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Summary

This thesis deals with the analysis and numerical simulation of anisotropic nonlinear
partial differential equations (PDEs) and dynamical systems in biology. It is divided
into two parts, motivated by the simulation of fingerprint patterns and the modelling
of biological transport networks.

The first part of this thesis deals with a class of interacting particle models with
anisotropic repulsive-attractive interaction forces and their continuum counterpart.
These models are motivated by the simulation of fingerprint databases, which are
required in forensic science and biometric applications. In existing interacting par-
ticle models, the forces are isotropic and the continuum limits of these particle
models are given by nonlocal aggregation equations with radially symmetric poten-
tials. The central novelty in the models we consider is an anisotropy induced by an
underlying tensor field. This innovation does not only lead to the ability to describe
real-world phenomena more accurately, but also renders their analysis significantly
harder compared to their isotropic counterparts. We discuss the role of anisotropic
interaction, study the steady states and present a stability analysis of line patterns.
We also show numerical results for the simulation of fingerprints, based on discrete
and continuum modelling approaches.

The second part of this thesis focuses on a new dynamic modeling approach on a
graph for biological transportation networks which are ubiquitous in living systems
such as leaf venation in plants, blood circulatory systems, and neural networks.
We study the existence of solutions to this model and propose an adaptation so
that a macroscopic system can be obtained as its formal continuum limit. For
the spatially two-dimensional rectangular setting we prove the rigorous continuum
limit of the constrained energy functional as the number of nodes of the underlying
graph tends to infinity and the edge lengths shrink to zero uniformly. We also show
the global existence of weak solutions of the macroscopic gradient flow. Results
of numerical simulations of the discrete gradient flow illustrate the convergence to
steady states, their non-uniqueness as well as their dependence on initial data and
model parameters. Based on this model we propose an adapted model in the cellular
context for leaf venation, investigate the model analytically and show numerically

that it can produce branching vein patterns.
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Chapter 1
Introduction

Partial differential equations (PDEs) and dynamical systems are essential tools for
the mathematical modelling of biological, socio-economic and physical processes.
The use of PDE models in these applications has become an active research area in
the last decades, allowing us to extend the boundaries of mathematical knowledge
and advancing the understanding of real-world problems of practical importance.
Through mathematical analysis and computer simulations, we can gain new insights
into the qualitative properties of the underlying mathematical models which result
in a better understanding of complex phenomena in nature such as biological pattern
formation. Equally important, these new and challenging PDE models lead to intra-
disciplinary research, involving modelling, PDE theory, dynamical systems, graph
theory and numerical simulations.

In this thesis, we focus on PDEs and dynamical system for studying pattern
formation in nature. Many of these mathematical models can be derived from mi-
croscopic systems. Examples of microscopic modelling approaches include models
describing the interaction of a large number of individuals or graph-based models
consisting of a large number of nodes and edges. For the analysis of these mod-
els, it is often very useful to consider a coarse graining procedure resulting in the
corresponding macroscopic model, usually based on nonlinear PDEs. Since pat-
tern formation in nature is often anisotropic, we consider anisotropic models for
describing the formation of these complex patterns more accurately.

This thesis is divided into two parts: Part I (Chapters 2-5) is motivated by
the simulation of fingerprint patterns. We consider a class of interacting particle
models with anisotropic repulsive-attractive interaction forces and their continuum

counterpart. In Part IT (Chapters 6-8), we study mathematical models for biological
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transportation networks describing living systems such as leaf venation in plants,
blood circulatory systems, and neural networks. The mathematical formulation is
based on a dynamic modelling approach on a graph in the discrete setting and its

continuous counterpart which is rigorously proven in this thesis.

1.1 Anisotropic interaction equations

Nonlocal interaction models are mathematical models describing the collective be-
haviour of large numbers of individuals where each individual can interact not
only with its close neighbours but also with individuals far away. These models
serve as basis for biological aggregation and have given us many tools to under-
stand the fundamental behaviour of collective motion and pattern formation in
nature. For instance, these mathematical models are used to explain the com-
plex phenomena observed in nature [BCCT08a, BT11, Bir07, CDET03, CFRT10,
CCG*10, DM08, DSKT01, DCBC06, EKWG98, MEK99, PEK99, PS84]. Some
continuum models have been derived from individual based descriptions [BCCO8b,
BDP06, BCM00, BCM07, FHK11, TB04, TBL0O6, vBUKBI12], see also the reviews
[CETVI10, KCB"13], leading to an understanding of the stability of patterns at
different levels [ABCvB14, BSK*15, CHM14a, CHM14b, KSUB11].

1.1.1 Collective behaviour in nature

There are many examples both from the living and the non-living world for the rich
behaviour in systems consisting of a large number of interacting agents of similar
size and body type. Examples of collective behaviour in macroscopic living systems
include swarms of insects (locusts, ants, bees, ...), schools of fish and flocks of
birds, while on the microscopic level common phenomena include the collective
behaviour of cells and bacteria. Mathematical models provide a promising starting
point for understanding the formation of these complex patterns in nature and the
behavioural traits of the individuals.

One of the key features of many of these models is the social communication
between individuals at different scales, i.e. each individual can interact not only
with its neighbours but also with individuals further away. This can be described
by short- and long-range interactions [BT11, EKWGI8, MEK99].

An example for an anisotropic interaction model is the Kiicken-Champod model

[KC13] for simulating fingerprint patterns based on the interaction of certain cells.



1.1. Anisotropic interaction equations

(A) Marching locusts (B) Colony of army ants

(D) Swarms of birds (E) Herd of zebra (F) Swarming of E. coli

Figure 1.1: Collective behavior in nature. Figure from [LXXZ18].

The simulation of fingerprints is not only of great interest in the biological commu-
nity, but also in forensic science and increasingly in biometric applications where
large fingerprint databases are required for developing, validating and comparing
the performance of fingerprint identification algorithms. Unfortunately, the collec-
tion of large databases of real fingerprints is usually very cost-intensive, requires
time and effort, and in many countries is constrained by laws addressing data pro-
tection and privacy. Therefore it is vital to simulate large fingerprint databases on
a computer.

An extensive literature [CLMS16, DM&6, Irm10, KC13, MM89, MJM92, Werl1]
in the biological community suggests that fingerprint patterns are formed due to
the interaction of mechanical stress, trophic factors from incoming nerves and inter-
actions between so-called Merkel cells. Merkel cells are epidermal cells that appear
in the volar skin at about the 7th week of pregnancy. From that time onward they
start to multiply and organise themselves in lines exactly where the primary ridges
arise [KC13].

The development of fingerprints can be described by three phases [KC13]. In

the first phase, growth forces in the epidermis and shrinkage of volar pad create
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compressive mechanical stress, modelled by Kiicken and Newell [KN04, KN05]. The
rearrangement of Merkel cells from a random configuration into parallel ridges along
the lines of smallest compressive stress forms the second phase. This phase can be
regarded as the actual pattern forming process, was first modelled by Kiicken and
Champod [KC13], and is studied in Chapter 3. In the third phase, the primary
ridges are induced by the Merkel cells.

Figure 1.2: Development of Merkel cell distribution by Kim and Holbrook: Merkel
cells appear at about the 7th week of pregnancy, multiply and arrange in lines at
about the 10th week. Figure from [IKXH95].

Since the first phase of the fingerprint development has already been successfully
been modelled by Kiicken and Newell [[KN0O4, KN05], while the third phase can eas-
ily be modelled based on the second phase of the fingerprint development, we focus
on the second phase in the following where the stress field from the first phase is
assumed as a given input. Mathematically, the formation of fingerprints can then
be described as the interaction of a large number of the Merkel cells [IKC13], which
align themselves according to certain interaction forces and form our fingerprint
lines. The central novelty in this model, leading to realistic patterns as observed
in nature, is an anisotropy induced by the underlying stress field. That is, the cell
interactions depend additionally on the size of the stress field at the cell locations.
This additional anisotropy results in a more complicated, but also more realistic
interaction model which is based on a substantial body of biological literature and
experimental data. These anisotropic interaction models can be regarded as a chal-

lenging generalisation of the popular class of isotropic interaction models.
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1.1.2 Isotropic interaction models

[sotropic interaction models have already been studied extensively studied in liter-
ature. In its simplest form, isotropic interaction models are considered with radial
interaction potentials [BCLR13b]. The resulting patterns are found as stationary

points of the N particle interaction energy

1 N
By, a8) = 5355 W (- ) (1.1)
]}Ck;:jl

where W(d) = W(|d|) denotes the radially symmetric interaction potential and
z; = xj(t) e R" for j = 1,..., N denote the positions of the particles at time ¢ > 0
[BSK 15, KSUBL1]. The associated gradient flow reads:

dﬂjj 1 N
Tl NZF(%’—%) (1.2)

2

Poatanl
S

where F(z; — x;) is a conservative force, aligned along the distance vector x; — x,
with F(d) = =V (d).

When the number of individuals is large as in many biological applications, it
becomes essential to use continuum models for the evolution of the density of the
individuals. Denoting the density of particles at location x € R™ and at time ¢ > 0
by p = p(t, x) the interaction energy is given by

1

Wil = / W+ ) (ol

and the continuum equation corresponding to (1.2), also referred to as the aggrega-
tion equation [BCL09, BSK*15, KSUBI11, Lau07], reads

pr+ V- (pu) =0, u=—-VW=xp (1.3)

where u = u(t, x) is the macroscopic velocity field. The aggregation equation (1.3)
whose well-posedness has been proved in [BLR11] has extensively been studied
recently, mainly in terms of its gradient flow structure [AGS05, CMV03, CMVO06,
['T04, Vil03], the blow-up dynamics for fully attractive potentials [BCL09, BLL12,
CDFF*11, CJLVI6], and the rich variety of steady states [BCLR13a, BCLR13b,
BCY14, BT11, BLL12, CCP15, CDM16, CFF*12, CFP12, FR10, FR11, Raol2,
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vBU12, vBUKBI12].

Recently, there has been a trend to connect the microscopic and the macroscopic
descriptions via kinetic modeling, see for instance [BS12, CFRT10, HT08] for differ-
ent kinetic models in swarming [FHT11, HL09] for the particle to hydrodynamics
passage and [KMT15] for the hydrodynamic limit of a kinetic model.

If the radially symmetric potential W (d) = W (|d|) is purely attractive, e.g. W
is an increasing function with W (0) = 0, the density of the particles converges to
a Dirac Delta function located at the centre of mass of the density [BD08]. In this
case, the Dirac Delta function is the unique stable steady state and a global attractor
[CDEFEF*11]. Under certain conditions the collapse towards the Dirac Delta function
can take place in finite time [BCL09, BGL12, BLO7, CDFE"11].

In biological applications, however, it is not sufficient to consider purely at-
tractive potentials since the inherently nonlocal interactions between the individ-
ual entities occur on different scales [BT11, EKWG98, MEK99]. These interac-
tions are usually described by short-range repulsion to prevent collisions between
the individuals as well as long-range attraction that keeps the swarm cohesive
[MEKBS03, OLO01]. The associated radially symmetric potentials W, also referred
to as repulsive-attractive potentials, first decrease and then increase as a function of
the radius. These potentials lead to possibly more complex steady states than the
purely attractive potentials and can be considered as a minimal model for pattern
formation in large systems of individuals [BCLR13b].

The 1D nonlocal interaction equation with a repulsive-attractive potential has
been studied in [FR10, FR11, Raol2]. The authors show that the behaviour of
the solution strongly depends on the regularity of the interaction potential. More
precisely, the solution converges to a sum of Dirac masses for regular interaction,
while it remains uniformly bounded for singular repulsive potentials.

Pattern formation for repulsive-attractive potentials in multiple dimensions is
studied in [BSK*15, KSUBI1, vBU12, vBUKBI12]. The authors perform a linear
stability analysis of ring equilibria and derive conditions on the potential to classify
the different instabilities. This analysis can also be used to study the stability of
flock solutions and mill rings in the associated second-order model, see [ABCvB14]
and [CHM14b] for the linear and nonlinear stability of flocks, respectively. A nu-
merical study of the N particle interaction model for specific repulsion-attraction
potentials [BSK ™15, KSUBI1] outlines a wide range of radially symmetric patterns
such as rings, annuli and uniform circular patches, while exceedingly complex pat-

terns are also possible. In particular, minimisers of the interaction energy (1.1), i.e.,
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stable stationary states of the microscopic model (1.2), can be radially symmetric
even for radially symmetric potentials. This has been studied and discussed by
instabilities of the sphere and ring solution in [BSK™15, vBUI12, vBUKBI2]|. The
convergence of radially symmetric solutions towards spherical shell stationary states
in multiple dimensions is discussed in [BCLR13b]. Another possibility to produce
concentration in lower dimensional sets is to use potentials which are not radially
symmetric. This has been explored recently in the area of dislocations in the two-
dimensional case in [MRS19] and its n-dimensional generalisation in [CMM™19].
Moreover, the nonlocal interaction equation in heterogeneous environments (where
domain boundaries are also allowed) is investigated in [WS15]. Besides, interaction
energies with boundaries have been studied in [CSW16].

Nonlocal interaction models have been studied for specific types of repulsive-
attractive potentials [BCLR13a, CCHI4b, CFP17, CH17, CJLVI16, FHK11]. In
[BCLR13a] the dimensionality of the patterns is analysed for repulsive-attractive
potentials that are strongly or mildly repulsive at the origin, i.e., potentials with
a singular Laplacian at the origin satisfying AW (d) ~ —|d|™" as d — 0 for some
0 < < n in n dimensions and potentials whose Laplacian does not blow up at the
origin satisfying W (d) ~ —|d|* as d — 0 for some a > 2, respectively. In [FHK11] a
specific example of a repulsive-attractive potential is studied, given by a Newtonian
potential for the repulsive and a polynomial for the attractive part, respectively.

Isotropic patterns and clustering have been studied in different contexts. In
[MT14] the authors review a general class of models for self-organised dynamics
and show that the tendency to bond more with those who are different rather than
with those who are similar is crucial in the clustering process. Bourne, Peletier et
al. study pattern formation and pattern evolution in various contexts, see [BPR14,
BPT14, PV10] for instance.

1.1.3 Anisotropic interaction models

In most models the interactions are assumed to be isotropic for simplicity. However,
pattern formation in nature is usually anisotropic [Bal09]. Motivated by the simu-
lation of fingerprint patterns, we consider a class of interacting particle models with
anisotropic interaction forces in this thesis. By considering anisotropic interaction
forces, the isotropic interaction models can be generalised to anisotropic interac-
tion models. In particular, these anisotropic interaction models capture important

swarming behaviours, neglected in the simplified isotropic interaction model, such
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as anisotropic steady states.

Since we are interested in pattern formation in the plane, we consider an evo-
lutionary particle model with an anisotropic interaction force in two dimensions.
More precisely, we generalise the extensively studied model (1.2) by considering an

N particle model of the form

dz; _ 1 S Fla; — o, T(xy) (1.4)
& N

[y

ok

#

<

where F'(x; —xy, T(z;)) € R? describes the force exerted from zj on z;. Here, T'(z;)

denotes a tensor field at location z; which is given by
T(x):=xs(x) ®s(z) + (z) ®(x) (1.5)

for orthonormal vector fields s = s(z),l = [(z) € R? and x € [0, 1].

As in the standard particle model (1.2) we assume that the force F'(z; — xy, T'(x;))
is the sum of repulsion and attraction forces. In (1.2), attraction and repulsion forces
are aligned along the distance vector z; — x;, so that the total force F'(z; — xy,) is
also aligned along x; — xj. In the extended model (1.4), however, the orientation of
F(x; — xy,T(x;)) depends not only on the distance vector z; — z;, but additionally
on the tensor field T'(x;) at location x;. More precisely, the attraction force will
be assumed to be aligned along the vector T'(z;)(z; — x)). Since T depends on a
parameter x € [0, 1] the resulting force direction is regulated by x. In particular,
alignment along the distance vector z; — xy, is included in (1.4) for xy = 1. The addi-
tional dependence of (1.4) on the parameter y in the definition of the tensor field T’
introduces an anisotropy to the equation. This anisotropy leads to more complex,
anisotropic patterns that do not occur in the simplified model (1.2). Due to the
dependence on parameter y the force F' is non-conservative in general so that it
cannot be derived from a potential. However, most of the analysis of the interaction
models in the literature relies on the existence of an interaction potential as out-
lined above. A particle interaction model of the form (1.4) with a non-conservative
force term that depends on an underlying tensor field T" appears not to have been
investigated mathematically in the literature yet. It seems that there are not many
results currently available in the field of anisotropies. Evers et al. model anisotropy
by adding weights to the interaction terms [EFR15]. Since the weights depend on

the velocities themselves, the equation for velocities becomes implicit. This intro-
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duces a fair number of new issues, such as discontinuous solutions. Hence, small
inertia regularisation are introduced and studied in the follow-up paper [EFS17].
Note that the model in [EFR 15, EFS17] is related to the model we consider in this
work if one introduces a tensor field T" as the velocity direction.

Due to the generality of the formulation of the anisotropic interaction model (1.4)
a better understanding of the pattern formation in (1.4) can be regarded as a first
step towards understanding anisotropic pattern formation in nature. An example of
an N particle model of the form (1.4) is the model introduced by Kiicken and Cham-
pod [KC13], describing the formation of fingerprint patterns based on the interac-
tion of Merkel cells and mechanical stress in the epidermis [[rm10]. Even though the
Kiicken-Champod model [KC13] seems to be capable to produce transient patterns
that resemble fingerprint patterns, the pattern formation of the Kiicken-Champod
model and its dependence on the model parameters have not been studied analyti-
cally or numerically before. In particular, the long-time behaviour of solutions to the
Kiicken-Champod model and its stationary solutions have not been understood yet.
However, stationary solutions to the Kiicken-Champod model are of great interest
for simulating fingerprints since fingerprint patterns only change in size and not in
shape after we are born so that every person has the same fingerprints from in-
fancy to adulthood. Clearly, fingerprint patterns are of great importance in forensic
science. Besides, they are increasingly used in biometric applications. Hence, un-
derstanding the model, proposed in [[KC13], and in particular its pattern formation
result in a better understanding of the fingerprint pattern formation process.

In Section 1.1.3, we describe a general formulation of the anisotropic micro-
scopic model, relate it to the Kiicken-Champod particle model in Section 1.1.4 and

formulate the corresponding mean-field PDE.

General formulation of the anisotropic model

In this section, we consider N particles at positions z; = z;(t) e R*, j =1,...,N,
at time t. The evolution of the particles can be described by (1.4) with initial data
z;(0) = «*, j = 1,...,N. Here, F(x; — xy,T(x;)) denotes the total force that
particle k exerts on particle j subject to an underlying stress tensor field 7'(z;)
at x;, describing the local stress field. The dependence on T'(z;) is based on the
experimental results [[KH95] where an alignment of the particles along the local

stress lines is observed, i.e., the evolution of particle j at location x; depends on the
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the local stress tensor field T'(x;). Note that model (1.4) can be rewritten as

dx;
T
1 (1.6)
V=N > F(j — i, T(xy)).
%

Starting with Newton’s second law of the form

dz; _
Frak

dv; —
m%—l—)@] = Fj

where we assume that the particles have identical mass m, A denotes the coefficient
of friction and F; is the total force acting on particle j, rescaling in time 7 = ot

for small € > 0 yields

erdz; _ o

m dt

v, _
gA%H@j:F]—.

Setting F} := %Fj where the rescaled total force F; on particle j is given by the

sum of all interaction forces exerted by other particles, i.e.,

F; = ! > F(x; — ay, T(x)).

do
dv; 1 (1.7)
€d_t] = —v; + N};F(:U] -z, T(x))
k#j

for small ¢ > 0. Starting from (1.7) the first order model (1.6) was justified and
formally derived in [BV05]. Note that (1.7) reduces to (1.6) if the inertia term
is neglected, corresponding to small response times of the individuals. However,

setting ¢ = 0 corresponds to instantaneous changes in velocities which need to

10
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be justified rigorously. In [F'S15] the authors proved the rigorous limit from the
isotropic second order model (1.7) to the isotropic first order model (1.6) as e — 0
based on a classical Tikhonov theorem for ODEs, see e.g. [Ver05, Theorem 8.1]. A
classical hypothesis is the C! regularity of F with respect to x and v which can
be relaxed to Lipschitz continuous functions F'. However, this assumption is not
sufficient and the anisotropy of the model might lead to troubles. In [EFS17], the
authors consider an anisotropic aggregation model and derive its vanishing inertia
limit. In this case, however, the classical result by Tikhonov is no longer valid,
mainly because the anisotropy depends on the velocity variable and the roots of the
limiting equation can be lost. For the anisotropic interaction model (1.6) considered
in this work the anisotropies only involve positions and for € = 0 we have a unique

root

M=

v; = F(x; — xp, T(z;)),

1
N

Eoatend
W
S

i.e., we have an isolated root. Further, the root is positively stable and its domain
of influence is {(x1,...,zy)} x R*"N. For further details see [FFS15].

The total force F' in the particle model (1.4) is given by
F(d = dla;,20), T(a;)) = Fa(d, T(a;)) + Fa(d), (18)

for the distance vector d(x;, xy) = x;—x € R?. Here, F denotes the repulsion force
that particle k exerts on particle j and F4 is the attraction force exerted on particle
jJ by particle k. The tensor field T'(z;) at z; encodes the direction of the fingerprint
lines at z; and is given by T'(z;) = xs(z;) ® s(x;) + l(z;) ® l(z;) with x € [0, 1].
Here, s = s(x;) € R? and | = [(z;) € R? are orthonormal vectors, describing the

directions of smallest and largest stress, respectively. Then the force is given by

F(d = d(xy,22), T(z;)) = fld)(s(zy) - d)say) + Hlld)Uy) - dilz;)  (19)

for coefficient functions f; and f;.
Defining Wg(d) := Wgr(|d]) and Wa(d) := W(|d|) where Wg(r) and W 4(r)
satisfy

Whi(r) = —fa(r)r and Wy(r) = —fa(r)r (1.10)

11
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the attractive and repulsive forces are given by

Fr(d = d(xj,dp)) = =VWg(d) = fr(|d|)d,

(1.11)
Fa(d = d(z;j, xx), T(x;)) = =T(x;)VWal(d) = fa(ld])T(z;)d,
respectively. In particular, we have
Fr(d) = fr(|d|)d (1.12)
and
Fy(d = d(zj, ), T(z;)) = fa(ld])T(z;)d (1.13)

for the repulsive and attractive forces Fr and F)y, respectively. The direction of
the interaction forces is determined by the parameter x € [0, 1] in the definition of
T. For x = 1 we have T'(x;) = I for the two-dimensional unit matrix I and the
attraction force between two particles is aligned along their distance vector, while
for x = 0 the attraction between two particles is oriented along [. Depending on
the choice of the coefficient functions fr and f4 in (1.10) the forces are repulsive or

attractive according to the following local definition:

Definition 1 (Strictly repulsive (attractive) forces). Let the vector field G = G(x,y)
be a continuous interaction force, i.e., the vector G(x,y) is the force which is exerted

onx byy. Then G at x in direction x — y is strictly repulsive (attractive) if

Glr,y)-(z—y)>0  (<0)
The meaning of this definition is the following. Let y be fixed and let X = X ()

be the trajectory given by

dX

=Gy, X0,

then | X (t) — y| is locally at ¢ = 0 strictly monotonically increasing (decreasing).
To guarantee that Fr and F4 are repulsion and attractive forces, we make as-

sumptions on the coefficient functions fr and fa in (1.10).

Assumption 1. We assume that fr: R? — R and f4: R> — R denote smooth,

12
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integrable coefficient functions satisfying
fr(ld) =0 and fa(|ld]) <0 forall deR? (1.14)

such that the total interaction force F' in (1.8) exhibits short-range repulsion and

long-range attraction forces along (, i.e., there exists a d, > 0 such that
(fa+ fr)(|d]) <0 for |d| > d, and (fa+ fr)(|d]) >0 for 0 <|d| <d,.
Also, F € C! has bounded total derivatives, i.e., there exists some L = 0 such that

sup |D,F(d(z,2'),T(x))| <L and sup |DyF(d(z,2"),T(x))| <L,

z,x'eR? x,x'€R2

N

where D, denotes the total derivative with respect to x. This implies that F 1is
Lipschitz continuous in both arguments. In particular, F grows at most linearly at

infinitely.

Remark 1. In the well-posedness results by Bertozzi et al. [BLR11] the authors

consider mildly singular potentials Wr and W 4 in the isotropic case x = 1 satisfying

_ _ re, r<l

exp(—p0r), r>1
where o, B > 0 in two spatial dimensions. These conditions can be restated as

ro2, r<l
fR(T)va(r) =
exp(—pr), r>» 1.

The range 0 < o < 2 lies outside the hypothesis in Assumption 1 and falls outside
the scope of this chapter. However, this case is extremely interesting since it mod-
els singular attractive and repulsive interactions in aggregation models where the
limiting Newtonian case o \, 0 is the most interesting one regarding its physical
consequences. There is an extensive scientific activity related to isotropic singular
(first and second order) interactions, see for instance [CCH1jc, HJ15, Jab1/, JW10,
MP18, PS17, ST17] and the references therein. Note that the restriction to Lips-
chitz and bounded forces in Assumption 1 is sufficient (see e.qg. [JW106]) for proving
the rigorous mean-field limit, but one can also show the mean-field limit for mildly

singular interactions including the range 0 < a < 2 in the isotropic case x = 1, see

13
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[CCH1 e, HI15] and related papers. Hence, it would be interesting to address these
mildly singular interactions in the anisotropic case x € [0,1) and compare it with

the results for isotropic mildly singular interactions.

Note that we recover a potential attractive interaction in Fj if, and only if,

T'(z;) =1 (i.e., the isotropic case x = 1), as shown in Remark 2.

Remark 2 (Existence of an interaction potential). For the existence of interaction

potentials for the attractive force F4 we restrict ourselves to spatially homogeneous
tensor fields first. Let x € [0,1], setl = (1,0) and s = (0,1), and let T = YRS +IRI

denote a spatially homogeneous tensor field for orthonormal vectors 1,5 € R2. Then,
§=Rps and [ = Ryl, (1.15)

where the angle of rotation 6 and the corresponding rotation matrix Ry are given by

. 5 <0 cos(f) —sin(0
) arccos(Ss) S1 and Ry — () (6) . (1.16)

27 — arccos($z) §; >0 sin(f)  cos(0)
respectively, and we have T = RyTR} with T = xs® s +1®1. Hence,

. cos? (0 sin? (0 1 — x)sin (#) cos (0
Fa(d, ) = £, (1d) (0) + xsin® (0) (1 —x)sin(0) ()d

(1 —x)sin (0)cos (6) xcos?(0) + sin® (9)

by (1.10) and (1.11), where d = (dy,dy) € R%. The condition

A(Fa) _ (Fa)
oy, | ady

for F4 being a conservative force implies
cos? (0) + xsin? (0) = x cos? (0) +sin? (0) and (1 — x)sin (#) cos (§) = 0,

which can only be satisfied simultaneously for x =1 and 0 € [0, 27) arbitrary. Thus,
the attraction force for spatially homogeneous tensor fields is conservative for xy = 1
only and the associated potential is radially symmetric. This also implies that there
exists a potential for x = 1 for any tensor field, while for x € [0,1) there exists

no potential. In particular, a potential that is not radially symmetric cannot be

14
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constructed for the attraction force Fy for x € [0,1).

The associated mean-field model for the distribution function p = p(t,z) at
position x € R? and time ¢ > 0 can be derived rigorously in the 1-Wasserstein
metric from the microscopic model (1.4) following the procedure described in [Gol16,
CCH14c]. The Cauchy problem for the mean-field PDE reads

with initial condition pl;—g = p™ in R2.

Remark 3. Similarly as for the rigorous inertia limit € — 0 of the second order
model (1.7) to the first order model (1.6) in the discrete setting one can consider the
mean-field limit for N — oo associated with the second order discrete model (1.7)
and derive the hydrodynamic limit e — 0 to the mean-field PDE (1.17). The second

order mean-field limit for N — oo is given by
e0ife +ev-Vofe +Vy - [(F(,T(x)*pe) f- —vf] =0  inR, x R? x R?

where f. = f.(t,x,v) is the density of individuals at position x € R? with velocity

veR? and

pe(t,x) = fe(t,z,v)dv
RQ

15 the macroscopic density. The hydrodynamic limit € — 0 to the first order macro-
scopic macroscopic PDE (1.17) can be shown as in [FS15]. Besides, one might study
aggregation equations from first principles not only for regular interactions but also
for mildly singular ones, see [NPS01] and in another context [BBNS07].

1.1.4 Kicken-Champod particle model

Kiicken and Champod introduced a particle model in [[XC13] modelling the forma-
tion of fingerprint patterns by describing the interaction between so-called Merkel
cells on a domain 2 € R2. Merkel cells are epidermal cells that appear in the volar
skin at about the 7th week of pregnancy. From that time onward they start to
multiply and organise themselves in lines exactly where the primary ridges arise.
The model introduced in [IKC13] models this pattern formation process as the rear-
rangement of Merkel cells from a random initial configuration into roughly parallel

ridges along the lines of smallest compressive stress. The Kiicken-Champod particle

15
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model [KC13] can be regarded as an example of (1.4). For a spatially homogeneous

tensor field T straight parallel ridges, e.g.

can be produced and, more generally, this type of models can be considered for
studying the pattern formation. For more realistic patterns the tensor field is gen-
erated from 3D finite element simulations [KN0O4, KKNO5] or from images of real
fingerprints. The coefficient function fr defined by the potential Wx (1.10) in the
definition of the repulsion force Fr (1.11) in the Kiicken-Champod model (1.4) is
given by

fr(d) = (ald]* + B) exp(—egld]) (1.18)

for d € R? and nonnegative parameters o, 3 and ep. The coefficient function f4 in
(1.10) in the definition of the attraction force (1.11) is given by

fa(d) = —7|d] exp(—eald]) (1.19)

for d € R? and nonnegative constants v and e4. For the case that the total force
(1.8) exhibits short-range repulsion and long-range attraction along [, we choose the

parameters as follows:
a=270, =01, =35 e4=095 er=100, xe][0,1]. (1.20)

The coefficient functions (1.18) and (1.19) for the repulsion and attraction forces
(1.11) in the Kiicken-Champod model (1.4) are plotted in Figure 1.3(A) for the
parameters in (1.20) and one can easily check that they satisfy Assumption 1. If not
stated otherwise, we consider the parameter values in (1.20) for the force coefficient
functions (1.18) and (1.19) in the following. The interaction forces between two

particles with distance vectors d = rl and d = rs for a constant r € R are given by

(fr(r) + falr)rl it d=rl
(fr(r) + xfa(r))rs ifd=rs.

F(d) = fr(d)d + fa(d)Td =

16
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Figure 1.3(B) shows the total interaction force along [ and s, respectively, i.e.,

F(rl) - 1= (fr(r) + fa(r))r and  F(rs)-s = (fa(r) + xfa(r))r, (1.21)

as a function of r for x = 0.2, while the corresponding coefficient functions are
illustrated in Figure 1.3(A). For the choice of parameters in (1.20) repulsion dom-
inates for short distances along [ to prevent the collision of particles. Besides, the
total force exhibits long-range attraction along [ whose absolute value decreases
with the distance between particles. Along s the particles are always repulsive for
x = 0.2, independent of the distance, though the repulsion force gets weaker for

longer distances.
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(A) Force coefficients fr and fa (B) Total force coeflicients along [ and s

Figure 1.3: Coefficients fr in (1.18) and f4 in (1.19) of repulsion and attraction
forces (1.11), respectively, as well as the total interaction force along [ and s for
x = 0.2 given by (1.21) and its coefficients (i.e., fa + fr and 0.2f4 + fr) for
parameter values in (1.20).

1.2 Partial differential equations for biological net-

works

Network formation and transportation networks are ubiquitous in both social and
biological systems. To determine the network performance, a complex trade-off

involving cost, transport efficiency, and fault tolerance can be considered.
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1.2.1 Biological transport networks

An important class of transportation networks are biological systems such as leaf ve-
nation in plants, angiogenesis of blood vessels and neural networks which transport
electric charge. These biological systems continuously adapt to their environment
and balance the cost of producing an efficient network with the consequences of even
limited failure. Since biological transportation networks develop without centralised
control [TTS"10] and have been fine-tuned by many cycles of evolutionary selection
pressure, they can be regarded as optimal solutions of the underlying transportation
problems where cost, efficiency, and resilience are appropriately balanced [Cor10].
Great interest has been shown for these phenomena from different scientific com-
munities including biologists, engineers, physicists and computer scientists, partic-
ularly in terms of understanding natural networks and their optimal transport of
fluids, materials and information [BHD 07, RFLT05, YDG"00, CC95]. Inspired by
biological phenomena, mathematical models and methods for transportation net-
works can be developed which has recently become a major research area. Examples
include neural networks, genetic algorithms and efficient search routines from ant
colony optimisation algorithms [CDM™96] or biologically inspired models for adap-

tive transportation network development based on slime mould growth [TTS*10].

R

(A) Leaf venation (B) Slime mold growth and rail network
Figure 1.4: Examples of transportation networks. Subfigures from [[KKSmHMI10,
TTS*10].

Traditionally, models describing biological transportation networks have been
based on discrete frameworks such as mathematical graph theory and discrete en-

ergy optimisation, where the energy consumption within the network is minimised
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under the constraint of constant total material cost [BMO7, BCE"00, Dur06]. These
discrete mathematical models can be classified into static and dynamic modelling
approaches, where the latter ones account for the adaptation of networks to fluctu-
ations in the flow. For biological transportation networks such as blood circulation
systems, it is well known that they continuously adapt their structures to meet the
changing metabolic demand of the tissue. In particular, experiments have shown
that blood vessels can sense the wall shear stress [PHBB86] and adapt their diam-
eters accordingly [HCR12]. Hence, dynamic models are required for the accurate
description of biological transportation networks. An example of such a dynamic
model for adaptive regulation of wall shear stress has been introduced in [KBT&84]
where the adaptation of the vessel radius of a blood vessel network is formulated as
minimizing the energy consumption of the network.

One of the main research questions are structural and topological properties of
the optimal networks such as existence of loops and tree-like structures, and con-
nectivity of the network. Connectivity of the underlying network is required for
efficient transport of material, while loop structures are great benefits for animals
and plants. For instance, loops are important in mitigating damages of networks
[KSmHM10] and optimizing energy consumption with fluctuating flow distributions
[Corl0]. Therefore, biological transportation networks for leaf venation or angio-
genesis are connected structures containing many loops [Corl0, LBJ08, ND97]

A new approach to dynamic modelling of transportation networks has recently
been introduced by Hu and Cai [HC13]. They propose a purely local dynamic adap-
tation model, based on mechanical laws. In particular, this model responds only
to local information and can naturally incorporate fluctuations in the flow. The
mathematical description of this model consists of a large system of ordinary differ-
ential equations on a graph coupled with a linear system of equations. Differential
equations on graphs and networks are not only crucial for modelling biological or
social transportation networks, but also play an important role in many data sci-
ence and machine learning tasks, and can be regarded as the key area of research for
solving data problems such as linking graph and the associated macroscopic models
via ['-convergence.

A different modelling approach based on macroscopic physical laws was intro-
duced in [Hul3]. This continuum model consists of a very complex system of non-
linear partial differential equations (PDEs) and because of its unusual coupling this

leads to many still open mathematical questions.
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1.2.2 Microscopic model

In this section we describe the microscopic model introduced by Hu and Cai [HC13]
and reformulated in [ABH"17]. Let G = (V,E) be an undirected connected graph,
consisting of a finite set of vertices V and a finite set of edges [E where the number of
vertices is denoted by n = [V|. We assume that any pair of vertices is connected by
at most one edge and a vertex is not connected to itself by an edge. We denote the
edge between vertices i € V and j € V by (i, 7) € E. Since the graph is undirected we
refer by (7, j) and (j,7) to the same edge. For each edge (i, j) € E of the graph G we
consider its length and its conductivity, denoted by L;; = Lj; > 0 and C;; = C}; = 0,
respectively. In the following, we assume that the lengths L;; > 0 are given as a
datum and fixed for all (7, j) € E. The conductivities Cj; are subject to the energy
optimisation and adaptation process. We assume that initially all edges in E have
strictly positive conductivities. In each vertex ¢ € V we have the pressure P; € R.
The pressure drop between vertices ¢ € V and j € V connected by an edge (i,7) € E

is given by

Note that the pressure drop is antisymmetric, i.e., by definition, (AP);; = —(AP)j;.
The oriented flux (flow rate) from vertex i € V to j € V is denoted by Q;;; again,
we have Q;; = —Q)j;. For biological networks, the Reynolds number of the flow is
typically small and the flow is predominantly in the laminar (Poiseuille) regime.
Then the flow rate between vertices ¢ € V and j € V along edge (i,j) € E is
proportional to the conductance C;; and the pressure drop (AP);; = P; — P,

P - P
L

ij
The local mass conservation in each vertex is expressed in terms of the Kirchhoff

law

Py — B :
- Z Cyj—2 =S for all i e V. (1.24)
A~ L
JEN (i)
Here N(i) denotes the set of vertices connected to i € V through an edge, and
S = (S;)iev is the prescribed strength of the flow source (S; > 0) or sink (S; < 0)

at vertex i. Clearly, a necessary condition for the solvability of (1.24) is the global
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1.2. Partial differential equations for biological networks

mass conservation

Y18 =0, (1.25)
i€V
which we assume in the following. Given the vector of conductivities C' = (Cj;) i j)ek,
the Kirchhoff law (1.24) is a linear system of equations for the vector of pressures
P = (P)iev. With the global mass conservation (1.25), the linear system (1.24)

is solvable if and only if the graph with edge weights C' = (Cj;) j)er is connected

.3
[ABH"17], where only edges with positive conductivities C;; > 0 are taken into
account (i.e., edges with zero conductivities are discarded). Note that the solution
is unique up to an additive constant.

Hu and Cai [HC13] propose an energy cost functional consisting of a pumping
power term and a metabolic cost term. According to the Joule’s law, the power
(kinetic energy) needed to pump material through an edge (i, j) € E is proportional

to the pressure drop (AP);; = P; — P, and the flow rate ();; along the edge, i.e.,

2
(AP);Qi; = C—jLij-
The metabolic cost of maintaining the edge is assumed proportional to its length
L;; and a power of its conductivity C'?j, with an exponent v > 0 of the network.
For instance, in blood vessels the metabolic cost is proportional to the cross-section
area of the vessel [Mur26a]. Modelling the blood flow by Hagen-Poiseuille’s law,
the conductivity is proportional to the square of the cross-section area, implying
~v = 1/2 for blood vessel systems. For models of leaf venation the material cost is
proportional to the number of small tubes, which is proportional to Cj;, and the
metabolic cost is due to the effective loss of the photosynthetic power at the area
of the venation cells, which is proportional to C’ilj/ 2, Consequently, the effective
value of v typically used in models of leaf venation lies between 1/2 and 1, [HC13].
Consequently, the energy cost functional is given by

E[C] := Z (M + %C?J) Li;, (1.26)

(i,j)€E gl

where @Q;;[C] is given by (1.23) with pressures calculated from the Kirchhoft’s law
(1.24), and v > 0 is the so-called metabolic coefficient. Note that every edge of the

graph G is counted exactly once in the above sum.

21



Introduction

1.2.3 Macroscopic model

A macroscopic model for describing the fluid transport in general biological net-
works has recently been introduced in [Hul3] and is based on phenomenological
considerations such as laws of porous medium flow. This model has been studied in
[AAFM16, HMP15, HMPS16, ABH"17] and is given by

V- [(rI+m®m)Vp| =5, (1.27)
%—T — D?Am — & (m - Vp) Vp + |m|*0~YVm = 0, (1.28)
where p = p(t,z) € R is the scalar pressure of the fluid transported within the
network and m = m(t,z) € R? is the vector-valued conductance in d € {1,2,3}
space dimensions. Here, D? > 0 denotes the diffusivity, ¢2 > 0 is the activation
parameter and v € R. The scalar function r = r(x) = oy > 0 describes the isotropic
background permeability of the medium, I is the identity matrix and S = S(x)
models sources and sinks where S is assumed to be time-independent for simplicity.
The PDE system (1.27)—(1.28) is posed on a bounded domain 2 = R?, d € {1,2,3},
with smooth boundary 02 subject to homogeneous Dirichlet boundary conditions

for m and p:
m(t,z) =0, p(t,z)=0 forxed, t=0. (1.29)
Besides, we prescribe an initial condition for m:
m(t =0,2) = m°(x) for ze Q. (1.30)

The macroscopic model (1.27)—(1.28) is derived in [ABH"17], based on macro-
scopic physical laws, and we repeat the arguments here. Let the network domain
Q < R? be occupied by a porous medium in which a fluid moves with velocity
v = v(t,r) € RY Here, v is assumed to be a smooth function. Let p = p(t,z)
denote the mass density of the fluid and assume that the fluid is injected into or
expelled from the medium at rate S = S(z), then the density satisfies the mass-
continuity equation

op

%Jrv-(py):pS.

Moreover, we assume that the fluid is quasi-incompressible, i.e. the fluid density is
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constant along the trajectories, implying

Dp  0p

Di at%—lJ-szO.

It follows from the mass-continuity equation that
V.v=>_,. (1.31)
Besides, the velocity v is given by
v =—P[m|Vp (1.32)

by Darcy’s law for slow flow in porous media. Here, p € R is the scalar fluid pressure
and P[m] denotes the permeability tensor that depends on the network conductance

vector m € R Assuming that P[m] is of the form
Pim]=rIl+m®@m

where I is the identity matrix and the isotropic background permeability of the
medium is denoted by the scalar function r = r(x) = ry > 0, then combining (1.31),

(1.32) results in the Poisson equation (1.27), i.e.
=V - [(rI + m®m) Vp] = S.

Note that (1.27) with boundary conditions (1.29) has a unique weak solution p =
plm] € H}(Q) for each m € L®(Q). Further note that for p = p[m] the formal
L2-gradient flow of the energy

[m >

E[m] = %/DZWmP + & (Vp[m] - P[m]Vp[m]) + dz, (1.33)

constrained by the Poisson equation (1.27), is given by the parabolic reaction-

diffusion equation (1.28), i.e.
&ym = D*Am + Z(m - Vp)Vp — |m[>0~ YV,

Equation (1.28) governs the evolution of the network conductance m € R%. The term
D?*Am describes random effects in the network structure. The term c*(m - Vp)Vp

with activation parameter c? is called the activation term and represents a driving
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force in the direction of the pressure gradient Vp. The term —|m|?0~Ym is the
algebraic relaxation term and represents the functional derivative of the metabolic
cost of maintaining the network.

The main mathematical interest of the PDE system for network formation is
aroused by the highly unusual coupling of the elliptic equation (1.27) for the pres-
sure p to the reaction-diffusion equation (1.28) for the conductance vector m. In
particular, the PDE system (1.27)- (1.28) represents the formal L?(Q)-gradient
flow associated with the highly non-convex energy function £[m] in (1.33) where
p = p[m] € H}(Q) is the unique solution of the Poisson equation (1.27) for m given,
subject to homogeneous Dirichlet boundary conditions (1.29). The energy &[m]

is nondecreasing along smooth solutions of (1.27)—(1.28) and it has been shown in

[HMP15] that
d s om 2
&tm(r)] - —/Q <E(t,x)> d.

In [HMP15] the following analytical results were established for the PDE system
(1.27)—(1.28) with boundary conditions (1.29) and initial data (1.30) for the case
v=1:

e Existence of global in time weak solutions in the energy space
e Existence and uniqueness of local in time mild solutions

e Existence of nontrivial (i.e. m # 0) stationary states and their stability anal-
ysis (nonlinear stability in the one dimensional setting, linearised stability in

the multidimensional case)
e Limit D — 0 in the one dimensional setting

The analysis of the network formation system (1.27)-(1.28) has been extended
in [HMPS16] by providing the following results:

e Existence of global in time weak solutions in the energy space for 1/2 <y < 1

and of local in time mild solutions for 1/2 <~y < 1

e Analysis of the system in the one dimensional setting: finite time breakdown
of solutions for v < 1/2, infinite time extinction for 1/2 < v < 1 with small

sources, nonlinear stability analysis for v > 1/2 and D =0

e Construction of stationary solutions in the case y =1 and D =0
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Besides, extensive numerical examples for the PDE system (1.27)—(1.28) have
been provided in [AAFM16, ABH"17, HMPS16], based on a mixed finite element
discretisation. In [ABH"17] the phase transition behaviour of a microscopic model,

given by

dci; [ QylC)? _
dt ( 21[.2.] —vCy, 1) Ly (1.34)
)

and constrained by (1.24), has been studied with respect to the parameter v nu-
merically by solving a constrained energy minimisation.

Note that the macroscopic model (1.27)—(1.28) has only been derived based on
the above phenomenological consideration. However, a rigorous derivation of the
model, based on the microscopic modelling approach in Section 1.2.2, is still an open
question. This motivates to establish the rigorous limit of the microscopic model
in Section 1.2.2 which is formally derived in Chapter 6 and rigorously proven in
Chapter 7.

1.3 Contributions

The recent, rapid advances in modern biology heavily rely on fundamental mathe-
matical techniques and, in particular, on PDEs, an essential tool for the mathemat-
ical modelling of biological, socio-economic and physical processes. In this thesis,
we focus on two important PDE models in biology, motivated by the simulation of
fingerprints and the formation of biological transport networks. Through mathe-
matical analysis and computer simulations, we have gained new insights into the
qualitative properties of the underlying mathematical models which have resulted in
a better understanding of complex phenomena in nature such as biological pattern
formation. Equally important, these new and challenging PDE models have led to
intra-disciplinary research, involving modelling, PDE theory, dynamical systems,
graph theory and numerical simulations. This research has opened up a whole new
range of fascinating mathematical problems, which we have studied by developing
new mathematical tools.

In Part I, we focus on a class of interacting particle models with anisotropic
repulsive-attractive interaction forces motivated by anisotropic pattern formation
in nature. An example of this class of models is the Kiicken-Champod model for
describing the formation of fingerprint patterns which is not only of great interest

in the biological community, but also in forensic science and increasingly in bio-
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metric applications where large fingerprint databases are required for developing,
validating and comparing the performance of fingerprint identification algorithms.
In most existing models, the forces are isotropic and particle models lead to non-
local aggregation PDEs with radially symmetric potentials. The central novelty
in the models we consider is an anisotropy induced by an underlying tensor field,
cf. Figure 1.5(A). This innovation does not only lead to the ability to describe
real-world phenomena more accurately, but also renders their analysis significantly
harder compared to their isotropic counterparts. We discuss the role of anisotropic
interaction in these models by considering both the particle model and its contin-
uum counterpart, present a stability analysis of line patterns, investigate the role of
nonlinear diffusion on the widening of line patterns, and show numerical results for

the simulation of fingerprints.

0 0.5 1 0 0.5 1 15 2

X1 X1

(A) Fingerprint model (anisotropy and stationary solution) (B) Biological transport model

Figure 1.5: Numerical simulation results for the fingerprint (A) and the biological
transport network models (B).

Part IT deals with transportation networks which are ubiquitous in living systems
such as leaf venation in plants, blood circulatory systems, and neural networks.
Understanding the development, function, and adaptation of biologic transportation
networks has been of long-standing interest in the scientific community due to the
complexity of the models. A new discrete dynamic modelling approach on a graph
has recently been introduced by Hu and Cai [HC13] to describe the formation of
biological transport networks. The main mathematical interest of this dynamical
model stems from the highly unusual coupling of a system of ODEs whose solution
is defined on the edges of a graph to a linear system on the nodes of the graph. In
particular, the linear system is only solvable under certain conditions and due to
the coupled defining equations on both nodes and edges of the graph it is not clear
under which assumptions a limit model can be derived. We study the existence of

solutions to this model and propose an adaptation so that a macroscopic system
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can be obtained as its formal continuum limit. For the spatially two-dimensional
rectangular setting we prove the rigorous continuum limit of the constrained energy
functional as the number of nodes of the underlying graph tends to infinity and
the edge lengths shrink to zero uniformly. We also show the global existence of
weak solutions of the macroscopic gradient flow. Results of numerical simulations
of the discrete gradient flow (cf. Figure 1.5(B)) illustrate the convergence to steady
states, their non-uniqueness as well as their dependence on initial data and model
parameters. Based on this model we propose an adapted model in the cellular
context for leaf venation, investigate the model analytically and show numerically
that it can produce branching vein patterns.

The results in this thesis have been published or submitted to journals [BDIK ™18,
CDKS18, CDKS19, DGH*19, HKM19a, HKM19b, HJKM19] and conference pro-
ceedings [Krel8, KM17] and have been presented at several national and interna-
tional conferences. A detailed statement of originality and contribution is provided

at the beginning of each chapter and a summary is given below:

e Chapter 2 is based on article [BDIK" 18] which is in collaboration with Martin
Burger, Bertram Diiring, Peter A. Markowich and Carola-Bibiane Schonlieb,
and published in Mathematical Models and Methods in the Applied Sciences.

e Chapter 3 is based on article [DGH™ 19] which is in collaboration with Bertram
Diiring, Carsten Gottschlich, Stephan Huckemann and Carola-Bibiane Schonlieb,
and published in the Journal of Mathematical Biology.

e Chapter 4 is based on article [CDI{S18] which is in collaboration with José A.
Carrillo, Bertram Diiring and Carola-Bibiane Schonlieb, and published in the
SIAM Journal on Applied Dynamical Systems.

e Chapter 5 is based on article [CDKS19] which is in collaboration with José A.
Carrillo, Bertram Diiring and Carola-Bibiane Schonlieb, and to be submitted

for publication.

e Chapter 6 is based on article [HKMN19a] which is in collaboration with Jan
Haskovec and Peter A. Markowich, and to appear in Communications in Math-

ematical Sciences.

e Chapter 7 is based on article [HKM19b] which is in collaboration with Jan
Haskovec and Peter A. Markowich, and published in Communications in Par-

tial Differential Equations.
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e Chapter 8 is based on article [HJKMI19] which is in collaboration with Jan
Haskovec, Henrik Jonsson and Peter A. Markowich, and to appear in the

Proceedings of the Royal Society A.

1.4 Outline

1.4.1 Organisation of the thesis

This thesis deals with anisotropic nonlinear PDE models and dynamical systems in
biology and is the union of seven papers [BDIK 18, CDKSI8, CDKS19, DGH' 19,
HIKM19, HKM19a, HKM19b], resulting from the collaborations of myself with Mar-
tin Burger, José A. Carrillo, Bertram Diiring, Carsten Gottschlich, Jan Haskovec,
Stephan Huckemann, Henrik Jonsson, Peter A. Markowich and Carola-Bibiane
Schonlieb. This thesis divided into two parts:

e Part I (Chapters 2-5) is motivated by the simulation of fingerprint patterns
and deals with a class of anisotropic interaction equations, based on the work
in [BDK*18, CDKS18, CDKS19, DGH*19].

e Part IT (Chapters 6-8) focuses on mathematical models for biological trans-
portation networks describing living systems such as leaf venation in plants,
blood circulatory systems, and neural networks, and is based on the research
in [HIKM19, HKM19a, HKM19b].

Each of the Chapters 2-8 is based on one of these papers. We give an overview
about the results of each chapter in this section. Finally, we conclude and give an

outlook on current and possible future research in Chapter 9.

1.4.2 Outline of Part 1

In Part I (Chapters 2-5), we consider a class of interacting particle models with
anisotropic repulsive-attractive interaction forces and its continuum counterpart
where the orientations of the forces depend on an underlying tensor field. An exam-
ple of this class of models is the so-called Kiicken—-Champod model describing the
formation of fingerprint patterns. This class of models can be regarded as a gen-
eralisation of a gradient flow of a nonlocal interaction potential which has a local

repulsion and a long-range attraction structure. In contrast to isotropic interaction
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models the anisotropic forces in our class of models cannot be derived from a po-
tential. The underlying tensor field introduces an anisotropy leading to complex
patterns which do not occur in isotropic models.

In Chapter 2, we investigate the role of the anisotropy which can be characterised
by one parameter in the model. We study the variation of this parameter, describ-
ing the transition between the isotropic and the anisotropic model, analytically and
numerically. We analyse the equilibria of the corresponding mean-field partial differ-
ential equation and investigate pattern formation numerically in two dimensions by
studying the dependence of the parameters in the model on the resulting patterns.

In Chapter 3, we consider an anisotropic interaction model for simulating fin-
gerprint patterns. Evidence suggests that both the interaction of so-called Merkel
cells and the epidermal stress distribution play an important role in the formation
of fingerprint patterns during pregnancy. To model the formation of fingerprint
patterns in a biologically meaningful way these patterns have to become station-
ary. For the creation of synthetic fingerprints it is also very desirable that rescaling
the model parameters leads to rescaled distances between the stationary fingerprint
ridges. Based on these observations, as well as the model introduced by Kiicken
and Champod we propose a new model for the formation of fingerprint patterns
during pregnancy. In this anisotropic interaction model, the interaction forces not
only depend on the distance vector between the cells and the model parameters,
but additionally on an underlying tensor field, representing a stress field. This de-
pendence on the tensor field leads to complex, anisotropic patterns. We study the
resulting stationary patterns both analytically and numerically. In particular, we
show that fingerprint patterns can be modelled as stationary solutions by choosing
the underlying tensor field appropriately.

In Chapter 4, we consider the stability of straight line patterns. Stable line
patterns play a crucial role in the pattern formation of the anisotropic interaction
model and are also important for the simulation of fingerprint patterns. For a given
spatially homogeneous tensor field, we show that there exists a preferred direction
of straight lines, i.e. straight vertical lines can be stable for sufficiently many par-
ticles, while many other rotations of the straight lines are unstable steady states,
both for a sufficiently large number of particles and in the continuum limit. For
straight vertical lines we consider specific force coefficients for the stability analysis
of steady states, show that stability can be achieved for exponentially decaying force
coefficients for a sufficiently large number of particles, and relate these results to

the Kiicken-Champod model for simulating fingerprint patterns. The mathematical
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analysis of the steady states is completed with numerical results.

In Chapter 5, we study the equilibria of an anisotropic, nonlocal aggregation
equation with nonlinear diffusion which does not possess a gradient flow structure.
Here, the anisotropy is induced by an underlying tensor field. We derive equi-
librium conditions for stationary line patterns which can be reformulated as the
minimisers of a regularised energy functional if the underlying tensor field is spa-
tially homogeneous. For spatially homogeneous tensor fields, we show the existence
of energy minimisers, establish I'-convergence of the regularised energy functionals
as the diffusion coefficient vanishes, and prove the convergence of minimisers of the
regularised energy functional to minimisers of the non-regularised energy functional.
Further, we investigate properties of stationary solutions on different domains. Fi-
nally, we prove weak convergence of a numerical scheme for the numerical solution
of the anisotropic, nonlocal aggregation equation with nonlinear diffusion and any

underlying tensor field, and show numerical results.

1.4.3 Outline of Part 11

In Part II (Chapters 6-8), we consider a discrete mathematical formulation for
describing the formation of biological transportation networks. This model is based
on a dynamic modelling approach on a graph which has recently been introduced by
Hu and Cai [HC13]. The main mathematical interest of this dynamical model stems
from the highly unusual coupling of a system of ODEs whose solution is defined on
the edges of a graph to a linear system on the nodes of the graph. This model
can also be reformulated as the minimisation of an energy consumption function
constrained by a linear system on a graph.

In Chapter 6, we study the global existence of solutions of a discrete (ODE based)
model on a graph. We propose an adaptation of this model so that a macroscopic
(PDE based) system can be obtained as its formal continuum limit. We prove
the global existence of weak solutions of the macroscopic PDE model. Finally,
we present results of numerical simulations of the discrete model, illustrating the
convergence to steady states, their non-uniqueness as well as their dependence on
initial data and model parameters.

In Chapter 7, we study the rigorous limit of the discrete model. For the spatially
two-dimensional rectangular setting we prove the rigorous continuum limit of the
constrained energy functional as the number of nodes of the underlying graph tends

to infinity and the edge lengths shrink to zero uniformly. The proof is based on
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reformulating the discrete energy functional as a sequence of integral functionals and
proving their I'-convergence towards the respective continuum energy functional.
In Chapter 8, we propose an adapted model in the cellular context for leaf vena-
tion. The plant hormone auxin controls many aspects of the development of plants.
One striking dynamical feature is the self-organisation of leaf venation patterns
which is driven by high levels of auxin within vein cells. The auxin transport is
mediated by specialised membrane-localised proteins. Many venation models have
been based on polarly localised eflux-mediator proteins of the PIN family. Here,
we investigate a modeling framework for auxin transport with a positive feedback
between auxin fluxes and transport capacities that are not necessarily polar, i.e.
directional across a cell wall. Our approach is derived from a discrete graph-based
model for biological transportation networks, where cells are represented by graph
nodes and intercellular membranes by edges. The edges are not a-priori oriented
and the direction of auxin flow is determined by its concentration gradient along
the edge. We prove global existence of solutions to the model and the validity of
Murray’s law for its steady states. Moreover, we demonstrate with numerical simu-
lations that the model is able connect an auxin source-sink pair with a mid-vein and
that it can also produce branching vein patterns. A significant innovative aspect
of our approach is that it allows the passage to a formal macroscopic limit which
can be extended to include network growth. We perform mathematical analysis of
the macroscopic formulation, showing the global existence of weak solutions for an

appropriate parameter range.
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Anisotropic interaction equations
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Chapter 2

Anisotropic pattern formation

Originality and contribution

This chapter follows [BDI" 18], written in collaboration with Martin Burger, Bertram
Diiring, Peter A. Markowich and Carola-Bibiane Schonlieb. While my co-authors
proposed the study of the model and provided guidance and advice, [BDK" 18] is
primarily my own original work and nearly all the results, including analysis and

simulations, were obtained by myself.

Chapter summary

In this chapter, we consider a class of interacting particle models with anisotropic,
repulsive-attractive interaction forces whose orientations depend on an underlying
tensor field. An example of this class of models is the so-called Kiicken—Champod
model describing the formation of fingerprint patterns. This class of models can be
regarded as a generalisation of a gradient flow of a nonlocal interaction potential
which has a local repulsion and a long-range attraction structure. In contrast to
isotropic interaction models the anisotropic forces in our class of models cannot be
derived from a potential. The underlying tensor field introduces an anisotropy lead-
ing to complex patterns which do not occur in isotropic models. This anisotropy
is characterised by one parameter in the model. We study the variation of this pa-
rameter, describing the transition between the isotropic and the anisotropic model,
analytically and numerically. We analyse the equilibria of the corresponding mean-
field partial differential equation and investigate pattern formation numerically in

two dimensions by studying the dependence of the parameters in the model on the
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resulting patterns.

2.1 Introduction

The goal of this chapter is to study the equilibria of the particle model (1.4), i.e.

dz;

e %ZF(xj—xk,T(xj)), (2.1)

>
—_

#

<

and the associated mean-field PDE (1.17), i.e.
dp(t,x) + Vo [p(t,2) (F (-, T(x)) = p(t,) (x)] =0 inRy xR*  (22)

analytically and numerically. This can be achieved by investigating the existence of
equilibria analytically. Since numerical simulations are crucial for getting a better
understanding of the patterns which can be generated with the Kiicken-Champod
model we investigate the impact of the model parameters on the resulting transient
and steady patterns numerically. In particular, we study the transition of steady
states with respect to the parameter y. Based on the results in this chapter we study
the solution to the particle model for non-homogeneous tensor fields, simulate the
fingerprint pattern formation process and model fingerprint patterns with certain
features in Chapter 3.

Note that the modelling involves multiple scales which can be seen in several
different ways. Given the particle model in (2.1) we consider the associated particle
density to derive the mean-field limit. Here, the interaction force exhibits short-
range repulsion and long-range attraction. The direction of the attraction force
depends on the parameter x which is responsible for different transient and steady
state patterns. More precisely, ring equilibria obtained for xy = 1 evolve into ellipse
patterns and stripe patterns as x decreases. Besides, large-time asymptotics are
considered for determining the equilibria.

This chapter is organised as follows. In Section 2.2 the solution to the mean-field
PDE (2.2) is analysed. More precisely, we discuss the impact of the parameter x
on the force alignment and on the solution to the model. Besides, we study the
impact of spatially homogeneous tensor fields and we show that the equilibria to
the mean-field PDE (2.2) for any spatially homogeneous tensor field can be regarded
as a coordinate transform of the tensor field T = xs ® s + { ® [ where s = (0,1)
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and [ = (1,0) for any parameter x € [0,1]. Hence, we can restrict ourselves to this
specific tensor field T' for the analysis. We investigate the existence of equilibria
to the mean-field PDE (2.2) whose form depend on the choice of x. Under certain
assumptions we show that for x = 1 there exists at most one radius R > 0 such
that the ring state of radius R is a nontrivial equilibrium mean-field PDE (2.2)
for spatially homogeneous tensor fields and uniqueness can be guaranteed under an
additional assumption, while for x € [0,1) the ring state is no equilibrium. For
X € [0,1] and R > 0 sufficiently small there exists at most one r > 0 such that
an ellipse with major axis R + r and minor axis R whose major axis is aligned
along s is an equilibrium. Besides, the shorter the minor axis of the ellipse, the
longer the major axis of possible ellipse steady states and the smaller the value
of x the longer the major and the shorter the minor axis of the possible ellipse
equilibrium. Section 2.3 contains a description of the numerical method and we
discuss the simulation results for the particle model (2.1). The numerical results
include an investigation of the stationary solutions and their dependence on different
parameters in the model, including the impact of the parameter y and the associated
transition between the isotropic and anisotropic model. Besides, we compare the

numerical with the analytical results.

2.2 Analysis of the model

We analyze the equilibria of the mean-field PDE (2.2) in terms of the parameter
x € [0, 1] for the general formulation of the model, i.e., the total force is given by

(1.8) where the repulsion and the attraction forces are defined in (1.11).

2.2.1 Interpretation of the total force

The alignment of the attraction force, defined in (1.11), and thus the pattern for-
mation strongly depend on the choice of the parameter x € [0,1]. For y = 1 the
total force F' in (1.8) can be derived from a radially symmetric potential and the
mean-field PDE (2.2) reduces to the isotropic interaction equations (1.3). In par-
ticular, the solution to (2.2) is radially symmetric for x = 1 for radially symmetric
initial data [BGL12].

For x € [0,1) the attraction force F4 of the form (1.11) is not conservative by

Remark 2 and can be written as the sum of a conservative and a non-conservative
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force, given by Fy = Fa1 + Fao with

Faa(d) = fa(ld)d

and

Faa(d, T(x;)) = fa(ld])(T(x;) = Dd = fa(ld]) (x = 1) (s(z;) - d) s(x;),

where d = d(xj, xy) := z; — x and I denotes the two-dimensional identity matrix.
In particular, F4 ; does not depend on y and is equal to the attraction force in (1.11)
with y = 1. Since the coefficient function fa(x — 1) of F4o is nonnegative, Fj
is a repulsion force aligned along s(z;) and leads to an additional advection along
s(x;) compared to the case x = 1. This repulsion force along s(z;) is the larger, the
smaller x. In particular, for the force coefficients f4 and fg in the Kiicken-Champod
model (2.1), given by (1.19) and (1.18) with parameters in (1.20), the total force
along s is purely repulsive for y sufficiently small as illustrated in Figure 2.1.

For the spatially homogeneous tensor field T = xys® s + [ ®( with [ = (1,0) and
s = (0,1) the solution is stretched along the vertical axis for y < 1. The smaller
the value of yx, the larger the repulsion force and the more the solution is stretched
along the vertical axis. For y sufficiently small stretching along the entire vertical
axis is possible for solutions to the particle model (2.1) because of purely repulsive

forces along s.

%1073 _><10'3

) 0.05 0.1 0.15 “o 0.05 0.1 0.15
d] |d]

(A) Along [ (B) Along s

Figure 2.1: Total force along [ and s given by (1.21) for coefficients f4 in (1.19) and
frin (1.18) of the attraction and the repulsion force for parameter values in (1.20),
respectively) for different values of .
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2.2.2 Impact of spatially homogeneous tensor fields

Let x € [0,1] and consider the spatially homogeneous tensor field T = ys® s + [ ®1
with [ = (1,0) and s = (0,1). The solution of the particle model (2.1) for any
spatially homogeneous tensor field 7" is a coordinate transform of the solution of the
particle model (2.1) for the tensor field 7. Similarly, for the analysis of equilibria
of the microscopic model (2.1) for T it is sufficient to study the equilibria of (2.1)
for T'. For a similar statement for the mean-field PDE (2.2) we define the concept

of an equilibrium state.

Definition 2 (Equilibrium state of (2.2)). A Borel probability measure pu € P(R?)
is said to be an equilibrium state of the mean-field PDE (2.2) if

KelL; (du) and K =0 on supp(p) p-a.e. (2.3)

where K = F(-,T) = p p-a.e.

An equilibrium state of the mean-field equation (2.2) for any spatially homo-
geneous tensor field T is the coordinate transform of an equilibrium state to the
mean-field equation (2.2) for the tensor field 7. For detailed computations see
Appendix 2.A.

2.2.3 Existence of equilibria

Based on the discussion on the action of the total force in Section 2.2.1 possible
shapes of equilibria of the mean-field PDE (2.2) depend on the choice of the pa-
rameter y € [0,1]. To analyze the equilibria of the mean-field PDE (2.2) in two
dimensions for any spatially homogeneous tensor field, it is sufficient to consider the
tensor field 7' = xys ® s + L ® [ with [ = (1,0) and s = (0, 1) in the sequel as outlined
in Section 2.2.2. Note that the forces along [ are assumed to be repulsive-attractive,
while the forces along s depend significantly on the choice of xy and may be re-
pulsive, repulsive-attractive-repulsive or repulsive-attractive. Further note that the
forces only depend on the distance vector for spatially homogeneous tensor fields.
To simplify the analysis, we make the following assumption on F' in addition to

Assumption 1 in this section:

Assumption 2. We assume that F s strictly decreasing along | and s on the
interval [0, d.] for some d. > d, where d, is defined in Assumption 1. In particular,

there exits d, > d, such that x fa+ fr is strictly decreasing on [0, d.| for all x € [0, 1].
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Assumption 2 is clearly satisfied for the force coefficients (1.18) and (1.19) in the
Kiicken-Champod model (2.1) with parameter values in (1.20), cp. Figure 2.2. With
this choice of parameters we have d, ~ 0.0029 and for d. = 0.0126 the monotonicity
property of the force holds in [0, d.] uniformly with respect to x € [0, 1].

0.005 0.01 0.015 0.02
d|

Figure 2.2: Coefficients f4 + fr for parameter values in (1.20).

Ellipse pattern

Solutions to the the mean-field PDE (2.2) for T = xs® s+ [ ®[ with [ = (1,0) and
s = (0,1) are stretched along the vertical axis by the discussion in Section 2.2.1.
This motivates us to consider an ellipse whose major axis is parallel to the vertical
axis. Because of the spatial homogeneity of the tensor field it is sufficient to restrict

ourselves to probability measures with centre of mass (0, 0).

Definition 3. Let R > 0 and let r = 0. The ellipse state whose minor and major
axis are of lengths R and R + r, respectively, is the probability measure which is

uniformly distributed on

{x:m,mem (224 (erR)Zl}.

We denote this probability measure by O(g,y).

First, we restrict ourselves to nontrivial ring states d(r) of radius R > 0, i.e.,
we consider the special case of ellipse states where » = 0. The existence of ring
equilibria for repulsive-attractive potentials that do not decay faster than 1/d* as
d — oo has already been discussed in [BCLR13b]. However, the force coefficients
(1.18) and (1.19) in the Kiicken-Champod model [KC13] decay exponentially fast
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2.2. Analysis of the model

as d — 0. Besides, a repulsive-attractive potential exists for y = 1 only by Remark
2. To analyse the ring equilibria we distinguish between the two cases y = 1 and

x € [0,1), starting with the case xy = 1.

Lemma 1. Let x = 1. The probability measure d(r o) is a nontrivial ring equilibrium
to (2.2) for radius R > 0 if and only if

/OW(fA + fr) (R\/(l — cos ¢)? + sin” ¢> (1 —cos¢)dg = 0. (2.4)

Proof. By symmetry of the domain one obtains that K(x) = (F(-,T(x)) * 6(r0))(2)

is rotation invariant for y = 1. We have
K(Ryz) = K(x), xeR?

for every angle 0 € R, where Ry stands for the counter-wise rotation matrix with
angle 0 in (1.16). In particular, for every x in the circle of radius R one has
K(z) = K((R,0)). Hence, it suffices to show for xy = 1 that there exists R > 0
such that

2
(F(-,T) * 6(ro))((R,0)) = / F(R(1 —cos¢,—sing), T)Rdep =0
0
for nontrivial ring equilibria. By using the simplified form of

F(d,T) = (fa+ fr)(|d])d

for y = 1 a change of variables yields

/27r F(R(1 —cos¢,—sing), T)Rd¢ = /7r F(R(1 — cos¢,sin¢), T)Rd¢
s 0

due to the odd symmetry of the sine function at 7. Hence, the second component of
the integral fo% F(R(1—cos ¢, —sin¢),T)Rd¢ is zero and we can restrict ourselves
to the first component, implying that it is sufficient to show the existence of R > 0
such that

R? /W(fA + fr) (R\/(l — cos $)? + sin? gb) (1 —cos¢)de = 0.

Since we are interested in nontrivial ring equilibria with radius R > 0 the condition
finally reduces to (2.4). O
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Proposition 1. Let x = 1. There exists at most one radius R € (0, %] such that

the ring state oy of radius R is a nontrivial equilibrium to the mean-field PDE

(2.2). If

/Oﬂ(fA + fr) <%\/(1 —cos¢)? + sin? ¢) (1—cos¢p)de <0 (2.5)

there exists a unique R € (%‘1, %] such that the ring state 0(g o) of radius R is a

nontrivial equilibrium.

Proof. Consider the left-hand side of (2.4) as a function of R denoted by G(R).
By deriving G(R) with respect to R and using Assumption 2 one can easily see
that G(R) is strictly decreasing as a function of R on [0, %]. Note that G(0) > 0,
G(R) > 0 for R < %“ and f4, fr are continuous by Assumption 1 on the total force.
Since (2.5) is equivalent to G(%) < 0 this concludes the proof. O

One can easily check that (2.5) is satisfied for the force coefficients (1.18) and
(1.19) in the Kiicken-Champod model (2.1) with parameter values in (1.20) if d,

is the argument of the minimum of f4 + fg, see Assumption 2. In particular, this

da d_e]

implies that there exists a unique nontrivial ring equilibrium of radius R € (%, §

to the mean-field PDE (2.2) for the forces in the particle model for y = 1.
The case x € [0,1) can be analysed similarly as the one for x = 1 for ring

patterns except that some of the symmetry arguments do not hold.

Proposition 2. Let y € [0,1). There exists no R € (0, %] such that the ring state

2
d(r0) 15 an equilibrium to the mean-field PDE (2.2).

Proof. For x = 1, (F(-,T) * §(r0))((R,0)) = 0 is equivalent to (2.4) by Lemma 1,
based on the property (F(-,T) * §(r0))((R,0)) - s = 0. Since

F(d,T) = fa(|d])(d1, xd2) + fr(|d])d

where d = (dy,ds), (2.4) also has to be satisfied for y € [0,1). Similarly as in the

proof of Lemma 1 one can show that

(FCT) « o) (0.F) = [ F(R(=cos 0.1~ sin ), T)Rdo =0
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2.2. Analysis of the model

is equivalent to

3m/2
//2 (xfa + [r) <R\/cos.2 ¢+ (1 —sin ¢)2> (1 —sing)dp =0 (2.6)

for R > 0. Note that (2.4) is equivalent to (2.6) for x = 1 by symmetry so that
the equilibrium of radius R € (0, %] from Proposition 1 satisfies (2.4) and (2.6)
simultaneously for y = 1. However, (2.4) and (2.6) are not satisfied simultaneously

for any R € (0, %] and any x € [0, 1) which concludes the proof. O
Next, we analyse the ellipse pattern.

Corollary 1. Let x € [0,1] be given and define

wi(¢p, R,1) = \/R2(1 —cos )2 + (R +7)?sin? ¢,
wy(o, R,1) = \/R2 sin? ¢ + (R + )2 cos? ¢,
ws(é, R,1) = \/R2cos2 ¢ + (R + 7)2(1 — sin ¢)2.

Then, necessary conditions for a stationary ellipse state O,y where R,r = 0 are

given by

/OW(fA + fr) (w1(¢, R,7)) R (1 — cos ¢) wa(¢p, R,r)dep =0 (2.7)

and

37/2
//2 (xfa+ fr) (w3(d, R, 7)) (R+ 1) (1 —sin¢) ws(p, R,r)dp = 0. (2.8)

Proof. For ellipse equilibria we require (F(-,T) * §(ry)((R,0)) = 0 implying

27
/ F((R(1 —cos¢),—(R+r) sin¢),T)\/R2 sin? ¢ + (R + 7)2cos2 ¢ d¢ = 0.
0

Since ez (F(-,T)*d(ry))((R,0)) = 0 by symmetry for any y € [0, 1) where e; = (0, 1)

and

10
F(d,T) = (fa(ld]) + fr(|d])) d
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this implies that it is sufficient to require (2.7) where

wa(p, R,r) = \/R2 sin? ¢ + (R + 7)2 cos? ¢.
Similarly,

(F('7 T) * 6(R,r))(<07 R+ T))

= C/o 7rF((—Rcos o, (R+7r)(1—sing)), T)wy(¢, R,r)do

~0

for a normalisation constant C' reduces to the necessary condition (2.8). [
In the sequel, we denote the left-hand side of (2.7) by G(R, ).

Assumption 3. Given r € [0,d.) we assume that there exists R € (0, R.) such
that

d d
@G’(R,r) >0 for Re(0,Ryy) and @G(R, r) <0 for Re (R, Re.).

Remark 4. Since G(0,7) = 0 and Assumption 3 implies that for r € [0, d.) given we
have G(R,r) > 0 for all R € (0, R;,;). Besides, the uniqueness of stationary ellipse
states O(ryy for R € (Rint, Re) for given r € [0,d.) is guaranteed by Assumption 3.

We have the following existence result for nontrivial ellipse states, including rings
for R>0and r = 0.

Corollary 2. Let r € [0,d.) and let R. > 0 such that
wi(¢p, R,r) <de forall ¢€l0,7], Re|0,R] (2.9)
is satisfied and assume that
/Oﬂ(fA + fr) (wi(¢, R,7)) (1 — cos @) (R2 + Rercos®¢) dp < 0. (2.10)

holds. Further define

Gr(R.r) = / "(fat fr) (wn(6, Ror) (1 — cos @) do
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and

Go(R,7) = /OW(fA + fr) (wi(, R, 7)) (1 — cos @) cos® ¢ do.

If r satisfies
min {G1(0,r),G2(0,7r)} > 0 (2.11)

there exists an R € (0, R.) such that the necessary condition (2.7) for a nontriv-
ial stationary ellipse state d(ryy to the mean-field PDE (2.2) are satisfied. For r
satisfying

max {G1(0,r),G2(0,7)} <0 (2.12)

there exists no R € (0, R.) such that the ellipse 0, is an equilibrium to the mean-
field PDE (2.2) and the trivial ellipse state 0oy is the only equilibrium. If, for
r e [0,d.) given, Assumption 3 is satisfied, then there exists a unique R € (R, Re)
such that the necessary condition (2.7) for a nontrivial stationary ellipse state d(g. )

is satisfied.

Remark 5. Condition (2.9) is related to the assumption that fa + fr is strictly
decreasing on [0,d.] in Assumption 2. Condition (2.10) can be interpreted as the
long-range attraction forces being larger than the short-range repulsion forces. Be-
sides, given r € [0,d.) condition (2.12) can be interpreted as the attractive forces
being too strong for the existence of a stationary ellipse patterns 6.,y and hence
for any stationary ellipse pattern o(r,y for R = 0 because the forces are attractive
for R sufficiently large. Condition (2.11) implies that the forces are too repulsive
along the vertical aris for a stationary ellipse state 0(,), but as R increases the
forces become more attractive which may result in stationary ellipse state d(g,) for
R > 0. Assumption 3 relaxes condition (2.11), but requires additionally that G(-,r)
first increases and then decreases to guarantee the uniqueness of a stationary ellipse
pattern. In Figure 2.3(A) the function G is evaluated for certain values of r € [0, d,)
for the forces in the particle model (2.1) and one can clearly see that Assumption 3

is satisfied and there exists a unique zero R > 0, as stated in Corollary 2.

Proof. Let r € (0,d.) be given. Note that the left-hand side of (2.9) is equal to
wi(¢, R,r) for all ¢ € [0,7] and wy(¢, R, r) € [0, max{2R, R + r}] for all ¢ € [0, 7].
Since f4 + fgr is strictly decreasing on [0,d.] by Assumption 2 we only consider
R > 0 such that wi(¢, R,7) € [0, d.] for all ¢ € [0,7]. Clearly, there exists R, > 0
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such that (2.9) is satisfied.
Since ws (¢, R, 1) ~ R + 1 cos? ¢ we approximate (2.7) by

/OW(fA + fr) (wi(¢, R, 7)) (1 — cos ¢) (R2 + Rr cos? gb) dp =0 (2.13)

Note that (fa + fr) (wi(¢, R,7)) (1 — cos¢) for ¢ € (0,7) is strictly decreasing as
a function of R because f4 + fgr is a strictly decreasing function by Assumption 2
and wy (¢, R,r) is strictly increasing in R for ¢ € (0,7) fixed. Hence, G1(R,7) is
strictly decreasing in R and has a unique zero Ry € [0, R.], provided r > 0 sat-
isfies G1(0,7) > 0 and (2.10). Similarly, one can argue that Go(R,r) is strictly
decreasing in R and has a unique zero Ry € [0, R.] if r = 0 such that G2(0,7) > 0
and (2.10) are satisfied. The left-hand side of (2.13) is the rescaled sum of G
and Gy where id* - Gy(-,r) as a function of R is nonnegative on [0, R;] and neg-
ative on (Ry, R.], while id - rGa(+,7) as a function of R is nonnegative on [0, Rs]
and negative on (Ry, R.]. In particular, the left-hand side of (2.13) has a zero
R € [min{ Ry, Ry}, max{R, Ro}] on (0, R.) if r > 0 satisfies (2.11) and (2.10), while
there exists no zero on (0, R,) if > 0 satisfies (2.12). If Assumption 3 is satisfied,
then G(-,r) with r € [0,d,) given has a zero at R = 0 and at an R € (0, d.) because
G(-,7) > 0on (0, Rin), G(-,r) strictly decreasing on (Rj,, R.) and G(R,,r) < 0 by
(2.10). This concludes the proof.

[

Since the equilibrium condition (2.7) for trivial ellipse states with R = 0 is
clearly satisfied for all r = 0 we rewrite G(R,r) = Rg(R,r) for a smooth function g
and require g(0,7) = 0. Since we are interested in nontrivial states, i.e., r > 0, we
define

g(r) = /;(fA + fr) (r|sin@]) (1 — cos @) |cos p| dp = 0

and and it is sufficient to require g(r) = 0 for an r > 0. Note that g(r) > 0 for all
r € (0,d,] since fa + fr is repulsive on [0,d,]. Assuming that g(d.) < 0 which is
a natural condition for long-range attraction forces being stronger than short-range
repulsive forces there exists a unique 7 € (0, d.) such that g(7) = 0 because g strictly

decreases on (0, d.). Besides, the necessary condition (2.8) reduces to

3m/2
//2 (xfa+ fr) (F|1 —sing|) (1 — sin ¢) | cos ¢| d¢ = 0.
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Since f4 < 0 and fr > 0 by the definition of the attractive and repulsive force, cf.
Assumption 1, there exists a unique y € (0, 1) such that condition (2.8) is satisfied,
given by

. f37r/2 1 — sin ¢|) (1 — sin ¢) | COS¢| do > 0. (2.14)

fgﬂ/z fa r\l —sing|) (1 — sin @) | cos ¢| de

Note that y < 1 by the assumption that the long-range attraction forces are stronger

than the short-range repulsive forces. In summary, we have the following result.

Lemma 2. There ezists a unique 7 € (0, d.) such that the necessary condition (2.7)
for a stationary ellipse state 67 with g(T) = 0 is satisfied. In this case, the second

necessary condition (2.8) is satisfied for a unique x € [0, 1], defined by (2.14).
Assumption 4. Assume that

(i) If G(R,7) = 0 for R> 0, 7 =0, then G(R,r) <0 for r > .

(i) There exists R > 0 such that G(R,0) < 0.
(111) For all R > 0 there exists v = 0 such that G(R,r) < 0.

Remark 6. Note that (1) in Assumption 4 implies that if the equilibrium condition
for an ellipse state is satisfied for a specific tuple (R, ), then the forces are too
attractive for any ellipse state (R, r) with longer major axis R+r = R+7 forr >7.
Condition (2) in Assumption 4 together with Assumption 3 implies the existence of
a ring equilibrium. Besides, (3) in Assumption 4 states that for an ellipse state with
a minor azis of length R > 0 one can choose the major axis R + r sufficiently long
s0 that the given forces are too attractive for the ellipse state d(gyy to be stationary.
Note that one can easily check that these assumptions are satisfied for the forces in

the Kicken-Champod model with parameters in (1.20).

Proposition 3. Let 0 < ry <19 < d. and let Ry, Ry = 0 such that
wi(o, R,7) <d. forall ¢€[0,7], Re[0,max{R;, Ry}]

and the necessary condition (2.7) for 6(r, ) and O(g,r,) being stationary ellipse
states are satisfied. Suppose that Assumption 4 and Assumption 3 hold. Then,
Ry > R, i.e., the longer the major axis of the stationary ellipse state, the shorter

the minor axis. Besides, there exists a continuous function q(t) = (R(t),r(t)) for
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€ [0,1] where R(t) is strictly decreasing, r(t) is strictly increasing, q(0) = (0,7)
for the pseudo-ellipse state &z with ¥ > 0 in Lemma 2 and q(1) = (R,0) for the

unique ring state of radius R in Proposition 1.

Proof. Note that G(0,7) = 0 for all » > 0. Further note that (fa + fr)(0) > 0 since
F' is a short-range repulsive, long-range attractive force by Assumption 1, implying
that for all R € (0,d,/4] and all r € [0, d,/4] we have G(R,r) > 0. By continuity and
since G(R,0) < 0 for some R > 0 there exists R > 0 such that G(R,0) = 0. Besides,
Assumption 4 implies that G(R,r) < 0 for all » > 0. In particular, G(R,r) < 0
and G(R, r9) < 0 for ro > r; > 0 implies together with Assumption 3 that there
exists a unique R; € [0, R) such that G(Ry, 1) = 0 which implies that G(Ry, ) < 0
and that there exists R, € [0, Ry) such that G(Ry,75) = 0. O

In Figure 2.3(B) the tuples (R, r) are plotted such that the necessary condition
(2.7) for ellipse equilibria is satisfied. In particular, these tuples (R,r) can be
determined independently from x from (2.7).

Corollary 3. Let H(R,r,x) denote the left-hand side of (2.8) and assume that
H(q1,q2,1) is strictly increasing where the function q(t) = (q1(t), ¢2(t)), t € [0, 1], is

defined in Proposition 3. For every tuple (R,r) with R,r = 0 such that the condition
(2.7) is satisfied there exists a unique x € [0,1] so that (2.8) is also satisfied. If
additionally H(q1,qe,x) is strictly decreasing for all x € [x, 1] then there exists a
unique tuple (R, ) such that the corresponding ellipse pattern 6g,y is an equilibrium
for any given x € [x, 1]. In particular, there exists a continuous, strictly increasing
function p = p(t) for t € [0,1] with p(0) = x and p(1) = 1 such that for t € [0,1]
given the ellipse state 0q, (1),qs(1)) 18 stationary for a unique value of the parameter
X = p(t). In other words, the smaller the value of x € [x, 1| the longer the major
and the shorter the minor axis for ellipse equilibria, i.e., the smaller the value of x

the more the ellipse is stretched along the vertical axis.

Proof. Note that (2.8) can be rewritten as

/07r (xfa+ fr) (ws(¢d +7/2,R, 7)) (R+7) (1 —cosp)ws(¢p+7/2,R,r)dp =0
(2.15)

where

ws(p +7/2,R, 1) = \/R2 sin? ¢ + (R + 7r)2(1 — cos ¢)2.
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In particular, (2.15) is equal to (2.7) for x = 1 and r = 0, i.e., H(q:1(1),¢2(1),1) = 0.
However, for any tuple (R,r) with » > 0 satisfying (2.7) we have H(R,r,1) < 0
since H(q1,qo,1) is strictly increasing on [0, 1] and H(qi(1),¢2(1),1) = 0. Besides,
H(q1,42,0) > 0 on [0,1] since by the definition of the repulsive force coefficient
in Assumption 1 we have 1 — cos¢ = 0 on [0,7], frp = 0 and wy > 0. Since
H(q1(t), q2(t),-) is strictly decreasing as a function of y for any ¢ € [0, 1] fixed by the
properties of the attractive force coefficient in Assumption 1 for each t € [0, 1] there
exists a unique x € [0, 1] by continuity of H such that the tuple q(t) = (q1(t), ¢2(t))
satisfies condition (2.8).

To show that for any x € [x,1] there exists a unique tuple (R,r) such that
O(r,r) is a stationary ellipse state note that H(R,0,1) = 0 by the definition of R in
Proposition 1 and H(R,0,x) > 0 for x € (0,1] since H(R,0,-) strictly decreasing.
Similarly, H(0,7,x) = 0 and H(0,7,x) < 0 for all x € (x,1]. Since H(q1,q2, X)
is strictly increasing for any x € [x, 1] by assumption the function H(q, g2, x) for
X € [X, 1] fixed has a unique zero, i.e., there exists a unique tuple (R, r) such that
d(r,r) 1s a stationary ellipse state. Besides, if d(g, ,,) and d(g, r,) are stationary ellipse
states with Ry < Ry and r; > 7y for x1, x2 € [X, 1], respectively, then x; < x2 since
there exist ¢1,ts € [0, 1] with t; < ¢y such that ¢(t1) = (Ry,71) and q(t2) = (Ra,72)
and H (qi, g2, x) strictly increasing for any y € [x, 1]. O

In Figure 2.3(C) the functional H (g1, ga, X) is evaluated for different values of x
and one can see that for every y there exists a unique tuple (R,r) such that the
equilibrium condition (2.8) is satisfied. The eccentricity e = /1 — (R/(R + 1))? of

the ellipse is illustrated as a function of x in Figure 2.3(D) and one can see how

the eccentricity increases as x decreases which corresponds to the evolution of the
ring pattern into a stationary ellipse pattern whose minor axis becomes shorter and
whose major axis becomes longer as x decreases, proven in Corollary 3.

The existence of steady states is essential for getting an insight into the properties
of the model. In order to explain the emergent behavior of the model, it is necessary
to study the stability of the equilibrium and classify the convergence to equilibria
in terms of initial data. This will be subject to future research.

To sum up, we have discussed the existence of stationary ellipse patterns to the
mean-field PDE (2.2) with the spatially homogeneous tensor field with s = (0,1)
and [ = (1,0) in this subsection. Under certain assumptions on the interaction

forces we showed:

e Existence and uniqueness of (non-trivial) ring steady states for at most one
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Figure 2.3: Tuples (R, r) for stationary ellipse patterns to the mean-field equation
(2.2) satisfying equilibrium conditions (2.7) and (2.8) for different values of y and
eccentricity e as a function of y for the forces in the particle model for parameter

values in (1.20).
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radius R > 0 for y =1
e Non-existence of ring steady states for x € [0,1)
e Existence of ellipse steady states for x € [0, 1):

— For any x sufficiently close to 1, there exists a unique length for both

major and minor axis of the stationary ellipse pattern.

— Smaller values of x lead to a longer major and a shorter minor axis of

the ellipse equilibrium.

Stripe pattern

Based on the discussion in Section 2.2.1 for the tensor field 7' = xs ® s + [ ® [ with
[ = (1,0) and s = (0, 1), we consider different shapes of vertical stripe patterns in

R? and discuss whether they are equilibria.

Definition 4. Let the centre of mass be denoted by x. = (zc1,%c2) € R?. Then we

define the measure 0., . by
O(zen)(A) = A(A N ({1} x R))

for all measurable sets A = R? where A denotes the one-dimensional Lebesque mea-

sure.

The measure d(,,,,.) is a locally finite measure, but not a probability measures
and satisfies condition (2.3) for equilibria of the mean-field PDE (2.2) for any force
satisfying Assumption 1 and any x € [0, 1] since F(z—2a',T) = —F(—(z—2'),T) for
all z,2' € R%2. Note that fully repulsive forces along the vertical axis are necessary
for the occurrence of stable stripe patterns d(,,, ). Further note that as x decreases
the attraction forces disappear along the vertical direction and the mass leaks to
infinity driven by purely repulsive forces along the vertical axis so that d(,, , ) cannot
be the limit of an ellipse pattern. Hence, vertical lines are not stable equilibria with
Definition 2 for the particle model (2.1) posed in the plane.

To obtain measures concentrating on vertical lines as solutions to the particle
model (2.1) and to guarantee the conservation of mass under the variation of pa-
rameter y, we consider the associated probability measure on the two-dimensional

unit torus T? instead of the full space R?. Another possibility to obtain measures
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concentrating on vertical lines as solutions is to consider confinement forces, see
[MRS19, CMM™*19).

Solutions to the mean-field PDE (2.2) satisfying condition (2.3) include measures
which are uniformly distributed on certain intervals along the vertical axis, i.e., on
{v = (z1,22) € R*: 2y = z.1, 29 € [a,b]} for some constants a < b, as well as
measures which are uniformly distributed on unions of distinct intervals. The former
occur if the total force is repulsive-attractive so that the attraction force restricts
the stretching of the solution to certain subsets of the vertical axis. The latter
which look like dashed lines parallel to the vertical axis can be realised by repulsive-
attractive-repulsive forces, i.e., repulsive-attractive forces may lead to accumulations
on subsets of the vertical axis while the additional repulsion force acting on long
distances is responsible for the separation of the different subsets.

After considering these one-dimensional patterns, the question arises whether
the corresponding two-dimensional vertical stripe pattern of width A satisfies the
equilibrium condition (2.3) for any A > 0. Let A > 0 and consider the two-
dimensional vertical stripe pattern of width A, given by

ga(z) = ga(z1,22) = f’ o1 € [rer = 5o7er + 5],

otherwise.
We assume that ga satisfies the equilibrium condition (2.3) for the mean-field PDE
(2.2), i.e., ga (F = ga) = 0, implying

A

A
/ Flz —2/,T)d2’ =0 forall ze [xcyl——,xcy1+—‘| x R.
[mc,l_ P 7xc,1+%]XR 2 2

By linear transformations this reduces to

o | >
o | >

/ F((x1,0) =2/, T)d2’ =0 for all xle[— , ]
[—%,%]XR
Since F(x — 2/, T(x)) = —F(—(z — o), T(z)) for all z, 2’ € R* we have
A A
61./ F((21,0) =2/, T)da’ =0 forall z;€ l——,—]
[-3.3]xe 22
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2.3. Numerical methods and results

and symmetry implies

A
ey / F(z',T)dx' =0 forall z; € lO, —) . (2.16)
[xl,Afxl]x]R 2

Hence the equilibrium state can only occur for special choices of the interaction
force F. In general, (2.16) is not satisfied and thus ga is not an equilibrium state
of the mean-field PDE.

2.3 Numerical methods and results

In this section, we investigate the long-time behavior of solutions to the particle
model (2.1) and the pattern formation process numerically and we discuss the nu-
merical results by comparing them to the analytical results of the model in Section
2.2. These numerical simulations are necessary for getting a better understanding
of the long-time behavior of solutions to the particle model (2.1) and its stationary
states. Since the mean-field limit shows that the particle method is convergent with
a order given by N~"2In(1 4+ N) (see [FC:15, Gol16]) it is sufficient to use particle
simulations instead of the mean-field solvers.

We consider the domain © = T? where T? is the 2-dimensional unit torus that
can be identified with the unit square [0,1) x [0,1) < R? with periodic boundary
conditions. To guarantee that particles can only interact within a finite range we
assume that they cannot interact with each other if they are separated by a distance
of at least 0.5 in each spatial direction, i.e., for i € {1, 2} and all x € Q2 we require that
F(x—2a',T(z))-e; = 0 for |x — 2’| = 0.5 where e; denotes the standard basis for the
Euclidean plane. This property of the total interaction force F' in (1.8) is referred
to as the minimum image criterion [Erc97]. Note that the coefficient functions fr
and f4 in (1.18) and (1.19) in the particle model (2.1) satisfy the minimum image
criterion if a spherical cutoff radius of length 0.5 is introduced for the repulsion and

attraction forces.

Remark 7 (Minimum image criterion). The minimum image criterion is a natural
condition for large systems of interacting particles on a domain with periodic bound-
ary conditions. In numerical simulations, it is sufficient to record and propagate only
the particles in the original simulation box. Besides, the minimum image criterion
guarantees that the size of the domain is large enough compared to the range of the

total force. In particular, non-physical artefacts due to periodic boundary conditions
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Anisotropic pattern formation

are prevented.

2.3.1 Numerical methods

To solve the N particle ODE system (2.1) we consider periodic boundary conditions
and apply either the simple explicit Euler scheme or higher order methods such as
the Runge-Kutta-Dormand-Prince method, all resulting in very similar simulation

results.

2.3.2 Numerical results

We show numerical results for the particle model (2.1) on the domain = T where
the force coefficients are given by (1.18) and (1.19). In particular, we investigate
the patterns of the corresponding stationary solutions. Unless stated otherwise we
consider the parameter values in (1.20) and the spatially homogeneous tensor field
T=xs®s+1®lwithl = (1,0) and s = (0, 1). Besides, we assume that the initial
condition is a Gaussian with mean p = 0.5 and standard deviation ¢ = 0.005 in

each spatial direction.

Dependence on the initial distribution

The stationary solution to (2.1) for N = 1200 particles is shown in Figure 2.4 for
x = 0.2 and x = 0.7, respectively, for different initial data. One can clearly see that
the long-time behaviour of the solution depends on the chosen initial conditions and
the choice of x. As discussed in Section 2.2.1 the absence of attraction forces along
s = (0,1) for x = 0.2 leads to a solution stretched along the entire vertical axis
and particles in a neighbourhood of these line patterns are attracted. For y = 0.7
the domain of attraction is significantly smaller and the particles remain isolated
or build small clusters if they are initially too far apart from other particles. This
results in many accumulations of smaller numbers of particles for y = 0.7. Note that
these accumulations have the shape of ellipses for y = 0.7 which is consistent with
the analysis in Section 2.2, independent of the choice of the initial data. Because of
the significantly larger number of clusters for randomly uniformly distributed initial
data the resulting ellipse patterns consist of fewer particles compared to Gaussian
initial data with a small standard deviation. Since initial data spread over the entire
simulation domain leads to multiple copies of the patterns which occur for concen-

trated initial data, this motivates to consider concentrated initial data for getting a
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2.3. Numerical methods and results

better understanding of the patterns which can be generated. In the sequel we re-
strict ourselves to concentrated initial data so that all particles can initially interact
with each other. Besides, it is sufficient to consider smaller numbers of particles to
get a better understanding of the formation of the stationary pattern to increase the
speed of convergence. Further note that for y = 0.2 and randomly uniformly dis-
tributed initial data the convergence to the stationary solution, illustrated in Figure
2.5, is very slow which implies that the fingerprint formation might also be slow.
However, the particle model (2.1) is able to generate very interesting patterns over
time ¢, as shown in Figure 2.5. Besides, it is of interest how the resulting patterns
depend on the initial data and whether the ellipse pattern is stable for y = 0.7. In
Figure 2.6(A) we consider N = 600 particles and Gaussian initial data with mean
1 = 0.5 and standard deviation ¢ = 0.005 in each spatial direction. Given the
initial position of the particles for the simulation in Figure 2.6(A) we perturb the
initial position of each particle j by 0Z; where Z; is drawn from a bivariate standard
normal distribution and ¢ € {0.0001,0.001,0.01,0.1}. The corresponding stationary
patterns are illustrated in Figures 2.6(B) to 2.6(E) and one can clearly see that the

ellipse pattern is stable under small perturbations.
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Figure 2.4: Stationary solution to the particle model (2.1) for N = 1200 and different
initial data for y = 0.2 (left) and x = 0.7 (right).
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Figure 2.5: Numerical solution to the particle model (2.1) for N = 1200 and ran-
domly uniformly distributed initial data for y = 0.2 and different times t.
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Figure 2.6: Stationary solution to the particle model (2.1) for N = 600 and Gaussian
initial data (u = 0.5, ¢ = 0.005) in each spatial direction (left) and perturbation
of the initial position of each particle j by 0Z; where Z; is drawn from a bivariate
standard normal distribution and ¢ € {0.0001,0.001,0.01,0.1} (right).

Evolution of the pattern

In Figure 2.7, the numerical solution of the particle model (2.1) on = T? for
N = 1200 is shown for y = 0, x = 0.2 and x = 1.0 for different times ¢ for Gaussian
initial data with mean p = 0.5 and standard deviation o = 0.005 in each spatial
direction. Compared to the initial data one can clearly see that the solution for
x = 0 and y = 0.2, respectively, is stretched along the vertical axis, i.e., along
s = (0,1), as time increases. This is consistent with the observations in Section
2.2.1 since the forces along the vertical axis for y = 0 and x = 0.2 are purely
repulsive. In contrast, the long-range attraction forces for y = 1 prohibit stretching
of the solution and the isotropic forces for x = 1 lead to ring as stationary solution
whose radius is approximately 0.0017. The different sizes of the stationary patterns
are also illustrated in Figure 2.7 where the solutions for Y = 0 and xy = 0.2 are
shown on the unit square, while a smaller axis scale is considered for x = 1 because
of the small radius of the ring for y = 1. Besides, the convergence to the equilibrium

state is very fast for y = 1 compared to x = 0 and y = 0.2.
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Figure 2.7: Numerical solution to the particle model (2.1) for different times ¢ and
different values of y for N = 1200 and Gaussian initial data (@ = 0.5, 0 = 0.005)
in each spatial direction .

Dependence on parameter y

In this section we investigate the dependence of the equilibria to (2.1) on the param-
eter x which strongly influences the pattern formation. Given N = 600 particles
which are initially equiangular distributed on a circle with centre (0.5,0.5) and ra-
dius 0.005 the stationary solution to (2.1) is displayed for different values of x in
Figures 2.8 and 2.9. Note that the same simulation results are shown in Figures 2.8
and 2.9 for different axis scales. In Figure 2.8 one can see that the size of the pat-
tern is significantly larger for small values of y due to stretching along the vertical
axis (cf. Section 2.2). For small values of x the stationary solution is a 1D stripe
pattern of equally distributed particles along the entire vertical axis, while for larger
values of x the stationary solution can be a shorter vertical line or accumulations

in the shape of lines and ellipses. The stationary patterns for different values of x
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Figure 2.8: Comparison of the size of the stationary solution to the particle model
(2.1) for different values of y where N = 600 and the initial data is equiangular
distributed on a circle with centre (0.5,0.5) and radius 0.005.

are enlarged in Figure 2.9 by considering different axis scales. As y increases the
stationary pattern evolves from a straight line into a standing ellipse and finally

into a ring for y = 1.0. Since the same particle numbers and the same initial data,
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as well as the same parameters except for the parameter y are considered in these

simulations, the different stationary patterns strongly depend on the choice of .

Note that the length of the minor axis of the ellipse increases as x increases, while

the length of the major axis of the ellipse gets shorter. Further note that we have a

continuous transition of the stationary patterns as y increases due to the smooth-

ness of the forces and the continuous dependence of the forces on parameter y in

the particle model (2.1).
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Figure 2.9: Stationary solution to the particle model (2.1) for different values of
X where N = 600 and the initial data is equiangular distributed on a circle with

centre (0.5,0.5) and radius 0.005.

Dependence on parameter ep

In Figure 2.10 the stationary solution to (2.1) for N = 1200 and x = 0.2 is shown

for different values of eg where a ring of radius 0.005 with centre (0.5, 0.5) is chosen
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2.3. Numerical methods and results

as initial data. One can clearly see that the size of accumulations increases for eg
increasing due to strong long-range repulsion forces for smaller values of er. Besides,
the stationary solution is spread over the entire domain for smaller values of eg. The
spreading of the solution along the entire horizontal axis can be explained by the fact
that for smaller values of eg the total force along [, i.e., along the horizontal axis, is
no longer short-range repulsive and long-range attractive, but short-range repulsive,
medium-range attractive and long-range repulsive and the long-range repulsion is

the stronger the smaller the value of eg.

[ 0.5 1
X

(A) 6R=40 (B) 6R=50 (C) €R=60 (D) €R=7O (E) 6R=80

Figure 2.10: Stationary solution to the particle model (2.1) for y = 0.2 and different
values for e where N = 1200 and the initial data is equiangular distributed on a
circle with centre (0.5,0.5) and radius 0.005.

Dependence on the size of the attraction force

In this section, we assume that the total force is given by
F(d,T) = 0Fa(d,T) + Fr(d)

for 6 € [0,1] for the spatially homogeneous tensor field T = xs ® s + | ® [ with
[ =(1,0) and s = (0, 1) instead of (1.8). We consider N = 600 particles which are
initially equiangular distributed on a circle with centre (0.5,0.5) and radius 0.005
and we investigate the influence of the size of the attraction force F4 on stationary
patterns by varying its coeflicients. While the force is repulsive for small values of
0, resulting in a stationary solution spread over the entire domain, stripe patterns
and ring patterns for x = 0.2 and y = 1, respectively, arise as stationary patterns
as 0 increases as shown in Figures 2.11. Note that the radius of the stationary ring

pattern decreases as 0 increases due to an increasing attraction force.

Dependence on the size of the repulsion force

In this section, we consider a force of the form F(d,T) = Fa(d,T) + 6Fg(d) for
d € [0, 1] for the spatially homogeneous tensor field T' = xs® s+ {®I with [ = (1,0)
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Figure 2.11:  Stationary solution to the particle model (2.1) for force
F(d,T) = 0Fa(d,T) + Fgr(d) for different values of ¢ (i.e., different sizes of the at-
traction force F4) where x = 0.2 and y = 1 (for different axis scalings) in the first
and second row, respectively, where N = 600 and the initial data is equiangular
distributed on a circle with centre (0.5,0.5) and radius 0.005.

and s = (0, 1) instead of (1.8) and we consider N = 600 particles which are initially
equiangular distributed on a circle with centre (0.5,0.5) and radius 0.005. The
stationary solution to (2.1) for xy = 0.2 stretches along the vertical axis as 0 increases
due to an additional repulsive force as illustrated in Figure 2.12. For y = 1, the

radius of the ring pattern increases as ¢, see Figure 2.13.
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Figure 2.12: Stationary solution to the particle model (2.1) for y = 0.2 and force
F(d,T) = Fa(d,T) + 6 Fr(d) for different values of ¢ (i.e., different sizes of the re-
pulsion force Fg) where N = 600 and the initial data is equiangular distributed on
a circle with centre (0.5,0.5) and radius 0.005.

Dependence on the tensor field

In Figures 2.14 and 2.15 the numerical solution to the particle model (2.1) for
N = 600, x = 0.2 and randomly uniformly distributed data is shown for different

non-homogeneous tensor fields 7' = T'(z) and different times ¢. Since s = s(z) and
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Figure 2.13: Stationary solution to the particle model (2.1) for y = 1 and force
F(d,T) = Fa(d,T) 4+ 0Fr(d) for different values of ¢ (i.e., different sizes of the re-
pulsion force Fr) where N = 600 and the initial data is equiangular distributed on
a circle with centre (0.5,0.5) and radius 0.005.

[ = l(z) are assumed to be orthonormal vectors, the vector field s = s(x) and the
parameter y determine the tensor field T = T'(z). One can clearly see in Figure 2.14
that the particles are aligned along the lines of smallest stress s = s(z). However,
these patterns are no equilibria. The evolution of the numerical solution for different

tensor fields is illustrated in Figure 2.15.

2.3.3 Discussion of the numerical results

In this section, we study the existence of equilibria and their stability of the particle
model (2.1) for the spatially homogeneous tensor field 7' = ys ® s + { ® [ with

[ =(1,0) and s = (0,1) and compare them with the numerical results.

Ellipse

As outlined in Section 2.2.1 the anisotropic forces for x € [0, 1) lead to an additional
advection along the vertical axis compared to the horizontal axis for the given tensor
field T'. Hence, possible stationary ellipse patterns are stretched along the vertical
axis for y € [0,1). Besides, this advection leads to accumulations within the ellipse
pattern, i.e., the distances of the particles are much longer along the vertical lines
(e.g. at the left or right side of the ellipse) than along the horizontal lines (e.g. at
the top or bottom of the ellipse). As in Section 2.2.3 we denote the length of the
minor and major axis of the ellipse state by R and R + r, respectively.

First, we consider ring patterns of radius R > 0. We identify R? with C and
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Figure 2.15: Different non-homogeneous tensor fields T = T'(z
(right).

(left) and the numerical solution to the particle model (2.1



2.3. Numerical methods and results

consider the ansatz

2mik
N

J_;szk(R)zxc—i—Rexp( ), k=0,...,.N—1 (2.17)
with centre of mass z., i.e., the particles are uniformly distributed on a ring of
radius R with centre z.. The radius R > 0 has to be determined such that the

ansatz functions z; = 7;(R) satisfy

M=

F(ix(R) — 1;(R),T) = 0 (2.18)

Eated
il
o=

for all j = 0,...,N — 1. Denoting the left-hand side of (2.18) by G;(R), then
G,(R) is highly nonlinear and zeros of G; can only be determined numerically. By
symmetry and appropriate periodic extension of the force F' outside the unit square
[—0.5,0.5]% (see Section 4.2 for more details), it is sufficient to determine the zeros
of Gy for x = 1. Since SGo(R) = 0 for all R > 0 by the definition of F' the condition
simplifies to finding R > 0 such that RGy(R) = 0. Using Newton’s algorithm the
unique nontrivial zero of RGy can be computed as R ~ 0.0017 for the forces (1.18)
and (1.19) in the particle model (2.1) with parameter values from (1.20), N = 600
and a fixed centre of mass x.. Hence, given z. (2.17) with radius R is the unique ring
equilibrium for y = 1 and R coincides with the radius of the numerically obtained
ring equilibrium in Section 2.3.2. Based on a linearised stability analysis [Tur52] one
can show numerically that the ring pattern is stable for y = 1 for the forces in the
particle model for parameters in (1.20) and N = 1200. Since RG; is independent
of x with unique zero R and xfa < 0, this implies that there exists no R > 0
such that SG;(R) = 0 for all j = 0,..., N for any x € [0,1), i.e., the ring solution
(2.17) is no equilibrium for x € [0,1) and any R > 0. This is consistent with the
analysis of the mean-field PDE (2.2) in Section 2.2 and with the numerical results
in Section refsec:numericalresults.

For the general case of an ellipse where r > 0 we identify R? with C and regard
the equiangular ansatz

27k 2k
Ty = Ty(r, R) = x. + Rcos (%) +i(R+r)sin<%), k=0,...,N—1,

(2.19)

where the distances of the particles are longer along vertical than along horizontal
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lines. An ellipse equilibrium has to satisfy

F(zp(R,r) —z;(R,r),T) =0 (2.20)

1=

T
W
S

for all 7 = 0,...,N — 1. Tuples (R,r) such that (2.19) is a possible equilibria
to (2.1) can be determined numerically from RGy(R,r) = 0, where G,((R,r)) for
j € {0,...,N — 1} denotes the left-hand side of (2.20). For the force coefficients
(1.18) and (1.19) in the particle model for parameter values (1.20) and N = 600,
the condition in (2.20) implies that the larger  the smaller R, i.e., as r increases
the ring of radius R evolves into an ellipse whose major axis of length 2(R + )
gets longer and whose minor axis of length 2R gets shorter as r increases. The
numerically obtained tuples (R,r) are shown in Figure 2.16(A). Besides, it follows
from plugging the definition of the total force for spatially homogeneous tensor fields
into (2.20) that each tuple (R,r) can be associated to an equilibrium for at most
one value of x. Further note that by Section 2.2.1 the additional advection along
the vertical axis is the stronger the smaller the value of x, implying that r increases
as x decreases. Hence, we can conclude that for a given value of x there exists at
most one tuple (R,r) such that the ansatz (2.19) is an equilibrium to (2.1). This
can also be justified by evaluating SGn/4(R,7) as a function of radius pairs (R, 7)
for fixed values of y for N = 600 particles. The eccentricity e = /1 — (R/(R + 1))?

of the stationary ellipse pattern as a function of the parameter y is shown in Figure

2.16(B). Note that these observations are consistent with the numerical results in
Section 2.3.2. Further note that the shape of the relation between R and r as well
as the eccentricity curve in Figures 2.16(A) and 2.16(B) is similar to the ones in
the continuous case, shown in Figures 2.3(B) and 2.3(D). However, there are small
differences between the radius pairs for the discrete and the continuous case which
is due to the additional functional determinant that has to be considered if the

corresponding integrals in (2.7) and (2.8) are discretised.

Single straight vertical line

Because of the observations in Section 2.2.1 a natural choice for line patterns are

vertical lines. Identifying R? with C results in the ansatz

) +2k—1
Tp =T+ 1 ,
k IN

k=0,...,N—1, (2.21)
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2.A. Detailed computations of Section 2.2.2
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Figure 2.16: Tuples (R, ) for stationary ellipse patterns to (2.1) with ansatz (2.19)
and eccentricity e as a function of xy for N = 600 and the forces in the particle
model for parameter values in (1.20).

for a single straight vertical line with the centre of mass z.. One can easily see
that ansatz (2.21) defines an equilibrium of (2.1) for all values x € [0, 1] where the
minimum image criterion is crucial to guarantee that (2.21) is an equilibrium for
even values of N. Based on a linearised stability analysis [Tur52] one can show
that (2.21) is a stable equilibrium of (2.1) for N = 1200 for x € [0,0.27] which is

consistent with the numerical results in Section 2.3.2.

Clusters

The numerical results in Section 2.3.2 crucially depend on the choice of the parame-
ter values. As seen in Figure 2.10 the smaller the value of e the more the particles
are spread over the entire domain. Note that the coefficient of the repulsive force
is given by (1.18) so that smaller values of ep correspond to a slower exponential
decay and hence larger repulsion forces, resulting in a larger number of clusters.
It would be very interesting to explore the dependence of the coefficients on the
number of clusters in the steady state further. In future research, one might also
study analytically how the number of clusters and structures depend on the cutoff

radius.

2.A Detailed computations of Section 2.2.2

Let T = x§®35 + [®1 denote a spatially homogeneous tensor field for orthonormal
vectors 1,5 € R2. Given [ = (1,0), s = (0,1) and angle of rotation € in (1.16), then
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T = RQTRQT with 7' = xs ® s + [ ® [ and rotation matrix Ry in (1.16).
Let z; = x;(t), j = 1,..., N, denote the solution to the microscopic model (2.1)
on R? for the tensor field 7" and define

zj(t) = xe + Ro(z;(t) —z.), j=1,...,N

where z. denotes the centre of mass. Then, ; = 7;(¢),j7 = 1,..., N, is a solution
to the microscopic model (2.1) on R? for the tensor field T. Besides, given an
equilibrium z;, j =1,..., N, to (2.1) on R? for the tensor field T, then

a:cj:xc—kRg(:Ej—:cc), jzl,...,N,

is an equilibrium to (2.1) on R? for the tensor field 7.
We show that Z;, j = 1,...,N, solves (2.1) for the tensor field T. Since
xj,j =1,..., N, solves (2.1) for the tensor field 7', we have

dz; _

= o falld) [x (s - d) s+ (1-d) 1] + fr(|d|)d

k]
for all j = 1,..., N where d(xj,z) = z; — x;. Note that Z; — 7, = Ryp(x; — x1)
and |Z; — Tx| = |z; — x| Using (1.15) as well as the fact that Ry is an orthogonal

matrix we get

NG (@5 = 0) 5+ (1 (@5 = 80) 1= Ro[x (s (= @) s+ (- (25— ) 1]

Setting d(7;, ) = #; — &, this implies

A CINCO R GO LESACIE

for all j = 1,...,N, ie, Z;, j = 1,...,N, solves (2.1) for the tensor field T.
Similarly, one can show that Z; is an equilibrium to (2.1) for the tensor field T,
given that z;, j = 1,..., N, is an equilibrium to (2.1) for the tensor field 7.

We turn to equilibria of the mean-field equation (2.2) for spatially homogeneous
tensor fields now. Let p = p(dx) denote an equilibrium state to the mean-field PDE
(2.2) on R? for the tensor field T' and define

p(x) = p(zc + Ry (z — x.)) ae. (2.22)
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where z. denotes the centre of mass. Then, p is an equilibrium state to (2.2) for
the tensor field 7.

To show this result note that for x € R* we have

(F(-,T)*p)(z.+ Ro(x — x.))

N / CL’C + RG r— xc) (xc + RG(-I - I/C)) ,T)p(dl‘,)

RQ

fR |z — 2'|)Ry(x — 2')

+ fallr =a'l) (x (5 (Rolw = 20) 5 + (I (Rolw = ) ) 1) | plda)
= Ro(F( 1)+ p) ()

where the first equality follows from (2.22) and the substitution rule. The def-
initions of the repulsion and attraction forces in (1.11) are used in the second
equality and (1.15) is inserted in the third equality. Since x € supp(p) implies
x € supp(p(z. + Ry (- — x.))) and

(F(T) «p) (x) = R (F(-,T) # p) (we + Ry (2 — xc))

p is an equilibrium state to (2.2) for the tensor field T provided that p is an equi-
librium state to (2.2) for the tensor field T
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Chapter 3

Simulation of fingerprint patterns

Originality and contribution

This chapter follows [DGH™'19], written in collaboration with Bertram Diiring,
Carsten Gottschlich, Stephan Huckemann and Carola-Bibiane Schonlieb. While
my co-authors proposed the study of the model and provided guidance and advice,
[DGH"19] is primarily my own original work and nearly all the results, including

analysis and simulations, were obtained by myself.

Chapter summary

Evidence suggests that both the interaction of so-called Merkel cells and the epi-
dermal stress distribution play an important role in the formation of fingerprint
patterns during pregnancy. To model the formation of fingerprint patterns in a bio-
logically meaningful way these patterns have to become stationary. For the creation
of synthetic fingerprints it is also very desirable that rescaling the model parame-
ters leads to rescaled distances between the stationary fingerprint ridges. Based on
these observations, as well as the model introduced by Kiicken and Champod we
propose a new model for the formation of fingerprint patterns during pregnancy.
In this anisotropic interaction model the interaction forces not only depend on the
distance vector between the cells and the model parameters, but additionally on
an underlying tensor field, representing a stress field. This dependence on the ten-
sor field leads to complex, anisotropic patterns. We study the resulting stationary
patterns both analytically and numerically. In particular, we show that fingerprint

patterns can be modelled as stationary solutions by choosing the underlying tensor
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field appropriately.

3.1 Introduction

Large databases are required for developing, validating and comparing the per-
formance of fingerprint indexing and identification algorithms. The goal of these
algorithms is to search and find a fingerprint in a database (or providing the search
result that the query fingerprint is not stored in that database). The database
sizes for fingerprint identification can vary between several thousand fingerprints
e.g. watchlists in border crossing scenarios or hundreds of millions of fingerprints in
case of the national biometric ID programme of India.

Clearly, fingerprint identification is of great importance in forensic science and
is increasingly used in biometric applications. Unfortunately, collecting databases
of real fingerprints for research purposes is usually very cost-intensive, requires time
and effort, and in many countries, it is constrained by laws addressing important
aspects such as data protection and privacy. Therefore, it is very desirable to avoid
all these disadvantages by simulating large fingerprint databases on a computer.

Modelling fingerprint patterns and creating synthetic fingerprint images is not
only of great interest to the community of biometric and forensic researchers, as
well as practitioners, but also to the biological community. The SFinGe method
[CEMMO0] has been proposed to this end by Cappelli et al. in 2000. This method
can produce fingerprint images which look realistic enough to deceive attendees of a
pattern recognition conference, however, systematic differences between real finger-
prints and synthetic images by SFinGE regarding the minutiae pattern have been
found which allow to distinguish between the two [GH14]. Recently, the realistic
fingerprint creator (RFC) [IHG15] has been suggested to overcome the issue of un-
realistic minutiae distributions. SFinGe and RFC are both based on Gabor filters
[Got12] for image creation. A different approach to fingerprint creation has been
introduced by Kiicken and Champod in [KC13]. They strive to directly model the
process of fingerprint pattern formation as it occurs in nature and their approach
is inspired by existing knowledge from biology, anatomy and dermatology. Two
commonalities of Gabor filters based and biology-inspired approaches are that both
start with random initial conditions and both perform changes in an iterative fash-
ion. Kiicken and Champod suggest a model describing the formation of fingerprint
patterns over time based on the interaction of certain cells and mechanical stress in

the epidermis [[rm10].
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In principle, a nature-inspired model nourishes the hope of producing more re-
alistic fingerprints and potentially also to gain insights into the process of natural
fingerprint pattern formation. Based on an extensive literature [CLMS16, DMSG,
[rm 10, KC13, MM89, MJM92, Werll] in the biological community we consider fin-
gerprint patterns formed due to the interaction of mechanical stress, trophic factors
from incoming nerves and interactions between so-called Merkel cells.

As described in Section 1.1.1, the fingerprint development based on the rear-
rangement of Merkel cells was first modelled by Kiicken and Champod [KC13].
They propose that Merkel cells are the missing link between the stress distribution
in the epidermis and the developing pattern due to their mechanosensing ability.
For their mathematical description they use an agent-based model to describe the
pattern formation process in the second phase of the fingerprint development where
the underlying stress field from the first phase [KN04, KNO5] is considered as an
input. Due to the lack of specific information not all details of their model can
be confirmed by experimental observations. Hence, they aim to propose a model
as simple as possible that captures the essence of the interaction between Merkel
cells and stress distribution. For instance, the sensitivity of their model to initial
conditions is consistent with the long standing belief that the pattern arrangement
is unique and even for identical twins the fingerprints are different. However, the
resulting patterns in the model proposed by Kiicken and Champod [KC13] do not
seem to be stationary which is desirable for describing the formation of fingerprints
accurately.

Note that a large range of models exist in literature for describing biological pat-
tern formation, including reaction-diffusion models [KM10, Tur91, WK91] and the
elastic instability mechanism, see [Bal09, KM94, Mei82] for good summaries on this
topic. A generic partial differential equation, well-known for its pattern-forming be-
haviour, is the Swift-Hohenberg (SH) equation [SH77]. It produces patterns which
are locally stripe-like, and upon inspection of simulations (e.g. [SLT715]), it seems
that SH equations can, in principle, produce any patterns occurring in fingerprints,
including defects such as triradii and loops in the fingerprint vernacular, and minu-
tiae ends. To the best knowledge of the authors, however, SH equations have never
been studied for actual fingerprint simulations. Besides, the well-known existence of
an underlying stress field [[KNO4, KKNO5] is not included in these pattern formation
models.

To describe the central phase of the fingerprint development process, i.e. the re-

arrangement of Merkel cells in the second of the three phases, as accurate as possible
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the underlying stress field, created in the first phase of the fingerprint development
process, has to be considered as an input of our class of models. Motivated by the ap-
proach by Kiicken and Champod we propose a general class of evolutionary particle
models with anisotropic, biology-inspired interaction forces in two space dimensions.
In contrast to the Kiicken-Champod model, our forces are bio-inspired and we are
able to show that fingerprint patterns can be obtained as stationary solutions to our
model, an important feature of a biologically meaningful fingerprint development
model [Gal92, MNJP09, YJ15]. Indeed, the stability of line patterns was the focus
of most studies analysing effects of growth on fingerprints. Sir Francis Galton was
among the first to demonstrate scientifically the permanence of the configuration of
individual ridges and furrows [Gal92]. These findings were subsequently confirmed
in intensive pediatric research such as [Bab91].

In our model, we consider a tensor field, modelling the underlying (inhomoge-
neous) stress field, as one of the inputs of our interaction forces. Besides, the inter-
action force between two Merkel cells depends on the distance vector between these
two cells. We model the coefficient functions of the interaction forces as damped har-
monic oscillators, a well-established modelling assumption in cell biology. Besides,
this choice reflects the exponential decay of the interaction over larger distances, im-
plying that interactions over very large distances can be neglected, and reinforces an
interplay between repulsive and attractive forces as the distance between two cells
increases. This choice of the interaction forces is consistent with the general mod-
elling assumption that interaction forces should be short-range repulsive to avoid
collisions between cells, and attractive over larger distances to obtain cell accumula-
tions. Note that a similar model is proposed in Chapter 2 and its stationary states
are studied both analytically and numerically in the spatially homogeneous case.

Our class of models can be regarded as an biology-inspired adaptation of the
Kiicken-Champod model [KC13] and we describe our modelling assumptions in de-
tail, resulting in a reproducible pattern formation for fingerprints. We show that
the resulting stationary patterns depend strongly on the underlying tensor field and
the given initial conditions. Perturbations in the initial configuration of the Merkel
cells result in perturbed stationary patterns. This situation is analogous to the fin-
gerprints in identical twins who have very similar fingerprints in terms of direction
of the ridges and qualitative features of fingerprint lines, but the exact location of
ridges and minutiae differs [JPP02, SSF06, TCYT12]. Since environmental (within
the mother’s womb) and genetic conditions are almost identical for twins the dif-

ferences in defect location are solely due to small perturbations such as the initial
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configuration of the Merkel cells and the stress field in the epidermis [[XC13], im-
plying that the fingerprint patterns of underlying identical tensor fields are different
but similar. More varied fingerprints can be obtained by changing the underlying
tensor field in the model.

In this chapter, we consider the particle model introduced in Chapter 1, given
by N interacting particles on a domain 2 < R? whose positions z; = z;(t) € Q,
j=1,...,N, at time ¢ satisfy (1.4), i.e.

dl’j 1 N
FT NZF(%‘ — xg, T'(x5)), (3.1)
o,

equipped with initial data 2;(0) = 2%*, j = 1,..., N. The term F(z; —x, T(z;)) in
(3.1) denotes the force which a particle at position z, exerts on a particle at position
x;. This force depends on an underlying stress tensor field T'(x;) at location x;. The
existence of such a tensor field T'(x;) is based on the experimental results in [[{H95]
where an alignment of the particles along the local stress lines is observed. We
define the tensor field T'(x;) by the directions of smallest stress at location z; by a
unit vector field s = s(x) € R? and introduce a corresponding orthonormal vector
field | = I(z) € R?, representing the directions of largest stress. Then the force is
given by (1.9) for coefficient functions fs and f;.

In the previous work on the Kiicken-Champod model [KC13] and its generali-
sation in Section 1.1.3 a dynamical system of ordinary differential equations of the
form (3.1) was considered where the force that particle k exerts on particle j is
given by (1.8) i.e. the sum of repulsion and attraction forces, Fr and Fjy, respec-
tively. Here, the attraction force depends on the underlying tensor field T'(x;) at
z;, modelling the local stress field. The matrix T'(x;) encodes the direction of the
fingerprint lines at z;, defined by (1.5) for x € [0,1] and orthonormal vector fields
s = s(z), | = I(z) € R% For studying the pattern formation with an underlying

spatially homogeneous tensor field T' producing straight parallel ridges, e.g.

is considered. The repulsion and attraction forces in the Kiicken-Champod model
[KC13] and its generalisation in Section 1.1.3 are of the form (1.12) and (1.13),
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respectively. Note that the direction of the attraction force F4 and hence also the
direction of the total force F' are regulated by the parameter y in the definition
of the tensor field T. The parameter x introduces an anisotropy to the equation
leading to complex, anisotropic patterns.

For x = 1 the model (3.1) with interaction forces of the form (1.8) for repul-
sion and attraction force (1.12) and (1.13) reduces to a gradient flow (1.2) and
F(d) = —=VW(d) for a radially symmetric interaction potential W. The contin-
uum equation associated with the isotropic particle model (1.2) is given by (1.3).
This continuum model, referred to as the aggregation equation has been studied
extensively recently, mainly in terms of its gradient flow structure, the blow-up
dynamics for fully attractive potentials and the rich variety of steady states, see
[AGS05, BCLR13a, BCLR13b, BCY14, BT11, BCL09, BLL12, vBU12, vBUKBI12,
CCP15, CDM16, CDFF*11, CFP12, CFF*12, CJLV16, CMV03, CMV06, FR10,
FRI11, LT04, Raol2, Vil03] and the references therein. There has been a trend
recently to connect the microscopic and the macroscopic descriptions via kinetic
modelling, see for instance [BS12, CFRT10, HT08] for different kinetic models in
swarming, [FHT11, HL0O9] for the particle to hydrodynamics passage and [KMT15]
for the hydrodynamic limit of a kinetic model. It seems that not many results are
currently available in the field of anisotropies. In [EFR15, EFS17] anisotropy is
modelled by adding weights to the interaction terms. One can show that the model
in [EFR15, EFS17] is related to our model if a tensor field T is introduced as the
velocity direction.

Fingerprint simulation results are shown for certain model parameters in [[XC13]
where the underlying tensor field is constructed based on fingerprint images using
the NBIS package from the National Institute of Standards and Technology. How-
ever, [KC13] is purely descriptive, the choice of parameters is not discussed and
the model (3.1) was not studied mathematically. The model (3.1) was studied an-
alytically and numerically for the first time in [BDK™ 18] (cf. Chapter 2). Here, we
justify why the particles align along the vector field lines s provided the parameter
x is chosen sufficiently small so that the total force is purely repulsive along s. Be-
sides, the authors investigate the stationary states to the particle model (3.1) for a
spatially homogeneous underlying tensor field where the chosen model parameters
are consistent with the work of Kiicken and Champod in [KC13]. For the simula-
tion of fingerprints, however, non-homogeneous tensor fields have to be considered,
making the analysis of the model significantly more difficult. No analytical results

of the long-time behaviour of (3.1) for non-homogeneous tensor fields are currently
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available. Besides, numerical results for the given model parameters and different
non-homogeneous tensor fields are shown over time in Chapter 2 and one can clearly
see that the resulting patterns are not stationary. The simulation results for realistic
tensor fields for the simulation of fingerprints in [[KC13] seem to be far away from
being stationary too. This is illustrated in Figure 9 in [KC13] where snapshots of
the solution are shown for a spatially homogeneous tensor field which should have
been parallel lines for steady states. In the biological community, however, it is well-
known that fingerprint patterns with their ridge lines and minutiae configuration
are determined during pregnancy and remain the same during lifetime (as long as
no fingerprint alterations occur). Hence, we are particularly interested in stationary
solutions of the system (3.1).

The goal of this chapter is to develop an efficient algorithm for creating synthetic
fingerprint patterns as stationary solutions of an evolutionary dynamical system of
the form (3.1) as illustrated in Figure 3.1(D) for the underlying tensor field in Figure
3.1(C).

0 0.5 1 0 0.5 1

(A) Original (B) s with original (C) s (D) Stationary

Figure 3.1: Original fingerprint image and lines of smallest stress s = s(z) for
the reconstructed tensor field T' = T'(z) with an overlying mask of the original
fingerprint image in black, as well as stationary solution to the interaction model
(3.1) for interaction forces of the form (1.9) and randomly uniformly distributed
initial data.

As a first step we study the existence of stationary solutions to (3.1) for spatially
homogeneous underlying tensor fields and extend these results to certain spatially
inhomogeneous tensor fields. Based on these analytical results as well as the stability
analysis of line patterns in [CDIKS18] we can expect stable stationary patterns along
the vector field s. Since the solutions to the particle model (3.1) with the parameters
suggested by Kiicken and Champod do not seem to be stationary, we investigate
the impact of the interaction forces on the resulting pattern formation numerically.
In particular the size of the total attraction force plays a crucial role in the pattern
formation. We adjust the model parameters accordingly and simulate fingerprints

which seem to be close to being stationary, resulting in an extension of the numerical
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Simulation of fingerprint patterns

results in Chapter 2 for inhomogeneous tensor fields. Based on real fingerprint
images as in Figure 3.1(A) we determine the underlying tensor field 7 with lines
of smallest stress s by extrapolating the direction field outside of the fingerprint
image based on [GMMO09]. In Figure 3.1(B) we overlay a mask of the original
fingerprint image on the estimated tensor field with direction field s and in Figure
3.1(C) only the direction field s is shown. Besides, we include a novel method for
the generation of the underlying tensor fields in our numerical simulations which is
based on quadratic differentials as a global model for orientation fields of fingerprints
[HHMOS].

In the fingerprint community major features of a fingerprint, called minutiae,
are of great interest. Examples include ridge bifurcation, i.e. a single ridge dividing
into two ridges. We study how they evolve over time, both heuristically and numer-
ically. Finally, we propose a new bio-inspired model for the creation of synthetic
fingerprint patterns which not only allows us to simulate fingerprint patterns as sta-
tionary solution of the particle model (3.1) but also adjust the distances between the
fingerprint lines by rescaling the model parameters. This is the first step towards
modelling fingerprint patterns with specific features in the future.

Studying the model (3.1) and in particular its pattern formation result in a better
understanding of the fingerprint pattern formation process. Due to the generality
of the formulation of the anisotropic interaction model (3.1) this can be regarded
as an important step towards understanding the formation of fingerprints and may
be applicable to other anisotropic interactions in nature.

This chapter is organised as follows. In Section 3.2 the Kiicken-Champod model
[KC13] is introduced and we propose a new bio-inspired modelling approach. Sec-
tion 3.3 deals with the existence of steady states to (3.1) in the form of parallel,
equidistant lines for spatially homogeneous tensor fields and its extension to locally
spatially homogeneous tensor fields, implying that measurable quantities, such as
the almost constant distance between the stationary line patterns, can be predicted
with the model. In Section 3.4 we adapt the parameters in the force coefficients
(1.18) and (1.19) of the Kiicken-Champod model in such a way that fingerprint
patterns can be obtained as stationary solutions to the particle model (3.1). Based
on these results, we propose the bio-inspired model, described in Section 3.2, to
simulate fingerprints with variable distances between the fingerprint lines. For the
creation of realistic fingerprints we consider a novel methods for obtaining the under-
lying tensor field based on quadratic differentials as well as images of real fingerprint
data.
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3.2. Description of the model

3.2 Description of the model

In the sequel, we consider particle models of the form (3.1) where the force F' is of
the form (1.9) or (1.8) where the repulsion and attraction forces are given by (1.12)
and (1.13), respectively.

3.2.1 Kicken-Champod model

In the paper [KC13] and Chapter 2, systems of evolutionary differential equations
of the form (3.1) as introduced in Chapter 1 are considered where the total force,
the attraction and the repulsion forces are of the forms (1.8), (1.12) and (1.13),
respectively, and the underlying tensor field T is defined as (1.5). The coefficient
functions fr and f,4 of the repulsion force Fr (1.12) and the attraction force (1.13)
in the Kiicken-Champod model are given by (1.18) and (1.19) for nonnegative con-
stants «, 3, v, es and eg, and, again, d = d(z;, z;) = x; —x; € R?. To be consistent
with the work of Kiicken and Champod [KC13] we assume that the total force (1.8)
exhibits short-range repulsion and long-range attraction along [ and we choose the
parameters in an initial study as (1.20) where we set y = 0.2. These parameters
are chosen in such a way that the resulting plots of the force coefficients are as
close as possible to the ones shown by Kiicken and Champod in [KC13]. Here, the
parameter x € [0,1] determines the direction of the interaction. For x = 1 the
attraction force between two particles is aligned along their distance vector, while
for x = 0 the attraction between two particles is oriented exactly along the lines of
largest stress (cf. Chapter 2).

In Figure 3.2(A) the coefficient functions (1.18) and (1.19) for the repulsion and
attraction forces (1.12) and (1.13) in the Kiicken-Champod model (3.1) are plotted
for the parameters in (1.20) with x = 0.2.

The sums of the coefficients of the forces fr + fa and fr + xfa for x = 0.2 are
illustrated in Figure 3.2(B). Note that fr + fa and fr + xfa are the force coeffi-
cients along [ and s, respectively. For the choice of parameters in (1.20) repulsion
dominates for short distances along the lines of largest stress to prevent the collision
of particles and the force is long-range attractive along the lines of largest stress
leading to accumulations of the particles. The absolute value of the attractive force
decreases with the distance between particles. Along the lines of smallest stress the
particles are always repulsive for y = 0.2, independent of the distance, though the

repulsion force gets weaker for longer distances.
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Figure 3.2: Coeflicients fr in (1.18) and f4 in (1.19) of repulsion force (1.12) and
attraction force (1.13), respectively, as well as total force coefficients along the lines
of largest and smallest stress for y = 0.2 (i.e. fa + fr and 0.2f4 + fg, respectively)
for parameter values in (1.20) with x = 0.2.

3.2.2 Bio-inspired model

We propose a system of ordinary differential equations of the form (3.1) where the
forces are of the form (1.9). Note that plugging the repulsion and attraction forces
(1.12) and (1.13) as well as the definition (1.5) of the tensor field T" into the force
term (1.8) results in forces of the form (1.9). Hence, we replace the coefficient
functions f4 and fr by some more general coefficient functions fs and f; which are
related to the force coefficients f4 and fgr in the Kiicken-Champod model, and are

of the form

Js = xfa+ fr, fi=fa+ fr

We model the force coefficients f; and f; in (1.9) as solutions to a damped
harmonic oscillator. Like for the coefficient functions (1.18), (1.19) in the Kiicken-
Champod model we consider exponentially decaying forces describing that short-
range interactions between the particles are much stronger than long-range inter-
actions. Besides, the repulsion and attraction forces suggested in the Kiicken-
Champod model dominate on different regimes. For a more unified modelling
approach one may regard this interplay of repulsion and attraction forces as oscilla-
tions. This motivates to model the force coefficients f; and f; in (1.9) as solutions
to a damped harmonic oscillator which is also a common modelling approach in cell

biology [PKTG12, pages 21-23]. Hence, we consider the following ansatz functions
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for the force coefficients fs and f;:

fs(d) = cexp(es, |d|) + ¢, sin (ﬂd’
a

) explesld).

d
) exp(ey|d|) + ¢ sin <¥) exp(ey,|d|)
!

° 3.2
fi(d) = ccos (M .
a
for real parameters c, cs, ¢, €5, , €s,, €1,, €15, s, a;. The constants e, , es,, €, , €, control
the decay rates of the force coefficients. Since the force coefficients f; and f; both
vanish over large distances, this implies that the constants ey, ,es,, €, €, are all
negative. Note that c,cg, ¢; are scaling parameters for the size of the interaction
forces. Since f; has to be an exponentially decaying, repulsive force coefficient (i.e.
fs = 0) with (possibly) small adaptations, we require that the term cexp(es, |d|)
decays exponentially fast and dominates in the definition of f;. Hence, we assume
that ¢ is a nonnegative constant with |¢| > |cs|. The force coefficient f; is assumed
to be short-range repulsive, long-range attractive. Since the cosine function can be
regarded as a short-range repulsive, long-range attractive function, this implies that
¢ is nonnegative, consistent with the assumptions before, and |c| > |¢;|. Besides, we
control the frequency of the oscillations along s and [ by positive constants as, a;,

respectively. A possible parameter choice satisfying the above assumptions is given
by

¢c=01, ¢, =-005 e, =—650, e, =—100.0, a,=0.03

(3.3)
¢ =0.005, e, =—160.0, e, =—40.0, a = 0.022

and we will see that for this parameter choice it is possible to obtain stationary
fingerprint patterns and that rescaling of the coefficient functions f, and f; leads
to stationary patterns with scaled line distances. The force coefficients f; and f;
for the parameters in (3.3) are shown in Figure 3.3. In comparison with the force
coefficients F)y + fr and 0.2f4 + fr along [ and s, respectively, the force f; along
s is also purely repulsive, while the force f; is less attractive which is necessary for

obtaining stationary patterns as discussed in Section 3.4.2.

3.2.3 General setting

In this chapter, we consider the particle model (3.1) with force terms of the form
F(x; — x,T(z;)), such as (1.9) and (1.8). As in Chapter 2 we consider the do-

main ) = T? where T? is the 2-dimensional unit torus that can be identified with
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Figure 3.3: Coefficients f, and f; in (3.2) for parameter values in (3.3).

the quotient of the unit square [0,1) x [0,1) = R% This induced periodicity has
proven to be very useful to simulate interactions on microscopic scales where the
simulation domain is large compared to the size of the interacting particles. Be-
sides, this periodicity is the natural choice in terms of the mathematical analysis
and the derivation of the associated macroscopic model. Note that the particles
on the domain € are separated by a distance of at most 0.5 due to the periodicity.

Motivated by this we require for j € {1,2} and all z €
F(x—2',T(x))-e; =0 for |z—2a'|>05 (3.4)

where e; denotes the standard basis for the Euclidean plane. The forces satisfy this
assumption if a spherical cutoff radius of length 0.5 is introduced for the forces in
(1.9) or (1.8), respectively. This assumptions guarantees that the size of the domain
is large enough compared to the range of the total force. In particular, non-physical
artefacts due to periodic boundary conditions are prevented. A cutoff radius is also
very useful to make numerical simulations more efficient. Since our model describes
the second phase of the fingerprint development [KC13], i.e. the rearrangement of
Merkel cells from a random configuration into parallel ridges, we consider randomly

uniformly distributed initial data on the torus T? in the numerical simulations.

3.3 Mathematical analysis of steady states

To use the particle system (3.1) for the simulation of fingerprints it is of great
interest to have a better understanding about the form of the steady states. The

steady states are formed by a number of lines which are referred to as ridges. As
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discussed in Section 3.2 we consider purely repulsive forces along s. In this section,
we study the existence of steady states for the particle model (3.1) for spatially
homogeneous and certain inhomogeneous tensor fields 1" analytically. The stability
of these line patterns is further investigated in [CDKS18]. In particular, the authors
show that line patterns for purely repulsive forces along s can only be stable if the

patterns are aligned in direction of the vector field s.

3.3.1 Spatially homogeneous tensor field

For spatially homogeneous tensor fields 7' it is sufficient to restrict ourselves to
the tensor field given by s = (0,1) and [ = (1,0) since stationary solutions to the
Kiicken-Champod model for any other tensor field can be obtained by coordinate
transform as shown in Chapter 2. Further note that steady states are translation
invariant, i.e. if x1,...,zy is a steady state, so is 1 + 2,..., 2y + 2 for any z € R
Hence it is sufficient to consider one specific constellation of particles for analysing
the steady states of (3.1). Because of the stability analysis in [CDKS18] we restrict
ourselves to line patterns along s = (0, 1), i.e. we consider patterns of vertical lines.
Note that two-dimensional vertical stripe pattern of width A for any A > 0 do
not satisfy the steady state condition by the analysis in Chapter 2, i.e. stable line

patterns are one-dimensional structures.

Proposition 4. Given |d| € (0, 1] such that n := ﬁ € N and let N € N be given such
that % e N. Then n parallel equidistant vertical lines of distance |d| of % uniformly
distributed particles along each line are a steady state to the particle model (3.1) for
forces of the form (1.9) or (1.8) where the repulsion and attraction forces are of the
form (1.12) and (1.13), respectively.

Note that the choice of the distance |d| of the parallel vertical lines is consistent

with the periodic boundary conditions.

Proof. Because of the translational invariance of steady states it is sufficient to
consider any n equidistant parallel vertical lines of % particles distributed uniformly
along each line. Without loss of generality we assume that the positions of the

particles are given by

i —jmod ¥) 2 jmod ¥ 1 N N
jj: <(] J mo n)N7jmg n) :N(j—]mod—,n<jmod—>)eR2
n n

n =
n
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Because of the periodic boundary conditions of the domain as well as the fact
that the particles are uniformly distributed along parallel lines, it is sufficient to

require that
N-1
> F(zy — 2, T(zy)) = 0 (3.5)
k=1

for steady states of the particle model (3.1). Note that for forces of the form (1.9)
or (1.8) where the repulsion and attraction forces are of the form (1.12) and (1.13),

respectively, we have
F(d, T(Zy)) = —F(—d,T(zy)) forall deR2 (3.6)

As a first step we show that

[z

-1

Mi

F(zn — 7z, T(ZNn)) = 0. (3.7)

>
Il

1

Note that Zj, € {0} x [0, 1] for k = 1,..., ¥ and Zy = (0,0) by the periodic boundary
conditions, i.e. we consider all the particles of the vertical line with z;-coordinate
zy = 0. If & is odd, then (3.7) is satisfied by the balance of forces (3.6). For even

% we have
F(Iy — 7, T(Tn)) = —F(Zy — Ty _4, T(Zn))
for k=1,.. .,% — 1. Besides,

Flzy—z~,T(zy)) =0

2n

since |y — i%| = 0.5 and the assumption of the finite range of the forces in (3.4),
implying that (3.7) is satisfied. If there is an odd number n of parallel equidistant
vertical lines, then the condition for steady states (3.5) is satisfied by (3.6). For
n even, the forces due to particles on the vertical lines at x; = k|d| balances the
interaction forces due to particles on the vertical lines at x; = (n — k)|d| for k =

1,...,5 —1 by (3.6), so it suffices to consider the particles on the vertical line at

82



3.3. Mathematical analysis of steady states

x1 = §l|d|, i.e. the particles at positions 7, for k = %, e % + % — 1. Note that

-1

F(zy — 2, T(Zn)) =0

N
T+

3=

i
ol

since [Ty — | = 0.5 for k = &,..., 5 + & — 1 and the assumption of the finite
range of the forces in (3.4). This implies that the condition for steady states (3.5) is

satisfied. Hence, Z1,...,Zy form a steady state of the microscopic model (3.1). O

Corollary 4. Given d € (0,1] such thatn := > € N and let N € N be given such that
% € N. Then n parallel, but not equidistant, vertical lines of % uniformly distributed
particles along each line are not a steady state to the particle model (3.1) for forces

of the form (1.9) or (1.8) where the repulsion and attraction forces are of the form
(1.12) and (1.13), respectively.

Remark 8. FEven though parallel, equidistant lines form a steady state for any
distance |d| the line patterns in Proposition 4 are not stable for every |d| € (0,1].
The maximum distance between parallel equidistant lines is given by the cutoff radius
R, of the force coefficient f; or, equivalently, by the distance R, such that fi(|d|)
vanishes for all |d| = R.. In particular, a steady state of parallel, equidistant lines
of distance R, is also stable under perturbations. This implies that a steady state to
(3.1) of parallel, equidistant vertical lines for a given choice of force coefficients f
and f; can be transformed into a steady state of parallel, equidistant vertical lines

with a different line distance by rescaling the force coefficients appropriately.

3.3.2 Non-constant tensor fields

Many non-constant tensor fields can locally be regarded as spatially homogeneous
tensor fields. Note that by the assumptions in Section 3.2.3 we consider forces of
finite range. In particular, we have local forces for the forces (1.9) with coefficients
(3.2) and parameters (3.3) as well as for forces of the form (1.8) with force coef-
ficients (1.18), (1.19) and parameters (1.20) with xy = 0.2. Applying the results
from Proposition 4 and Corollary 4 to a locally spatially homogeneous tensor field
implies that the resulting steady states are locally parallel, equidistant line patterns
where the distance of the line patterns crucially depends on the range of the inter-
action forces. In particular, this suggests that the steady states to (3.1) are given by

roughly parallel, equidistant lines whose distance is almost constant. By rescaling
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the force coefficients the (almost constant) distance between parallel lines can be
adapted. This shows that the almost constant distance between (stationary) ridges

can be predicted with the model.

3.4 Simulation of fingerprint patterns

In this section we investigate how to simulate fingerprint patterns by extending
the theoretical and the numerical results in Chapter 2. In particular, we consider
more realistic tensor fields for the formation of fingerprint patterns and study the
dependence of the parameter values in the Kiicken-Champod model on the resulting

fingerprints.

3.4.1 Local fields in a fingerprint image

In order to use the particle model (3.1) to simulate fingerprint patterns a realistic
tensor field is needed. It is well known that fingerprints are composed of two key
directional features known as cores and deltas which can be regarded as local fields
of a fingerprint orientation field. Hence, we consider the construction of the tensor
fields for these two features first.

In [HHMO8], Huckemann et al. propose to use differential equations (or more
generally quadratic differentials) which naturally define analytic orientation fields
on planar surfaces. The orientation field is composed of several local fields where
each local field is generated by a singular point of that field: A core is the endpoint
of a single line (cp. Figure 3.4(B)) and a delta occurs at the junction of three lines
(cp. Figure 3.4(A)).

For the mathematical description of a local field, we identify R? with the complex
plane C. For simplicity we consider the origin ( = 0 as the only singular point, but
the idea can be extended to arbitrary singular points ¢ € C. As outlined in [HHMO8]
one can model the local field near the singular point ( = 0 by considering the initial

value problem

2(r)i(r)® = ¢(r),  z(ro) = 20, (3-8)

for a smooth, positive function ¢ = ¢(r) € R, r € R, and initial value z; € C. Start-
ing from zy the solution z = z(r) € C for r € R can be regarded as a parametrisation

of a curve in C, and varying z; results in multiple curves. For ¢ = % the solution to
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the differential equation (3.8) is given by
2/3
2(r) = (r + 23/2) : (3.9)

but, in fact, the shape of the solution curves does not change for reparametrisations,
provided ¢ > 0. By considering a fixed function ¢ and varying 2, € C, the associated
solution curves form a delta at the origin (¢ = 0) as illustrated in Figure 3.4(A).
Hence, we require 222 > 0 for a delta at the origin. Note that z = || exp(iarg(z))
where arg(z) denotes the principal argument of the complex number z € C. Further
note that Z/|z| can be regarded as the unit vector in the direction of the smallest
stress. As outlined in Section 3.2 the direction of smallest stress is denoted by
the unit vector s = s(z) for z € R? implying that s(z) = exp(—iarg(z)/2). Thus,
the lines of smallest stress on a domain €2 < C can be obtained by evaluating
exp(—iarg(z)/2) for all z € 2. Note that exp(—iarg(z)/2) and — exp(—iarg(z)/2)

result in the same lines of the stress field.

100

° ZO=0

o 2,=-16
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-50

3 -100
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X1 X

(A) Delta (B) Core

Figure 3.4: Solution curves (3.9) and (3.11) to the initial value problems (3.8) and
(3.10), respectively, generating fields of quadratic differentials for a delta and a core.

Similarly, for a positive function ¢, the initial value problem
—2(r)* = ¢(r), z(ro) = 20, (3.10)

generates a field with a core at the origin. Up to reparameterisation the solution is

given by
2
2(r) = (r + 2(1)/2) ) (3.11)
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and the solution curves are illustrated for different initial conditions zg € C in Fig-
ure 3.4(B). This leads to the condition 22/z > 0 for a core at the origin, implying
s(z) = exp(iarg(z)/2) since, as before, +exp(iarg(z)/2) result in the same lines.
Further note that a delta or a core at any ¢ € C can be obtained by linear transfor-
mation. In Figure 3.5 the tensor field for a delta and a core at the singular point
(0.5,0.5) are plotted on the unit square [0, 1]2.
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Figure 3.5: Lines of smallest stress s = s(z) of tensor fields T for a delta and a core.

3.4.2 Numerical methods

In this section, we describe the general setting for investigating the long-time be-
haviour of solutions to the particle model (3.1), motivated by Chapter 2.

We consider the particle model (3.1) where the forces are of the form (1.9) or
(1.8) and investigate the patterns of the corresponding stationary solutions. As in
Chapter 2 and outlined in Section 3.2.3 we consider the domain Q = T2, i.e. the
unit square [0,1) x [0,1) = R? with periodic boundary conditions, and we consider
a cutoff of the forces as in (3.4) to make the simulations more efficient.

To solve the N particle ODE system (3.1) we apply either the simple explicit
Euler scheme or higher order methods such as the Runge-Kutta-Dormand-Prince
method, all resulting in very similar simulation results. For the numerical simula-

tions we consider At = 0.2 for the size of the time step.

3.4.3 Numerical study of the Kiicken-Champod model

Using the tensor fields introduced in Section 3.4.1 we consider the interaction model

(3.1) with forces of the form (1.8) to simulate fingerprint patterns. Here, the repul-
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sion and attraction forces are of the forms (1.12) and (1.13) with force coefficients
(1.18) and (1.19), respectively, and we consider the parameters in (1.20) with x = 0.2
to make the simulations as close as possible to the model suggested by Kiicken and
Champod in [KC13]. It is well known that fingerprints develop during pregnancy
and stay the same afterwards provided no fingerprint alterations occur. In order to
simulate biologically meaningful fingerprints we aim to model fingerprint patterns
as stationary solution to the particle model (3.1). Based on the analysis of steady
states in Section 3.3 it is possible to obtain stationary patterns consisting of mul-
tiple roughly parallel ridges along the lines of smallest stress. However, the force
coefficients need to be chosen appropriately so that the resulting patterns are also
stable. For the simulations in Figure 3.6 we consider the tensor field for the delta

constructed in Section 3.4.1 and depicted in Figure 3.5(A). One can clearly see in
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Figure 3.6: Numerical solution to the Kiicken-Champod model (3.1) for N = 600
and xy = 0.2 at different times ¢ where the stress field represents a delta and the
cutoff radius is 0.5.

Figure 3.6 that the particles are aligned along the lines of smallest stress s = s(z)
initially, but the patterns dissolve over time and the simulation results have little
similarity with fingerprint patterns over large time intervals. Besides, the patterns
are clearly no stable steady states in Figure 3.6. Hence, the question arises why the
patterns simplify so much over time for non-homogeneous tensor fields in contrast to
the stationary patterns arising for spatially homogeneous tensor fields, cf. Chapter
2, and how this can be prohibited.

To study the long-time behaviour of the numerical solution, it is desirable to have
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efficient numerical simulations and of course efficient simulations are also necessary
to to simulate fingerprints based on cell interactions in practice. In Section 3.2.3 we
introduced a cutoff radius for the forces, given by (3.4), in order to deal with the
periodic boundary conditions. Since the forces in the Kiicken-Champod model (3.1)
decrease exponentially, the interaction force between two particles is very small if
their distance is sufficiently large. This is also illustrated in Figure 3.2(A) for the
parameters in (1.20) with x = 0.2. Hence, defining the cutoff radius as 0.1 changes
the values of the forces only slightly, but it allows us to compute the numerical
solution to the Kiicken-Champod model (3.1) by using cell lists [AT89]. The idea of
cell lists is to subdivide the simulation domain into cells with edge lengths greater
than or equal to the cutoff radius of the interaction forces. All particles are sorted
into these cells and only particles in the same or neighbouring cells have to be
considered for interactions. This results in significantly faster simulations since we
only have to consider those particle pairs with relevant sizes of the interaction forces.
Note that the cutoff radius has an impact on the number of lines that occur in the
solution as shown in Figure 3.7 in comparison to a cutoff radius of 0.5 in Figure 3.6.
In particular the cutoff radius should not be chosen to small because this prevents
the accumulation of particles.

The simulation results for the Kiicken-Champod model (3.1) in Figures 3.6 and
3.7 illustrate that the particles align in roughly parallel lines along the lines of small-
est stress initially, but the number of roughly parallel lines decreases as time goes on.
In particular, the complex patterns that occur initially are not stationary. We can
expect a similar behaviour (i.e. initial alignment along the lines of smallest stress
of the stress tensor field and subsequent accumulation) of the numerical solution if
the parameters in the coefficient functions of the repulsion and attraction force in
(1.18) and (1.19) are slightly changed provided they are repulsive along the lines
of smallest stress, as well as short-range repulsive and long-range attractive along
the lines of largest stress. Denoting the directions of smallest and largest stress by
s and [, respectively, the transition of the initial pattern of multiple lines to fewer
and fewer lines along s suggests that the attraction forces are very strong resulting
in an accumulation of the particles. Note that this transition is also observed for
the long-time behaviour of the numerical solution to the Kiicken-Champod model
(3.1) for spatially homogeneous tensor fields in Chapter 2 where lines merge over
time until finally a steady state of equidistant parallel lines is reached.

In Figure 2.15 in Chapter 2 we showed the numerical solution to (3.1) for a

piecewise spatially homogeneous tensor field, randomly uniformly distributed initial
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Figure 3.7: Numerical solution to the Kiicken-Champod model (3.1) for different
cutoff radii for N = 600 and x = 0.2 at different times ¢ where the stress field
represents a delta.
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data and N = 600, resulting in stationary line patterns along the lines of smallest
stress s = s(x). In particular, this tensor field is not smooth. This suggests that
smoothness and periodicity are not necessary to obtain stationary solutions aligned
along the lines of smallest stress.

The big impact of the choice of the attraction force along the lines of largest
stress can be seen by considering Figure 2.11. Here, we assume that the total force
is given by F\(d,T) = 0Fa(d, T) + Fr(d) for § € [0, 1] for the spatially homogeneous
tensor field 7' = xs ® s + I ® 1 with | = (1,0), s = (0,1) and x = 1 instead of the
definition of F" as the sum of F4 and Fy in (1.8), i.e. we vary the size of the attraction
force and consider a radially symmetric force F. In Figure 2.11 the steady states to
the interaction mode (3.1) are shown for different factors ¢ of the attraction force
F4, where N = 600 and initial data distributed equiangularly on a circle with centre
(0.5,0.5) and radius 0.005 is considered. One can see in Figure 2.11 in Chapter 2
that 0 = 0.1 results in a stationary solution spread over the entire domain, while
ring patterns arise as ¢ increases. The intermediate state, occurring for 6 = 0.3,
is of interest in the sequel, as it is an example of a more complex pattern and in
particular not all the particles accumulate on one single ring as for 6 = 0.5,0 = 0.7
and 0 = 0.9 due to too attractive forces.

The forces considered in Figure 2.11 and given by 6 f4 + fr along the lines of
largest stress are plotted in Figure 3.8 for different values of §. As observed in the
stationary states in Figure 3.8, the force along the lines of largest stress is purely
repulsive for 6 = 0.1, medium- and long-range attractive for § > 0.5, as well as
medium-range attractive and long-range repulsive for 6 = 0.3. In particular, the
medium-range attractive forces for 6 = 0.3 are significantly smaller than for larger

values of §.

3.5 A new model for simulating fingerprints

Based on the analysis of stationary states in Section 3.3 as well as the numerical
investigation of the Kiicken-Champod model in Section 3.4.3 we propose a new
modelling approach for the interaction forces which can be used for simulating the
formation of fingerprints based on cell interactions. In particular, fingerprints are
obtained as stationary states to the model. As a next step we propose a bio-inspired
model for the creation of synthetic fingerprint patterns which can not only be used
to model the formation of fingerprints as stationary solutions but also allows to

adjust the ridge distances of the fingerprint lines.
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Figure 3.8: Total force coefficients df4 + fr along the lines of largest stress for
different values of § and different scaling.

3.5.1 Stationary patterns

In this section we investigate how fingerprints can be obtained as stationary solutions
to the Kiicken-Champod model (3.1) where the coefficients of the repulsive and
attractive forces are given by (1.18) and (1.19), respectively.

Adaptation of the forces in the Kiicken-Champod model

Repulsive forces along the lines of smallest stress are an excellent choice to guarantee
that the particles form patterns along the lines of smallest stress. Hence we can
consider the repulsive coefficient function 0.2f4 + fr for the force along s with the
parameter values in (1.20) with xy = 0.2 where the coefficient functions f4 and fr
of the attraction and repulsion force are given by (1.18) and (1.19), respectively.
Short-range repulsion forces along the lines of largest stress prevent collisions of
the particles and medium-range attraction forces are necessary to make the parti-
cles form aggregates. However, the long-range forces should not be attractive for
modelling complex patterns since strong long-range attraction forces prevent the oc-
currence of multiple roughly parallel lines as stationary solutions. Motivated by the
more complex stationary pattern for 6 = 0.3 in Figure 2.11 and its desired structure
of the forces along the lines of largest stress (short-range repulsive, medium-range
attractive, long-range repulsive as depicted in Figure 3.8) we consider the coefficient
function 0.3f4 + fr along the lines of largest stress for the parameters in (3.13).

Hence, the total force F' is given by (1.8) where the repulsion force Fy is defined as
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(1.18) and the attraction force Fy with coefficient function (1.19) has the new form
Fa(d = d(zj, xx), T(2;)) = fa(|d])T (2;) = fa(ld]) (0.3(1- d)l + x(s - d)s)  (3.12)

where we set T'(z;) = 0.3(1 - d)l + x(s - d)s and we consider the parameter values in
(3.13) with y = 0.2.

In Figures 3.9, 3.10 and 3.11 the numerical solutions for the repulsive force (1.12),
the attractive force (3.12) and different realistic tensor fields are illustrated. The
tensor fields in Figure 3.9 are given by a delta and a core, respectively, introduced
in Section 3.4.1, while we consider a combination of deltas and cores for the tensor
fields in Figures 3.10 and 3.11. As desired the particles align in roughly parallel
lines along the vector field s = s(z) and because of long-range repulsion forces
these nice patterns are not destroyed over time. Further note that the numerical
solution in Figures 3.9, 3.10 and 3.11 is shown for very large times so that it can
be regarded as stationary. In particular, this implies that the adapted forces can be
used to simulate fingerprint pattern and more generally any complex patterns is in
principal preserved over time.

After this adaptation of the forces it is desirable to use the original definition
of the forces (1.8) with repulsion and attraction force given by (1.12) and (1.13),
respectively, instead of an attraction force of the form (3.12). Along [ the attraction
force (3.12) can be regarded as 0.3f4 where f4 is the attraction force along [ in the
original definition of the attraction force F4 in (1.13). Note that the parameter -
in the definition of the attractive force coefficient f4 in (1.19) is a multiplicative

constant. Hence, we multiply the original value of 7 in (1.20) by 0.3, resulting in
a=270, B=01, ~v=105, es=95 ep=100, x =02, (3.13)

and consider the original definition of the forces in (1.8), (1.12) and (1.13). The
forces along the lines of smallest and largest stress are plotted for the parameters
in (3.13) in Figure 3.12(B). Note that they are of the same form as the adapted
forces (1.8), (1.12) and (3.12) for the original parameter values (3.13), shown in
Figure 3.12(A). Because of the same structure of the forces we can expect similar
simulation results. In Figure 3.13 the numerical solution is shown for two examples,
a delta, as well as a combination of a core and a delta. One can clearly see that
the particles align along the lines of smallest stress and the resulting patterns are

preserved over time. Similarly, one can obtain any complex pattern as stationary
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Figure 3.9: Tensor fields 7' = T'(z) for delta (subfigures (A)-(H)) and core (subfig-
ures (I)-(P)) given by s = s(x) and the numerical solution to the extended Kiicken-
Champod model (3.1) with attraction force (3.12) at different times t for y = 0.2,
N =600, T'= T(x) and randomly uniformly distributed initial data.
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subfigures (A)-(H), Example 2 in subfigures (I)-(P)) given by s = s(x) and the
numerical solution to the extended Kiicken-Champod model (3.1) with attraction
force (3.12) at different times ¢ for x = 0.2, N = 600, 7" = T'(x) and randomly
uniformly distributed initial data.
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Figure 3.11: Non-homogeneous tensor field 7' = T'(z) given by s = s(x) and the
numerical solution to the particle model (3.1) with attraction force (3.12) at different
times ¢ for x = 0.2, N = 600, T'= T'(x) and randomly uniformly distributed initial
data.

solution to the Kiicken-Champod model (3.1) by adapting the underlying tensor
field. In particular, this implies that the Kiicken-Champod model (3.1) with forces
defined by (1.8), (1.12) and (1.13) for the parameters in (3.13) can be used to
simulate fingerprint patterns which are in principal preserved over time.

The long-time behaviour of the numerical solutions to the adapted particle model
(3.1) with model parameters (3.13) is investigated in Figure 3.14 where the numerical
solution at large times ¢ is illustrated for the tensor field in Example 5 in Figure 3.13.
Note that the pattern changes only slightly over large time intervals, demonstrating
that these patterns are close to being stationary. This slow convergence to steady
states, especially for inhomogeneous underlying tensor fields, can also be seen for
other pattern forming systems such as the patterns in the SH equation where the
time until the steady state is reached is roughly of the order of what is called the

horizontal diffusion time [Nij18§].

Pattern formation based on tensor fields from real fingerprints

In this section, we investigate how to simulate fingerprint patterns based on realistic
tensor fields. As proposed in [KC13] the tensor field is constructed based on real

fingerprint data. The tensor field is estimated by a combination of the line sensor
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Figure 3.12: Total force coefficients 0.2f4 + fr along the lines of smallest stress, as
well as 0.3f4 + fr for parameter values in (3.13) and f4 + fgr for parameter values
in (3.13) along the lines of largest stress, respectively.

method [GMMO09] and a gradient based method as described in [GS12; Section 2.1].

Given some real fingerprint data the aim is to construct the vector field s = s(x)
for all x € Q2 as the tangents to the given fingerprint lines. This is based on the idea
that the lines of smallest stress are given by s and the solution to the interaction
model (3.1) aligns along s. Let § = 0(x) denote the angle between the vertical axis
and the direction of lines of smallest stress s = s(x) at location x, then it is sufficient
to consider the principal arguments 6 € [0, 7) only. Note that for any = € 2 and
any given #(x) we can reconstruct s(x) as (cos(6(z),sin(f(x))) since s(x) are defined
to be unit vectors. In Figure 3.15 fingerprint data, the estimated arguments 6 for
constructing the tensor field and the lines of smallest stress s = s(z) of the tensor
field are shown. Note that the lines of smallest stress s = s(z) of the tensor field
and the fingerprint lines in the real fingerprint image coincide.

Considering the tensor field 7" = T'(z) shown in Figure 3.15 the associated
numerical solution is plotted for two realisations of uniformly distributed initial
data in Figure 3.16. One can clearly see that the particles align along the lines of
smallest stress s = s(z). Besides, Figure 3.16 illustrates that we obtain similar,
but not exactly the same patterns for different realisations of random uniformly
distributed initial data. This is consistent with the well-known fact that everyone
has unique fingerprints and even the fingerprints of twins can be distinguished even
if the general patterns may seem to be quite similar at first glance [CLMS16].

To quantify the distance to the steady state we consider the change of the posi-
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Figure 3.13: Different non-homogeneous tensor fields T = T'(x) (Example 4 in
subfigures (A)-(H), Example 5 in subfigures (I)-(P)) given by s = s(x) and the
numerical solution to the adapted particle model (3.1) for the parameters in (3.13)
at different times ¢ for x = 0.2, N = 600, 7" = T'(z) and randomly uniformly
distributed initial data.
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Figure 3.14: Long-time behaviour of the numerical solution to the adapted particle
model (3.1) for the parameters in (3.13) at different times ¢ for x = 0.2, N = 600,
the tensor field 7' = T'(z) in Example 5 in Figure 3.13 and randomly uniformly
distributed initial data.
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Figure 3.16: Numerical solution to the adapted particle model (3.1) for the param-
eters in (3.13) at different times ¢ for x = 0.2, the realistic tensor field 7" = T'(x) in
Figure 3.15 and two realisations of randomly uniformly distributed initial data.

tions x; of the particles in successive time steps, given by

N

T(t) = > i (t + At) — z;(8) 1. (3.14)

j=1

In Figure 3.17 we show the error 7 between successive time steps for the numerical
solution in Example 6 in Figure 3.16 to the adapted particle model (3.1). After a
sharp initial decrease the total change in positions of the particles is approximately

1.0-107°, i.e. the movement of the particles is roughly 1.7-107® between time steps.

Interpretation of the pattern formation

In the simulations for spatially homogeneous tensor fields in 2 as well as for realistic
tensor fields in Figures 3.9, 3.10, 3.11, 3.13, 3.14, 3.16 one can see bifurcations in
the solution pattern for certain time steps. More precisely, there exist points where
two roughly parallel lines merge with a third roughly parallel line from the other
side. These patterns are in the form of the letter “Y’. The evolution of one of these

bifurcations is shown in Figure 3.18 for the underlying tensor field in Example 6 in
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Figure 3.17: Error 7 in (3.14) between successive time steps for the numerical
solution in Example 6 in Figure 3.16 to the adapted particle model (3.1) for the
parameters in (3.13) at different times ¢ and the realistic tensor field T = T'(z) in
Figure 3.15.

Figure 3.16. Note that all these lines are aligned along the lines of smallest stress s
of the tensor field and these bifurcations move towards the two neighbouring lines
over time. This behaviour can be explained by attraction forces along the lines of
largest stress over medium range distances, i.e. as soon as the distance between the
particles along the lines of largest stress [ is small enough they attract each other.
In particular, the particles close to the bifurcation on the two neighbouring lines
are the first ones to ‘feel’ the attraction force along [ and the two roughly parallel
lines start merging close to the bifurcation. Hence, the single line on the other side
of the bifurcation gets longer over time and the bifurcation moves towards the two
parallel lines. While the two roughly parallel lines get shorter over time until they
are finally completely merged, resulting in one single line. Since the movement of
the particles is mainly along [ there is a different particle at the bifurcation at each
time step. While the particles on the line in the middle roughly remain at the same
position apart from realigning along the lines of smallest stress s. This realignment
along s is due to the additional number of particles which are aligned along one
single line after the merging, as well as due to the repulsive forces along s spreading
the particles to make use of the space along s and to avoid high particles densities

after merging.

3.5.2 Varying the ridge distance
Motivation for a new model

The results in Section 3.5.1 illustrate that it is possible to simulate realistic finger-

prints with the adapted particle model (3.1) for the parameters in (3.13). As seen
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Figure 3.18: Evolution of the bifurcations in the numerical solution to the adapted
particle model (3.1) for the parameters in (3.13) for the non-homogeneous tensor
field T = T'(z) in Example 6 in Figure 3.16 at different times ¢ and randomly
uniformly distributed initial data.

in the figures, there is some variability in ridge distances and in view of realistic
biometric applications, it is of great interest to control them. Note that the total
force F' in (1.8), given by the sum of repulsion and attraction force Fp and Fy of

the form (1.12) and (1.13), respectively, can be rewritten as

F(d(zj, xx), T (x;)) = Ixfalldl) + fr(dD] (s - d)s + [fa(ld]) + fr(ldD] (1 d)I
(3.15)

by using the definition of the tensor field 7"in (1.5) and the definition of the distance
vector d(zj,x)) = x; — x, € R%. The coefficient functions of the repulsion and
attraction forces (1.18) and (1.19), respectively, are plotted along s and [ for the
parameters in (3.13) in Figure 3.12(B). In particular, this motivates us to consider
interaction forces of the form (1.9).

We are interested in rescaling the forces now to vary the distances between the
fingerprint lines, i.e. we consider F(nd(z;,z;),T(z;)) where n > 0 is the rescaling
factor. For n = 1 we recover the same solution patterns as in Section 3.5.1, while
the distances between the fingerprint lines become larger for n € (0,1) and smaller
for n > 1. Note that the force coefficient f4 + fr along [ is repulsive over long
distances. For n = 1, the case that has been considered so far, this is fine for the
given parameters in (3.13). For n > 1, however, the scaling results in repulsive
interaction forces along [ for particles with shorter distances between each other.
Besides, short-range forces have a stronger impact on the interactions. Hence, these

short-range repulsive interaction forces prevent the accumulation of particles along
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[, resulting in several clusters. Note that the forces along s are purely repulsive so
that rescaling by any n does not change the nature of the forces.

In order to prevent this behaviour and to obtain an interaction model that can
be used for different rescalings, the forces need to be changed slightly so that we
have very small attractive forces along [ for n = 1. This does not influence the
pattern formation for n = 1, but for rescaling by n > 1 we can obtain the desired
line patterns with smaller distances between each other. In order to achieve this,
we consider a straight-forward approach first. We consider two cutoffs ¢; and ¢y
and define the adapted force F' piece-wise such that for |d| < ¢; the force F' is of
the form (3.15) as before while for |d| > ¢y we consider an attraction force tending
to zero as d — . To obtain a continuous force we consider a linear interpolation

of the force on [y, ¢2]. Setting

fUdl,x) == xfa(ld]) + fr(|d])

we consider the force coefficients f, and f; for interaction forces of the form (1.9)

where the force coefficients are defined as

f(ld], 1) |d| < ¢y
fild) =4 fler, 1) + ‘;‘i'%ﬁfi (=f(e2,1) = fler, 1)) |d] € [en, eo] (3.16)
—f(ld], 1) |d| > ¢
and
fs(d) = f(ld], x). (3.17)

Here, we consider the parameter values ¢; = 0.06, ¢y = 0.07 and the parameters in
the force coefficients (1.18), (1.19) are given by (3.13). The force coefficient f; along
[ for |d| > ¢ is obtained by multiplying the original force along [ by —1. This is
based on the fact that the force coefficient f(d, 1) is repulsive for large distances
along [ for the parameters in (3.13). In Figure 3.19 the force coefficients f; and f,
in (3.16) and (3.17), respectively, are shown. In particular, the piecewise definition
of f; only has a small influence of the form. In Figure 3.20, the stationary solution
to the particle model (3.1) for interaction forces of the form (1.9), force coeflicients
(3.16), (3.17), parameter values (3.13), the underlying tensor field ' = T'(x) in
Figure 3.15 and different rescaling factors 7 is shown and one can clearly see that

1 > 1 leads to smaller ridge distances whereas n < 1 results in larger ridge distances.
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In particular, the interaction model (3.1) with interaction forces of the form (1.9)
and force coefficients in (3.16) and (3.17) can be used to simulate fingerprints with
variable ridge distances. Due to the smaller distances between the fingerprint lines
for n = 1.2 this leads to a larger number of fingerprint lines on the given domain.
Due to this increased number of lines it is desirable to run simulations with larger
numbers of particles. However, particle simulations can only be applied efficiently
as long as the total particle number is not too large. In order to solve this remedy
one can introduce the density p = p(t, z) associated with the particle positions and
consider the associated macroscopic model (1.17). In Chapter 5, advanced numerical
methods for solving the macroscopic model (1.17) with anisotropic interaction forces

are developed for simulating fingerprint patterns.
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Figure 3.19: Total force coefficients f; and f,, defined in (3.16) and (3.17) respec-
tively, for interaction forces of the form (1.9) and parameter values (3.13).

Figure 3.20: Stationary solution to the interaction model (3.1) for interaction forces
of the form (1.9), force coefficients (3.16), (3.17), parameter values (3.13), the realis-
tic tensor field 7' = T'(z) in Figure 3.15 and N = 2400 particles initially distributed
uniformly at random.
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A bio-inspired model for simulating stationary fingerprints with variable

ridge distances

In this section, we consider interaction forces of the form (1.9) as before with the
aim of simulating fingerprints with variable ridge distances based on a bio-inspired
approach. The coefficient functions f; and fs in (3.16) and (3.17), respectively,
are defined piecewise and it is desirable to obtain a closed form for the coeffi-
cient functions. As before we consider exponentially decaying forces describing that
short-range interactions between the particles are much stronger than long-range
interactions. Since the forces are repulsive and attractive on different regimes, this
interplay between repulsion and attraction forces can be regarded as oscillations.
Motivated by this, we model the force coefficients f; and f; in (1.9) as solutions
to a damped harmonic oscillator. Note that harmonic oscillators are a common
modelling approach in cell biology and the force coefficients f;, fs are given by (3.2)
and are shown in Figure 3.21 for the parameters in (3.3) in comparison with the
piecewise defined force coefficients f;, f, for the parameters in (3.13). Note that
the parameters (3.3) are chosen in such a way that the coefficient functions f;, fs
of the harmonic oscillator approximate the piecewise defined coefficient functions
fi, fs in (3.16),(3.17), respectively. In Figure 3.22 the stationary patterns to (3.1)
for different rescaling factors n are shown. As expected the larger the value of 7 the

smaller the distances between the fingerprint lines and the more lines occur.

0.1

0.08

0.06

0.04

0.02

oF

-0.02 - L
0 0.05 0.1 0.15

d

Figure 3.21: Coefficients f; and f in (3.2) for parameter values in (3.3) as well as
piecewise defined coefficients f; and fs in (3.16),(3.17).

Whole fingerprint simulations

In Figure 3.23 we construct tensor fields from real fingerprint data based on the

methods discussed in Section 3.5.1. We consider a whole fingerprint image shown
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3.5. A new model for simulating fingerprints

(A)n=06

Figure 3.22: Stationary solution to the interaction model (3.1) for interaction forces
of the form (1.9), force coefficients (3.2), parameter values (3.3), the realistic tensor
field T' = T'(x) in Figure 3.15, different force rescaling factor n and N = 2400
particles initially distributed uniformly at random.

in Figure 3.23(A) and determine the underlying tensor field by estimating the ar-
guments 0 = 6(z) for every x € Q. Since we consider the domain Q = T? we
extend the tensor field via extrapolation from the original fingerprint image in Fig-
ure 3.23(A), based on [GMMO09]. In Figures 3.23(B) and 3.23(C) the arguments
0 = 0(x) are shown and the arguments 6 are overlayed by the mask of the original
fingerprint in black in Figure 3.23(B). Since s(z) is a unit vector and hence uniquely
determined by its argument 6(x) we reconstruct the lines of smallest stress s(x) as
(cos(f(z),sin(A(x))) in Figures 3.23(D) and 3.23(E), and overlay the direction field s
by the original fingerprint image in black in Figure 3.23(D). We run simulations for
these realistic tensor fields using our new bio-inspired model (3.1) with interaction
forces of the form (1.9), force coefficients (3.2) inspired from harmonic oscillators
and parameter values in (3.3) for randomly uniformly distributed initial data and
N = 2400 particles. Note that the patterns are preserved over time.

In conclusion, fingerprints with variable ridge distances can obtained as station-
ary solutions to our bio-inspired model. We consider harmonic oscillators as force
coefficients, a well-established modelling approach in biology. Due to lack of ex-
perimental data the exact form of the interaction forces, including the parameter
choices, cannot be validated with experiments. For this reason, the parameters are
chosen such that certain observations are satisfied and the general model formu-
lation of the model allows to consider a large class of models. As part of future
work, the numerical results can be tested for realness. The distinction between real
and synthetics could be based on [GH14] where histograms of minutiae and ridge
frequencies are considered. Another procedure for distinguishing real and synthetic

fingerprints is based on the underlying stress field only [I[GHO18].
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Figure 3.23: Original fingerprint image, arguments and lines of smallest stress s =
s(x) for the reconstructed tensor field 7" = T'(x) with an overlying mask of the
original fingerprint image in black, as well as stationary solution to the interaction
model (3.1) for interaction forces of the form (1.9), force coefficients (3.2), parameter
values (3.3) and N = 2400 particles initially distributed uniformly at random.

106



Chapter 4

Stability analysis of line patterns

Originality and contribution

This chapter is based on the paper [CDKS18] in collaboration with José A. Carrillo,
Bertram Diiring and Carola-Bibiane Schonlieb. While my co-authors proposed the
study of the model and provided guidance and advice, [CDKS18] is primarily my
own original work and nearly all the results, including analysis and simulations,

were obtained by myself.

Chapter summary

Motivated by the formation of fingerprint patterns, we consider a class of interact-
ing particle models with anisotropic, repulsive-attractive interaction forces whose
orientations depend on an underlying tensor field. This class of models can be
regarded as a generalisation of a gradient flow of a nonlocal interaction potential
which has a local repulsion and a long-range attraction structure. In addition, the
underlying tensor field introduces an anisotropy leading to complex patterns which
do not occur in isotropic models. Central to this pattern formation are straight
line patterns. For a given spatially homogeneous tensor field, we show that there
exists a preferred direction of straight lines, i.e. straight vertical lines can be stable
for sufficiently many particles, while many other rotations of the straight lines are
unstable steady states, both for a sufficiently large number of particles and in the
continuum limit. For straight vertical lines we consider specific force coefficients for
the stability analysis of steady states, show that stability can be achieved for expo-

nentially decaying force coefficients for a sufficiently large number of particles, and
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Stability analysis of line patterns

relate these results to the Kiicken-Champod model for simulating fingerprint pat-
terns. The mathematical analysis of the steady states is completed with numerical

results.

4.1 Introduction

In biological applications, the interactions determined by the force F' or, equiva-
lently, the interaction potential W, are usually described by short-range repulsion,
preventing collisions between the individuals, as well as long-range attraction, keep-
ing the swarm cohesive [MEKBS03, OLO1]. In this case, the associated radially
symmetric potentials W first decrease and then increase as a function of the radius.
Due to the repulsive forces these potentials lead to possibly more steady states than
the purely attractive potentials. In particular, these repulsive-attractive potentials
can be considered as a minimal model for pattern formation in large systems of
individuals [BCLR13b, KCB*13] and the references therein.

Pattern formation in multiple dimensions is studied in [BSK* 15, KSUB11, vBU12,
vBUKBI12, CHMI4a] for repulsive-attractive potentials. The instabilities of the
sphere and ring solutions are studied in [BSK™15, vBU12, vBUKBI12]. The lin-
ear stability of ring equilibria is analysed and conditions on the potential are de-
rived to classify the different instabilities. A numerical study of the N-particle
interaction model for specific repulsion-attraction potentials is also performed in
[BSKT15, KSUBLI] leading to a wide range of radially symmetric patterns such
as rings, annuli, and uniform circular patches, as well as more complex patterns.
Based on this analysis the stability of flock solutions and mill rings in the associated
second order model can be studied, see [ABCvB14] and [CHMI14b] for the linear
and nonlinear stability of flocks, respectively.

In this chapter, we consider a generalisation of the particle model (1.2) by intro-
ducing an anisotropy given by a tensor field T'. This leads to an extended particle
model of the form (1.4), i.e.

dx; 1
j _ — . — .
E - N ];F(:UJ :Uva(x]))v (41)
k#j
where we prescribe initial data z;(0) = xé”, 7 =1,..., N, for given scalars xé”, j =
1,...,N. A special instance of this model has been introduced in [KC13] for sim-

ulating fingerprint patterns. The particle model in its general form (4.1) has been
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studied in [BDIK"18, DGH"19]. Here, the position of each of the N particles at
time ¢ is denoted by x; = z;(t) e R?, j = 1,..., N, and F(x; — zy,T(x;)) denotes
the total force that particle k exerts on particle j subject to an underlying stress
tensor field T'(x;) at z;, given by (1.5) for orthonormal vector fields s = s(x) and
[ =1(x) e R* and y € [0,1]. Here, the outer product v®w for two vectors v, w € R?
equals the matrix multiplication vw? and results in a matrix of size R>2. The pa-
rameter y introduces an anisotropy in the direction s in the definition of the tensor
field.

For repulsive forces along s and short-range repulsive, long-range attractive
forces along [ the numerical simulations in [BDK 18] suggest that straight ver-
tical line patterns formed by the interacting particles at positions x; are stable for a
certain spatially homogeneous tensor field, specified later. In this chapter, we want
to rigorously study this empirical observation by providing a linear stability analysis
of such patterns where particles distribute equidistantly along straight lines.

The stability analysis of steady states of the particle model (4.1) is important
for understanding the robustness of the patterns that arise from applying (4.1) for
numerical simulation, for instance, as for its originally intended application to finger-
print simulation in [KC13]. Indeed, in what follows, we will show that for spatially
homogeneous tensor fields 7' the solution formed by a number of vertical straight
lines (referred to as ridges) is a stationary solution, whereas ridge bifurcations, i.e.
a single ridge dividing into two ridges as typically appearing in fingerprint patterns,
is not.

The aim of this chapter is to prove that sufficiently large numbers of particles
distributed equidistantly along straight vertical lines are stable steady states to the
particle model (4.1) for short-range repulsive, long-range attractive forces along [
and repulsive forces along s. All other rotations of straight lines are unstable steady
states for this choice of force coefficients for a sufficiently large number of particles
and for the continuum limit. We focus on this very simple class of steady states
as a first step towards understanding stable formations that can be achieved by
model (4.1). Note that the continuum straight line is a steady state of the associ-
ated continuum model (1.17), see [BDIK " 18], but its asymptotic stability cannot be
concluded from the linear stability analysis for finitely many particles.

This chapter is organised as follows. In Section 4.2 we describe a general formu-
lation of an anisotropic interaction model, based on the model proposed by Kiicken
and Champod [KC13]. Section 4.3 is devoted to a high wave number stability anal-

ysis of line patterns for the continuum limit N — oo, including vertical, horizontal,
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and rotated straight lines for spatially homogeneous tensor fields. Due to the in-
stability of arbitrary rotations except for vertical straight lines for the considered
tensor field we focus on the stability analysis of straight vertical lines for particular
forces for any N € N in Section 4.4. Section 4.5 illustrates the form of the steady

states in the case the derived stability conditions are not satisfied.

4.2 Description of the model

In this section, we describe a general formulation of the anisotropic microscopic
model (4.1) and relate it to the Kiicken-Champod particle model [[KC13]. Kiicken
and Champod consider the particle model (4.1) where the total force F' is given
by (1.8) for the distance vector d(x;,z) = x; — zx € R?. Here, F denotes the
repulsion force that particle k£ exerts on particle j and Fj is the attraction force
particle k exerts on particle j. The repulsion and attraction forces are of the form
(1.12) and (1.13), respectively, with coefficient functions fr and fa, where, again,
d = d(z;,x1) = r;—x) € R% Note that the repulsion and attraction force coefficients
fr, fa are radially symmetric. The direction of the interaction forces is determined
by the parameter x € [0, 1] in the definition of 7" in (1.5). Motivated by plugging
(1.5) into the definition of the total force (1.8), we consider a more general form of
the total force, given by (1.9) where the total force is decomposed into forces along
the direction s and along the direction [. In particular, the force coefficients in the
Kiicken-Champod model (4.1) with repulsive and attractive forces Fr and F4 in

(1.12) and (1.13), respectively, can be recovered for

filldl) = fa(ld]) + fr(ld]) and  fi([d]) = xfa(ld]) + fr(ld]).

Since a steady state of the particle model (4.1) for any spatially homogeneous
tensor field 7" can be regarded as a coordinate transform of the steady state of the
particle model (4.1) for the tensor field T' (see [BDK " 18] for details), we restrict
ourselves to the study of steady states for the spatially homogeneous tensor field T'

given by the orthonormal vectors s = (0,1) and [ = (1,0), i.e.

T = . (4.2)

The total force in the Kiicken-Champod model (1.8) and the generalised total force
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(1.9) reduce to

r@ - | )+ fnlla)a )

(xfald]) + fr(ld])) d

and

F(d) = il for d = (dy, dy) € R?, (4.4)

f(ld[)dy

respectively, for the spatially homogeneous tensor field 7" in (4.2).

In the following, we consider the particle model (4.1) on the torus T? or, equiv-
alently, on the unit square [0,1]* with periodic boundary conditions. This can be
achieved by considering the full force (4.4) on [—0.5,0.5]?, extending it periodi-
cally on R?, and requiring that the force coefficients are differentiable and vanish
on 0[—0.5,0.5]* for physically realistic dynamics. That is, we use (4.4) to define its
periodic extension F: R? — R? by

F(d) := F(d) for de [-0.5,0.5]% (45)
F(d+k):=F(d) forde[-0.5,05]%keZ> '
Then, the particle model (4.1) can be rewritten as
dZEj 1 o —
Y P (4.6
k]

for z; € R?, where the right-hand side can be regarded as the force acting on particle
j. We require that the force F' has to vanish for any d € J[—0.5,0.5]? to avoid
interactions between periodic replicates of the particles, implying that f;(0.5) =
15(0.5) = 0 for fi, fs in (4.4) and hence f;(|d|) = fs(|d|) = 0 for d € R? with |d| = 0.5.
Thus, we require that F(d) = 0 for all d € 6[—0.5, 0.5]? for physically relevant forces.
To guarantee that the resulting force coefficient is differentiable which is required
for the stability analysis we construct a differentiable approximation of the given
force coefficient f by considering f(|d|) for |d| < 0.5 — ¢ for some ¢ > 0, a cubic
polynomial on (0.5 — ¢,0.5) and the constant zero function for |d| = 0.5 such that

the resulting function is continuously differentiable on (0,00). Motivated by this,
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we also consider smaller values of the cutoff radius R, € (0,0.5] and adapt the force

coeflicients as

.
f(|d|)7 ‘d| € [Och_g]v
—R.)?3 d|—R.)?
f/(Rc _ 6) (4l 52R ) + ( s
fE(’dD = < ( (‘d‘—R )3 (d?—R )2 (47)
+f(R.— &) (2UL 4+ 3UZEE) (] e (R — ¢, R.),
0, |d| = R..

\

Note that this definition results in a differentiable function whose absolute value
and its derivative vanish for |d| = R.. This is in analogy to the notion of cutoff and
is only a small modification compared to the original definition provided f(s) for
s€ (R.—¢, R.) is of order O(¢) and f'(R. — ¢) is of order O(1). In this case, both
the original force coefficients and its adaptation f¢ are of order O(¢) on (R.—e¢, R..).
Further note that the interaction forces on distances |d| « R. — ¢ are significantly
larger than on (R, — €, R.) and, hence, the dynamics are mainly determined by
interactions of range |d| « R.. In particular, this allows us to replace f; and f; in
(4.4) by differentiable approximations f; and f¢, defined as in (4.7), if necessary.

Note that the assumption to consider the unit square [0, 1]* with periodic bound-
ary conditions is not restrictive and by rescaling in time our analysis extends to any
domain [0, 8]* with a cutoff radius R, € (0,%] for § € R,, where the cutoff of any
force coefficient f is defined in (4.7).

The coefficient function fr of the repulsion force Fg in (1.12) in the Kiicken-

Champod model is originally of the form
fr(ld]) = (ald]® + B) exp(—er|d|) (4.8)

for d € R? and nonnegative parameters «, 3, and eg. The coefficient function f4 of
the attraction force F4 in (1.13) is of the form

fa(ld]) = —~ld| exp(—eald]) (4.9)

for d € R? and nonnegative constants v and e4. To be as close as possible to
the work by Kiicken and Champod [KC13] we assume that the total force (1.8)
exhibits short-range repulsion and long-range attraction along [ and one can choose
the parameters as in (1.20) as proposed in [BDIK"18]. Based on the adaptations

of the force coefficients in (4.7), we consider the modified Kiicken-Champod force
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coefficients in the following, given by

)
fR<’dD7 |d| € [Och_g]a
— 3 — 2
Fo(Re —¢) <(|d| Ry (dl-Ro) )

fr(d]) = : (4.10)
+fr(R. — 2) (2<'d';fc>3 + 3<'d';fc>2) . || (R.— e, R.),
0, ld| = R.,
\
and
)
fA(‘dD? ’d‘ € [O7RC_€]7
. f,lq(RC _ 5) ((‘d‘;fc)s + (ldl_aRc)Q)
fA(|d|) = 9 (|d|—R.)? (|d—R )2 (4]‘1)
+fa(Re — ) (2 Ry gUd-Fe ) d| e (R. — &, R.),
0, |d| = R..

\

Here, fr, fa are very small in a neighbourhood of the cutoff R. = 0.5 for the
parameters in (1.20) or, more generally, for eg and e, sufficiently large. Since the
derivatives fj, and f/ also contain the exponential decaying terms exp(—eg|d|) and
exp(—ea|d|), respectively, and are scaled by a factor O(e) in (1.18) and (1.19),
respectively, the differences between f; and fr, and f§ and fa, respectively, are
very small compared to the size of the interaction forces at distances |d| « R, — ¢
and the total force exerted on particle z;, given by the right-hand side of (4.6). In
particular, fp, f3 can be regarded as differentiable approximations of fr, fa.

For the particle model (4.6) with differentiable coefficient functions f5, f§ and
parameters (1.20), we plot the original coefficient functions fr, f4 of the total force
(4.3) for a spatially homogeneous underlying tensor field 7" with s = (0,1) and
[ = (1,0) in Figure 4.1. However, note that fr ~ lim.o f§ and fa ~ lim.¢ f5.
Moreover, we show the resulting coefficient functions xfa + fr with x = 0.2 and
fa+ fralong s = (0,1) and I = (1,0), respectively, in Figure 4.1. Note that the
repulsive force coefficient fr is positive and the attractive force coefficient f, is
negative. Repulsion dominates for short distances along [ to prevent collisions of
the particles. Besides, the total force exhibits long-range attraction along [ whose
absolute value decreases with the distance between particles. Along s, the particles
are purely repulsive for y = 0.2 and the repulsion force gets weaker for longer

distances.
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Figure 4.1: Coefficients fr in (4.8) and f4 in (4.9) of repulsion force (1.12) and
attraction force (1.13), respectively, as well as the force coefficients along s = (0, 1)
and | = (1,0) (i.e. fa+ fr and 0.2f4 + fgr) for parameter values in (1.20).

4.3 Stability /instability of straight lines

In this section, we consider the total force F in (4.5), defined on R? by periodic
extension of F' on [—0.5,0.5]% in (4.4). This total force F' can be described by
(periodically extending) a short-range repulsive, long-range attractive force coeffi-
cient f; along [ and a purely repulsive force coefficient f; along s. Without loss of
generality we may assume that the force coefficients f;, f; are differentiable since
otherwise they may be replaced by ff7, f5, defined as in (4.7) for given functions
fi, fs- Motivated by this we require the following.

Assumption 5. Let f;, fs be continuously differentiable functions on [0,00). Let
fs be purely repulsive, i.e. fs = 0 with fs(0) > 0 for s € [0, R.) and fs(s) = 0 for
s = R, implying fOR° fsds > 0. Further let f, be short-range repulsive, long-range
attractive with fi(R.) = 0.

As shown in [BDK™ 18] for the analysis of steady states with general spatially
homogeneous tensor fields, it is sufficient to restrict ourselves to the spatially ho-

mogeneous tensor field 7" with s = (0,1) and [ = (1,0) in the following.

4.3.1 Straight line

In this section, we consider line patterns as steady states which were observed in the

numerical simulations in [BDK"18]. For z; € R% j = 1,..., N, evolving according

114



4.83. Stability /instability of straight lines

to the particle model (4.6), we have

5)
-— [Ej = O,
dt <

implying that the centre of mass is conserved. Hence, we can assume without loss
of generality that the centre of mass is in Z*. By identifying R? with C, we make

the ansatz
_ k .
Ty = Nexp(@@)é(ﬁ), kE=1,...,N. (4.12)

Here, 6 denotes the angle of rotation. The length of the line pattern is denoted by
¢ = {(f) > 0 and can be regarded as a multiplicative factor with £(0) = ¢ (%) = 1
and /¢ (%) =/ (%’r) = /2. Note that it is sufficient to restrict ourselves to 6 € [0, )
since ansatz (4.12) for 6 and 6 + km with k € Z leads to the same straight line after
periodic extension on R? and hence also on the torus T2. Depending on the choice
of #, ansatz (4.12) might lead to multiple windings on the torus T?. To guarantee
that ansatz (4.12) satisfies the periodic boundary conditions, we require that the
winding number of the straight lines in (4.12) is a natural number and hence we

can restrict ourselves to ansatz (4.12) on the torus T? for 6 € A, where

A= {0,%,%,%} U {1/) € (0,%) V) (%,w) : cot(v) € Z}

U {zp e (%%) : tan(y) € Z}.

Note that considering the torus T? as the domain, i.e. the unit square with periodic

(4.13)

boundary conditions or, equivalently, R? by periodic extension, is not restrictive due
to the discussion in Section 4.2.

For a single vertical straight line we have § = 7 and ansatz (4.12) reduces to

T = —i, k=1,... N, (4.14)

Tp=— k=1,... N (4.15)
Note that the winding number is one for (4.12) with 6 € {0,Z,2, 2} while the

14020 4
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winding number is larger than one for 6 € A\ {O, T g, . } Translations of the
ansatz (4.12) result in steady states with a shifted centre of mass. Besides, paral-
lel equidistant straight line patterns, obtained from considering (4.12) for a fixed
rotation angle (4.13) and certain translations, may also lead to steady states.

For equilibria Z; € R?,j = 1,..., N, to the particle model (4.6) we require that

1

i F(z;— 7, T)=0 forallj=1,...,N.

1=

ol
W
S

Setting 7, for k € Z as in (4.12), we have F(Z; — Zx) = F(Z; — Zpinn) for j, k =
1,...,N and any n € Z by the periodicity of F. Since the particles are uniformly
distributed along straight lines by ansatz (4.12), it is sufficient to require

Z (Zy — 1, T) =0 (4.16)

for steady states. Note that F(Zny—24,T) = —F(Zn—Zn_, T)fork =1,... [N/2]—
1 and for N even we have F(fN — Inj2, T) = 0 by the definition of the cutoff R..
Hence, (4.16) is satisfied for the ansatz (4.12) for 6 € A, provided the length ¢(9)
of the lines is set such that the particles are distributed uniformly along the entire

axis of angle 6.

4.3.2 Stability conditions

In this section we derive stability conditions for equilibria of the particle model
(4.6), based on a linearised stability analysis. The real parts of the eigenvalues of a
stability matrix play a crucial role and we denote the real part of eigenvalue A € C
by R(A) in the following.

Proposition 5. For finite N € N, the steady state Z;, j = 1,..., N, of the particle
model (4.6) is asymptotically stable if the eigenvalues A of the stability matrix

M = M(j,m) = (Il(j,m) L(j, m)) e C*, (4.17)
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satisfy R(A) <0 forallj=1,...,N and m=1,... ;N — 1, where

1 oF

L(jim) =+ Z (1 — exp(im(¢x — ¢;))) aTll(i’j — Tp)
2mim(k — 7) or,
B (=) o
. ! oF (4.18)
B(G.m) = 5 (0= explim(x — 6,) oo-(z; — a0
k#j
2mim(k — j) oF
= — l—exp | —— -
;ﬂ < p ( N )) 6d2( Ty,

forg=1,...,Nandm=1,...,N.

Proof. Let z;, j = 1,..., N, denote a steady state of (4.6). We define the pertur-
bation g; = g]<t), hj = hj(t) € R of f’j by

Linearising (4.6) around the steady state z; gives

d [ 9 1 oF 1 oF
- = = (05— 98) 5 (@ — E) + = Y (hy — he) (B — T). (4.19)
dt h; N Py ody N Py 0dy

We choose the ansatz functions

g; = C, (exp(ime;) + exp(—ime;)), h; = ¢, (exp(imep;) + exp(—ime;)),
j=1,....N, m=1,... N,

where (; = (,(t),(, = (u(t), and ¢; = 2% Note that g;,h; e Rforall j =1,...,N
and

N .
2 0, m=1,...,N—1,
Zexp imeo;) = Z (exp( mm)) _

Jj=1 Jj=1
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since ¢; are the roots of rV =1 and

N—1
j 1—rN

Z "= 1 )

=0 -r

This implies

0, m=1,...,N—1,

]Z:lgj(t)zglhj(t)Z N om_ N

for all times ¢t > 0, i.e. the centre of mass of the perturbations g;, h; is preserved.
We have

gj — gr. = Gy (exp(ime;) + exp(—img;)) (1 — exp(im(¢r. — ¢5)))
hj — hi, = G (exp(ime;) + exp(—img;)) (1 — exp(im(¢r — ¢;))) -

Plugging this into (4.19) and collecting like terms in exp(ime;), exp(—ime;) results

m
d Cg C ) 8F _ _
o . = Ng ,; (1 —exp(im(or — ¢5))) a_dl(% — )
5 0 eximion = 6 505~ )
ie.
% S| _ [ 7 (4.20)
Ch Ch

where the stability matrix M € C*? is defined in (4.17). The ansatz ¢, = £, exp(\t),
Ch = & exp(At) solves the system (4.20) for any eigenvalue A € C of the stability
matrix M = M(j,m). Note that the stability matrix M is the zero matrix for
m = Nandanyj=1,...,N. Hence, we have A\ = Oform = Nandallj=1,... N,
corresponding to translations along the vertical and horizontal axes. Thus, the
straight line z;,7 = 1,..., N, is stable if ®(\) < 0 for any j = 1,...,N and
m=1,...,N—1 O
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4.3.3 Stability of a single vertical straight line

To study the stability of a single vertical straight line of the form (4.14) we determine
the eigenvalues of the stability matrix (4.17) and derive stability conditions for
steady states z;,j = 1,..., N, satisfying (4.16). In the continuum limit N — oo the

steady state condition (4.16) becomes

/_(;Z F((0,s),T)ds = /_Uoi F((0,5),T)ds = 0.

Due to the cutoff radius R. € (0,0.5] it is sufficient to require

R
/ F((0,s), T)ds =0 (4.21)
—Re.
for equilibria. This condition is clearly satisfied for forces of the form (4.4) and in

particular for forces of the form (4.3).

Theorem 1. For finite N € N, the single vertical straight line (4.14) is an asymp-
totically stable steady state of the particle model (4.6) with total force (4.4) if
RAin(m)) < 0 fori = 1,2 and all m = 1,...,N — 1, where the eigenvalues
Ain = Nin(m) of the stability matriz (4.17) are given by

N—-1+[5] _
1 2mimk
dtm) = 5 3 il (1= e (7)),
E=1¥1
. (4.22)
! 2mimk
() =5 2 (ldal) + Sl (1= exo (27 ))
k=131
with
0
de:
N—k
N

for k € N. Denoting the cutoff radius by R. € (0,0.5], steady states satisfying
the steady state condition (4.21) in the continuum limit N — o are unstable if

R(Ai(m)) > 0 for some m € N and some i € {1,2}, where the eigenvalues \; =
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Ai(m),1 = 1,2, of the stability matriz (4.17) are given by

R.

Ai(m) = fi(ls]) (1 — exp (—2mims)) ds,

T (4.23)
dam) = [ (15D + 21s)lsl) (1 = exp (<2mims) s

In particular,
R,
R(A1)(m) =2 fi(s) (1 — cos (—2mms)) ds,
0 (4.24)

R(\)(m) — 2 /O (Fu(5) + f1(5)s) (1 — cos (—2mms)) ds.

Proof. For the spatially homogeneous tensor field T, defined by s = (0,1) and
[ = (1,0), the derivatives of the total force (4.4) are given by

oF £ld) + () OF 4 F(1d]) 4 4.35)

) : )
o i T\ + 0D

for d = (dy,dy) € [—0.5,0.5]* and its periodic extension %Z(d + k) = S%:(d) for
i=1,2,de[-0.505]% and k € Z%. Note that f;, f, are differentiable due to the
smoothing assumptions at the cutoff R, in (4.7) and their derivatives vanish for
d € [-0.5,0.5]* with |d| > R,. Using ansatz (4.14) for a single vertical straight line,

we obtain

oF Silldjxl)
8_d1(djk) = ;
0
(4.26)
oF 0
a_dz<dj’“) =

fsldje]) + fi(ldjx]) ||

for djj, € [~0.5,0.5]> and note that 2" (d;) = & (djpinn) for i = 1,2, jk =
1,..., N, and n € N. This implies that the particles along the straight vertical line

are indistinguishable and it suffices to consider j = N. The entries (4.18) of the
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stability matrix (4.17) are given by

N ) _
2mimk oF

=y 2 (1w (X)) o )
N ) _
2mimk oF

N;(l—exp( N ))8_032(de)

Note that for k = [§],..., N, we have dy; € {0} x [0,0.5] = [-0.5,0.5]?, im-
plying that the derivatives of I are given by (%.26), Where_F (dNJ%]) = 0 by the
definition of the cutoff R, for N even. Since %(de) = %(dN7N+k) for i = 1,2,
k=1,...,[N/2] — 1, and dyx sk € {0} x (—0.5,0) = [—0.5,0.5]?, we can replace
the sum over k € {1,..., N} by the sum over k € {[§],..., N — 1+ [£]}, resulting

n
ﬂ _
_1N”2 1 2rimk\\ OF
TN« o P\ TN ody Nk
) 2N (4.27)
N—14[& ,
1 H 1 2mimk oF (dns)
TN < + P\ TN Ody N

Note that the stability matrix (4.17) is a diagonal matrix whose eigenvalues are
the non-trivial entries in (4.27) and are given by (4.22). Since the sums in (4.27)
are Riemannian sums, we can pass to the continuum limit N — oo. Note that
Ee0.5,1.5] for k€ {[§],...,N — 1+ [§]} appears in the entries of the stability
matrix (4.27). For passing to the limit N — o in (4.27), we consider the domain

of integration [0.5,1.5] and do a change of variables resulting in

I;(m) = 05‘ gi ((0,1—38)) (1 —exp (2wims)) ds
B /05 25 ((0,)) (1 = exp (2mims)) ds

- /_0..5 ZCZ ((0,5)) (1 — exp (—2mims)) ds

fori = 1,2 and all m € N. Clearly the stability matrix (4.17) with entries I;,i = 1, 2,
is again a diagonal matrix and the eigenvalues \; = \;(m),7 = 1,2, in (4.23) are

given by the diagonal entries of the stability matrix (4.17). ]
Remark 9. In Theorem 1 we study the stability of the straight vertical line for the
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dynamical system (4.6) for a finite number of particles N, where the differentiability
of F at the cutoff R, is necessary for the definition of the eigenvalues in the discrete
setting in (4.22). Note that we cannot conclude stability/instability if R(X\;(m)) < 0
fori=1,2and allm =1,...,N — 1. By the assumptions on the force coefficients
fs, fi in Assumption 5 we can pass to the continuum limit N — oo in the definition
of the eigenvalues of the stability matriz and study the stability of the steady states
of the particle model (4.6) in the continuum limit N — co. If there exists m € N
for some i € {1,2} such that R(\;(m)) > 0, then the steady state is unstable in
the continuum limit. However, if R(A\i(m)) < 0 for i € {1,2} and all m € N
stability/instability of the steady state cannot be concluded since it is difficult to
give general conditions for R(\;(m)) — ¢ as m — w0 with 0 = 0 or o € R_\{0}.
If 0 = 0, we cannot say anything about the stability/instability of the steady state
in the continuum setting; see also similar discussions for the stability/instability of
delta-rings in the continuum setting in [Sim1/] and the discussion after Theorem
2.1 in [BSK"15]. In particular, linear stability for any N € N is not sufficient to

conclude stability in the continuum setting.

Note that the asymmetry in the definition of the eigenvalues (4.24) is due to
the asymmetric steady states in (4.14). For f = f; = f; the total force in (4.4)
simplifies to F(d) = f(|d|)d for d = (d, ds) € [—0.5,0.5]?. In this case, the gradient
of F' = (Fy, Fy) is a symmetric matrix (compare (4.25)) and, hence, the eigenvalues

of the stability matrix are real. Since

oFy  0F,

ody — od;
there exists a radially symmetric potential W (d) = w(|d|) such that FF = —VIW on
[-0.5,0.5]%. Hence, the stability conditions can be derived in terms of the potential

w and we have
trace(VF(d)) = f'(ld])|d] + 2f(|d]) = —Aw(|d]) = A1 + Ao

for d € [-0.5,0.5]? and the periodic extension F of F' can be considered on R2. For
fs = fi and radially symmetric steady states, this leads to identical conditions for
both eigenvalues \i, k = 1,2. For the analysis of these symmetric steady states,
however, it is helpful to consider an appropriate coordinate system such as polar
coordinates for ring steady states as in [BSK"15].

Note that the stability conditions for steady states depend on the choice of the
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coordinate system. Considering derivatives with respect to the coordinate axes as
in (4.25) seems to be the natural choice for straight line patterns, in contrast to
polar coordinates as in [BSK"15].

In the following, we investigate the high wave number stability of straight line
patterns for the particle model (4.6), i.e. the stability of straight vertical lines as
m — oo. This can be studied by considering the limit m — oo of the eigenvalues
(4.23) of the stability matrix (4.17) associated with the dynamical system (4.20).

Proposition 6. Suppose that the coefficient functions fs and f; are continuously
differentiable on [0,400) with f(|d]) = fi(|d]) = 0 for |d| = R. and fs = 0. The

condition

R

fils)ds <0 and fs(R.) =0 (4.28)
0

1s necessary for the high wave number stability of the single straight vertical line
(4.14), i.e. (4.28) is necessary for the stability of the straight vertical line for any

N e N and in the continuum limit N — 0.

Proof. The eigenvalues (4.23) of the stability matrix (4.17) associated with the

equilibrium of a single vertical straight line are of the form

R
A(m) = » f(s) (1 — exp(—2mims)) ds
R. 1 Re »
=2 i f(s)ds — Sy /_Rc 1'(|s]) exp(—2mims) ds
27r1imf(Rc) (exp(—2mimR,) — exp(2mimR,.))

for a function f: R, — R with f(|d|]) = 0 for |d| = R.. For high wave number
stability we require
R

f(s)ds<0  and |f'| is integrable on [0, R.].
0

Then, using the definition of the eigenvalues (4.23) this leads to the conditions
Rc Re
fi(s)ds <0 and fo(s) + fi(s)sds < 0. (4.29)

0 0

Integration by parts of the second condition in (4.29) leads to fi(R.) < 0 and the
conditions in (4.28) result from f; being repulsive, i.e. fs = 0. ]
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Remark 10. The necessary condition fs(R.) = 0 in (4.28) for a stable straight
vertical line is equivalent to the eigenvalue associated with fs to be equal to zero
in the high wave number limit. Hence, stability/instability of straight vertical lines

cannot be concluded in the continuum limit N — oo from the linear stability analysis.

The first condition in (4.28) implies that the total attractive force over its entire
range is larger than the total repulsive force along I. The second condition in (4.28)
implies that for high wave stability we require the total force at the cutoff radius R,
should not be repulsive along s which is identical to the assumptions on the cutoff
in (4.7).

In comparison with the high wave number conditions in (4.29) in the proof of

Proposition 6 the integrands for the stability conditions are multiplied by a factor
R(1 — exp(—2mims)) = 1 — cos(2mms) € [0,2].

Even if the necessary conditions for high wave number stability (4.28) are satisfied,
this does not guarantee that (A (m)), R(A2(m)) < 0 for all m € N and hence nec-
essary stability conditions for the single vertical straight line might not be satisfied
for all m e N.

The general stability conditions for straight vertical lines can be obtained from
the real parts of the eigenvalues (4.23) of the stability matrix (4.17). The condi-
tions (4.28) suggest that stability of the straight line is possible for particular force

coefficient choices. This will be investigated in Section 4.4.

Remark 11. Note that differentiable approzimations f, f5 of the force coefficients
fr and fa in the Kiicken-Champod model are defined in (4.10) and (4.11), respec-
twely. Setting f7 = 4 + fp and fi := xfi + [fr for some 0 < ¢ « R, and a
parameter x € [0,1] such that fs =0 on [0, R.), we consider ff, f¢ instead of fi, fs
in the definition of the real parts of the eigenvalues (4.24). We obtain the following
for the real parts of the eigenvalues of the stability matriz (4.17) in the Kiicken-
Champod model with total force (4.3) and the spatially homogeneous tensor field T
in (4.2):

R(A (m)) = 2 / C(Fa(s) + Fals) (1 — cos (~2mms)) ds,
R(Ao(m)) = 2 / C(Fa() + F(s) + xs(F () + s(F)(5)) (1 — cos (~2mms)) ds.

The necessary stability condition (4.28) implies that f(R.) = xf5(R.) + f&(R.) =0,
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consistent with the definition of the force coefficients (4.10) and (4.11) in the Kiicken-
Champod model. Hence, the necessary condition (4.28) for high wave number sta-

bility of a straight vertical line is satisfied in this case.

4.3.4 Instability of a single horizontal straight line

In this section we investigate the stability of a single horizontal straight line given
by the ansatz (4.15) which follows from (4.12) with 6 = 0.

Theorem 2. For N € N sufficiently large and in the continuum limit N — oo, the

single horizontal straight line (4.15) is an unstable steady state to the particle model
(4.6) for any choice of force coefficients fs and f, of the total force (4.4), provided

the total force is purely repulsive along s on [0, R,).

Proof. For a single horizontal straight line, we have

and the derivatives of the total force are given by

0 - filldgr]) + fi(Idjk )| djxl
a_le(dJk) = 0 5
o - 0
? fs(djr)

for djj. € [—0.5,0.5]%. Similarly as in Section 4.3.3 one can show that the eigenvalues
A1 = A1(m), A2 = Ag2(m) of the stability matrix (4.17) are given by

A (m) =2 / “(fi(s) + F(5)3) (1 — exp (—2mims)) ds,

Ao(m) =2 i fs(s) (1 — exp (—2mims)) ds
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for a cutoff radius R, € (0,0.5]. For high wave number stability we require

1 R. Rc
filRe) = — fi(s) + fl(s)sds <0 and fs(s)ds <0.

R Jo 0
The forces are assumed to be purely repulsive along s up to the cutoff R, i.e. f, >0

on [0, R.), implying
R

fs(s)ds > 0.
0

Hence, the single horizontal straight line is high wave number unstable. O]

4.3.5 Instability of rotated straight line patterns

In this section we consider the ansatz (4.12) where the angle of rotation 6 satisfies
(4.13), resulting in rotated straight line patterns. The entries of the stability matrix
(4.17) are given by

Li(m) = 2/0 ) SFF ((scos(0),ssin(0))) (1 — exp (—2mwims)) ds,

1
Re oF

Lim)=2[ 2
2(m) . 0dy

((scos(f),ssin(0))) (1 — exp (—2mwims)) ds,

where the derivatives of the total force can easily be determined by

O gy < [ F0+ il Y fidh 43

) = ) ( )
od od 2
1 Fuld)) : £(ldl) + )%,

d € [-0.5,0.5]* with the cutoff radius R. € (0,0.5]. In particular, the stability
matrix (4.17) is no longer a diagonal matrix in general. To show that the rotated
straight line pattern is unstable for 6 € (0, 7)\[¢, 7—¢] for some ¢ € (0, §) and N € N
sufficiently large and in the continuum limit N — oo, it is sufficient to consider the
high frequency wave limit and show high wave number instability. Denoting the
entries of I, by Iy and Iy for k = 1,2 with M = (1;, I3) the high frequency limit
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leads to
R. R
Iy =2 fi(s)ds +2 f1(s)scos? (9)ds,
0 0
Iy =2 f( )ssin (0) cos (6) ds,
0 (4.30)
Iy =2 fz( )ssin (0) cos (6) ds,
0
R
Iy =2 fs(s)ds +2 f (s)ssin® () ds.
0 0

Here, I13 = Iy = 0 for # = 0 and 6 = 7, i.e. for the straight horizontal and the
straight vertical line, respectively. Hence, the eigenvalues of the stability matrix are

given by 11 and I5 in this case whose value are given by

R

Iy = 2R fi(R.:), Ixn =2 fs(s)ds
0

for § = 0 and

Re

[11 =2 fl(s) dS, [22 = 2RCf8(RC)
0

for 0 = 7. This leads to the necessary conditions for high wave number stability
for 6 = 7 in (4.28), while due to Assumption 5 we obtain instability of the straight
horizontal line.

Note that for any 6 € [0,7) the eigenvalues Az, k = 1,2, are either real or
complex conjugated and thus the sum and the product of Ay are real. The condition
R(Ak) <0,k =1,2,is equivalent to trace(M) = A+ Ay < 0 and det(M) = A\ Ag = 0.

Hence, we require, for the stability of the rotated straight line,
[11 + 122 0 and ]11]22 — 112]21 = 0. (431)

For showing the instability of the rotated straight line with angle of rotation
0 € (0,m)\[¢,m — ¢] for some ¢ € (0, %) we show that the two conditions in (4.31)
cannot be satisfied simultaneously in this case.

Theorem 3. For N € N sufficiently large and in the continuum limit N — oo, the
single straight line (4.12) where the angle of rotation 6 € (0,m)\[¢, T — @] for some
¢ € (0, %) satisfies (4.13) is an unstable steady state to the particle model (4.6) for

any force coefficients fs and f; satisfying the general conditions for force coefficients

in Assumption 5 and the conditions in (4.28).
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Proof. Note that we have

R

" f(s)s sin? (6) ds = sin® (9) (fs<Rc>Rc " s ds>

0 0

by integration by parts. For # = 0 and f;(R.) = 0 we have

R

Iy + Iy = 2R fi(R.) + 2 fs(s)ds >0,
0

while for 0 = % we have

Re

[11 + [22 = QRCfS(RC) +2 fl<8) ds <0
0

by (4.28). Hence, there exists ¢ € (0,%) such that Iy; + I» > 0 on (0,¢). Since
cos?(0) = cos?(m — 6) and sin?(6) = sin?(m — ) we have I;; + Iy, > 0 on (7 — ¢, 7),

implying that stability may only be possible on [¢, ™ — ¢]. ]

4.4 Stability of vertical lines for particular force

coeflicients

We have investigated the high wave number stability for m — oo in Section 4.3.
Since only vertical straight lines for the considered spatially homogeneous tensor
field T in (4.2) can lead to stable steady states for any N € N we restrict ourselves
to vertical straight lines in the following. As a next step towards proving stability
we now consider the stability for fixed modes m € N.

Due to the form of the eigenvalues in (4.23) no general stability result for the sin-
gle straight vertical line for the particle system (4.6) with arbitrary force coefficients
fs and f; satisfying Assumption 5 can be derived. Thus, additional assumptions on

the force coefficients are necessary.

4.4.1 Linear force coefficients

To study the stability of the single straight vertical line for any N € N, we consider
linear force coefficients satisfying Assumption 5. To guarantee that the force coeffi-
cient is differentiable, required for using the results from Section 4.3, we consider the

differentiable adaptation (4.7) for a given linear force coefficient, leading to a linear
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force coefficient on [0, R. — €] for some £ > 0, a cubic polynomial on (R, — ¢, R,),

and the constant zero function for |d| > R.. This leads to the following conditions.

Assumption 6. For any € > 0 with ¢ € R., we assume that the force coefficients

are linear on [0, R, — €], i.e.

.
al’d‘ +b17 |d’ € [OaRc_S]a
(2b; + 2R.a; — azﬁ)—(wgf‘:)s

fr(ld]) == <
+(3b, + 3Reay — 2a,e) W=EE |d) e (R, — &, R,),
Oa |d’ = RC’
. (4.32)
as|d| + by, d| € [0, R. — <],
() = (2bs 4+ 2R.as — ass)“dt—fc)?)
T +(3bs + 3Rea, — 2a,6) 11D |d) e (R, — ¢, R,),
0, d| = R.,

\

for constants a;, as, b, bs. Since f; and fi are short-range repulsive, we require
by >0, bs>0.

Besides, for physically realistic force coefficients the absolute values of f7 and f: are

decaying, i.e.
a; <0, as;<0.

Note that for the short-range repulsive, long-range attractive force coefficient
fi, we have q;R. + b; < 0 and in particular a;R. + b, is of order O(1). Hence, the
adaptation f; of f; for f; linear is not negligible. However, due to the concentration
of particles along a straight vertical line the adaptation f; acting along the vertical
axis does not influence the overall dynamics provided 0 < ¢ « R.. For the force
coefficient fs, the adaption f¢ of f; is negligible if asR. + bs is of order O(e) and also
results in the same stability /instability properties numerically; see Section 4.5.2. If
asR. + b is of order O(1), then the adaptation is not negligible, but the numerical
results in Section 4.5.2 illustrate that we obtain the same stability /instability results
for f7 and f.

Remark 12. Note that the modelling assumptions in Assumptions 5 and 6 can be

applied to linear repulsive and attractive force coefficients f5 and f§ as in (4.32),
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where the total force of the form (4.3) consists of repulsion and attraction forces.
That is, for e > 0 we define

-

ag|d| + bg, |d| € [0, R. — €],
F(ld]) = 4 (2bR+2RCaR—aR€)(|d|;—3RC)3 2
+(3bg + 3Rear — 2age) 1 UEL - 1d) e (R, — ¢, R,),
0, d| > R,,
. (4.33)
aald| + ba, |d| € [0, R. — €],
F(1d]) — | (26A+2RcaA—aA5)(|d|;—3R°)3 2
+(3ba + 3Rean — 2a4¢) WUEL |d| € (R, — ¢, R.),
0, d| > R,,

\

for constants ax,ar,ba, br and we require
fr=0 and f5<0
for all e > 0 with € < R, implying
ars+br =0 and ass+by <0 for se[0,R], (4.34)
and, in particular,
br >0 and by <O. (4.35)

For realistic interaction force coefficients fy, and f3 we assume that their absolute

values decrease as the distance between the particles increases, implying

ar <0 and ay >0 (4.36)
by the definition of f5, and f5 in (4.33) and by the condition for br and by in (4.35).
Combining the assumptions on aa, ar in (4.36) and ba, bg in (4.35), condition (4.34)
reduces to

arBR. +br =0 and asR.+ by <0.

Further we assume that f5 + f§ is short-range repulsive, long-range attractive for
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any € > 0 with € € R, 1.e.
(fa+fr)(0) = ba+br >0, (fa+fr)(Re—¢) = (aa+agr)(R.—¢)+ba+br <0
for all 0 < e € R. implying

ba+br>0 and as+agr<0O. (4.37)

For any € > 0, the force coefficient x f5 + f5 is purely repulsive along s on [0, R, —¢]
if x € [0,1] is sufficiently small since f5 is repulsive. Note that (4.37) implies

Xaa+ar <0, xbsa+0br>0 forall xe]|0,1]

by the positivity of br and by the negativity of ag in (4.35) and (4.36), respectively.

Since
fedldl) = fadldl) + fr(ld]) = (aa + ag) [d] + ba + br
and
fs(dl) = xfadldl) + fr(ld]) = (xaa + ag) [d| + xba + br
for |d| € [0, R, — €], we have
ap=as+ar <0, as=xaa+ar<0, b =by+br>0, by=xbs+0br>0

as in Assumption 6.

For investigating the stability of the straight line for any N € N, we consider the
real parts of the eigenvalues in (4.24), i.e.
R

R(A(m)) =2 i 17 (s) (1 = cos (—2mms)) ds,

R(Az(m)) = 2/0 (f5s) + s(£5) () (1 — cos (~2mms)) ds.

Note that the coefficient functions of the integrands in the definition of the eigen-

values are given by
fi(s)=ais+by,  fo(s)+s(f9) (s) = 2ass + by
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for s € [0, R. — €] with a;,as <0, b, bs > 0, and

~R,)3 R
fi(s) = (2b + 2Reay — alg)(se—?)) + (3by + 3Rca; — 2@15)(88—2)7
~ R, R
fSE(S) + S(fsa)/(s) = (2()5 +2R.a, — asg)% + (3[)5 + 3R.a, — 2&86)@6—2)
_ R
£ 3(2b, + 2Rua, — a,e) T
£
5(s— Ro)

+ 2(3bs + 3R.as — 2a4¢)

for s € [R. — ¢, R.] by Assumption 6. Since f7(s) and f(s) + s(fZ)'(s) are bounded
on [R. — ¢, R.], we obtain

R(Ai(m)) = 2/0 Cie(als +b;) (1 — cos (—2mms)) ds + O(e),

R(Aa(m)) = 2 /0 " (25 + by) (1 — cos (—27ms)) ds

. M /RC (3(8 - R.)? N 5 (s ; RJ) (1 — cos (—2mms)) ds + O(e).

2
€ Ro—c €

(4.38)

Note that s(f¢)" is of order O(1/¢) on [R. — ¢, R.] and hence the integral over
[R. — €, R.] also contributes to the leading order term for R(A2(m)). Here, f(s)
and f5(s) + s(f:)'(s) are linear functions on [0, R. — €] of the form f|j .- —
R, s — as + b for constants a < 0 and b > 0. In particular, ®(\;) and the first term
in R(A2) are of the form

R.—e
2/ (ags + bg) (1 — cos (2rms)) ds, (4.39)
0
where

ayp = ap, o = 2613, bl = bl, bg = bs. (440)
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For ease of notation we drop the indices of a, and b, in the following. Note that

/0 o (as +b) (1 — cos (2rms)) ds
_ 2mm (wm(R. — ) (a(Re — €) + 2b) — (a(Re — &) + b) sin 2rm(Re — €))) (4.41)

4m2m?
a— acos (2rm(R. — ¢))

472 m2

In the limit m — oo, all terms in the second line of (4.41) vanish except for the first

term. Since R. > 0, we require

a<—b

R, —¢

for high wave number stability for any ¢ > 0 with ¢ « R.. In particular, this
condition is consistent with the necessary condition for high wave number stability
in Proposition 6 for arbitrary force coefficients f: and f; satisfying Assumption 5.

In the limit € — 0, it reduces to
< —b—. 4.42
“ R ( )

Since R, € (0,0.5] and b > 0, (4.42) implies that a < 0 is necessary for high wave

number stability. Hence, we can assume
a<0 and b>0

in the following.

Lemma 3. Let b > 0 and R, € (0,0.5]. Fore >0, set

g=(m) := 27m (7rm(R, — €)* — (R, — ) sin(2rm(R. — €))) + 1 — cos(2mm(R. — €)),
he(m) :=2mm (2rm(R. — €) — sin(2rm(R, — €))) .
(4.43)

Then,

/RCE (as +b) (1 — cos (2mrms))ds < 0 (4.44)
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1s satisfied for allm € N and all e > 0 with € € R, if and only if a < ag with

>

o -(m) 2b
ag := —b max (m) < "R, <0. (4.45)

Proof. Note that the numerator of (4.41) is of the form ag.(m)+0bh.(m) for functions
ge and h., defined in (4.43). Condition (4.44) is equivalent to

for all m e N.

Herein, h.(m) = 0 for all m > 0 since h. is an increasing function. Further note
that

ge(m) =27 (rm(R, — €)* — (R, — &) sin(2mrm(R. — €)))
+2mm (7(R. — €)* — 2m(R. — €)* cos(2mm(R, — €)))
+ 27(R, — ¢) sin(2rm(R. — €))
= 47°m(R. — €)* (1 — cos(2rm(R. — €)))

is nonnegative implying that g. is an increasing function with ¢g.(0) = 0. In partic-
ular, g. and h. are nonnegative functions for all m € N. Hence, (4.44) is satisfied
for all m € N if and only if a < ag. Note that

he(m) 2

I -
moe go(m)  Re—¢’

implying that

sup he(m) eR
meN gs(m)

by the nonnegativity and continuity of g. and h..
Let R. € (0,0.5] and € > 0. We have

- he(m) - 2tm (2rm(R. — €) — sin(2rm(R,. — €)))
meN g.(m) =~ 2mm (rm(R, — €)? — (R, — &) sin(2nm(R, — €))) + 2
_ 2 <1 . mmsin(2rm(R, —€)) — Ris >
R.—¢ 2mm (rm(R. — ¢) — sin(2rm(R. — ¢))) + Rf_a

for all m € N. Since R. —¢ € (0,0.5) there exists m € N such that 7m sin(2rm(R. —
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4.4. Stability of vertical lines for particular force coefficients

g)) — ﬁ > 0 and hence

he(m) 2 2
max > > —

meN g.(m)  R.—e¢ R,

for ¢ > 0 with ¢ « R.. For R, € (0,0.5), we obtain

. he (m)
lim max
e—0 meN gg(m)

2
> —.
R,

For R. = 0.5, we have

. he(m) ot m even,
S0 ge(m) | i o 2 dd
€ eRir L < R Mmodd,
implying that
he(m) 2

lim max = —.
e—0 meN ge(m) R,

Hence, a < ag is equivalent to the necessary condition (4.42) for high wave number
stability for R, = 0.5. O

Remark 13. For the stability of line patterns with force coefficients f<, f; of the
form (4.32), we require R(A\x(m)) < 0 fork = 1,2 for the real parts of the eigenvalues
R(Ak(m)), k =1,2, in (4.38). Note that the nonnegativity of the leading order term
of R(\1) which is of the form (4.39) is equivalent to condition (4.44) in Lemma
3. Similarly, the nonnegativity of the first term in (4.38) which is also of the form
(4.39) is equivalent to condition (4.44) in Lemma 3.
From the proof of Lemma 3 it follows that
2 hs<m)

< ma; .
R, melili ge(m)

(4.46)

The inequality in (4.46) is strict for R. — e € (0,0.5), i.e. a necessary condition for
(4.44) to hold for R. — ¢ € (0,0.5) is given by

For R, = 0.5 and ¢ — 0, condition (4.44) holds for any a < 0 satisfying the

necessary condition (4.42) for high wave number stability. If the necessary condition
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(4.42) for high wave number stability is satisfied with equality, i.e. a = *12%—11, the
leading order term of the left-hand side of (4.38) wanishes for ¢ — 0 in the high

wave limit and lower order terms have to be considered.

In Figure 4.2, we investigate the scaling factor of ag, defined in (4.45), numer-
ically. In Figure 4.2(A) the quotient hg/go is shown as a function of m € N for
different values of the cutoff radius R.. Note that for smaller values of R, the max-
imum of hy/go gets larger as shown in Figure 4.2(B). In Figures 4.2(C) and 4.2(D)
we consider the quotient hg/go scaled by R.. Figure 4.2(C) shows that R.hg/go — 2
as m — o0, independently of the value of R., and that the maximum of R.hq/go is

obtained for smaller values of m € N in general. The value of

R.max fro (m)
meN. go(m)

is shown in Figure 4.2(D) as a function of R.. In particular, the scaled maximum is
larger than 2 if and only if R, € (0,0.5) and is equal to 2 for R. = 0.5. Hence, this
numerical investigation is consistent with the results in Lemma 3.

Applying Lemma 3 to the specific form of the stability conditions for a sin-
gle straight vertical line leads to the following stability results for the linear force
coefficients (4.32).

Proposition 7. For R. € (0,0.5), the single straight vertical line is an unstable
steady state of (4.6) for any N € N sufficiently large and in the continuum limit
N — oo, where the forces are of the form (4.4) for any linear coefficient functions
o, 7 with 0 < ¢ « R, such that Assumption 6 is satisfied. In particular, the
single straight vertical line s an unstable steady state for force coefficients f<, fi for

R. € (0,0.5) in the limit ¢ — 0.

Proof. Note that the leading order term of ®(\;(m)) and the first term of R(Aa(m))
in (4.38) are of the form (4.39) with parameters (4.40). For stability we require
R(A\r) <0 for k=1,2.

Let us consider the nonnegativity of R(Ay(m)) in (4.38) first. Note that the second
leading order term of R(A2(m)) in (4.38) can be rewritten as

0

12(bs + R.ay) /_1((68 + R.)s* + (es + R.)s) (1 — cos (2rm(es + R.))) ds (4.47)

= —2(bs + Reas)R. (1 — cos (2rmR,)) + O(e).
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Figure 4.2: Scaling factor of ag in (4.45) as a function of R, where gg, ho are defined

in (4.43).
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Stability analysis of line patterns

Hence, R(A2(m)) is of the form

R(A2(m)) = —2— (2a590(m) + baho(m)) — 2(bs + Reas) Ra (1 — cos (2rmRy)) + O()

472 m2

by (4.41), where gg, hg are defined in (4.43). For the nonnegativity of the leading

order term of R(Az(m)) we require

s (290(7”) ~ R(1 - cos (27rch))) + b, (M ~ R.(1 — cos (zmec))) <0,

472m?2 ¢ 4A2m?

which can be rewritten as

asgo(m) + bshg(m) <0,

go(m) 1= 2mm (2rmR? cos(2rmR.) — 2R.sin(2rmR.)) + 2 — 2 cos(2rmR.),

ho(m) := 2mm (2rmR,. cos(2rmR,) — sin(2rmR,)) .

For m sufficiently large, we have
asgo(m) + bsho(m) = 47’m?R? cos(2rmR,)a, + 4m*m2R, cos(2rmR.)b, + O(m)
and by only considering the leading order term we obtain the condition
R.cos(2rmR.)as + cos(2rmR,)bs < 0.

Note that there exist infinitely many m € N such that cos(2rmR.) > 0 and such
that cos(2rmR,.) < 0, independently of the choice of R. € (0,0.5). Hence, we can
conclude asR. + by = 0. In this case, the second leading order term of R(Ay(m))
vanishes by (4.47) and thus, it is sufficient to consider $(A;(m)) and the first term
of R(A2(m)) in (4.38). Applying Lemma 3 together with Remark 13 for R, € (0,0.5)
to the linear force coefficients f;, f¢ in (4.32) results in the stability conditions
2b bs

a; < _Ecl and ag < R (4.48)
for any e > 0 which are necessary for the nonnegativity of $(A;(m)) and the (first)
leading order term of R(A\a(m)). Hence, the single straight vertical line is unstable

for R. € (0,0.5) and 0 < & « R,, both in the continuum limit N — oo and for any
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4.4. Stability of vertical lines for particular force coefficients

N e N sufficiently large. Similarly, we obtain instability of straight vertical line
patterns for force coefficients f¢, ff for R, € (0,0.5) in the limit ¢ — 0. [

Remark 14. For R. = 0.5, we cannot conclude stability/instability of the straight

vertical line for the linear force coefficients in (4.32) with as = —z—i, while we can
conclude instability for as —%Sc. To see this, note that for R. = 0.5 the calculations
in the proof of Proposition 7 imply as = —Ib{—i as a necessary condition for stability;
from Lemma 3 we obtain
2b bs
a<—— and ay < ——,
"= R, R,
and together with the condition that f: is purely repulsive we get the necessary
conditions
2 bs
a<—— and as=—— 4.49
ST R (4.49)

for the stability of the straight vertical line. Note that the conditions (4.49) are
consistent with each other since a;,as < 0 and b;, by > 0 by Assumption 6 and it is
possible to choose the parameters a;, as, by, bs in such a way that both (4.49) and the
assumptions on the force coefficients f:, fi in Assumption 6 are satisfied. In this

case, we have

fi(s) + s(£7)(s) = as(2s = 0.5)
for s €[0,0.5 — €] with as <0 and

(s — R.)?

2

(s — R.)’ s(s — R.)?

2

—_ Rc)
9

—4a58(s

fi(s) +5(f3) (s) = —as — 2a, — 3a,

for s €[0.5 —¢,0.5] by Assumption 6. Clearly, the leading order term of R(Aa(m))
vanishes in the high wave limit m — oo and lower order terms in £ have to be

considered. An easy computation reveals that

0.5

lim R(Az(m)) =2 [ fi(s) + (/) (s) =0 (4.50)

m—00 0

for any € > 0 and as € — 0. Further note that using (4.50), R(Aa(m)) reduces to
0.5
ROw(m)) = =2 [ (F5(5) + (/7)/(5)) cos (2mms) .
0
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We obtain

0-5—¢ —0.5ase + ase? + O(e?), m € 2N,
/ as(2s — 0.5) cos (2mrms) ds =
0

— 5 + 0.5a,6 — a,e® + O(e?), me2N+1,

0.5 3 2 5. 2 3
— R, - R, Zase” + O(e?), me 2N,
—as/ (s 5 ) + 2<S ) cos (2mms) ds = 2 ()
0.5—¢ € £ Sae?+0(),  me2N+1,

0.5 2 3. .2 3
— R, —0.5ase + Jase” + O(e°), m e 2N,
—3as / M cos (2mrms) ds = : (=)
0.5—¢ € 0.5ase — 3a,e? + O(e®), me2N+1,

0.5 4 2 3
— R, ase — sa.e” + O(e?), m € 2N,
—4(15/ sls = Re) cos (2rms) ds 3 ()
0.5-¢ € —ase + 3a,e? + O(e%), me2N+1,

implying that

O(e?), m e 2N,

——5 +0(%), me2N+ 1.

/0 . (fi(s) + S(f;)’<s)) cos (2mms) ds =

Since the real part of the largest eigenvalue R(Ao(m)) is zero in the high wave number
limit and it vanishes in the limit ¢ — 0 for any m € N, we cannot conclude stabil-
ity/instability of the straight vertical line for R, = 0.5 and ¢ > 0 or e — 0 in the
continuum limit N — o or any N € N sufficiently large. However, the numerical

results in Section 4.5.2 suggest instability for € > 0 and in the limit € — 0.

Since we have the relations f; = f§ + f; and f; = xf3 + fi between the force
coefficients f7, f5 in the general force formulation (4.4) and the total force (4.3) in
the Kiicken-Champod model with repulsive and attractive force coefficients fj and

15, respectively, we have
ap = aa+agr, as=xas+ar, b =0ba+br, bs=xba+bg.

Hence, Proposition 7 leads to a similar statement for the forces in the Kiicken-

Champod model.
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4.4. Stability of vertical lines for particular force coefficients

Corollary 5. For R. € (0,0.5) the single straight vertical line is an unstable steady
state of (4.6) for any N € N sufficiently large and for the continuum limit N — oo,
where the forces are of the form (4.4) for any choice of parameters in the definition
of the linear coefficient functions 5, f§ in (4.33) with 0 < e <« R, ore — 0. For
R. = 0.5, the condition

as+agr < —Z(bATtbR) and xas+ap = —XbAT—ZbR
in addition to the assumptions on aa,ar,ba,br tn Remark 12 is necessary for the
stability of the single straight vertical line for force coefficients fg, f4, where 0 <
e & R. ore = 0. This does not quarantee the stability/instability of the straight
vertical line for force coefficients fg, f3 with 0 < e « R, ore — 0 for R, = 0.5 and

N € N sufficiently large or in the continuum limit N — 0.

4.4.2 Algebraically decaying force coefficients

Since the straight vertical line is unstable for N € N sufficiently large and for N — o
for the differentiable force coefficient f¢, defined in (4.32) along s, which is linear on
[0, R. —¢] for R. € (0,0.5) and £ > 0, we consider faster decaying force coefficients

along s in the following. In this section we consider

c

S d :—b
i) = o

for a > 0, b > 0, and ¢ > 0. To obtain a differentiable force coefficient f on (0, )

we consider the modification in (4.7), i.e.

-

(1+:Id|)b7 d| € [0,R, — €],
abc d—Re)? d—Ro)?
f€(|d|) = _(1+a(Rcbfs))b+1 <(| ng ) 4 ( |£ ) )

ey (U 43U dl e (R e o).

(1+a(Re—2))’ e &2

0, |d| = R.,

\

where R, € (0,0.5]. Note that for this algebraically decaying force coefficient fZ, the
necessary condition f¢(R.) = 0 in (4.28) for high wave number stability of a straight
vertical line is satisfied. To guarantee that the term a|d| for |d| € [0, R.] dominates
the denominator and to avoid too large jumps we require a » 1 additionally. The

assumption a » 1 also guarantees that fS(R. —¢) « 1. In this case, differences
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between the adaptation f; and the algebraically decaying force coefficient f, and
their derivatives (f¢)" and f!, are small. Without loss of generality we can assume
that ¢ = 1 since this positive multiplicative constant leads to a rescaled stability
condition but is not relevant for change of sign of the eigenvalues. Hence, we consider

the algebraically decaying force coefficient

-

(4.51)

1
ke dl € [0, R. — <],
~ e (L + ()
el = { AP

| (2<|d|—Rc)3 . 3<Idl—Rc>2> , |d| € (R.— e, R.),

(1+a(Rc—e))” €3 €2

0, |d| = R,

\

in the following.

Proposition 8. For the single straight vertical line to be a stable steady state of
(4.6) with forces of the form (1.8) for any n € N sufficiently large and for the
continuum limit N — oo with algebraically decaying force coefficients f5 of the form

(4.51) it is necessary that

2
1 _ .
b > and a(b—1)<RC

Proof. Because of the definition of the eigenvalues (4.24) we consider

Re
/ (f(s) + $(£5)(5)) (1 — cos (—2mms)) ds
0 (4.52)

_ / sl - 5) (1 cos (~2mms)) ds + O(e).
0 (1+as)

The linear function 1 + as(1l — b) is positive for s € (0, s9) and negative for s €

(s0, R. — ¢) for all € > 0, where

1

S ab-1) € (0, Re),

S0

implying b > 1. Note that the integral on the right-hand side of (4.52) can be

[ aas= [Moas | jc_gg<s> s
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for any € > 0, where

1
§) = ——= (1 +as(1 —0)) (1 —cos(—2mms
9(s) 0t as)™ ( (1—=0)( ( )
is nonnegative on [0, sg] and not positive on [sg, R, — €] for any ¢ > 0 by the

definition of sy and the fact that 1 — cos (—27ms) € (0,2). Setting

1

)b-i—l’

"=

note that h(R.) < h(sg) < h(0) = 1. A lower bound of the integral can be obtained
by estimating h(s) on [0, so] by h(sg) due to the nonnegativity of the integrand,
and since the integrand changes sign at sy the factor h(s) can be replaced by its
maximum on [sg, R, — €] for ¢ > 0, i.e. by h(sg). Hence, a lower bound of the

integral in (4.52) is given by

m/o o (1 +as(1—0))(1—cos(—2mms))ds + O(e)
B 1 (27Tm (mm(R. —€) (p(Re — €) + 2q))
(1+ aso)bH 4m*m?
L P pcos (2rm(R. —¢)) — QWTWEI;(EC — &) + ¢)sin 2rm(R. — 5))) + O

with p = a(1 — b) and ¢ = 1, where the explicit computation is analogous to the
discussion of the linear force coefficients in (4.41). For large values of m the first

term of the above right-hand side dominates and we require
pR.+2¢g=a(l-b)R.+2<0

for all e > 0. This concludes the proof. O]

In the following, we can restrict ourselves to algebraically decaying force coef-
ficients (4.51) with @ > 0, b > 1 due to Proposition 8. We show that the straight
vertical line (4.14) is an unstable steady state for any N € N sufficiently large and
in the continuum limit N — oo in this case. Due to the definition of the eigenvalues
in (4.24) in Theorem 1 it is sufficient to show that there exists m € N such that

Rc.—e¢
0< /0 (fe(s) +s(f3)(s)) (1 — cos (—2mms)) ds
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for all 0 < ¢ « R.. This is equivalent to showing that there exists m € N such that

Re—e 1

0 < lim j (1 +as(l—0))(1—cos(—2mms))ds. (4.53)

=0Jo (1+as

is satisfied.

Lemma 4. For any a > 0, b > 1, and R, € (0,0.5] there exists m € N such that
(4.53) is satisfied.

Proof. We denote the incomplete Gamma function by

0
F(y,z)z/ sv"Lexp(—s)ds

for y € R and z € C. Then the right-hand side of (4.53) can be written as

1
- . (2a sin(—2mmR,)
darm (1 + aR.)

L [Sm (2 m) . <01F <_b’ 2i7rm) vor (_b 2im(1 + aR. )m))
a a
+sin ( ) (cgr (1 —b, Qizm) +eT (1 oy, A aR m))
+ cos ( ) <c5r (—b, %Zm) + ol (—b 2im(1 + “R m))
+ cos ( ) <c7F <1 — b, 2z'7rm) + ¢l <1 — b, 2m(1 +ali)m ))])
a o a

for constants ¢; € C,7 = 1,...,8, depending on a,b, and R., but independent of

m where not all constants ¢; are equal to zero. Note that all incomplete Gamma
functions above are of the form I'(—y,iz) for y, z € R with y, z > 0. Integration by

parts yields
D(—y,i2) = (iz) 7" exp(—iz) + (—y — YI(—y — 1,142),
where

0
/ sV 2exp(—s)ds| < [(i2) Y2 exp(—i2)|.

In particular, we have
[(—y,iz) = (iz) 7Y 'exp(—iz) (1 +0((i2)™h),
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implying
R(C(—y,iz)) =éz ¥t (1 + (’)(zfl)) ,

where ¢ = R(i7¥"!exp(—iz)) € R. This leads to the approximation

2 21 2im(1
R [sin ( Wm) mtl <01F <—b, mm) + ol (—b, im(1 + aRc)m>>
a a a
2 21 2im(1
+ sin ( 7Tm) m® (03F (1 — b, mm) + 4 (1 — b, in(1 + aRc)m>)]
a a a

— & sin (27”") (1+0(m™))

a

for some constant ¢; € R. The other terms of the right-hand side of (4.53) can be

rewritten in a similar way, resulting in

1 2 2
— : (—2a sin(2rmR..) + ¢ sin <%> + Gy COS (%) + O(m_l)>

damm (1 + aR,)

for constants ¢, ¢; € R, independent of m. Note that there exist infinitely many m €
N such that ¢; sin (%Tm) +Cqy cOS (%Tm) > ( and such that ¢; sin (%Tm) +Cqy cOS (%Tm) <
0. If R, = %, the second factor consists of the sum of a sine and a cosine function
of the same period length and hence for R, € (0, 0.5] given, there exists m € N such
that the second factor is negative and the leading order term of (4.53) is positive.
If the first term in the second factor is of different period length as the second and
third summand, there also exists m € N such that the second factor is negative. In

particular, this implies that there exists an m € N such that (4.53) is satisfied. [

Corollary 6. For any cutoff radius R. € (0,0.5] the single straight vertical line
is an unstable steady state of (4.6) for any N € N sufficiently large and for the
continuum limit N — oo with forces of the form (1.8) with algebraically decaying
force coefficients fS of the form (4.51) with b > 0 and for any € > 0 or in the limit
e — 0.

4.4.3 Exponential force coefficients

In this section we consider exponentially decaying force coefficients along s and
short-range repulsive, long-range attractive forces along [ such that the necessary

condition (4.28) for high wave number stability is satisfied.
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To express the force coefficient along [ in terms of exponentially decaying func-

tions we consider

rcll exp(—ey, |d|) + ¢, exp(—ey,|d]), |d| € [0, R. — €],
Fe(ld) = ) Z?Zl(—scljelj + 2¢;,) exp(—ey, (R, — 6))(|d|;—3R°)3 2
+ 307 (—ecyyer, + 3r,) exp(—er, (R. — €)= |d] e (R — ¢, R,),
0, |d| > R.,
(4.54)

for parameters ¢;,, ¢,, €, and ¢, with ¢, > 0 and ¢;, > 0. Note that exponentially
decaying functions are either purely repulsive or purely attractive, depending on the
sign of the multiplicative parameter. Since we require f; to be short-range repulsive,
long-range attractive we consider the sum of two exponentially decaying functions
here. Without loss of generality we assume that the first summand in (4.54) is
repulsive and the second one is attractive, i.e. ¢, > 0 > ¢;,. To guarantee that f;
is short-range repulsive we require ¢;, > |c;,|. For long-range attractive forces we
require that the second term decays slower, i.e. e;, > ¢;,. These assumptions lead

to the parameter choice
a, >0>c,, ¢, >|c,|, and e, >e¢, >0. (4.55)

Note that we have

R

i f7(s) (1 — cos (—2mms))ds = /0 . fi(s) (1 —cos (—2mms))ds + O(e)

due to the boundedness of ff on [R. — €, R.] and hence it is sufficient to consider
the integral on [0, R.—¢] for € > 0 sufficiently small and in the limit ¢ — 0. Further

note that for constants ¢, ¢; € R we obtain

c

/0 a cexp(—es)ds = (1 — exp(—e (R, — €))) o

Hence, we require

(1 —exp(—ey, (R. —€))) % + (1 — exp(—ey, (R. — €))) o <0
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for all € > 0 as in the necessary condition for high wave number stability, implying

a _ la

~
651 612

Since
Re—¢
/ c, exp(—ey, s) (1 — cos (—2mms))ds > 0,
0
Rc.—e
/ cr, exp(—ep,s) (1 — cos (—2mms))ds < 0
0

for all e > 0 and m € N the parameters ¢, c;,, €, ¢, in (4.55) can clearly be chosen

in such a way that
R.—¢
/ fi(s) (1 —cos(—2mms))ds <0 (4.56)
0

is satisfied for all m e N and 0 < ¢ « R,, where f; is defined in (4.54) with a cutoff
radius R. € (0,0.5]. Note that the adaptation f; of f; is not negligible. However, due
to the concentration of the particles along a straight vertical axis, this adaptation
does not change the overall dynamics.

For the purely repulsive force coefficient f: we may consider a force coefficient

of the form
fo: Ry =R,
rcexp(—es|d|), dl e [0.R, — <],
. —cegexp(—eg(R. — €)) <(‘d‘;2Rc)3 4 (Idl;Rc)2>
PN et n o) (U 43U e (),
) > ..

\

by considering (4.7) for exponentially decaying force coefficients. Since

Rq.—¢
R(Az(m)) = 2/0 (f£(s) + (f2)(5)s) (1 — cos (=2mms)) ds + O(e),

we require the nonpositivity of R(Ay(m)). Note that
Rc—e¢
[ U2+ 2 ()9 (1 cos (-2mms) ds
0
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8e m2m?

(4m2m? + e2)?

= (R. —¢)exp(—es(R. —€)) —
_exp(—es(Re —¢))
(4m2m? + €2)?
—2rm(4m*m?(es(R, — ) — 1) + €2(es(R. — €) + 1)) sin(2mm(R, — ¢))
—(R, — ¢)(47*m* + ei)Z] ,

[es(4m*m*(es(R. — €) — 2) + €2(R. — €)) cos(2rm(R. — ¢))

implying that we have fORcfs (fe(s) + (f5)(s)s) (1 — cos (—2mms))ds > 0 for any

e > 0 and m € N sufficiently large, i.e. high wave stability cannot be achieved.
However, note that exp(—esR.) can be assumed to be very small for e, > 0 suffi-

ciently large. This motivates us to consider a force coefficient function of the form

[ Ry = R,
cexp(—esld]) — cexp(—es(R. — €)), |d| € [0, R. — €],
FE(ld) = § —ce,exp(—e,(R. — &) (WL + WRL) - jdl e (R, — <, R.),
0, |d| = R.,

(4.57)

with ¢ > 0 and e; > 0. Here, the first term in (4.57) represents the exponential decay
of the force coefficient. To approximate the high wave number stability condition,
we require fs(R. —¢) = 0 which can be guaranteed by subtracting the constant
exp(—es(R. — €)). Note that we can choose e; » 1 such that exp(—es(R, — ¢€)) is
a small positive number. Subtracting the constant cexp(—es(R. — €)) as in (4.57)
leads to fS(R. —¢) = 0. This additional constant only changes the force coefficient
f¢ slightly and does not change its derivative (f¢)" on [0, R. — ], i.e. fI = (f)
on [0, R. — €]. Note that the differences between fZ and f;, and (f¢) and f. on
[R. — &, R.] are negligible provided e, > 0 is chosen sufficiently large such that

esexp(—es(R. —€)) « 1. Thus, we make the following assumption in the following.

Assumption 7. We assume that the purely repulsive, exponentially decaying force

coefficient fs along s is given by (4.57), i.e.

[ Ry = R,
cexp(—esld|) — cexp(—es(R. — €)), |d| € [0, R. — €],
S3(1dl) = § e, exp(—ey(R. — <)) (WL + WERE) - jdl e (R, <, R.),
0, |d| = R,

148



4.4. Stability of vertical lines for particular force coefficients

where ¢ > 0 and es » 1. For the forces along | we either consider linear or exponen-

tially decaying force coefficients. For a linear force coefficient we consider (4.49),

1.€.
ai|d| + by, |d| € [0, R. — €],
f’f(’d‘) (le + 2R.a; — alé)(ldlg—fc)g
I = 4
+(3b, + 3Roa; — 20,) WU=RL |d) e (R, — ¢, R,),
07 ‘d‘ > RC?

\

where we assume that the parameters a;, by satisfy the sign conditions a; < 0, by > 0
in Assumption 6 as well as the necessary stability condition along [ in (4.49). For an
exponentially decaying force coefficient f; we assume that f7 is of the form (4.54),
i.e.

Cl exp<_€l1 ‘d|) + C, eXp<_€lz|d|>7 ‘d‘ € [07 R, — 5]7
Z?Zl(—gcljelj + 2¢,) exp(—ey, (R. — 5))(%;%)3
+ 307 (—ecyyer, + 3ar,) exp(—er, (Re — ) “5E |d| e (R. — ¢, R),

0, |d| = R.,

fi(ldl) = 5

\

for parameters
ca, >0>c,, ¢ > oy, and e, >e, >0

as in (4.54)—(4.55) such that the necessary stability condition (4.56) for a straight
vertical line is satisfied for allm e N and 0 < ¢ € R,.

Theorem 4. For the cutoff radius R. = 0.5, the straight vertical line is stable for the
particle model (4.6) for any N € N sufficiently large with the exponentially decaying
force coefficient fE in (4.57) along s and a linear or exponentially decaying force
coefficient f7 as in Assumption 7 along | in the limit ¢ — 0. For R, € (0,0.5) the
straight vertical line is an unstable steady state to (4.6) for any N € N sufficiently
large and for the continuum limit N — oo for any exponential decay e > 0 in the
limit € — 0. For any 0 < € < R,, the straight vertical lime is an unstable steady
state for any R. € (0,0.5].

Proof. Due to the assumptions on f; in Assumption 7 the real part for the first
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eigenvalue in (4.24), given by

R.—e¢
R(A1(m)) = 2/0 f7(s) (1 = cos (—2mms)) ds + O(e),

is not positive for any m € N and any 0 < ¢ « R, sufficiently small. The real part

of the second eigenvalue (4.24) is given by

R(Aa(m)) = 2 / ) + () ()5) (1 — cos (—2mms)) ds + O().

For the nonpositivity of R(Ay(m)) it is sufficient to require

Rc.—e¢
/0 (fe(s) +s(f5)'(s)) (1 — cos(2mms)) ds < 0, (4.58)

for any € > 0 sufficiently small, where the left-hand side is given by

C/o . (exp(—ess)(1 — ess) — exp(—es(Re. —€))) (1 — cos(2mms)) ds

_ oD (—es(fe — 82)) [2rmel (R, — €) cos(2nm(R. — €))
2mm (€2 + 4m2m?)
— (&2 + 4m*e2m* (R, — €) + 12n°e,m® + 167" m* (R, — €)) sin(2mm(R, — €))
+167°m® exp (es(R. — €)) + 87°m*(es(R. — €) — 2) cos(2mm(R. —€))] .
(4.59)

For R. = 0.5 we have lim._,q sin(2rm(R. —¢)) = 0 and the right-hand side of (4.59)
simplifies to g.(m)h.(m) where

~cesexp (—es(Re —¢€))
(€2 + 472m?2)’

he(m) = (e2(R. — ) + 47°m*(es(R. — €) — 2)) cos(2rm(R, — ¢))

s

ge(m) =

)

+ 8m*m? exp (es(R. — €)) .

For determining the limit m — oo of g.(m)h.(m) note that the leading order term
of g. is m™* while the highest order term of h. is m?, implying that the product
ge(m)ho(m), i.e. the right-hand side of (4.59), goes to zero as m — .
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4.4. Stability of vertical lines for particular force coefficients

Note that for R. = 0.5 we have

1, m even,
lim cos(2mrm(R. — €)) =
e=0 —1, m odd.

Let us consider e, > 0 with e, < 4 first, i.e. lim._,ges(R. — ) < 2. Then,

3R, + 4m*m? (esR. — 2 + 2exp (esR.)), m even,

lim h.(m) =
e=0 —e3 R, + 4m*m? (—e R, + 2 + 2exp (e, R.)), m odd.
Note that lim._,g g-(m) < 0 for all m € N and lim._,g h.(m) > 0 for all even m since

2exp(esR.) > 2. For m odd, note that the term in brackets is positive and a lower

bound of lim._,¢ h. is given by
—16e,R, + 47% (—esR. + 2 + 2exp (esR.)) = 872 (—esR, + 1 + exp (esR.)) |

which is clearly positive. Hence, lim._, h.(m) is positive for all m € N and, thus,
we obtain lim._,o g.(m)h.(m) < 0, provided e; < 4 and R, = 0.5. This implies that
(4.58) is satisfied for all m € N in this case.

Let us now consider lim. g es(R. — ¢) > 2 with R. = 0.5. Note that a lower bound
of lim._,q h. is obtained from lim._,o cos(2rm (R, — €)) = —1, leading to the upper
bound

lil% g=(m) [ (e2R. + 47°m*(e,R. — 2)) + 87°m” exp (e, R.)]

of lim. g g-(m)h.(m) since g.(m) < 0 for all € > 0. This upper bound can be

rewritten as
hH(l) ge(m) [—€2R. + 4m*m® (—e R. + 2 + 2exp (esR.))] -
£—

Note that —esR. + 2 + 2exp (esR.) > 0. Besides,

3
e;Re

1
472 (—esR. + 2 + 2exp (esR,)) =

is satisfied for all e, > 4, implying

—e* R, +41*m? (—es R + 2 + 2exp (esR.)) > 0
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for all m € N. Hence, the right-hand side of (4.59), i.e. g.(m)h.(m), is negative
for all m € N in the limit ¢ — 0. In particular, this shows that condition (4.58) is
satisfied for all m € N for R, = 0.5.

For R. € (0,0.5] and ¢ > 0 we have sin(2rm(R. — €)) > 0 for countably many
m € N. In particular, there exists 6 > 0 and a countably infinite set A" = N such
that sin(2rm(R.—¢)) > 0 for all m € N/. Hence the second term in (4.59) is negative
with upper bound

— (&2 + 4r’e2m* (R, — €) + 12n°e,m® + 167*'m* (R, —€)) 0 < 0

for all m € N. This implies that the right-hand side of (4.59), i.e. g.(m), he(m),

can be estimated from below by

1
2mm

ou(m) | -

+ max{e?(R. — ) + 47°m?(es(Re — ) — 2), —€3(R. — &) — 4m*m*(ey(R. — €) — 2)}

(€2 + Am*e2m®(R. — €) + 12n°e,m® + 167 m*(R. — €)) &

+ 8m*m? exp (es(R. — €))

for all m € A and 0 < ¢ « R, since g.(m) < 0 for all m € N. Thus, there exists
mo € N such that the term in square brackets is negative for all m € N with
m = mg and all € > 0 sufficiently small since the highest order term of power m?*
in the square brackets dominates for m large enough. In particular, g.(mg) < 0 for
€ > 0 implies that we have found a positive lower bound of the right-hand side in
(4.59) and one can easily show that this positive lower bound also holds in the limit
¢ — 0. Hence, stability cannot be achieved in the case R. € (0,0.5] and any £ > 0,
as well as for R. € (0,0.5) and € — 0, both for N € N sufficiently large and in the

continuum limit N — oo. O

Remark 15. For R. € (0,0.5) and € — 0, no stability can be shown analytically.

However, note that an upper bound of the integral

/0 ) + () () (1 — cos(2mms)) ds (4.60)
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4.4. Stability of vertical lines for particular force coefficients

in the necessary stability condition (4.58) is given by

ces exp (—es(R. — €)) 3 2,2
— —2mm (el (R, — ¢) + 4m*m*“(es(R., — ¢) — 2
2tm (e2 + 47r2mQ)2 [ ( o ) (e ) ))
_ <6§ + 4n%e2m?(R, — €) + 12n%e,m? + 167*m* (R, — 8))
+1673m® exp (e, (R, — 5))]
_ _cesexp(—es(Re 82)) [—e? —2med(R. — e)m — (47°€2(R. — €) + 127°e,) m®
2mm (e2 + 472m?)
+ (87" (es(R. — ) — 2) + 167° exp (e5(R. — €))) m® — 167 (R, — e)m”]
(4.61)

for any 0 < € < R. due to (4.59). For exp(esR.) » 1 there exists my € N of
order exp(esR.) » 1 such that the term 1673m?> exp (esR.) is the dominating term
in the upper bound (4.61) of the integral (4.60) for all m € N with m < mgy. Hence
negativity of the upper bound (4.61) and thus of the integral (4.60) in the necessary
stability condition can be guaranteed for all m < mg. For m > mgy, however, the
highest order term of power m* dominates the sum. Since mg » 1, we have stability
for N € N sufficiently large and for the continuum limit N — oo for almost all, but
finitely many, Fourier modes for e; » 1, R. € (0,0.5), and any ¢ > 0 sufficiently
small or in the limit € — 0.

The integral (4.60) is explicitly evaluated in (4.59). For large values of m €
N the highest order term in (4.59) is associated with the summand 167*m*(R, —

e)sin(2rm(R. — €)) and can be written in the form

8m3es exp(—es(Re — €))(Re — €)m? sin(2rm(R, — 5))

(€2 + 47w2m?2)°

Here, the numerator increases as m> for large m while the denominator is of or-
der m*, multiplied by a factor exp(—esR.) < 1, leading to decaying sinusoidal os-
cillations around zero as m increases. Since this approximation is only valid for
m > mg > 1 the absolute value of the right-hand side in (4.59) may be so small that
it is numerically zero and one may see stable vertical line patterns for exponentially
decaying force coefficients f along s for R. € (0,0.5), € > 0 or in the limit ¢ — 0,
and N € N sufficiently large; see the numerical experiment in Figure 4.6(E).

Corollary 7. Let ¢q,cy € R with ¢; > 0, ¢1 > |ca| be given. There exist parameters
ea = e; > 0 such that the straight vertical line is stable for the particle model (4.6)
for N e N sufficiently large for the exponentially decaying force coefficient f; along
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s gwen by fZ: Ry — R with

cpexp(—eq|d|) + coexp(—es|d]) — ¢, |d| € [0, R. — €],
FEldl) = 3 (£ (Re — ) (WL 4 WD) | e (Ro—,R), (462)

£

07 |d| > RC’
with
c =crexp(—e1(R. —€)) + caexp(—ez(R. — €))

and a linear or an exponential force coefficient f; along l as in Assumption 7 for a
cutoff radius R. = 0.5. For the continuum limit N — oo, stability/instability cannot

be concluded.

Proof. For the stability of the straight vertical line for N € N sufficiently large we
require that the force coefficient f¢ in (4.62) is purely repulsive for any ¢ > 0 and
hence at least one of the constants cq, ¢y has to be positive. Since we can assume
c1 > 0 without loss of generality this implies that ¢; is a repulsive multiplicative
factor, while the sign of ¢, is not given by the assumptions. Thus, we require that
the first term in the definition of f¢ in (4.62) decays slower than the second one,
implying 0 < e; < es. Hence, the conditions on the parameters are verified.

As in the proof of Theorem 4 we evaluate integrals of the form (4.59) where the
term with factor sin(2rmR,.) vanishes for our choice of R, = 0.5. If ¢ = 0 one
can choose e, e; sufficiently large such that the term 1673m3 exp(exR.), k = 1,2,
in the square brackets in (4.59) dominates as in the proof of Theorem 4, leading
to the stability of the vertical straight line for N € N sufficiently large. For ¢, < 0
one can choose ey, e5 sufficiently large such that the term 1673m?exp(exR,), k =
1,2, dominates the square brackets. However, since ¢; > 0 > ¢y we require in
addition that the term with multiplicative factor ¢; dominates over the term with
multiplicative factor ¢y, leading to the condition

1673 m3c ey 1673m?3|coen

— + <0
omm (€2 + 4m2m2)°  2wm (€2 + 4n2m?)?

in the limit € — 0 which is equivalent to

—creq (€3 + 47r2m2)2 + |eales (€] + 47r2m2)2 < 0.
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4.4. Stability of vertical lines for particular force coefficients

Since ¢; > |ca| and ey = e; > 0 by assumption this condition is satisfied for e; > ¢;
sufficiently large. Hence, stability of the straight vertical line can be achieved for
N € N sufficiently large. O

The force coefficient fZ of the form (4.62) along s is motivated by the force
coefficients in the Kiicken-Champod model. Here, f¢ = xf5 + f5 for x € [0,1]

where, motivated by this section, f, f3 are defined as

fR(‘dD_fR(Rc_g)v ‘d| € [OvRC_E]v
Falld) = § fp(Re—2) (W2 4 GERE) e (R~ e, R.),  (4.63)
0, |d| = R,
and
fa(ldl) = fa(Re =), d] € [0, R. —¢],
falldl) = § fa(Re —e) (('d';fc)g + d=f) ) || € (R. — &, Re), (4.64)
0, |d| = R..

This corresponds to the sum of an attractive and a repulsive force coefficient as
in (4.62) for ¢; > 0 > ¢y where the repulsive term, i.e. ¢; > |¢3], dominates. This
motivates that we obtain stability of the straight vertical line for the force coefficients
in the Kiicken-Champod model for N € N sufficiently large by considering force
coefficients of the form (4.63), (4.64).

4.4.4 Kicken-Champod model

For the specific forces in the Kiicken-Champod model, given by the repulsive and
attractive force coefficients f§ and f§ in (4.63) and (4.64), respectively, we require

the nonpositivity of the real parts of the eigenvalues A\, k = 1,2, given by

R
R(A1(m)) =2 f7(s) (1 = cos (—2mms)) ds,

0

R(Aa(m)) = 2 / C(FE() + s(EY(8)) (1 — cos (—2mms)) ds

in (4.24) where ff = f5 + f5 and fS = xf3 + f5%. In Figure 4.3 we evaluate R(\)
numerically for the force coefficients (4.63) and (4.64) in the Kiicken-Champod

model for the parameters in (1.20) and a cutoff radius R. = 0.5 in the limit € — 0.
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Clearly, ®(A1) < 0, while ()2) is negative for small modes m but tends to zero for
large modes m. Investigating the high wave number stability for the forces in the
107

n~" —R\ |
-1 —ER)\Q 4

_6 o
0 100 200 300 400 500
m

Figure 4.3: R()\;) in (4.24) as a function of m for the force coefficients f% in (4.63)
and f9 in (4.64) of repulsion force (1.12) and attraction force (1.13), respectively, for
parameter values in (1.20) in the limit € — 0, where f7 = f5+ f§ and 5 = xf§ + f&

Kiicken-Champod model can be done analytically. For the general necessary high

wave number condition (4.28) for \; we require

R
fids<0.
0
Note that

Rc.—e
lirr(l] exp(—eps) (as® + B) — yexp(—eas)sds
e=%Jo
_ a(exp(—erR.)(—erRc(erR, +2) — 2) + 2) N B — Bexp(—erR,)

(er)? €R
7 (1 —exp(—eaR)(eaRc +1))
(€a)?
2
Q N ﬁ o

(er)* er (ea)?
which is clearly negative for the choice of parameters in (1.20). For the high wave
stability we also consider the condition associated with A,, leading to the condition
R

; fe(s) + s(f5)(s)ds < 0.
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4.4. Stability of vertical lines for particular force coefficients

We evaluate the integral

/RC_E exp(—egs) (o (3s* — eps®) + B(1 — ers)) — xvexp(—eas)s(2 — eqs)ds
0

= (Rc - 5) [(Rc - 5) [a(Rc - 5) exp(_eR(Rc - 5)) - X7 eXp(_eA(Rc - 5))]
+ Bexp(—er(Re —¢€))]
= (Rc - 5) (fR(Rc - 6) + XfA(Rc - 5))

for fr and fa defined in (4.8) and (4.9), respectively, implying that

/0 () 4 s (s)ds = 0

for any ¢ > 0. In particular, the straight vertical line is high wave number stable
for any N € N sufficiently large and in the continuum limit N — oo for the Kiicken-
Champod model with force coefficients f5, and f§ in (4.63) and (4.64), respectively,
the parameters in (1.20), and ¢ — 0. By definition of f& = xf§ + f5, we have
fe(R.) = 0, i.e. the high wave number stability of the straight vertical line (compare
Proposition 6), is satisfied. Note that

lim Xfa(Re —¢€) + fr(R, —¢) = 4.8144 - 10~

for R. = 0.5, i.e. the force coefficient x f4 + fr has only slightly been modified to
obtain x f§ + f& with (xf§ + f&) ~ (xfi + f%&), provided egexp(—egrR,) « 1 and
eaexp(—esR.) « 1.

Note that it is not possible to analyse the stability of the straight vertical line
for all modes m € N for the forces f5, and f3 in (4.63) and (4.64) in the Kiicken-
Champod model analytically for all possible parameter values due to the large num-
ber of parameters in the model. Besides, the force coefficients strongly depend on
the choice of parameters. In Corollary 7, however, we investigated the stability of
the straight vertical line for N € N sufficiently large where f¢, restricted to [0, R.—¢]
for some € > 0, is the sum of the positive term ¢; exp(—e;|d|), the negative term
coexp(—ez|d|) and a constant to guarantee fS(R.—e) = 0 where ¢; > |co| > 0. Be-
sides, we required e; < es for the positivity of the sum ¢y exp(—e;|d|)+co exp(—es|d|)
for |d| € [0, R. — ¢] and showed stability of the straight vertical line for N € N
sufficiently large provided the parameters e;,es > 0 are chosen sufficiently large

enough. In Figure 4.1 the absolute value of the terms yfs4 and fg, defined in
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(4.8)—(4.9), are plotted for the parameters in (1.20). As in Corollary 7 the positive
term always dominates and the terms xf4 and fr have fast exponential decays.
This suggests that the straight vertical line is a stable steady state for the Kiicken-
Champod model for N € N sufficiently large with the adopted force coefficient
fe = xf4+ [r. DBesides, the numerical evaluation of the real part of the eigenvalue
Ao for f£ for € > 0, i.e. a differentiable force coefficient with the additional constant
— (xfa(R. —¢) + fr(R. —¢)) for |d| € [0, R. — €] leads to nonpositivity of the real

part of the eigenvalue As.

4.4.5 Summary

In this section, we summarise the results from the previous subsections on the
stability of the straight vertical line (4.14) of the particle model (4.6) with linear,
algebraically decaying, and exponentially decaying force coefficients for different
values of the cutoff radius R, € (0,0.5]. This summary is shown in Table 4.1. Note
that for R. € (0,0.5) the straight vertical line is always unstable for large N and

the instability manifests itself by non-equidistant particles along vertical lines.

4.5 Numerical simulations

4.5.1 Numerical methods

As in [BDK"18, DGH"19] we consider the unit square with periodic boundary
conditions as the domain for our numerical simulations if not stated otherwise. The
particle system (4.6) is solved by either the simple explicit Euler scheme or higher
order methods such as the Runge-Kutta—Dormand—Prince method, all resulting in
very similar simulation results. Note that the time step has to be adjusted depending
on the value of the cutoff radius R.. For efficient numerical simulation we consider
cell lists as outlined in [DGH"19].

4.5.2 Numerical results

Numerical results are shown in Figures 4.4-4.9. For all numerical simulations we
consider N = 600 particles which are initially equiangular distributed on a circle
with centre (0.5,0.5) and radius 0.005 as illustrated in Figure 4.4(A). The stationary
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Table 4.1: Stability/instability of the straight vertical line (4.14) for the particle
model (4.6) with force coefficients f; along s and different cutoff radii R, € (0,0.5].

Force coefficient f, along s

R.€(0,0.5)

R.=0.5

Linear force

(4.32)

Algebraically decaying force

coefficient (4.51)

Exponentially
force coefficient (4.57)

coefficient

decaying

Instability for any
NeN sufficiently
large and for N — o
(see Theorem 7)

Instability for any
NeN sufficiently
large and for N — o
(see Corollary 6)

Instability for any
NeN sufficiently
large and for N e N
(see Theorem 4), but
stability may be seen
in numerical simu-
lations (see Remark
15)

Stability or instabil-
ity since stability con-
ditions are satisfied
with equality (see Re-
mark 14)

Instability for any
NeN sufficiently
large and for N — o
(see Corollary 6)

Stability  for  any
N eN sufficiently
large (see Theorem 4)
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solution for the linear force coefficient f¢ in (4.32), i.e.
fe(dl) = asldl + b, fi(ld]) = 0.1 =3d[,  [d| € [0, R. — €],

for different values of ag, b, is shown in Figure 4.4 in the limit € — 0. As proven in
Section 4.4.1 equidistantly distributed particles along the vertical straight line form
an unstable steady state for N € N sufficiently large for R. € (0,0.5). Hence, the
stationary solutions are no lines of uniformly distributed particles and we obtain
different clusters or line patterns instead. In Figure 4.4(B), we consider R. =
0.3, resulting in clusters of particles along the vertical axis. For R. = 0.5 and
as,bs chosen as a, = _117{_17 the requirement in (4.49) for the necessary stability
condition to be satisfied with equality, the real part of one of the eigenvalues of the
stability matrix is equal to zero. The resulting steady states are shown for different
scalings of the parameters as, bs in Figures 4.4(C) and 4.4(D). One can see that
the particles align along a vertical line along the entire interval [0, 1], but are not

equidistantly distributed along the vertical axis and thus the vertical straight line

is an unstable steady state for any N e N sufficiently large. For ags > _}l%_s and
as < _1132_5;» respectively, with R, = 0.5 the corresponding steady states are shown in

Figures 4.4(E) and 4.4(F), resulting in clusters along the vertical axis.

In Figure 4.5, we consider the linear force coefficient f¢ in (4.32) for different
values of ag, by, and R., where ¢ = 0.01 is fixed in contrast to ¢ — 0 in Figure 4.4,
i.e. we consider the total force (4.4) with linear force coefficients ff(|d|) = a;|d| + by,
fe(ld)) = asld| + by for |d| € [0,R. —¢] in (4.32) with ¢ = =3, = 0.1. In
Figure 4.5(A), we consider the same parameter values as in Figure 4.4(B), i.e.
as = —0.2,by = 0.1, and R. = 0.3, resulting in the same stationary solution for
€ = 0.01 and € — 0. In particular, the straight vertical line is unstable both for
e = 0.01 and € — 0. For cutoff radius R. = 0.5, we obtain different stationary so-
lutions for € = 0.01 and € — 0. In Figure 4.5(B), we show the stationary solutions
for a; = —0.2,bs = 0.1, and R, = 0.5 as in Figure 4.4(C), i.e. a5 = —Ib%—sc. Even
though stability /instability could not be determined analytically the numerical re-
sults illustrate that straight vertical line is unstable both for ¢ = 0.01 and ¢ — 0.
The stationary solution for a;, = —0.1,b5 = 0.1, and R, = 0.5 is shown in Figure
4.5(C) for € = 0.01 and in Figure 4.4(E) for & — 0. Our analytical results show
that the stationary solution is unstable in this case which is also consistent with the
numerical results. In particular, we obtain the same instability results for ¢ = 0.01

as in Figure 4.4 where the limit ¢ — 0 is considered.
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(A) Initial data (B) as = —0.2, (C) as = —0.2,
b, = 0.1, R. = 0.3 by = 0.1, R, = 0.5
1 1 1
06 06 06
g 0.4 o 0.4 o 0.4
00 0.2 0.4 . 0.6 0.8 1 00 0.2 0.4 . 0.6 0.8 1 OD 0.2 0.4 . 0.6 0.8 1
(D) as = —0.02, (E) ay = —0.1, (F) a5 = —0.4,
bs =0.01, R. = 0.5 bs =0.1,R. =0.5 bs =0.1,R. = 0.5

Figure 4.4: Stationary solution to the model (4.6) for total force (4.4) with linear
force coefficients ff(|d|) = a;|d| + by, f2(|d]) = as|d| + bs for |d| € [0, R. — €] in (4.32)
with @ = —3,b; = 0.1, and cutoff radius R, in the limit ¢ — 0.
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(A) as = —0.2,(B) as = —0.2,(C)

bs = 0.1, R, = 0.3 bs = 0.1, R, = 0.5 by =

0 0.2 0.4 0.6 0.8 1

X

as = —0.1,
0.1, R. =0.5

Figure 4.5: Stationary solution to the model (4.6) for total force (4.4) with linear

force coefficients f(|d|) = a|d| + b, f5(|d]) = as|d| + b for |d| € [0, R,

with ¢ = —3,b;, = 0.1, and cutoff radius R, for ¢ = 0.01.
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Stability analysis of line patterns

For the exponentially decaying force coefficient f¢ along s in (4.57), given by
fo(ld]) = cexp(—e,|d|) — cexp(—es(R. —¢)),  |d|€[0, R. — <],

for £ > 0, we consider the parameter values ¢ = 0.1 and e, = 100 if not stated
otherwise. The initial data is given by equiangular distributed particles on a circle
with centre (0.5,0.5) and radius 0.005 in Figure 4.6(A). In Figures 4.6(B)-4.6(F)
the stationary solution for the exponentially decaying force coefficient f: in the limit
e — 0 is shown. As expected, for small values of e; and R, € (0,0.5), e.g. e5 = 10 as
in Figure 4.6(B), the equidistantly distributed particles along the vertical axis are
an unstable steady state. In this case, the steady state is given by clusters along the
vertical axis and R(Ag(m)) < 0 for m < 12 only. For R. = 0.5 the straight vertical
line is stable as shown in Figure 4.6(C). Note that the additional constant in the
definition of f¢ leads to fE(R. —¢) = fS(R.) = 0 and is necessary for the stability
of the straight vertical line. In Figure 4.6(D) we consider f¢ without this additional
constant, i.e. f¢(|d|) = cexp(—es|d|) for |d| € [0, R. — €], where the straight vertical
line is clearly unstable and we have R(Ay(m)) < 0 for m < 9 only. If eg is chosen
sufficiently large, e.g. e; = 100 as in Figures 4.6(E) and 4.6(F), the straight vertical
line appears to be stable even for R. < 0.5. An explicit calculation of the eigenvalues
for R. = 0.1 reveals, however, that R(A\a(m)) < 0 for m < 73723 only. Note that we
obtain stability for a much larger number of modes as in Figures 4.6(B) and 4.6(D).
This is also consistent with a straight vertical line as steady state in Figure 4.6(F),
while we have clusters as steady states in Figures 4.6(B) and 4.6(D). Further note
that R(A\2(73723)) = 8.3225 - 107!* and hence it is numerically zero. As discussed
in Remark 15 this explains why for exp(e;R.) » 1, e.g. e, = 100 and R. = 0.1,
the straight vertical line appears to be stable. Finally, we also obtain the straight
vertical line as a steady state if we consider exponentially decaying force coefficients
fi(ld]) = 0.13exp(—100|d|) — 0.03 exp(—10|d|) instead of f7(|d|) = 0.1 — 3|d| for
|d| € [0, R. — ¢] in the limit ¢ — 0 as shown in Figure 4.6(F). Note that we also
obtain a straight vertical line as a stationary solution in Figures 4.6(E) and 4.6(F)
if fo(|d|) = cexp(—es|d|) — cexp(—es(R. — ¢€)) for |d| € [0, R. — €] is replaced by
fe(|d|) = cexp(—es|d|) since exp(—esR.) « 1 for es » 1.

In Figure 4.7 the stationary solution is shown on the domain [0, 3]? instead of
the unit square. Here, we consider the same force coefficients as in Figure 4.6(F), i.e.
exponentially decaying force coefficients along [ and s. We define the initial data on

[0, 3]? by considering the initial data on the unit square, i.e. equiangular distributed
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(E) es =100, R. = 0.1, f; lin. (F) es =100, R. = 0.5, f; exp.

Figure 4.6: Stationary solution to the model (4.6) for total force (4.4) with exponen-

tial force coefficient f5(|d|) = cexp(—es|d|) — cexp(—es(R. —¢€)) for |d| € [0, R. —

]

along s, defined in (4.57), and f7(|d|) = 0.1 — 3|d| or f7(|d|) = 0.13 exp(—100|d|) —
0.03 exp(—10|d|) for |d| € [0, R, — €] along [ with cutoff R, in the limit ¢ — 0.
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Stability analysis of line patterns

particles on a circle with centre (0.5,0.5) and radius 0.005, and extending these
initial conditions to [0, 3]? by using the periodic boundary conditions. As expected

we obtain three parallel lines as the stationary solution.

2.5 . . . 2.5
L5 . . . s

0.5 . . . 0.5

0 1 2 3 0 1 2 3

X X

(A) Initial data (B) R, =0.1

Figure 4.7: Stationary solution to the model (4.6) for total force (4.4) with expo-
nential force coefficients f2(|d|) = cexp(—es|d|) — cexp(—es(R. — €)) in (4.57) and
f£(ld]) = 0.13 exp(—100]d|) — 0.03 exp(—10]|d|) with cutoff R. on the domain [0, 3]*.

For the underlying tensor field 7" with s = (0,1) and [ = (1, 0), we have seen that
vertical straight patterns are stable. More generally, stripe states along any angle
can be obtained by rotating the spatially homogeneous tensor field 1" appropriately.
Examples of rotated stripe patterns are shown in Figure 4.8 where the vector fields
s = (1,1)/v/2,1 = (=1,1)/v/2 in Figure 4.8(A), s = (1,2)/4/5,1 = (=2,1)/4/5 in
Figure 4.8(B), and s = (1,5)/4/26,1 = (—5,1)/4/26 in Figure 4.8(C) are considered.

Due to the periodicity of the forces, the resulting patterns are also periodic.

1 1 1 .
0.8 0.8 0.8 i
06 06 0.6

~ o ~

x x x
0.4 0.4 04
02 02 02}f

0 0 0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(A) s = (1,1)/v/2, (B) s = (1,2)/V/5, (C) s = (1,5)/v/26,
I=(-1,1)/v2 I=(-2,1)/v5 I =(=5,1)/v26

Figure 4.8: Stationary solution to the model (4.6) for different tensor fields
T, given by s,l, and total force (4.4) with exponential force coefficients
fe(ld|) = cexp(—esld]) — cexp(—es(R. — €)) for |d| € [0,R. — €] in (4.57) and
ff(ld|) = 0.13 exp(—100|d|) — 0.03 exp(—10|d|) for |d| € [0, R, — €] with cutoff R, =
0.1 in the limit ¢ — 0.

Until now, we looked at numerical examples for a stable state aligned along a
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line (or lines). However, the model (4.6) is also able to produce two-dimensional
states which can result as an instability of a vertical line. To obtain two-dimensional
patterns, we vary the force along [. In particular, the force along [ has to be less
attractive to avoid the concentration along line patterns. In Figure 4.9, we vary
parameter e;, in the force coefficient f7(|d|) = 0.13 exp(—ey,|d|) — 0.03 exp(—10]d|)
for |d| € [0, R. — €]. Here, smaller values of ¢;, lead to stronger repulsive forces over
a short distance, resulting in a horizontal spreading of the solution for the tensor
field T with s = (0,1) and [ = (1,0).

0 0.2 0.8 1 0 0.2 0.4 0.6 0.8 1

X X X

(A) e, =20 (B) e, =30 (C) e, =50

Figure 4.9: Stationary solution to the model (4.6) for tensor field 7" with
s = (0,1),l = (1,0) and total force (4.4) with exponential force coefficients
fe(|d]) = cexp(—es|d]) — cexp(—es(R. — ¢€)) for |d| € [0, R, — €], defined in (4.57),
and f7(|]d]) = 0.13exp(—ey, |d|) — 0.03 exp(—10|d|) for |d| € [0, R. — €] with cutoff
R. = 0.5.
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Chapter 5

Role of nonlinear diffusion on

equilibria: Analysis and numerics

Originality and contribution

This chapter is based on [CDIKS19] in collaboration with José A. Carrillo, Bertram
Diiring and Carola-Bibiane Schonlieb. While my co-authors proposed the study of
the model and gave advice, [CDIKS19] is primarily my own original work and nearly
all the results in [CDIKS19], including analysis and simulations, were obtained by
myself. For the numerical simulations I adapted the code in [CCHI14a] which was

provided by José A. Carrillo.

Chapter summary

In this chapter, we study the equilibria of an anisotropic, nonlocal aggregation equa-
tion with nonlinear diffusion which does not possess a gradient flow structure. Here,
the anisotropy is induced by an underlying tensor field. We derive equilibrium con-
ditions for stationary line patterns which can be reformulated as the minimisers of a
regularised energy functional if the underlying tensor field is spatially homogeneous.
For spatially homogeneous tensor fields, we show the existence of energy minimis-
ers, establish I'-convergence of the regularised energy functionals as the diffusion
coefficient vanishes, and prove the convergence of minimisers of the regularised en-
ergy functional to minimisers of the non-regularised energy functional. Further,
we investigate properties of stationary solutions on different domains. Finally, we

prove weak convergence of a numerical scheme for the numerical solution of the
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Role of nonlinear diffusion on equilibria: Analysis and numerics

anisotropic, nonlocal aggregation equation with nonlinear diffusion and any under-

lying tensor field, and show numerical results.

5.1 Introduction

The derivation, analysis and numerics of mathematical models for collective be-
haviour of cells, animals or humans have recently been receiving increasing atten-
tion. Based on agent-based modelling approaches, a variety of continuum models has
been derived and used to describe biological aggregations such as flocks and swarms
[MEK99, TBL0O6]. Motivated by the simulation of fingerprint patterns which can be
modelled as the interaction of a large number of cells [BDK 18, KC13], a continuum

model can be derived, given by the anisotropic aggregation equation (1.17), i.e.
atp<tax) + Vg - [,O(Zf,SC)(F(,T($)) * p(ta ))(SC)] =0 in R+ X R27 (51>

with initial condition pl;—g = p™ in R? for some given initial data p™. Here,

up(t, x) = (F(, T(x)) = p(t, ) (x) = /R2 Flo -y, T(x)plt,y)dy  (52)

is the velocity field with |u,(t, z)| < f for the uniform bound f of F' where the term
F(z—y,T(x)) denotes the force which a particle at position y exerts on a particle at
position x. The left-hand side of (5.1) represents the active transport of the density
p associated to a nonlocal velocity field u,.

The force F' depends on an underlying stress tensor field T'(z) at location z.
The existence of such a tensor field T'(x) is motivated by experimental results for
simulating fingerprints [[KH95, KC13], but due to the generality of the definition of
the forces, model (5.1) can be regarded as a prototype for understanding complex
phenomena in nature. Since an alignment of mass along the local stress lines is
observed, we define the tensor field 7'(x) by the directions of smallest stress at
location z, i.e. we consider a unit vector field s = s(z) € R? and introduce a
corresponding orthonormal vector field [ = I(z) € R?, representing the directions of

largest stress. The tensor field T'(x) at z is given by (1.5), i.e.
T(x):= xs(x) ® s(x) + I(z) @ (x) € R*?. (5.3)

The parameter x € [0, 1] in the definition of the tensor field introduces an anisotropy
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in the direction s.
A typical aspect of aggregation models is the competition of social interactions
(repulsion and attraction) between the particles which is also the focus of our re-

search. Hence, we assume that the total force F' is given by
Flx—y,T(z)) = Falx —y,T(z)) + Fr(z —y). (5.4)

Here, Fr denotes the repulsion force that a particle at location y exerts on particle
at location x and F4 is the attraction force a particle at location y exerts on particle

at location z. The repulsion and attraction forces are of the form

Fr(d = d(z,y)) = fr(d])d

and
Fa(d = d(z,y),T(z)) = fa(|ld)T(z)d,

respectively, with radially symmetric coefficient functions fr and f4, where, again,
d = d(x,y) = x —y € R An example for the force coefficients fr and f4 was

suggested by Kiicken and Champod [[KC13], given by
fr(d) = (ald]® + B) exp(—epld]) (5.5)
and
fa(d) = =7d| exp(—eald]|) (5.6)

for nonnegative constants a, 3, 7, e4 and eg, and d = (d;,ds) € R?. We assume
that the total force (5.4) exhibits short-range repulsion and long-range attraction
along [, and only repulsion along s, while the direction of the interaction forces
is determined by the parameter y € [0,1] in the definition of 7" in (5.3). These
assumptions on the force coefficients are satisfied for the parameters proposed in
[DGHT19], given by

a =270, B=01, ~=105 e4=95 ep=100, x =02 (5.7)

Motivated by plugging (5.3) into the definition of the total force (5.4), we consider
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a more general form of the total force, given by

F(d = d(z,y), T(z)) = fu(ld))(s(z) - d)s(z) + filld])(U(z) - Di(z) — (5.8)

for coeflicient functions fs and f;, where f; = fr + xfa and f; = fr + fa for the
Kiicken-Champod model.
The macroscopic model (5.1) can be regarded as the macroscopic limit of an

anisotropic particle model as the number of particles N goes to infinity. The N

interacting particles with positions x; = z;(t) € R? j =1,..., N, at time ¢ satisfy
(1.4), i.e
dl’j 1 N
— = = - x, 5.9
dt N ];L k> ( .7))7 ( )
k#j
equipped with initial data z;(0) = 2", j = 1,..., N, for given scalars z", j =

1,...,N. A special instance of this model has been introduced in [[KC13] for
simulating fingerprint patterns. The particle model in its general form (5.9) has
been studied in [BDK" 18, CDKS18, DGH™19]. In particular, the particles align in
line patterns according to the underlying fields s = s(z) and [ = I(z) [BDK"18,
CDKS18, DGHT19]. Due to the purely repulsive forces along s and the short-range
repulsive, long-range attractive forces along [, we prove for spatially homogeneous
tensor fields that the stationary solution consists of line patterns along s. These sta-
tionary solutions to (5.1) can be regarded as solutions with one-dimensional support
and are constant along s. For general tensor fields, we observe from the numerical
simulations that line patterns can be obtained as stationary solutions.

Since our fingerprint lines do not have a one-dimensional support and, in fact,
have a certain width, we widen the support of the line structures by introducing
a small nonlinear diffusion on the right-hand side of (5.1), leading to the nonlocal

aggregation equation with nonlinear diffusion

dep(t, ) + Vo - [p(t, ) (F (-, T(x)) = plt, ) (2)] = 6V - (p(t, 2)Vap(t, ) in Ry x R?
(5.10)

where 6 « 1. In particular, for the spatially homogeneous tensor field T with
s = (0,1) and [ = (1,0) straight vertical lines are obtained as stationary solutions
[BDK 18, CDKS18, DGH™19] which can be regarded as constant solutions along the

vertical axis. For solutions of this form, the diffusion term only acts perpendicular
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to the line patterns and not parallel. Hence, a positive diffusion coefficient ¢ leads
to nonlinear diffusion along the horizontal axis and we expect the widening of the

vertical line profile.

5.1.1 Isotropic aggregation equations

While we consider anisotropic aggregation equations of the form (5.1) in this chapter,
mainly isotropic aggregation equations [BCL09, BSK™ 15, KSUBII, Lau07] of the
form (1.3), i.e.

pi+ V- (p(=VW % p)) =0 (5.11)

for a radially symmetric interaction potential W (d) = W (|d|) with F(d) = —VW (d),
have been studied in the literature. In particular, the study of the isotropic aggre-
gation equations in terms of its gradient flow structure [AGS05, CMV03, CMV06,
[T04, Vil03], the blow-up dynamics for fully attractive potentials [BCL09, BLL12,
CDFF*11, CJLV16], and the rich variety of steady states [BCLR13a, BCLR13b,
BCY14, BT11, BLL12, CCP15, CDM16, CFF+12, CFP12, FR10, FR11, Raol2,
vBU12, vBUKBI12] has attracted the interest of many research groups recently. In

these works, the energy

£p) = 5 / [ W =) st anty) (5.12)

in the d-dimensional setting plays an important role since it governs the dynamics,
and its (local) minima describe the long-time asymptotics of solutions. Sharp condi-
tions for the existence of global minimisers for a broad class of nonlocal interaction
energies on the space of probability measures have been established in [SST'15].

In terms of biological applications, nonlocal interactions on different scales [BT11,
EKWGI8, MEK99] are considered for describing the interplay between short-range
repulsion which prevents collisions between individuals, and long-range attraction
which keeps the swarm cohesive [MEKBS03, OL0O1]. These repulsive-attractive po-
tentials can be considered as a minimal model for pattern formation in large systems
of individuals [BCLR13b]. The 1D nonlocal interaction equation with a repulsive-
attractive potential has been studied in [FR10, FR11, Raol2] where the authors
show that the behaviour of the solution strongly depends on the regularity of the
interaction potential. More precisely, the solution converges to a sum of Dirac

masses for regular interaction, while it remains uniformly bounded for singular re-
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pulsive potentials. Pattern formation for repulsive-attractive potentials in multiple
dimensions is studied in [BSK' 15, KSUB11, vBU12, vBUKBI2].

It has been observed that even for quite simple repulsive-attractive potentials
the energy minimizers are sensitive to the precise form of the potential and can
exhibit a wide variety of patterns [KHP13, KSUBI1, vBUKBI2]. Nonlocal inter-
action models have been studied for specific types of repulsive-attractive potentials
[BCLR13a, CCH14b, CFP17, CH17, CJLV16, FHK11]. In [BCLR13a], conditions
for the dimensionality of the support of local minimisers of (5.12) are obtained in
terms of the repulsive strength of the potential W at the origin. Minimizers for the
special class of repulsive-attractive potential which blow up approximately like the
Newtonian potential at the origin have also been studied [CDM16, FHIK11].

Very few numerical schemes apart from particle methods have been proposed
to simulate solutions of isotropic aggregation equations after blow-up. The so-
called sticky particle method [CDFEF"11] is a convergent numerical scheme, used to
obtain qualitative properties of the solution such as the finite time total collapse.
While numerical results have been obtained in the one-dimensional setting [JV13],
this method is not practical to deal with finite time blow-up and the behavior of
solutions after blow-up in dimensions larger than one. Let the solution to (5.1)
with initial data p™ be denoted by p and the solution of the particle model (5.9)
with initial data p™ be denoted by p™(t) = + Zjvzl d(x —x;(t)) at time ¢ > 0. If

N
F = —VW for some radially symmetric potential W and the initial data satisfies

dw (p™, p™N) — 0 as N — oo in the Wasserstein distance dy,, then

Sup dw (p(t), p™ (£)) — 0.
for any given T' > 0 [CJLV16]. From the theoretical viewpoint, this is a very nice
result, but in practice a very large number of particles is required for numerical
simulations of the particle model (5.9) to obtain a good control on the error after a
long time. Nevertheless, particle simulations lead to a very good understanding of
qualitative properties of solutions for aggregation equations where collisions do not
happen [BCLR13a, BSK*15, BDK*18, DGH"19, vBU12, vBUKBI2]. For the one-
dimensional setting with a nonlinear dependency of the term VW «p, a finite volume
scheme for simulating the behaviour after blow-up has been proposed in [JV15] and
its convergence has been shown. Extremely accurate numerical schemes have been
developed to study the blow-up profile for smooth solutions [HB12, HB10]. An

energy decreasing finite volume method for a large class of PDEs including (5.11)
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has been proposed in [CCHI4a] and a convergence result for a finite volume scheme
with general measures as initial data has been shown in [CJLV16]. In particular, this
numerical scheme leads to numerical simulations of solutions in dimension greater
than one.

The isotropic aggregation equation (5.11) may also be modified to include linear
or nonlinear diffusion terms [CCY19]. While a linear diffusion term can be used to
describe noise at the level of interacting particles, a nonlinear diffusion term can
be used to model a system of interacting particles at the continuum level, and can
be expressed by a repulsive potential. To see the latter, we consider the potential
Ws =W + 00, for a parameter § > 0 and the Dirac delta dp, inducing an additional
strongly localised repulsion. This corresponds to a PDE with nonlinear diffusion

which is given by
pr+ V- (p(=VW = p)) =6V - (pVp).

More generally, adding nonlinear diffusion in (5.11) results in the class of aggregation

equations
pi + V- (p(=VW % p)) = 6V - (pVp" 1) (5.13)

with diffusion coefficient 6 > 0 and a real exponent m > 1. Of central importance
for studies of (5.13) is its gradient flow formulation [AGS05] with respect to the

energy

i) =5 [ oW pt 3 ) do (5.14)

2

In particular, stationary states of (5.13) are critical points of the energy (5.14).
The existence of global minimisers of (5.14) has recently been studied in [Bed11]
using techniques from the calculus of variations. While radially symmetric and
non-increasing global minimisers exist for m > 2, the case m = 2 is critical and
yields a global minimiser only for small enough diffusion coefficients § > 0. Burger
et al. [BDFF13] have shown that the threshold for § is |[W| 1 for m = 2. Energy
considerations have also been employed in [BD08] to study the large time behaviour
of solutions to (5.13) in one dimension. The existence of finite-size, compactly
supported stationary states for the general power exponent m > 1 is investigated
in [BFH14].
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5.1.2 Contributions

In this chapter, we consider the anisotropic counterparts of the isotropic aggrega-
tion equations (5.11) and (5.13) with m = 2 which are given by (5.1) and (5.10),
respectively. No gradient flow formulation exists in this case. As a first aim of this
chapter, we derive equilibrium conditions for stationary line patterns of (5.1) and
(5.10) which can be regarded as minimisers of an energy functional, we prove the
convergence of minimisers as 6 — 0, and we investigate the dependence of stationary
solutions on the diffusion constant . The second aim of this chapter is to investigate
the dependence of the diffusion coefficient ¢ on stationary solutions numerically by
considering an appropriate numerical scheme for the anisotropic interaction equa-
tion (5.10) without gradient flow structure. The numerical scheme and its analysis
is based on [CCHI14a, CJLV16].

This chapter is organised as follows. In Section 5.2, we consider stationary
solutions for general underlying tensor fields, while we restrict ourselves to spatially
homogeneous tensor fields in Section 5.3 whose support is given by line patterns.
For this case, we derive equilibrium conditions which can be reformulated as the
minimisers of an energy functional. We show the existence of energy minimisers, and
prove I'-convergence of the regularised energies and the convergence of minimisers
of the regularised energies to minimisers of the non-regularised energy functional as
the diffusion coefficient goes to zero. Finally, we consider a numerical scheme for
the anisotropic, nonlocal aggregation equation with nonlinear diffusion (5.10), prove
its weak convergence as the diffusion coefficient goes to zero, and show numerical

results in Section 5.4.

5.2 Stationary solutions for general tensor fields

In this section, we study the equilibria of the nonlocal aggregation equation with
nonlinear diffusion (5.10). Since most applications of (5.10) require measure-valued
solutions, we consider nonnegative solutions p > 0 only.

The stationary solutions py = po(x,y) for (z,y) € R? satisfy
V [po(F(T(z,y)) * po—0Vpe)] =0 ace. in R?,

implying that the argument has to be constant a.e. in R%. Since we are interested

in stationary line patterns, the stationary solution p, should satisfy supp p,, & R?
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5.3. Stationary solutions for spatially homogeneous tensor fields

for small diffusion coefficients 6 > 0 and hence it is sufficient to require
Poo(F(,T(2,9)) * po — 0Vpy) =0  a.e. in R? (5.15)
or equivalently
F(,T(x,y)) * po = 0Vpsy  on supp(pe).

Integrating the first equality in (5.15) with respect to x and the second equality

with respect to y, we obtain

5 [ ECTED) ) €n) de + als) = paliny) = palin)
1

: / "B T(m) * po) ) dn + e2(2) = pos( ) — pos(as ),

for (z,y),(Z,vy), (z,9) € supp(py) where the functions ¢1,c; can be determined

uniquely. This results in the fixed point form

po(,y) = 5 )z FCTEy) * po(€y) dE + ca(y) + po(@, y)
o I 5 JTECTE ) # ol y) dE + ealy) + po(Ey) d(ay)

supp(poo)

5.3 Stationary solutions for spatially homogeneous

tensor fields

In this section, we consider stationary solutions for spatially homogeneous tensor
fields. While anisotropic forces cannot be associated with a potential in general
and stationary solutions of anisotropic aggregation equations generally cannot be
regarded as minimizers of an energy functional, the idea of this section is to derive
conditions for stationary solutions of (5.1) and (5.10) so that stationary line pat-
terns can be obtained by minimising energy functionals which depend on a scalar
potential. In particular, this dimension reduction will allow us to study the as-
sociated one-dimensional problem instead of the two-dimensional setting. Using
these energy functionals, we show the existence of energy minimisers, establish I'-
convergence of a regularised energy functional with vanishing diffusion, and prove
the convergence of minimisers of the regularised energy functional to minimisers of

the non-regularised energy functional.
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5.3.1 Notation and assumptions

The aim of this section is to derive a scalar force and its scalar potential in one
variable that can be used to define the associated regularised and non-regularised
energy functionals. For this, we study some properties of stationary solutions for
spatially homogeneous tensor fields first.

As in [BDK"18] one can show that a steady state of (5.10) for any spatially
homogeneous tensor field 7" is a coordinate transform of a steady state to the mean-
field equation (5.10) for the tensor field 7" with [ = (1,0) and s = (0,1). Due
to the choice of the tensor field T, we restrict ourselves to vertical line patterns
as steady states in the following, i.e. we consider stationary solutions which are
constant along the y-direction. To guarantee the existence of probability measures
which are constant along the y-direction, we consider the domain Q = R x [—0.5,0.5]
instead of R? in this section. This assumption on the domain leads to stationary

solutions on €2 of the form
P (2,Y) = poo(x,0) for a.e. y € [-0.5,0.5]. (5.16)

Note that this assumption on the domain € is not restrictive and by appropriate
rescaling similar results can be obtained for any domain of the form R x [a, b] for
any a,b € R with a < b.

The special form (5.16) of the stationary solutions motivates the definition of the
space P.(£2) of probability measures which are constant in y-direction. We define
the space P.(Q2) by

P.(Q2) = {p e L1 (Q): /de(a:,y) =1, plx,y)=p(z,0) for a.e. ye [—0.5,0.5]}.

Denoting the components of F' by F,, F, for d € €, respectively, i.e. F(d) =
(Fu(d), Fy(d)) for d € €, we extend F,, F, and py, defined on €, periodically on
R? with respect to the y-coordinate, if required, so that the convolution integrals
Fo(-,T) % poo, Fy (-, T) * po can be evaluated. Since the total force F' in (5.8) reduces
to

filld[)dy
f(ld[)dy

F(d,T) =
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for the spatially homogeneous tensor field with [ = (1,0) and s = (0, 1), we have
F,(d) = fi(|d|)d, and F,(d,T) = f(|d|)ds for d = (dy, ds). For py, satisfying (5.16),
we have Fy(-,T) # p, = 0 since F, is an odd function in the y-coordinate and
F,(,T) * py is periodically extended along the y-coordinate. In particular, the

second equality in (5.15) is trivial. The convolution F} * py is of the form
FJ: * poo(xa y) = // F:c(wa Z)pOO(z —w,y — Z) d(w> Z)
Q

_ // (e —w,y — 2)pe(w, 2) d(w, 2)

z/poo(w,())/ Fo(x —w,y — z)dz dw.
R [0.5,0.5]

Since a scalar force in one variable is required for a dimension reduction, this mo-

tivates to introduce a scalar odd function G: R — R defined by

G(z) = /[_0505] Fy(z,z)dz = x/ filVz? + 22)dz (5.17)

[~0.5,0.5]

where G(0) = 0. Due to the periodic extension of F, along the y-coordinate, we
have G(x) = f[_% 0.5] F,(z,y — z)dz for any y € [—0.5,0.5]. Hence, there exists an

interaction potential W: R — R which is even and such that

d
G=——W. (5.18)

For the analysis in the following sections, we require rather relaxed conditions on
the potential W:

Assumption 8. For the interaction potential W satisfying (5.18), we require
(A1). W is even, i.e. W(x) = W(—x).

(A2). W is continuous.

(A3). W is locally integrable on §Q.

(A4). W(x) — 0 as |z| — oo.

(A5). There exist 5 > 0 and a measure p € P.(Q) such that E5(p) < 0.

(A6). There exists some xyw > 0 such that

Wi(x) <0 for 0<|z|<axw and W(x) <0 for some x € (0,zy).  (5.19)
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Using the potential W, we define the energy functional
1
E(peo) = B P (W # pes) d(, ) (5.20)
Q

where Wxpy,(z,y) is regarded as the convolution with respect to the first coordinate,

W s poo(x,y) = /RW(m — W) po(w, y) dw, (5.21)

which is constant with respect to the second coordinate. The regularisation of the

energy & is defined as

Ex(p) = // pa(W * pon + 6p:2) d(,y) (5.22)

on P.(9).

Remark 16. Note that assumptions (A1), (A2), (A3), (A4) are rather relazed
conditions and allow us to consider a rather general class of interaction poten-
tials, including the one that can be derived from G based on F, in the Kiicken-
Champod model. In particular, the interaction potential W (x) satisfies W (0) = 0
and is bounded. Besides, the energy £: P.(2) — R in (5.22) is weakly lower semi-
continuous with respect to weak convergence of measures.

Assumption (A5) is required for establishing the existence of minimisers of the en-
ergy E in (5.22). In particular, it follows from (A5) that there exists a measure
p € Pe(Q) such that Es(p) < 0 for all 0 < 6 < 6. Assumption (A5) also implies
that there exists x € (0, zy ) such that W(x) < 0.

Assumption (A6) is motivated by the form of the force F' in (5.4) which exhibits
short-range repulsion and long-range attraction forces along l. Hence, there exists a

constant d, > 0 such that
(fa+ fr)(d]) <O for |d|>do  and — (fa+ fr)(|d]) >0 for 0 <|d| < da.
A slightly stronger condition is given by the existence of some xg > 0 such that
G(z) =0 for 0 <z < zg, (5.23)

where G is defined in (5.17). Then, (A6) follows from (5.18). Note that condition
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(5.19) in (A6) is necessary for (A5) for § > 0 and sufficient for (A5) for 6 = 0.

Remark 17. Assumption (A5) is not restrictive which is shown by the following
examples for p € P.(2) which satisfies (A5), provided (A6) holds. We consider
p= meW where Qw = [—xw /2, zw /2] x [-0.5,0.5]. The non-regularised energy
E in (5.20) is clearly negative and for 6 > 0 sufficiently small, assumption (A5) is
satisfied, provided (A6) holds. More generally, p = meW@) satisfies (A5) for

any T € (0, Tywmaz) where

TWomaz = SUD {:E > 0: / W(s)ds < O} > Ty
0
and Qwz) = [—%/2,2/2] x [-0.5,0.5], provided (A6) holds.
Another example for measures satisfying (A5) are mollified delta distributions.

Note that p(z,y) = §(x) € P.(Q) satisfies (A5) for E since

[ 20 <) ) = W) =0

Further note that for the one-dimensional heat kernel

we consider the rescaled kernel

b-(, ) = \/%aﬁ (%) |

Due to property (5.19) of W we can choose € > 0 and 6 > 0 sufficiently small such
that Es(¢:) < 0.

The above examples show that for py with compact, connected support (A5) is
satisfied. Similarly, for any 0 > 0, the first term of the energy functional & in
(5.22) is negative provided the support of ps is sufficiently small in the x-direction
and (A6) holds. Hence, the parameter § > 0 can be chosen sufficiently small so
that (A5) is satisfied.
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5.3.2 Equilibrium conditions

Using the interaction potential W, the condition for equilibria in (5.15) can be
reformulated as

PO (W s pos + 0pp) =0 a.e. in () (5.24)
where the convolution W = py, is given by (5.21). Hence, we require

W s poy, + 0py, = C' on supp(pe) (5.25)

for some constant C' € R. Note that we obtain by multiplying (5.25) by ps and

integrating over supp(py)

// poo (2, Y)W % poo (2, y) d(,y) + // P (2, y) d(z,y) = C,

supp(peo) supp(peo)

where the unit mass of py, was used. In particular, this shows that C' = C(6) € R
is uniquely determined and the integral equation (5.25) may be expressed in the

equivalent fixed point form

C—W = py
[ C—=Wspyd(z,y)

supp(poo)

poo(x,y) =

Clearly, the fixed point form is consistent with (5.16) and the dependence of p,, on
J follows from C' = C(9).

It has been shown in [BDFF13] for non-trivial stationary states for purely repul-
sive potentials in the set L?*(R?) n P(RY) with d > 1 that minimisers are sufficient
for solving the equilibrium conditions. A similar results can be shown in our set-
ting of more general potentials and stationary states in the space L*(Q) n P.(Q)
whose elements satisfy (5.16) in addition. In particular, a minimiser of the energy
functional (5.22) is sufficient for solving (5.24).

Proposition 9 (Stationary solutions via energy minimisation). Let p,, € L*(Q2) be
a minimiser for the energy functional (5.22) on P.(2) which is of the form (5.16).
Then, py satisfies (5.15).
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5.3.3 Existence and convergence of minimisers

Motivated by Proposition 9, we consider the energy functionals £ and &, defined
in (5.20) and (5.22). For the existence and convergence of minimisers, we have
to verify that an energy minimising sequence is precompact in the sense of weak
convergence of measures, and prove a I'-convergence result. For this, we use Lions’
concentration compactness lemma for probability measures [[.io84], [Str00, Section

4.3] and reformulate it to our setting.

Lemma 5 (Concentration-compactness lemma for measures). Let {pp }nen © Pe(2).

Then, there exists a subsequence {pn, Yren Satisfying one of the three following pos-

sibilities:

(i) (tightness up to transition) There exists z € ) such that for all € > 0 there
exists R > 0 satisfying

/ dpn,(x,y) =1 —¢ for all k;
BRr(zr)nQ

(i1) (vanishing)

lim Sup/ dpp, (z,y) =0 for all R > 0;
Br(z)nQ

k=0 e

(111) (dichotomy) There exists a € (0,1) such that for all ¢ > 0 there ezists R > 0

and a sequence {zi}ren < € with the following property:

Given any R' > R there are nonnegative measures p;. and p; such that

0< pp + Pp < Puys
supp(py) < Br(z:) N Q,
supp(py) © N\Br(zk),

imsup (o~ [ aphen|+ |0 - [ atten)) <e

k—00
For proving the existence of minimisers of the energy functional (5.22), one can

use the direct method of the calculus of variations and Lemma 5 to eliminate the
cases ‘vanishing’” and ‘dichotomy’ of an energy minimising sequence. The proof of
the existence of minimisers of the regularised energy & in (5.22) is very similar to

the one for the non-regularised energy &£, provided in [SST'15, Theorem 3.2]:
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Proposition 10 (Existence of minimisers). Suppose W satisfies assumptions (A1),
(A2), (A3) and (A4). Then, the regularised energy Es in (5.22) has a global
minimiser in P.(Q) if and only if it satisfies (A5). The non-reqularised energy &€
in (5.20) has a global minimiser in P.(S2) if and only if (A5) is satisfied for E.

Remark 18. Let § > 0 be given. To see the necessity of assumption (A5) for the
existence of minimisers, assume that Es(p) > 0 for all p € P.(Q). We consider a

sequence of measures which ‘vanishes’ in the sense of Lemma 5(2). Let

p(r,y) = xq,(7,y),

where Q,, denotes the rectangle [—0.5n,0.5n] x[—0.5,0.5] forn > 1, and xq, denotes

the characteristic function of Q,. We consider the sequence

1 /x
Pn(l‘a?/) =—=p <_ay>
n n

forn = 1. Then, p, € P.(Q) and

0 < E5(pn) = %///[_WWW(:U—@U) dwd(z, y) + %//d(as,y)
Qn . Qn
— %/// W(r —w)d(w, z)d(z,y) + —

< — // // w)|d(w, 2)d(z,y) + —
n IO+Qn
< /\W ) d(z,y) + // )| d(z,y) + 9
QQn\QR
C(R )
< ()+2sup|W(a:)|+—
n lz|=R n

for any R > 0 where
Ry~ [[ @) dey)
Qr

Due to (A4) we have sup, >z |W(x)| — 0 as R — 0, implying that for any & > 0

we can choose R so that 2supy, > [W(x)| < 5. Then, we can choose n large enough
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so that @ < 5 holds. Hence, lim,,_,, E(pn) =0, implying

inf 85 (/)) =

pEP:(82)
Since Es(p) > 0 for all p e P.(Q), E does not have a minimiser in P.(€2).

Theorem 5 (I'-convergence of regularised energies). Suppose that W satisfies (A1),
(A2), (A3) and (A4). The sequence of reqularised energies {Es}s~o I'-converges

to the energy £ with respect to the weak convergence of measures. That is,

o (Liminf) For any {ps}s=0 < P.(Q) and p € P.(Q) such that ps converges

weakly to p as 6 — 0, we have

li%n iglf Es(ps) = E(p).

e (Limsup) For any p € P.(2) there exists a sequence {ps}s=o € P.() such that

ps converges weakly to p as 6 — 0 and

liI? S(l)lp Es(ps) < E(p).

Proof. Step 1 (Liminf): Since W is lower semi-continuous and bounded from below,
the weak lower semi-continuity of the first term in the energy functional & in (5.22)
follows from the Portmanteau Theorem [vdV W96, Theorem 1.3.4], i.e

hmlnf //p5 x ps) d(z,y) / (W = p)d(z,y).

Together with

hI&Inglf //p(; z,y)

the liminf inequality immediately follows.
Step 2 (Limsup): Let u € P.(£2) be given, let
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denote the one-dimensional heat kernel and define

—

Note that ¢ € C*(), ¢(x,y) = ¢(—x,y) for all (x,y) € Q, ¢ is constant in y, and

/ od(x,y) = 1.

In particular, |¢s| < 3—% where Cj denotes the bound of ¢. We define the measure
ps := ¢5 = p which converges weakly to p in P.(€2). Note that

5//p§d(m,y)<C¢\f5//p5d(x,y)=0¢\/3—>0 as 6 — 0.
Q Q

Due to the continuity of W, the term — [[ p(W = p)d(z,y) is weakly lower semi-
Q

continuous and

lim sup //Pa * ps) d(, y) / (W= p) d(x,y),
6—0

resulting in the limsup inequality. O]

Theorem 6 (Convergence of minimisers). Suppose that W satisfies (A1), (A2),
(A3) and (A4). For any § > 0 sufficiently small, suppose that & satisfies (A5)
and let ps € P.(Q) be a minimiser of the energy Es in (5.22) for all0 < § < 6. Then,
there ezists p € P.(2) such that, up to a subsequence and translations, ps converges

weakly to p as § — 0, and p minimises the energy £ over P.(Q).

Proof. Let {ps}s=0 = P.(Q) be a sequence of minimisers of &. For § > 0 sufficiently
small, we may assume that Es(ps) < 0 for all 0 < § < § since ps minimises &. As
in [SST'15, Theorem 3.2 one can eliminate the cases ‘vanishing’ and ‘dichotomy’ in
Lemma 5, implying that there exists a subsequence {ps, }ren satisfying ‘tightness up
to translation’, i.e. there exists z; € € such that for all € > 0 there exists R > 0

satisfying
/ dps,(z,y) =1 —¢ for all k.
Br(z1)nQ

We define ps, := ps, (- — ) and hence {ps, }ren is tight. Since &, (ps,) = Es,[Ps, ]
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{ps, }ren 1s also a sequence of minimisers of &, and by Prokhorov’s Theorem (cf.
[Bil71, Theorem 4.1]) there exists a further subsequence {ps, }ren, not relabelled,
such that ps, converges weakly to some measure p € P.(§2) as k — .

For showing that the measure p minimises the energy functional £, we consider
an arbitrary measure pu € P.(£2). By the limsup inequality in Theorem 5, there

exists a sequence {is, }ren Which converges weakly to u as k — oo such that

limsup &, (15,) < E(p).

k—o0

Together with the liminf inequality in Theorem 5, this yields

lim 5, (1s,) = E(1)

Since the sequence of measures ps, is a minimising sequence of &, which converges

weakly to p, we obtain, again by the liminf inequality,

E(p) < liminf &, (ps,) < liminf &, (us,) = E(p).
k—o0 k—o0

5.3.4 Properties of stationary solutions

Note that the odd function G, defined by G(z) = f[_0‘5 0.5] F,(z,z)dz in (5.17), is

nonnegative for x > 0 for the force F, in the Kiicken-Champod model, see Sec-
tion 5.1 for the precise definition of the force coefficients. Since G' = —%W, we can
make stronger assumptions on G and W than in (5.23) and (5.19), respectively, and

we assume in this subsection that
W'(z) =G(z) =0 forall z >0 (5.26)
and
W(z) <0 for all |z| = 0. (5.27)

In particular, the assumptions on the potential W for the one-dimensional results
in [BDFEF13] are satisfied and the results also hold for the stationary states p,
satisfying (5.16). We obtain:

Corollary 8. Let 6 > 0 be given.
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o If6 = W5, there exists no stationary solution py in L? A P.(Q) of the form
(5.16) which satisfies (5.15).

o If§ < |W|1, there exists a minimiser py, € L*P.(Q) of the energy functional

(5.22) which is symmetric in x, non-increasing on x = 0, and of the form
(5.16).

To relate the cases § < |[W| 1 and § = ||[W |1 to assumption (A5) note that

- // pW s p d(z,y) < W] // o2 d(z, )
[9] Q

by Young’s convolution inequality and property (5.27) of W, implying

- //poo W s po + 0pe) d(,y) = ‘WHLl //,OOO r,y)

and hence, a necessary condition for (A5) is given by 6 < |[W||p:.
Due to conditions (5.26) and (5.27), properties of the stationary solution of the

one-dimensional case in [BDFI'13] can also be extended to our setting:

Proposition 11. For any given L > 0 there exists a unique symmetric function ps €
C*([-L, L] x [-0.5,0.5]) with unit mass, ps(x,y) = ps(x,0) for all y € [-0.5,0.5],
and Oyps(x,y) < 0 for x = 0,y € [—0.5,0.5], such that ps solves (5.25) for some
§d = 0(L) > 0 where C = 2&s(ps) in (5.25). Such a function ps also satisfies
2ps5(0,y) <0 for all y € [-0.5,0.5]. Moreover, 6(L) is the largest eigenvalue of the
compact operator

Welps|(z) - = /0 ps(w,0) <W(3: —w)+ W(x+w)—W(L—-w)—W(L+ w)) dw
on the Banach space
V5 = {ps € C([0, L] x [-0.5,0.5]): ps(L,y) =0 for all y € [-0.5,0.5]}.

The simple eigenvalue §(L) is uniquely determined as a function of L with the

following properties:
(i) 0(L) is continuous and strictly increasing with respect to L,
(i) Yoy o5 6(L) = W1,
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(iii) 6(0) = 0.

Theorem 7. Let § < |[W| 1. Then, there exists a unique ps € L* n'P.(Q2) with unit

mass and zero centre of mass such that (5.24) is satisfied. Moreover,
® ps5 15 symmetric in x and monotonically decreasing on x > 0,
* ps € C*(supp(ps)),
e supp(ps) is a bounded, connected set in €,

ps has a global maximum at x = 0, and 0%ps(0,y) < 0 for all y € [-0.5,0.5],

ps is the global minimiser of the energy Es in (5.22).

5.3.5 Stationary solutions on the torus

To compare the analytical results to the numerical simulations, we consider the two-
dimensional unit torus T?, or equivalently, the unit square [—0.5,0.5]* with periodic
boundary conditions as the domain in this section. For minimisers ps of the energy
functional & in (5.22), we require py(z,y) = po(x,0) for all y € [—0.5,0.5] with
zero centre of mass. Note that the uniform distribution on [—0.5,0.5]? also satisfies
these conditions.

In contrast to steady states on Q = R x [—0.5,0.5] in Theorem 7, steady states
on the unit torus may not have connected support and may be composed of finitely
many stripes of equal width and equal distances between each other. To see this,
let us consider minimisers of the non-regularised energy &£ in (5.20), and suppose

that we have an odd number n of stripes first. Let

1 n
po(@,y) = = . 0, (2) (5.28)
n
k=1
for zq,...,2, € (—0.5,0.5) with 1 < ... < x,. We introduce the general velocity

field V e C'([-0.5,0.5]) such that V(x;) = v, for some given vy, ...,v, € R. Let

u(z,y, s) be a local solution to the Cauchy problem

Ost + 0y (uV) = 0,
U(l’,y,O) = 1000<x7y)
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The evolution of the energy £ in (5.20) along u at time s = 0 is given by

L (u(r19))

_ / (W « w)dsud(z, )
[=0.5,0.5]2

s=0 s=0

= /[ 0505 POOV(W/ * /)00) d(xa 3/)

since po (—0.5,y) = p(0.5,7) = 0 for all y € [—0.5,0.5]. Here, appropriate periodic

extensions of W’ and p., are considered in the convolution integral. Note that
[ VW ) ) = Yo Y, Wian - ),
[-0.5,0.5] k=1 j=1

and we require L& (u(z,y, S))‘s=o = 0 for minimisers of E for any velocity field V/,

implying

D IW @y — ) = > Wy — 5) =0, (5.29)
j=1 j=1
J#k

since W/(0) = G(0) = 0. For general potentials W, this condition can only be

satisfied for equidistant points z1, ..., x, with
E n+1
=— — kE=1,... 5.30
Ty n m ) ) y 1, ( )

since W/(d) = —W'(—d) for d € R?. In particular, any minimiser p., of £ of the
form (5.28) with zero centre of mass consisting of an odd number n of parallel lines
has to consist of n equidistant lines at locations z; in (5.30). The single straight
vertical line with zero centre of mass is included in the property of locations xj in
(5.30).

For an even number n of lines, we can proceed in a similar way as above. Con-
dition (5.29) implies that for minimisers py of € consisting of an even number of
lines the property W/ (—0.5) = W’(0.5) = 0 is required in addition to equidistant
lines at locations zy in (5.30). Note that W'(—0.5) = W’(0.5) = 0 is equivalent to
£1(0.5) = 0 for the force coefficient f; in the definition of the force F,(d) = fi(|d|)d.

More generally, for minimizers of £ we require the measure

188



5.3. Stationary solutions for spatially homogeneous tensor fields

for n € N arbitrary to be a periodic function of period % This motivates to consider
measures p,, which are periodic of period % in x for some n € N, constant in y,

and whose support supp(ps) is not connected, i.e. supp(py) consists of n connected

components My, k =1,...,n, with
k= .
MkZMj+—, j,k’e{l,...,n}. (531)
n
We further assume that p,, is symmetric in x on My, for k£ = 1,...,n. Note that for

measures with zero centre of mass, we can assume without loss of generality that
Pou(—0.5) = p(0.5) = 0. For § > 0 and po, € L?([—0.5,0.5]%), we may also consider
the regularised energy & in (5.22). For the evolution of the energy &, we obtain

d

Es(u(,y.)

= / (W s u+ du)dsud(z,y)
[—0.5,0.5]

5=0 s=0

= /[ . PV Or(W % poy + 0pop) d(, ).

For any velocity field V' e C'([—0.5,0.5]) which is constant on each connected
component of supp(py) with vx € R such that V(z) = vy for all (z,y) € M for

k=1,...,n, we have

5 n
5/ PV Oupoo d = (%02 d(z,y) =0
050572 ” 222: o (@)

and due to the periodicity of p,, we obtain

/ PV Oy (W * poo) d(iL‘, y)
0.5,0. 5

I

i M: i M:

/ * poo) d(2,y)
Y

(x,y Z/ W'(x — w)pe(w, 2) d(w, 2) d(z,y).
Since W’ is an odd function, we have

/M pola) | W= wlpa(w.2) dtw, ) d(a.g) =0
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and
/M P (2, Y) y 'W’(x—w)poo(w,z)d(w,z) d(z,y)

- _/M polesy) [ W = w)polw,2)d(w, 2) d(,y)

due to the symmetry of py in z on each M}, and the translation property (5.31) of
two connected components of supp(py). Under the above assumptions, this implies
that

[ paVeaW e p)dlay) =0
[~0.5,0.5]2

for n odd, while for n even, we have to require in addition that W’'(—0.5) =
W'(0.5) = 0, i.e. f;(0.5) = 0, as before. Note that for general potentials W, the
conditions that p,, is symmetric in = on M, and all connected components M} of
supp(po ) are of equal size, equidistant, and given by the translation property (5.31)
are necessary for minimisers p, of & for 6 > 0. In particular, this shows that the
energy functionals & and £ for probability measures defined on the torus T? may
have multiple local minimisers due to the dependence on n. The support of these
minimisers may not be connected and may consist of a finite number of connected
components of equal size, satisfying the translation property (5.31). Besides, sym-
metry in x on each connected component My is required for minimisers, implying

the periodicity of minimisers in x.

5.4 Numerical scheme and its convergence

5.4.1 Numerical methods

For the numerical simulations, we consider the positivity-preserving finite-volume
method for nonlinear equations with gradient structure proposed in [CCHI14a] for
isotropic interaction equations (5.11). We consider the domain R? and extend the
scheme [CCH14a] to the anisotropic interaction equations with or without diffusion
in (5.10) or (5.1), respectively. This is achieved by replacing —VW by F(-,T),
requiring additional care in calculating the term (F(-,T(x,y)) = p(t,-))(z,y) for
(z,y) € R? efficiently.

In two spatial dimensions, we consider a Cartesian grid, given by x; = 1Ax

and y; = jAy for i,5 € Z. Let C;; denote the cell of the spatial discretisation
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5.4. Numerical scheme and its convergence

Cij = @i, ix1) ¥ [yj,yj+1), and let the time discretisation be given by ¢, = nAt
for n € Z. Let p}; denote the approximation of the solution p(t,,z;,y;) to the
anisotropic nonlocal interaction equation with diffusion (5.10) with initial condition
pli—o = p™ in R? for a given probability measure p™. Note that (5.10) can be

rewritten as
ap + V- (pu,) = 0V - (pVp)
where u, is defined in (5.2) with
lup(t,z,y) < f

for the uniform bound f of F. Assuming that p™ € Py(R?) where Py(R?) denotes
the space of probability measures with finite second order moment, we define its

discretisation

1 )
0 _ in >
C»L'j

for i,7 € Z2. Since p™ is a probability measure, the total mass of the system is

J
consider the scheme

i P AzAy = 1 initially. Given an approximating sequence {pf;};; at time n, we

At
n+1 n n n n n
pij+ = Py — Ar (<u93)i+1/2,jpi+1/2,j - (“r)z‘—yz,jpiq/z,j)
At n n " n
- A_y ((uy)i,j+1/2pi,j+1/2 - (uy)i,j_1/2f)i,j—1/2)

+ Ef (pi-',-l,j —2p;; + pi—l,j) + mf (pi,j+1 — 2p5 + pi,j—l) (5.33)

dAL n n\ 2 n 2
+ —2(Ax)2 <<pi+1,j)2 -2 (pij) + (pi—l,j) )
+ —Q(Ay)2 ((Pi,j+1)2 -2 (pij) + (pi,jfl) )

for the uniform bound f of the force F' and parameter 6 > 0. Here, we use the

notation
_ Pij T Pty _ Pij T Pigtt
Pit+1/2,5 = 9 Pij+1/2 = 9
- (ua)ij + (Uz)iyy _ (uy)yj + (uy); j1a
(“x)i+1/2,j = 9 , (uy)i,j+1/2 = 5 3
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where the macroscopic velocity is defined by

1 K 1 kil
(ux)ij = AJIAy ; pkl(Fm)z'jv (uy>z‘j = AIAy ; pkl(Fy)Z‘j (534)

with

(Fo)y = Fo(z =2y =y, T(z,y)) d(z,y) |d(=",y),
Cij

)= | [ B -y - v T de |aey)

for the components F,, F, of F' with F' = (F;, F,). A change of variable also yields
(e)isiog = g Pkl ()i = 5o P ()
Uy i+1/27j - AIAy — pk?+1/2,l z)ij uy i,j+1/2 - AIAy — pk,l+1/2 Y)ij°

Note that (Fx)f]l and (Fy)f;l can be determined explicitly in the numerical simulations
instead of evaluating the integrals, and can also be precomputed for making the
computation of the discretised velocity fields more efficient. Further note that the
last two lines of the numerical scheme (5.33) can be regarded as a discretisation of

the nonlinear diffusion 6V - (pVp) = $(02p* + 02p?).

5.4.2 Properties of the scheme: conservation of mass, posi-

tivity, convergence
In [CJLV16], the convergence of a finite volume method is shown for general measure
solutions of the (isotropic) aggregation equation with mildly singular potentials. In

this section, we establish a CFL condition for the numerical scheme (5.33) for the

anisotropic aggregation equation (5.10) and prove its weak convergence.

Lemma 6. Let p™ € Po(R?) and define pj; by (5.32). Then, there exists a constant
r > 0 such that

sup p;; < T, (5.35)

n7l7.7
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5.4. Numerical scheme and its convergence

and conservation of mass is satisfied for all n, i.e.

oAz Ay = Y plAxAy = 1.

i,J€Z 1,J€EZ

For spatially homogeneous tensor fields, conservation of the centre of mass also

holds, 1i.e.

Z Tip;; = Z Tipy;, Z Yipy; = Z Yipy;.

1,JEZ 1,JEZ i,JEZL i,JEL
Proof. The conservation of mass is directly obtained by summing over ¢ and j in
(5.33), and noting that 3, ., pj;AzAy = 1. In particular, the conservation of mass
implies the uniform boundedness of pf;, i.e. there exists a constant r > 0 such that
(5.35) is satisfied. The conservation of the centre of mass follows from a discrete
integration by parts and the fact that (FI)ZZ = —(F,)}, for spatially homogeneous
tensor fields. N

For proving the convergence of the numerical scheme, a CFL condition is re-

quired:

Lemma 7. Let p™ € Po(R?) and define p; by (5.32). Suppose that the force F is
bounded by f, let r > 0 denote the uniform bound of pj; in (5.33) from Lemma 6,

and suppose that the condition

(2f (éJFALy) +5T((A1x)2 + (A1y>2>)At<1 (5.36)

is satisfied. Then the sequences defined in (5.33)—(5.34) satisfy

piy 20, )il < fo 0 )l < f,
for all i, j and n.

Proof. By the definition of the velocity (5.34) and the uniform bound f of the force

F we obtain

(o)l < AzAyf > pw=f, w5 < f (5.37)

k.l

for all 4, 7, n.
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For proving the nonnegativity of the scheme (5.33), note that we can rewrite
(5.33) as

il on (1 At <(“x)?+1/2,j - (ux)?—l/Q,j + 2f>

101] _plj 2
At ((uy)ZjH/g (uy);;- 1/2+2f> SAt . GAt n)

Ay 2 B <Am>2”” VK
. At (5.38)
+pi+1,j% <f ( )Z+1/2j> +pz IJZA <f+ ( )z 1/2]>
n At
+ Pi,j+1m <f (uy)l ]+1/2> + ng 12A (f + ( )” 1/2)

N2 N A2 OAt 0 o W
+ 2(Az)? ((P¢+1,j) + (pz’—l,j) ) + W ((Pmurl) + (pi,j_l) ) )

We show the nonnegativity of pj; by induction on n. For n € N given, we assume
that pj; > 0 for all 4, j € Z. Note that due to condition (5.36), all coefficients in
(5.38) of pit, piy1 s Pi1 Pije1 and pff; ) are nonnegative, and the terms in the
last line are also nonnegative. By induction, we deduce p”Jrl 0 for all 7, € Z.

O

Next, we consider the convergence of the scheme in a weak topology. Let
Mo (RY) denote the space of local Borel measures on R?. For p € M,.(R%), we
denote the total variation of p by |p|(R?) and we denote the space of measures in
Moe(R?) with finite total variation by My(R?). The space of measures M;(R?) is
always endowed with the weak topology o(My, Cp).

Let the characteristic function on some set [nAt, (n+ 1)At) x C;; < Ry x R? be
denoted by Xat,nr1)axc,,- For A = max{Az, Ay}, we define the reconstruction

of the discretisation by

alt,z, ) ZZZPU X[nAt,(nr1)at)xc; (t 2, Y),

neZ i€l jeL

where the boundedness of pa independent of A follows from Lemma 6. Using the
definition uf; = ((us);;, (uy);;) in (5.34), we obtain

w1
W= Aeay C// FCT(0,) * palt, )(a,) )
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5.4. Numerical scheme and its convergence

and

Alt,z,y) ZZZ“UX nAL(m+ DAY xCy, (E 2, Y).

neZ i€Z jel

Theorem 8. Suppose that the continuous force F is bounded by f and that the
tensor field T is continuous. We consider p™ € Po(R?) and define pf; by (5.32).
Let S > 0 be fized, and suppose that the discretisation in time and space satisfies
(5.36). Then, the discretisation pa converges weakly in My([0, S] x R?) towards the
solution p of (5.1) as A = max{Ax, Ay} and § go to 0 such that At satisfies (5.36).

Proof. Lemma 6 implies the nonnegativity of pf; provided condition (5.36) holds.
Since {pa}a=o is a bounded, nonnegative sequence of measures for all ¢ € [0, S], con-
servation of mass implies that |pa(f)[(R?) = 1. Hence, there exists a subsequence,
still denoted by {pa}a=o, which converges to p in the weak topology as At, Az and
Ay go to 0 satisfying condition (5.36), i.e

/OS//¢(t,x,y)PA(t,x,y)d(x,y) dt — /OS//gb(t,x,y)p(t,x,y) d(z,y) dt

for all ¢ € Cy([0, 5] x R?).

For S > 0 given, choose At > 0 and Ng € N.( such that S = AtNg and condition
(5.36) are satisfied. Let D([0,S] x R?) denote the space of smooth, compactly
supported test functions on [0, 5] x R? and define

o = / [ ste.matepar
Cij

such that

///pAtxy o(t, z,y)d xydt—zzz,o

n=0 i€Z jeZ
In particular, we have
1 n—1
Z At (pA( n+17x27yj) pA(tnvxzay] = - Z Pij ” Z]
n,i,J n,i,j

s x,Y) — — At,x
—/ //pA(t,x,y)¢(t’ -4) Z(f 2t d(z,y) dt
0
R2

195



Role of nonlinear diffusion on equilibria: Analysis and numerics

o /OS // p(t, x,y)0p(t, z,y) d(z,y) dt

as At, Az and Ay go to 0, where the limit integral follows from ¢(t,z,y) — ¢(t —
At z,y) = ot z,y)At + O((At)?), the weak convergence of pa to p and the

boundedness of the measure po with a bound not depending on the mesh. Similarly,

1
Z IAT (pA(tn7x’L+17yj) - 2pA<tn7xz7yJ) + pA(tnaxz 17%))
n,i,J

:/0 //pA(t%y)d)(wﬂLAw,y)—2¢(t,a:,y)+¢(t,x—Ax,y) d(z.y) dt — 0
RQ

2Az

as At, Az and Ay go to 0 since |¢(t,x + Az, y) — 2¢(t, z,y) + ¢(t,x — Az, y)| <
0220 (Ax)?. Due to the boundedness of the force F(-,T(z)), we can show in a
similar way as in [CJLV16] that

1 3
Z Ar ((u$)2+1/2]pz+1/2j (ue )i 1/23Pz 1/2;) bi;

n,i,J

S / / 0,0(t, 2. 9) (Fo T, ) » p(t, ) (&, 9)plt, 2, ) d(z, y) dlt

as At, Az and Ay go to 0 by the continuity of F' = (F,, F,) and T where F,, denotes

the first component of the force F'. Further note that we have

0 Z 2(%@2 <(P?+1,j)2 —2 (PZ)2 + (P?—l,j)2) Z

i 1
:5ZW(%)2( 1y — 205 + 011,)

/n?ihj
1 S
< 5010mdle [ [ (paltiz)? dle
0
R2

The boundedness of pa, independent of A, guarantees that the right-hand side goes
to 0 as 0, At, Az and Ay go to 0.
Multiplying (5.33) by ¢~

i, summing over n, 7, j, and taking the limits o, At, Az

and Ay to 0, we obtain
S
/0 // [Bu(t,,y) + Vo(t,2,y) - (F(,T(x,9)) = plt, ) (@ 9)]p(t, 2, y) () dt = 0
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in the limit, i.e. p is a solution in the sense of distributions of the anisotropic

aggregation equation (5.1). O

5.5 Numerical results

In this section, we show simulation results for solving the anisotropic aggregation
equation with nonlinear diffusion (5.10) numerically using the numerical scheme
(5.33). For the numerical simulations, we consider the force coefficients f; and f;
in (5.8) with fs = fr + xfa and f; = fr + fa as suggested in [DGH"19], where fr
and f4 are defined in (5.5) and (5.6). To be consistent with the work of Kiicken
and Champod [KC13], we assume that the total force (5.8) defined via the tensor
field T'(x,y) = xs(z,y) ® s(z,y) + l(z,y) ® I(z,y) in (5.3) exhibits short-range
repulsion and long-range attraction along [ and repulsion along s. In the following,
we consider the force coefficients fr and f4 with the parameter values in (5.7). The

computational domain is given by [—0.5,0.5]* with periodic boundary conditions.

5.5.1 Spatially homogeneous tensor fields

In this section, we show stationary solutions to the anisotropic interaction equation
(5.10), obtained with the numerical scheme (5.33), for the spatially homogeneous
tensor field T with s = (0,1) and I = (1,0), cf. Figures 5.1-5.4. Note that the
stationary solutions for the tensor field 7" are constant in y-direction in all these
figures.

The stationary solution to (5.10), obtained with the numerical scheme (5.33)
for different values of the diffusion coefficient ¢, is shown in Figure 5.1. Here, we
consider uniformly distributed initial data on a disc of radius R = 0.05 with centre
(0,0) on the computational domain [—0.5,0.5]?, where the spatial discretisation
is given by a grid of size 50 in each spatial direction, and the time step is chosen
according to the CFL condition (5.36). Due to the choice of initial data, this leads to
a single straight vertical line as stationary solution, provided ¢ is chosen sufficiently
small. As expected, an increase in § leads to the widening of the single straight
vertical line which is stable for sufficiently small values of §. For larger values of ¢,
e.g. § =5-1077, the uniform distribution is obtained as stationary solution.

In Figure 5.2, we investigate the role of the grid size on the stationary solution
by considering grid sizes of 50, 100 and 200 in each spatial direction for the diffusion

parameter § = 107! and uniformly distributed initial data on a disc. Clearly, the
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50
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20

10

-0.5 -0. 0. -0. 0
-0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5

X X X X

(A) 6 =10"10 (B)§=5-10"8 (C)6=2-10"7 (D)6 =5-10""

Figure 5.1: Stationary solution to the anisotropic interaction equation (5.10), ob-
tained with the numerical scheme (5.33) on a grid of size 50 in each spatial direction
and different diffusion coefficients § for the spatially homogeneous tensor field with
s = (0,1) and [ = (1,0) and uniformly distributed initial data on a disc on the
computational domain [—0.5,0.5]%.

stationary solution is given by a step function in the z-coordinate. Finer grids lead

to step functions with more steps and smaller step heights compared to the grid size

of 50 where only one step occurs.

0.5 50 0.5 50
40 40
30 30

> 0.0 > 0.0

20 20
10 10

-0.5 0 -0.5 0

-0.1 0.0 0.1 -0.1 0.0 0.1
X X

(A) Grid 50 (B) Grid 100 (C) Grid 200

-0.1 0.0 0.1
X

Figure 5.2: Stationary solution to the anisotropic interaction equation (5.10), ob-
tained with the numerical scheme (5.33) on grids of sizes 50, 100 and 200 in each
spatial direction for the diffusion coefficient § = 1071 for the spatially homogeneous
tensor field with s = (0,1) and [ = (1,0) and uniformly distributed initial data on
a disc on the computational domain [—0.5,0.5]%.

The stationary solution for grid sizes of 100 and 200 in each spatial direction
and uniformly distributed initial data on the computational domain [—0.5,0.5]% is
shown in Figure 5.3, and is given by equidistant, parallel vertical line patterns. Note
that we obtain the same number of parallel lines for the different grid sizes.

In Figure 5.4, we show the stationary solution for uniformly distributed initial
data on the computational domain [—0.5,0.5]? for different diffusion coefficients 4.
Note that as d increases, the stable line patterns become wider and this may result in

a decrease in the number of parallel lines. If § is larger than a certain threshold, e.g.

198



5.5. Numerical results

0.5 0.5
5 5
4 4
> 0.0 3 > 0.0 3
2 2
1 1
0.5 0 05 0

0.5 0.0 0.5 0.5 0.0 0.5
X X
(A) Grid 100 (B) Grid 200

Figure 5.3: Stationary solution to the anisotropic interaction equation (5.10), ob-
tained with the numerical scheme (5.33) on grids of sizes 100 and 200 in each spatial
direction for the diffusion coefficient § = 1071 for the spatially homogeneous tensor
field with s = (0,1) and I = (1,0) and uniformly distributed initial data on the
computational domain [—0.5,0.5]%.

d = 5-107%, the parallel line patterns are no longer stable and the stationary solution

is given by the uniform distribution on the computational domain [—0.5,0.5]°.

0.5

0.5

05

-0.5 -0.5
0.

. -0.5
5 0 0.5 -0.5 0.0 0.5 -0.! 0.0 0.5 -0.5 0.0 0.5

X X X X

(A) 6 =10"10 (B)d=5-10"10 (C)é6=10""° (D)6=5-107°

Figure 5.4: Stationary solution to the anisotropic interaction equation (5.10), ob-
tained with the numerical scheme (5.33) on a grid of size 200 in each spatial direction
and different diffusion coefficients ¢ for the spatially homogeneous tensor field with
s =(0,1) and I = (1,0) and uniformly distributed initial data on the computational
domain [—0.5,0.5]°.

5.5.2 Spatially inhomogeneous tensor fields

In this section, we consider stationary solutions to the anisotropic interaction equa-
tion (5.10), obtained with the numerical scheme (5.33), for different spatially inho-
mogeneous tensor fields.

In Figure 5.5, we consider fingerprint images in Figures 5.5(A) and 5.5(D), use
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these fingerprint images to construct the vector field s = s(z,y) in Figures 5.5(B)
and 5.5(E), and show the resulting stationary solutions for the diffusion coefficient
§ = 107 and uniformly distributed initial data on a grid of size 50 in each spatial
direction in Figures 5.5(C) and 5.5(F), respectively. For the construction of the
tensor field we firstly proceed as in [DGH™19], and then we rescale the tensor field
appropriately to the given grid size.

0.5
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NN\

s
s
:\
N
)
A
/
/
%

N
> 0.0
s
ATATA T T W U M VL S S Y
A AAAARRRRRRRRRRRNN
AT T T T Y
A Y
AR AR RRNRRNNRNNRNY
AR AN RRRRNRRNRNNRNY
05 AN RRRRRRTRRRNRNRNNRNNNRN
-0.5 0.0 0.5
X
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0'5///’// S Y
SRR
VAAAAZZE NSNS\
LA S NN NNNNNNN
VRAAAAA S ﬁ\\\\\\\\\\
A ( ALY
27720
2777 INNNNNNANRNRNN AN
> 0.0[ /7 /AN NN
Ve R R R NN Y
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S —— SONNN
fit SN
S NN
e ——
-0.5
-0.5 0.0 0.5 0.5 0.0 0.5
X X X
(D) Original (E) s (F) Stationary solution

Figure 5.5: Stationary solution to the anisotropic interaction equation (5.10), ob-
tained with the numerical scheme (5.33) on a grid of size 50 in each spatial direction
and diffusion coefficient § = 10719 for different spatially inhomogeneous tensor fields
from real fingerprint images and uniformly distributed initial data on the computa-
tional domain [—0.5,0.5]2.

In Figure 5.6, we consider the tensor field in Figure 5.5(B) of part of a fingerprint,
and show the numerical solution at different iterations of the numerical scheme
(5.33) on a grid of size 50 in each spatial direction for the diffusion coefficient
§ = 107 and uniformly distributed initial data on the computational domain

[-0.5,0.5]%. Note that the resulting numerical solution is close to being stationary.

Similarly as in Figure 5.4 for spatially homogeneous tensor fields, we show the
stationary solution for different diffusion coefficients § in Figure 5.7, where the
spatially inhomogeneous tensor field in Figure 5.5(B) and a grid of size 50 in each

spatial direction are considered. As J increases, the line patterns become wider,
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3
o = m w & o o

o = M w & a o

05 0.0 05 05 0.0 05 05 0.0 05
X X X

(A) n = 100000 (B) n = 200000 (C) n = 300000 (D) n = 400000

Figure 5.6: Numerical solution to the anisotropic interaction equation (5.10) after
n iterations, obtained with the numerical scheme (5.33) on a grid of size 50 in each
spatial direction with diffusion coefficient 6 = 10719 for the spatially inhomogeneous
tensor field of part of a fingerprint and uniformly distributed initial data on the
computational domain [—0.5,0.5]%.

provided the diffusion coefficient § is below a certain threshold. If § > 0 is above

this threshold, e.g. for § = 1079, the uniform distribution is obtained as stationary

homogeneous tensor fields.

solution. Note that this threshold is smaller than the one in Figure 5.4 for spatially
05 0.0 T os 05 0.0 05

05 6

5

4

> 0.0 3
2

1

05 0

05 0.0 05
X X X

(A) 6 = 10710 (B) § = 510710 (C) 6 =109

Figure 5.7: Stationary solution to the anisotropic interaction equation (5.10), ob-
tained with the numerical scheme (5.33) on a grid of size 50 in each spatial direction
for different values of the diffusion coefficient § for a given spatially inhomogeneous
tensor field and uniformly distributed initial data on the computational domain
[—0.5,0.5]%

Motivated by the simulation results in [DGH™ 19], we consider different rescalings
of the forces in Figure 5.8 to vary the distances between the fingerprint lines, i.e. we
consider F(nd(zx,y),T(x)) where n > 0 is the rescaling factor. As before, we consider
the diffusion coefficient § = 107! on a grid of size 50 in each spatial direction and
uniformly distributed initial data on [—0.5,0.5]2. For n = 1 we recover the same
stationary solution as in Figure 5.5(C), while the distances between the fingerprint

lines become larger for n € (0,1) and smaller for n > 1.
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05 0.0 05
X X

(A)n=0.6 (B)n=0.8 (C)n=12

Figure 5.8: Stationary solution to the anisotropic interaction equation (5.10), ob-
tained with the numerical scheme (5.33) on a grid of size 50 in each spatial direction,
diffusion coefficient § = 1071° and different force rescalings n for a given spatially
inhomogeneous tensor field and uniformly distributed initial data on the computa-
tional domain [—0.5,0.5]?.
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Chapter 6

ODE- and PDE-based modelling

Originality and contribution

This chapter follows in large parts the paper [HKM19a], written in collaboration
with Jan Haskovec and Peter A. Markowich. While PM proposed the study of the
model and provided guidance and advice, the analysis is mostly joint work by JH

and myself, and all numerical simulations were carried out by myself.

Chapter summary

In this chapter, we study the global existence of solutions of a discrete (ODE-based)
model on a graph describing the formation of biological transportation networks,
introduced by Hu and Cai, which is given by the gradient flow of the energy (1.26),

1.e.

gy ¥ (@ij[C]ZJrzcgj) Ly, (6.1)

ipee N G
constrained by Kirchhoff’s law (1.24), i.e.

P, — P .
— Z Cj—t—"=25; forall i e V. (6.2)
e L
JEN(3) J
We propose an adaptation of this model so that a macroscopic (PDE-based) system
can be obtained as its formal continuum limit. We prove the global existence of weak
solutions of the macroscopic PDE model. Finally, we present results of numerical

simulations of the discrete model, illustrating the convergence to steady states, their
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ODE- and PDE-based modelling

non-uniqueness as well as their dependence on initial data and model parameters.

6.1 Introduction

Transportation networks are ubiquitous in living systems such as leaf venation in
plants, mammalian circulatory systems that convey nutrients to the body through
blood circulation, or neural networks that transport electric charge. Understand-
ing the development, function and adaptation of biologic transportation networks
has been a long standing interest of the scientific community [BHD*07, CC95,
RFLT05, YDGT00]. Mathematical modelling of transportation networks is tradi-
tionally based on discrete frameworks, in particular mathematical graph theory and
discrete energy optimisation, where the energy consumption of the network is min-
imised under the constraint of constant total material cost. However, networks and
circulation systems in living organisms are typically subject to continuous adapta-
tion, responding to various internal and external stimuli. For instance, for blood
circulation systems it is well known that throughout the life of humans and animals,
blood vessel systems are continuously adapting their structures to meet the changing
metabolic demand of the tissue. In particular, it has been observed in experiments
that blood vessels can sense the wall shear stress and adapt their diameters ac-
cording to it [HCR12]. Consequently, for biological applications it is necessary to
employ the dynamic class of models.

Motivated by this observation, Hu and Cai [HC13] introduced a new approach to
dynamic modelling of transportation networks. They propose a purely local dynamic
adaptation model based on mechanical laws, consisting of a system of ordinary
differential equations (ODE) on a graph, coupled to a linear system of equations
(Kirchhoff law). In particular, the model responds only to local information and
fluctuations in flow distributions can be naturally incorporated. Global existence
of solutions of the coupled ODE-algebraic system is not trivial and, to our best
knowledge, has not been proved so far. The first goal of this chapter is to close this
gap.

In contrast to the discrete modelling approach, models based on systems of par-
tial differential equations (PDE) can be used to describe formation and adaptation
of transportation networks based on macroscopic (continuum) physical laws. Hu
and Cai proposed a PDE-based continuum model [Hul3] which was subsequently
studied in a series of papers [AAFMI16, ABH" 17, HMP15, HMPS16]. The contin-

uum model consists of a parabolic reaction-diffusion equation for the conductivity
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6.1. Introduction

field, constrained by a Poisson equation for the pressure field. However, no con-
nection between the discrete (ODE-based) and continuum (PDE-based) models for
biological transportation networks has been established so far.

The second goal of this chapter is to provide a formal continuum limit of an
extension of the Hu and Cai model [HC13] on regular equidistant grids; the rig-
orous limit passage will be studied in Chapter 7. The resulting continuum energy

functional is of the form
Elc] = / Vp-cVp + z|c|” dz, (6.3)
Q v

with the metabolic constant v > 0 and metabolic exponent v > 0. The energy

functional is defined on the set of nonnegative diagonal tensor fields ¢ = ¢(z) on R,

The symbol |c|? is defined as ZZZI |c*|”. The scalar pressure p = p(z) of the fluid

within the network (porous medium) is subject to the Poisson equation
—V - (cVp) =5, (6.5)

equipped with no-flux boundary condition, and the datum S = S(z) represents
the intensity of sources and sinks. The formal L*-gradient flow (local dynamic

adaptation model) of the energy (6.3) constrained by (6.5) is of the form
Orc® = (0,,p)° — u|ck’7_20k, k=1,...,d, (6.6)

subject to homogeneous Dirichlet boundary conditions, and coupled to (6.5). Clearly,
the system suffers from two drawbacks: first, the possible strong degeneracy of the
Poisson equation (6.5), and, second, the fact that (6.6) is merely a family of ODEs,
parametrised by the spatial variable. Therefore, we shall consider a regularisa-

tion/extension of (6.5)—(6.6), where the Poisson equation is of the form

V.- ((rI +¢)Vp) = S, (6.7)
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where r = r(z) = 19 > 0 is a prescribed function that models the isotropic back-
ground permeability of the medium, and I € R?*? is the unit matrix. The second
drawback is addressed by equipping the transient system (6.6) with a linear diffusive

term modelling random fluctuations in the medium,
orc® = D*Ac* + (0,,p)° — 1/|ck’7_20k, k=1,...,d, (6.8)

subject to homogeneous Dirichlet boundary conditions, where D? > 0 is the constant
diffusivity. Let us note that the model (6.7)-(6.8) is a variant of the tensor-based
model proposed by D. Hu, restricted to the set of diagonal tensors [HC14]. As we
will see in the derivation of the formal continuum limit, diagonal tensors can be
associated with rectangular parallelotopes in the discrete setting.

The third goal of this chapter is to prove the global existence of weak solutions
of the PDE system (6.7)—(6.8). The proof shall rely on the fact that it is a formal

L?-gradient flow of the regularised energy functional
£le] / DAVl + Vp- (1T+0)Vp + Zel da. (6.9)
Q

where the symbol |V¢|? is defined as 315 _, ‘Vck‘z.

This chapter is organised as follows. In Section 6.2 we describe the discrete
model [HC13] introduced by Hu and Cai, establish its gradient flow structure and
prove the global existence of solutions of the corresponding ODE system coupled
to the Kirchhoff law (linear system of equations). In Section 6.3 we motivate an
adaptation of the Hu-Cai model so that a continuum model can be obtained as
its formal macroscopic limit. We then derive the PDE system (6.5)—(6.6) as the
formal gradient flow of the continuum energy (6.3) and prove the global existence
of solutions for v > 1. Finally, results of numerical simulations of the discrete
Hu-Cai model are presented in Section 6.4, illustrating the convergence to steady
states, their non-uniqueness as well as their dependence on initial data and model

parameters.

6.2 Analysis of the microscopic model

In this section, we investigate the microscopic model for describing the formation

of biological networks, introduced in Section 1.2.2.
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6.2. Analysis of the microscopic model

6.2.1 Gradient flow

To compute the gradient flow of the energy (6.1) constrained by Kirchhoff’s law
(6.2), we need the following result about the derivative of the pumping term with

respect to the conductivities:

Lemma 8. Let Q;;[C] = ,,J (i,7) € E as in (1.23), where P is a
solution of the linear system (6. 2) with a given vector of conductivities C'. Then,
for any fized (k,1) € E we have

0 Qi[CT?
0Ch Cij

Qu[CT?
Ci,

Lij = — Li. (6.10)

(i,7)€E

Proof. Since

0 Qi [C)? QulCT? Qi;[C] 0Q4[C]
_— Lii = — L ) L
0Ch Cy; 7 cz M t2 ) Cy;  0Cy =7

(4,5)€E

it is sufficient to show that

Let A = (A;;) denote the adjacency matrix of the graph G = (V,E), i.e. its coeffi-
cients are defined by
0 if (i,5) ¢ E

Ay = ’ (6.11)
1 if (i,7) € E.

~—

Note that G is an undirected graph, implying A;; = Aj;. Due to the symmetry of

C;; and L;; and antisymmetry of ();; we have

QylC10Q4Cl, <o, (B —PRoQylCl ,
ijeE ]z] aé(kl Lij B ;;AU ( Lzy aékl > L”
= N . N OQ’ C an
- Jz_:ll PJ ; g aékl Z P 2 AU 6ékl
_ oV p NV, 9QulC]
— -2 ; P ;1 b =56
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ODE- and PDE-based modelling

= _QZPz ’\Ckl Z Qz]

i=1 JEN ()

By the definition of the flow rate );; in (1.23) and Kirchhoft’s law (6.2) we have

- Z ng_ Z CszL P Sz"

JEN(7) JEN (i) i

and since the sources/sinks S; are fixed, we conclude

Z Qz] OQU[C] Lij —0

(i,)eE 7,] aC(lcl

as required. O

Using the result in (6.10) in the above lemma, it is easy to see that for (i,j) € E
the derivative of the energy (6.1) is given by

0 Qi '[0]2 _1
aCz‘j [C] < Cigj I/C” Y

Therefore, the gradient flow of (6.1) constrained by Kirchhoft’s law (6.2) with re-
spect to the Euclidean distance is given by the ODE system

dC.. A[C?
dCtU _ <Q]C[QC] - chjl) Ly, (6.12)
ij

coupled to Kirchhoff’s law (6.2) via the definition of the flow rate (1.23).

The general formulation of a gradient flow of the functional E is of the form

d d
az _ K[2]E'[2] or, equivalently, Glz] d;

dt =Pl

where E'(z) is the Fréchet derivative of the energy functional E: Z — R on the
subset Z of a linear space and z € Z. We denote the space of tangent vectors at
a point z € Z by 7.Z and the space of cotangent vectors, i.e. the set of all linear
functionals on T, Z, by T*Z. Then, the derivative E’[z] is a cotangent vector and
Glz],K[z] are duality maps, mapping tangents to cotangents and vice versa, i.e.
Glz]: T.Z2 — T}Z and K[z]: T}Z — T.Z, with K = G~'. See, e.g., [Pel] for
details.

Based on this general formulation, we consider the gradient flow with respect to
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6.2. Analysis of the microscopic model

a weighted Euclidean distance and introduce a duality map resulting in the ODE

system of the form

dC. [C1?
(izy _ (QZ]C[,C] o VC;;) C%*lLij, (613)
1

with a fixed exponent o € R, constrained by the Kirchhoff law (6.2). For mod-
elling reasons (see [HC13] and the references therein) we require that the speed of
metabolic decay is an increasing function of the conductivity. Therefore, we impose
a > 1 — . In particular, the choice @ = 2 — 7 leads to the system studied by Hu
and Cai in [HC13]. Note that for & > 1 — 7 the solution of (6.13) is nonnegative
for nonnegative initial data. Moreover, we have the dissipation of the energy (6.1)

along the solutions of (6.1), (6.2), since

d / QZ ? a—
aE[O]:E[ - ( ] C. uczj) Co?LE <. (6.14)

(4,7)eE

6.2.2 Global existence of solutions

We shall prove the global existence of solutions for the ODE system (6.13) coupled
to the Kirchhoff law (6.2) through the definition of the flow rate (1.23). We assume
that the initial datum for C' = Cj; is such that the underlying graph is connected,
where only edges with positive conductivity C;; > 0 are taken into account (i.e.,
edges with zero initial conductivity are discarded and removed from the graph).
This implies that the Kirchhoff law (6.2) is solvable for ¢ = 0 (uniquely up to an
additive constant) for the pressures. Depending on the values of the exponents

a e R, v > 0, we distinguish two cases:
e If v + o = 2, then we have for all (i,7) € E,

dCZ'j
dt

> —vL;Cl (6.15)

Then, since the exponent v+« —1 > 1, the solutions of (6.13) remain positive
for all t > 0 (recall that the initial datum is strictly positive for all (7, j) € E).
Consequently, the underlying graph remains connected and the Kirchhoff law
(6.2) remains solvable for all times. Moreover, the terms C7; and Q3;/C;
remain globally bounded due to the energy dissipation (6.14). Thus, the
solution of the system (6.13), (6.2) exists globally in time.
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If 0 < v+ a—1<1, the solution may exist only locally in time and some of
the conductivities C;; may vanish in finite time. Then the edges with Cj; = 0
are discarded and the connectivity of the graph may be lost, which would
make the Kirchhoff law (6.2) unsatisfiable unless very restrictive conditions
for the source/sink term S; are satisfied. Further note that conductivity is
also motivated by the biological application so that fluids can be transported
through the entire network. However, as we prove below, under rather mild
assumptions on the source/sink term S;, this does not happen, i.e., the Kirch-
hoff law remains solvable and the resulting subgraph remains connected even
after the eventual removal of the edge(s) with vanishing conductivity. Thus,
the solution C' = C(t) can be extended past this time simply by solving a
reduced ODE system with initial datum equal to the ‘terminal’ state with the

respective edge(s) removed.

We start by proving a result stating that if we divide the set of vertices V
into two disjoint parts V;, Vs such that the sources/sinks S; induce a net flux
AS # 0 between them, then a connection (i.e., at least one edge with positive
conductivity) between V; and V, will be maintained along the solutions of

(6.13), (6.2).

Lemma 9. Lety >0 and 0 < v+a—1 < 1. Let the set of vertices V be the disjoint

union V1 U Vq such that

AS:= > S ==> 5 #0. (6.16)

jeVy jeVy

Let E be the set of edges connecting Vy to Vs, i.e.,

E={(j)ek; icV,,jeV,},

and assume that Cyj(t = 0) = 0 for all (i,7) € E with

Then

Y Ci(t=0)>0. (6.17)
(i.§)eE
> Cyt)>0  forallt>0 (6.18)

(i.)eE
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6.2. Analysis of the microscopic model

along the solutions of (6.13), (6.2).

Proof. For contradiction, assume that there exists a T > 0 such that (6.18) holds
for t <T and

thrjr} Ci;(t) = 0. (6.19)
(i.5)€E
For t < T we have
dt D Cyi= ) (@CE —vCH ) Ly, (6.20)
(i,§)ek (i,5)eE

Since 0 < v+ a —1 < 1, we have for t < T and each (k,1) € E the inequality

Yt+a—1
Y+a—1
cpeTt< | D) Gy :

(i.5)ek

where we used that C;; > 0 for (7,7) € Eandt<T. Similarly, since a — 2 < 0, we

have
a—2
Cp= | DGy
(i-j)eE

Inserting this into (6.20), we obtain for ¢t < T,

a—2 Yt+a—1

dt Gz | ) Gy DL —v| Y Cy > Ly (6.21)
(4,7)eR (i,5)eR (4,5)eR (4,5)eR (4,5)eR

Next, we shall estimate the term Z (i.j)ek Q7 Li; from below. Due to Kirchhoff’s
law (6.26), we have for ¢t < T,

Y, Qi =AS#0. (6.22)

We claim that for each t < T there exists an edge (k,) € E such that

[AS]

Q| = ——.
E|
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If not, we would have

2 ng 2 |ng| < |AS|7

(i,5)€E (i,5)€E

a contradiction to (6.22). Consequently, for each ¢ < T we estimate

52
Z Qw ij = | min_ L;;.

i EP (i,5)ek
Inserting this into (6.21), we obtain
d a—2 Y+a—1
Eu(t) > ku(t)* " — Kau(t) , (6.23)
where we denoted
u(t) == Y, Cy(t),
(i,j)eE
and the constants
AS|?
/<;1:=|~| min L;; > 0, Ko =V Z L;; > 0.
IE|? (.j)eE

(i.)eE

Since according to the assumption (6.17) we have u(0) > 0, (6.23) implies that

u(t) > min {u(()), (m/@)vlﬁ} >0
for t < T, a contradiction to (6.19). O

Theorem 9. Let v > 0 and 0 < v+ a —1 < 1. Assume that (6.16) holds for
any disjoint sets V1,Vy <V such that V.= V; U V. Let the initial datum C;;(t =
0) = 0 be such that the graph induced by edges (i,j) € E with C;;(t = 0) > 0 is
connected. Then the graph induced by the solutions C;; = Ci;(t) of (6.13), (6.2),
where edges with vanishing conductivities are discarded, remains connected for all
times t = 0. In particular, solutions of (6.13), (6.2) with removal of edges with

vanishing conductivities exist globally in time.

Proof. Let us show that the graph remains connected for all times, i.e., for each

t > 0 there exists a path of edges with positive conductivity connecting each pair
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6.3. Derivation and properties of the macroscopic model

of vertices. For contradiction, assume that at time t; > 0 no such path exists
connecting a vertex ¢ € V to vertex j € V. Then, collect all vertices connected by
a path to i € V in the set Vq, and let V, := V\V; be its complement. Since i € V
is not connected to j € V at time %y, also V; is not connected to Vs, which is a
contradiction to the statement of Lemma 9.

Consequently, the graph induced by the solutions C;; = Cy;(t) of (6.13), (6.2)
never becomes disconnected, and thus, by the fundamental result of the graph theory
[GYZ13], the Kirchhoff law (6.2) is solvable. Moreover, since the terms C7; remain
globally bounded due to the energy dissipation (6.14), the solution does not blow up.
It can only happen that some Cj; vanish in finite time. In this case the corresponding
edge(s) are removed and the solution C' = C(t) is continued by solving a reduced
ODE system. In this way a global solution of the system (6.13), (6.2) is constructed.

O

Remark 19. The assumption of Theorem 9 that (6.16) holds for any disjoint sets
V1,Vy c V such that V =V, u Vy means that the graph cannot be partitioned into
subgraphs with balanced sources/sinks (i.e., >..S; = 0 over the subgraph). If the
opposite is true, then the ODE system (6.13), (6.2) can be solved separately for each

of the subgraphs (after eventual removal of edges connecting them,).

6.3 Derivation and properties of the macroscopic

model

The goal of this section is to derive the formal macroscopic limit of the discrete
model (6.2), (6.1) as the number of nodes and edges tends to infinity, and to study
the existence of weak solutions of the corresponding gradient flow. The limit consists
of an integral-type energy functional coupled to a Poisson equation. We shall show
that the derivation requires an appropriate rescaling of the Kirchhoff law (6.2) and
of the energy functional (6.1). Moreover, we have to restrict ourselves to discrete
graphs represented by regular grids, i.e., tessellation of the domain Q < R?, d € N,
by congruent identical parallelotopes. This restriction is dictated by the requirement
that the formal gradient flow of the rescaled energy functional, constrained by the
rescaled Kirchhoff law, is of the form (6.12).
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6.3.1 Rescaling of the Kirchhoff law

Let us denote the vertices left and right of vertex ¢ € V along the k-th spatial
dimension by (i — 1) and, resp., (i + 1);. The Kirchhoff law (6.2) is then written as

i+1), — bi P — P .
- 2 ( 3,(i+1) El)—k - C(i_l)hiL—(l)IC) = Sz for all 7 V. (624)
,(i+1)k (ifl)k,i

Our goal is to identify the Kirchhoff law with a finite difference discretisation of the

Poisson equation (6.5),
-V - (c¢Vp) = S, (6.25)

where S = S(z) is a formal limit of the sequence of discrete sources/sinks S;.
Clearly, for this the edge lengths in the left-hand side of (6.24) have to appear
quadratically in the denominator instead of linearly. Alternatively, we can say that
the sources/sinks S; in the right-hand side of (6.24) have to be rescaled appropri-
ately, reflecting the fact that the edges of the graph are inherently one-dimensional
structures. A straightforward calculation reveals that a finite difference discretisa-
tion of (6.25), where ¢ = ¢(z) is an appropriate limit of the sequence of discrete

conductivities, is obtained if and only if

2 1 1

Lii—1y,i + Ligivn,  Li-1). a Li (i41),
for all « € V and for all directions k = 1,...,d. Therefore, grid points must be
equidistant in each spatial dimension, and we denote h; > 0 the grid spacing in
the k-th dimension. The discrete graph is thus identified with a tessellation of
) by identical parallelotopes. For simplicity, we restrict ourselves to work with
rectangular parallelotopes (bricks) in the sequel, with edges parallel to the axes. A
generalisation of the result for parallelotopes instead will be given in Remark 20.

The rescaled Kirchhoff law is then written as

d
1 P(fiJrl)k - B P — P(ifl) .
— (G, Ty D) g forallie V.
Z h ( (i+1) hk (i—=1)p, hk or all 7 €

(6.26)

216



6.3. Derivation and properties of the macroscopic model

6.3.2 Rescaling of the discrete energy functional

In order to obtain an integral-type functional in the macroscopic limit of the se-
quence of discrete energy functionals (6.1), they need to be properly rescaled de-
pending on the spatial dimension d € N. In particular, (6.1) has to be replaced
by

B[lC]= Y (M + %C%) we, (6.27)

(irj)€E gl

where W;; are some (abstract) weights that scale linearly with the grid spacing.
Before we introduce the formal macroscopic limit of the rescaled discrete functional
(6.27) constrained by the rescaled Kirchhoff law (6.26), let us make the following
observation about the gradient flow (6.27)—(6.26).

Proposition 12. Consider the setting introduced in Section 6.3.1 with the discrete
graph realised as a rectangular tessellation of Q € RY. Then the formal gradient flow
(with respect to the Fuclidean distance) of the energy functional (6.27) constrained
by the rescaled Kirchhoff law (6.26) is of the type (6.12), i.e.,

dCi; Qi;[CT? 1 d
dtj _ < 3022] —VC% Ww’

(6.28)

if and only if all the weights W;; are equal.

Proof. Denoting the adjacency matrix (6.11) of the tessellation by A = (4;;), we
have for any edge (I,m) € E,

OE[C] _ QualCT -1 N 2Q[C] 0Q4[CT\ 11,4
= — A, .
0Cim G, O Wi z; 321 i\, oG, )
The last term of the right-hand side is equal to
- P'_]DiaQi'[C]>
Ai' ( J J VVZd
;Jz]_l ! Lij aC’lm J
n n aQ ; n n aQZ
=— > P Ai-J—— — Y P ) A, —2Y
j; ) b5, ) Z i ac,m LU (6.29)
n n an [C] Wd
= 923" P NTAL J
DN
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Now note that the rescaled Kirchhoff law (6.26) is in terms of @;;, L;; written as

—ZAUQ” — S, forallieV.
L;
Jev

Therefore, if (and only if) all the weights W;; are equal to the same value W > 0,

we have
n n an] n . Qz
W —— Ay~ ) =
; ; Clm ng ; aClm ; 7 Lz]
and we obtain (6.28) as the gradient flow. O

Note that for the grid consisting of a rectangular tessellation, the natural choice
of the weight W;; = W is

d
=1 [t (6.30)
k=1
i.e., the area of the rectangles for d = 2 and the volume of the bricks for d = 3.

6.3.3 Formal derivation of the macroscopic model

In this section we shall show that the rescaled Kirchhoff law represents a finite
difference discretisation of the Poisson equation (6.5), and that the discrete energy
functional (6.27) with (6.30) is an approximation (Riemann sum) of the integral-type
functional (6.3). We shall work in the setting introduced above, i.e., the discrete
graph is realised as a rectangular tessellation of the rectangular domain € R¢.

Let us consider p = p(x) a solution of the Poisson equation (6.5),
-V - (c¢Vp) =S,

subject to the no-flux boundary condition on 0€2. Here ¢ = ¢(z) is a given diagonal

permeability tensor field
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6.3. Derivation and properties of the macroscopic model

with the scalar nonnegative functions c® € C(Q), k = 1,...,d. The density of

sources/sinks S = S(x) is given as a datum and satisfies the global mass balance

/Q S(z)dz = 0.

As already mentioned in Section 6.1, existence of solutions of (6.5) is not guaranteed
due to the possible strong degeneracy of the permeability tensor. However, as we
are interested in a formal derivation only, we assume that p = p(z) exists as a strong
solution of (6.5), i.e., is at least C7 on 2. Moreover, we assume that the elements
of ¢ = c(z) are at least C} on Q. Since ¢ = ¢(z) is diagonal, the left-hand side of

(6.5) can be rewritten as

- (cVp) = Oy (700, ).

||M&

Let X; € Q be the physical location of the vertex i € V. Denoting the flux ¢* :=
*0,,p, a finite difference approximation of the term d,,¢* at z = X; reads
0" (Xr12,) — € (Xi-12),)

where X(;11/9), and, resp., X(;_1/2), denotes the midpoint of the edge connecting X;
to its adjacent vertex to the right and, resp., to the left in the k-th spatial direction.

A finite difference approximation of ¢* at X(it1/2), reads

p(X(iJrl)k) - p(X(zel)k)
P,

0" (X+1/2)) = F(X(ir1/2),) +O(h), (6.32)

where X(;;1),, resp., X(;_1), denotes the adjacent vertex of X; to the right and,
resp., to the left in the k-th spatial direction. We discretise ¢*(X(;_1/2), ) analogously.
Putting (6.31) and (6.32) together and denoting

Civ(iil)k = Ck(X(ii1/2)k)a S, 1= S(XZ),

(6.33)
P = p(X;), Plityy, = p(X(iil)k)’

we conclude that the rescaled Kirchhoff law (6.26) is a first order finite difference

approximation of the Poisson equation (6.5).
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With the choice (6.30) for the weight W, we have for k = 1,...,d and c* € C}(Q),

/Q |ck|7 dr = WZ ‘Ck(X(i-i-l/?)k)"y + O(hy).

eV

Moreover, we have

(p(X(i+1)k) - p(Xi)

2
AR WS T + O,
Q hk

eV

Therefore, noting that for the rectangular grid the energy functional (6.27) can be

rewritten as

Ble) =5 Y

k=1 LY

S[CT
5 Y (HL i)

C,. fy )
1€V jeN(i;k)
we have, with the notation (6.33),

E|C] = Elc] + O(h),
with the continuum energy defined by (6.3), i.e.,
Elc] = / Vp-cVp + %]c\”daz, (6.34)
Q

where we recall that the symbol |¢[7 is defined as 3)¢_, k[

We now calculate the formal L2-gradient flow of the energy (6.3) constrained by

the Poisson equation (6.5).

Lemma 10. The formal L*-gradient flow of the continuum energy functional (6.3)

constrained by the Poisson equation (6.5) is given by (6.6), i.e.,
o, = (é’gckp)2 — u‘ck‘vﬂck.

Proof. Let us calculate the first variation of £ in the direction ¢ where ¢ denotes a

diagonal matrix with entries ¢!, ..., ¢?. Using the expansion

ple+ ¢l = po + epr + O(?), (6.35)
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we have

d
d_gg[c + €¢]

d
= Z / (ﬁzkpo)Q oF + 20k(§xkp0)(§xkp1) + V‘ck‘y_%kgbk dz. (6.36)
0 k=198

=

Multiplying the Poisson equation (6.5) with permeability tensor ¢ + £¢ by py and

integration by parts gives

d
k k A 2 k 3 X Qo — 1 2.
kzl/g(c +&0") (Oupo)” + € (0, 10) (0rp1) A /QSPO v+ 0(e)

Subtracting the identity

d
Z/ck (&Ckpo)zdx:/Spodx,
k=174 Q

we obtain

d
3 / (8ap0)? 6 + (21, p0) (Goupr) dz = 0.
k=179

Plugging this into (6.36) gives

d

=, /Q [— (0rpp0)” + u|c’“]7‘2c’f] ok de.

e=0 k=1

d
ES[C + €¢]

]

Remark 20. We can easily generalise to the situation when the grid is realised
by congruent identical parallelotopes with edges in linearly independent directions
01,...,0q € R Then the coordinate transform ey, — 0y in (6.3)—(6.5), where ey, is
the k-th vector of the generic basis of R?, leads to the transformed continuum energy

functional

Elc] = / Vp - Plc]Vp + z|c|7 dz, (6.37)
Q g
coupled to the Poisson equation

V- (P[]Vp) = §
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with the permeability tensor

Ple] :

d

D0 @ by

k=1

The corresponding formal L?-gradient flow is of the form
ok = (0), - Vp)® — V‘ck‘y_gck.

For general geometries of discrete networks the derivation of the macroscopic model
18 an open problem and one can expect that the associated macroscopic limit depends

on the geometric properties of the network.

6.3.4 Global existence of solutions of a modified macro-

scopic model
As noted in Section 6.1, the model (6.5)—(6.6) suffers from two drawbacks: first, the
Poisson equation (6.5) is possibly strongly degenerate since in general the eigenval-

ues (i.e., diagonal elements) of the permeability tensor ¢ = ¢(z) may vanish. To

overcome this problem, we introduce a regularisation of (6.5) of the form
-V - (P[c]Vp) = S, (6.38)
with the permeability tensor
Plc] :=rI+¢, (6.39)

where r = r(z) = ry > 0 is a prescribed function that models the isotropic back-
ground permeability of the medium, and I € R¥*? is the unit matrix. Clearly, (6.38)
is uniformly elliptic as long as the eigenvalues of ¢ = ¢(x) are nonnegative.

The second drawback is due to the fact that (6.6) is merely a family of ODEs,
parametrised by the spatial variable x € 2. We cure this problem by introducing a

linear diffusive term modeling random fluctuations in the medium. We thus obtain
orc® = D*Ac* + (0,,p)° — 1/|ckp_zck, k=1,...,d, (6.40)

subject to homogeneous Dirichlet boundary data, where D? > 0 is the constant

diffusivity. By a simple modification of the proof of Lemma 10 we conclude that the
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system (6.38)—(6.40) represents the formal L?-gradient flow of the energy functional
D? 9 v
Elc] = 7]Vc| + Vp - P[c]Vp + ;|c|”’ dz, (6.41)
0

with P[c] given by (6.39), the symbol || is defined as 315 _, |c*]” and the symbol
Ve is defined as 3¢ |Vck ‘2. The gradient flow property is fundamental for
proving the global existence of weak solutions of the PDE system (6.38)—(6.40).
Note that the energy functional (6.41) is highly non-convex suggesting that the weak
solutions may be non-unique. We consider the PDE system on a bounded domain
Q) < RY with smooth boundary 052, subject to homogeneous Dirichlet boundary
conditions for ¢ and no-flux boundary conditions for p,

op (

C(t,(L’) = 07 %

t,x) =0 forxedQ, t=0, (6.42)

where n denotes the exterior normal vector to the boundary 0€2. Moreover, we

prescribe the initial datum for ¢,
c(t =0,2) =c'(z) forzeq, (6.43)

where ¢! = c!(z) is a diagonal tensor field in R¥*¢ with nonnegative diagonal ele-

ments.

Theorem 10. Let S € L*(Q), v > 1 and ¢! € HY Q)P4 ~ LY(Q)™?. Then the
system (6.38)—(6.40) subject to the data (6.42)—(6.43) admits a global weak solution
(c,p) such that

ce L*(0,00; Hy(2)) n L*(0,00; L()), dice L*((0,0) x Q),

(6.44)
Vpe L*(0,00; L*(Q2)), cVpe L*(0,00; L*(Q)).
This solution satisfies the energy dissipation inequality
d t )
Ele(t)] + Z / / (0:c*(s,2)) dads < E[¢"]  for all t =0, (6.45)
k=170 /9

with E[c] given by (6.41).

For the proof of the above theorem we adopt a strategy similar to [HMP15,
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HMPS16]: For € > 0 we introduce the regularised Poisson equation

—V - (P°[c]Vp) = S (6.46)
with the permeability tensor

Pc] := rl + ¢ *n, (6.47)

subject to no-flux boundary data for p. Here, 7. is a nonnegative, radially symmetric

mollifier and the convolution c¢ = 7. is carried out elementwise,

Fenda) = [ Hwnda =

Moreover, we regularise (6.40) as follows,

ock -
&_Ct = D2A + (0pp)? e — V|2, k=1,....d (6.48)

By a slight adaptation of the proof of Lemma 10 it is easily shown that (6.46)—(6.48)

is the formal L?-gradient flow of the energy
e D2 2 c v
E%c] = E3 |Vel” + Vp - P[c]Vp + —|c|” dz, (6.49)
Q v

where we used the notation

d d
Vel = Z ‘Vckf, |7 = Z |*[".
k=1

k=1

For proving the global existence of weak solutions of the regularised system

(6.46)—(6.48) we shall need the following maximum principle for a semilinear PDE.

Lemma 11. Let Q be an open, bounded subset of RY. For a fired T > 0 denote
Qp :=(0,T] x Q and

C%(Qp) == {u: Qp — R | u, Vu, V?u, du e C(Qr)}.

Lety > 1 and let u € C?(Q7)nC(Qr) be the classical solution of the initial /boundary-
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6.3. Derivation and properties of the macroscopic model

value problem

dru = D*Au— v|u|""2u in Qr,
u=0 on [0,T] x 09, (6.50)
u=g on {t =0} x 09,

with the nonnegative initial datum g: 2 — R. Then,

minu > 0. (6.51)
Qp
Proof. Denote Ur := {(t,x) € Qp | u(t,z) < 0}. Then Ur is an open bounded
subset of Q0 and

o — D*Au = —v|u"2u>0  in Up.

Then using the classical weak maximum principle for the heat equation, see, e.g.,
[Eval0], we have

miny = minu = 0.
UT aUT

Consequently, Ur = & and (6.51) holds. O

Lemma 12. Let S € L*(Q) and ¢! € H} Q)P ~ LY(Q)?4. Then for each ¢ > 0
the reqularised system (6.46)—(6.48) subject to the data (6.42)—(6.43) admits a global
weak solution (c,p) satisfying (6.44). The reqularised energy (6.49) satisfies

d t
Ele(t Ot (s, *drds = & for allt = 0. 6.52
01+ 3 [ [ (@t ts.0) e (6.52)

Proof. We proceed along the lines of the proof of Theorem 2 of [HMP15]. We employ
the Leray-Schauder fixed point theorem in the space L?((0,7) x ). For a given
diagonal tensor ¢ € L*((0,T) x ) with nonnegative elements we construct a solution
p. € H'(Q) of the regularised Poisson equation (6.46) with no-flux boundary data
using the Lax-Milgram theorem; note that for € > 0 the permeability tensor (6.47)
satisfies P € L*(£2), and uniform ellipticity follows from the assumption r = ry > 0

in 2. Consequently, we have the uniform bound
VD[ 120y < CallS| L2 forallt >0, e >0, (6.53)
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where the constant C depends only on the domain €2; in particular, it is indepen-
dent of ¢ > 0 and ce L?((0,T) x Q).

Existence of weak solutions c. of (6.48) is obtained by a slight adaptation of
Lemma 3 of [HMP15], noting that for Vp € L*(Q) and € > 0 the terms (0,,p)” * 7.
are bounded in L* (). The nonnegativity of the diagonal entries of ¢. follows from
the fact that solutions of the semilinear PDE

owu = D?*Au — vlu| " u

are subsolutions to (6.48). Preservation of nonnegativity of u for nonnegative initial
and boundary data has been established in Lemma 11.

The proof of continuity and compactness of the Schauder fixed point mapping
¢+ p. — ¢ in the space L*((0,7T) x ) goes again along the lines of Theorem 2 of
[HMP15], using the so-called weak-strong lemma for the Poisson equation (Lemma
7 of [HMP15]) and compact Sobolev embedding H'(Q) = L*(Q).

The energy identity (6.52) follows by multiplying the Poisson equation (6.46) by
p and integrating by parts,

d
Z / (r + F « 775) (8@]9)2 dx = / Spdzx.
k=1 Q

Subtracting this from (6.49) we obtain

d 2
Ec] = Z </ % ’Vckf —(r+c=n.) (00,0)° + Z’ckP dx) + 2/ Spdz.
1 \JQ Y Q

Integration by parts in suitable terms and using (6.46) then yields

d d
—&%c] = Z </ ~D*Ack0,cF + 20, ((r + F « 775) (%kp) Oup — O, ((99%10)2 da:)
k=1 \/Q

dt
d
+ I/Z (/‘ck‘ﬁ/l&tck d:ic) + 2/ Sopdx
= \Ja Q
d
S Z / (DQAck + (5“]))2 ¥y — V‘ck"y_l> ot dx
k=179

L9 /Q (V- (P[] Vp) + S) dipda
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d
Z / é’tc
and an integration in time gives (6.52). O

The passage to the limit ¢ — 0 in (6.46)—(6.48) is based on the uniform apriori

estimates

ce L*(0,00; HY () n L*(0,00; L7(R)), dyce L*((0,00) x Q),
Vpe L*(0,00; L*(2)), +/c**n.0,,pe L*(0,00; L*(Q)), k=1,....,d,

which follow from the energy identity (6.52) and from (6.53). Then, since a subse-
quence of ¢ = n. converges strongly to ¢ in the norm topology of L2((0,T) x ), a
slight modification of Lemma 7 in [IMP15] gives the strong convergence of p® to p
in L2(0,T; H'(€)) with no-flux boundary data where p is the unique solution of the
Poisson equation (6.38) with given c¢. Thus, (6mkp5)2 converges strongly to (é’mkp)2 in
L' ((0,T) x Q) and (@,,p°)**n. also converges Strongly to (0, p)” in L' ((0,T) x Q).
The limit passage in the metabolic term ‘ck‘v c*® can be shown as in Lemma 4 in
[HMP15] due to the uniform boundedness of ¢® in L7((0,7) x Q). The energy dis-
sipation inequality (6.45) follows by passing to the limit ¢ — 0 in (6.52) using the
weak lower semicontinuity of the L?-norm. This concludes the proof of Theorem

10.

6.4 Numerical simulations

In this section we provide results of numerical simulations for the discrete model
introduced in Section 6.2. We implement a minimisation scheme for the discrete
energy (6.1) constrained by the Kirchhoff law (6.2), based on the numerical methods
proposed in [ABH"17].

For the numerical simulations we consider a planar graph G = (V,E) whose ver-
tices and edges define a diamond shaped geometry embedded in the two-dimensional
domain © = (0,2) x (—1.5,0.5). We consider |V| = 78 vertices and |E| = 201 edges.
For vertex i € V let (z%,y") denote its position. The source S is assumed to be

positive on the subset of vertices

t={ieV; 2" <0.1}
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and constant and negative on its complement V\V*. For i € V we set

o 1eV?t
SZ' =
o, 1eV\V*

)

where

1
o :=10"exp (—10 (50z7 + 10 (y; + 0.5)4)) , 0, = — ol
v 2

In the sequel we prescribe the initial condition C' = (611) (i) unless stated oth-
erwise. We assume C;; := 5 for every (i,7) € E on a tree, see Figure 6.1(A), and
Cy; := 10719 otherwise.

For solving the constrained energy minimisation problem we consider the follow-

ing iterative procedure:

o Initialisation: For each edge (7,7) € E compute its length L;; and define the
parameters v := 1, 7 := 0.025 and tol := 107°.

e Step 1 (Pressure): For C given, compute the coefficient matrix B = (b;;) €

R~ 17=1 with entries

bij =14 v , dj=1...n—1 i#j (6.54)
0 (i,7) ¢ E
Cyy
o= 3 S it (659
JEN(i) Y

and solve via least square minimisation:

min |[BP — 5|2
P

e Step 2 (Conductivity): For given pressure P and conductivities C' find a min-

imiser C' of the regularisation

C—-Cl3 i (C)?
ET[C] := 1€ =l o I > (—QJCE L u03j> Ly (6.56)
(i-9)€B

vj

of the discrete energy functional (6.1) via interior point method for a regular-

isation parameter 7 > 0.
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6.4. Numerical simulations

e Step 3 (Energy decrease): If |E™[C] — ET[C]| > tol, set C := C and go back
to step 1.

Note that for 7 > 0 solving (6.56) is equivalent to an implicit Euler step for
(6.13). The choice of the time step 7 > 0 is crucial. On the one hand, the time step
should not be chosen too large so that an accurate solution can be obtained. On the
other hand, choosing 7 too small may result in very long simulation times, especially
because the convergence seems to be very slow close to the minimiser, compare Fig-
ure 6.2 where the slow decay of the energy functional is shown. Armijo’s condition
[NWO6] suggests a good choice of the parameter 7 so that sufficient decrease of the
energy functional is achieved in every time step.

In the sequel we present the energy minima (stationary solutions) obtained by
the above algorithm for different values of . For every edge (i, ) € E we plot the
value of the conductivity Cj; in terms of the width of the associated edge. In Figure
6.1 we show the steady states under an e-perturbation of the initial condition C' for
v = 0.5, i.e., we consider C;; + ¢ instead of C;; for all edges (i,7) € E. As shown
in Figure 6.1 the steady states are the same trees for small perturbations, e.g.,
e < 0.1, as the tree given by the initial condition in Figure 6.1(A). In particular, the
steady states are stable under small perturbations of the initial condition. For larger
perturbations, e.g., € € {0.5, 1,2}, we obtain steady states different from the initial
condition, indicating a phase transition which can be studied further in the future.
This also illustrates that the energy functional (6.1) has multiple local minima and,
consequently, the system (6.13)—(6.2) has non-unique steady states. In particular,
the steady states strongly depend on the choice of the initial data.

In Figure 6.2 the stationary solution of (6.13)—(6.2) and the decay of the energy
functional are shown for different values of v > 0. Note that the stationary solution
is a tree for v = 0.5 and a full network for v = 1.5. This is in agreement with the
observations of [HC13] where a phase transition at v = 1 was suggested with steady
states in the form of a tree for v < 1 and full networks as steady states for v > 1.

In Figure 6.3 we consider initial data in form of a tree, Figure 6.1(A), and close
one of its loops, as shown in Figure 6.3(A). These initial conditions lead to the
steady states in Figure 6.3(B). Note that closing one loop in the initial data leads to
steady states which only differ locally (i.e., in a neighbourhood of the loop) from the
original tree in Figure 6.1(A). Closing one loop in areas of smaller conductivities
in the associated steady state leads to the same tree structure as in the original
initial data in Figure 6.1(A) as shown for the third choice of initial data in Figure

6.3(A). In particular, closing loops at different locations leads to different steady
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Figure 6.1: Stability

discrete model.
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Figure 6.2: Stationary solution to the discrete model and decrease of energy for
different values of v > 0.
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states in general, unless the resulting steady state is the tree in the initial condition
in Figure 6.1(A). This shows again that we obtain trees as steady states for v = 0.5,
the steady states are non-unique and the form of the steady states strongly depends
on the given initial data. In particular, loops in the initial data are opened over

time for v = 0.5.

0.5
0
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0 15
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(A) Initial data
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0.1

0.05

(B) Associated steady states

Figure 6.3: Stability of steady states when one loop in tree-structured initial data
is closed.

Based on the initial condition in the first picture in Figure 6.3(A) we close more
loops in the neighbourhood of this closed loop in the initial data in Figure 6.4.
Closing iteratively one additional loop results in the initial conditions in Figure
6.4(A) and the associated steady states are depicted in Figure 6.4(B). Note that
closing loops close to the source leads to different steady states. In particular,
closing loops iteratively in the initial data leads to steady states which only differ
locally. More precisely, the resulting steady states all have the same number of
non-zero conductivities. Closing one loop in the initial data results in a steady
state which can be obtained from steady states with the previous initial data by
interchanging a non-zero with a negligible conductivity. In particular, the steady
states strongly depend on the initial data.

In Figure 6.5 the steady states are shown for the same initial data as before (see
Figure 6.5(A)) for different values of the parameter v > 0 in the definition of the
energy functional (6.1). As v increases the form of the steady states remain the
same, i.e., positive conductivities remain positive for different values of v. However,
the absolute value of the conductivities decreases as v increases, see Figure 6.5. This

is consistent with the definition of the energy functional (6.1) where the metabolic
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data are closed in the discrete model.
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Figure 6.5: Steady states for different values of the parameter v in the energy
functional (6.1).

The absolute value of the initial conductivities is varied in Figures 6.6(A)—6.6(C)
and we show the resulting steady state in Figure 6.6(D). More precisely, we consider
initial data in the form of a tree as before, when only those conductivities C' =
(C_'Z-j)(i7j)eE with positive conductivities C_’ij are considered but vary the absolute
value of the initial conductivities. We consider the initial data C;; = § for every
edge (i,7) € E on the tree for 6 = 5,50,5000, 50000 and C;; = 107'° otherwise, as
shown in Figure 6.1(A) and Figures 6.6(A)-6.6(C), respectively. All these different
initial data result in the same steady state shown in Figure 6.6(D).

In Figure 6.7, full graphs are considered as initial data and we show the asso-
ciated steady states. We consider Cj; = 1 for all (i,j) € E and the perturbed full
graph with Cj; = 1 +U(0,1) where U(0, 1) denotes a uniformly distributed random

variable on [0,1]. The associated steady states are more complex transportation
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Figure 6.6: Initial data for the conductivity vector C' = (Cj;)(ijyee in the form of
a tree where each non-zero conductivity Cj; is of size § > 0 (left) all leading to an
identical steady state (right) for the discrete model.

networks.

2

107

0.5

4
0

3
> -0.5

2
1 -1
[ -1.5

-

(A) Full graph

N)

0.08 0.5
0.06 0
0.04 x'-05
0.02 1
0 -1.5

2

o = N W & 0 oo X

(B) Steady state

0.1

0.05
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Chapter 7

Rigorous continuum limit

Originality and contribution

This chapter is based on the paper [HKM19b] in collaboration with Jan Haskovec
and Peter A. Markowich. While PM proposed the study of the model and provided

guidance and advice, the results are mostly joint work by JH and myself.

Chapter summary

In this chapter, we study the rigorous limit of the discrete model proposed by
Hu and Cai consisting of an energy consumption function constrained by a linear
system on a graph. For the spatially two-dimensional rectangular setting we prove
the rigorous continuum limit of the constrained energy functional as the number
of nodes of the underlying graph tends to infinity and the edge lengths shrink to
zero uniformly. The proof is based on reformulating the discrete energy functional
as a sequence of integral functionals and proving their I'-convergence towards the

respective continuum energy functional.

7.1 Introduction

In this chapter we derive the rigorous continuum limit of the discrete network for-
mation model of Hu and Cai [HC13]. The model is posed on an a priori given
graph G = (V,E), consisting of the set of vertices (nodes) V and the set of unori-
ented edges (vessels) E. Any pair of vertices i, j € V is connected by at most one

edge (7,7) € E, such that the corresponding graph (V,E) is connected. The lengths
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L;; > 0 of the vessels (7, ) € E are given a priori and fixed. The adjacency matrix
of the graph (V,E) is denoted by A, i.e., A;; = 1if (i,7) € E, otherwise A;; = 0.
Let us emphasise that by fixing (V,E), the set of possible flow directions in the
network is also fixed. For each node j € V we prescribe the strength of source/sink
S; € R and we adopt the convention that S; > 0 denotes sources, while S; < 0
sinks. We also allow for S; = 0, i.e., no external in- or outgoing flux in this node.

We impose the global mass conservation

jev
We denote Cj; and, resp., );; the conductivity and, resp., the flow through the
vessel (i,j) € E. Note that the flow is oriented and we adopt the convention that
Qi; > 0 means net flow from node j € V to node i € V. An overview of the notation
is provided in Table 7.1. We assume low Reynolds number of the flow through

the network, so that the flow rate through a vessel (i,j) € E is proportional to its

conductivity and the pressure drop between its two ends, i.e.,

P —P,
Qij = Cij—* : (7.2)
Local conservation of mass is expressed in terms of the Kirchhoff law,
PP, |
D AGCy =5, foralljeV. (7.3)
i€V v

Note that for any given vector of conductivities C' := (C;) (i j)er, (7-3) represents
a linear system of equations for the vector of pressures (P;);ey. The system has a
solution, unique up to an additive constant, if and only if the graph with edge weights
given by C'is connected [GYZ13], where only edges with positive conductivities are
taken into account (i.e., edges with zero conductivity are discarded).

Assuming that the material cost for an edge (7, j) € E of the network is propor-
tional to a power C]j of its conductivity, Hu and Cai [HC13] consider the energy
consumption function of the form

E[C] := 122 (—2] + 507) Aij Ly, (7.4)
2 Cy vV

eV jeV

where v > 0 is the metabolic coefficient and @;; is given by (7.2), where the pressure
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Table 7.1: Notation. (*) denotes variables that are given as data.

Variable Meaning Related to

S; (¥) intensity of source/sink vertex j € V
P; pressure vertex j € V
L;; (#) length of an edge edge (i,j) e E
Qij flow from j e VtoieV edge (i,7j) e E
Cij conductivity edge (i,j) e E

drop # is determined by (7.3). The first part of the energy consumption (7.4)
ij

represents the kinetic energy (pumping power) of the material flow through the
vessels, and we shall call it pumping term in the sequel. The second part represents
the metabolic cost of maintaining the network and shall be called metabolic term.
For instance, the metabolic cost for a blood vessel is proportional to its cross-section
area [Mur26a]. Modelling blood flow by Hagen-Poiseuille’s law, the conductivity of
the vessel is proportional to the square of its cross-section area. This implies v = 1/2
for blood vessel systems. For leaf venations, the material cost is proportional to the
number of small tubes, which is proportional to C;;, and the metabolic cost is due
to the effective loss of the photosynthetic power at the area of the venation cells,
which is proportional to Cilj/ 2, Consequently, the effective value of v typically used
in models of leaf venation lies between 1/2 and 1, [HC13]. Hu and Cai showed that
the optimal networks corresponding to minimisers of (7.3)-(7.4) exhibit a phase
transition at v = 1, with a “uniform sheet” (the network is tiled with loops) for
v > 1 and a “loopless tree” for v < 1, see also [HMR18]. Moreover, they consider
the gradient flow of the energy (7.4) constrained by the Kirchhoff law (7.3), which
leads to the ODE system for the conductivities Cj;,

dCij
dt

2
ij -1 .
= (CQJ —vCy, ) L;; for (i,7) € E, (7.5)
ij

coupled to the Kirchhoff law (7.3) through (7.2). This system represents an adap-
tation model which dynamically responds to local information and can naturally
incorporate fluctuations in the flow.

This chapter focuses on deriving the rigorous continuum limit of the energy

functional (7.3)-(7.4) as the number of nodes of the underlying graph tends to

237



Rigorous continuum limit

infinity and the edge lengths L;; tend uniformly to zero. In a general setting with a
sequence of unstructured graphs this is a mathematically very challenging task. In
particular, one has to expect that the object obtained in the limit will depend on
the structural and statistical properties of the graph sequence (connectivity, edge
directions and density etc.). Therefore, we consider the particular setting where the
graphs correspond to regular equidistant meshes in 1D and 2D. As we explain in
Section 7.3, the energy minimization problem for (7.3)-(7.4) in the one-dimensional
case is in fact trivial, and the form of the limiting functional is obvious. However, we
use this setting as a toy example and carry out the rigorous limit passage anyway.
The reason is that in the 1D setting we avoid most of the technical peculiarities
of the two-dimensional case and we can focus on the essential idea of the method.
Equipped with this insight, we shall turn to the two-dimensional case (Section 7.4),
where the graph is an equidistant rectangular mesh on a square-shaped domain ).

In both the 1D and 2D cases, it is necessary to adopt the additional assumption
that the conductivities are a priori bounded away from zero. In particular, we
introduce a modification of the system (7.3)-(7.4) where the conductivities are of
the form r + Cj;, where » > 0 is a fixed global constant. The reason is that we
need to guarantee the solvability of the Poisson equation (7.10) below, which will
be obtained in the continuum limit. Moreover, in the 2D case, the additive terms in
the energy functional have to be scaled by the square of the edge length L;;. This
is due to the fact that we are embedding the inherently one-dimensional edges of
the graph into two spatial dimensions; see [HIXM19a, Section 3.2] for details. Thus,

we shall work with the energy functional

ZZ (r o (7‘ +Cy) > Ay LY, (7.6)

zeV jev
where d = 1, 2 is the space dimension, coupled to the (properly rescaled) Kirchhoff
law
P —P |
D Ay(r+ Cy)=—=1L;S;  forall jeV (7.7)

eV ij

through

(7.8)
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where L; are (abstract) weights that scale linearly with the mean edge length; see
[HIKM19a, Section 3.1] for details about the scaling in (7.7). The main benefit of
this chapter is the rigorous derivation of the limiting energy functional, which for

the two-dimensional case is of the form
£le] = / Vpld] - (41 + ) Vplc] + % (rt+al +r+of)d, (7.9
Q

with x = (z,y) € R? and where p[c] € H'(Q) is a weak solution of the Poisson

equation
V- ((rI+¢)Vp) =S (7.10)

subject to no-flux boundary conditions on 0€2, where I is the unit matrix and c is

the diagonal 2 x 2-tensor
c= . (7.11)

Here, S € L?(2) denotes the source/sink term and in analogy to (7.1) we require

fQ Sdx = 0. The derivation is based on three steps:

(i) Establish a connection between the discrete solutions of the Kirchhoff law
(7.7) and weak solutions of the Poisson equation (7.10); see Section 7.3.1 in
1D and Sections 7.4.1, 7.4.2 in 2D.

(ii) Reformulate the discrete energy functional (7.6) as an integral functional de-
fined on the set of bounded functions; see Section 7.3.1 in 1D and Section

7.4.2 in 2D.

(iii) Show that the sequence of integral functionals I'-converges to the energy
functional (7.9); see Section 7.3.2 in 1D and Section 7.4.3 in 2D. See, e.g.,
[DM93, Bra02] for details about I'-convergence.

The I'-convergence opens the door for constructing global minimisers of (7.9)—(7.10)
as limits of sequences of minimisers of the discrete problem (7.6)—(7.7). However,
for this we need strong convergence of the minimisers in an appropriate topology.
In agreement with [HMP 15, HMPS16, ABH"17] we introduce diffusive terms into
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the discrete energy functionals, modeling random fluctuations in the medium (Sec-
tion 7.3.3 for 1D and Section 7.4.4 in 2D). The diffusive terms provide compactness
of the minimizing sequences in a suitable topology and facilitate the construction
of global minimisers of (7.9)—(7.10).

Let us note that the steepest descent minimization procedure for (7.9)-(7.10)
is represented by the formal L?-gradient flow. This leads to the system of partial

differential equations for ¢; = ¢1(t, z,y), ¢ = co(t, z,y),

opcy = (amp)Q —v(r+ 01)%17

1

7.12
ez = (Oyp)* —v(r+ ), T

subject to homogeneous Dirichlet boundary data and coupled to (7.10) through
(7.11). The existence of weak solutions and their properties are studied in [HKM19a].
Finally, let us remark that [Hu13] proposed a different PDE system, derived from the
discrete model [HC13] by certain phenomenological considerations (laws of porous
medium flow, see [ABH " 17] for details). The system consists of a parabolic reaction-
diffusion equation for the vector-valued conductivity field, constrained by a Poisson
equation for the pressure, and was studied in the series of papers [HMP 15, HMPS16,
AAFMI16, ABH"17]. However, a rigorous derivation of the model is still lacking;

moreover, no explicit connection to the system (7.12) has been established so far.

7.2 An auxiliary Lemma

Lemma 13. Fiz r > 0, a bounded domain Q = R? with d > 1, and S € L?(Q). Let
(M) nenw © L*(Q) be a sequence of nonnegative, essentially bounded functions on S,
such that ¢N — c e L?(Q) in the norm topology of L*(Q). Let (p™)nen = HY(Q) be

a sequence of zero-average weak solutions of the Poisson equation
-V ((r+MvpY) =9 (7.13)

subject to homogeneous Neumann boundary conditions on 0S). Then Vp»~ converges
to Vp and vVcNVpN converges to \/cVp strongly in L*(Y), where p is the zero-

average weak solution of

—V - ((r+¢)Vp) =5 (7.14)
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subject to homogeneous Neumann boundary conditions on 0. In particular, we
have

lim [ (r+cV)|VpV|? dx = /(7" +¢)|Vp|? dx. (7.15)
0

N—oo 0

Remark 21. Note that we do not assume that (c™)yen is uniformly bounded in
L*(Q), nor that c € L*(Q).

Proof. Using pV as a test function in (7.13), due to the nonnegativity of ¢V, we

have

rvaNHiz(m </Q(T+CN)|VpN|2dx:/QSdeX (7.16)
€Cp

— v

1 2 N2
< 2_8 HSHLQ(Q) + HLQ(Q) )

where Cp is the Poincaré constant. With a suitable choice of € > 0 we obtain a

uniform estimate on p~ in H'(£2). Consequently, there exists a subsequence of p™

N

that converges weakly in H'(Q) to some p € H'(Q). Since ¢ — ¢ strongly in L?(Q2),

we can pass to the limit in the distributional formulation of (7.13) to obtain
/(7" +¢)Vp-Vodx = / Sopdx  for all ¢ € C° (). (7.17)
Q Q

Noting that (7.16) also implies a uniform bound on [, ¢¥|Vp"|? dx, we have due to

the weak lower semicontinuity of the L2-norm,

/(r 0| Vp2dx < lij{[ninf/(r - MYV Rdx < 4. (7.18)
Q —% Ja

Consequently, we can use p as a test function in (7.17) to obtain

/(r+c)\Vp|2dX=/Spdx.
Q Q

Therefore, using p™¥ as a test function in (7.13),

lim [ (r+cV)|VpY[Pdx = lim /SdeXZ/SdeZ/(r—i—c)|Vp|2dx,
N=x Jq Q Q

N—© Q
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which gives (7.15) and, further,

limsup/ |VpN|2dX<1imsup/(r+cN)|VpN|2dx+limsup <—/CN\VpN|2dx)
Q Q Q

N—o0 N— N—o0

_ /(r+c)|vp\2dx_nminf/ N VY| dx.
Q N=w Jq
Now, using (7.18), we have

~tynint [ N9 Pax = —timint [ VeV Pax < - [ VevpPax
Q N—o Q Q

N—o

Therefore,

limsup/ |VpN | dx < / |Vp|? dx,
N—0 Q Q

so that limy_ HVpNHL2(Q) = |Vpl 2(q) which directly implies that (a subsequence
of) pV converges towards p strongly in H'(Q). O

7.3 The 1D equidistant setting

In this section we consider the spatially one-dimensional setting of the discrete
network formation problem, where the graph (V,E) is given as a mesh on the
interval [0, 1]. Moreover, for simplicity we consider the equidistant case, where for

a fixed N € N construct the sequence of meshpoints z;,
x; = ih fori=0,...,N, with h :=1/N.

We identify the meshpoints x; with the vertices of the graph, i.e., we set V :=
{x;; i =0,...,N}. The segments (z;_1,x;) connecting any two neighbouring nodes
are identified with the edges of the graph, i.e., E := {(z;_1,2;); i = 1,...,N}. By
a slight abuse of notation, we shall write ¢ € V instead of x; € V in the sequel,
and similarly ¢ € E instead of (x;_1,x;) € E. Moreover, we shall use the notation
C = (Cy)N, with C; = 0 the conductivity of the edge i € E, P; € R for the pressure
in node i € V and SN e R for the source/sink in node i € V with 3~ SN = 0 by
(7.1). With this notation we rewrite the energy functional (7.6) as EV[C] : RY — R,

EN[C] := hi Q: + 2+ Oy, (7.19)
~r+ C; v
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7.3. The 1D equidistant setting

with the fluxes

Pi-P

Qi = (r+C) PR fori=1,...,N. (7.20)
Note that we orient the fluxes (); such that ); > 0 if the material flows from x;_;

to x;. The Kirchhoff law (7.7) is then written in the form

P — Py
h

P P

(7" + Cz) h

+(r+ Ciy1) =hSY  fori=1,...,N—1, (7.21)

while for the terminal nodes we have

Py — P
h

Py — Py

(T—f-Cl) i

= hSY, (r+Cy) = hSY .

Obviously, in the 1D setting the fluxes ); are explicitly calculable from the given

set of sources/sinks (S;)Y, since the Kirchhoff law (7.21) is the chain of equations

Q1 = hSY,
—Qi + Qi1 = hSN fori=1,... N -1,
—Qn = hSy,

which has the explicit solution
i—1
Qi=hY SN  fori=1,... N-1 (7.22)
3=0

Note that due to the assumption of the global mass balance (7.1) the “terminal

condition” for ¢ = N is implicitly satisfied,

N-1

—Qy = —h Z S; = hSY. (7.23)

7=0

With the fluxes given by (7.22)—(7.23), it is trivial to find the global energy minimiser
of (7.19), namely, (r + C;)*™ = Q?/v. Tt is also easy to prove that the sequence of

the functionals (7.19) converges as h = 1/N — 0 to the continuous functional

1 2
gz)” v
Elel = Z 7d 7.24
= [ A L e a, (7.21)
with ¢(z) := [ S(0)do, in the sense of Riemannian sums if ¢ is a continuous,
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nonnegative function. Therefore, the limit passage to continuum description in the
one-dimensional case is trivial. However, we shall use it as a “training example”
which avoids most of the technical difficulties of the two-dimensional setting to gain
a clear understanding of the main ideas of the method.

Therefore, we shall ignore the explicit formula (7.22) for the fluxes @); and study
the limit as h = 1/N — 0 of the sequence of energy functionals (7.19)—(7.20), i.e.,

EN[C] = h) (r+Cy) (—PZ' —hR-_1

=1

) + ;(7" + CZ')'Y, (725)

where the pressures P, are calculated as a solution of the Kirchhoff law (7.21). Note
that since r + C; > 0 for all i € V, (7.21) is solvable, uniquely up to an additive
constant. In the following we shall show that the sequence (7.25) converges, as
h =+ — 0, to the functional (7.24) with ¢ := (r + ¢)d,plc], i.e.,

1
Elc] = / (r + ¢)(0.p[c])? + %(7’ + ¢)7 dx, (7.26)
0
where p[c] € H'(0,1) is a weak solution of the Poisson equation
—0,((r+¢)dzp) = S (7.27)

on (0,1), subject to no-flux boundary conditions. Here and in the sequel we fix the
source/sink term S € L?(0,1) and, in agreement with (7.1), we assume the global
mass balance fol S(z)dx = 0. Since for ¢(z) = 0 the weak solution p = p(x) of
(7.27) is unique up to an additive constant, we shall, without loss of generality,
always choose the zero-average solution, i.e., fol p(z)dz = 0.

We shall proceed in several steps: First, we put the discrete energy functionals
(7.25) into an integral form, and find an equivalence between solutions of the Kirch-
hoff law (7.21) and the above Poisson equation with appropriate conductivity. Then
we show the convergence of the sequence of reformulated discrete energy functionals
towards a continuum one as h = 1/N — 0. Finally, we introduce a diffusive term
into the energy functional, which will allow us to construct global minimisers of the

continuum energy functional.
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7.3.1 Reformulation of the discrete energy functional

In the first step we reformulate the energy functionals (7.25) such that they are
defined on the space LY(0, 1) of essentially bounded nonnegative functions on (0, 1).

For this purpose, we define the sequence of operators Q) : RY — L*(0,1) by

QY : (CHX, — ¢, with ¢(z) = C; for x € (x;_1,2;), i =1,..., N.

Le., QY maps the sequence (C;)Y, onto the bounded function ¢ = ¢(x), constant
on each interval (x;_1,2;), i = 1,...,N. Then, we define the functionals &V :
L¥(0,1) — R,
! 2 U
EV[e] = / (r+0) (@IA"P) + L+ o da. (7.28)
0
with
P, — P :
(A"P); = Tl i=1,...,N, (7.29)

and P = (P)N, a solution of the Kirchhoff law (7.21) with the conductivities
¢ = (Cl)zj\ila

Then, noting that for each C' = (C;)X, e RY,

e
A QY [C(z)dz = C; foralli=1,..., N,

Ti—1

the discrete energy functional (7.25) can be written in the integral form as EN[C] =

EN[Qq[C-
Moreover, we establish a connection between the solutions of the Kirchhoff law
(7.21) and weak solutions of the Poisson equation (7.27) with ¢ = Q) [C]:

Lemma 14. For any C = (C)X, € RY and S € L*(0,1) with fol S(z)dx = 0,
let p = p(x) € HY(0,1) be a weak solution of the Poisson equation (7.27) with
c=QY[C], ie.,

—0, ((r + Q)'[C])0up) = S, (7.30)
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subject to no-flur boundary conditions on (0,1). Then,
P; = p(x;), 1=0,...,N, (7.31)

is a solution of the Kirchhoff law (7.21) with the conductivities C = (C;)Y., and the

source/sink terms

1
SN = %/ S(x)oY (x)dr,  i=0,...,N, (7.32)
0

with the hat functions ¢Y = ¢N(x) defined in (7.33) below.

Proof. Note that for any C' € RY there exists a weak solution p = p(z) € H'(0,1) of
(7.30), unique up to an additive constant. For ¢ = 1,..., N we construct the family

of piecewise linear test functions ¢, supported on (z;_1, 1), with

1+ == for x € (x;_1,7;),
) () = " @2 (7.33)
1 — &= for x € (x;, xi41).

Using the hat function ¢ as a test function in (7.30), we obtain

(7” + Cl)p(IZ) - p($¢_1)

- )p(Iz) — p(wit1) — hSY,

+ (T + C¢+1 A

where we used the fact that, by construction, Q)[C] = C; on the interval (x; i, ;).
Note that due to the embedding H'(0,1) < C(0,1) any weak solution p = p(z)
of (7.30) is a continuous function on [0, 1], so the pointwise values p(z;) are well
defined for all ¢ = 0,..., N. Thus, defining P, as in (7.31) we obtain a solution of
the Kirchhoff law (7.21) with the conductivities C' = (C;)¥, and source/sink terms
(7.32). O

Note that since 3 fol oY (z)dz =1 and S € L?(0,1), the Lebesgue differentiation

theorem gives

1
SN = %/ S(z)Y (z) dz — S(z) for a.e. T =x;as h=1/N — 0.
0

Consequently, for a fixed S € L?(0,1) and any N € N, we have the following

reformulation of the discrete problem:
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N

V. we have

Proposition 13. For any vector C = (C;)¥, e R
EY[C] = EM[Qy (],

where EN[C] is the discrete energy functional (7.25) coupled to the Kirchhoff law
(7.21) with sources/sinks S given by (7.32), and EN is the integral form (7.28)-
(7.29) with the pressures given by P; = p(x;), i = 0,..., N, where p e H'(0,1) solves
the Poisson equation (7.30).

7.3.2 Convergence of the energy functionals

Due to Proposition 13, we are motivated to prove the convergence of the sequence
of functionals &V given by (7.28)—(7.29) towards &[c] given by (7.26) with p|c| €
H'(0,1) a weak solution of (7.27) with conductivity ¢ = ¢(z), equipped with no-
flux boundary conditions. We choose to work in the space of essentially bounded
functions on (0, 1) equipped with the topology of L?(0,1). The choice of topology is
motivated by the need for strong convergence of piecewise constant approximations
of bounded functions. Of course, this is true in L9(0,1) with any ¢ < 400; our
particular choice of L?(0,1) is further dictated by the fact that we shall apply

Lemma 13 in the sequel.

Lemma 15. Let v = 0. For any sequence of nonnegative functions (cN)NeN, Un-
formly bounded in L*(0,1) and such that ¢N — c in the norm topology of L*(0,1)

as N — oo, we have

EN[N] — €]c] as h=1/N — 0.

N — ¢in the norm topology of L?(0,1). Consequently, there

Proof. By assumption, ¢
is a subsequence converging almost everywhere on (0, 1) to ¢, and thus (r +cN (x))v
converges almost everywhere to (r + ¢(x))?. Since, by assumption, the sequence
(r+¢V(z))” is uniformly bounded in L*(0, 1), we have by the dominated conver-

gence theorem

/01 (7“—|—cN(2?))7 d$—>/01(7“—|—c(a;))7dx as h = 1/N — 0.
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We recall that the pumping part of the discrete energy EV[cV] (7.28) is of the form

/Ol(r + V) ((QQéV[Ah]z)N])2 duz, (7.34)

with

(AhpN)i - pN(%') _pN(%'—l)

where p™ € H'(0,1) is a solution of the Poisson equation (7.27) with conductivity
¢V, subject to the no-flux boundary condition. Let us show that (a subsequence of)

QI [A"pN] converges to d,p|c| strongly in L*(0,1). We proceed in three steps:

e Weak convergence. By Jensen inequality we have
N N N 2
P (i) —p (zim1)
h 7.35
e (7.35)

N 1 i 2 1
= th (E /x~1 0.0 () dx> < /0 (0,p™)? dx.

Due to the nonnegativity of the functions ¢V, the right-hand side is uni-

Q8 1A M 20,

formly bounded. Consequently, there exists a weakly converging subsequence
of QY[ApN] in L*(0,1).

e Identification of the limit. For a smooth, compactly supported test func-
tion ¢ € CF°(0,1) we write

p € $z
— Z ! / e
1 N— Tit1
-5 Z (x;) (/ Y(x)de — v(x) dx) + “boundary terms”,

where “boundary terms” are the two terms with ¢ = 0 and ¢ = N, which we
however can neglect for large enough N since ¢ has a compact support. Then,

Taylor expansion for v gives

/ () dz — :M@z) =—h/ oz d:p+—/ o2,

248



7.3. The 1D equidistant setting

with £(z) € (z;-1, ;). Due to the estimate

h3 A
< 9 HaiwaL@(O,l)

5 [ e

we have
/ o)z — [ p(e)de —h/xi () dx + O(h),
so that
1 1
/ QJDV[AhpN] ()Y (z)de = —/ pNo(x)dx + O(h),
0 0

where pV is the piecewise constant function

PN () = p(

x;) forxe (z;_q,2;],i=1,...,N.

It is easy to check that, due to the strong convergence of ¢V towards c in
L?(0,1), p™ converges to p[c| weakly in H*(0,1). Due to the compact embed-
ding H'(0,1) — C(0,1), (a subsequence of) p" converges uniformly to p|c]

on (0,1), and, therefore pN converges strongly to p[c]. Therefore,

/0 QY A" (@)p() dz — — / p(@)esb(z)dz  ash=1/N -0,
- / (2)2.p(x) de.

We conclude that weak limit of (the subsequence of) Q) [A"p™] is d.p|c].
Strong convergence. Finally, due to (7.35), we have
2
HQ(J)V[A}ZPN] - aﬂﬂp[C]Hm(o,l)

= HQ(])V[A}IPN] Hiz(m) - 2<@(])V[AhpN]y axp[c]>L2(O,1) + Haxp[c]”iQ(O,l)

2
< HaaspNHLQ(OJ) - 2<Qév[AhpN]) aarp[c]>L2(0,1) + Haﬁﬁp[c]|‘i2(0,1) ’

which vanishes in the limit » = 1/N — 0 due to the weak convergence of
QY[Ap™] and strong convergence of 0,p™ in L?(0,1) due to Lemma 13. Thus,
QI'[Ap™] converges strongly to d,p[c] in L?(0,1).
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We conclude that due to the weak-* convergence of (r + ¢V) towards (r + ¢) in
L*(0,1), and strong convergence of (@{)V[AhpN])2 towards (0,p[c])® in L'(0,1), we
can pass to the limit as h = 1/N — 0 in (7.34) to obtain

/0 (r+c¢) (81,]9[0])2 dz.

]

7.3.3 Diffusion and construction of continuum energy min-
imisers

In Lemma 15 we proved the convergence of the sequence of energy functionals
EN towards &, i.e., for any ¢¥ — ¢ in the norm topology of L%*(0,1), we have
EN[N] — €[c] as N — co. In order to construct energy minimisers of £ as limits
of sequences of minimisers of the functionals £V, we need to introduce a term into
EN that shall guarantee compactness of the sequence of discrete minimisers. This
is done, in agreement with [HMP 15, HMPS16, ABH*17], by introducing a diffusive
term into the discrete energy functional (7.25), modelling random fluctuations in

the medium. Thus, we construct the sequence Efj; : RY — R,
N-1 2
Cipi— G
BN [C] = D?*h Y (%) + BV, (7.36)
=1

with EV[C] defined in (7.25), coupled to the Kirchhoff law (7.21) with sources/sinks
SN given by (7.32), and D? > 0 the diffusion constant. Note that the new term is
a discrete Laplacian acting on the conductivities C'.

We now need to reformulate the discrete energy functionals (7.36) in terms
of integrals. For this sake, we construct the sequence of operators QY : RY —

C(0,1), where QV[C] is a continuous function on [0,1], linear on each interval
(x; — h/2,2; + h/2), with

and

NCl(z)=C, for x €[0,h/2), QY[Cl(z)=Cy forxze (1 —h/2,1].
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7.3. The 1D equidistant setting

Then we write the finite difference term in (7.36) as

Nl /o 0\ 2 1
D’h ). (%) = D2/ (2.QN[C))* dx,
i=1 0

and we have

Proposition 14. For any vector C = (C;)X, e RY,

Egig[C] = D* /01 (2.QY[C])” de+ N[ [C]],

where EYe defined in (7.36) and EN is given by (7.28)—(7.29) with the pressures
giwen by P; = p(x;), i = 0,...,N, where p e H'(0,1) solves the Poisson equation
(7.30).

We are now ready to prove the main result of this section:

Theorem 11. Let v = 0, S € L*(0,1) with fol S(z) dx and SN given by (7.32).
Let (C™)yen be a sequence of global minimisers of the discrete energy functionals
EXs given by (7.36). Then the sequence QY[CN] converges weakly in H'(0,1) to
ce H'(0,1), a global minimiser of the functional Egg : HY(0,1) — R,

1
Exalc] = D / (0.0)% d + E]],
0
where E|c] is given by (7.26).

Proof. Let us observe that

S (B PL)
EielC™) < Eiylo] = rh Y (T) £
=1

~

where (BP;)Y, is a solution of the Kirchhoff law (7.21) with zero conductivities and
sources/sinks given by (7.32). Thus, P, = p(z;) for i = 1,..., N, where § = p(x)
is a weak solution of —rAp = S subject to no-flux boundary conditions. Then we

have by the Jensen inequality

N /30 2 N , 2
B-Db, 1o
D?*h - ) =D% —/ 0.pd
3(A5) -ms () o)
1
< D2/ (0.p)* d.
0
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Consequently, the sequence EY:[C™] is uniformly bounded.

Since the sequence
2
D* / (2.QV[C™])” DQhZ( ) < Ejg[CM]
0

is uniformly bounded, there exists a subsequence of QY[C"] converging to some
ce H'Y(0,1) weakly in H'(0,1), and strongly in L?(0, 1); moreover, the sequence is
uniformly bounded in L*(0,1). It is easy to check that also Q)[C™V] converges to
¢ strongly in L?(0,1), and is uniformly bounded in L*(0,1). Therefore, by Lemma
15, we have EN[CY] = EN[QY[CN]] — &[c] as h = 1/N — 0. Moreover, due to

the weak lower semicontinuity of the L?-norm, we have

1 1
/ (0,¢)* dz < liminf / (2.QN[CN])* dx .
0 0

N—o

Consequently,
Eait[c] < lij{fn inf ENg[C™]. (7.37)
—00

We claim that ¢ is a global minimiser of Eqg in HL(0,1). For contradiction,
assume that there exists ¢ € H}(0,1) such that

Eqin [E] < EqiF [C]

We define the sequence (CV)yey by

Then, by assumption, we have for all N € N,
EN:[CN] = EXg[CN]. (7.38)

It is easy to check that the sequence QY[C] converges strongly in H'(0, 1) towards

¢, therefore

1 1
/ (ﬁinV[C_'N])Q dz — / (0,6 dz ash=1/N — 0.
0 0

252



7.4. The 2D rectangular equidistant setting

Moreover, the sequence Q) [C™] converges to ¢ strongly in L2(0,1), therefore, by
Lemma 15, EN[QY[CN]] — €[¢] as h = 1/N — 0. Consequently,

i BN {CY] = Eanle] < Eaald],

a contradiction to (7.37)—(7.38). O

7.4 The 2D rectangular equidistant setting

In this section we consider the spatially two-dimensional setting of the discrete
network formation problem, where the graph (V,E) is embedded in the rectangle
Q :=[0,1]%. We introduce the notation x := (z,y) € Q. For N € N we construct
the sequence of equidistant rectangular meshes in 2 with mesh size h := 1/N and
mesh nodes X; = (X;,Y)),

X;=(imod N +1)h, Y;=(idiv N +1)h, fori=0,...,(N+1)* -1,

where (i div N + 1) denotes the integer part of i/(N + 1) and (i mod N + 1) the
remainder. We identify the mesh nodes X; = (Xj, Y;) with the vertices of the graph,
ie., weset V:={X;; i =0,...,(IN+1)> —1}. By a slight abuse of notation, we
shall write 7 € V instead of X; € V in the sequel. For each node X;, we denote by
Xim, Xiw, Xin, X; g its direct neighbours to the East, West, North and South,
respectively (if they exist); see Fig. 7.1. Then, the set E of edges of the graph
is composed of the horizontal and vertical segments connecting the neighbouring
nodes, i.e., (X;,X;,) for » € {E,W,N,S} and i € V. We shall denote C} the
conductivity of the edge (X;,X;.), and P, resp., P, ., denote the pressure in the
vertex X;, resp., X;,. Similarly, S denotes the source/sink in vertex i € V.

With this notation, the discrete energy functional (7.6) takes the particular form

h2 Pz - H * 2
ENCl =2 Y o () Ly, (7.39)
2 4 h vy
i€V «e{E,W,N,S}
and the Kirchhoff law (7.7) is written as
F)i - Pz * .
Z (r+ C;)T = hS!. for i eV, (7.40)

«e{E,W,N,S}
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Rigorous continuum limit

Figure 7.1: Interior node X; with its four neighbouring nodes X; g, X; w, X; v, Xi g
and its six adjacent triangles, TN® TN TNW TSW TS TSE,

For reasons explained later, we shall restrict to the case v > 1 in the sequel.

Our strategy is to perform a program analogous to the 1D case of Section 7.3:
first, to put the discrete energy functionals (7.39) into an integral form and find
an equivalence between solutions of the Kirchhoff law (7.40) and the above Poisson
equation with appropriate conductivity. However, in the 2D case the situation is
more complicated and we need to introduce a finite element discretisation of the
Poisson equation which allows us to use convergence results from the theory of
finite elements. We then establish a connection between the FE-discretisation and
the Kirchhoff law (7.40). In the next step we show the convergence of the sequence of
reformulated discrete energy functionals towards a continuum one as h = 1/N — 0,
using standard results of the theory of finite elements. Finally, we introduce a
diffusive term into the energy functional, which will allow us to construct global

minimisers of the continuum energy functional.

7.4.1 Finite element discretization of the Poisson equation

We construct a regular triangulation on the domain €2 such that each interior node
X; has six adjacent triangles, TNE, TN TNW TSW TS TSE see Fig. 7.1. Bound-
ary nodes have three, two or only one adjacent triangles, depending on their location.
The union of the triangles adjacent to each X; is denoted by U;. The collection of
all triangles constructed in (2 is denoted by 7.
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7.4. The 2D rectangular equidistant setting

We fix S e L?(Q2) with [, Sdx = 0 and consider a discretisation of the Poisson

equation
—V - ((rl+¢)Vp) =S (7.41)

on 2 subject to the no-flux boundary conditions, using the first-order (piecewise

linear) H! finite element method on the triangulation 7". Therefore, on each N E-

triangle T/NF we construct the linear basis functions ¢, ¢XF, ¢NF with

ol (Xs) =1, o (Xig) =0, on(Xin) =0,
oy (Xi) =0, ony (Xip) =1, ony (Xyn) =0,
ory (X)) =0, ¢ (Xip) =0, ¢py(Xin) =1,

and analogously for the other triangles in U;, see Section 7.A.1 of the Appendix for
explicit formulae. Denoting W" < H!(£2) the space of continuous, piecewise linear

functions on the triangulation 7", the finite element discretisation of (7.41) reads
/ V' (rl+ ¢) Vi dx = / Sytdx  for all " e Wh. (7.42)
Q Q

Using standard arguments (coercivity and continuity of the corresponding bilinear
form) we construct a solution p" € W" of (7.42), unique up to an additive constant;
without loss of generality we fix fQ p"(x) dx = 0. The solution is represented by its

vertex values P/' := p"(X;), i € V. In particular, on each N E-triangle TV* we have
p'(x) = P'oni” (x) + Plpdiy” (x) + Pioiy (x),  xe T,
and the gradient of p" on TNF is the constant vector

1
(P's — P, chN — P, x e TN (7.43)

vph<x) = E i,

Analogous formulae hold for all other triangles in U;, as explicitly listed in Section
7.A.2 of the Appendix.

We now establish a connection between the discretised Poisson equation (7.42)
and the Kirchhoff law (7.40). For this purpose, we define the sequence of opera-

tors Qf mapping the vector of conductivities (C;);cg onto piecewise constant 2 x 2
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diagonal tensors,

A C1 0
0 (6))

The functions ¢; = ¢1(x), ca = c2(x), defined on €2, are constant on each triangle
T e T" and c; takes the value of the conductivity of the horizontal edge of T" and ¢,

takes the value of the conductivity of the vertical edge of T'. In particular, we have

( (
CF on TNE cN on TNE
CF onTPSE, cs o TP,
¢ = % Co 1= % (7.45)
cVo oon TSV, c?  onTW,
cV on TNW, cy on TN.
\ \

Then, for a given vector of conductivities C' = (C;);ecg we consider the discretised
Poisson equation (7.42) with the conductivity tensor ¢ := QR[C]. For each i € V we

construct the test function ¢! as
h._ A.NE _ ,SE | 4§ SW | NW | N
V=g Oy O T + o + o,

with the basis functions on the right-hand side defined in Section 7.A.1 of the Ap-
pendix. Consequently, each ! is supported on U;, linear on each triangle belonging
to U;, and continuous on . Then, obviously, 1! € W" and using it as a test function

in (7.42), we calculate, for the triangle TN,

cE CN
Vi (11 + QAICT) Vol dx = T (PR - Ply) + T (PR - Pl
TZ.NE 2 s 2 s
where we used (7.43), the identity V¢! = —3(1,1) on TN*, and orthogonality

relations between gradients of the basis functions (for instance, V(bf?sz . ngf?gE =
0). Performing analogous calculations for the remaining triangles constituting U;,
namely, T°F, T, TSW  TNW and TN, see Section 7.A.3 of the Appendix for explicit

details, we obtain

[T bl Velae = S PP, (Ta0)
Q

*€{E,W,N,S}
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7.4. The 2D rectangular equidistant setting

Consequently, (7.42) gives the identity

F)ih - ‘Pih* 1 h
«e{E,W,N,S} Q
for all i € V. Thus, defining
shoo L Sylrd (7.47)
i h2 i AX, .
Q

we have the following result:

Lemma 16. For any vector of nonnegative conductivities C = (C;);eg and S €
L*(Q) with [, S dx =0, let p" € W" be a solution of the finite element discretisation
(7.42) with ¢ := QA[C]. Then, P := ph(X;), i € V, is a solution of the rescaled

2

Kirchhoff law (7.40) with the source/sink terms S given by (7.47).

Note that since h% o Y (x)dx = 1, and, by assumption, S € L%(Q), the Lebesgue

differentiation theorem gives
1
szﬁ/SdJ?dan(x) for a.e. x =X, ash=1/N — 0.
Q
Consequently, (S%),-0 is an approximating sequence for the datum S = S(x).

7.4.2 Reformulation of the discrete energy functional

We reformulate the energy functionals (7.39)—(7.40) such that they are defined on

the space LL(€2)272 of essentially bounded diagonal nonnegative tensors on 2. We

diag
define the functional £" : LT (Q)5:2 — R,
EMc] := / Vel - (rT + ¢)Vp"[c] + % (Ir +c|” + |r + co]”) dx, (7.48)
0

where p"[c] € W" is a solution of the finite element problem (7.42).

Proposition 15. Let S € L*(Q) with [, S dx =0 and S be given by (7.47). Then

for any vector of nonnegative conductivities C = (C;);epn, we have
E"C] = EMQglCl,

with E" defined in (7.39) and E" given by (7.48).
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Proof. We have shown in Section 7.4.1 that if p" = p”(x) denotes a solution of the
finite element problem (7.42) with ¢ = Q[C], then the vertex values P/ := p"(X;)
satisfy the Kirchhoff law (7.40). Moreover, using (7.43) and the definition (7.44)-
(7.45) of QR[C], we calculate

/ Vp' - (rT 4+ QE[C]) Vp" dx
TiNE
ph— ph\? pho_ ph\>
— |TNE | (r + CF) (%) +(r+CM) (%)

for each 7 € V, and analogously for all other triangles. Noting that |[TNF| = h?/2
and summing over all triangles, we obtain the formula (7.39) for the discrete energy
EMCOY. O

7.4.3 Convergence of the energy functional

With Proposition 15, our task is now to prove the convergence of the sequence of

functionals £" given by (7.48) towards
Ele] = / Vplel - T+ )Vple] + £ (1 + e + |+ al) dx. (7.49)
Q

where p[c] € H'(Q) is a weak solution of the Poisson equation (7.41) subject to

no-flux boundary conditions, and c;, cs are the diagonal entries of

2x2

diag Of diagonal

Similarly as in Section 7.3.2 we choose to work in the space LT ()
nonnegative tensors on {2 with essentially bounded entries, equipped with the norm

topology of L?(Q). Note that for ¢ € Lf(Q)ilxaz the Poisson equation (7.41) has a

solution p[c] € H'(€), unique up to an additive constant, and &[c] < +o0.

2%x2
diag
2x2
diag

Lemma 17. For any sequence of nonnegative diagonal tensors (¢ )nen = LT ()

with entries uniformly bounded in LY(Q2) and converging entrywise to ¢ € L7 (2)
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7.4. The 2D rectangular equidistant setting

in the norm topology of L*(Q2) as h = 1/N — 0, we have,

Elc] < liminf E"[cM], (7.50)

h=1/N—0
with E" given by (7.48) and & defined in (7.49).

Proof. Due to the strong convergence of the entries of ¢V in L*(Q) there exist a
subsequence converging almost everywhere in €2 to ¢. Then, we have by the Fatou

Lemma,

/ |+ ¢1|7dx < liminf / Ir + [ dx, (7.51)
o h=1/N—0

which is finite due to the uniform boundedness of ¢ in L7(Q2). Similarly for .

For the sequel let us denote p := p[c] € H'(Q) is a solution of the Poisson
equation (7.41) with conductivity ¢, pV := p[c"] a solution of the Poisson equation
(7.41) with conductivity ¢V and p" := p"[cV] € W" a solution of the finite element
discretisation (7.42) with h = 1/N and conductivity ¢". Then, by an obvious
modification of the auxiliary Lemma 13 for diagonal tensor-valued conductivities
we have by (7.15),

Vp (rl+¢)Vpdx = hm vpN - (T + M)V dx. (7.52)
Q

Let us define the bilinear forms BY : H'(Q) x H'(Q) — R,
BY (u,v) = / Vu - (rl + V) Vo da.
Q

Note that BY(u,v) < +co for u, v € H'(Q) since ¢V € LY (Q)3:2. Moreover, since

rT + ¢V is symmetric and positive definite, BY induces a seminorm on H'(f),
|u| gv == /BN (u, ) for ue H*(Q).

With this notation we have
/QVpN (rI + M VPN dx = ‘pN‘ZBN .

We now proceed along the lines of standard theory of the finite element method

(proof of Céas Lemma in the energy norm, see, e.g., [Cia78]). Due to the Galerkin

259



Rigorous continuum limit

orthogonality
BN(pN —p" ) =0  forallype Wh (7.53)
we have, noting that p" € W,
[N = 1 = 2" e +

Then, again by (7.53) and by the Cauchy-Schwartz inequality, we have for all ¢ €
wh,

PN =" = BNN =N =) < [p = 0" [P — ¥
Therefore, with the triangle inequality,
P —p"| v < ﬁéh P — | pn < PV — |y + 1};&5,1 Ip—¥lgw

Due to the strong convergence of ¢ — ¢ in L*(Q) and the standard result of

approximation theory, see, e.g., [Cia78], we have

A 2 o= < i it | 96 —0)- 0T+ V- )
+ lim [ Vp- (N —¢)Vpdx
N—oo Q
= 0.

Due to (7.52) and the weak convergence of p — p in H*(),

lim }p —p‘BN = 0. (7.54)

N—oo

Thus, collecting the above results from (7.52) up to (7.54), we conclude that

T N2 . . h12
o e i b=

—  lim / V' (rT + N)Vp' dx,
h=1/N—0 Q

which together with (7.51) gives (7.50). O

Remark 22. Note that if v > 1 and with the assumption that the sequence (¢™)yen
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converges (entrywise) in the norm topology of L(2), the statement of Lemma 17
can be strengthened to

Ele] = lim &"[M].

h=1/N—0

This follows directly from the fact that in this case we have for the metabolic term

/|r+01|7+|7“+c2|7dx= lim /|T+Civ|7+|r+c§v|7dx,
Q h=1/N—0 Jq
Lemma 17 and Remark 22 trivially imply the I'-convergence of the sequence of

energy functionals " in the norm topology of L7(Q) for v > 1:

Theorem 12. Let v > 1, S € L*(Q) with [,S dx = 0 and SI' be gwen by (7.47).
Then the sequence E" given by (7.48) T'-converges to € defined in (7.49) with respect
to the norm topology of LY(§2) on the set Lf(Q)i;z In particular:

2x2
diag

2x2
diag

in the norm topology of L'(2) as h = 1/N — 0, we have

o For any sequence (™ )neny < LL(Q)552 converging entrywise to ¢ € L7 ()

< limj h N.
Elc] hlirf}]{[rifog [c™]

2x2

o For any ce LY (Q)372 there exists a sequence (¢™)nen © LT (Q)gi0e converging

diag
entrywise to c € LL(Q)32 in the norm topology of LV()) as h = 1/N — 0,

diag
such that

Elc] = limsup E"[M].
h=1/N—0

Proof. The lim inf-statement follows directly from Lemma 17. For the lim sup-
statement it is sufficient to set ¢V := ¢ for all N € N and use Remark 22, which in

fact leads to the stronger statement

_n h[ N
Elc] = h=11/rj{fl_)0€ [c™].
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7.4.4 Introduction of diffusion and construction of contin-

uum energy minimisers

As in the one-dimensional case, we introduce a diffusive term into the discrete energy
functionals, which shall provide compactness of the sequence of energy minimisers.
We again construct a piecewise linear approximation of the discrete conductivities
C, which, however, turns out to be technically quite involved in the two-dimensional
situation.

We shall describe the process for the conductivities of the horizontal edges, and
by a slight abuse of notation, we denote C; /2 ; the conductivity of the horizontal
edge connecting the node (ih, jh) to ((i + 1)h, jh) fori =0,... N—1,7=0,...,N
where h = 1/N. Moreover, we denote M, 1/ ; the midpoint of this edge, i.e.,
M, 12 = ((i+1/2)h, jh). For a given vector of conductivities C', we construct the

continuous function Q?[C] on €, such that
@?[C](M’L’Jrl/Q,,j) = Ci+1/2,ja for i = 07 BRI N — 17 ] = 07 s 7N’

and Q?[C] is linear on each triangle spanned by the nodes M;_; /2,50 Mit1/2,5,
M,_1/2,j+1 and on each triangle spanned by the nodes M, 1/2 j, Mit1/2 j41, Mi—1/2, 541,
forto=1,...,N—1, j=0,...,N—1. Let us denote the union of such two triangles,
i.e., the square spanned by the nodes M;_1/3;, Mij1/25, Mi_1/2 ;41 and M1/ 41,

by W;;. Then, a simple calculation reveals that

1
/ IVQIC]]* dx = 5 [(Czel/z,j - i+1/2,j)2 + (Civijoy — i+1/2,j+1)2 (7.55)
Wi
+(Cis1/2,+1 — Oi—l/?,j+1)2 + (Ci1y2511 — Ci—1/2,j)2] .

On the “boundary stripe” (0,h/2) x (0,1) and (1 — h/2,1) x (0,1) the function is
defined to be constant in the x-direction, such that it is globally continuous on €2,

ie,for j=0,...,N —1 we have

_ Cijgj+1 — Cipay

Q) -

(ZL’Q — ]h) + Ol/g,j
for x = (xq1,22) € (0,h/2) x (jh,(j + 1)h) and

Cn-1/2,541 — Cn-1y2j
Q) (x) := ——2F 22 (1 — ) + O
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for x = (z1,29) € (1 — h/2,1) x (jh,(j + 1)h). Summing up (7.55) over all squares

Wi;; and the boundary stripe, we arrive at

| Ivatielpax = p.[c), (7.56)
Q
with
N-1N-1 N-1N-1
D,[C] := (Cis1/2g — Cirrppgr1)” + D) D1 (Cicippg — Civay)?
i=0 j=0 i=1 j=1
1 N-1
+§ Z [(Czel/Q,o — Ci+1/2,0)2 + (Cizijo,n — Ci+1/2,N)2] .
=1

Performing the same procedure for the vertical edges, we obtain
[ Iv@eIrax - byic) (757
Q

with obvious definitions of Q4[C] and D,[C].

Consequently, we define the sequence of discrete energy functionals E”q,
Elg[C] := D*(D,[C] + D,[C]) + E"[C], (7.58)

with D? > 0 diffusion constant and E"[C] defined in (7.39), coupled to the Kirchhoff
law (7.40) with sources/sinks SI' given by (7.47). We then have:

Proposition 16. For any vector C = (C;)ier of nonnegative entries, we have
ElulC] = D* | [VQUCIE + IVRA[CIE ix -+ " [Q4[CT)

with E%e defined in (7.58) and E" given by (7.48) with the pressures p* being a
solution of the FEM-discretised Poisson equation (7.42) with ¢ = Q) [C].

We are now in shape to prove the main result of this section:

Theorem 13. Lety > 1, S € L*(Q) with [, S dx = 0 and S be given by (7.47). Let

(CM)yen = RY be a sequence of global minimisers of the discrete energy functionals
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Ehe given by (7.58) with h = 1/N. Then the sequence of diagonal 2 x 2 matrices
et o
0 QcT]

converges weakly in H*(Q)2*% to c € H'(Q)2*? as h = 1/N — 0, with ¢ a global

manimiser of the functional Egg - H}F(Q)?ﬁz — R,

Eai[c] := D2/ Ve | + | Ve | dx + E[d],
Q

where E[c] is given by (7.49).

Proof. Let us observe that

~ ~ 2
h? » — P« v
Egiﬂ[CN] < Egiﬂ[o] = ?Z Z r (T) + —r7

i€V xe{E,W,N,S}

~

where (P;);ev is a solution of the Kirchhoff law (7.40) with conductivities C' = 0 and
sources /sinks given by (7.47). As shown in Section 7.4.1, the pressures P; correspond
to pointwise values 15;’1 = p"(X;), i € V, of the solution p" of the discretised Poisson
equation (7.42) with conductivity tensor ¢ = 0. Moreover, due to formula (7.43) we

have
B2 p-B.\
Th 2 (—_h ) =r/!w“dx,
i€V xe{E,W,N,S} 0

and the uniform boundedness of V" in L?(2) implies a uniform bound on E}[CV].

Since the sequence
DQ/ IVQI[CM]P + [VQ[CV][P dx = D* (D,[CY] + D, [CV]) < Elg[C™]
Q

is uniformly bounded, there exist subsequences of Q[C™] and Q4[C™] converging
to some c;, co € HY(Q) weakly in H*(2), and strongly in L*(Q). It is easy to

C1 0

check that then also QE[C™] converges to ¢ := strongly in L?(0,1)**2.
0 Co

Clearly, we also have QA [CN] e Lf(Q)?thz with entries uniformly bounded in LY(2).

264



7.4. The 2D rectangular equidistant setting

Consequently, by Lemma 17, we have

Elc] < liminf &"[M].

h=1/N—0

Moreover, due to the weak lower semicontinuity of the L2-norm, we have

/|Vcl| + | Veo|?* dx < 11mmf/|VQ1 [CN][? +|V@2[CN]|2dX

h=1/N—0
Consequently,
Eaie[c] < hn} inf Ere[ON]. (7.59)
We claim that ¢ is a global minimiser of Eg;r in H}F(Q)flfaz For contradiction,

assume that there exists ¢ € H} ()32 such that

Eaifr [5] < EaiF [C]

We define the sequence (C™)yen by setting the conductivity CN of each horizontal

edge ¢ € E to the average of ¢; over the two triangles T}, T2 € T" that contain the

~ 1
N.— ﬁ/ ¢ (x) dx
T;10T5;2

Similarly, we use the averages of ¢, to define the conductivities of the vertical edges.
Then, by assumption, we have for all h = 1/N, N e N|

edge i, i.e.,

Egig[CY] = Ege[C™]. (7.60)

It is easy to check that the sequence Q[C™] converges strongly in H'(2) towards

1, therefore
[IvatioNas— [ 1vapaxash=1n o
Q Q

and analogously for Q¢[CN] and &. Moreover, the sequence Qt[CV] converges to ¢
strongly in L7(Q)%22, therefore, by Remark 22, £"MQ)[CN]] — £[¢] as h = 1/N —

diag’
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Rigorous continuum limit

0. Consequently,
lim  Elg[CN] = Earle] < Eanlc],

a contradiction to (7.59)—(7.60). O

Remark 23. We can easily generalise to the situation when the two-dimensional
grid is not rectangular, but consists of parallelograms with sides of equal length in
linearly independent directions 01, 0 € St, where S* is the unit circle in R%. Then

the coordinate transform
(1,0) — 64, (0,1) — 05
in (7.49) leads to the transformed continuum energy functional
Elc] = /QVp[c] -P[c]Vplc] + % (Ir + | +|r+cf”) dx
coupled to the Poisson equation
-V - (P[c]Vp) =S
with the permeability tensor
Ple] = rl 4 161 ® 01 + 263 ® bs.

The eigenvalues of P[c] (principal permeabilities) are

1
/\1’2 = 5 <Cl + o + \/(Cl — 02)2 — 40102(01 . 92)2)

and the corresponding eigenvectors (principal directions)

Cy — C1 + \/(Cl - 02)2 - 40102(61 . 92)2
20191 . (92

Uro =0 + 0,.

7.A Detailed computations of Section 7.4.1

Here we provide more technical details for the constructions and calculations per-

formed in Section 7.4.1.
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7.A. Detailed computations of Section 7.4.1

7.A.1 Linear basis functions

We list the explicit definitions for the piecewise linear basis functions on the trian-
gulation 7", constructed in Section 7.4.1. Any interior node i € V has six adjacent
triangles, denoted clockwise by TNE TSE TS TSW TNW TN see Fig. 7.1. For
each triangle we construct three basis functions, supported on the respective triangle
and linear on their support. Obviously, the basis functions are uniquely determined
by their values on the triangle vertices. For later reference we list their gradients,

which are constant vectors on the respective triangles.

e On the NE-triangle T)¥ we construct the linear basis functions ¢", ¢,

¢r” defined by

so that
1 1 1
\Y% leE = _E(L 1)7 \Y z]'YQE = E(lao)a \Y iv,?,E = E(Oa 1)7 on T'iNE'

e On the SE-triangle T°F we construct the linear basis functions gblsf:, ZSQE, ff

defined by
X)) =1, ¢ (Xip) =0, ¢ (Xisp) =0,
(X)) =0, 6 (Xip) =1, ¢35 (Xise) =0,
ff(xl) =0, ;SZJSE(XZ,E) =0, f??(XZ,SE) =1,
so that
sp_ 1 sg_ 1 sg_ 1 SE
Vi = —E(LO), Vi, = E(la 1), Vois = _E(O’ 1), on 17

e On the S-triangle T we construct the linear basis functions (,1529;1, (,1529;2, gbis;?,
defined by

Y

(X)) =1, ¢ (Xisp) =0, ¢ (Xis) =0
1 0,

1
(X)) =0, ¢5(Xise) =1, 655(X;s)



Rigorous continuum limit

fB(Xl) =0, ¢23(Xi,SE) =0, 53(Xi,5> =1,

so that
s _ 1 s _ 1 _ 1 s
V(bi;l = _(07 1)? V9251‘;2 = _(170)7 V(b = _<17 1)7 on Tz :
h h h
e On the SW-triangle T°" we construct the linear basis functions ¢“ , f;” ,
gb defined by
ZS:F/(XZ) =1, ;SYV(X%S) =0, ;SF/<XZ ) =0,
zSgV(XZ) =0, f;/V(X%S) =1, ?g/<XZ W) =0,
;S:ZIS/V(XZ) =0, EZ":V(XZ,S) =0, ;S:ZIS/V(Xl ) =1,
so that
sw_ 1 sw_ | SW 1 SW

e On the NW-triangle T;X" we construct the linear basis functions ¢\, ¢75",

QS%W defined by

o (X)) =1, ¢ (Xaw) =0, )" (Xiww) =0,
oy’ (Xi) =0, " (Xiw) =1, ¢ (Kivw) =0,
so that
Nw _ 1 nw_ 1 Nw _ 1 NW
Vo = E(LU), Vi, = _E(L 1), Voiz = E(O’ 1), on ;"™
e On the N-triangle T} we construct the linear basis functions ¢}, ¢, ¢
defined by
QbiYI(Xz) = ]-, Qs»f?[l( zNW) Oa stvl(X’hN) = 07
QZ)QIQ(XZ) = Oa Qﬂz( ZNW) 1a gbiVQ(XZ,N) = 07
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7.A. Detailed computations of Section 7.4.1

i

| =

7.A.2 Gradients of p"

Here we provide the gradient of the solution p"* € W" of (7.42), constructed
in Section 7.4.1. Since p” is continuous on (2 and linear on each triangle in
T", it is represented by its vertex values P! := p"(X;), i € V. Then, for any

interior node i € V we readily have

3
h h ph h SE
Pi,E_PiaPi _Pz',SE) on T:7%,
h h ph h S
P’,SE_Pi7Pi _Pi,S) OnTz‘>
h h h h SW
P _Pi,W7Pi _Pz‘,s) on T;>",

7

h h h h NW
P _Pi,vai,NW_Pi) on T;"",

(2

K3 K3

h h h h NE
Pi,E_Pz"Pz‘,N_P') OnT; )

(

(

(
<

(

(

(

7.A.3 Explicit calculation for (7.46)

Finally, we provide the detailed calculation for the identity (7.46). Noting
that ¢ is supported on U; = TNE O TP TS O TAW O TN UTHN, and taking

into account the results listed in Sections 7.A.1 and 7.A.2, we have

/w Vp' - (rT+ QG[C]) Vi dx = # (Pl —ply) + - +205V (Pl — Phy).
[ v gt vt ax = TEE (R P,

|V (T QL)) Yl dx = - )
/TiSW vp' - (7“]1 + QS[C]) vwz}'l dx = - +201W (Pih - Pz‘},lW) + . +2qs (Pih - Pz‘l,zs
o ¥ T Q] Pt ax = )

[ ot o+ alfen) vetan = T (pr ).
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Rigorous continuum limit

Summing up, we arrive at

[ v et ax

Q

— (4 CF) (Pl = Pliy) + (r + CX) (Ph = PIy)
+(r+CY) (P =Ply) + (r+CF) (P = Py),

which is (7.46).
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Chapter 8

Application to auxin transport in

leaf venation

Originality and contribution

This chapter mainly follows the paper [HJKMI19], written in collaboration with
Jan Haskovec, Henrik Jonsson and Peter A. Markowich. My main (mathematical)
contributions to [HJIKXM19] are the analysis and numerical simulations of the discrete
model. In addition, I wrote the description of the model and the conclusion, and

contributed to the introduction.

Chapter summary

The plant hormone auxin controls many aspects of the development of plants. One
striking dynamical feature is the self-organisation of leaf venation patterns which is
driven by high levels of auxin within vein cells. The auxin transport is mediated by
specialised membrane-localised proteins. Many venation models have been based
on polarly localised eflux-mediator proteins of the PIN family. Here, we investi-
gate a modeling framework for auxin transport with a positive feedback between
auxin fluxes and transport capacities that are not necessarily polar, i.e. directional
across a cell wall. Our approach is derived from a discrete graph-based model for
biological transportation networks, where cells are represented by graph nodes and
intercellular membranes by edges. The edges are not a-priori oriented and the di-
rection of auxin flow is determined by its concentration gradient along the edge. We

prove global existence of solutions to the model and the validity of Murray’s law for
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Application to auxin transport in leaf venation

its steady states. Moreover, we demonstrate with numerical simulations that the
model is able connect an auxin source-sink pair with a mid-vein and that it can also
produce branching vein patterns. A significant innovative aspect of our approach
is that it allows the passage to a formal macroscopic limit which can be extended
to include network growth. We perform mathematical analysis of the macroscopic
formulation, showing the global existence of weak solutions for an appropriate pa-

rameter range.

8.1 Introduction

The hormone auxin plays a central role in many developmental processes in plants
[HHK*10, SMEFBO06, SS13, SES13]. During the development of a leaf, a connected
network of veins is formed in a highly predictable order, generating a well defined
pattern in the final leaf [Hic73]. High levels of auxin are present in the forming vein
cells compared to the neighboring tissues. It has been shown that the membrane
localized PIN-FORMED (PIN) family of auxin transport mediators is essential for
the correct patterning of the vein network [Sac69, SMFB06]. The patterns could
result from a canalisation mechanism where the auxin flux feeds back itself to a
polarised transport connecting sources and sinks of auxin [Sac81, Mit80, MHS81].
This idea has been revisited recently and has led to models with polarised PIN
transporters [RP05, FMI05, FEM15]. No flux-sensing mechanism has been identified
but models have been used to suggest alternatives [[Kra09, CRP15]. While newer
models have solved the issue of unrealistically low levels of auxin within veins in
flux-based models [FMI05], it is still an open question how looped veins can form
[RP05, DZ06] and if specified auxin production can provide an answer.

PIN proteins are involved in several patterning processes in plants. Alternative
models, not based on auxin flux, have been proposed, for instance for producing
Turing-like dynamics in the context of phyllotaxis [JHST06, SGM*06, BBL"16],
and for single cell polarity resulting in planar polarity [ASGMC16].

Since the discovery of PINs, many venation models have been based on polarised
transport via PINs, while recent data suggests that polar auxin transport mediated
by PINs is not crucial for forming veins [SS13, SES13]. Although characteristic vein
patterns and leaf shapes can be obtained with these PIN-based models, veins can
also form in chemical perturbations when PIN-mediated auxin transport is blocked,
or when multiple membrane-localised PIN proteins are mutated. This raises the

question if alternative mechanisms work in parallel or together with the PIN-based
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8.1. Introduction

polar transporters during the initiation of veins. This motivates to consider a more
general modelling approach where alternative feedbacks between auxin, auxin fluxes
and auxin transport can be included.

The ultimate goal for modelling vein networks is to accurately predict vein net-
work geometries seen in different plants. Our novel dynamical description could
complement the PIN-based models which have focused on more basic dynamic pat-
terns of veins, such as connecting sources and sinks, and breaking the symmetry of
graded diffusion into veins. Examples of these PIN-based models include the tradi-
tional PIN-based flux models that have been studied since approximately 40 years,
see [Sac81, Mit80, MHS81]. The impact of auxin concentration on the pattern for-
mation has been studied in [MEB*17]. It would be very interesting to investigate
the emergence of patterns in the setting where PINs are removed. As noted above,
the traditional PIN-based flux models are yet to provide a full description of the
diverse patterns seen in plants.

Given the strong directional distribution of PINs and the ability of veins to form
without PINs, it is important to introduce and analyse alternative mechanisms.
Whether these mechanisms are identical/redundant to PIN mechanisms in terms
of their dynamical behaviour or whether other mechanisms need to be considered
is still unknown. Hence, it would be interesting to show that polar/directional
transport activity and directional flux measurements are not required, and that
vein-like patterns can also result from mere measurement of magnitudes. This may
also inspire scientists to reconsider their current data or design new experiments.

In this chapter, we study a modeling framework for leaf venation which does
not assume polarity of auxin transport mediators across cell walls. The model
is introduced in Section 8.2, and is based on a positive feedback loop between
auxin fluxes and transport capacities that are not necessarily polar. Our approach
is derived from a recent discrete graph-based model for biological transportation
networks introduced by Hu and Cai [HC13]. We represent cells by graph nodes
and intercellular membranes (connections) by edges. The edges are not a-priori
oriented and the direction of auxin flow is determined by its concentration gradient
along the edge. The transport capacity of each edge is represented by the local
concentration of the auxin mediator. Our approach can be understood as a modeling
framework, which can be equipped or extended with various biologically relevant
features that will produce experimentally testable hypotheses. We admit that in its
present setting it does not capture all relevant biological features, however, its main

advantage is a rather simple form that facilitates rigorous mathematical analysis.
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Application to auxin transport in leaf venation

In particular, the first aim of this chapter is the proof of global existence and
nonnegativity of solutions of the discrete model (Section 8.3). Moreover, in Section
8.4 we show that the stationary solutions satisfy a generalized Murray’s law. The
second aim of the chapter is to gain a better understanding of the pattern formation
capacity of the model by means of numerical simulations (Section 8.5). In particular,
we show that it is capable of generating patterns connecting an auxin source-sink
pair with a mid-vein and that it can produce branching vein patterns. The main
novelty of our modelling approach is that it facilitates a (formal) passage to a
continuum limit, which is the subject of Section 8.6. The resulting system of partial
differential equations captures network growth and is expected to exhibit a rich
patterning capacity (see [ABH"17] for results of numerical simulations of a related
continuum model). Here we prove the existence of weak solutions of the transient

problem and of its steady states.

8.2 Description of the model

Hu and Cai considered a discrete model for describing the formation of biological
transport networks in [HC13]. This model was studied in terms of the existence of
solutions, its formal continuum limit, as well as its qualitative behaviour in Chap-
ter 6. Based on this model, we propose an adapted model in the cellular context
for describing the auxin transport in plant leafs via transporter proteins, where the
orientation of the flow is determined by auxin concentration gradient. Our approach
shares many similarities with the one introduced by Mitchison in [Mit&80] where the
transport capacity is updated as a function of the flux (gradient) between cells.
However, while Mitchison suggested an asymmetric update of the transport capac-
ities across a cell wall, our model assumes a symmetric transport capacity across a
cell wall. In this section we shall first introduce the Hu and Cai model, then shortly
discuss the Mitchison model, and finally describe the adaptation to the cellular

context.

8.2.1 Model of Hu and Cai

The discrete model introduced by Hu and Cai [HC13] and reformulated in [ABH " 17]
is posed on a given, fixed undirected connected graph G = (V,E), consisting of a
finite set of vertices V of size N = [V] and a finite set of edges E. Any pair of

vertices is connected by at most one edge and no vertex is connected to itself. We
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8.2. Description of the model

denote the edge between vertices i € V and j € V by (7,j) € E. Since the graph is
undirected, (7,7) and (j,7) refer to the same edge. For each edge (i,7) € E of the
graph G we consider its length and its conductivity, denoted by L;; = Lj;; > 0 and
Cij = Cji = 0, respectively. The edge lengths L;; > 0 are given as a datum and
fixed for all (i, j) € E. With each vertex i € V the fluid pressure P, € R is associated.
The pressure drop between vertices ¢ € V and j € V connected by an edge (i,j) € E
is given by (1.22). Note that the pressure drop is antisymmetric, i.e., by definition,
(AP);; = —(AP)j;. The oriented flux (flow rate) from vertex i € V to j € V is
denoted by @);;; again, we have Q;; = —@)j;. Since the Reynolds number of the flow
is typically small for biological networks and the flow is predominantly laminar, the
flow rate between vertices i € V and j € V along edge (7,j) € E is proportional to
the conductance C;; and the pressure drop (AP);; = P; — P, and is given by (1.23).
The local mass conservation in each vertex is expressed in terms of the Kirchhoff
law (1.24), i.e.

P, — P .
— Z CZJ]— = Sz forallieV. (81)

Clearly, a necessary condition for the solvability of (8.1) is the global mass conser-
vation (1.25) which we assume in the following. Given the vector of conductivities
C = (Cyj)(ij)er, the Kirchhoff law (8.1) is a linear system of equations for the vec-
tor of pressures P = (P;);cy. With the global mass conservation (1.25), the linear
system (8.1) is solvable if and only if the graph with edge weights C' = (C;) . j)er
is connected [ABH"17], where only edges with positive conductivities C;; > 0 are
taken into account (i.e., edges with zero conductivities are discarded). Note that
the solution is unique up to an additive constant.

The conductivities Cj; are subject to an energy optimisation and adaptation
process. Hu and Cai [HC13] propose an energy cost functional consisting of a
pumping power term and a metabolic cost term. According to Joule’s law, the power
(kinetic energy) needed to pump material through an edge (7, j) € E is proportional
to the pressure drop (AP);; = P; — P; and the flow rate @);; along the edge, i.e.,
(AP);;Qij = g_ijw The metabolic cost of maintaining the edge is assumed to
be proportional to its length L;; and a power of its conductivity C’gj, where the
exponent v > 0 depends on the network. For models of leaf venation the material
cost is proportional to the number of small tubes, which is proportional to Cj;, and

the metabolic cost is due to the effective loss of the photosynthetic power at the
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area of the venation cells, which is proportional to qu/ 2, Consequently, the effective
value of « typically used in models of leaf venation lies between 1/2 and 1; see

[HC13]. The energy cost functional is thus given by (1.26), i.e.

go)= Y (Qz‘j[C]2 N %GZ) Ly, (8.2)

(i,j)€E gl

where Q;;[C] is given by (1.23) with pressures calculated from the Kirchhoft’s law
(8.1), and v > 0 is the so-called metabolic coefficient. Note that every edge of the
graph G is counted exactly once in the above sum. Hu and Cai [HC13] propose an
energy optimisation and adaptation process for the conductivities C;; based on the

gradient flow of the energy (8.2),

dc;, Qy[C)?
T =g ( é£+1] — 7'2) CijLij (83)
ij

with parameters o, 7 > 0, constrained by the Kirchhoff law (8.1), see Chapter 6 for
details.

8.2.2 Mitchison model

As described in the introduction, auxins are a class of plant hormones (or plant
growth regulators) that play a cardinal role in coordination of many growth and
behavioural processes in the plant’s life cycle and are essential for plant body devel-
opment including for developing its own transport network. This has been captured
in a model proposed by Mitchison [Mit80], where auxin dynamics within an array
of cells with indices ¢ € V is considered. For two cells i, j € V with signal concen-
trations s;, s;, respectively, the diffusion constant at the interface between the cells
is denoted by D;; = Dj;; > 0 and can be specified independently for each cell-cell

interface. The oriented flux from vertex i € V to j € V is given by Fick’s law [Cra56],

Si_sj

L )

ij

¢ij = Di; (8-4)
where L;; = Lj; > 0 denotes the (average) length of cells ¢ and j. In particular, we
have ¢;; = —¢j;. The dependence of the diffusion constant D;; on the flux ¢;; is of

the form

dtU = f(|#4], Dij)
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for a suitable function f such that |¢;;|/D;; decreases as |¢;;| increases. For instance,
f can be chosen such that D;; ~ ¢7; at least in a neighbourhood of f~'(0). Assuming
that cell ¢ € V receives fluxes ¢;; for j € N(i), the evolution of the signal s; is of the

form

dSZ‘
dt

1
JEN(3)

Here, N (i) denotes the index set of neighbouring cells of cell i € V. The parameter
o, is the source activity for signal production in cell i € V. All cells have volume
v > 0and A;; = Aj; > 01is the area of the interface between cell ¢ and its neighbour
j € N(i). Note that the term >}y, Aij¢;; can be regarded as the difference
between influx and outflux since ¢;; = —¢;; for j € N(i). For the conservation of the
signal we require that the source activity o; for signal production and degradation
is chosen such that % ey Si = 0.

It is worth noting that while it was well established that auxin was important
for generating the vascular or vein patterns (e.g. [Sac81]), auxin ‘transporters’ were
not identified at the time when these models were introduced. The models received
great attention later, when auxin transport mediator proteins with similar polar lo-
calisation as predicted by the models were identified [SMEFB06]. In particular, PIN
proteins are integral membrane proteins that transport the anionic form of auxin
across membranes. Most of the PIN proteins localise at the plasma membrane
where they serve as secondary active transporters involved in the efflux of auxin.
They show asymmetrical localisations on the membrane and are therefore respon-
sible for polar auxin transport. Still, while PIN loss of function mutants generate
phenotypes in venation patterns, they do not completely abolish the formation of
veins [SS13], and as such alternative mechanisms can contribute to the dynamics of
vein formation. While individual mutants do not show strong phenotypes, this is
also implied by the existence of other auxin transport proteins, such as AUX1/LAX
influx mediators [Kra04, PSE"12, SS13], regulating intracellular and intercellular
transport. In the following discussion we will often use PIN as a descriptor of the
auxin transporter protein for simplicity, but it should be seen as a more general
description of auxin transport mediated by polar and/or nonpolar membrane pro-
teins, where polar relates to the difference of transport capacity (PIN localisation)

on the two sides of a wall.
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8.2.3 Adapted Hu-Cai model in cellular context

Given the known auxin flows generated from sources to sinks in a plant tissue, the
sometimes clear expression but unclear polarisation of PIN auxin transporter pro-
teins in these veins, and the ability to generate veins without any PIN transport, it
is of interest to investigate alternative mechanisms for the vein dynamics in an auxin
context. Such an alternative can be given by the Hu and Cai model for transport
networks [HC13]. The mechanism where pressure differences feeds back on conduc-
tance between elements has similarity with the auxin transport case, as described
in the flux-based models [Mit80, MHS81], where auxin sources and concentration
differences (pressure in the Hu-Cai model) generates diffusive fluxes between cells
(spatial elements), which positively feeds back on transport rates between the cells
(conductance). However, in contrast to the polarised transport connecting sources
and sinks of auxin in [Mit80, MHS81], we investigate a modelling framework for
auxin transport with a positive feedback between auxin fluxes and transport capac-
ities that are not necessarily polar, i.e. directional across a cell wall. To modify the
Hu-Cai model to a cellular context of plant venation dynamics we consider n = |V|
cells with indices ¢ € V and replace the pressure P; at vertex ¢ € V in the Hu-Cai
model with the auxin concentration a; = 0.

The conductance C;; of edge (7,7) € E in the Hu and Cai model is replaced by
the transport activity X;; = X;; > 0 in the membrane connecting cells i € V and
j € V which is the main difference from PIN-based flux models (and experiments)
with PINs P;; where P;; # Pj;. Due to this modelling approach auxin transporters
are not directional, i.e. polar, and as we shall see, measuring the magnitudes Xj;
is sufficient for producing vein-like dynamics. However, cells, in general, do not
transport auxin equally well in all directions (i.e. Xj; is typically not equal to X
for two cell neighbours 7 and k). Based on the definition of X;;, we define the auxin
flow rate Q;; = —Q,; € R from cell i € V to cell j € V by Q;; = X; “JL*JCL, where
L;; = Lj; > 0 denotes the (average) length of cells i and j. Based on the framework

of Mitchison (8.5) and Hu and Cai (8.3) we propose to describe the auxin transport
in the cellular context by the ODE system

d(li
dt

aj—az-

JEN () g

for all i e V, (8.6)

where N (i) denotes the index set of neighbouring cells of cell i € V and the param-

eter 0 > 0 denotes the (scaled) diffusion rate. To account for the auxin production
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and destruction in the cells, we introduced the source terms .S; > 0 and decay rates
I; = 0 for ¢ € V. For simplicity, we assume .S; and [; to be independent of time. For

the transport activity X;; in the membrane we consider

—T> XijLija (87)

where v > 0 is a control parameter and o, x, 7 are nonnegative parameters denoting,
respectively, the conductance update rate, the flux feedback and the conductance
degradation rate. In particular, the flux feedback x is an important parameter of
the model and is also a relevant parameter in the Mitchison model [Mit80, MHSS81].
The system (8.6)—(8.7) is equipped with the initial datum

Xi;(0) =X =X, >0  foralli,jeV, (8.8)
a;(0)=a) >0 forallieV. (8.9)

Clearly, (8.7) satisfies the symmetry requirement X;; = X;;. The conductance equa-
tion (8.3) and the transport activity equation (8.7) are of similar form. However,
the term QF; in the conductance equation (8.3) is replaced by the more general
term |Q;;|" in the transport activity equation (8.7) so that (8.7) reduces to (8.3)
for k = 2. Besides, the linear algebraic system (8.1) is relaxed by the introduction
of the time derivative of the auxin concentration in (8.15), leading to a system of
linear ordinary differential equations. While the system (8.3), (8.1) is a constrained
gradient flow for the energy (8.2), the system (8.7), (8.6) does not seem to have a

gradient flow structure.

8.3 Global existence and nonnegativity of solu-

tions

Theorem 14. Let 0 < k —y < 1 and fir T > 0. The system (8.7), (8.6) subject to
the initial datum (8.8)—~(8.9) has a solution X;; € C*(0,T), a; € C*(0,T), satisfying
Xij(t) = 0,a;(t) >0 for allt € [0,T) and i,5 € V. Moreover, if S; =0 for alli eV
in (8.6), then a; is uniformly globally bounded, i.e., there exists a constant a > 0
such that

a;(t) <a  forallte[0,0) andieV. (8.10)
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Proof. Nonnegativity for X;;. With (8.7) we have dift” >
=

the solution exists. Consequently, X;;(0) > 0 implies X;(¢)

—o7X;j;, as long as
0 on the interval of
existence.

Boundedness for |a;|. Let us denote the adjacency matrix of the graph G =
(V,E) by A € R"*" i.e. its entries are given by

For the solutions a; of the auxin equation (8.6) on their joint interval of existence

we have

1d & S
a2 = 25— Y i +522Am i)

=1 =1 i=1 i=1j=1
N 5 N N
<N S, — Ay X 2
< iy — = G<Nij (a ay) )
2 & <
i=1 i=1j5=1

where we used the nonnegativity of [; in the estimate and the usual symmetrisation
trick (recall that both A;; and X;; are symmetric). Now, due to the nonnegativity

of X;;, we have

implying at most quadratic growth of a? in time, i.e., at most linear growth of
la;| = |a;|(t). Clearly, if S; = 0 for all i € V, then we have the uniform bound (8.10)
with

o=
Boundedness for X;;.
dX;; 1Q;;1"
a <7 x L

and the boundedness of |a;| on bounded time intervals implies

K
< C1X;"

aj—ai

Q51" = | X

ij
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for a suitable constant C' > 0. Hence,

<CX'7,
dt K

and, therefore, for 0 < x — v < 1, X;; = X;;(¢) grows at most algebraically in time,
while for Kk — vy = 1 the growth is at most exponential.

Positivity for a;. According to the assumption, there exists ¢ > 0 such that
a;(0) = a for all ¢ € V. Let us assume that ¢ty < +0 is the first instant when any
of the curves a; = a;(t) hits zero. Due to continuity, we have ¢, > 0, and, clearly,
a;(t) > 0 for t € [0,1y) for all i € V. With the nonnegativity of the sources S; = 0,
(8.6) implies

dai
dt

aj—ai

2—[2a1+52 Xz'j fOf’iEV,t>O,

JEN (i)

and with the nonnegativity of X;; we have

da; X _
¢ = —Iiai —0 E a; fori e V, te (O, to)
JEN(3)

Finally, since X;; = X;;(t) grow at most exponentially in time, there exist constants

C, A > 0 independent of ¢y such that

dai
dt

> —CeMa, for i e V, t € (0, ),

implying

A
a;(t) = a;(0) exp (5(1 - exp()\t))) :
Therefore, a;(tg) > 0 for all i € V, a contradiction to the assumption tq < +oo0. [
Note that under the relaxed initial condition

a;(0)=a) >0 forallieV (8.11)

with an initial auxin concentration ).y a;(0) > 0 some cells may get no auxin over
time. If a;(0) = 0 for some i € V, it follows from (8.6) that cell i gets no auxin as

long as its neighbouring cells have zero auxin. However, if a;(0) = 0 for some i € V
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and a;(0) > 0 for some j € N (i), then (8.6) implies that

dal(t) >0 XZ]<O) > O, CLj(O) > O,
dt

t=0 | =0 otherwise.

In particular, the relaxed initial condition (8.11) guarantees the nonnegativity for

a;.

8.4 Murray’s law

In this section we demonstrate the validity of the Murray’s law [Mur26a, Mur26h]
for the steady states of the auxin transport activity model (8.7), (8.6). Murray’s law
is a basic physical principle for transportation networks which predicts the thickness
or conductivity of branches, such that the cost for transport and maintenance of the
transport medium is minimised. This law is observed in the vascular and respiratory
systems of animals, xylem in plants, and the respiratory system of insects [She&1].

The stationary version of the auxin transport activity model (8.7), (8.6) consists

of the algebraic system

0 Z jS = SZ — L;Cli for all 7 € V, (812)
jeN(i)
951"~V x. —0  foran (i,7) € E 8.13
X,H_l iy 7]) € L. ( . )
ij

Noting that Q,; = 0 if X;; = 0, (8.13) implies
Q1" = 7'X;YjJr1 for all (i,7) € E. (8.14)
Then, we rewrite (8.12) in the form

0 Z |Qlj|+Sz_IzaZ:6 Z ’Ql]| forall7eV
)

JENT(7) JEN—(3

with

N*(i) = {je N(i); Q; >0},  N—(i):={je N(i); Q; < O0}.

282



8.5. Numerical simulation

Using (8.14), we have

5 Z (r XY+ S — La; = 6 Z (rX e forallieV.

JENT (3 JEN—(

In particular, when all I; = 0, we obtain the generalised Murray’s law

5 Z (XY Si=6 Y (rXFTHYE forallieV,

JENT (4 JEN—(4)

8.5 Numerical simulation

In this section, we provide numerical results for the discrete model (8.6)—(8.7). Since
the problem is stiff, implicit formulas are necessary and we consider a multi-step
solver based on the numerical differentiation formulas of orders 1 to 5 [SR97].

We consider a planar graph G = (V,E), whose vertices and edges define a
diamond shaped geometry embedded in the two-dimensional domain © = (—0.5,2) x
(—1.5,0.5) with [V| = 81 vertices and |E| = 208 edges. Let (z',y’) denote the
position of vertex i € V. We assume that the source terms S; > 0 are positive on

the subset of vertices
={ieV; 2' <04},

and vanish on its complement V\V™,

, 1eVT,
Si = 55
0, ieWV\VT,
where &g := 100, implying that we have a single source in the top corner of the

diamond. The decay terms [;, 7 € V, are assumed to positive on the complement
V\V*,

0, ieVTt,
]i =
f[, 1 E V\VJr,
where & := 1. Note that in terms of the distribution of source and sink terms,

we consider the same situation as in Chapter 6. We prescribe the initial condition

X;j := 1 for every (i,7) € E and a; := 1 for all i € V, unless stated otherwise.
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Application to auxin transport in leaf venation

Besides, we consider ¢ := 1, 0 := 1, k := 2, 7 := 0.5 and 7 := 1 in the numerical
simulations, if not stated otherwise.

In the sequel, we present the stationary solutions obtained by solving the system
(8.6)—(8.7). We plot the value of the transport activity X;; for every edge (i,7) € E
in terms of its width and colour. The auxin concentration in each cell i € V is
indicated by the colour of that cell.

In Figure 8.1, we show the stationary transport activity for perturbed initial
data Xj;, i.e., we consider X;; + el (0,1) instead of X;; as initial data, where U(0, 1)
denotes a uniformly distributed random variable on [0,1]. In particular, the re-
sulting network is stable under small perturbation. This can be seen by comparing
the results with Figure 8.2(G) where the same parameters without perturbation are
considered. The perturbations of the initial data result in more complex steady

states compared to the steady states obtained from unperturbed initial data.

(A) =05 (B)e—1 () e=5 (D) e = 10

Figure 8.1: Steady states for transport activity for perturbation e/ (0,1) of the
initial transport activity X;; with initial data X;;, a;.

In Figure 8.2 we vary the strength £s of the source in the top corner of the
diamond. As &g increases, auxin is transported over a larger area, resulting in
lower auxin levels and transport activity close to the source in the top corner of the
diamond. Note that the area of large auxin levels and transport activities coincide
in the steady states. Further note that not the entire graph is covered with auxin
for & € {10,50} and the resulting pattern is symmetric due to symmetric initial
data for the auxin levels and the transport activity.

In Figure 8.3 we consider different grids (round, oval). As in Figure 8.2 we vary
the strength &g of the source in the top middle corner of these grids. The resulting
pattern formation for round and oval grids is very similar to the patterns obtained
with the same source strengths in Figure 8.2 for the diamond grid. In particular,
this demonstrates the robustness of the model to variations of the underlying grid.
Note that due to the larger size of the oval grid compared to the other considered

grids, a stronger source is required for obtaining stationary patterns covering the
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-1 0
05 0 05 1 15 2 25
x.

(D) &5 = 200
(E) & = 10 (F) €s = 50 (G) &5 = 100 (H) &5 = 200

Figure 8.2: Steady states for auxin concentration and transport activity for different
background source strengths s with initial data Xj;;, a;.

entire simulation domain.

In Figure 8.4, we vary the strength of the sink in the bottom corner, denoted
by £¢, while keeping the values of I; for all other vertices i € V as before. Similarly
as for the variation of &;, the area of the network decreases as £¢ increases for both
auxin levels and transport activity. In this case, however, it decreases outside a
neighbourhood of the line connecting the source in the top corner and the increasing
sink of size £ in the bottom corner. In particular, the network structure for large
¢¢ is given by a high auxin levels and transport activity along the line of cells,
connecting the source in the top corner with the strong sink in the bottom corner.
Moreover, this variation of the size of the source g in Figures 8.2 and 8.3, as well
as, of the sinks &; and £¢ in Figure 8.4 illustrate how crucial the choice of sources
and sinks for the resulting pattern formation is.

In Figures 8.5 and 8.6, we investigate the dependence of the stationary states on
the model parameters § and 7 in (8.6)—(8.7). For small values of 4, more complex
stationary patterns for the transport activity can be seen in Figure 8.5 and auxin is
transported over the entire graph. As ¢ increases, the auxin levels and the transport
activity increase close to the source, but they are no longer transported over the
entire graph. As before, the area covered by auxin transport activity and auxin
levels are of a similar size, i.e., auxin transport activity and auxin levels are co-
existent. The increase of 7 shows a similar change of the steady states of both the

auxin transport activity and auxin levels as the increase of ¢.
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Figure 8.3: Steady states for auxin concentration and transport activity for different
background source strengths {g and different grid shapes (round, oval) with initial
data Xij, a;.
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Figure 8.4: Steady states for auxin concentration and transport activity for different
sink strengths ¢§ with initial data X, ;.
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Figure 8.5: Steady states for auxin transport activity and
parameter values 0 with initial data X;;, a;.
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Figure 8.6: Steady states for auxin transport activity and
parameter values 7 with initial data X;;, a;.
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Application to auxin transport in leaf venation

In Figures 8.7-8.9, we vary the initial auxin transport activity and no longer
consider the initial data X;;. In Figure 8.7, the steady states for the transport
activity are shown where the initial transport activity is chosen as 6 + 0.00001¢ for
parameter ¢ € {0.5,5,50,100} and a random variable 6 with 8 = 1 with probability
0.2 and 8 = 0 with probability 0.8. In particular, the resulting patterns of the
transport activity have no symmetries and the location of the mid-veins strongly
depend on the choice of parameters, illustrating that model (8.6)—(8.7) can produce
complex vein patterns. Note that the size of the stationary pattern increases as ¢

and, thus, as the absolute value of the initial transport activity increases.

15

S

-0 0 -
05 ) 05 1 15 2 05 0 05 1 15 2 05 0 05 1 15 2 05 0 05 1 15
X X X. X,

(A) c-05 B)e=5 (C) - =50 (D) £ = 100

Figure 8.7: Steady states for the transport activity for initial transport activity
6 +0.00001¢ where @ is a random variable with § = 1 with probability 0.2 and § = 0
with probability 0.8.

In Figure 8.8, we consider the initial transport activity eU/(0,1) where ¢ €
{0.5,1,5,100}. These numerical results demonstrate that model (8.6)—(8.7) is ca-
pable to produce different complex stationary state, not only on subdomains as
in Figure 8.7, but on the entire underlying network. In particular, the stationary

transport activity connects auxin sources and sinks.

(A)e=05 (C)e=5 (D) e = 100

Figure 8.8: Steady states for transport activity for initial transport activity eU/(0, 1).
In Figure 8.9, we consider the same initial condition for the transport activity
as in Figure 8.8(D), i.e. 100U/(0,1), but we vary the strengths 10e and e of the

auxin background source strengths &g and sink strengths &;, respectively, where

e € {1,5,50,100}. One can clearly see in Figure 8.9 that the auxin sources and
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8.5. Numerical simulation

sinks are not strong enough for € = 1 for transport activity to connect the top and
bottom corners of the underlying network, while for larger values of ¢ mid-veins
become visible and get stronger as auxin sources and sinks increase. This shows
that complex stationary transport activity patterns with no symmetries and major

mid-veins can be obtained.

(A)e=1 (B)‘s=5 (C)é:50 (D) -~ 100

Figure 8.9: Steady states for transport activity for initial transport activity
1004(0, 1) with source 10e and sink e.

In Figures 8.10 and 8.11 we consider multiple sources and sinks for obtaining
more realistic vein networks. Starting from a certain configuration of sources and
sinks in Figures 8.10(A) and 8.11(A) we subsequently add sources and sinks in the
subfigures further to the right. In Figure 8.10 we consider a diamond grid as in
most figures, but apart from a source at the top corner and a sink at the bottom
corner of the grid, we add sources which are located symmetrically with respect to
the longest vertical axis of the grid. Denoting the distance between the left and the
top corner of grid by [, these sources are located on the boundary of the grid at
a distance of [/4 from the top corner (Figures 8.10(A), 8.10(B), 8.10(C), 8.10(D)),
the left corner (Figures 8.10(B), 8.10(C), 8.10(D)) and at distances of 31/4 and 5I/8
from the top corner in Figures 8.10(C), 8.10(D) and Figure 8.10(D), respectively.
Similarly, the sources are located on the right side of the grid by symmetry of the
source locations in each figure. One can clearly see that multiple sources result
in a more complex transportation network between the sources and the sink in
comparison to the simulation results in the previous figures with merely one point
source.

In Figure 8.11 we consider a rectangular underlying grid with sources at the top
and the bottom of the boundary of the grid. We denote the length between the
left top and right top corner of the grid by . We consider a sink in the middle
of the bottom boundary and sources in the middle of the top boundary and at a
distance of [/4 left and right of the middle on the top boundary in all subfigures of
Figure 8.11. Additional sources are located at the left top and the right top corner
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(A) 3 sources (B) 5 soures (C) 7 sources (D) 9 sources
Figure 8.10: Steady states for transport activity for initial transport activity

10044 (0, 1) with different number of sources of strength 1000 and sinks of strength
100.

in Figures 8.11(B), 8.11(C), 8.11(D). In Figures 8.11(C), 8.11(D) additional sinks
are added at the bottom boundary in a distance of [/4 left and right of the middle
of the bottom boundary, while in Figure 8.11(D) additional sinks are considered in
the left bottom and right bottom corner of the grid. In particular, the resulting

patterns look very similar to those in leaves.

o 0 0 0
4 05 0 05 1 15 2 25 4 05 0 05 1 15 2 25 4 05 0 05 1 15 2 25 4 05 0 05 1 15 2 25
x X x. x.

(A) 3 sources, 1 sink  (B) 5 soures, 1 sink (C) 5 sources, 3 sinks (D) 5 sources, 5 sinks

Figure 8.11: Steady states for transport activity for initial transport activity
10044(0, 1) with different number of sources of strength 1000 and different number
of sinks of strength 100.

Model (8.6)—(8.7) describes the auxin transport with a positive feedback between
auxin fluxes and auxin transporters where the auxin transporters are not necessarily
polar. The above numerical results illustrate that the model (8.6)—(8.7) is able to
connect an auxin source-sink pair with a mid-vein and that branching vein patterns
can also be produced. A nice feature of the model is that the veins end up with
high auxin levels. This was not achieved with the original Mitchinson models and
this has been discussed in some detail. A solution to this has been to adapt the
conservative approach X, = Y] N (i) X,; = const for the auxin transporters which
(together with feedback on the localisation of auxin transporters from auxin flux)
can lead to high auxin in veins.

We want to stress here that our model (8.6)—(8.7) is able to generate a ve-

nation/transport network without a polar input, as seen in the case when auxin
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transporters are knocked out in the various numerical examples.

8.6 The formal continuum limit

The main reason for focusing on discrete models is that the patterns form when the
leaves have very few cells, e.g. the (first) mid-vein forms when the leaf is about five
cells wide. Cells split over time, resulting in a larger number of cells and network
growth. Besides, there is an auxin peak at the tip before the high auxin/transport
activity vein forms downwards from this. Still, this does not discard alternative
mechanisms setting up an intitial pattern that connects the leaf tip with the vascu-
lature in the stem (thought to be auxin sink). These phenomena can be modelled
much better in a diffusion driven setting instead of the discrete setting and motivates
us to consider the associated macroscopic model.

The goal of this section is to derive the formal macroscopic limit of the discrete
model (8.7), (8.6) as the number of nodes and edges tends to infinity, and to study
the existence of weak solutions of the resulting PDE system. The derivation requires
an appropriate rescaling of the auxin production equation (8.6). Moreover, since the
derivation of macroscopic limits of systems posed on general (unstructured) graphs
is a highly nontrivial topic, see, e.g., [Lov12], we restrict ourselves to discrete graphs
represented by regular equidistant grids, i.e., tessellations of a rectangular domain
Q) < R d e N, by congruent identical rectangles (in 2D) or cubes (in 3D) with
edges parallel to the axis. The results can be generalised to parallelotopes, see
Section 6.3 of Chapter 6 for details of the formal procedure applied to the Hu-Cai
model (8.3)—(8.1), and Chapter 7 for the rigorous procedure in the spatially one-

and two-dimensional setting.

8.6.1 Formal derivation of the continuum limit

Given the graph G = (V,E) as a rectangular tesselation of the rectangular domain
Q, let us denote the vertices left and right of vertex ¢ € V along the k-th spatial
dimension by (i — 1) and, resp., (i + 1),. Moreover, let us denote hy > 0 the

equidistant grid spacing in the k-th dimension. The rescaled auxin production
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equation (8.6) is then written as

da; agiv1), — i a; — (-1,

d
1 .
dt = Sl - IZ'CLZ‘ + (SkZ::l h_k (Xi’(ﬂ_l)kh—k — Xi’(i_l)kh—k> forieV.

(8.15)

The rescaling of the sum on the right hand side by h; is reflecting the fact that
the edges of the graph are inherently one-dimensional structures, embedded into
the d-dimensional space, cf. Section 6.3. A straightforward calculation reveals that
(8.15) is a finite difference discretisation of the parabolic equation

da

= =0V (XVa) + 5~ Ia, (8.16)

on the regular grid G = (V,E), where a = a(t, x) is a formal limit of the sequence of
discrete auxin concentrations (a;);ey as |V| — oo, and I = I(x) is a formal limit of
the sequence (I;);ey. Here, X = X (¢, z) is the diagonal tensor X = diag(Xy, ..., Xy)
where X, is the formal limit of the sequence (X;;); jev on edges (i, j) € E oriented
along the k-th spatial direction. A formal continuum limit of (8.7) yields the family
of ODEs for X = X (¢, z),

X K
X _ <|q’“‘ —T) X, (8.17)

with g, = Xj0,,a. Note that the product XVa is the vector
XVa = (X10y,a,...,X4i0.,0).

Observe that (8.17) is in fact a family of ODEs for X = X, (¢, ), parametrised
by z € ). Consequently, in analogy to Chapter 6, we introduce the diffusive terms

D?AX;, that model random fluctuations in the medium. Thus, the updated version
of (8.17) reads

Xy 2 gk "

with the diffusion coefficient D? > 0.
Biological observations suggest that the auxin dynamics takes place on a faster
time scale than the dynamics of the transporter proteins in the order of minutes for

auxin movement [DMIGI6], and in the order of hours for e.g. PIN1 reorientation
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[HHK*10]. This motivates to consider a formal fast time scale limit of (8.16),

leading to the elliptic equation
—0V - (XVa) =S — Ia. (8.19)

Note that the system (8.18)—(8.19) is very similar to the original Hu—Cai model
(8.1), (8.3), except that there is an additional linearly decaying term in (8.19) in
comparison to Kirchhoff’s law (8.1).

The system (8.16), (8.18) is equipped with the no-flux boundary condition
v-XVa =0, v-VXp =0 on o2, k=1,...,d, (8.20)

where v = v(x) is the outer unit normal vector on 2. The no-flux boundary
condition reflects the modelling assumption that there is no flow of auxin or the
auxin transporters through the boundary of the domain. More general boundary
conditions can be considered, leading to only slight modifications in the forthcoming

analysis. Moreover, we prescribe the initial datum for the auxin transporters
Xp(0,2) =X () =0 forxeQ k=1,...,d (8.21)

Remark 24. The choice to work with the elliptic-parabolic system (8.18), (8.19)
instead of the parabolic-parabolic system (8.16), (8.18) simplifies the mathematical
analysis, since one can apply the so-called weak-strong lemma for the elliptic equa-
tion (8.19), see Lemma 19 below. The analysis of the full parabolic-parabolic PDE
system (8.16), (8.18) will be the subject of a further work.

8.6.2 Existence of weak solutions

The weak formulation of (8.19), subject to the no-flux boundary condition (8.20),
with a test function ¢ € C*(Q) reads

5 / (XVa) - Vodr — / (S — Ia)éd, (8.22)

for almost all ¢ > 0, and the weak formulation of (8.18), (8.20) with a test function
e C?(Q) is

%/kadxz —DQ/VXk-vwdQH/ (|0s,al" Xy — 7X3) ¥ de,  (8.23)
Q Q Q
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for almost all ¢ > 0. The system is subject to the initial datum (8.21) with
X)eL™(Q), k=1,...,d (8.24)

We assume the uniform positivity X? > X° > 0 almost everywhere on 2, which
prevents degeneracy of the elliptic term V - (XVa) in (8.16). Moreover, we assume
that

Se L*(Q), I e L*(Q) with I(x) = I > 0 almost everywhere on Q.  (8.25)

To prove the existence of solutions of the system (8.22), (8.23) subject to the ini-
tial condition (8.24) we shall use the Schauder fixed point iteration in an appropriate

function space. We start by proving suitable a-priori estimates.

Lemma 18. Let S € L*(Q) and I € L®(Q) verify (8.25). Let the diagonal tensor
X e L%(Q) be uniformly positive on ), i.c., let there be X > 0 such that X;, > X

almost everywhere on ), for k = 1,....d. Then there exists a unique solution
a€ HY(Q) of (8.22) and a constant C' > 0 depending only 6, X, S and I, such that

Ha’HHl(Q) <C (8.26)

Proof. Let us consider a sequence of uniformly positive diagonal tensors X" €
L*((0,T) x ), X? > X almost everywhere on (2 for all n € N, such that X" — X
in the norm topology of L?((0,7) x ) as n — c0. For each n € N a unique solu-
tion a™ € H'(Q) of (8.22) is constructed using the Lax-Milgram Theorem, see, e.g.,
[Eval0]. The continuity of the bilinear form B : H*(Q2) x H'(2) — R associated
with (8.22),

B(a, ¢) :=5/Q(XVa)-V(bdm—/Q(S—Ia)qbdx,

follows from a straightforward application of the Cauchy-Schwarz inequality. The

coercivity of B follows from

1 _
—/Sadx}———/52dx—1/a2dx
Q 41 Jq Q

and the uniform boundedness I(z) > I. Using ¢ := a™ as a test function in (8.22)
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gives

5/Va"-X”Va"da:=/Sa”dx—/[(a”)Zdaz,
Q Q 0

By (8.25), the Cauchy-Schwartz inequality and the uniform boundedness X} > X >

0 we have

5)_(/ Va"* dz + £/(a”)Q dz < 1 S? dx (8.27)
Q 2 Ja 21 Ja
and thus a uniform bound on a™ in H'(Q).

Consequently, we can extract a subsequence converging to some a weakly in
H'(Q) and strongly in L?(Q2). Then, it is trivial to pass to the limit in (8.22), where
the term X"Va" converges to X Va due to the strong convergence of X" in L?().
Consequently, the limiting object a verifies the weak formulation (8.22). Moreover,
it satisfies the a-priori estimates (8.27) due to the weak lower semicontinuity of the
respective norms. Uniqueness of the solution follows from (8.27) and the linearity

of the equation. O

Remark 25. With a straightforward modification of its proof, we shall apply Lemma
18 for time-dependent permeability tensors X € L®(0,T; L*(Q)) in the sequel. We
then obtain the unique solution a € L*(0,T; H'(Q)) satisfying the uniform estimate

HCLHL2(0,T;H1(Q)) <C (8.28)

with C = C(6,X,S,1) > 0.

The following Lemma is an instance of the so-called weak-strong lemma for
elliptic problems, see, e.g. Lemma 13. Here we formulate it in the time-dependent

setting with a = a(t, x).

Lemma 19. Fiz T > 0 and let (X™),en © LP(0,T; L*(2)) be a sequence of diagonal
tensors in R such that for some X > 0, X > X > 0 almost everywhere on
(0, T) x Q, k = 1,...,d, n € N. Moreover, assume that X" — X in the norm
topology of L*((0,T) x ). Let (a™)nen be a sequence of weak solutions of (8.22) with
the permeability tensors X™. Then Va" converges to Va strongly in L1((0,7T) x )
for any q < 2, where a is the solution of (8.22) with permeability tensor X.

Proof. Due to the uniform estimate on a™ in L*(0,T; H'(Q)) of Lemma 18, a

that converges weakly in L?(0,T; H'(2)) to some a. Since a” — a strongly in
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L2((0,T) x ), we can pass to the limit n — o0 in (8.22). With the uniform estimate
on v X"Va™ in L?((0,T) x ) provided by (8.28), the weak lower semicontinuity of

the L2-norm implies

T T
/ /XVa-Vad:z:dtz/ /|\/Yv@12dxdt
0 Q 0 Q

T
< liminf/ / |VXVa"|* do dt < +oo
0o Ja

n—o0

for almost all ¢ > 0. Consequently, we can use a as a test function in the time-

integrated version of (8.22) to obtain

T T
5/ /XVa-Vadxdt:/ /(S—Ia)ad:cdt.
o Jo o Ja

Then, using a¥ as a test function in (8.22) with X", we have

T T T
lim 5/ /X”Va"-Va”dxzf /(S—]a)adxdtzé/ /XVa'Vadmdt.
N=xJo Ja o Ja o Ja

Consequently,
T T
/ /!\/YVa\zdxdt = lim/ /\\/X”Va”|2dxdt,
0 JQ e Jo o Ja

so that we have the strong convergence of vX"Va" to vXVa in L*((0,T) x Q).

Now we write,

T T
/ / 8xka”—6’xka|dxdt<)_(_1/2/ / IV Xi Oy 0" — A/ Xy Oy a| dudt
o Ja 0 Jo

_—1/2 n n __
< X1V aoyeen [VEE = VE L e

T
+X_1/2/0 /Q|«/X,?(9rka"—\/Xkﬁzka|dxdt,

for k =1,...,d, and the first term of the right-hand side converges to zero due to the
assumed strong convergence of X" in L?((0,T) x ), while the second term does so
due to the strong convergence of v/ X"Va". Thus, we have the strong convergence of
Va™ to Vain L'((0,T)x€). Since Va" is also uniformly bounded in L?((0,T)x (), a
simple consequence of the interpolation inequality [Roul3, Chapter 1] implies strong

convergence in L?((0,7) x Q) for ¢ < 2. O
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Lemma 20. Fiz T > 0 and let Va € L*((0,T) x Q). Let k >~ and,

k<2 forde{l,2}, K < VTJFE) ford =3, (8.29)

depending on the space dimension d. Then there exists a unique solution
Xy € L20,T; HNQ) n L#(0,T: Q) A C0, TV HQ), b =1,....d,

of (8.23) subject to the initial datum (8.24) with X? = X° > 0 almost everywhere
on Q. Moreover, the solution stays uniformly bounded away from zero on (0,T) x Q,
i.e., there exists X > 0 depending on X°, T, D* and 7, but independent of a, such
that

Xp=2X>0 almost everywhere on (0,T) x €. (8.30)
Moreover, there exists a constant Ky > 0 independent of X and a such that
HXkHLoo (0,T5L2(52)) HXOHL2 + Ko HazkaHLQ ((0,7)x) (8.31)
and, fork =1,...,d,
IV Xl oo iz < 1R a0y + Ko 1200l Z2 0270y (8.32)

Remark 26. Observe that the necessary condition for the mutual validity of the
assumptions k > v and (8.29) is v,k < 2 for d € {1,2} and v,k < 5/3 for d = 3.

Proof. Let us fix ke {1,...,d} and use ¢ := X} as a test function in (8.23),

3 dt/Xk = —DQ/Q|VX;€|2dx+/Q|&$ka|”X,’§”“ dx—r/ﬂx,fdx, (8.33)

where we used the identity g, = X0, a. Using the Holder inequality with exponents

p and p/, %—FI%: 1, we have

/ |0y, al" X7 da < CE/ |0 a|™ dx +5/ | X, | P g (8.34)
Q Q Q

for € > 0 and a suitable constant C.. Due to the assumed L3-integrability of 0,,a,

2

we choose kp = 2, so that p’ = 5%. Denote a := (k — 7 + 1)p’ and observe that

a > 0 due to the assumption k > 7. Let us distinguish the following two cases: If
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a < 2, then by the Holder inequality we have

/]Xk|adx < CQ/ X2 da,
Q Q

so that (8.33) and (8.34) imply

3 dt/Xk —D2/ ]VXdeerCe/ |0wka|2dx—(7'—eCQ)/X,fdx,
Q Q Q

and choosing € > 0 such that 7 — eCq > 0 directly implies the a-priori estimates
(8.31) and (8.32). On the other hand, if & > 2, we apply the Sobolev inequality

[Eval0]
/|Xk|°‘d:)s < Cy (/ |VXk|2d:v+/ |Xk|2d:)s)
Q Q Q

with Cg = Cs(2) the Sobolev constant. Depending on the space dimension, we

have:

e For d e {1,2},

1 Xel oy < Cs (/ VX[ d +/ |Xk|2dx> (8.35)
Q Q

for any o < o0, i.e., we admit any p > 1 and, consequently, k < 2.

e For d = 3 we have (8.35) for a < 6, i.e., we need (k — v+ 1)p’ = % <6,

which gives the condition k < WTJ“E’.

Consequently, we have

/Xk - 2—505)/ |VXk|2da:+C€/ |8$ka|2dx—(r—505)/X,fdx,

and choosing ¢ > 0 such that eCs < min{D? 7} directly implies the a-priori esti-
mates (8.31) and (8.32). The uniform positivity (8. 30) follows from the fact that
solutions u = u(t,z) of the linear parabolic equation 2 = D*Au — Tu are subsolu-
tions to (8.17), and they remain uniformly positive on bounded time intervals for
uniformly positive initial data, see, e.g., [Fval0].

Finally, note that we have the identity (in distributional sense)

0Xk
ot

= D*AXy + |0pa]" X777 — 7X
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An easy calculation reveals that, for the aforementioned range of x and ~,
O a"X1 € L0, T; L95(Q)) = L1(0, T; H-(2),

implying 2k € L1(0,T; H~1(Q)), so that X, € C([0,T); H™1()), see, e.g., [Roul3,
Chapter 7. O

Theorem 15. FizT' > 0 and let k > vy, and, in dependence of the space dimension
d,

4
K < % for d e {1,2}, k< %M for d = 3. (8.36)

Then the system (8.22)—(8.23) subject to the initial datum (8.24) with X = X° > 0

almost everywhere on Q admits a weak solution (X, a) on (0,T) such that

Xy e L*(0,T; L*(Q)) n L*(0,T; HY(Q)) n C([0,T); H (),

(8.37)
ae L*(0,T; L*(Q)) n L*(0,T; HY(Q)) n C([0,T); W H3(Q)).

Proof. We construct a solution using the Schauder fix-point theorem on the set
X 2 2
Br := {X € (L*(0,T; LQ(Q)))ﬁiafé; HXkHLOO(o,T;L2(Q)) S HXISHH(Q) + KOB%’
X = X almost everywhere on (0,7) x Q, k=1,... ,d}.

Here (L*(0, T Lz(Q)))gixa‘gl denotes the space of diagonal d x d-tensors with entries
in L*(0,T; L*(2)), and Ky and X are the constant defined in Lemma 20; note that
they depend only on X°, T, and the parameters x, v, D? and 7. Moreover, we
denoted

B} :

= 55 (@ + ) || + TeT IS ]2

The set Br shall be equipped with the norm topology of L*((0,T) x ). Obvi-
ously, Br is nonempty, convex and closed. We define the mapping ® : By —
L*(0,T; L*(2)),

d:XeBr— X,

where given X € By we construct a the unique weak solution of (8.22) by Lemma 18,

and, subsequently, construct X as the unique weak solution of (8.23) by Lemma 20.
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Clearly, due to the a-priori estimates (8.26) and (8.31), X € By.

To prove the continuity of the mapping @, let us consider a sequence (X,,)nen <
Br, converging to X € By in the norm topology of L*((0,T) x 2). Denote (ay)nen
and, resp., a, the solutions of (8.22) corresponding to X,, and, resp., X. Then, due
to Lemma 19, Va,, converges to Va in the norm topology of L9((0,7T) x Q) for any
q <2 Let X, := ®(X,) and X := ®(X). Due to Lemma 20 and the Aubin-Lions
theorem, a subsequence of X,, converges strongly to some X* in L*(0,T; L9(2)) with
g<wifde{l,2} and ¢ = 6 if d = 3. The limit passage n — o in (8.23) is trivial
for the linear terms. For the term |0, a,|* X%~ we observe that, due to Lemma 19,
the term |0y, a,|® converges to |0, al® in the norm topology of L?((0,T) x Q) for

q < 2/k. Moreover:

e For d € {1,2}, the interpolation inequality between the spaces L*(0,T; L*(Q))
and L2(0,7;L(Q)) with ¢ < co implies that X" is uniformly bounded, and
thus converges, in the norm topology of L%((0,7) x Q) for ¢ < 4. Con-
sequently, since x < 2, the product \8xkan|”)~(;f—7 converges strongly in (at
least) L'((0,T) x Q) to |0, al*(X*)*7 if 5 + 3% < 1, which is equivalent to

y+4
R << =5

e For d = 3 the interpolation inequality between the spaces L*(0,T; L*(2) and
L2(0,T; L%(Q)) implies that X™ is uniformly bounded in the norm topology
of LY3((0,T) x Q). Then the sufficient condition for L!-convergence of the
product |y, a,|* X7 reads 5+ 3(”187) %.

This condition is weaker than (8.36).

< 1, which is equivalent to k <

By the uniqueness of solutions of (8.22), we conclude that X* = X, i.e., the mapping
® is continuous on By with respect to the norm topology of L?((0,7) x ).

To prove the compactness of the mapping ®, we employ the Aubin-Lions lemma
[Aub63]. Let us again consider a sequence (X,),en © Br and denote X, =
®(X,). Due to the a-priori estimates (8.26) and (8.31), (8.32), the sequence X,
is bounded in L*(0,T; L*(Q)) and in L*(0,T; H'(Q)). Moreover, ¢,X,, is bounded
in L'(0,7; H'(Q)). Then, since H'(2) is compactly embedded into L?*(f2) and
L*(Q) <« H'(Q), the Aubin-Lions theorem provides the relative compactness of
the sequence X, with respect to the norm topology of L*((0,T) x Q)). Conse-
quently, the Schauder fix-point theorem provides a solution (X, a) of the system
(8.22)—(8.24), satisfying (8.37). O
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Remark 27. For the case k = v = 2 the system (8.18) simplifies to

0X}
ot

= D’AXy + (0p,0) — 7X. (8.38)

Then, (8.19), (8.38) is similar to the system studied in Chapter 6 and Chapter 7, the
main difference being that the permeability tensor in the elliptic equation is of the
form rI+ X in Chapter 6 and Chapter 7, where r > 0 is a constant. The significant
property of (8.19), (8.38) is its energy-dissipation structure. Indeed, defining

2
D Z/\VX;fdx—%/Va XVadx+TZ/X2dx

where a = a[X] is the unique weak solution of (8.19), a simple calculation (see

EIACOK

along the solutions of (8.19), (8.38). The energy dissipation naturally provides

Lemma 10) reveals that,

uniform a-priori estimates on X and a in the energy space. However, these still
do not allow us to extend the validity of Theorem 15 to Kk = v = 2. The problem
is that in the proof of continuity of the fix-point mapping ®, it is not clear how to
pass to the (weak) limit in the sequence (0y,a)?. Note that Lemma 19 only provides
(strong) convergence of 0y, a in L1((0,T) x Q) with q < 2.

Remark 28 (Steady states of the system (8.18), (8.19) with D? = 0). The steady
states of the system (8.18), (8.19) with D? = 0 satisfy, in the weak sense,

5V - (XVa)+ S —Ia=0, (8.39)
10w al" X7 — 7X = 0, (8.40)

fork=1,....d, with ¢ = Xy0y.a. For k >~ >0, (8.40) implies that there exist
measurable sets A, < Q, k=1,...,d, such that

1
Opea]™\

T

where x, = xx(x) is the characteristic function of Ay. Inserting this into (8.39),
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we obtain

d
e 2 Oz, <Xk|8$ka|ﬁﬁxka) =S —la. (8.41)
k=1
Due to the presence of the characteristic functions xg, this is a strongly degen-
erate elliptic equation, rendering its analysis a very challenging task, which we
leave for a future work. Let us only note that the degeneracy in (8.41) induces
strong nonuniqueness of its solutions. Consequently, it is necessary to equip (8.41)
with suitable selection criteria in order to obtain unique solutions. This is to be
done through further modelling inputs. For k = v > 0, contrarily, (8.40) gives
Xy =7 Y0,,a|", and (8.39) reads

d
—or ! Z Oy, (|0,0]"0z,0) = S — Ia. (8.42)

k=1

Equipped with the no-flux boundary condition (8.20), its weak formulation reads

d
ot 0z,,0|" (0, 0)(0y, ) dx a— S dr = _
Z/| F@na)en ) ot [(a=Spdi=0 (343

for all test functions ¢ € C*(Q). Weak solutions a € WH2(Q) of (8.43) are

constructed as the global minima of the functional F : W1+t2 R,

571 & +2 1
= x T o 2d - dr.
Fla] “+2,€Zl/ﬂ|aka| J:+2/Qa T /QSax

Obuviously, for k > 0 the functional is uniformly convex. Moreover, a straightfor-

ward application of the Cauchy-Schwartz inequality implies boundedness below and
coercivity of F with respect to the norm of WH*2(Q). Then the classical theory
(see, e.g., [Evall]) provides the existence of a unique minimiser a € WH+2(Q) of

F, which is the unique solution of the corresponding Euler-Lagrange equation (8.43).

8.7 Conclusion

In this chapter, we proposed a new dynamic modelling framework for leaf venation,
which is not dependent on polar localisation of auxin transporters. Given that it

is still an open question how you get leaf veins, also in the absence of transport
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activity, we argue that the current work is of interest since it the first model, to our
knowledge, trying to address this question. Due to its new description of possible
mechanisms in leaf venation, our model is of interest to the modelling community.
Our work can be regarded as a general modelling framework for auxin transport,
which can be equipped or extended with various biologically relevant features that
would then produce experimentally testable hypotheses. The main advantage is the
rather simple form of the model, allowing a rigorous mathematical analysis, which
is one of the main aims of this chapter. Moreover, it facilitates the derivation of
a continuum limit, which can capture network growth and is expected to exhibit
a much richer patterning capacity, bearing again potential for delivering testable
hypotheses. The analytical and numerical study of the continuum model is currently

a work in progress.
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Chapter 9
Conclusion and outlook

In this thesis, we studied two different PDE models, motivated by the simulation of

fingerprint patterns and biological transport networks.

9.1 Part I: Anisotropic interaction equations

In Part I, we focused on modelling fingerprint patterns which is not only of great
interest in the biological community, but also in forensic science and increasingly in
biometric applications where large fingerprint databases are required for developing,
validating and comparing the performance of fingerprint identification algorithms.
Besides, similar models have proven to be very useful for modelling swarming in
nature, including flocks of birds or colonies of bacteria/cells, and has got significant
attention in the scientific community recently due to its great practical relevance.

The formation of fingerprints can mathematically be described as the interaction
of a large number of so-called Merkel cells, which align themselves due to anisotropic
repulsive-attractive interaction forces and form our fingerprint lines. The central
novelty in this model, leading to realistic patterns as observed in nature, is an
anisotropy induced by an underlying tensor field. This additional anisotropy is
crucial for the accurate description of real-world phenomena, but also makes the
analysis significantly harder. Due to the non-existence of an interaction potential
and a gradient flow formulation, much of the existing analytic theory does not apply
to these anisotropic interaction models and new methods are required for studying
these models rigorously.

We studied the role of anisotropic interaction in Chapter 2 and proposed a

bio-inspired model to simulate realistic fingerprint patterns in Chapter 3, featuring
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important properties of a biologically meaningful fingerprint development model.
We gave a rigorous proof of the stability of line patterns in Chapter 4. Moreover,
we investigated the role of nonlinear diffusion on the widening of line patterns both
analytically and numerically, and simulated realistic fingerprint patterns efficiently
in Chapter 5.

Part I (Chapters 2-5) is mainly based on four papers [BDK"18, CDKSIS,
CDKS19, DGH™19] which are among the first works on the analysis of anisotropic
interaction models. Using innovations on the modelling, analysis, and computa-
tional methods, this research on anisotropic interaction is a crucial step towards the
accurate description of real-world phenomena.

Possible future research projects can be subdivided into two categories: anisotropic
pattern formation in more realistic (and mathematically more challenging) settings,
and the application of the obtained results to real-world phenomena.

In Part I, we investigated anisotropic pattern formation and the role of anisotropic
interaction on stationary solutions, mainly on R? and on the two-dimensional torus
T2. An interesting future aspect of this research would be the study of anisotropic
pattern formation in more general settings which are of practical relevance. While
studying anisotropic pattern formation in the plane, has given us a better under-
standing about the possible patterns which might arise, the form of the underly-
ing surface may also influence the resulting stationary patterns. Motivated by the
fact that many complex patterns in nature occur on curved or evolving surfaces,
anisotropic pattern formation on these more general surfaces can be studied in the
future. In terms of the application to fingerprint simulations, note that our finger-
prints are not on flat surface and hence it is of interest to understand anisotropic
interaction on curved surfaces in higher dimensions. To mimic the growth of finger-
prints, anisotropic interaction on evolving surfaces may also be investigated.

While we studied the impact of the underlying tensor field on stationary solutions
in this thesis, an interesting question which arises is whether for a given pattern, a
tensor field can be estimated such that the stationary solution obtained with this
tensor field as an input is close to the original pattern with respect to the Wasserstein
distance. This approach results in an optimal control problem whose solution would
allow us to produce any desired pattern as stationary solution to the anisotropic
interaction model.

The collection of large databases of real fingerprints is usually very cost-intensive,
requires time and effort, and in many countries, it is constrained by laws address-

ing data protection and privacy. Therefore it is vital to simulate large fingerprint
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databases on a computer. Our bio-inspired model for the creation of synthetic
fingerprint patterns does not only allow us to simulate fingerprint patterns as sta-
tionary solutions, but also to adjust the distances between the fingerprint lines by
rescaling the model parameters. This is crucial for modelling fingerprint patterns
with specific features in the future. As part of this work, the numerical results can
be tested for realness. The distinction between real and synthetics could be based
on [GH14] where histograms of minutiae and ridge frequencies are considered. An-
other procedure for distinguishing real and synthetic fingerprints is based on the
underlying stress field only [[GHO18].

9.2 Part II: Partial differential equations for bio-

logical networks

Part II focused on biological transportation networks which are ubiquitous in liv-
ing systems such as leaf venation in plants, blood circulatory systems, and neural
networks. Understanding the development, function, and adaptation of biological
transportation networks has been of long-standing interest in the scientific commu-
nity, including mathematics due to the complexity of the models. Using methods
from various fields within mathematics, we investigated the global existence of solu-
tions of the microscopic and the associated macroscopic models in Chapter 6, which
can be written as the unusual coupling of a linear system and a system of ordi-
nary differential equations on a graph and its continuum counterpart. Moreover, we
proved the rigorous limit between the microscopic and macroscopic model in Chap-
ter 7 for the two-dimensional regular setting which required the formal derivation
of an appropriate macroscopic model. These analytical results were complemented
by numerical simulations of the discrete model. Based on this model, we proposed
an adapted model in the cellular context for leaf venation, investigated the model
analytically and showed numerically that it can produce branching vein patterns in
Chapter 8.

Part IT (Chapters 6-8) is based on the papers [HJKNM 19, HKM19a, HKM19b]. In
particular, this research resulted in a better understanding of the model suggested
by Hu and Cai and its continuum counterpart.

In terms of the application to leaf venation, we showed similarities in crude
vein formation in Chapter 8, but more elaborate investigations are essential, such

as combining the current description with PIN-based mechanisms and testing with
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more complex configurations of auxin sources and sinks. Besides, it is important
to understand the impact of the levels of auxin to the pattern formation. These
numerical results will contribute to a better understanding of the pattern formation
in this model for leaf venation.

In reality, the venation patterns appear while the leaf is growing. Our simulations
(and many previous PIN-based flux models simulated on static geometries) do not
consider any growth processes. Changing the extension of connecting sources and
sinks in the model would be expected to lead to differences in patterns in the final
leaf. These changes of patterns when PINs are removed would be very interesting
to investigate.

The main advantage of our discrete modelling approach for leaf venation is the
rather simple form of the model, allowing a rigorous mathematical analysis and in
particular the formal derivation of a continuum limit, which can capture network
growth. It is expected to exhibit a much richer patterning capacity, bearing again
potential for delivering testable hypotheses. The analytical and numerical study of
the continuum model is currently a work in progress.

Differential equations on graphs and networks are not only crucial for modelling
biological or social transportation networks, but also play an important role in
many data science and machine learning tasks, and can be regarded as the key
area of research for solving data problems such as linking graph and the associated
macroscopic models via I'-convergence. As part of future research, more general
systems of differential equations on graphs can be investigated analytically and

numerically.
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