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Social status can mediate effects on the immune system, with
profound consequences for individual health; nevertheless,
most investigators of status-related disparities in free-
ranging animals have wused faecal parasite burdens to
proxy immune function in the males of male-dominant
species. We instead use direct measures of innate immune
function (complement and natural antibodies) to examine
status-related immunocompetence in both sexes of a female-
dominant species. The meerkat is a unique model for such
a study because it is a cooperatively breeding species in
which status-related differences are extreme, evident in
reproductive skew, morphology, behaviour, communication
and physiology, including that dominant females naturally
express the greatest total androgen (androstenedione
plus testosterone) concentrations. We found that, relative
to subordinates, dominant animals had reduced serum
bacteria-killing abilities; also, relative to subordinate females,
dominant females had reduced haemolytic complement
activities. Irrespective of an individual’s sex or social status,
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androstenedione concentrations (but not body condition, age or reproductive activity) negatively
predicted concurrent immunocompetence. Thus, dominant meerkats of both sexes are
immunocompromised. Moreover, in female meerkats, androstenedione perhaps acting directly
or via local conversion, may exert a double-edged effect of promoting dominance and reproductive
success at the cost of increased parasitism and reduced immune function. Given the prominent
signalling of dominance in female meerkats, these findings may relate to the immunocompetence
handicap hypothesis (ICHH); however, our data would suggest that the endocrine mechanism
underlying the ICHH need not be mediated solely by testosterone and might explain trade-offs in
females, as well as in males.

1. Introduction

In humans, socioeconomic status (SES), determined by relative income, education and occupational
position in society, is a strong predictor of disease incidence and mortality rates, such that each step down
the SES ladder increases morbidity and decreases lifespan [1]. Status-related health differences, which
may derive from status-related variation in immune function, are also prevalent in non-human animals:
Membership in social groups is often stratified by dominance hierarchies and, like SES in humans, one’s
social standing can dramatically influence susceptibility to disease [1,2]. Nevertheless, the direction of the
relationship between social status and immune function varies across species and, in some cases, across
social contexts within a population [3-5]. In high-ranking individuals, the energetic cost of achieving
and maintaining dominance, coupled with that of increased reproductive effort, may limit investment in
immune defences [6-8]. By contrast, immunosuppressive correlates of low social status may include
inadequate access to resources [9], lack of positive social interactions [10] and exposure to chronic
social stress [11,12]. Because relationships between social status and immune function are complex and
dynamic, predicting the direction of these relationships requires an understanding of the underlying
biological mechanisms.

Among the mechanisms that have been invoked to explain status-related differences in immune
function, endocrine mediators (e.g. glucocorticoids, or GCs, and androgens) have received considerable
support [11-14]. Documented in males of many species [15-17], the trade-off between dominance
(or reproductive success) and immunocompetence may be mediated by androgens, particularly
testosterone (T) [13,14]. Indeed, T may affect the immune system directly, via binding to receptors on
lymphocytes [18], or indirectly, via associated changes in other immunomodulatory hormones (e.g.
GCs) [19], in energy allocation [20] or in behaviour [15,21]. Thus, T’s antagonistic, pleiotropic effects
(e.g. enhancing reproduction, but suppressing immune function) may create a health cost of male
social dominance. To expand this area of study, we recently examined gastrointestinal parasitism in
the cooperatively breeding meerkat (Suricata suricatta), a female-dominant species in which females
are naturally, hormonally ‘masculinized’” [22], meaning that females, depending on their social or
reproductive status, have either greater or equivalent androgen concentrations relative to males. We
found that parasite load, an indirect measure of immune function, is positively linked to social status [23]
and, in females, to concentrations of total androgens (i.e. combined androstenedione, or A4, and T,
inferred from faecal androgen metabolites) [24]. Here, we build upon this work to test if social status
or its various correlates, including serum concentrations of reproductive hormones, are related to two
direct measures of innate immune function.

The innate immune system represents the first line of defence against pathogens; the ability to
mount an appropriate immune response is an important aspect of disease resistance and, thus, survival.
Two constitutively present components of innate immunity are complement and natural antibodies
(NAbs). Complement is a group of serum proteins that opsonizes bacteria (making them susceptible
to phagocytosis), initiates inflammation, and directly lyses foreign cells [25]. NAbs, in the presence
of complement, are capable of lysis [26], but they can also neutralize some viruses and bacteria and
stimulate adaptive immunity by enhancing antigen presentation to T and B cells [25]. Assays quantifying
complement and NAbs are widely used by ecoimmunologists because they do not require species-
specific reagents and, thus, are adaptable to non-model organisms [27-29]. Variation in complement and
NADbs has been found to be positively associated with social status in spotted hyaenas, Crocuta crocuta [9],
and rhesus macaques, Macaca mulatta [30].

We used meerkats as a model for investigating social correlates of immune function for two
reasons. First, social status in this species is well advertised and we understand many of its
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morphological, behavioural, communicatory and physiological correlates under natural conditions
[31-37]. Second, dominance is positively linked to reproductive success, which is highly skewed in
both sexes [22,32,38,39]. Meerkats live in social groups or clans comprising a dominant, breeding pair
and up to 40 adult and juvenile, subordinate helpers of both sexes. Social status is tightly linked to an
individual’s age [32] and weight [32,39]: When a dominance vacancy arises, intense competition ensues
and the more senior individuals are more likely to be victorious over junior competitors [32,39,40].
Among females, but not males, heavier individuals gain an additional advantage in intrasexual
dominance contests, perhaps indicating stronger selection for competitive abilities in females than
in males [32,39,40]. Again, among females, but not males, dominance is associated with greater
concentrations of sex hormones (i.e. A4, T and oestradiol or Ep) [22,31-33]. A dominant female’s raised
hormone concentrations may be linked to increased aggressiveness, enabling her to control reproduction
by thwarting potential rivals, forcibly evicting subordinate dams or killing their offspring [32,40,41]. Yet,
the dominant pair relies on subordinate helpers to babysit, guard and provision pups [42], which entails
significant foraging costs for subordinates, reflected in weight loss and reduced growth rates [42—44].
To date, nothing is known about the implications of such an extreme social and breeding system on the
immune function of its members.

Using a wild population of meerkats, our first objective was to test the hypothesis that the energetic
demands of maintaining social status constrain investment in innate immune function. If so, our main
prediction is that dominant animals of both sexes should be more immunosuppressed than subordinates.
Thereafter, we sought to determine if variation in immune function related to other correlates of status,
including body condition, age and sex hormone concentrations. Lastly, using a subset of animals, we also
looked for changes in immune function associated with reproductive variables. For males, we compared
the immune function of rovers (i.e. subordinate males that temporarily leave the clan to pursue extra-
clan mating opportunities [45]) to that of non-rovers; for females, we compared the immune function of
pregnant females to that of non-pregnant females.

Our additional non-mutually exclusive predictions were as follows: If parasitism serves as a proxy
for innate immune function in meerkats, as has been demonstrated in some (e.g. African buffalo,
Syncerus caffer [46]), but not in other (e.g. whitefooted mice, Peromyscus leucopus, and prairie voles,
Microtus ochrogaster [47]) species, we would expect the immunosuppression of dominant individuals
to be consistent with their increased parasitism [23]. Owing to the covariance between dominance
and age, a similar status-related pattern could reflect an age-related decline in immune function
or ‘immunosenescence’ [48]. In this scenario, age might be more reliable than status as a predictor
of immune function. Moreover, if androgens were broadly immunosuppressive, we would predict
immunological differences between social classes in females, but not in males. The cumulative effects
of energetic constraints, immunosenescence and androgens could contribute to immunosuppression in
dominant animals and produce status-related differences in innate immunity that would be especially
pronounced in females. Nevertheless, we might expect the opposite status-related pattern if any
immunosuppressive correlates of dominance were overshadowed by the immunosuppressive effects
of poor body condition in subordinates. Lastly, if reproduction were traded off against immune
function [49], we would expect immunosuppression in dominant individuals and also in reproductively
active subordinates (i.e. roving males and pregnant females). Given that T concentrations are raised in
males during extra-territorial roving [22,50] and that A4 and T concentrations increase in females over
gestation [22], such trade-offs might be mediated by androgens.

2. Methods
2.1. Study site and subjects

We conducted this study, from September 2014 to March 2015 (i.e. from spring through summer), on a
wild population of meerkats in the Kuruman River Reserve (KRR) (26°58' S, 21°49" E), an area comprising
sparsely vegetated sand dunes and herbaceous flats in South Africa’s Kalahari Desert. The study site,
habitat and climate have been described elsewhere [51]. Individual meerkats were identifiable by unique
dye marks and were habituated to the presence of humans, which allowed for routine weighing and close
observation (less than 1 m). Thus, we knew all relevant life-history variables at the time of sampling.
Our focal subjects derived from 19 groups and included 75 sexually mature meerkats (which are
presented by sex and dominance status in table 1). We classified males as roving if they had been absent
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Table 1. Mean weight, age, BKA, HCA and steroid hormone concentrations for dominant and subordinate meerkats of both sexes.
Numbers under each subject category represent individuals first (in italics), followed by sample numbers.

mean (s.e.) value by subject category

dominant male subordinate male dominant female subordinate female
variable Iim 28/30 11115 VE)

weight (g) 733.500 (19.746) 643.767 (15.698) 689.500 (19.666) 628.097 (13.642)

from the group in the 2 days before or after sample collection [22]. We classified females as pregnant at
the time of sampling based on weight gain and abdominal swelling [33].

Both tuberculosis (TB [52]) and gastrointestinal parasites [23,53] are prevalent within this meerkat
population, with an estimated 6% of meerkats dying from TB [54]. Because the immune response can
be altered during infections, we excluded from our study all meerkats with signs of TB; however,
because over 95% of meerkats harbour gastrointestinal parasites, we assumed that all of our subjects
were concurrently parasitized.

2.2. Sampling procedures

Animal capture, blood collection and serum processing procedures have been provided previously [22].
Briefly, we captured individual meerkats upon emergence from the sleeping burrow in the morning,
anaesthetized them with isoflurane (Isofor; Safe Line Pharmaceuticals, Johannesburg, South Africa) and
collected 0.2-2 ml of blood from the jugular vein, which we immediately transferred to serum separator
tubes (Vacutainer®, Becton Dickinson, Franklin Lakes, NJ, USA). We processed the samples and stored
the serum, in 0.075-0.200 ml aliquots, on site at —80°C until transport, on dry ice, to Duke University in
Durham, North Carolina, where we kept them at —80°C until analysis. The time from sample collection
to analysis varied from 3 to 11 months, but this time difference had no effect on the integrity of our
immune measures (see below).

2.3. Innate immune measures

To quantify innate immunity, we used a sterile environment to perform two related, but distinct, assays
of serum, including a bacteria-killing assay (BKA) and a haemolytic complement assay (HCA). For each
assay, we used one aliquot per sample and ensured that no aliquots had been previously thawed. We ran
all samples in triplicate.

We measured the ability of complement proteins and natural antibodies to lyse a known quantity of
Escherichia coli (ATTC #8739) using the microplate method of the BKA developed by French & Neuman-
Lee [28]. We optimized the assay by diluting serum 1:30, as this was the sample dilution that yielded
approximately 50% killing. We calculated the bacterial killing ability of serum as the percentage of
bacteria killed relative to positive controls.

Using the HCA methods outlined by Demas et al. [27] and Sinclair & Lochmiller [55], we determined
the ability of complement to induce haemolysis of a foreign antigen (i.e. sheep red blood cells). Prior
to performing the assay, we optimized dilutions of serum and used the dilutions, 1:150 and 1:300,
that resulted in 30-70% haemolysis. We express haemolytic-complement activity in CHsp units or the
reciprocal of the dilution that causes 50% haemolysis [56].

We confirmed that the integrity of our immune measures was not compromised following long-
term storage of serum: We found no difference in same-sample BKA scores (f9 =0.292; p=0.777) or
HCA scores (tg = —0.570; p = 0.583) following an additional year of storage at —80°C, and both immune

Sev08L 5 'S Uado 205y BioBuysiigndiyaos|eforsos!



measures were highly correlated between years (BKA: 0.787; tg = 3.612; p = 0.007; HCA: 0.890; tg = 5.534;
p <0.001).

2.4. Hormone assays

We used a subset of serum samples that we had previously analysed for A4, T and E; [22]. Briefly, we
ran samples in duplicate using commercial, competitive enzyme immunoassay kits (ALPCO diagnostics,
Salem, NH, USA). We re-analysed samples for which coefficients of variation (CV) exceeded 10%. Details
about assay validation are provided elsewhere [22]: The A4 assay has a sensitivity of 0.04ng ml! using
a 25yl dose, with an intra- and inter-assay CV of 5.23% and 8.7%, respectively. Cross reactivity of the
Ay assay was 1.8% with dehydroepiandrosterone (DHEA), 0.2% with T, less than 0.1% with oestrone, E,
progesterone, 17-OH progesterone and 5x-dihydrotestosterone (DHT), less than 0.01% with cortisol and
DHEA sulphate (DHEA-S). The T assay has a sensitivity of 0.02 ng ml~! using a 50 ul dose, with an intra-
and inter-assay CV of 7.9% and 7.3%, respectively. Cross reactivity of the T assay was 5.2% with DHT,
1.4% with A4, 0.8% with androstanediol, 0.5% with progesterone, 0.1% with androsterone and less than
0.1% with aldosterone, andrenosterone, cholesterol, corticosterone, DHEA, DHEA-S, epiandrosterone,
Ey, oestriol and pregnenolone. The E, assay has a sensitivity of 10 pgml~! using a 50 ul dose, with an
intra- and inter-assay CV of 7.7% and 8.7%, respectively. Cross reactivity of the E; assay was 1.6% with
oestriol, 1.3% with oestrone and 0.1% with progesterone and cortisol.

2.5. Statistical analyses

To test for sex and status differences in immune measures, we ran a series of linear mixed models
(LMMSs) with the following explanatory variables: sex (two categories: male and female), social status
(two categories: dominant and subordinate), body condition (initially as a continuous variable of body
condition index and, subsequently, as a continuous variable of body weight in grams; see below), age
(continuous variable in months) and the interaction between sex and social status. We examined the
relationships between sex steroids (A4, T and E») and immune responses by re-running the models with
each hormone, plus all possible two-way and three-way interactions involving sex, social status and the
hormone of interest.

To test if reproductive variables were related to immune function in males, we compared BKA and
HCA scores of 11 subordinate rovers to those of their non-roving counterparts. To test if reproductive
variables were related to immune function in females, we compared BKA and HCA scores of 11 pregnant
subordinates to their non-pregnant counterparts. We focused on subordinate females because, with the
exception of two individuals, dominant females were frequently pregnant. We included a reproductive
variable (two categories: roving or non-roving; pregnant or non-pregnant), subject weight and age as
fixed effects.

For our measure of body condition, we initially estimated a body condition index or ‘BCI’" for each
individual and included BCI, instead of weight, as an explanatory variable. We calculated BCI as the
residuals of the log-transformed weight regressed against the hindfoot length, a proxy for total body
length. We estimated BCI separately for pregnant and non-pregnant individuals because the relationship
between weight and hindfoot length varied depending on whether or not an animal was pregnant.
Although we initially included BCI in our models, BCI was never a significant predictor of immune
function and so we opted to substitute weight, a proxy of body condition, for BCI. This substitution
enabled us to maximize our sample size because, unlike hindfoot measures, which were acquired last
during procedures and could not always be obtained, we determined weights for all individuals.

For all models, we included the individual nested within its clan as a random effect, used log-
transformed BKA scores and fit the models using maximum likelihood. We examined all possible
combinations of our fixed effects, scaled all continuous variables (i.e. for each continuous variable,
we subtracted the mean and divided by the standard deviation) and compared models using the
corrected Akaike information criterion (AICc [57]). Because analyses based on AIC can yield several
acceptable models, we used a model-averaging approach when one or more models showed substantial
support (i.e. AAICc <2) [57]. All models within 2 AICc (hereafter ‘top models’) were considered equally
acceptable [57]. We evaluated the relative importance of fixed effects by averaging parameter estimates
across the top models [57] and determined significance by examining 95% confidence intervals (CIs) and
z-score statistics. In instances with only one top model, we determined significance using a likelihood
ratio test.
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Figure 1. Dominant meerkats (males: dark blue; females: dark red) generally have weaker immune responses than do subordinates
(males: light blue; females: light red). Shown by sex and social status in the first column are the predicted means == s.e.m. for bacteria-
killing assay (BKA) scores (a,c,e,g) and haemolytic complement assay (HCA) scores (b,d,f,h) derived from the top model(s) (see electronic
supplementary material, tables S2-59). Sample sizes are included at the bottom of the bar graphs or in the legends. Shown in columns
2-4 are relationships between immune measures and androstenedione (A,; column 2), testosterone (T; column 3), and oestradiol (E;;
column 4). Lines (males: blue; females: red; both sexes: black) show significant relationships predicted by the top models (table 2).
**p < 0.01, *p < 0.05.

We assessed the assumption of normally distributed residuals by visually inspecting quantile-
quantile plots for all models. We verified the assumption of homogeneity of variances by examining
plots of standardized residuals versus fitted values. We assessed colinearity between all main effects
by calculating variance inflation factors (VIFs). Because all VIFs were under 2, we retained all
variables [58,59]. When final models yielded significant interactions, we made post hoc comparisons using
Tukey’s test; however, post hoc tests were not possible for averaged models. Because small serum volumes
occasionally limited our ability to measure all immune and endocrine parameters in all individuals, we
present sample sizes with model results.

We used program R version 3.3.1 [60] for all statistical analyses. We used the nlme package for mixed
effects models [61] and the MuMIn package for AICc model selection [62].

3. Results

3.1. Social correlates of immune function

Social status was an important predictor of BKA scores (in both sexes) and HCA scores (in females
only), and dominant females had the lowest immune responses (table 1). Dominant animals, regardless
of sex, had lower BKA scores than did subordinates (figure 1; tables 1 and 2; for all candidate models see
electronic supplementary material, tables S2-59). Consistent with status effects for BKA scores, dominant
females had reduced HCA scores compared to subordinate females (p =0.003; figure 1; tables 1 and 2;
for all candidate models see electronic supplementary material, tables S2-S9); however, social status was
not predictive of HCA scores in males (figure 1; tables 1 and 2; for all candidate models see electronic
supplementary material, tables 52-59). There was also a significant interaction between sex and social
status for HCA scores (table 2), but it was largely driven by a single, dominant female that had the lowest
complement activity. Upon removing this individual from our analyses, the interaction between sex and
status was suggestive, but no longer statistically significant (p =0.075, n.s.; electronic supplementary
material, table S1). Nevertheless, dominant females still had significantly lower HCA scores than did
subordinate females (p =0.010; t54 = —3.166). Although dominant individuals were heavier and older
than were subordinates (table 1), we could detect no relationship between either weight or age and
immunocompetence (table 2).
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3.2. Endocrine correlates of immune function

Certain hormone concentrations, however, were significantly linked to immune function. Notably, Ay,
but not T or E, proved to be the best predictor of innate immunity (figure 1 and table 2; for all candidate
models see electronic supplementary material, tables S2-59): BKA and HCA scores decreased with
increasing A4 concentrations. Moreover, the relationship between A4 and immune function transcended
an individual’s social status, as social status was no longer significant after including A4 in our
models. Yet, for the HCA model, the inclusion of Ay revealed a female bias in HCA scores (figure 1
and table 2). For the HCA models involving hormones, we did not include the two samples from
the aforementioned dominant female because she was an outlier. Inclusion of those two samples
produced a significant negative relationship between HCA scores and T in dominant females (x2 = 9.587;
p=0.002)—a relationship that was otherwise non-significant (table 2). This outlier dominant female
acquired dominance in late 2013 and, since that time, consistently has had low immune responses, as
well as raised T concentrations (second only to a roving male in our study).

3.3. Immune function during reproductive events

Although reproductive activity could shift energy away from immune defence, we did not
detect differences in immunocompetence between roving and non-roving subordinate males (BKA:
F126=0.981; p=0.331; HCA: F1 54 = 1.895; p = 0.181) or between pregnant and non-pregnant subordinate
females (BKA: x? =0.409; p = 0.523; HCA: x2 =0.559; p = 0.455).

4. Discussion

Understanding the causes of individual variation in immune function is a central goal of ecological
immunologists, and investigators are just beginning to appreciate how social organization and
individual social status mediate immunity in group-living animals. Here, in the female-dominant,
cooperatively breeding meerkat, we report that dominant animals experience an immunocompromise,
which is more pronounced within females than within males. Although dominant meerkats were in
better condition and older than subordinates, we could detect no relation between body condition or age
and immunocompetence. We also found no evidence that reproductive activity was related to immune
function. Instead, A4, but not T or E;, emerged as the best predictor of innate immunity: For all animals,
regardless of social status, innate immune function decreased with increasing A4 concentrations. Because
Ay is also a correlate of female dominance in meerkats [22], an endocrine mechanism may underlie
trade-offs between social status and immune function in this species.

Although status-related differences in susceptibility to parasites and recovery from injuries have
been documented in a variety of species (greenfinch, Carduelis chloris [63]; house finch, Carpodacus
mexicanus [64]; chimpanzee, Pan troglodytes schweinfurthii [16]; yellow baboon, Papio cynocephalus [65,66]),
including meerkats [23,24], it is less clear if immunological mechanisms mediate these vulnerabilities.
Because, in this study, dominant meerkats had a lower innate immune response than did subordinates,
their greater gastrointestinal parasite burdens probably derive from enhanced susceptibility to infection.
Thus, parasite burdens can be an appropriate proxy for immune function. That said, the strength of
the immune response may not always correlate positively to or be indicative of individual health.
For instance, a negative correlation may exist between resistance (i.e. reducing parasite or pathogen
burden) and tolerance (i.e. limiting the damage caused) [67,68]. A robust immune response may increase
resistance to pathogens, but may concurrently increase the risk of immunopathology. Conversely,
although immunosuppression could come at the expense of resistance, it may be adaptive if it limits
immunopathological damage [69]. Maintaining a low level of innate immune function also could be
beneficial if it allows for investment in the components of immunity most relevant to survival. For
instance, meerkats might benefit from investing in adaptive immunity, at the expense of innate immunity,
to protect against Mycobacterium suricattae. This bacterium is the causative pathogen of meerkat TB,
which is prevalent within the population and highly pathogenic [52]. Such trade-offs between innate
and adaptive immunity are widespread, and the optimal balance of investment in different components
of immunity probably depends on a variety of factors, including local ecological conditions, life stage
and social status [70,71].

The effects of social status on immunity are unlikely to function in isolation, but instead may
act synergistically with other factors, such as reproduction. Upon acquiring dominance, male and
female meerkats experience energetic costs that could further limit their immune function: notably,
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males engage in energetically expensive bouts of scent marking and mate guarding [39], and females,
beyond engaging in dominance assertions and aggressively targeting subordinate dams [72], are
frequently pregnant [32,33,41,73]. Yet, consistent with immunocompetence in other species [74,75]
and with parasitism in meerkats [23], we found no evidence that pregnancy, per se, was linked to
immunosuppression. Our analysis, however, was limited to subordinate females, so we were unable
to determine if relationships between immune function and pregnancy differed by social status. For
dominant females, which reproduce at greater rates than do subordinates and often reconceive within
mere days of parturition [73], it is possible that the cumulative effects of frequent reproduction (e.g.
elevated GC concentrations ([76] but see [33]); the energetic demands of lactation [77]) limit their
immune responsiveness.

Meerkats are characterized by a female bias in A4 and by the absence of a sex difference in T [22],
both of which are extremely unusual patterns among mammals [78-81]. To the best of our knowledge,
the only other species exhibiting a sex reversal in A4 is the spotted hyaena [81,82]. In addition to their
hormonal masculinization, female spotted hyaenas are dominant over males [83] and thus make an
interesting comparison to meerkats. As in meerkats, T does not appear to be linked to immune function
in hyaenas [9]; however, in contrast to patterns in the meerkat, immune function in spotted hyaenas
increases with social rank and is greatest in high-ranking females. In a species characterized by such
extreme food competition [83], perhaps priority of access to large, non-monopolizable resources buffers
dominant female hyaenas from immunological trade-offs [9]. By contrast, the small, monopolizable food
resources of meerkats may minimize the impact of food competition [33] on their immune function.
Moreover, in spotted hyaenas, rank in a linear dominance hierarchy is maternally acquired [83,84],
whereas in meerkats, individuals compete for breeding status in a despotic society [32]. The opposite
status-related, immunity patterns observed in the females of these species may relate to differences in
their manner of rank acquisition and in the costs and benefits of dominance. Across species, female
dominance alone cannot explain class differences in immune function; other factors, such as feeding
ecology and social organization, may also be relevant.

Sex could be an additional factor affecting immunocompetence: Immune function is generally greater
in females than in males, a pattern that has been attributed, in part, to sex differences in hormone
concentrations [85]. In meerkats, however, sex was not a consistent predictor of immune function,
perhaps because this species shows minimal sex differences in either androgens or oestrogens. In contrast
to intersexual comparisons, within female meerkats hormone concentrations vary by social status and
may be involved in mediating their intrasexual differences in immune function.

In the immunocompetence handicap hypothesis (ICHH), Folstad & Karter [13] proposed a proximate
endocrine mechanism to explain how variation in secondary sexual characteristics could honestly signal
male quality. A key aspect of this hypothesis relates variation in T concentrations (such as might be
associated with differences in social status) to male parasitism and immune function. Notably, the
authors suggested that T, for example, could be a double-edged sword promoting reproductive success
(via enhanced expression of ornaments) at the cost of reduced immunocompetence. Since then, based on
either directly measured or inferred T concentrations, the ICHH has been invoked to explain selection
for costly secondary sex characteristics in males [15,16]; however, support for the hypothesis has been
equivocal [86]. Inconsistencies across studies may owe to the fact that, over time, the ICHH has been
inexorably (and perhaps sometimes incorrectly) linked to T-mediated immunosuppression, specifically.
Nevertheless, an important and often overlooked part of the ICHH is the proposal, by Folstad &
Karter [13], that the trade-off could be mediated by any self-regulated biochemical substance that has the
dualistic effect of stimulating trait expression and compromising immune function (i.e. not necessarily
always by T). Similarly overlooked is the potential utility of the ICHH to explain trade-offs, not only in
males, but also in females [24].

For most vertebrates, T is an appealing hormone to consider because masculinity is generally
associated with androgens; however, T probably interacts with other hormones to influence immune
function, and, thus, endocrine-immune relationships may not be evident from measuring T alone. Ay is
a putatively weak androgen (or prohormone) and a precursor to both T and E;, but, in meerkats, it was
the most reliable predictor of immune function, accounting for immunological differences between social
classes. Although little is known about A4’s immunomodulatory effects, it may influence the immune
system via local, enzymatic conversion to either T or Ej. If so, one might have expected a correlation
between T or E; and immunosuppression, which we failed to detect. Although these null findings
do not preclude the involvement of these hormones, they may implicate androgenic precursors more
directly. Therefore, a second, non-mutually exclusive possibility is that A4 is immunosuppressive in its
own right, exerting its effects via binding to androgen receptors [87,88] or via non-genomic pathways
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(i.e. independent of androgen receptors) [89]. As in other species, the meerkat androgen receptor could
be sensitive to A4, a proposal that remains to be tested.

Similar to our findings on A4 in meerkats, other androgens besides T have been shown to be
relevant in other species: For instance, the androgen precursor dehydroepiandrosterone (DHEA) has
immunomodulating effects in orangutans (Pongo pygmaeus morio [90]) and in humans (Homo sapiens
[91]). In some teleost species, such as the three-spined stickleback (Gasterosteus aculeatus), the dominant
circulating androgen is not T, but 11-ketotestosterone (11-kT) and, in males, concentrations of 11-kT
(but not T) correlate positively with ornamentation and negatively with immunocompetence [92]. For
invertebrates that lack androgens or androgen-signalling pathways, yet other hormones may be involved
in the trade-off between sexual traits and immunocompetence. For instance, juvenile hormone, which
influences aspects of insect behaviour and physiology, mediates the ICHH in damselflies (Hetaerina
americana [93]). Therefore, looking beyond the actions of T in males to explore other biochemical
mediators of immunosuppression, specifically, or the ICHH more broadly, in both sexes, may reveal
complex endocrine-immune dynamics that could lead to new insights regarding the drivers of health
disparities and the evolution of sexually selected traits.
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