“1

Q2
i

r ` Ci
`
ν

γ
pr ` Ciq

γ, (7.19)
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with the fluxes

Qi :“ pr ` Ciq
Pi´1 ´ Pi

h
, for i “ 1, . . . , N. (7.20)

Note that we orient the fluxes Qi such that Qi ą 0 if the material flows from xi´1

to xi. The Kirchhoff law (7.7) is then written in the form

pr ` Ciq
Pi ´ Pi´1

h
` pr ` Ci`1q

Pi ´ Pi`1

h
“ hSNi for i “ 1, . . . , N ´ 1, (7.21)

while for the terminal nodes we have

pr ` C1q
P0 ´ P1

h
“ hSN0 , pr ` CNq

PN ´ PN´1

h
“ hSNN .

Obviously, in the 1D setting the fluxes Qi are explicitly calculable from the given

set of sources/sinks pSiq
N
i“0 since the Kirchhoff law (7.21) is the chain of equations

Q1 “ hSN0 ,

´Qi `Qi`1 “ hSNi for i “ 1, . . . , N ´ 1,

´QN “ hSNN ,

which has the explicit solution

Qi “ h
i´1
ÿ

j“0

SNj for i “ 1, . . . , N ´ 1. (7.22)

Note that due to the assumption of the global mass balance (7.1) the “terminal

condition” for i “ N is implicitly satisfied,

´QN “ ´h
N´1
ÿ

j“0

Sj “ hSNN . (7.23)

With the fluxes given by (7.22)–(7.23), it is trivial to find the global energy minimiser

of (7.19), namely, pr ` Ciq
γ`1 “ Q2

i {ν. It is also easy to prove that the sequence of

the functionals (7.19) converges as h “ 1{N Ñ 0 to the continuous functional

Ercs :“

ˆ 1

0

qpxq2

r ` cpxq
`
ν

γ
pr ` cpxqqγ dx, (7.24)

with qpxq :“
´ x

0
Spσq dσ, in the sense of Riemannian sums if c is a continuous,
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nonnegative function. Therefore, the limit passage to continuum description in the

one-dimensional case is trivial. However, we shall use it as a “training example”

which avoids most of the technical difficulties of the two-dimensional setting to gain

a clear understanding of the main ideas of the method.

Therefore, we shall ignore the explicit formula (7.22) for the fluxes Qi and study

the limit as h “ 1{N Ñ 0 of the sequence of energy functionals (7.19)–(7.20), i.e.,

EN
rCs “ h

N
ÿ

i“1

pr ` Ciq

ˆ

Pi ´ Pi´1

h

˙2

`
ν

γ
pr ` Ciq

γ, (7.25)

where the pressures Pi are calculated as a solution of the Kirchhoff law (7.21). Note

that since r ` Ci ą 0 for all i P V, (7.21) is solvable, uniquely up to an additive

constant. In the following we shall show that the sequence (7.25) converges, as

h “ 1
N
Ñ 0, to the functional (7.24) with q :“ pr ` cqBxprcs, i.e.,

Ercs “
ˆ 1

0

pr ` cqpBxprcsq
2
`
ν

γ
pr ` cqγ dx, (7.26)

where prcs P H1p0, 1q is a weak solution of the Poisson equation

´Bxppr ` cqBxpq “ S (7.27)

on p0, 1q, subject to no-flux boundary conditions. Here and in the sequel we fix the

source/sink term S P L2p0, 1q and, in agreement with (7.1), we assume the global

mass balance
´ 1

0
Spxq dx “ 0. Since for cpxq ě 0 the weak solution p “ ppxq of

(7.27) is unique up to an additive constant, we shall, without loss of generality,

always choose the zero-average solution, i.e.,
´ 1

0
ppxq dx “ 0.

We shall proceed in several steps: First, we put the discrete energy functionals

(7.25) into an integral form, and find an equivalence between solutions of the Kirch-

hoff law (7.21) and the above Poisson equation with appropriate conductivity. Then

we show the convergence of the sequence of reformulated discrete energy functionals

towards a continuum one as h “ 1{N Ñ 0. Finally, we introduce a diffusive term

into the energy functional, which will allow us to construct global minimisers of the

continuum energy functional.
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7.3.1 Reformulation of the discrete energy functional

In the first step we reformulate the energy functionals (7.25) such that they are

defined on the space L8`p0, 1q of essentially bounded nonnegative functions on p0, 1q.

For this purpose, we define the sequence of operators QN
0 : RN Ñ L8p0, 1q by

QN
0 : pCiq

N
i“1 ÞÑ c, with cpxq ” Ci for x P pxi´1, xiq, i “ 1, . . . , N.

I.e., QN
0 maps the sequence pCiq

N
i“1 onto the bounded function c “ cpxq, constant

on each interval pxi´1, xiq, i “ 1, . . . , N . Then, we define the functionals EN :

L8`p0, 1q ÞÑ R,

EN rcs :“

ˆ 1

0

pr ` cq
`

QN
0 r∆

hP s
˘2
`
ν

γ
pr ` cqγ dx, (7.28)

with

p∆hP qi :“
Pi ´ Pi´1

h
, i “ 1, . . . , N, (7.29)

and P “ pPiq
N
i“0 a solution of the Kirchhoff law (7.21) with the conductivities

C “ pCiq
N
i“1,

Ci :“
1

h

ˆ xi

xi´1

cpxq dx, i “ 1, . . . , N.

Then, noting that for each C “ pCiq
N
i“1 P RN

` ,

1

h

ˆ xi

xi´1

QN
0 rCspxq dx “ Ci for all i “ 1, . . . , N,

the discrete energy functional (7.25) can be written in the integral form as EN rCs “

EN rQN
0 rCss.

Moreover, we establish a connection between the solutions of the Kirchhoff law

(7.21) and weak solutions of the Poisson equation (7.27) with c “ QN
0 rCs:

Lemma 14. For any C “ pCiq
N
i“1 P RN

` and S P L2p0, 1q with
´ 1

0
Spxq dx “ 0,

let p “ ppxq P H1p0, 1q be a weak solution of the Poisson equation (7.27) with

c “ QN
0 rCs, i.e.,

´Bx
`

pr `QN
0 rCsqBxp

˘

“ S, (7.30)
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subject to no-flux boundary conditions on p0, 1q. Then,

Pi :“ ppxiq, i “ 0, . . . , N, (7.31)

is a solution of the Kirchhoff law (7.21) with the conductivities C “ pCiq
N
i“1 and the

source/sink terms

SNi :“
1

h

ˆ 1

0

SpxqφNi pxq dx, i “ 0, . . . , N, (7.32)

with the hat functions φNi “ φNi pxq defined in (7.33) below.

Proof. Note that for any C P RN
` there exists a weak solution p “ ppxq P H1p0, 1q of

(7.30), unique up to an additive constant. For i “ 1, . . . , N we construct the family

of piecewise linear test functions φNi , supported on pxi´1, xi`1q, with

φNi pxq “

$

&

%

1` x´xi
h

for x P pxi´1, xiq,

1´ x´xi
h

for x P pxi, xi`1q.
. (7.33)

Using the hat function φNi as a test function in (7.30), we obtain

pr ` Ciq
ppxiq ´ ppxi´1q

h
` pr ` Ci`1q

ppxiq ´ ppxi`1q

h
“ hSNi ,

where we used the fact that, by construction, QN
0 rCs ” Ci on the interval pxi´1, xiq.

Note that due to the embedding H1p0, 1q ãÑ Cp0, 1q any weak solution p “ ppxq

of (7.30) is a continuous function on r0, 1s, so the pointwise values ppxiq are well

defined for all i “ 0, . . . , N . Thus, defining Pi as in (7.31) we obtain a solution of

the Kirchhoff law (7.21) with the conductivities C “ pCiq
N
i“1 and source/sink terms

(7.32).

Note that since 1
h

´ 1

0
φNi pxq dx “ 1 and S P L2p0, 1q, the Lebesgue differentiation

theorem gives

SNi “
1

h

ˆ 1

0

SpxqφNi pxq dxÑ Spx̄q for a.e. x̄ “ xi as h “ 1{N Ñ 0.

Consequently, for a fixed S P L2p0, 1q and any N P N, we have the following

reformulation of the discrete problem:
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Proposition 13. For any vector C “ pCiq
N
i“1 P RN

` , we have

EN
rCs “ EN rQN

0 rCss,

where EN rCs is the discrete energy functional (7.25) coupled to the Kirchhoff law

(7.21) with sources/sinks SNi given by (7.32), and EN is the integral form (7.28)–

(7.29) with the pressures given by Pi “ ppxiq, i “ 0, . . . , N , where p P H1p0, 1q solves

the Poisson equation (7.30).

7.3.2 Convergence of the energy functionals

Due to Proposition 13, we are motivated to prove the convergence of the sequence

of functionals EN given by (7.28)–(7.29) towards Ercs given by (7.26) with prcs P

H1p0, 1q a weak solution of (7.27) with conductivity c “ cpxq, equipped with no-

flux boundary conditions. We choose to work in the space of essentially bounded

functions on p0, 1q equipped with the topology of L2p0, 1q. The choice of topology is

motivated by the need for strong convergence of piecewise constant approximations

of bounded functions. Of course, this is true in Lqp0, 1q with any q ă `8; our

particular choice of L2p0, 1q is further dictated by the fact that we shall apply

Lemma 13 in the sequel.

Lemma 15. Let γ ě 0. For any sequence of nonnegative functions pcNqNPN, uni-

formly bounded in L8p0, 1q and such that cN Ñ c in the norm topology of L2p0, 1q

as N Ñ 8, we have

EN rcN s Ñ Ercs as h “ 1{N Ñ 0.

Proof. By assumption, cN Ñ c in the norm topology of L2p0, 1q. Consequently, there

is a subsequence converging almost everywhere on p0, 1q to c, and thus
`

r ` cNpxq
˘γ

converges almost everywhere to pr ` cpxqqγ. Since, by assumption, the sequence
`

r ` cNpxq
˘γ

is uniformly bounded in L8p0, 1q, we have by the dominated conver-

gence theorem

ˆ 1

0

`

r ` cNpxq
˘γ

dxÑ

ˆ 1

0

pr ` cpxqqγ dx as h “ 1{N Ñ 0.
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We recall that the pumping part of the discrete energy EN rcN s (7.28) is of the form

ˆ 1

0

pr ` cNq
`

QN
0 r∆

hpN s
˘2

dx, (7.34)

with

p∆hpNqi :“
pNpxiq ´ p

Npxi´1q

h
, i “ 1, . . . , N,

where pN P H1p0, 1q is a solution of the Poisson equation (7.27) with conductivity

cN , subject to the no-flux boundary condition. Let us show that (a subsequence of)

QN
0 r∆

hpN s converges to Bxprcs strongly in L2p0, 1q. We proceed in three steps:

• Weak convergence. By Jensen inequality we have

›

›QN
0 r∆

hpN s
›

›

2

L2p0,1q
“ h

N
ÿ

i“1

ˆ

pNpxiq ´ p
Npxi´1q

h

˙2

(7.35)

“ h
N
ÿ

i“1

ˆ

1

h

ˆ xi

xi´1

Bxp
N
pxq dx

˙2

ď

ˆ 1

0

pBxp
N
q
2 dx.

Due to the nonnegativity of the functions cN , the right-hand side is uni-

formly bounded. Consequently, there exists a weakly converging subsequence

of QN
0 r∆p

N s in L2p0, 1q.

• Identification of the limit. For a smooth, compactly supported test func-

tion ψ P C80 p0, 1q we write

ˆ 1

0

QN
0 r∆

hpN spxqψpxq dx

“

N
ÿ

i“1

pNpxiq ´ p
Npxi´1q

h

ˆ xi

xi´1

ψpxq dx

“
1

h

N´1
ÿ

i“1

pNpxiq

ˆˆ xi

xi´1

ψpxq dx´

ˆ xi`1

xi

ψpxq dx

˙

` “boundary terms”,

where “boundary terms” are the two terms with i “ 0 and i “ N , which we

however can neglect for large enough N since ψ has a compact support. Then,

Taylor expansion for ψ gives

ˆ xi

xi´1

ψpxq dx´

ˆ xi`1

xi

ψpxq dx “ ´h

ˆ xi

xi´1

Bxψpxq dx`
h2

2

ˆ xi

xi´1

B
2
xxψpξpxqq dx,
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7.3. The 1D equidistant setting

with ξpxq P pxi´1, xiq. Due to the estimate

ˇ

ˇ

ˇ

ˇ

h2

2

ˆ xi

xi´1

B
2
xxψpξpxqq dx

ˇ

ˇ

ˇ

ˇ

ď
h3

2

›

›B
2
xxψ

›

›

L8p0,1q

we have

ˆ xi

xi´1

ψpxq dx´

ˆ xi`1

xi

ψpxq dx “ ´h

ˆ xi

xi´1

Bxψpxq dx`Oph3
q,

so that

ˆ 1

0

QN
0 r∆

hpN spxqψpxq dx “ ´

ˆ 1

0

pNBxψpxq dx`Ophq,

where pN is the piecewise constant function

pNpxq ” pNpxiq for x P pxi´1, xis, i “ 1, . . . , N.

It is easy to check that, due to the strong convergence of cN towards c in

L2p0, 1q, pN converges to prcs weakly in H1p0, 1q. Due to the compact embed-

ding H1p0, 1q ãÑ Cp0, 1q, (a subsequence of) pN converges uniformly to prcs

on p0, 1q, and, therefore pN converges strongly to prcs. Therefore,

ˆ 1

0

QN
0 r∆

hpN spxqψpxq dxÑ ´

ˆ 1

0

ppxqBxψpxq dx as h “ 1{N Ñ 0,

“

ˆ 1

0

ψpxqBxppxq dx.

We conclude that weak limit of (the subsequence of) QN
0 r∆

hpN s is Bxprcs.

• Strong convergence. Finally, due to (7.35), we have

›

›QN
0 r∆

hpN s ´ Bxprcs
›

›

2

L2p0,1q

“
›

›QN
0 r∆

hpN s
›

›

2

L2p0,1q
´ 2xQN

0 r∆
hpN s, BxprcsyL2p0,1q ` }Bxprcs}

2
L2p0,1q

ď
›

›Bxp
N
›

›

2

L2p0,1q
´ 2xQN

0 r∆
hpN s, BxprcsyL2p0,1q ` }Bxprcs}

2
L2p0,1q ,

which vanishes in the limit h “ 1{N Ñ 0 due to the weak convergence of

QN
0 r∆p

N s and strong convergence of Bxp
N in L2p0, 1q due to Lemma 13. Thus,

QN
0 r∆p

N s converges strongly to Bxprcs in L2p0, 1q.

249
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We conclude that due to the weak-˚ convergence of pr ` cNq towards pr ` cq in

L8p0, 1q, and strong convergence of
`

QN
0 r∆

hpN s
˘2

towards pBxprcsq
2 in L1p0, 1q, we

can pass to the limit as h “ 1{N Ñ 0 in (7.34) to obtain

ˆ 1

0

pr ` cq pBxprcsq
2 dx.

7.3.3 Diffusion and construction of continuum energy min-

imisers

In Lemma 15 we proved the convergence of the sequence of energy functionals

EN towards E , i.e., for any cN Ñ c in the norm topology of L2p0, 1q, we have

EN rcN s Ñ Ercs as N Ñ 8. In order to construct energy minimisers of E as limits

of sequences of minimisers of the functionals EN , we need to introduce a term into

EN that shall guarantee compactness of the sequence of discrete minimisers. This

is done, in agreement with [HMP15, HMPS16, ABH`17], by introducing a diffusive

term into the discrete energy functional (7.25), modelling random fluctuations in

the medium. Thus, we construct the sequence EN
diff : RN

` Ñ R,

EN
diffrCs :“ D2h

N´1
ÿ

i“1

ˆ

Ci`1 ´ Ci
h

˙2

` EN
rCs, (7.36)

with EN rCs defined in (7.25), coupled to the Kirchhoff law (7.21) with sources/sinks

SNi given by (7.32), and D2 ą 0 the diffusion constant. Note that the new term is

a discrete Laplacian acting on the conductivities C.

We now need to reformulate the discrete energy functionals (7.36) in terms

of integrals. For this sake, we construct the sequence of operators QN
1 : RN Ñ

Cp0, 1q, where QN
1 rCs is a continuous function on r0, 1s, linear on each interval

pxi ´ h{2, xi ` h{2q, with

QN
1 rCspxi ´ h{2q “ Ci for i “ 1, . . . , N,

and

QN
1 rCspxq ” C1 for x P r0, h{2q, QN

1 rCspxq ” CN for x P p1´ h{2, 1s.
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7.3. The 1D equidistant setting

Then we write the finite difference term in (7.36) as

D2h
N´1
ÿ

i“1

ˆ

Ci`1 ´ Ci
h

˙2

“ D2

ˆ 1

0

`

BxQN
1 rCs

˘2
dx,

and we have

Proposition 14. For any vector C “ pCiq
N
i“1 P RN

` ,

EN
diffrCs “ D2

ˆ 1

0

`

BxQN
1 rCs

˘2
dx` EN rQN

0 rCss ,

where EN
diff defined in (7.36) and EN is given by (7.28)–(7.29) with the pressures

given by Pi “ ppxiq, i “ 0, . . . , N , where p P H1p0, 1q solves the Poisson equation

(7.30).

We are now ready to prove the main result of this section:

Theorem 11. Let γ ě 0, S P L2p0, 1q with
´ 1

0
Spxq dx and SNi given by (7.32).

Let pCNqNPN be a sequence of global minimisers of the discrete energy functionals

EN
diff given by (7.36). Then the sequence QN

1 rC
N s converges weakly in H1p0, 1q to

c P H1p0, 1q, a global minimiser of the functional Ediff : H1
`p0, 1q Ñ R,

Ediffrcs :“ D2

ˆ 1

0

pBxcq
2 dx` Ercs,

where Ercs is given by (7.26).

Proof. Let us observe that

EN
diffrC

N
s ď EN

diffr0s “ rh
N
ÿ

i“1

˜

rPi ´ rPi´1

h

¸2

`
ν

γ
rγ,

where p rPiq
N
i“1 is a solution of the Kirchhoff law (7.21) with zero conductivities and

sources/sinks given by (7.32). Thus, rPi “ rppxiq for i “ 1, . . . , N , where rp “ rppxq

is a weak solution of ´r∆p “ S subject to no-flux boundary conditions. Then we

have by the Jensen inequality

D2h
N
ÿ

i“1

˜

rPi ´ rPi´1

h

¸2

“ D2h
N
ÿ

i“1

ˆ

1

h

ˆ xi

xi´1

Bxrp dx

˙2

ď D2

ˆ 1

0

pBxrpq
2 dx.
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Consequently, the sequence ENdiffrC
N s is uniformly bounded.

Since the sequence

D2

ˆ 1

0

`

BxQN
1 rC

N
s
˘2

dx “ D2h
N´1
ÿ

i“1

ˆ

Ci`1 ´ Ci
h

˙2

ď EN
diffrC

N
s

is uniformly bounded, there exists a subsequence of QN
1 rC

N s converging to some

c P H1p0, 1q weakly in H1p0, 1q, and strongly in L2p0, 1q; moreover, the sequence is

uniformly bounded in L8p0, 1q. It is easy to check that also QN
0 rC

N s converges to

c strongly in L2p0, 1q, and is uniformly bounded in L8p0, 1q. Therefore, by Lemma

15, we have EN rCN s “ EN rQN
0 rC

N ss Ñ Ercs as h “ 1{N Ñ 0. Moreover, due to

the weak lower semicontinuity of the L2-norm, we have

ˆ 1

0

pBxcq
2 dx ď lim inf

NÑ8

ˆ 1

0

`

BxQN
1 rC

N
s
˘2

dx .

Consequently,

Ediffrcs ď lim inf
NÑ8

EN
diffrC

N
s. (7.37)

We claim that c is a global minimiser of Ediff in H1
`p0, 1q. For contradiction,

assume that there exists c̄ P H1
`p0, 1q such that

Ediffrc̄s ă Ediffrcs.

We define the sequence pC̄NqNPN by

C̄N
i :“

1

h

ˆ xi

xi´1

c̄pxq dx, i “ 1, . . . , N.

Then, by assumption, we have for all N P N,

EN
diffrC̄

N
s ě EN

diffrC
N
s. (7.38)

It is easy to check that the sequence QN
1 rC̄

N s converges strongly in H1p0, 1q towards

c̄, therefore

ˆ 1

0

`

BxQN
1 rC̄

N
s
˘2

dxÑ

ˆ 1

0

pBxc̄q
2 dx as h “ 1{N Ñ 0.
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7.4. The 2D rectangular equidistant setting

Moreover, the sequence QN
0 rC̄

N s converges to c̄ strongly in L2p0, 1q, therefore, by

Lemma 15, EN rQN
0 rC̄

N ss Ñ Erc̄s as h “ 1{N Ñ 0. Consequently,

lim
h“1{NÑ0

EN
diffrC̄

N
s “ Ediffrc̄s ă Ediffrcs,

a contradiction to (7.37)–(7.38).

7.4 The 2D rectangular equidistant setting

In this section we consider the spatially two-dimensional setting of the discrete

network formation problem, where the graph pV,Eq is embedded in the rectangle

Ω :“ r0, 1s2. We introduce the notation x :“ px, yq P Ω. For N P N we construct

the sequence of equidistant rectangular meshes in Ω with mesh size h :“ 1{N and

mesh nodes Xi “ pXi, Yiq,

Xi “ pi mod N ` 1qh, Yi “ pi div N ` 1qh, for i “ 0, . . . , pN ` 1q2 ´ 1,

where pi div N ` 1q denotes the integer part of i{pN ` 1q and pi mod N ` 1q the

remainder. We identify the mesh nodes Xi “ pXi, Yiq with the vertices of the graph,

i.e., we set V :“ tXi; i “ 0, . . . , pN ` 1q2 ´ 1u. By a slight abuse of notation, we

shall write i P V instead of Xi P V in the sequel. For each node Xi, we denote by

Xi,E, Xi,W , Xi,N , Xi,S its direct neighbours to the East, West, North and South,

respectively (if they exist); see Fig. 7.1. Then, the set E of edges of the graph

is composed of the horizontal and vertical segments connecting the neighbouring

nodes, i.e., pXi,Xi,‹q for ‹ P tE,W,N, Su and i P V. We shall denote C‹i the

conductivity of the edge pXi,Xi,‹q, and Pi, resp., Pi,‹, denote the pressure in the

vertex Xi, resp., Xi,‹. Similarly, Shi denotes the source/sink in vertex i P V.

With this notation, the discrete energy functional (7.6) takes the particular form

Eh
rCs “

h2

2

ÿ

iPV

ÿ

‹PtE,W,N,Su

pr ` C‹i q

ˆ

Pi ´ Pi,‹
h

˙2

`
ν

γ
pr ` C‹i q

γ, (7.39)

and the Kirchhoff law (7.7) is written as

ÿ

‹PtE,W,N,Su

pr ` C‹i q
Pi ´ Pi,‹

h
“ hShi . for i P V, (7.40)
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Xi Xi,EXi,W

Xi,S

Xi,N

T
NE
i

T
SE
i

T
S
i

T
SW
i

T
NW
i

T
N
i

h

h

Figure 7.1: Interior node Xi with its four neighbouring nodes Xi,E, Xi,W , Xi,N , Xi,S

and its six adjacent triangles, TNEi , TNi , TNWi , T SWi , T Si , T SEi .

For reasons explained later, we shall restrict to the case γ ą 1 in the sequel.

Our strategy is to perform a program analogous to the 1D case of Section 7.3:

first, to put the discrete energy functionals (7.39) into an integral form and find

an equivalence between solutions of the Kirchhoff law (7.40) and the above Poisson

equation with appropriate conductivity. However, in the 2D case the situation is

more complicated and we need to introduce a finite element discretisation of the

Poisson equation which allows us to use convergence results from the theory of

finite elements. We then establish a connection between the FE-discretisation and

the Kirchhoff law (7.40). In the next step we show the convergence of the sequence of

reformulated discrete energy functionals towards a continuum one as h “ 1{N Ñ 0,

using standard results of the theory of finite elements. Finally, we introduce a

diffusive term into the energy functional, which will allow us to construct global

minimisers of the continuum energy functional.

7.4.1 Finite element discretization of the Poisson equation

We construct a regular triangulation on the domain Ω such that each interior node

Xi has six adjacent triangles, TNEi , TNi , TNWi , T SWi , T Si , T SEi , see Fig. 7.1. Bound-

ary nodes have three, two or only one adjacent triangles, depending on their location.

The union of the triangles adjacent to each Xi is denoted by Ui. The collection of

all triangles constructed in Ω is denoted by T h.
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7.4. The 2D rectangular equidistant setting

We fix S P L2pΩq with
´

Ω
S dx “ 0 and consider a discretisation of the Poisson

equation

´∇ ¨ pprI` cq∇pq “ S (7.41)

on Ω subject to the no-flux boundary conditions, using the first-order (piecewise

linear) H1 finite element method on the triangulation T h. Therefore, on each NE-

triangle TNEi we construct the linear basis functions φNEi;1 , φNEi;2 , φNEi;3 with

φNEi;1 pXiq “ 1, φNEi;1 pXi,Eq “ 0, φNEi;1 pXi,Nq “ 0,

φNEi;2 pXiq “ 0, φNEi;2 pXi,Eq “ 1, φNEi;2 pXi,Nq “ 0,

φNEi;3 pXiq “ 0, φNEi;3 pXi,Eq “ 0, φNEi;3 pXi,Nq “ 1,

and analogously for the other triangles in Ui, see Section 7.A.1 of the Appendix for

explicit formulae. Denoting W h Ă H1pΩq the space of continuous, piecewise linear

functions on the triangulation T h, the finite element discretisation of (7.41) reads

ˆ
Ω

∇ph ¨ prI` cq∇ψh dx “

ˆ
Ω

Sψh dx for all ψh P W h. (7.42)

Using standard arguments (coercivity and continuity of the corresponding bilinear

form) we construct a solution ph P W h of (7.42), unique up to an additive constant;

without loss of generality we fix
´

Ω
phpxq dx “ 0. The solution is represented by its

vertex values P h
i :“ phpXiq, i P V. In particular, on each NE-triangle TNEi we have

phpxq “ P h
i φ

NE
i;1 pxq ` P

h
i,Eφ

NE
i;2 pxq ` P

h
i,Nφ

NE
i;3 pxq, x P TNEi ,

and the gradient of ph on TNEi is the constant vector

∇phpxq “ 1

h
pP h

i,E ´ P
h
i , P

h
i,N ´ P

h
i q, x P TNEi . (7.43)

Analogous formulae hold for all other triangles in Ui, as explicitly listed in Section

7.A.2 of the Appendix.

We now establish a connection between the discretised Poisson equation (7.42)

and the Kirchhoff law (7.40). For this purpose, we define the sequence of opera-

tors Qh
0 mapping the vector of conductivities pCiqiPE onto piecewise constant 2 ˆ 2
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diagonal tensors,

Qh
0 : pCiqiPE ÞÑ

¨

˚

˝

c1 0

0 c2

˛

‹

‚

. (7.44)

The functions c1 “ c1pxq, c2 “ c2pxq, defined on Ω, are constant on each triangle

T P T h and c1 takes the value of the conductivity of the horizontal edge of T and c2

takes the value of the conductivity of the vertical edge of T . In particular, we have

c1 :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

CE
i on TNEi ,

CE
i on T SEi ,

CW
i on T SWi ,

CW
i on TNWi ,

c2 :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

CN
i on TNEi ,

CS
i on T Si ,

CS
i on T SWi ,

CN
i on TNi .

(7.45)

Then, for a given vector of conductivities C “ pCiqiPE we consider the discretised

Poisson equation (7.42) with the conductivity tensor c :“ Qh
0rCs. For each i P V we

construct the test function ψhi as

ψhi :“ φNEi;1 ` φSEi;1 ` φ
S
i;1 ` φ

SW
i;1 ` φNWi;1 ` φNi;1,

with the basis functions on the right-hand side defined in Section 7.A.1 of the Ap-

pendix. Consequently, each ψhi is supported on Ui, linear on each triangle belonging

to Ui, and continuous on Ω. Then, obviously, ψhi P W
h and using it as a test function

in (7.42), we calculate, for the triangle TNEi ,

ˆ
TNEi

∇ph ¨
`

rI`Qh
0rCs

˘

∇ψhi dx “
r ` CE

i

2

`

P h
i ´ P

h
i,E

˘

`
r ` CN

i

2

`

P h
i ´ P

h
i,N

˘

,

where we used (7.43), the identity ∇ψhi ” ´ 1
h
p1, 1q on TNEi , and orthogonality

relations between gradients of the basis functions (for instance, ∇φNEi;2 ¨ ∇φNEi;3 “

0). Performing analogous calculations for the remaining triangles constituting Ui,

namely, T SEi , T Si , T SWi , TNWi and TNi , see Section 7.A.3 of the Appendix for explicit

details, we obtain

ˆ
Ω

∇ph ¨
`

rI`Qh
0rCs

˘

∇ψhi dx “
ÿ

‹PtE,W,N,Su

pr ` C‹i qpP
h
i ´ P

h
i,‹q. (7.46)
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Consequently, (7.42) gives the identity

ÿ

‹PtE,W,N,Su

pr ` C‹i q
P h
i ´ P

h
i,‹

h
“

1

h

ˆ
Ω

Sψhi dx

for all i P V. Thus, defining

Shi :“
1

h2

ˆ
Ω

Sψhi dx, (7.47)

we have the following result:

Lemma 16. For any vector of nonnegative conductivities C “ pCiqiPE and S P

L2pΩq with
´

Ω
S dx “ 0, let ph P W h be a solution of the finite element discretisation

(7.42) with c :“ Qh
0rCs. Then, P h

i :“ phpXiq, i P V, is a solution of the rescaled

Kirchhoff law (7.40) with the source/sink terms Shi given by (7.47).

Note that since 1
h2

´
Ω
ψhi pxq dx “ 1, and, by assumption, S P L2pΩq, the Lebesgue

differentiation theorem gives

Shi “
1

h2

ˆ
Ω

Sψhi dx Ñ Spx̄q for a.e. x̄ “ Xi as h “ 1{N Ñ 0.

Consequently, pShi qhą0 is an approximating sequence for the datum S “ Spxq.

7.4.2 Reformulation of the discrete energy functional

We reformulate the energy functionals (7.39)–(7.40) such that they are defined on

the space L8`pΩq
2ˆ2
diag of essentially bounded diagonal nonnegative tensors on Ω. We

define the functional Eh : L8`pΩq
2ˆ2
diag Ñ R,

Ehrcs :“

ˆ
Ω

∇phrcs ¨ prI` cq∇phrcs ` ν

γ
p|r ` c1|

γ
` |r ` c2|

γ
q dx, (7.48)

where phrcs P W h is a solution of the finite element problem (7.42).

Proposition 15. Let S P L2pΩq with
´

Ω
S dx “ 0 and Shi be given by (7.47). Then

for any vector of nonnegative conductivities C “ pCiqiPEN , we have

Eh
rCs “ EhrQh

0rCss,

with Eh defined in (7.39) and Eh given by (7.48).
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Proof. We have shown in Section 7.4.1 that if ph “ phpxq denotes a solution of the

finite element problem (7.42) with c “ Qh
0rCs, then the vertex values P h

i :“ phpXiq

satisfy the Kirchhoff law (7.40). Moreover, using (7.43) and the definition (7.44)–

(7.45) of Qh
0rCs, we calculate

ˆ
TNEi

∇ph ¨ prI`Qh
0rCsq∇ph dx

“ |TNEi |

¨

˝pr ` CE
i q

˜

P h
i,E ´ P

h
i

h

¸2

` pr ` CN
i q

˜

P h
i,N ´ P

h
i

h

¸2
˛

‚

for each i P V, and analogously for all other triangles. Noting that |TNEi | “ h2{2

and summing over all triangles, we obtain the formula (7.39) for the discrete energy

EhrCs.

7.4.3 Convergence of the energy functional

With Proposition 15, our task is now to prove the convergence of the sequence of

functionals Eh given by (7.48) towards

Ercs :“

ˆ
Ω

∇prcs ¨ prI` cq∇prcs ` ν

γ
p|r ` c1|

γ
` |r ` c2|

γ
q dx, (7.49)

where prcs P H1pΩq is a weak solution of the Poisson equation (7.41) subject to

no-flux boundary conditions, and c1, c2 are the diagonal entries of

c “

¨

˚

˝

c1 0

0 c2

˛

‹

‚

.

Similarly as in Section 7.3.2 we choose to work in the space L8`pΩq
2ˆ2
diag of diagonal

nonnegative tensors on Ω with essentially bounded entries, equipped with the norm

topology of L2pΩq. Note that for c P L8`pΩq
2ˆ2
diag the Poisson equation (7.41) has a

solution prcs P H1pΩq, unique up to an additive constant, and Ercs ă `8.

Lemma 17. For any sequence of nonnegative diagonal tensors pcNqNPN Ă L8`pΩq
2ˆ2
diag

with entries uniformly bounded in LγpΩq and converging entrywise to c P Lγ`pΩq
2ˆ2
diag
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in the norm topology of L2pΩq as h “ 1{N Ñ 0, we have,

Ercs ď lim inf
h“1{NÑ0

EhrcN s, (7.50)

with Eh given by (7.48) and E defined in (7.49).

Proof. Due to the strong convergence of the entries of cN in L2pΩq there exist a

subsequence converging almost everywhere in Ω to c. Then, we have by the Fatou

Lemma,

ˆ
Ω

|r ` c1|
γ dx ď lim inf

h“1{NÑ0

ˆ
Ω

|r ` cN1 |
γ dx, (7.51)

which is finite due to the uniform boundedness of cN1 in LγpΩq. Similarly for cN2 .

For the sequel let us denote p :“ prcs P H1pΩq is a solution of the Poisson

equation (7.41) with conductivity c, pN :“ prcN s a solution of the Poisson equation

(7.41) with conductivity cN and ph :“ phrcN s P W h a solution of the finite element

discretisation (7.42) with h “ 1{N and conductivity cN . Then, by an obvious

modification of the auxiliary Lemma 13 for diagonal tensor-valued conductivities

we have by (7.15),

ˆ
Ω

∇p ¨ prI` cq∇p dx “ lim
NÑ8

ˆ
Ω

∇pN ¨ prI` cNq∇pN dx. (7.52)

Let us define the bilinear forms BN : H1pΩq ˆH1pΩq Ñ R,

BN
pu, vq “

ˆ
Ω

∇u ¨ prI` cNq∇v dx.

Note that BNpu, vq ă `8 for u, v P H1pΩq since cN P L8`pΩq
2ˆ2
diag. Moreover, since

rI` cN is symmetric and positive definite, BN induces a seminorm on H1pΩq,

|u|BN :“
a

BNpu, uq for u P H1
pΩq.

With this notation we have

ˆ
Ω

∇pN ¨ prI` cNq∇pN dx “
ˇ

ˇpN
ˇ

ˇ

2

BN
.

We now proceed along the lines of standard theory of the finite element method

(proof of Céaś Lemma in the energy norm, see, e.g., [Cia78]). Due to the Galerkin
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orthogonality

BN
ppN ´ ph, ψq “ 0 for all ψ P W h, (7.53)

we have, noting that ph P W h,

ˇ

ˇpN
ˇ

ˇ

2

BN
“
ˇ

ˇpN ´ ph
ˇ

ˇ

2

BN
`
ˇ

ˇph
ˇ

ˇ

2

BN
.

Then, again by (7.53) and by the Cauchy-Schwartz inequality, we have for all ψ P

W h,

ˇ

ˇpN ´ ph
ˇ

ˇ

2

BN
“ BN

ppN ´ ph, pN ´ ψq ď
ˇ

ˇpN ´ ph
ˇ

ˇ

BN

ˇ

ˇpN ´ ψ
ˇ

ˇ

BN
.

Therefore, with the triangle inequality,

ˇ

ˇpN ´ ph
ˇ

ˇ

BN
ď inf

ψPWh

ˇ

ˇpN ´ ψ
ˇ

ˇ

BN
ď
ˇ

ˇpN ´ p
ˇ

ˇ

BN
` inf

ψPWh
|p´ ψ|BN .

Due to the strong convergence of cN Ñ c in L2pΩq and the standard result of

approximation theory, see, e.g., [Cia78], we have

lim
h“1{NÑ0

inf
ψPWh

|p´ ψ|2BN ď lim
hÑ0

inf
ψPWh

ˆ
Ω

∇pp´ ψq ¨ prI` cq∇pp´ ψq dx

` lim
NÑ8

ˆ
Ω

∇p ¨ pcN ´ cq∇p dx

“ 0.

Due to (7.52) and the weak convergence of pN á p in H1pΩq,

lim
NÑ8

ˇ

ˇpN ´ p
ˇ

ˇ

BN
“ 0. (7.54)

Thus, collecting the above results from (7.52) up to (7.54), we conclude that

ˆ
Ω

∇p ¨ prI` cq∇p dx “ lim
NÑ8

ˇ

ˇpN
ˇ

ˇ

2

BN
“ lim

h“1{NÑ0

ˇ

ˇph
ˇ

ˇ

2

BN

“ lim
h“1{NÑ0

ˆ
Ω

∇ph ¨ prI` cNq∇ph dx,

which together with (7.51) gives (7.50).

Remark 22. Note that if γ ą 1 and with the assumption that the sequence pcNqNPN
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converges (entrywise) in the norm topology of LγpΩq, the statement of Lemma 17

can be strengthened to

Ercs “ lim
h“1{NÑ0

EhrcN s.

This follows directly from the fact that in this case we have for the metabolic term

ˆ
Ω

|r ` c1|
γ
` |r ` c2|

γ dx “ lim
h“1{NÑ0

ˆ
Ω

|r ` cN1 |
γ
` |r ` cN2 |

γ dx.

Lemma 17 and Remark 22 trivially imply the Γ-convergence of the sequence of

energy functionals Eh in the norm topology of LγpΩq for γ ą 1:

Theorem 12. Let γ ą 1, S P L2pΩq with
´

Ω
S dx “ 0 and Shi be given by (7.47).

Then the sequence Eh given by (7.48) Γ-converges to E defined in (7.49) with respect

to the norm topology of LγpΩq on the set L8`pΩq
2ˆ2
diag. In particular:

• For any sequence pcNqNPN Ă L8`pΩq
2ˆ2
diag converging entrywise to c P Lγ`pΩq

2ˆ2
diag

in the norm topology of LγpΩq as h “ 1{N Ñ 0, we have

Ercs ď lim inf
h“1{NÑ0

EhrcN s.

• For any c P L8`pΩq
2ˆ2
diag there exists a sequence pcNqNPN Ă L8`pΩq

2ˆ2
diag converging

entrywise to c P Lγ`pΩq
2ˆ2
diag in the norm topology of LγpΩq as h “ 1{N Ñ 0,

such that

Ercs ě lim sup
h“1{NÑ0

EhrcN s.

Proof. The lim inf-statement follows directly from Lemma 17. For the lim sup-

statement it is sufficient to set cN :“ c for all N P N and use Remark 22, which in

fact leads to the stronger statement

Ercs “ lim
h“1{NÑ0

EhrcN s.
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7.4.4 Introduction of diffusion and construction of contin-

uum energy minimisers

As in the one-dimensional case, we introduce a diffusive term into the discrete energy

functionals, which shall provide compactness of the sequence of energy minimisers.

We again construct a piecewise linear approximation of the discrete conductivities

C, which, however, turns out to be technically quite involved in the two-dimensional

situation.

We shall describe the process for the conductivities of the horizontal edges, and

by a slight abuse of notation, we denote Ci`1{2,j the conductivity of the horizontal

edge connecting the node pih, jhq to ppi` 1qh, jhq for i “ 0, . . . , N ´ 1, j “ 0, . . . , N

where h “ 1{N . Moreover, we denote Mi`1{2,j the midpoint of this edge, i.e.,

Mi`1{2,j “ ppi` 1{2qh, jhq. For a given vector of conductivities C, we construct the

continuous function Qh
1rCs on Ω, such that

Qh
1rCspMi`1{2,,jq “ Ci`1{2,j, for i “ 0, . . . , N ´ 1, j “ 0, . . . , N,

and Qh
1rCs is linear on each triangle spanned by the nodes Mi´1{2,j, Mi`1{2,j,

Mi´1{2,j`1 and on each triangle spanned by the nodes Mi`1{2,j, Mi`1{2,j`1, Mi´1{2,j`1,

for i “ 1, . . . , N´1, j “ 0, . . . , N´1. Let us denote the union of such two triangles,

i.e., the square spanned by the nodes Mi´1{2,j, Mi`1{2,j, Mi´1{2,j`1 and Mi`1{2,j`1,

by Wij. Then, a simple calculation reveals that

ˆ
Wij

|∇Qh
1rCs|

2 dx “
1

2

“

pCi´1{2,j ´ Ci`1{2,jq
2
` pCi`1{2,j ´ Ci`1{2,j`1q

2 (7.55)

`pCi`1{2,j`1 ´ Ci´1{2,j`1q
2
` pCi´1{2,j`1 ´ Ci´1{2,jq

2
‰

.

On the “boundary stripe” p0, h{2q ˆ p0, 1q and p1 ´ h{2, 1q ˆ p0, 1q the function is

defined to be constant in the x-direction, such that it is globally continuous on Ω,

i.e., for j “ 0, . . . , N ´ 1 we have

Qh
1rCspxq :“

C1{2,j`1 ´ C1{2,j

h
px2 ´ jhq ` C1{2,j

for x “ px1, x2q P p0, h{2q ˆ pjh, pj ` 1qhq and

Qh
1rCspxq :“

CN´1{2,j`1 ´ CN´1{2,j

h
px2 ´ jhq ` CN´1{2,j
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for x “ px1, x2q P p1 ´ h{2, 1q ˆ pjh, pj ` 1qhq. Summing up (7.55) over all squares

Wij and the boundary stripe, we arrive at

ˆ
Ω

|∇Qh
1rCs|

2 dx “ DxrCs, (7.56)

with

DxrCs :“
N´1
ÿ

i“0

N´1
ÿ

j“0

pCi`1{2,j ´ Ci`1{2,j`1q
2
`

N´1
ÿ

i“1

N´1
ÿ

j“1

pCi´1{2,j ´ Ci`1{2,jq
2

`
1

2

N´1
ÿ

i“1

“

pCi´1{2,0 ´ Ci`1{2,0q
2
` pCi´1{2,N ´ Ci`1{2,Nq

2
‰

.

Performing the same procedure for the vertical edges, we obtain

ˆ
Ω

|∇Qh
2rCs|

2 dx “ DyrCs, (7.57)

with obvious definitions of Qh
2rCs and DyrCs.

Consequently, we define the sequence of discrete energy functionals Eh
diff ,

Eh
diffrCs :“ D2

pDxrCs ` DyrCsq ` E
h
rCs, (7.58)

with D2 ą 0 diffusion constant and EhrCs defined in (7.39), coupled to the Kirchhoff

law (7.40) with sources/sinks Shi given by (7.47). We then have:

Proposition 16. For any vector C “ pCiqiPE of nonnegative entries, we have

Eh
diffrCs “ D2

ˆ
Ω

|∇Qh
1rCs|

2
` |∇Qh

2rCs|
2 dx` EhrQh

0rCss,

with Eh
diff defined in (7.58) and Eh given by (7.48) with the pressures ph being a

solution of the FEM-discretised Poisson equation (7.42) with c “ QN
0 rCs.

We are now in shape to prove the main result of this section:

Theorem 13. Let γ ą 1, S P L2pΩq with
´

Ω
S dx “ 0 and Shi be given by (7.47). Let

pCNqNPN Ă RN be a sequence of global minimisers of the discrete energy functionals
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Eh
diff given by (7.58) with h “ 1{N . Then the sequence of diagonal 2ˆ 2 matrices

cN :“

¨

˚

˝

Qh
1rC

N s 0

0 Qh
2rC

N s

˛

‹

‚

converges weakly in H1pΩq2ˆ2 to c P H1pΩq2ˆ2
` as h “ 1{N Ñ 0, with c a global

minimiser of the functional Ediff : H1
`pΩq

2ˆ2
diag Ñ R,

Ediffrcs :“ D2

ˆ
Ω

|∇c1|
2
` |∇c2|

2 dx` Ercs,

where Ercs is given by (7.49).

Proof. Let us observe that

Eh
diffrC

N
s ď Eh

diffr0s “
h2

2

ÿ

iPV

ÿ

‹PtE,W,N,Su

r

˜

rPi ´ rPi,‹
h

¸2

`
ν

γ
rγ,

where p rPiqiPV is a solution of the Kirchhoff law (7.40) with conductivities C “ 0 and

sources/sinks given by (7.47). As shown in Section 7.4.1, the pressures rPi correspond

to pointwise values rP h
i :“ p̃hpXiq, i P V, of the solution p̃h of the discretised Poisson

equation (7.42) with conductivity tensor c “ 0. Moreover, due to formula (7.43) we

have

h2

2

ÿ

iPV

ÿ

‹PtE,W,N,Su

r

˜

rPi ´ rPi,‹
h

¸2

“ r

ˆ
Ω

|∇p̃h|2 dx,

and the uniform boundedness of∇p̃h in L2pΩq implies a uniform bound on Eh
diffrC

N s.

Since the sequence

D2

ˆ
Ω

|∇Qh
1rC

N
s|

2
` |∇Qh

2rC
N
s|

2 dx “ D2
`

DxrC
N
s ` DyrC

N
s
˘

ď Eh
diffrC

N
s

is uniformly bounded, there exist subsequences of Qh
1rC

N s and Qh
2rC

N s converging

to some c1, c2 P H1pΩq weakly in H1pΩq, and strongly in L2pΩq. It is easy to

check that then also Qh
0rC

N s converges to c :“

¨

˚

˝

c1 0

0 c2

˛

‹

‚

strongly in L2p0, 1q2ˆ2.

Clearly, we also have Qh
0rC

N s P L8`pΩq
2ˆ2
diag with entries uniformly bounded in LγpΩq.
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Consequently, by Lemma 17, we have

Ercs ď lim inf
h“1{NÑ0

EhrcN s.

Moreover, due to the weak lower semicontinuity of the L2-norm, we have

ˆ
Ω

|∇c1|
2
` |∇c2|

2 dx ď lim inf
h“1{NÑ0

ˆ
Ω

|∇Qh
1rC

N
s|

2
` |∇Qh

2rC
N
s|

2 dx .

Consequently,

Ediffrcs ď lim inf
h“1{NÑ0

Eh
diffrC

N
s. (7.59)

We claim that c is a global minimiser of Ediff in H1
`pΩq

2ˆ2
diag. For contradiction,

assume that there exists c̄ P H1
`pΩq

2ˆ2
diag such that

Ediffrc̄s ă Ediffrcs.

We define the sequence pC̄NqNPN by setting the conductivity C̄N
i of each horizontal

edge i P E to the average of c̄1 over the two triangles Ti;1, Ti;2 P T h that contain the

edge i, i.e.,

C̄N
i :“

1

h2

ˆ
Ti;1YTi;2

c̄1pxq dx.

Similarly, we use the averages of c̄2 to define the conductivities of the vertical edges.

Then, by assumption, we have for all h “ 1{N , N P N,

Eh
diffrC̄

N
s ě Eh

diffrC
N
s. (7.60)

It is easy to check that the sequence Qh
1rC̄

N s converges strongly in H1pΩq towards

c̄1, therefore

ˆ
Ω

|∇Qh
1rC̄

N
s|

2 dx Ñ

ˆ
Ω

|∇c̄1|
2 dx as h “ 1{N Ñ 0,

and analogously for Qh
2rC̄

N s and c̄2. Moreover, the sequence Qh
0rC̄

N s converges to c̄

strongly in LγpΩq2ˆ2
diag, therefore, by Remark 22, EhrQN

0 rC̄
N ss Ñ Erc̄s as h “ 1{N Ñ
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0. Consequently,

lim
h“1{NÑ0

Eh
diffrC̄

N
s “ Ediffrc̄s ă Ediffrcs,

a contradiction to (7.59)–(7.60).

Remark 23. We can easily generalise to the situation when the two-dimensional

grid is not rectangular, but consists of parallelograms with sides of equal length in

linearly independent directions θ1, θ2 P S1, where S1 is the unit circle in R2. Then

the coordinate transform

p1, 0q ÞÑ θ1, p0, 1q ÞÑ θ2

in (7.49) leads to the transformed continuum energy functional

Ercs “
ˆ

Ω

∇prcs ¨ Prcs∇prcs ` ν

γ
p|r ` c1|

γ
` |r ` c2|

γ
q dx

coupled to the Poisson equation

´∇ ¨ pPrcs∇pq “ S

with the permeability tensor

Prcs “ rI` c1θ1 b θ1 ` c2θ2 b θ2.

The eigenvalues of Prcs (principal permeabilities) are

λ1,2 “
1

2

´

c1 ` c2 ˘
a

pc1 ´ c2q
2 ´ 4c1c2pθ1 ¨ θ2q

2
¯

and the corresponding eigenvectors (principal directions)

u1,2 “ θ1 `
c2 ´ c1 ˘

a

pc1 ´ c2q
2 ´ 4c1c2pθ1 ¨ θ2q

2

2c1θ1 ¨ θ2

θ2.

7.A Detailed computations of Section 7.4.1

Here we provide more technical details for the constructions and calculations per-

formed in Section 7.4.1.
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7.A.1 Linear basis functions

We list the explicit definitions for the piecewise linear basis functions on the trian-

gulation T h, constructed in Section 7.4.1. Any interior node i P V has six adjacent

triangles, denoted clockwise by TNEi , T SEi , T Si , T SWi , TNWi , TNi , see Fig. 7.1. For

each triangle we construct three basis functions, supported on the respective triangle

and linear on their support. Obviously, the basis functions are uniquely determined

by their values on the triangle vertices. For later reference we list their gradients,

which are constant vectors on the respective triangles.

• On the NE-triangle TNEi we construct the linear basis functions φNEi;1 , φNEi;2 ,

φNEi;3 defined by

φNEi;1 pXiq “ 1, φNEi;1 pXi,Eq “ 0, φNEi;1 pXi,Nq “ 0,

φNEi;2 pXiq “ 0, φNEi;2 pXi,Eq “ 1, φNEi;2 pXi,Nq “ 0,

φNEi;3 pXiq “ 0, φNEi;3 pXi,Eq “ 0, φNEi;3 pXi,Nq “ 1,

so that

∇φNEi;1 ” ´
1

h
p1, 1q, ∇φNEi;2 ”

1

h
p1, 0q, ∇φNEi;3 ”

1

h
p0, 1q, on TNEi .

• On the SE-triangle T SEi we construct the linear basis functions φSEi;1 , φSEi;2 , φSEi;3

defined by

φSEi;1 pXiq “ 1, φSEi;1 pXi,Eq “ 0, φSEi;1 pXi,SEq “ 0,

φSEi;2 pXiq “ 0, φSEi;2 pXi,Eq “ 1, φSEi;2 pXi,SEq “ 0,

φSEi;3 pXiq “ 0, φSEi;3 pXi,Eq “ 0, φSEi;3 pXi,SEq “ 1,

so that

∇φSEi;1 ” ´
1

h
p1, 0q, ∇φSEi;2 ”

1

h
p1, 1q, ∇φSEi;3 ” ´

1

h
p0, 1q, on T SEi .

• On the S-triangle T Si we construct the linear basis functions φSi;1, φSi;2, φSi;3

defined by

φSi;1pXiq “ 1, φSi;1pXi,SEq “ 0, φSi;1pXi,Sq “ 0,

φSi;2pXiq “ 0, φSi;2pXi,SEq “ 1, φSi;2pXi,Sq “ 0,
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φSi;3pXiq “ 0, φSi;3pXi,SEq “ 0, φSi;3pXi,Sq “ 1,

so that

∇φSi;1 ”
1

h
p0, 1q, ∇φSi;2 ”

1

h
p1, 0q, ∇φSi;3 ” ´

1

h
p1, 1q, on T Si .

• On the SW -triangle T SWi we construct the linear basis functions φSWi;1 , φSWi;2 ,

φSWi;3 defined by

φSWi;1 pXiq “ 1, φSWi;1 pXi,Sq “ 0, φSWi;1 pXi,W q “ 0,

φSWi;2 pXiq “ 0, φSWi;2 pXi,Sq “ 1, φSWi;2 pXi,W q “ 0,

φSWi;3 pXiq “ 0, φSWi;3 pXi,Sq “ 0, φSWi;3 pXi,W q “ 1,

so that

∇φSWi;1 ”
1

h
p1, 1q, ∇φSWi;2 ” ´

1

h
p0, 1q, ∇φSWi;3 ” ´

1

h
p1, 0q, on T SWi .

• On the NW -triangle TNWi we construct the linear basis functions φNWi;1 , φNWi;2 ,

φNWi;3 defined by

φNWi;1 pXiq “ 1, φNWi;1 pXi,W q “ 0, φNWi;1 pXi,NW q “ 0,

φNWi;2 pXiq “ 0, φNWi;2 pXi,W q “ 1, φNWi;2 pXi,NW q “ 0,

φNWi;3 pXiq “ 0, φNWi;3 pXi,W q “ 0, φNWi;3 pXi,NW q “ 1,

so that

∇φNWi;1 ”
1

h
p1, 0q, ∇φNWi;2 ” ´

1

h
p1, 1q, ∇φNWi;3 ”

1

h
p0, 1q, on TNWi .

• On the N -triangle TNi we construct the linear basis functions φNi;1, φNi;2, φNi;3

defined by

φNi;1pXiq “ 1, φNi;1pXi,NW q “ 0, φNi;1pXi,Nq “ 0,

φNi;2pXiq “ 0, φNi;2pXi,NW q “ 1, φNi;2pXi,Nq “ 0,

φNi;3pXiq “ 0, φNi;3pXi,NW q “ 0, φNi;3pXi,Nq “ 1,
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so that

∇φNi;1 ” ´
1

h
p0, 1q, ∇φNi;2 ” ´

1

h
p1, 0q, ∇φNi;3 ”

1

h
p1, 1q, on TNi .

7.A.2 Gradients of ph

Here we provide the gradient of the solution ph P W h of (7.42), constructed

in Section 7.4.1. Since ph is continuous on Ω and linear on each triangle in

T h, it is represented by its vertex values P h
i :“ phpXiq, i P V. Then, for any

interior node i P V we readily have

∇ph “ 1

h

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

pP h
i,E ´ P

h
i , P

h
i,N ´ P

h
i q on TNEi ,

pP h
i,E ´ P

h
i , P

h
i ´ P

h
i,SEq on T SEi ,

pP h
i,SE ´ P

h
i , P

h
i ´ P

h
i,Sq on T Si ,

pP h
i ´ P

h
i,W , P

h
i ´ P

h
i,Sq on T SWi ,

pP h
i ´ P

h
i,W , P

h
i,NW ´ P

h
i q on TNWi ,

pP h
i ´ P

h
i,NW , P

h
i,N ´ P

h
i q on TNi .

7.A.3 Explicit calculation for (7.46)

Finally, we provide the detailed calculation for the identity (7.46). Noting

that ψhi is supported on Ui “ TNEi YT SEi YT Si YT
SW
i YTNWi YTNi , and taking

into account the results listed in Sections 7.A.1 and 7.A.2, we have

ˆ
TNEi

∇ph ¨
`

rI`Qh
0rCs

˘

∇ψhi dx “
r ` CE

i

2

`

P h
i ´ P

h
i,E

˘

`
r ` CN

i

2

`

P h
i ´ P

h
i,N

˘

,

ˆ
TSEi

∇ph ¨
`

rI`Qh
0rCs

˘

∇ψhi dx “
r ` CE

i

2

`

P h
i ´ P

h
i,E

˘

,

ˆ
TSi

∇ph ¨
`

rI`Qh
0rCs

˘

∇ψhi dx “
r ` CS

i

2

`

P h
i ´ P

h
i,S

˘

,

ˆ
TSWi

∇ph ¨
`

rI`Qh
0rCs

˘

∇ψhi dx “
r ` CW

i

2

`

P h
i ´ P

h
i,W

˘

`
r ` CS

i

2

`

P h
i ´ P

h
i,S

˘

,

ˆ
TNWi

∇ph ¨
`

rI`Qh
0rCs

˘

∇ψhi dx “
r ` CW

i

2

`

P h
i ´ P

h
i,W

˘

,

ˆ
TNi

∇ph ¨
`

rI`Qh
0rCs

˘

∇ψhi dx “
r ` CN

i

2

`

P h
i ´ P

h
i,N

˘

.
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Summing up, we arrive at

ˆ
Ω

∇ph ¨ prI`Qh
0rCsq∇ψhi dx

“ pr ` CE
i q

`

P h
i ´ P

h
i,E

˘

` pr ` CN
i q

`

P h
i ´ P

h
i,N

˘

` pr ` CW
i q

`

P h
i ´ P

h
i,W

˘

` pr ` CS
i q

`

P h
i ´ P

h
i,S

˘

,

which is (7.46).
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Chapter 8

Application to auxin transport in

leaf venation

Originality and contribution

This chapter mainly follows the paper [HJKM19], written in collaboration with

Jan Haskovec, Henrik Jönsson and Peter A. Markowich. My main (mathematical)

contributions to [HJKM19] are the analysis and numerical simulations of the discrete

model. In addition, I wrote the description of the model and the conclusion, and

contributed to the introduction.

Chapter summary

The plant hormone auxin controls many aspects of the development of plants. One

striking dynamical feature is the self-organisation of leaf venation patterns which is

driven by high levels of auxin within vein cells. The auxin transport is mediated by

specialised membrane-localised proteins. Many venation models have been based

on polarly localised efflux-mediator proteins of the PIN family. Here, we investi-

gate a modeling framework for auxin transport with a positive feedback between

auxin fluxes and transport capacities that are not necessarily polar, i.e. directional

across a cell wall. Our approach is derived from a discrete graph-based model for

biological transportation networks, where cells are represented by graph nodes and

intercellular membranes by edges. The edges are not a-priori oriented and the di-

rection of auxin flow is determined by its concentration gradient along the edge. We

prove global existence of solutions to the model and the validity of Murray’s law for
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its steady states. Moreover, we demonstrate with numerical simulations that the

model is able connect an auxin source-sink pair with a mid-vein and that it can also

produce branching vein patterns. A significant innovative aspect of our approach

is that it allows the passage to a formal macroscopic limit which can be extended

to include network growth. We perform mathematical analysis of the macroscopic

formulation, showing the global existence of weak solutions for an appropriate pa-

rameter range.

8.1 Introduction

The hormone auxin plays a central role in many developmental processes in plants

[HHK`10, SMFB06, SS13, SES13]. During the development of a leaf, a connected

network of veins is formed in a highly predictable order, generating a well defined

pattern in the final leaf [Hic73]. High levels of auxin are present in the forming vein

cells compared to the neighboring tissues. It has been shown that the membrane

localized PIN-FORMED (PIN) family of auxin transport mediators is essential for

the correct patterning of the vein network [Sac69, SMFB06]. The patterns could

result from a canalisation mechanism where the auxin flux feeds back itself to a

polarised transport connecting sources and sinks of auxin [Sac81, Mit80, MHS81].

This idea has been revisited recently and has led to models with polarised PIN

transporters [RP05, FMI05, FFM15]. No flux-sensing mechanism has been identified

but models have been used to suggest alternatives [Kra09, CRP15]. While newer

models have solved the issue of unrealistically low levels of auxin within veins in

flux-based models [FMI05], it is still an open question how looped veins can form

[RP05, DZ06] and if specified auxin production can provide an answer.

PIN proteins are involved in several patterning processes in plants. Alternative

models, not based on auxin flux, have been proposed, for instance for producing

Turing-like dynamics in the context of phyllotaxis [JHS`06, SGM`06, BBL`16],

and for single cell polarity resulting in planar polarity [ASGMC16].

Since the discovery of PINs, many venation models have been based on polarised

transport via PINs, while recent data suggests that polar auxin transport mediated

by PINs is not crucial for forming veins [SS13, SES13]. Although characteristic vein

patterns and leaf shapes can be obtained with these PIN-based models, veins can

also form in chemical perturbations when PIN-mediated auxin transport is blocked,

or when multiple membrane-localised PIN proteins are mutated. This raises the

question if alternative mechanisms work in parallel or together with the PIN-based
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polar transporters during the initiation of veins. This motivates to consider a more

general modelling approach where alternative feedbacks between auxin, auxin fluxes

and auxin transport can be included.

The ultimate goal for modelling vein networks is to accurately predict vein net-

work geometries seen in different plants. Our novel dynamical description could

complement the PIN-based models which have focused on more basic dynamic pat-

terns of veins, such as connecting sources and sinks, and breaking the symmetry of

graded diffusion into veins. Examples of these PIN-based models include the tradi-

tional PIN-based flux models that have been studied since approximately 40 years,

see [Sac81, Mit80, MHS81]. The impact of auxin concentration on the pattern for-

mation has been studied in [MEB`17]. It would be very interesting to investigate

the emergence of patterns in the setting where PINs are removed. As noted above,

the traditional PIN-based flux models are yet to provide a full description of the

diverse patterns seen in plants.

Given the strong directional distribution of PINs and the ability of veins to form

without PINs, it is important to introduce and analyse alternative mechanisms.

Whether these mechanisms are identical/redundant to PIN mechanisms in terms

of their dynamical behaviour or whether other mechanisms need to be considered

is still unknown. Hence, it would be interesting to show that polar/directional

transport activity and directional flux measurements are not required, and that

vein-like patterns can also result from mere measurement of magnitudes. This may

also inspire scientists to reconsider their current data or design new experiments.

In this chapter, we study a modeling framework for leaf venation which does

not assume polarity of auxin transport mediators across cell walls. The model

is introduced in Section 8.2, and is based on a positive feedback loop between

auxin fluxes and transport capacities that are not necessarily polar. Our approach

is derived from a recent discrete graph-based model for biological transportation

networks introduced by Hu and Cai [HC13]. We represent cells by graph nodes

and intercellular membranes (connections) by edges. The edges are not a-priori

oriented and the direction of auxin flow is determined by its concentration gradient

along the edge. The transport capacity of each edge is represented by the local

concentration of the auxin mediator. Our approach can be understood as a modeling

framework, which can be equipped or extended with various biologically relevant

features that will produce experimentally testable hypotheses. We admit that in its

present setting it does not capture all relevant biological features, however, its main

advantage is a rather simple form that facilitates rigorous mathematical analysis.
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In particular, the first aim of this chapter is the proof of global existence and

nonnegativity of solutions of the discrete model (Section 8.3). Moreover, in Section

8.4 we show that the stationary solutions satisfy a generalized Murray’s law. The

second aim of the chapter is to gain a better understanding of the pattern formation

capacity of the model by means of numerical simulations (Section 8.5). In particular,

we show that it is capable of generating patterns connecting an auxin source-sink

pair with a mid-vein and that it can produce branching vein patterns. The main

novelty of our modelling approach is that it facilitates a (formal) passage to a

continuum limit, which is the subject of Section 8.6. The resulting system of partial

differential equations captures network growth and is expected to exhibit a rich

patterning capacity (see [ABH`17] for results of numerical simulations of a related

continuum model). Here we prove the existence of weak solutions of the transient

problem and of its steady states.

8.2 Description of the model

Hu and Cai considered a discrete model for describing the formation of biological

transport networks in [HC13]. This model was studied in terms of the existence of

solutions, its formal continuum limit, as well as its qualitative behaviour in Chap-

ter 6. Based on this model, we propose an adapted model in the cellular context

for describing the auxin transport in plant leafs via transporter proteins, where the

orientation of the flow is determined by auxin concentration gradient. Our approach

shares many similarities with the one introduced by Mitchison in [Mit80] where the

transport capacity is updated as a function of the flux (gradient) between cells.

However, while Mitchison suggested an asymmetric update of the transport capac-

ities across a cell wall, our model assumes a symmetric transport capacity across a

cell wall. In this section we shall first introduce the Hu and Cai model, then shortly

discuss the Mitchison model, and finally describe the adaptation to the cellular

context.

8.2.1 Model of Hu and Cai

The discrete model introduced by Hu and Cai [HC13] and reformulated in [ABH`17]

is posed on a given, fixed undirected connected graph G “ pV,Eq, consisting of a

finite set of vertices V of size N “ |V| and a finite set of edges E. Any pair of

vertices is connected by at most one edge and no vertex is connected to itself. We
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denote the edge between vertices i P V and j P V by pi, jq P E. Since the graph is

undirected, pi, jq and pj, iq refer to the same edge. For each edge pi, jq P E of the

graph G we consider its length and its conductivity, denoted by Lij “ Lji ą 0 and

Cij “ Cji ě 0, respectively. The edge lengths Lij ą 0 are given as a datum and

fixed for all pi, jq P E. With each vertex i P V the fluid pressure Pi P R is associated.

The pressure drop between vertices i P V and j P V connected by an edge pi, jq P E
is given by (1.22). Note that the pressure drop is antisymmetric, i.e., by definition,

p∆P qij “ ´p∆P qji. The oriented flux (flow rate) from vertex i P V to j P V is

denoted by Qij; again, we have Qij “ ´Qji. Since the Reynolds number of the flow

is typically small for biological networks and the flow is predominantly laminar, the

flow rate between vertices i P V and j P V along edge pi, jq P E is proportional to

the conductance Cij and the pressure drop p∆P qij “ Pj ´Pi and is given by (1.23).

The local mass conservation in each vertex is expressed in terms of the Kirchhoff

law (1.24), i.e.

´
ÿ

jPNpiq

Cij
Pj ´ Pi
Lij

“ Si for all i P V. (8.1)

Clearly, a necessary condition for the solvability of (8.1) is the global mass conser-

vation (1.25) which we assume in the following. Given the vector of conductivities

C “ pCijqpi,jqPE, the Kirchhoff law (8.1) is a linear system of equations for the vec-

tor of pressures P “ pPiqiPV. With the global mass conservation (1.25), the linear

system (8.1) is solvable if and only if the graph with edge weights C “ pCijqpi,jqPE

is connected [ABH`17], where only edges with positive conductivities Cij ą 0 are

taken into account (i.e., edges with zero conductivities are discarded). Note that

the solution is unique up to an additive constant.

The conductivities Cij are subject to an energy optimisation and adaptation

process. Hu and Cai [HC13] propose an energy cost functional consisting of a

pumping power term and a metabolic cost term. According to Joule’s law, the power

(kinetic energy) needed to pump material through an edge pi, jq P E is proportional

to the pressure drop p∆P qij “ Pj ´ Pi and the flow rate Qij along the edge, i.e.,

p∆P qijQij “
Q2
ij

Cij
Lij. The metabolic cost of maintaining the edge is assumed to

be proportional to its length Lij and a power of its conductivity Cγ
ij, where the

exponent γ ą 0 depends on the network. For models of leaf venation the material

cost is proportional to the number of small tubes, which is proportional to Cij, and

the metabolic cost is due to the effective loss of the photosynthetic power at the
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area of the venation cells, which is proportional to C
1{2
ij . Consequently, the effective

value of γ typically used in models of leaf venation lies between 1{2 and 1; see

[HC13]. The energy cost functional is thus given by (1.26), i.e.

ErCs :“
ÿ

pi,jqPE

ˆ

QijrCs
2

Cij
`
ν

γ
Cγ
ij

˙

Lij, (8.2)

where QijrCs is given by (1.23) with pressures calculated from the Kirchhoff’s law

(8.1), and ν ą 0 is the so-called metabolic coefficient. Note that every edge of the

graph G is counted exactly once in the above sum. Hu and Cai [HC13] propose an

energy optimisation and adaptation process for the conductivities Cij based on the

gradient flow of the energy (8.2),

dCij
dt

“ σ

˜

QijrCs
2

Cγ`1
ij

´ τ 2

¸

CijLij (8.3)

with parameters σ, τ ą 0, constrained by the Kirchhoff law (8.1), see Chapter 6 for

details.

8.2.2 Mitchison model

As described in the introduction, auxins are a class of plant hormones (or plant

growth regulators) that play a cardinal role in coordination of many growth and

behavioural processes in the plant’s life cycle and are essential for plant body devel-

opment including for developing its own transport network. This has been captured

in a model proposed by Mitchison [Mit80], where auxin dynamics within an array

of cells with indices i P V is considered. For two cells i, j P V with signal concen-

trations si, sj, respectively, the diffusion constant at the interface between the cells

is denoted by Dij “ Dji ě 0 and can be specified independently for each cell-cell

interface. The oriented flux from vertex i P V to j P V is given by Fick’s law [Cra56],

φij “ Dij
si ´ sj
Lij

, (8.4)

where Lij “ Lji ą 0 denotes the (average) length of cells i and j. In particular, we

have φij “ ´φji. The dependence of the diffusion constant Dij on the flux φij is of

the form

dDij

dt
“ fp|φij|, Dijq
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for a suitable function f such that |φij|{Dij decreases as |φij| increases. For instance,

f can be chosen such that Dij « φ2
ij at least in a neighbourhood of f´1p0q. Assuming

that cell i P V receives fluxes φji for j P N piq, the evolution of the signal si is of the

form

dsi
dt
“ σi `

1

v

ÿ

jPN piq

Aijφji. (8.5)

Here, N piq denotes the index set of neighbouring cells of cell i P V. The parameter

σi is the source activity for signal production in cell i P V. All cells have volume

v ą 0 and Aij “ Aji ą 0 is the area of the interface between cell i and its neighbour

j P N piq. Note that the term
ř

jPN piqAijφji can be regarded as the difference

between influx and outflux since φij “ ´φji for j P N piq. For the conservation of the

signal we require that the source activity σi for signal production and degradation

is chosen such that d
dt

ř

iPV si “ 0.

It is worth noting that while it was well established that auxin was important

for generating the vascular or vein patterns (e.g. [Sac81]), auxin ‘transporters’ were

not identified at the time when these models were introduced. The models received

great attention later, when auxin transport mediator proteins with similar polar lo-

calisation as predicted by the models were identified [SMFB06]. In particular, PIN

proteins are integral membrane proteins that transport the anionic form of auxin

across membranes. Most of the PIN proteins localise at the plasma membrane

where they serve as secondary active transporters involved in the efflux of auxin.

They show asymmetrical localisations on the membrane and are therefore respon-

sible for polar auxin transport. Still, while PIN loss of function mutants generate

phenotypes in venation patterns, they do not completely abolish the formation of

veins [SS13], and as such alternative mechanisms can contribute to the dynamics of

vein formation. While individual mutants do not show strong phenotypes, this is

also implied by the existence of other auxin transport proteins, such as AUX1/LAX

influx mediators [Kra04, PSF`12, SS13], regulating intracellular and intercellular

transport. In the following discussion we will often use PIN as a descriptor of the

auxin transporter protein for simplicity, but it should be seen as a more general

description of auxin transport mediated by polar and/or nonpolar membrane pro-

teins, where polar relates to the difference of transport capacity (PIN localisation)

on the two sides of a wall.
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8.2.3 Adapted Hu-Cai model in cellular context

Given the known auxin flows generated from sources to sinks in a plant tissue, the

sometimes clear expression but unclear polarisation of PIN auxin transporter pro-

teins in these veins, and the ability to generate veins without any PIN transport, it

is of interest to investigate alternative mechanisms for the vein dynamics in an auxin

context. Such an alternative can be given by the Hu and Cai model for transport

networks [HC13]. The mechanism where pressure differences feeds back on conduc-

tance between elements has similarity with the auxin transport case, as described

in the flux-based models [Mit80, MHS81], where auxin sources and concentration

differences (pressure in the Hu-Cai model) generates diffusive fluxes between cells

(spatial elements), which positively feeds back on transport rates between the cells

(conductance). However, in contrast to the polarised transport connecting sources

and sinks of auxin in [Mit80, MHS81], we investigate a modelling framework for

auxin transport with a positive feedback between auxin fluxes and transport capac-

ities that are not necessarily polar, i.e. directional across a cell wall. To modify the

Hu-Cai model to a cellular context of plant venation dynamics we consider n “ |V|
cells with indices i P V and replace the pressure Pi at vertex i P V in the Hu-Cai

model with the auxin concentration ai ě 0.

The conductance Cij of edge pi, jq P E in the Hu and Cai model is replaced by

the transport activity Xij “ Xji ě 0 in the membrane connecting cells i P V and

j P V which is the main difference from PIN-based flux models (and experiments)

with PINs Pij where Pij ‰ Pji. Due to this modelling approach auxin transporters

are not directional, i.e. polar, and as we shall see, measuring the magnitudes Xij

is sufficient for producing vein-like dynamics. However, cells, in general, do not

transport auxin equally well in all directions (i.e. Xij is typically not equal to Xik

for two cell neighbours i and k). Based on the definition of Xij, we define the auxin

flow rate Qij “ ´Qji P R from cell i P V to cell j P V by Qij “ Xij
aj´ai
Lij

, where

Lij “ Lji ą 0 denotes the (average) length of cells i and j. Based on the framework

of Mitchison (8.5) and Hu and Cai (8.3) we propose to describe the auxin transport

in the cellular context by the ODE system

dai
dt
“ Si ´ Iiai ` δ

ÿ

jPN piq

Xij
aj ´ ai
Lij

for all i P V, (8.6)

where N piq denotes the index set of neighbouring cells of cell i P V and the param-

eter δ ą 0 denotes the (scaled) diffusion rate. To account for the auxin production
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and destruction in the cells, we introduced the source terms Si ě 0 and decay rates

Ii ě 0 for i P V. For simplicity, we assume Si and Ii to be independent of time. For

the transport activity Xij in the membrane we consider

dXij

dt
“ σ

˜

|Qij|κ

Xγ`1
ij

´ τ

¸

XijLij, (8.7)

where γ ą 0 is a control parameter and σ, κ, τ are nonnegative parameters denoting,

respectively, the conductance update rate, the flux feedback and the conductance

degradation rate. In particular, the flux feedback κ is an important parameter of

the model and is also a relevant parameter in the Mitchison model [Mit80, MHS81].

The system (8.6)–(8.7) is equipped with the initial datum

Xijp0q “ X0
ij “ X0

ji ě 0 for all i, j P V, (8.8)

aip0q “ a0
i ą 0 for all i P V. (8.9)

Clearly, (8.7) satisfies the symmetry requirement Xij “ Xji. The conductance equa-

tion (8.3) and the transport activity equation (8.7) are of similar form. However,

the term Q2
ij in the conductance equation (8.3) is replaced by the more general

term |Qij|κ in the transport activity equation (8.7) so that (8.7) reduces to (8.3)

for κ “ 2. Besides, the linear algebraic system (8.1) is relaxed by the introduction

of the time derivative of the auxin concentration in (8.15), leading to a system of

linear ordinary differential equations. While the system (8.3), (8.1) is a constrained

gradient flow for the energy (8.2), the system (8.7), (8.6) does not seem to have a

gradient flow structure.

8.3 Global existence and nonnegativity of solu-

tions

Theorem 14. Let 0 ă κ´ γ ď 1 and fix T ą 0. The system (8.7), (8.6) subject to

the initial datum (8.8)–(8.9) has a solution Xij P C
1p0, T q, ai P C

1p0, T q, satisfying

Xijptq ě 0, aiptq ą 0 for all t P r0, T q and i, j P V. Moreover, if Si “ 0 for all i P V
in (8.6), then ai is uniformly globally bounded, i.e., there exists a constant α ą 0

such that

aiptq ď α for all t P r0,8q and i P V. (8.10)
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Proof. Nonnegativity for Xij. With (8.7) we have
dXij

dt
ě ´στXij, as long as

the solution exists. Consequently, Xijp0q ě 0 implies Xijptq ě 0 on the interval of

existence.

Boundedness for |ai|. Let us denote the adjacency matrix of the graph G “

pV,Eq by A P Rnˆn, i.e. its entries are given by

Aij “

$

&

%

0 if pi, jq R E,

1 if pi, jq P E.

For the solutions ai of the auxin equation (8.6) on their joint interval of existence

we have

1

2

d

dt

N
ÿ

i“1

a2
i “

N
ÿ

i“1

Siai ´
N
ÿ

i“1

Iia
2
i ` δ

N
ÿ

i“1

N
ÿ

j“1

AijXijai paj ´ aiq

ď

N
ÿ

i“1

Siai ´
δ

2

N
ÿ

i“1

N
ÿ

j“1

AijXij pai ´ ajq
2 ,

where we used the nonnegativity of Ii in the estimate and the usual symmetrisation

trick (recall that both Aij and Xij are symmetric). Now, due to the nonnegativity

of Xij, we have

1

2

d

dt

N
ÿ

i“1

a2
i ď

N
ÿ

i“1

Siai ď

˜

N
ÿ

i“1

S2
i

¸1{2 ˜ N
ÿ

i“1

a2
i

¸1{2

,

implying at most quadratic growth of a2
i in time, i.e., at most linear growth of

|ai| “ |ai|ptq. Clearly, if Si “ 0 for all i P V, then we have the uniform bound (8.10)

with

α :“

g

f

f

e

N
ÿ

i“1

aip0q2.

Boundedness for Xij.

dXij

dt
ď σ

|Qij|κ

Xγ
ij

Lij,

and the boundedness of |ai| on bounded time intervals implies

|Qij|κ “
ˇ

ˇ

ˇ

ˇ

Xij
aj ´ ai
Lij

ˇ

ˇ

ˇ

ˇ

κ

ď C|Xij|
κ
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for a suitable constant C ą 0. Hence,

dXij

dt
ď CXκ´γ

ij ,

and, therefore, for 0 ă κ´ γ ă 1, Xij “ Xijptq grows at most algebraically in time,

while for κ´ γ “ 1 the growth is at most exponential.

Positivity for ai. According to the assumption, there exists a ą 0 such that

aip0q ě a for all i P V. Let us assume that t0 ă `8 is the first instant when any

of the curves ai “ aiptq hits zero. Due to continuity, we have t0 ą 0, and, clearly,

aiptq ą 0 for t P r0, t0q for all i P V. With the nonnegativity of the sources Si ě 0,

(8.6) implies

dai
dt
ě ´Iiai ` δ

ÿ

jPN piq

Xij
aj ´ ai
Lij

for i P V, t ą 0,

and with the nonnegativity of Xij we have

dai
dt
ě ´Iiai ´ δ

¨

˝

ÿ

jPN piq

Xij

Lij

˛

‚ai for i P V, t P p0, t0q.

Finally, since Xij “ Xijptq grow at most exponentially in time, there exist constants

C, λ ą 0 independent of t0 such that

dai
dt
ě ´Ceλtai for i P V, t P p0, t0q,

implying

aiptq ě aip0q exp

ˆ

λ

C
p1´ exppλtqq

˙

.

Therefore, aipt0q ą 0 for all i P V, a contradiction to the assumption t0 ă `8.

Note that under the relaxed initial condition

aip0q “ a0
i ě 0 for all i P V (8.11)

with an initial auxin concentration
ř

iPV aip0q ą 0 some cells may get no auxin over

time. If aip0q “ 0 for some i P V, it follows from (8.6) that cell i gets no auxin as

long as its neighbouring cells have zero auxin. However, if aip0q “ 0 for some i P V
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and ajp0q ą 0 for some j P N piq, then (8.6) implies that

daiptq

dt

ˇ

ˇ

ˇ

ˇ

t“0

$

&

%

ą 0 Xijp0q ą 0, ajp0q ą 0,

“ 0 otherwise.

In particular, the relaxed initial condition (8.11) guarantees the nonnegativity for

ai.

8.4 Murray’s law

In this section we demonstrate the validity of the Murray’s law [Mur26a, Mur26b]

for the steady states of the auxin transport activity model (8.7), (8.6). Murray’s law

is a basic physical principle for transportation networks which predicts the thickness

or conductivity of branches, such that the cost for transport and maintenance of the

transport medium is minimised. This law is observed in the vascular and respiratory

systems of animals, xylem in plants, and the respiratory system of insects [She81].

The stationary version of the auxin transport activity model (8.7), (8.6) consists

of the algebraic system

δ
ÿ

jPNpiq

Qji “ Si ´ Iiai for all i P V, (8.12)

˜

|Qij|κ

Xγ`1
ij

´ τ

¸

Xij “ 0 for all pi, jq P E. (8.13)

Noting that Qij “ 0 if Xij “ 0, (8.13) implies

|Qij|κ “ τXγ`1
ij for all pi, jq P E. (8.14)

Then, we rewrite (8.12) in the form

δ
ÿ

jPN`piq

|Qij| ` Si ´ Iiai “ δ
ÿ

jPN´piq

|Qij| for all i P V

with

N`
piq :“ tj P Npiq; Qij ą 0u, N´

piq :“ tj P Npiq; Qij ă 0u.

282



8.5. Numerical simulation

Using (8.14), we have

δ
ÿ

jPN`piq

pτXγ`1
ij q

1{κ
` Si ´ Iiai “ δ

ÿ

jPN´piq

pτXγ`1
ij q

1{κ for all i P V.

In particular, when all Ii “ 0, we obtain the generalised Murray’s law

δ
ÿ

jPN`piq

pτXγ`1
ij q

1{κ
` Si “ δ

ÿ

jPN´piq

pτXγ`1
ij q

1{κ for all i P V.

8.5 Numerical simulation

In this section, we provide numerical results for the discrete model (8.6)–(8.7). Since

the problem is stiff, implicit formulas are necessary and we consider a multi-step

solver based on the numerical differentiation formulas of orders 1 to 5 [SR97].

We consider a planar graph G “ pV,Eq, whose vertices and edges define a

diamond shaped geometry embedded in the two-dimensional domain Ω “ p´0.5, 2qˆ

p´1.5, 0.5q with |V| “ 81 vertices and |E| “ 208 edges. Let pxi, yiq denote the

position of vertex i P V. We assume that the source terms Si ě 0 are positive on

the subset of vertices

V` :“ ti P V; xi ď ´0.4u,

and vanish on its complement VzV`,

Si :“

$

&

%

ξS, i P V`,

0, i P VzV`,

where ξS :“ 100, implying that we have a single source in the top corner of the

diamond. The decay terms Ii, i P V, are assumed to positive on the complement

VzV`,

Ii :“

$

&

%

0, i P V`,

ξI , i P VzV`,

where ξI :“ 1. Note that in terms of the distribution of source and sink terms,

we consider the same situation as in Chapter 6. We prescribe the initial condition

X̄ij :“ 1 for every pi, jq P E and ai :“ 1 for all i P V, unless stated otherwise.
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Besides, we consider δ :“ 1, σ :“ 1, κ :“ 2, γ :“ 0.5 and τ :“ 1 in the numerical

simulations, if not stated otherwise.

In the sequel, we present the stationary solutions obtained by solving the system

(8.6)–(8.7). We plot the value of the transport activity Xij for every edge pi, jq P E
in terms of its width and colour. The auxin concentration in each cell i P V is

indicated by the colour of that cell.

In Figure 8.1, we show the stationary transport activity for perturbed initial

data X̄ij, i.e., we consider X̄ij`εUp0, 1q instead of X̄ij as initial data, where Up0, 1q
denotes a uniformly distributed random variable on r0, 1s. In particular, the re-

sulting network is stable under small perturbation. This can be seen by comparing

the results with Figure 8.2(G) where the same parameters without perturbation are

considered. The perturbations of the initial data result in more complex steady

states compared to the steady states obtained from unperturbed initial data.

(A) ε “ 0.5 (B) ε “ 1 (C) ε “ 5 (D) ε “ 10

Figure 8.1: Steady states for transport activity for perturbation εUp0, 1q of the
initial transport activity X̄ij with initial data X̄ij, āi.

In Figure 8.2 we vary the strength ξS of the source in the top corner of the

diamond. As ξS increases, auxin is transported over a larger area, resulting in

lower auxin levels and transport activity close to the source in the top corner of the

diamond. Note that the area of large auxin levels and transport activities coincide

in the steady states. Further note that not the entire graph is covered with auxin

for ξS P t10, 50u and the resulting pattern is symmetric due to symmetric initial

data for the auxin levels and the transport activity.

In Figure 8.3 we consider different grids (round, oval). As in Figure 8.2 we vary

the strength ξS of the source in the top middle corner of these grids. The resulting

pattern formation for round and oval grids is very similar to the patterns obtained

with the same source strengths in Figure 8.2 for the diamond grid. In particular,

this demonstrates the robustness of the model to variations of the underlying grid.

Note that due to the larger size of the oval grid compared to the other considered

grids, a stronger source is required for obtaining stationary patterns covering the
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8.5. Numerical simulation

(A) ξS “ 10 (B) ξS “ 50 (C) ξS “ 100 (D) ξS “ 200

(E) ξS “ 10 (F) ξS “ 50 (G) ξS “ 100 (H) ξS “ 200

Figure 8.2: Steady states for auxin concentration and transport activity for different
background source strengths ξS with initial data X̄ij, āi.

entire simulation domain.

In Figure 8.4, we vary the strength of the sink in the bottom corner, denoted

by ξCI , while keeping the values of Ii for all other vertices i P V as before. Similarly

as for the variation of ξI , the area of the network decreases as ξCI increases for both

auxin levels and transport activity. In this case, however, it decreases outside a

neighbourhood of the line connecting the source in the top corner and the increasing

sink of size ξCI in the bottom corner. In particular, the network structure for large

ξCS is given by a high auxin levels and transport activity along the line of cells,

connecting the source in the top corner with the strong sink in the bottom corner.

Moreover, this variation of the size of the source ξS in Figures 8.2 and 8.3, as well

as, of the sinks ξI and ξCI in Figure 8.4 illustrate how crucial the choice of sources

and sinks for the resulting pattern formation is.

In Figures 8.5 and 8.6, we investigate the dependence of the stationary states on

the model parameters δ and τ in (8.6)–(8.7). For small values of δ, more complex

stationary patterns for the transport activity can be seen in Figure 8.5 and auxin is

transported over the entire graph. As δ increases, the auxin levels and the transport

activity increase close to the source, but they are no longer transported over the

entire graph. As before, the area covered by auxin transport activity and auxin

levels are of a similar size, i.e., auxin transport activity and auxin levels are co-

existent. The increase of τ shows a similar change of the steady states of both the

auxin transport activity and auxin levels as the increase of δ.
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(A) ξS “ 100 (B) ξS “ 200 (C) ξS “ 100 (D) ξS “ 200

(E) ξS “ 100 (F) ξS “ 200 (G) ξS “ 100 (H) ξS “ 200

Figure 8.3: Steady states for auxin concentration and transport activity for different
background source strengths ξS and different grid shapes (round, oval) with initial
data X̄ij, āi.

(A) ξCI “ 10 (B) ξCI “ 50 (C) ξCI “ 100 (D) ξCI “ 5000

(E) ξCI “ 10 (F) ξCI “ 50 (G) ξCI “ 100 (H) ξCI “ 5000

Figure 8.4: Steady states for auxin concentration and transport activity for different
sink strengths ξCI with initial data X̄ij, āi.
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(A) δ “ 0.1 (B) δ “ 0.5 (C) δ “ 2 (D) δ “ 10

(E) δ “ 0.1 (F) δ “ 0.5 (G) δ “ 2 (H) δ “ 10

Figure 8.5: Steady states for auxin transport activity and auxin levels for different
parameter values δ with initial data X̄ij, āi.

(A) τ “ 0.5 (B) τ “ 2 (C) τ “ 5 (D) τ “ 10

(E) τ “ 0.5 (F) τ “ 2 (G) τ “ 5 (H) τ “ 10

Figure 8.6: Steady states for auxin transport activity and auxin levels for different
parameter values τ with initial data X̄ij, āi.
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In Figures 8.7–8.9, we vary the initial auxin transport activity and no longer

consider the initial data X̄ij. In Figure 8.7, the steady states for the transport

activity are shown where the initial transport activity is chosen as θ ` 0.00001ε for

parameter ε P t0.5, 5, 50, 100u and a random variable θ with θ “ 1 with probability

0.2 and θ “ 0 with probability 0.8. In particular, the resulting patterns of the

transport activity have no symmetries and the location of the mid-veins strongly

depend on the choice of parameters, illustrating that model (8.6)–(8.7) can produce

complex vein patterns. Note that the size of the stationary pattern increases as ε

and, thus, as the absolute value of the initial transport activity increases.

(A) ε “ 0.5 (B) ε “ 5 (C) ε “ 50 (D) ε “ 100

Figure 8.7: Steady states for the transport activity for initial transport activity
θ`0.00001ε where θ is a random variable with θ “ 1 with probability 0.2 and θ “ 0
with probability 0.8.

In Figure 8.8, we consider the initial transport activity εUp0, 1q where ε P

t0.5, 1, 5, 100u. These numerical results demonstrate that model (8.6)–(8.7) is ca-

pable to produce different complex stationary state, not only on subdomains as

in Figure 8.7, but on the entire underlying network. In particular, the stationary

transport activity connects auxin sources and sinks.

(A) ε “ 0.5 (B) ε “ 1 (C) ε “ 5 (D) ε “ 100

Figure 8.8: Steady states for transport activity for initial transport activity εUp0, 1q.

In Figure 8.9, we consider the same initial condition for the transport activity

as in Figure 8.8(D), i.e. 100Up0, 1q, but we vary the strengths 10ε and ε of the

auxin background source strengths ξS and sink strengths ξI , respectively, where

ε P t1, 5, 50, 100u. One can clearly see in Figure 8.9 that the auxin sources and
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sinks are not strong enough for ε “ 1 for transport activity to connect the top and

bottom corners of the underlying network, while for larger values of ε mid-veins

become visible and get stronger as auxin sources and sinks increase. This shows

that complex stationary transport activity patterns with no symmetries and major

mid-veins can be obtained.

(A) ε “ 1 (B) ε “ 5 (C) ε “ 50 (D) ε “ 100

Figure 8.9: Steady states for transport activity for initial transport activity
100Up0, 1q with source 10ε and sink ε.

In Figures 8.10 and 8.11 we consider multiple sources and sinks for obtaining

more realistic vein networks. Starting from a certain configuration of sources and

sinks in Figures 8.10(A) and 8.11(A) we subsequently add sources and sinks in the

subfigures further to the right. In Figure 8.10 we consider a diamond grid as in

most figures, but apart from a source at the top corner and a sink at the bottom

corner of the grid, we add sources which are located symmetrically with respect to

the longest vertical axis of the grid. Denoting the distance between the left and the

top corner of grid by l, these sources are located on the boundary of the grid at

a distance of l{4 from the top corner (Figures 8.10(A), 8.10(B), 8.10(C), 8.10(D)),

the left corner (Figures 8.10(B), 8.10(C), 8.10(D)) and at distances of 3l{4 and 5l{8

from the top corner in Figures 8.10(C), 8.10(D) and Figure 8.10(D), respectively.

Similarly, the sources are located on the right side of the grid by symmetry of the

source locations in each figure. One can clearly see that multiple sources result

in a more complex transportation network between the sources and the sink in

comparison to the simulation results in the previous figures with merely one point

source.

In Figure 8.11 we consider a rectangular underlying grid with sources at the top

and the bottom of the boundary of the grid. We denote the length between the

left top and right top corner of the grid by l. We consider a sink in the middle

of the bottom boundary and sources in the middle of the top boundary and at a

distance of l{4 left and right of the middle on the top boundary in all subfigures of

Figure 8.11. Additional sources are located at the left top and the right top corner
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(A) 3 sources (B) 5 soures (C) 7 sources (D) 9 sources

Figure 8.10: Steady states for transport activity for initial transport activity
100Up0, 1q with different number of sources of strength 1000 and sinks of strength
100.

in Figures 8.11(B), 8.11(C), 8.11(D). In Figures 8.11(C), 8.11(D) additional sinks

are added at the bottom boundary in a distance of l{4 left and right of the middle

of the bottom boundary, while in Figure 8.11(D) additional sinks are considered in

the left bottom and right bottom corner of the grid. In particular, the resulting

patterns look very similar to those in leaves.

(A) 3 sources, 1 sink (B) 5 soures, 1 sink (C) 5 sources, 3 sinks (D) 5 sources, 5 sinks

Figure 8.11: Steady states for transport activity for initial transport activity
100Up0, 1q with different number of sources of strength 1000 and different number
of sinks of strength 100.

Model (8.6)–(8.7) describes the auxin transport with a positive feedback between

auxin fluxes and auxin transporters where the auxin transporters are not necessarily

polar. The above numerical results illustrate that the model (8.6)–(8.7) is able to

connect an auxin source-sink pair with a mid-vein and that branching vein patterns

can also be produced. A nice feature of the model is that the veins end up with

high auxin levels. This was not achieved with the original Mitchinson models and

this has been discussed in some detail. A solution to this has been to adapt the

conservative approach Xtot “
ř

jPN piqXij “ const for the auxin transporters which

(together with feedback on the localisation of auxin transporters from auxin flux)

can lead to high auxin in veins.

We want to stress here that our model (8.6)–(8.7) is able to generate a ve-

nation/transport network without a polar input, as seen in the case when auxin
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transporters are knocked out in the various numerical examples.

8.6 The formal continuum limit

The main reason for focusing on discrete models is that the patterns form when the

leaves have very few cells, e.g. the (first) mid-vein forms when the leaf is about five

cells wide. Cells split over time, resulting in a larger number of cells and network

growth. Besides, there is an auxin peak at the tip before the high auxin/transport

activity vein forms downwards from this. Still, this does not discard alternative

mechanisms setting up an intitial pattern that connects the leaf tip with the vascu-

lature in the stem (thought to be auxin sink). These phenomena can be modelled

much better in a diffusion driven setting instead of the discrete setting and motivates

us to consider the associated macroscopic model.

The goal of this section is to derive the formal macroscopic limit of the discrete

model (8.7), (8.6) as the number of nodes and edges tends to infinity, and to study

the existence of weak solutions of the resulting PDE system. The derivation requires

an appropriate rescaling of the auxin production equation (8.6). Moreover, since the

derivation of macroscopic limits of systems posed on general (unstructured) graphs

is a highly nontrivial topic, see, e.g., [Lov12], we restrict ourselves to discrete graphs

represented by regular equidistant grids, i.e., tessellations of a rectangular domain

Ω Ă Rd, d P N, by congruent identical rectangles (in 2D) or cubes (in 3D) with

edges parallel to the axis. The results can be generalised to parallelotopes, see

Section 6.3 of Chapter 6 for details of the formal procedure applied to the Hu-Cai

model (8.3)–(8.1), and Chapter 7 for the rigorous procedure in the spatially one-

and two-dimensional setting.

8.6.1 Formal derivation of the continuum limit

Given the graph G “ pV,Eq as a rectangular tesselation of the rectangular domain

Ω, let us denote the vertices left and right of vertex i P V along the k-th spatial

dimension by pi ´ 1qk and, resp., pi ` 1qk. Moreover, let us denote hk ą 0 the

equidistant grid spacing in the k-th dimension. The rescaled auxin production
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equation (8.6) is then written as

dai
dt
“ Si ´ Iiai ` δ

d
ÿ

k“1

1

hk

ˆ

Xi,pi`1qk

api`1qk ´ ai
hk

´Xi,pi´1qk

ai ´ api´1qk

hk

˙

for i P V.

(8.15)

The rescaling of the sum on the right hand side by hk is reflecting the fact that

the edges of the graph are inherently one-dimensional structures, embedded into

the d-dimensional space, cf. Section 6.3. A straightforward calculation reveals that

(8.15) is a finite difference discretisation of the parabolic equation

Ba

Bt
“ δ∇ ¨ pX∇aq ` S ´ Ia, (8.16)

on the regular grid G “ pV,Eq, where a “ apt, xq is a formal limit of the sequence of

discrete auxin concentrations paiqiPV as |V| Ñ 8, and I “ Ipxq is a formal limit of

the sequence pIiqiPV. Here, X “ Xpt, xq is the diagonal tensor X “ diagpX1, . . . , Xdq

where Xk is the formal limit of the sequence pXijqi,jPV on edges pi, jq P E oriented

along the k-th spatial direction. A formal continuum limit of (8.7) yields the family

of ODEs for X “ Xpt, xq,

BXk

Bt
“

ˆ

|qk|
κ

Xγ`1
k

´ τ

˙

Xk, (8.17)

with qk “ XkBxka. Note that the product X∇a is the vector

X∇a “ pX1Bx1a, . . . , XdBxdaq.

Observe that (8.17) is in fact a family of ODEs for Xk “ Xkpt, xq, parametrised

by x P Ω. Consequently, in analogy to Chapter 6, we introduce the diffusive terms

D2∆Xk that model random fluctuations in the medium. Thus, the updated version

of (8.17) reads

BXk

Bt
“ D2∆Xk `

ˆ

|qk|
κ

Xγ`1
k

´ τ

˙

Xk, (8.18)

with the diffusion coefficient D2 ą 0.

Biological observations suggest that the auxin dynamics takes place on a faster

time scale than the dynamics of the transporter proteins in the order of minutes for

auxin movement [DMIG96], and in the order of hours for e.g. PIN1 reorientation
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[HHK`10]. This motivates to consider a formal fast time scale limit of (8.16),

leading to the elliptic equation

´δ∇ ¨ pX∇aq “ S ´ Ia. (8.19)

Note that the system (8.18)–(8.19) is very similar to the original Hu–Cai model

(8.1), (8.3), except that there is an additional linearly decaying term in (8.19) in

comparison to Kirchhoff’s law (8.1).

The system (8.16), (8.18) is equipped with the no-flux boundary condition

ν ¨X∇a “ 0, ν ¨∇Xk “ 0 on BΩ, k “ 1, . . . , d, (8.20)

where ν “ νpxq is the outer unit normal vector on BΩ. The no-flux boundary

condition reflects the modelling assumption that there is no flow of auxin or the

auxin transporters through the boundary of the domain. More general boundary

conditions can be considered, leading to only slight modifications in the forthcoming

analysis. Moreover, we prescribe the initial datum for the auxin transporters

Xkp0, xq “ X0
kpxq ě 0 for x P Ω, k “ 1, . . . , d. (8.21)

Remark 24. The choice to work with the elliptic-parabolic system (8.18), (8.19)

instead of the parabolic-parabolic system (8.16), (8.18) simplifies the mathematical

analysis, since one can apply the so-called weak-strong lemma for the elliptic equa-

tion (8.19), see Lemma 19 below. The analysis of the full parabolic-parabolic PDE

system (8.16), (8.18) will be the subject of a further work.

8.6.2 Existence of weak solutions

The weak formulation of (8.19), subject to the no-flux boundary condition (8.20),

with a test function φ P C8pΩq reads

δ

ˆ
Ω

pX∇aq ¨∇φ dx “

ˆ
Ω

pS ´ Iaqφ dx, (8.22)

for almost all t ą 0, and the weak formulation of (8.18), (8.20) with a test function

ψ P C8pΩq is

d

dt

ˆ
Ω

Xkψ dx “ ´D2

ˆ
Ω

∇Xk ¨∇ψ dx`

ˆ
Ω

`

|Bxka|
κXκ´γ

k ´ τXk

˘

ψ dx, (8.23)
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for almost all t ą 0. The system is subject to the initial datum (8.21) with

X0
k P L

8
pΩq, k “ 1, . . . , d. (8.24)

We assume the uniform positivity X0
k ě X̄0 ą 0 almost everywhere on Ω, which

prevents degeneracy of the elliptic term ∇ ¨ pX∇aq in (8.16). Moreover, we assume

that

S P L2
pΩq, I P L8pΩq with Ipxq ě Ī ą 0 almost everywhere on Ω. (8.25)

To prove the existence of solutions of the system (8.22), (8.23) subject to the ini-

tial condition (8.24) we shall use the Schauder fixed point iteration in an appropriate

function space. We start by proving suitable a-priori estimates.

Lemma 18. Let S P L2pΩq and I P L8pΩq verify (8.25). Let the diagonal tensor

X P L2pΩq be uniformly positive on Ω, i.e., let there be X̄ ą 0 such that Xk ě X̄

almost everywhere on Ω, for k “ 1, . . . , d. Then there exists a unique solution

a P H1pΩq of (8.22) and a constant C ą 0 depending only δ, X̄, S and Ī, such that

}a}H1pΩq ď C. (8.26)

Proof. Let us consider a sequence of uniformly positive diagonal tensors Xn P

L8pp0, T q ˆ Ωq, Xn
k ě X̄ almost everywhere on Ω for all n P N, such that Xn Ñ X

in the norm topology of L2pp0, T q ˆ Ωq as n Ñ 8. For each n P N a unique solu-

tion an P H1pΩq of (8.22) is constructed using the Lax-Milgram Theorem, see, e.g.,

[Eva10]. The continuity of the bilinear form B : H1pΩq ˆ H1pΩq Ñ R associated

with (8.22),

Bpa, φq :“ δ

ˆ
Ω

pX∇aq ¨∇φ dx´

ˆ
Ω

pS ´ Iaqφ dx,

follows from a straightforward application of the Cauchy-Schwarz inequality. The

coercivity of B follows from

´

ˆ
Ω

Sa dx ě ´
1

4Ī

ˆ
Ω

S2 dx´ Ī

ˆ
Ω

a2 dx

and the uniform boundedness Ipxq ě Ī. Using φ :“ an as a test function in (8.22)
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gives

δ

ˆ
Ω

∇an ¨Xn∇an dx “

ˆ
Ω

San dx´

ˆ
Ω

Ipanq2 dx,

By (8.25), the Cauchy-Schwartz inequality and the uniform boundedness Xn
k ě X̄ ą

0 we have

δX̄

ˆ
Ω

|∇an|2 dx`
Ī

2

ˆ
Ω

panq2 dx ď
1

2Ī

ˆ
Ω

S2 dx (8.27)

and thus a uniform bound on an in H1pΩq.

Consequently, we can extract a subsequence converging to some a weakly in

H1pΩq and strongly in L2pΩq. Then, it is trivial to pass to the limit in (8.22), where

the term Xn∇an converges to X∇a due to the strong convergence of Xn in L2pΩq.

Consequently, the limiting object a verifies the weak formulation (8.22). Moreover,

it satisfies the a-priori estimates (8.27) due to the weak lower semicontinuity of the

respective norms. Uniqueness of the solution follows from (8.27) and the linearity

of the equation.

Remark 25. With a straightforward modification of its proof, we shall apply Lemma

18 for time-dependent permeability tensors X P L8p0, T ;L2pΩqq in the sequel. We

then obtain the unique solution a P L2p0, T ;H1pΩqq satisfying the uniform estimate

}a}L2p0,T ;H1pΩqq ď C (8.28)

with C “ Cpδ, X̄, S, Īq ą 0.

The following Lemma is an instance of the so-called weak-strong lemma for

elliptic problems, see, e.g. Lemma 13. Here we formulate it in the time-dependent

setting with a “ apt, xq.

Lemma 19. Fix T ą 0 and let pXnqnPN Ă L8p0, T ;L2pΩqq be a sequence of diagonal

tensors in Rdˆd such that for some X̄ ą 0, Xn
k ě X̄ ą 0 almost everywhere on

p0, T q ˆ Ω, k “ 1, . . . , d, n P N. Moreover, assume that Xn Ñ X in the norm

topology of L2pp0, T qˆΩq. Let panqnPN be a sequence of weak solutions of (8.22) with

the permeability tensors Xn. Then ∇an converges to ∇a strongly in Lqpp0, T q ˆΩq

for any q ă 2, where a is the solution of (8.22) with permeability tensor X.

Proof. Due to the uniform estimate on an in L2p0, T ;H1pΩqq of Lemma 18, an

that converges weakly in L2p0, T ;H1pΩqq to some a. Since an Ñ a strongly in
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L2pp0, T qˆΩq, we can pass to the limit nÑ 8 in (8.22). With the uniform estimate

on
?
Xn∇an in L2pp0, T q ˆΩq provided by (8.28), the weak lower semicontinuity of

the L2-norm implies

ˆ T

0

ˆ
Ω

X∇a ¨∇a dx dt “

ˆ T

0

ˆ
Ω

|
?
X∇a|2 dx dt

ď lim inf
nÑ8

ˆ T

0

ˆ
Ω

|
?
Xn∇an|2 dx dt ă `8

for almost all t ą 0. Consequently, we can use a as a test function in the time-

integrated version of (8.22) to obtain

δ

ˆ T

0

ˆ
Ω

X∇a ¨∇a dx dt “

ˆ T

0

ˆ
Ω

pS ´ Iaqa dx dt.

Then, using aN as a test function in (8.22) with Xn, we have

lim
NÑ8

δ

ˆ T

0

ˆ
Ω

Xn∇an ¨∇an dx “

ˆ T

0

ˆ
Ω

pS ´ Iaqa dx dt “ δ

ˆ T

0

ˆ
Ω

X∇a ¨∇a dx dt.

Consequently,

ˆ T

0

ˆ
Ω

|
?
X∇a|2 dx dt “ lim

nÑ8

ˆ T

0

ˆ
Ω

|
?
Xn∇an|2 dx dt,

so that we have the strong convergence of
?
Xn∇an to

?
X∇a in L2pp0, T q ˆ Ωq.

Now we write,

ˆ T

0

ˆ
Ω

|Bxka
n
´ Bxka| dx dt ď X̄´1{2

ˆ T

0

ˆ
Ω

|
a

XkBxka
n
´
a

XkBxka| dx dt

ď X̄´1{2
}∇an}L2pp0,T qˆΩq

›

›

›

a

Xn
k ´

a

Xk

›

›

›

L2pp0,T qˆΩq

` X̄´1{2

ˆ T

0

ˆ
Ω

|
a

Xn
k Bxka

n
´
a

XkBxka| dx dt,

for k “ 1, . . . , d, and the first term of the right-hand side converges to zero due to the

assumed strong convergence of Xn in L2pp0, T qˆΩq, while the second term does so

due to the strong convergence of
?
Xn∇an. Thus, we have the strong convergence of

∇an to∇a in L1pp0, T qˆΩq. Since∇an is also uniformly bounded in L2pp0, T qˆΩq, a

simple consequence of the interpolation inequality [Rou13, Chapter 1] implies strong

convergence in Lqpp0, T q ˆ Ωq for q ă 2.
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Lemma 20. Fix T ą 0 and let ∇a P L2pp0, T q ˆ Ωq. Let κ ą γ and,

κ ă 2 for d P t1, 2u, κ ď
γ ` 5

4
for d “ 3, (8.29)

depending on the space dimension d. Then there exists a unique solution

Xk P L
2
p0, T ;H1

pΩqq X L8p0, T ;L2
pΩqq X Cpr0, T q;H´1

pΩqq, k “ 1, . . . , d,

of (8.23) subject to the initial datum (8.24) with X0
k ě X̄0 ą 0 almost everywhere

on Ω. Moreover, the solution stays uniformly bounded away from zero on p0, T qˆΩ,

i.e., there exists X̄ ą 0 depending on X̄0, T , D2 and τ , but independent of a, such

that

Xk ě X̄ ą 0 almost everywhere on p0, T q ˆ Ω. (8.30)

Moreover, there exists a constant K0 ą 0 independent of X and a such that

}Xk}
2
L8p0,T ;L2pΩqq ď

›

›X0
k

›

›

2

L2pΩq
`K0 }Bxka}

2
L2pp0,T qˆΩq (8.31)

and, for k “ 1, . . . , d,

}∇Xk}
2
L2p0,T ;L2pΩqq ď

›

›X0
k

›

›

2

L2pΩq
`K0 }Bxka}

2
L2pp0,T qˆΩq . (8.32)

Remark 26. Observe that the necessary condition for the mutual validity of the

assumptions κ ą γ and (8.29) is γ, κ ă 2 for d P t1, 2u and γ, κ ď 5{3 for d “ 3.

Proof. Let us fix k P t1, . . . , du and use ψ :“ Xk as a test function in (8.23),

1

2

d

dt

ˆ
Ω

X2
k dx “ ´D2

ˆ
Ω

|∇Xk|
2 dx`

ˆ
Ω

|Bxka|
κXκ´γ`1

k dx´ τ

ˆ
Ω

X2
k dx, (8.33)

where we used the identity qk “ XkBxka. Using the Hölder inequality with exponents

p and p1, 1
p
` 1

p1
“ 1, we have

ˆ
Ω

|Bxka|
κXκ´γ`1

k dx ď Cε

ˆ
Ω

|Bxka|
κp dx` ε

ˆ
Ω

|Xk|
pκ´γ`1qp1 dx (8.34)

for ε ą 0 and a suitable constant Cε. Due to the assumed L2-integrability of Bxka,

we choose κp “ 2, so that p1 “ 2
2´κ

. Denote α :“ pκ ´ γ ` 1qp1 and observe that

α ą 0 due to the assumption κ ą γ. Let us distinguish the following two cases: If
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α ď 2, then by the Hölder inequality we have

ˆ
Ω

|Xk|
α dx ď CΩ

ˆ
Ω

|Xk|
2 dx,

so that (8.33) and (8.34) imply

1

2

d

dt

ˆ
Ω

X2
k dx ď ´D2

ˆ
Ω

|∇Xk|
2 dx` Cε

ˆ
Ω

|Bxka|
2 dx´ pτ ´ εCΩq

ˆ
Ω

X2
k dx,

and choosing ε ą 0 such that τ ´ εCΩ ą 0 directly implies the a-priori estimates

(8.31) and (8.32). On the other hand, if α ą 2, we apply the Sobolev inequality

[Eva10]

ˆ
Ω

|Xk|
α dx ď CS

ˆˆ
Ω

|∇Xk|
2 dx`

ˆ
Ω

|Xk|
2 dx

˙

with CS “ CSpΩq the Sobolev constant. Depending on the space dimension, we

have:

• For d P t1, 2u,

}Xk}LαpΩq ď CS

ˆˆ
Ω

|∇Xk|
2 dx`

ˆ
Ω

|Xk|
2 dx

˙

(8.35)

for any α ă 8, i.e., we admit any p ą 1 and, consequently, κ ă 2.

• For d “ 3 we have (8.35) for α ď 6, i.e., we need pκ´ γ ` 1qp1 “ 2pκ´γ`1q
2´κ

ď 6,

which gives the condition κ ď γ`5
4

.

Consequently, we have

1

2

d

dt

ˆ
Ω

X2
k dx ď ´pD2

´ εCSq

ˆ
Ω

|∇Xk|
2 dx` Cε

ˆ
Ω

|Bxka|
2 dx´ pτ ´ εCSq

ˆ
Ω

X2
k dx,

and choosing ε ą 0 such that εCS ă mintD2, τu directly implies the a-priori esti-

mates (8.31) and (8.32). The uniform positivity (8.30) follows from the fact that

solutions u “ upt, xq of the linear parabolic equation Bu
Bt
“ D2∆u´ τu are subsolu-

tions to (8.17), and they remain uniformly positive on bounded time intervals for

uniformly positive initial data, see, e.g., [Eva10].

Finally, note that we have the identity (in distributional sense)

BXk

Bt
“ D2∆Xk ` |Bxka|

κXκ´γ
k ´ τXk.
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An easy calculation reveals that, for the aforementioned range of κ and γ,

|Bxka|
κXκ´γ

k P L1
p0, T ;L6{5

pΩqq Ă L1
p0, T ;H´1

pΩqq,

implying BXk
Bt
P L1p0, T ;H´1pΩqq, so that Xk P Cpr0, T q;H

´1pΩqq, see, e.g., [Rou13,

Chapter 7].

Theorem 15. Fix T ą 0 and let κ ą γ, and, in dependence of the space dimension

d,

κ ă
γ ` 4

3
for d P t1, 2u, κ ă

γ ` 5

4
for d “ 3. (8.36)

Then the system (8.22)–(8.23) subject to the initial datum (8.24) with X0
k ě X̄0 ą 0

almost everywhere on Ω admits a weak solution pX, aq on p0, T q such that

Xk P L
8
p0, T ;L2

pΩqq X L2
p0, T ;H1

pΩqq X Cpr0, T q;H´1
pΩqq,

a P L8p0, T ;L2
pΩqq X L2

p0, T ;H1
pΩqq X Cpr0, T q;W´1,4{3

pΩqq.
(8.37)

Proof. We construct a solution using the Schauder fix-point theorem on the set

BT :“
!

X P pL8p0, T ;L2
pΩqqqdˆddiag; }Xk}

2
L8p0,T ;L2pΩqq ď

›

›X0
k

›

›

2

L2pΩq
`K0B

2
T ,

Xk ě X̄ almost everywhere on p0, T q ˆ Ω, k “ 1, . . . , d
)

.

Here pL8p0, T ;L2pΩqqqdˆddiag denotes the space of diagonal d ˆ d-tensors with entries

in L8p0, T ;L2pΩqq, and K0 and X̄ are the constant defined in Lemma 20; note that

they depend only on X̄0, T , and the parameters κ, γ, D2 and τ . Moreover, we

denoted

B2
T :“

1

2δX̄

´

pTeT ` 1q
›

›a0
›

›

2

L2pΩq
` TeT }S}2L2pΩq

¯

.

The set BT shall be equipped with the norm topology of L2pp0, T q ˆ Ωq. Obvi-

ously, BT is nonempty, convex and closed. We define the mapping Φ : BT Ñ

L8p0, T ;L2pΩqq,

Φ : X P BT ÞÑ X̃,

where given X P BT we construct a the unique weak solution of (8.22) by Lemma 18,

and, subsequently, construct X̃ as the unique weak solution of (8.23) by Lemma 20.
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Clearly, due to the a-priori estimates (8.26) and (8.31), X̃ P BT .

To prove the continuity of the mapping Φ, let us consider a sequence pXnqnPN Ă

BT , converging to X P BT in the norm topology of L2pp0, T q ˆ Ωq. Denote panqnPN

and, resp., a, the solutions of (8.22) corresponding to Xn and, resp., X. Then, due

to Lemma 19, ∇an converges to ∇a in the norm topology of Lqpp0, T q ˆΩq for any

q ă 2. Let X̃n :“ ΦpXnq and X̃ :“ ΦpXq. Due to Lemma 20 and the Aubin-Lions

theorem, a subsequence of X̃n converges strongly to some X̃˚ in L2p0, T ;LqpΩqq with

q ă 8 if d P t1, 2u and q “ 6 if d “ 3. The limit passage nÑ 8 in (8.23) is trivial

for the linear terms. For the term |Bxkan|
κX̃κ´γ

n we observe that, due to Lemma 19,

the term |Bxkan|
κ converges to |Bxka|

κ in the norm topology of Lqpp0, T q ˆ Ωq for

q ă 2{κ. Moreover:

• For d P t1, 2u, the interpolation inequality between the spaces L8p0, T ;L2pΩqq

and L2p0, T ;LqpΩqq with q ă 8 implies that X̃n is uniformly bounded, and

thus converges, in the norm topology of Lqpp0, T q ˆ Ωq for q ă 4. Con-

sequently, since κ ă 2, the product |Bxkan|
κX̃κ´γ

n converges strongly in (at

least) L1pp0, T q ˆ Ωq to |Bxka|
κpX̃˚

nq
κ´γ if κ

2
`

κ´γ
4
ă 1, which is equivalent to

κ ă γ`4
3

.

• For d “ 3 the interpolation inequality between the spaces L8p0, T ;L2pΩq and

L2p0, T ;L6pΩqq implies that X̃n is uniformly bounded in the norm topology

of L10{3pp0, T q ˆ Ωq. Then the sufficient condition for L1-convergence of the

product |Bxkan|
κX̃κ´γ

n reads κ
2
`

3pκ´γq
10

ă 1, which is equivalent to κ ă 10`3γ
8

.

This condition is weaker than (8.36).

By the uniqueness of solutions of (8.22), we conclude that X̃˚ “ X̃, i.e., the mapping

Φ is continuous on BT with respect to the norm topology of L2pp0, T q ˆ Ωq.

To prove the compactness of the mapping Φ, we employ the Aubin-Lions lemma

[Aub63]. Let us again consider a sequence pXnqnPN Ă BT and denote X̃n :“

ΦpXnq. Due to the a-priori estimates (8.26) and (8.31), (8.32), the sequence X̃n

is bounded in L8p0, T ;L2pΩqq and in L2p0, T ;H1pΩqq. Moreover, BtX̃n is bounded

in L1p0, T ;H´1pΩqq. Then, since H1pΩq is compactly embedded into L2pΩq and

L2pΩq Ă H´1pΩq, the Aubin-Lions theorem provides the relative compactness of

the sequence X̃n with respect to the norm topology of L2pp0, T q ˆ Ωqq. Conse-

quently, the Schauder fix-point theorem provides a solution pX, aq of the system

(8.22)–(8.24), satisfying (8.37).
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Remark 27. For the case κ “ γ “ 2 the system (8.18) simplifies to

BXk

Bt
“ D2∆Xk ` pBxkaq

2
´ τXk. (8.38)

Then, (8.19), (8.38) is similar to the system studied in Chapter 6 and Chapter 7, the

main difference being that the permeability tensor in the elliptic equation is of the

form rI`X in Chapter 6 and Chapter 7, where r ą 0 is a constant. The significant

property of (8.19), (8.38) is its energy-dissipation structure. Indeed, defining

ErXs :“
D2

2

d
ÿ

k“1

ˆ
Ω

|∇Xk|
2 dx`

ˆ
Ω

∇a ¨X∇a dx` τ
d
ÿ

k“1

ˆ
Ω

X2
k dx,

where a “ arXs is the unique weak solution of (8.19), a simple calculation (see

Lemma 10) reveals that,

d

dt
ErXs “ ´

d
ÿ

k“1

ˆ
Ω

ˆ

BXk

Bt

˙2

dx

along the solutions of (8.19), (8.38). The energy dissipation naturally provides

uniform a-priori estimates on X and a in the energy space. However, these still

do not allow us to extend the validity of Theorem 15 to κ “ γ “ 2. The problem

is that in the proof of continuity of the fix-point mapping Φ, it is not clear how to

pass to the (weak) limit in the sequence pBxkaq
2. Note that Lemma 19 only provides

(strong) convergence of Bxka in Lqpp0, T q ˆ Ωq with q ă 2.

Remark 28 (Steady states of the system (8.18), (8.19) with D2 “ 0). The steady

states of the system (8.18), (8.19) with D2 “ 0 satisfy, in the weak sense,

δ∇ ¨ pX∇aq ` S ´ Ia “ 0, (8.39)

|Bxka|
κXκ´γ

k ´ τXk “ 0, (8.40)

for k “ 1, . . . , d, with qk “ XkBxka. For κ ą γ ą 0, (8.40) implies that there exist

measurable sets Ak Ă Ω, k “ 1, . . . , d, such that

Xk “

ˆ

|Bxka|
κ

τ

˙
1

γ´κ`1

χk,

where χk “ χkpxq is the characteristic function of Ak. Inserting this into (8.39),
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we obtain

´δτ
1

κ´γ´1

d
ÿ

k“1

Bxk

´

χk|Bxka|
κ

γ´κ`1Bxka
¯

“ S ´ Ia. (8.41)

Due to the presence of the characteristic functions χk, this is a strongly degen-

erate elliptic equation, rendering its analysis a very challenging task, which we

leave for a future work. Let us only note that the degeneracy in (8.41) induces

strong nonuniqueness of its solutions. Consequently, it is necessary to equip (8.41)

with suitable selection criteria in order to obtain unique solutions. This is to be

done through further modelling inputs. For κ “ γ ą 0, contrarily, (8.40) gives

Xk “ τ´1|Bxka|
κ, and (8.39) reads

´δτ´1
d
ÿ

k“1

Bxk p|Bxka|
κ
Bxkaq “ S ´ Ia. (8.42)

Equipped with the no-flux boundary condition (8.20), its weak formulation reads

δτ´1
d
ÿ

k“1

ˆ
Ω

|Bxka|
κ
pBxkaqpBxkψq dx`

ˆ
Ω

pa´ Sqψ dx “ 0 (8.43)

for all test functions ψ P C8pΩq. Weak solutions a P W 1,κ`2pΩq of (8.43) are

constructed as the global minima of the functional F : W 1,κ`2 Ñ R,

Fras :“
δτ´1

κ` 2

d
ÿ

k“1

ˆ
Ω

|Bxka|
κ`2 dx`

1

2

ˆ
Ω

a2 dx´

ˆ
Ω

Sa dx.

Obviously, for κ ą 0 the functional is uniformly convex. Moreover, a straightfor-

ward application of the Cauchy-Schwartz inequality implies boundedness below and

coercivity of F with respect to the norm of W 1,κ`2pΩq. Then the classical theory

(see, e.g., [Eva10]) provides the existence of a unique minimiser a P W 1,κ`2pΩq of

F , which is the unique solution of the corresponding Euler-Lagrange equation (8.43).

8.7 Conclusion

In this chapter, we proposed a new dynamic modelling framework for leaf venation,

which is not dependent on polar localisation of auxin transporters. Given that it

is still an open question how you get leaf veins, also in the absence of transport
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8.7. Conclusion

activity, we argue that the current work is of interest since it the first model, to our

knowledge, trying to address this question. Due to its new description of possible

mechanisms in leaf venation, our model is of interest to the modelling community.

Our work can be regarded as a general modelling framework for auxin transport,

which can be equipped or extended with various biologically relevant features that

would then produce experimentally testable hypotheses. The main advantage is the

rather simple form of the model, allowing a rigorous mathematical analysis, which

is one of the main aims of this chapter. Moreover, it facilitates the derivation of

a continuum limit, which can capture network growth and is expected to exhibit

a much richer patterning capacity, bearing again potential for delivering testable

hypotheses. The analytical and numerical study of the continuum model is currently

a work in progress.
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Chapter 9

Conclusion and outlook

In this thesis, we studied two different PDE models, motivated by the simulation of

fingerprint patterns and biological transport networks.

9.1 Part I: Anisotropic interaction equations

In Part I, we focused on modelling fingerprint patterns which is not only of great

interest in the biological community, but also in forensic science and increasingly in

biometric applications where large fingerprint databases are required for developing,

validating and comparing the performance of fingerprint identification algorithms.

Besides, similar models have proven to be very useful for modelling swarming in

nature, including flocks of birds or colonies of bacteria/cells, and has got significant

attention in the scientific community recently due to its great practical relevance.

The formation of fingerprints can mathematically be described as the interaction

of a large number of so-called Merkel cells, which align themselves due to anisotropic

repulsive-attractive interaction forces and form our fingerprint lines. The central

novelty in this model, leading to realistic patterns as observed in nature, is an

anisotropy induced by an underlying tensor field. This additional anisotropy is

crucial for the accurate description of real-world phenomena, but also makes the

analysis significantly harder. Due to the non-existence of an interaction potential

and a gradient flow formulation, much of the existing analytic theory does not apply

to these anisotropic interaction models and new methods are required for studying

these models rigorously.

We studied the role of anisotropic interaction in Chapter 2 and proposed a

bio-inspired model to simulate realistic fingerprint patterns in Chapter 3, featuring
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important properties of a biologically meaningful fingerprint development model.

We gave a rigorous proof of the stability of line patterns in Chapter 4. Moreover,

we investigated the role of nonlinear diffusion on the widening of line patterns both

analytically and numerically, and simulated realistic fingerprint patterns efficiently

in Chapter 5.

Part I (Chapters 2–5) is mainly based on four papers [BDK`18, CDKS18,

CDKS19, DGH`19] which are among the first works on the analysis of anisotropic

interaction models. Using innovations on the modelling, analysis, and computa-

tional methods, this research on anisotropic interaction is a crucial step towards the

accurate description of real-world phenomena.

Possible future research projects can be subdivided into two categories: anisotropic

pattern formation in more realistic (and mathematically more challenging) settings,

and the application of the obtained results to real-world phenomena.

In Part I, we investigated anisotropic pattern formation and the role of anisotropic

interaction on stationary solutions, mainly on R2 and on the two-dimensional torus

T2. An interesting future aspect of this research would be the study of anisotropic

pattern formation in more general settings which are of practical relevance. While

studying anisotropic pattern formation in the plane, has given us a better under-

standing about the possible patterns which might arise, the form of the underly-

ing surface may also influence the resulting stationary patterns. Motivated by the

fact that many complex patterns in nature occur on curved or evolving surfaces,

anisotropic pattern formation on these more general surfaces can be studied in the

future. In terms of the application to fingerprint simulations, note that our finger-

prints are not on flat surface and hence it is of interest to understand anisotropic

interaction on curved surfaces in higher dimensions. To mimic the growth of finger-

prints, anisotropic interaction on evolving surfaces may also be investigated.

While we studied the impact of the underlying tensor field on stationary solutions

in this thesis, an interesting question which arises is whether for a given pattern, a

tensor field can be estimated such that the stationary solution obtained with this

tensor field as an input is close to the original pattern with respect to the Wasserstein

distance. This approach results in an optimal control problem whose solution would

allow us to produce any desired pattern as stationary solution to the anisotropic

interaction model.

The collection of large databases of real fingerprints is usually very cost-intensive,

requires time and effort, and in many countries, it is constrained by laws address-

ing data protection and privacy. Therefore it is vital to simulate large fingerprint
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databases on a computer. Our bio-inspired model for the creation of synthetic

fingerprint patterns does not only allow us to simulate fingerprint patterns as sta-

tionary solutions, but also to adjust the distances between the fingerprint lines by

rescaling the model parameters. This is crucial for modelling fingerprint patterns

with specific features in the future. As part of this work, the numerical results can

be tested for realness. The distinction between real and synthetics could be based

on [GH14] where histograms of minutiae and ridge frequencies are considered. An-

other procedure for distinguishing real and synthetic fingerprints is based on the

underlying stress field only [IGHO18].

9.2 Part II: Partial differential equations for bio-

logical networks

Part II focused on biological transportation networks which are ubiquitous in liv-

ing systems such as leaf venation in plants, blood circulatory systems, and neural

networks. Understanding the development, function, and adaptation of biological

transportation networks has been of long-standing interest in the scientific commu-

nity, including mathematics due to the complexity of the models. Using methods

from various fields within mathematics, we investigated the global existence of solu-

tions of the microscopic and the associated macroscopic models in Chapter 6, which

can be written as the unusual coupling of a linear system and a system of ordi-

nary differential equations on a graph and its continuum counterpart. Moreover, we

proved the rigorous limit between the microscopic and macroscopic model in Chap-

ter 7 for the two-dimensional regular setting which required the formal derivation

of an appropriate macroscopic model. These analytical results were complemented

by numerical simulations of the discrete model. Based on this model, we proposed

an adapted model in the cellular context for leaf venation, investigated the model

analytically and showed numerically that it can produce branching vein patterns in

Chapter 8.

Part II (Chapters 6–8) is based on the papers [HJKM19, HKM19a, HKM19b]. In

particular, this research resulted in a better understanding of the model suggested

by Hu and Cai and its continuum counterpart.

In terms of the application to leaf venation, we showed similarities in crude

vein formation in Chapter 8, but more elaborate investigations are essential, such

as combining the current description with PIN-based mechanisms and testing with
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more complex configurations of auxin sources and sinks. Besides, it is important

to understand the impact of the levels of auxin to the pattern formation. These

numerical results will contribute to a better understanding of the pattern formation

in this model for leaf venation.

In reality, the venation patterns appear while the leaf is growing. Our simulations

(and many previous PIN-based flux models simulated on static geometries) do not

consider any growth processes. Changing the extension of connecting sources and

sinks in the model would be expected to lead to differences in patterns in the final

leaf. These changes of patterns when PINs are removed would be very interesting

to investigate.

The main advantage of our discrete modelling approach for leaf venation is the

rather simple form of the model, allowing a rigorous mathematical analysis and in

particular the formal derivation of a continuum limit, which can capture network

growth. It is expected to exhibit a much richer patterning capacity, bearing again

potential for delivering testable hypotheses. The analytical and numerical study of

the continuum model is currently a work in progress.

Differential equations on graphs and networks are not only crucial for modelling

biological or social transportation networks, but also play an important role in

many data science and machine learning tasks, and can be regarded as the key

area of research for solving data problems such as linking graph and the associated

macroscopic models via Γ-convergence. As part of future research, more general

systems of differential equations on graphs can be investigated analytically and

numerically.
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