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Buoyancy-driven exchange flows occur in a variety of natural and industrial situations,
including nuclear and hydraulic engineering, oceanography and building ventilation. Bal-
anced exchange flows, whereby there is simultaneously an equal volume flux transferred
vertically upwards and downwards through a horizontal opening, have previously been
described theoretically. However, until now there has been no theoretical description of
unbalanced exchange flows, whereby the volume flux in one direction through an opening
exceeds that in the other.

The model developed herein examines the growth of perturbations on the density
interface at an opening made in a horizontal plane that connects buoyant fluid below
with denser fluid above. By considering the interface as it is advected away from the
plane of the opening by a bulk flow imposed in the vertical, we quantify the exchange for
the unbalanced case. The model successfully predicts the Froude number criterion, which
corresponds directly to the minimum dimensionless flow rate of the imposed flow, for the
onset of unbalanced exchange across circular openings found experimentally. Addition-
ally, comparisons made between the exchanges predicted and measured show excellent
agreement across the entire range of possible flows, from unidirectional flow, through
unbalanced exchange to balanced exchange. Consideration is given to applications of the
model to ocean outfall design and to the prediction of building ventilation flows. For
natural ventilation, the theoretical model we derive for unbalanced exchange bridges the
gap in the prediction of air flow rates between displacement flows, where the flow is
unidirectional, and balanced exchange flows.

1. Introduction

An exchange flow is the bidirectional transfer of fluids of different densities through an
opening. The mechanism for this transfer under gravity is the buoyancy force associated
with fluid above the opening having a density greater than the fluid below. In some
situations the exchange may be ‘balanced’, with an equal volume flux in each direction.
In others, the exchange may be ‘unbalanced’, where the volume flux in one direction
exceeds that in the other. Throughout this work we choose to focus on quantifying the
volume flux of light fluid transferred through the opening and denote this flux as Qex;
for the special case of balanced exchange we write Qex = QexB

.
In this work we consider the vertical transfer of fluid through a horizontal opening, of

area a, between two miscible, incompressible fluids of different density (figure 1a). The
opening provides the only connection between the fluids, which are otherwise separated
by the horizontal plane at z = 0. The fluid above the plane of the opening (z > 0), of
density ρU , is denser than the fluid below (z < 0), of density ρL. Our focus is restricted
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(b) An infinite vertical cylinder.

Figure 1: Schematics of the problems considered in this work (a) and by Sweeney et al.
(2013) (b). Fluid of density ρU rests above fluid of density ρL < ρU . The undisturbed
position of the interface between the lighter and heavier fluids is shown as a dashed line.
In (a), an imposed flow of uniform speed ui advects the heavier fluid through the opening
in the negative z direction.

to fluids with relatively small density differences so that the Boussinesq approximation
(Boussinesq 1903) holds. Accordingly, with g denoting the acceleration due to gravity, we
define the reduced gravity of the system as g′ = g(ρU − ρL)/ρL and acknowledge that ρU
could instead be used as the reference density. The position of the interface between the
two fluids, z = η, relative to the horizontal plane of the opening at z = 0, is a function
of the shape of the opening and time, and the initial perturbation. The amplitude of the
perturbations will increase with time until the interface is so distorted that volumes of
fluid are ‘pinched off’ and are thereby exchanged across the opening. The process of pinch
off has been described in detail and illustrated by a time series of shadowgraph images
by Conover, Kumar & Kapat (1995). These images have been reproduced in figure 2 to
clarify what is observed in practice.

Exchange flows are triggered by the instability of an interface between a light fluid
situated below a heavier fluid. This, the Rayleigh-Taylor instability, has been studied
extensively (Taylor 1950; Bellman & Pennington 1954; Dalziel, Linden & Youngs 1999;
Wilkinson & Jacobs 2007). A linear stability analysis shows that perturbations on the
interface grow exponentially at first (Chandrasekhar 1961), with the fastest growing
mode corresponding to the wavenumber k ∼ (g′/ν2)1/3, where ν is the average kinematic
viscosity of the upper and lower fluids. After the initial exponential growth period, the
linear modes saturate and non-linear modes dominate with a quadratic growth rate
(Youngs 1984), forming fingers of fluid that extend from the lower layer to the upper
and vice versa. The fastest growing non-linear mode is ultimately the largest that will
fit in the opening. At this stage for the applications of interest, the scales are sufficiently
large that the effects of viscosity are no longer important. Once the fingers reach a certain
amplitude, they pinch off (figure 2). In this manner, fluid is transferred across the opening
and an exchange flow established. In the approach we develop herein, the Rayleigh-Taylor
mechanism enables us to identify the volume of light fluid that has crossed the plane of
the opening in a given time. The physical details of how this volume pinches off to
ultimately form a thermal-like coherent structure are not considered and are evidently
complex (figure 2). We assume that after a characteristic time (calculated in §4) a new
event commences, entirely independent of the former, and there is no cross contamination
(i.e. fluid that passes through the opening is not subsequently carried back through).

For the case of an infinite vertical cylinder, with light fluid below z = 0 and heavy
fluid above, figure 1b, there is an analytical solution for the linear instability of the
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Figure 2: Time series of shadowgraph images of a pinch-off event during balanced
exchange flow from Conover et al. (1995). The base of each image corresponds
approximately to the plane of the opening. In (a) one can see the remnants of the
previous pinch-off event (1) and the coherent structure associated with the current pinch-
off event below (2). As the time series progresses, (1) and (2) rise and the next pinch-off
structure (3) forms and starts to rise. Reproduced with permission from the Journal of
Heat Transfer.

interface in the inviscid limit (Maxwell 2011). In the general viscous case, the equations
for the growth rates and mode shapes require numerical solution (Sweeney, Kerswell &
Mullin 2013). Similarly, we have been unable to find an analytical solution to the inviscid
problem of interest here, namely to an interface initially in the plane of an opening made
in an infinite horizontal plane. This solution remains elusive (appendix A).

As a consequence of the lack of an analytical solution for the time-varying position
of an unstable interface in an opening in an infinite plane, previous theoretical work on
balanced exchange flow (e.g. by Epstein 1988) is approximate and does not match some
of the boundary conditions that define the physical problem. In extending the work of
Epstein (1988) to unbalanced exchange, we acknowledge that the solution we develop
is approximate, however we note the excellent agreement (§8) with all the available
experimental data.

Exchange flows occur in many different situations, including nuclear engineering
(Kuhn, Bernardis, Lee & Peterson 2001), geophysics (Hughes, Bingham, Roussenov,
Williams & Woodworth 2015), building ventilation (Hunt & Coffey 2010) and hydraulic
engineering (Wilkinson 1988). There are theoretical models for predicting the volume flow
rates associated with balanced exchange flow (Epstein 1988). Prior to the developments
made herein however, there was no theoretical model for an unbalanced exchange flow.
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This, and the numerous applications in which these unbalanced flows may occur, provided
the primary motivation for this study. With these relatively large-scale environmental
applications in mind, we shall not concern ourselves with problems in which interfacial
tensions play a role and for the high Reynolds number flows of interest, focus on
inviscid flows. Herein, we derive a mathematical model for predicting the volume flux
of unbalanced exchange flows across thin-walled horizontal openings and compare the
results to existing experimental data.

Additional motivation for our work stems from a contradiction of the predictions of
balanced exchange and displacement (or unidirectional) flow theory. This contradiction is
best understood in the context of a naturally ventilated box, cf. the emptying box (Hunt
& Coffey 2010) and emptying-filling box (Linden, Lane-Serff & Smeed 1990). Balanced
exchange flow theory predicts that for a box of negatively buoyant fluid relative to its
surroundings, with a single horizontal opening in the base, there will be flow due to the
Rayleigh-Taylor instability (figure 3a). By contrast, displacement flow theory (Linden
et al. 1990) which, in general, considers a box with both top and base openings (figure 3b),
predicts there will be no flow out of the box with the aforementioned geometry (i.e. zero
flow rate in the limit as the area of the base opening tends to zero). In experimental work,
Hunt & Coffey (2010) observed a flow pattern not accounted for by either balanced
exchange flow or displacement flow theories. When the base opening was more than
about four times larger than the top opening, Hunt & Coffey (2010) observed inflow
through the top opening, as predicted by displacement flow theory, but both inflow and
outflow simultaneously through the base opening (figure 3c). The flow out through the
base opening must necessarily be greater in magnitude than the flow in through the
base opening in order to conserve volume for the whole box. This phenomenon, the
buoyancy-driven exchange of fluid across an opening against an imposed bulk flow, we
refer to as unbalanced exchange flow. Shadowgraph images (§6) taken by Hunt & Coffey
(2010) show that the pinch-off process identified for balanced exchange (Conover et al.
1995, figure 2) also underlies unbalanced exchange. Our model of unbalanced exchange
flow developed herein (§6) successfully overcomes this contradiction and, as such, bridges
the gap between the unidirectional (idealised displacement) flow theory of Linden et al.
(1990) and the balanced exchange flow theory of Epstein (1988). We place no restrictions
herein on the mechanism responsible for creating the imposed bulk flow, e.g. it could
be buoyancy driven or instead be mechanically driven, and so we are able to explore
applications (§9) of our model beyond the context of a naturally ventilated box.

Regarding notation, we refer throughout to the volume flow rates, vertical velocity and
dimensionless flow rates as Q, u and Fr respectively, with the subscripts (·)ex, (·)i and
(·)iC referring respectively to exchange flow, imposed flow and critical values thereof.
Initial conditions are designated by the subscript (·)0 and conditions at pinch off by the
subscript (·)P .

The remainder of this paper is structured as follows. Section 2 develops a physical
reasoning for the scaling of the volume flux exchanged. Section 3 introduces a general
condition for exchange flow that is valid for both balanced and unbalanced cases. To
begin with, we focus on a circular opening. Section 4 considers the special limiting case
of balanced exchange flow. Section 5 uses the condition introduced in §3 to predict the
transition from unidirectional to unbalanced exchange flow and comparisons are then
made with the empirical value found by Hunt & Coffey (2010). In §6 the method is
extended to predict the volume flux for unbalanced exchange flows. Section 7 extends
the analysis to a square opening. The theories developed for circular and square openings

Page 4 of 22



Unbalanced exchange flows 5

Qex

Qex

z

0

h

H

(a) Balanced exchange flow

ρL Qi

ρU

Qi

(b) Displacement flow

Qi

Qex

Qi +Qex

(c) Unbalanced exchange flow

Figure 3: Schematics of different buoyancy-driven flows in emptying boxes with base
and top openings. The box is surrounded by fluid of density ρL and partially filled with
negatively buoyant fluid of density ρU . Qi and Qex are the exchange and imposed volume
fluxes, respectively.

are compared to experimental data in §8. Section 9 considers a few potential applications
of the theory, with conclusions drawn in §10.

2. Governing parameter and scaling for exchange volume flux

Although on dimensional grounds Q ∼ a5/4g′1/2 is the only scaling possible for the
volume flux exchanged, we first seek a physical reasoning that underlies this. Physically,
the “unbalanced-ness” of an unbalanced exchange flow is set by the growth rate of
instabilities on the density interface in the plane of the opening relative to the rate
at which fluid is advected through this opening by the imposed flow. This suggests that
we may consider the relative timescales associated with these two components.

For exponentially growing modes with a time dependence of the form ent (see (4.3)
and (7.1)), the timescale associated with the growth rate of instabilities is

τins =
1

n
. (2.1)

The timescale associated with advection by the steady imposed flow Qi ∝ aui (figure 1a)
is

τadv =
L
ui
∝ La
Qi
, (2.2)

where L is a characteristic vertical length scale. Therefore, for a general (circular, square,
etc.) opening, we may write

τins
τadv

=
Qi
Lan

. (2.3)

As we shall see in §4, for a circular opening of diameter D, n = (kg′/2)1/2 with k the
radial wavenumber and volume conservation requires kD = constant (§4). Therefore

τins =

(
2

kg′

)1/2

=

(
2D

kDg′

)1/2

∝
(
D

g′

)1/2

, (2.4)

and the timescale for the growth of instabilities scales only on opening diameter and
reduced gravity. Thus, with L = D and writing a = πD2/4 gives

τins
τadv

∝ Qi
D3

(
D

g′

)1/2

=
Qi

D5/2g′1/2
(2.5)
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or
τins
τadv

∝ Qi
a5/4g′1/2

= Fri. (2.6)

In other words, this ratio naturally gives rise to the exchange volume flow rate scaling
a5/4g′1/2 and means that the dimensionless flow rate Fri is proportional to the ratio
of timescales for instability growth and imposed flow advection. If we treat Fri as a
parameter, then (2.6) shows that varying this parameter alters the ratio of timescales
and thereby alters the exchange through the opening.

3. A general condition for exchange flow

Consider an imposed unidirectional downflow of uniform speed ui = Qi/acd through
the opening. Here, cd (< 1) denotes the loss coefficient associated with the opening
(e.g. Ward-Smith 1980). As a first approximation, it may be assumed that the imposed
flow advects the interface such that, moving in a frame of reference with the interface,
perturbations grow as if there were no imposed flow. This is a reasonable approximation
for high Reynolds number flow through an opening as the velocity profile is then well
approximated as uniform (Lamb 1932; Etheridge & Sandberg 1996). If we denote ηP as
the displacement of the interface at pinch off, tP as the time taken for the perturbation
to grow to pinch off and sP = uitP as the vertical distance that the perturbation is
advected downwards by the imposed flow in a time tP , then the condition for exchange
flow to occur, whether balanced (§4) or unbalanced (§5), can then be stated as

ηP,max − η0,max > sP , (3.1)

where ηP,max = max{|η(t = tP)|} and η0,max = max{|η(t = 0)|}. We restrict our
attention to steady imposed flows so that ui does not vary in the interval from t = 0 to
t = tP . The inequality (3.1) is a general condition which makes no assumptions about
the form of the perturbation or the mechanism driving the imposed flow. With reference
to §2, (3.1) can be rewritten as

ηP,max − η0,max
a1/2

∝ Fri, (3.2)

with the governing parameter Fri thereby expressed as a ratio of the vertical and
horizontal length scales of the exchange flow.

The possible flow regimes resulting from (3.1) are shown schematically in figures 4a and
4b, where the instability for circular openings is considered simply for convenience. The
figure shows the interface position η with radial coordinate r for a mode of interest (§4),
the coordinate origin located at the centre of the opening. Balanced exchange flow occurs
when the imposed flow velocity is zero (figure 4a), i.e. Qi ≡ 0 and thereby Fri ≡ 0, so
that sP ≡ 0. With a sufficiently large imposed flow velocity, corresponding to ui > uiC ,
any perturbation on the density interface would be advected downwards so that there
is unidirectional downflow, i.e. no exchange can occur. Figure 4c shows the critical case
where ui = uiC so that the entire perturbation is just advected across the plane of the
opening and flow is again unidirectional downflow albeit with at least one location with
zero velocity in the plane of the opening. For 0 < ui < uiC the perturbation will grow fast
enough such that it is not completely advected across the plane of the opening at pinch
off (figure 4b). This is an unbalanced exchange flow and is characterised by a greater
volume of the perturbation below the plane of the opening than the volume VP above
(shown shaded) when the perturbation has been advected downwards by a distance sP .
For the critical imposed flow in figure 4c, VP = 0.
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Figure 4: Vertical sections through the perturbation at t = tP for different downwards
imposed flow velocities. (a) Zero velocity, corresponding to balanced exchange flow; the
areas shown in the section are not equal, however upon rotation about r = 0 the swept
out volumes above, VP , (shaded grey) and below the plane of the opening (dashed line)
are equal. (b) Unbalanced exchange flow - the imposed velocity is too weak to advect
the perturbation completely across the plane of the opening. (c) The critical case where
there is no exchange (VP = 0) and flow is unidirectional in the plane of the opening.

4. Balanced exchange flow

We consider now the general condition (3.1) with ui ≡ 0. In this case, the condition is
met for any growing perturbation unless ηP,max = η0,max, i.e. unless the system is stable
so there is no change in the magnitude of the perturbations with time.

For openings with thin walls (L/D � 1), there is almost no pressure difference across
the opening and, therefore, one would expect no flow in the limit as the wall thickness
L→ 0. However, as shown by Taylor (1950), the interface is unstable to any disturbance.

As mentioned in §1 and discussed in appendix A there is not currently an analytical
solution for the position and growth of an interface at an opening in an infinite plane
separating two fluids of different density. Therefore any description of the interface
position is necessarily approximate. In the inviscid limit, the expected form of the
perturbation for the vertical velocity, u(r, θ, z = 0), in cylindrical polar coordinates (i.e.
taking the inviscid limit of (A 2) at z = 0) is

u(r, θ, z = 0) = AJm(kr)eimθ+nt, (4.1)

where A is a constant, Jm is the Bessel function of the first kind of order m and m is the
azimuthal wavenumber. Whilst one might anticipate that the flow toward the opening
is irrotational and the flow away is not, as a first approximation we treat the entire
flow local to the opening as irrotational. Based on the observations and measurements
of Conover et al. (1995) and Varrall, Pretrel, Vaux & Vauquelin (2016) we assume that
the flow is axisymmetric, i.e. m = 0. The interface position is therefore

η = η̂J0(kr)ent, (4.2)

where the constant η̂ is the amplitude of the perturbation at t = 0. Although we consider
an infinitesimally thin-walled opening, any real opening will have a finite thickness and
therefore a no-slip condition on the perimeter at r = D/2. This assertion is supported
by the experimental measurement of velocity profiles in balanced exchange flow (with
characteristic Reynolds number Re ∼ 500) by Varrall et al. (2016) who observed zero
velocity at the perimeters of their circular openings. The only way of ensuring zero
velocity at the perimeter for (4.2) is by selecting a value of k such that J0(kD/2) = 0.
However, volume is not conserved for all values of k satisfying J0(kD/2) = 0 as we impose
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η = 0 for r > D/2 (no fluid can pass through the horizontal plane). Therefore, following
Epstein (1988), we modify (4.2) to be

η = η̂ [J0(kr)− J0 (kD/2)] ent. (4.3)

Whilst not an exact solution for the interface position, (4.3) has the convenient property
that η(D/2, t) ≡ 0∀ k. This means we can select a value of k that allows for conservation
of volume. When dealing with the unbalanced exchange case (§6) we relax the requirement
of no-slip and allow the profile (figure 4a) to be advected by a uniform velocity (figure
4b, c). The assumption of a uniform velocity profile is routinely made for high Re flow
and the good agreement of the resulting predictions with experimental data (§8) provides
justification for this simplified approach.

The perturbation (4.3) consists of a central rising fluid core surrounded by a descending
outer annulus, as shown in figure 5a. This form is consistent with the experimental results
of Varrall et al. (2016), figure 5b, who observed and measured balanced exchange flow
through a circular opening using stereoscopic particle image velocimetry (PIV). The
theoretical and experimental profiles show similar features, such as a rising central region
and a descending outer annulus. For Boussinesq flow there is no physical reason why the
profile should have a preferred orientation, however both the work of Varrall et al. (2016)
and Conover et al. (1995) show the less dense finger of fluid rising through the centre of
the opening and the denser fluid falling through the outer annular region. We offer no
explanation for why this is the case although, with reference to figure 4, acknowledge that
the critical velocity of the imposed flow will vary with orientation. Indeed our approach
would suggest that if there were to be a ‘finger out’ of dense fluid, with reference to figure
4, the amplitude of the annular perimeter of light fluid at time tP relative to the distance
advected by the imposed flow would be relevant. Given the annulus protrudes less far
than the tip of the finger, the volume flux exchanged would be lower for the ‘finger out’
orientation for a given imposed flow - i.e. the exchange would be weaker - and the critical
value at which the unbalanced exchange flow were reduced to zero (cf. section 5) would,
similarly, be reduced. The measured profile (figure 5b) is not fully axisymmetric, with a
varying velocity around the annulus. It may be that if a greater time-averaging period
were used, the flow would converge to axisymmetry.

The Boussinesq approximation implies that conservation of mass for the exchange flow
is equivalent to conservation of volume for the small density differences considered herein.
Conservation of volume for the (rising) central finger and the (descending) outer annulus
requires kD to satisfy

J1(kD/2) =
kDJ0(kD/2)

4
, (4.4)

for which kD = k̂ = constant = 10.27 (to 2 d.p.) is the smallest positive, non-trivial root
(appendix B). This level of precision is necessary to give a difference of 1% in the volumes
of the finger and annulus. Here we have taken the dominant non-linear wavenumber, i.e.
the mode with the largest wavelength that will fit into the opening, in combination with
the linear exponential growth rate for simplicity. Although simplified, it will be seen that
the analysis that stems from this form leads to compelling results.

Epstein (1988) assumed that the fingers of fluid pinched off when they had reached
a height of O(D). This assumption was supported by his visual observations. Setting
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Figure 5: Comparison of the theoretical form of the perturbation considered at t = tP
with a time averaged velocity profile from Varrall et al. (2016), where uex is the vertical
perturbation velocity. The plane of the opening is at z/D = 0.

η = D on r = 0 in (4.3) and noting that J0(0) = 1 gives the time to pinch off as

tP =
1

n
ln

 D(
1− J0

(
k̂/2
))

η̂

 =

(
2

k̂

)1/2(
D

g′

)1/2

ln

(
D

cη̂

)
(4.5)

with c = 1− J0(k̂/2) ≈ 1.13. Evidently, this timescale increases as the opening diameter
increases and decreases as the density step across the opening increases.

Given d(J0(kr))/dr = −kJ1(kr), where J1 is the Bessel function of the first kind of
order one, the volume of the finger at pinch off, VP , (figure 4a) is given by

VP =

∫ ηP

0

πr2dη =
πk̂

c

∫ r1

0

r2J1

(
k̂r

D

)
dr ≈ 0.088D3, (4.6)

where r1 ≈ 0.26D is the radius of the finger in the plane of the opening (figure 5a). Note
that the pinch-off volume is independent of the initial form of the disturbance (i.e. that
given in (4.3) at t = 0), but that the initial form affects the time taken to pinch off and
thereby the volume flux exchanged.

Using (4.5) and (4.6) the volume flux associated with each pinch-off event, QP , can
now be estimated as

QP =
VP
tP
≈ 0.20

ln
(
D
cη̂

) (D5g′
)1/2

. (4.7)

In practice, the volume flux exchanged at a given instant will not be as (4.7) due to
random fluctuations. However, the average over long times, QexB

, is expected to converge
to QP . The experimental work of Varrall, Pretrel, Vaux & Vauquelin (2017) suggests that
an averaging period of T > 3000 tP is required for QexB

to converge. Accordingly, we
take

QexB
= QP . (4.8)

In order to evaluate (4.7) we must assign a value to ln(D/η̂). Conover et al. (1995)
investigated the behaviour of balanced exchange flow through a thin-walled horizontal
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opening using laser Doppler velocimetry. They found that the flow pulsated across the
opening at a frequency dependent on the opening aspect ratio L/D. Assuming that the
frequency measured is the inverse of the time to pinch off, their experimental values can
be used to estimate ln(D/η̂). Epstein (1988) cited Lewis (1950) in taking ln(D/η̂) = 5
but was not explicit regarding where this value came from. The experiments of Lewis
(1950) showed that the fingers of fluid separated for cosh(4) . η/η̂ . cosh(5), giving
3.3 . ln(D/η̂) . 4.3. The hyperbolic cosine results from the formulation of the linear
instability problem by Taylor (1950) which Lewis (1950) was testing. Lewis’s set-up
is also different to that considered by Epstein (1988), in that Lewis (1950) considered
fluid confined in a thin gap between two parallel plates so that the flow is quasi-two-
dimensional as opposed to three-dimensional. It may be expected therefore that ln(D/η̂)
could take a different value.

The opening with the smallest aspect ratio used by Conover et al. (1995) is
L/D = 0.008 with a frequency of pinch-off events of 0.7 Hz, giving tP = 1.4 s. Taking
D = 0.0508 m and g′ = 0.118 ms−2 directly from their experimental set-up, (4.5) gives
ln(D/η̂) = 5.1 (to 2 s.f.), approximately the value used by Epstein (1988). Rearranging
gives η̂ = e−5.1D, suggesting the initial amplitude of perturbation η̂ ∼ O(0.01D). This
gives

FrexB
=

QexB

a5/4g′1/2
=

0.20× 25/2

π5/4 ln
(
D
cη̂

) ≈ 0.055. (4.9)

This is the balanced exchange flow limit of (3.1) achieved when ui = 0 so that sP ≡ 0.
Epstein (1988) expressed the dimensionless volume flux exchanged as a Froude number,

FrEps = QexB
/(D5g′)1/2, the subscript (·)Eps used here to distinguish Epstein’s (1988)

definition, based on the opening diameter, from that used herein based on the opening
area across which fluid exchanges. The two definitions are related by

FrEps =
π5/4

25/2
FrexB

, (4.10)

which, with (4.9), gives FrEps = 0.041. The use of opening area in the definition of
Froude number instead of diameter permits comparison with the measurements of Hunt
& Coffey (2010), see §5, and allows the analysis of opening geometries other than circular
(§7).

5. The onset of exchange flow

A second special case of (3.1) is equality, i.e. ηP,max − η0,max = sP = uitP . This
is the condition for the initiation of unbalanced exchange flow, where the maximum
displacement of the perturbation at pinch off is at the plane of the opening as depicted
in figure 4c.

The characteristic imposed velocity magnitude uiC corresponding to a critical imposed
flow rate QiC down through the opening is uiC = QiC/acd, so that (3.1) gives

ηP,max − η0,max =
QiC
acd

tP . (5.1)

Substituting for tP from (4.5) with ln(D/cη̂) = 4.9 and D2 = 4a/π gives

ηP,max − η0,max
D

=
b

cd
FriC , (5.2)

where FriC = QiC/a
5/4g′1/2 is the critical imposed dimensionless volume flux and
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b = π1/4 ln
(
D
cη̂

)
/k̂1/2. We may neglect η0,max/D = O(10−2) and so rearranging for

FriC , using (5.2) and ηP,max = D gives the dimensionless imposed volume flux at the
onset of exchange as

FriC =
cd
b
≈ 0.29. (5.3)

In (5.3) we have taken cd = 0.60 as in Hunt & Coffey (2010) and as suggested
by Ward-Smith (1980) and Etheridge & Sandberg (1996). This is valid within our
assumption that unbalanced exchange flow through a horizontal opening can be modelled
as the superposition of unidirectional flow through the opening and balanced exchange
flow through the opening; for unidirectional flow through a sharp-edged orifice the loss
coefficient is widely taken to be cd = 0.6.

If the assumption of superposition were not made, it is not known what value cd would
take, or indeed how it would be defined. For unidirectional flow through an orifice the
greatest contribution to cd is from the vena contracta, however this phenomenon is not
necessarily relevant to bidirectional flows. Another way of viewing cd is as the ratio of
measured to theoretical volume flux, but taking the work on balanced exchange flow of
Epstein (1988) as an example, the theoretical volume flux is less than the measured, so
that cd > 1. This is considered no further.

Our analysis leads to an estimate for FriC that agrees closely with the value that Hunt
& Coffey (2010) deduced from their measurements, namely 0.33. They arrived at this
value by a fit to their experimental data, not by prediction from theory. It is also worthy
of note that, whilst Hunt & Coffey (2010) were considering an imposed volume flux due
to a buoyancy-driven displacement flow, no assumptions about the mechanism driving
the imposed flow have been made herein for the analysis leading to (5.3). With the
measurements of Hunt & Coffey (2010) and our current analysis arriving independently
at FriC ≈ 0.3, we have confidence in the assertion that an imposed dimensionless volume
flux falling much below this value will result in the onset of (unbalanced) exchange flow
through a horizontal circular opening.

6. Unbalanced exchange flows

The method used to predict the balanced exchange flow in §4 is readily extended to
general non-zero background velocities 0 < ui < uiC associated with an imposed flow by
calculating the time to pinch off tP and the volume VP of the perturbation above the plane
of the opening at pinch off (figure 4b). The validity of this approach is supported by the
experiments of Hunt & Coffey (2010) who observed pinch-off events during unbalanced
exchange flow (figure 6).

The position of the perturbed interface at pinch off is given by

ηP = η(r, tP) =
[
J0

(
k̂r/D

)
− J0

(
k̂/2
)] D

c
− sP . (6.1)

Defining ηP(r1) = 0 (figure 4b), (6.1) gives the equation for r1 as

sP
D

=
J0

(
k̂r1/D

)
− J0

(
k̂/2
)

c
. (6.2)

Non-dimensionalising the imposed volume flux as indicated by the balanced exchange
flow scaling, so that Fri = Qi/(a

5/4g′1/2), recalling that sP = uitP and using (4.5), the
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12 N. Wise and G. R. Hunt

(a) t = 0 s (b) t = 0.34 s (c) t = 0.67 s

(d) t = 1.00 s (e) t = 1.33 s (f) t = 1.67 s

Figure 6: Time series of shadowgraph images of a pinch-off event during unbalanced
exchange flow from the experiments of Hunt & Coffey (2010).

distance the perturbation is advected can be expressed as

sP
D

=
b

cd
Fri. (6.3)

Equating (6.2) and (6.3) gives the following implicit equation for r1 as a function of Fri

J0

(
k̂r1/D

)
= J0

(
k̂/2
)

+
cb

cd
Fri, (6.4)

which can be solved numerically. The solution is single valued for 0 < Fri < FriC . The
volume of fluid above the plane of the opening at t = tP is given by

VP =

∫ ηP−sP

0

πr2dη =
πk̂

c

∫ r1

0

r2J1(k̂r/D)dr =
πDr21
c

J2(k̂r1/D), (6.5)

where J2 is the Bessel function of the first kind of order two. Therefore,

Qex = QP =
VP
tP

=
π
(
k̂/2
)1/2

c ln
(
D
cη̂

) r21J2(kr1)(Dg′)1/2, (6.6)

and

Frex =
Qex

a5/4g′1/2
=

4r21
D2cb

J2

(
k̂r1/D

)
. (6.7)

Thus, for a given or imposed dimensionless flow rate through the opening Fri, the
strength Frex of the dimensionless volume flux exchanged can be calculated. Our pre-
dictions from (6.7) are plotted in figure 7 (solid line). The variation of Frex with Fri
is smooth and monotonically decreasing, as would be expected. In other words, the
stronger the imposed flow, the weaker the exchange, until with Fri = 0.29 (to 2 s.f.) the
exchange flow rate is reduced to zero. The contribution to the total flow from exchange
is insignificant relative to the imposed flow even at Fri ∼ 0.1. Only at Fri = 0.039 (to
2 s.f.) are the contributions equal.
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Figure 7: Dimensionless volume flow rate exchanged Frex against dimensionless imposed
flow rate Fri for a circular opening (6.7) and a square opening (7.11). The lines intersect
at Fri = 0.088 (2 s.f.).
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Figure 8: Square opening perturbation z = η from (7.1) plotted at t = tP .

7. Other geometries

Epstein (1988) and Hunt & Coffey (2010) considered circular openings, however the
analysis in §4-§6 can be readily applied to other opening shapes provided there are
analytical solutions to waves on an interface bounded by that shape. There is no analytical
solution for waves on an interface with an arbitrary boundary but there is for waves with
a rectangular boundary.

We now consider the case of a square opening with sides of length S. The mode with
the lowest wavenumbers in x and y such that volume is conserved is

η = η̂ent sin(2πx/S) sin(πy/S), (7.1)

which is plotted in figure 8. The composite wavenumber k = (k2x + k2y)1/2, for horizontal

components kx and ky, and so n = (kg′/2)1/2 and (7.1) give

k =
51/2π

S
, n =

(
51/2πg′

2S

)1/2

, tP =

(
2S

51/2πg′

)1/2

ln

(
S

η̂

)
. (7.2a, b, c)

As before, §4, we take ln(S/η̂) = 5, where the logarithm again results from the assumed
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14 N. Wise and G. R. Hunt

exponential growth of the interface. At t = tP , ηP,max = S and with reference to figure 8,

VP =

∫ S

0

∫ S/2

0

ηdxdy =
2

π2
S3. (7.3)

Therefore,

QexB
= QP =

VP
tP

=
21/2

53/4π3/2
S5/2g′1/2 (7.4)

and

FrexB
=

QexB

S5/2g′1/2
=

21/2

53/4π3/2
≈ 0.076. (7.5)

Comparison with (4.9) indicates that for the same area, approximately a third greater
balanced exchange volume flux would be achieved with a square opening relative to
a circular opening. Moreover, following the procedure developed in §5 to estimate the
critical Froude number for transition gives

FriC =
π1/2cd

21/253/4
≈ 0.22, (7.6)

taking cd = 0.60 as before. With reference to (5.3), we may conclude that exchange flows
cease at smaller imposed flows with square openings than with circular openings.

For the general unbalanced exchange flow, the interface position is given by

ηP
S

= sin

(
2πx

S

)
sin
(πy
S

)
− sP

S
with

sP
S

=
21/253/4

π1/2cd
Fri. (7.7a, b)

To simplify the calculation of the volume integral, symmetry allows us to consider a
single quadrant then multiply the result by four. The limits of integration are given by

xmin =
S

4
, xmax =

S

2π
sin−1

(sP
S

)
, (7.8a, b)

ymin =
S

2
, ymax =

S

π
sin−1

(
sP
S

cosec

(
2πx

S

))
, (7.9a, b)

therefore

VP = 4

∫ ymax

ymin

∫ xmax

xmin

ηP dxdy. (7.10)

There is no simple analytical solution to (7.10), therefore it was integrated numerically
and the unbalanced exchange evaluated as Qex = QP = VP/tP . Therefore, for a given
value of 0 < Fri < FriC , Frex can be calculated as

Frex =
Qex

S5/2g′1/2
. (7.11)

Equation (7.11) is plotted in figure 7 (dashed line) together with the result for a circular
opening for comparison. A discussion of the comparison shown is intentionally postponed
until the applications (§9) in order to add context.

8. Comparison with experimental data

Epstein & Kenton (1989) measured the flooding rate for flow through a single opening
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Unbalanced exchange flows 15

in a horizontal partition separating a body of saline (above) and fresh water (below). In
the terminology used herein, flooding rate is equivalent to the critical Froude number
FriC , once non-dimensionalised by the opening area and reduced gravity. They deter-
mined the flooding rate as the minimum volume flux of fresh water that was necessary
to supply to the lower compartment to prevent brine from entering.

For volume fluxes below the flooding rate, they measured for both square and circular
openings, the resulting volume flux of the exchange flow, providing data against which
to compare the predictions of §6 and §7. From their results they were able to construct
a single empirical equation of best fit for Qex/QexB

, rewritten here in terms of Froude
number as

Frex
FrexB

=
Qex
QexB

=

(
1− Fri

FriC

)2.3

, for 0.01 < L/D < 10. (8.1)

Epstein & Kenton (1989) recommend (8.1) as a fit for both square and circular openings
and for values of 0.01 < L/D < 10, even though Epstein (1988) shows there are four
different mechanisms involved in the exchange across the range of L/D.

The theoretical predictions of §6 (6.7) and §7 (7.4 and 7.10) are plotted in figure 9
together with the empirical correlation (8.1) from Epstein & Kenton (1989). Figure 9
shows our theoretical predictions for unbalanced exchange collapsing such that they
are almost graphically indistinguishable. They are also within ±0.01 of the empirical
correlation to the data of Epstein & Kenton (1989), (8.1). From the definition of the
Froude number ratios it is necessary that (6.7), (7.11) and (8.1) all start at (0,1), the
balanced exchange limit, and finish at (1,0), the unidirectional flow limit. The path of
the line joining the two limits is dictated by the mode shape: for Frex/FrexB

� 1,
small increases in imposed volume flux cause large decreases in the volume exchanged
due to the steep gradients of the portion of the mode shape being advected across the
opening (figures 5a and 8). Close to the critical imposed volume flux, the gradient of the
perturbation near the plane of the opening is shallower, and so increases in the imposed
volume flux result in smaller reductions of the exchange volume flux.

Our estimates of unbalanced exchange volume flux from §6 and §7 were derived by
extending a linear stability analysis of perturbations on an interface in the plane of a
thin-walled opening beyond the linear region of behaviour. The empirical fit (8.1), by
contrast, is valid for a range of opening aspect ratios from sharp-edged orifices to tubes.

Varrall et al. (2017) extended their work on balanced exchange flows (Varrall et al.
2016) to unbalanced exchange flows, again using stereoscopic PIV and with Re ∼ 103.
They imposed a flow rate below the critical flow rate such that there was unbalanced
exchange, and measured the total volume flux

Qtot = Qi +Qex. (8.2)

Their experiments used a relatively large density difference ((ρL − ρU )/ρL ≈ 0.16) so
the Boussinesq approximation is no longer valid. However, a first order correction to the
Boussinesq theory developed in §4-§6 can be made by considering conservation of mass
for the experimental compartment:

ρUQtot = ρLQi + ρLQex. (8.3)

Rearranging and non-dimensionalising gives

Frtot =
ρL
ρU

(Fri + Frex). (8.4)

Figure 10 shows (8.4) plotted alongside the measurements of Varrall et al. (2017), with
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Figure 9: Volume flux for unbalanced exchange normalised against the balanced exchange
volume flux as a function of the forcing (i.e. the imposed volume flow rate). Circular
openings (6.7), dotted line; square openings (7.11), dashed line; and the empirical best
fit from Epstein & Kenton (1989) (8.1), solid line. The lines for (6.7) and (7.11) (labelled
‘Models’) overlie each other so as to be graphically indistinguishable.

Frex taken from §6 for Fri < FriC = 0.29 and Frex = 0 for Fri > FriC . Equation
(8.4) follows the trend of the data very well, however it marginally underestimates the
experimental values of Frtot (by 0.032, averaging across all experimental data); this is
likely due to the crude nature of the correction employed to describe a non-Boussinesq
system using a Boussinesq theory.

9. Applications

There are immediate applications of our unbalanced exchange flow model to the
fluid mechanics of building ventilation, both for naturally and mechanically ventilated
buildings. We consider such an application first (§9.1). Hunt & Coffey (2010) determine
the geometrical conditions for which a buoyancy-driven flow gives rise to unbalanced
exchange at an opening. For a warm room that ventilates via an opening in the top and
in the base, they express this as a constraint on a Froude number associated with flow
through the top opening. However, prior to the model developed herein there was no
means for the prediction of the rates of airflow exchanged between the room and exterior
under these conditions. We show how our model may be applied to the prediction of
unbalanced exchange flow in buildings and discuss how our results have implications for
the shape of opening chosen by a designer or architect.

Then (§9.2) we consider some of the implications of our findings to the source conditions
of a nozzle intended to discharge buoyant fluid, for example, a nozzle used in laboratory
studies of aqueous turbulent plumes (Baines & Turner (1969); Cardoso & Woods (1993);
Kaye & Linden (2006)) or a nozzle at the exit port of an ocean outfall. For these
applications, it is desirable to prevent exchange flow from occurring.
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Figure 10: Plot of (8.4) (solid line) and experimental data of Varrall et al. (2017) (×)
with 0.2 < L/D < 0.3. Equation (8.4) shows good agreement with the experimental data.
The critical value of FriC = 0.29 (to 2 s.f.), below which exchange would be expected, is
indicated with a dashed line.

9.1. Unbalanced exchange flow rates in naturally ventilated rooms

To retain the direction of the imposed flow adopted in §1-§8, i.e. vertically downward
(figure 1a), the local density of air in the room ρU = ρrm must exceed the density of
the external environment ρL = ρ∞ < ρrm – i.e. the room is cool, and an exchange flow
may develop at the base opening. For the inverted scenario, in which the imposed flow is
upward, the room is warm and an exchange flow may develop at the top opening. In order
to have a single and consistent identifier, that applies equally to warm- and cool-room
scenarios, we instead label openings as primary (subscript (·)p) and secondary (subscript
(·)s). Thus, in the cool-room scenario, the base opening has area a = ap, and we introduce
an opening at the top of the room of area as. The base opening is labelled ‘primary’ as
only with ap > 0 is there an airflow under gravity. The top opening is ‘secondary’ as if
the area as > 0 there may (for ap > 0) or may not (for ap = 0) be flow, although as
as is varied it conditions the flow through the primary opening. With the ‘primary’ and
‘secondary’ terminology so introduced, if exchange flow is to occur, it will do so at the
primary opening for both cool-room and warm-room scenarios.

The imposed flow in the natural ventilation application is that resulting from the
differences in hydrostatic pressure between the interior and exterior environments (in a
mechanical ventilation application, the imposed flow would be that set by a fan or pump).
The Froude number, representing the dimensionless imposed flow rate, is Frp,i (≡ Fri
in §5-§8). Within a displacement flow regime (Linden et al. 1990), flow is unidirectional
through both primary and secondary openings, however Hunt & Coffey (2010) observed
that for Frp,i < 0.33 the flow at the primary opening was not unidirectional. Instead, a
bidirectional flow was established in which fingers of buoyant fluid (occupying a fraction
of this opening) would grow against the bulk outflow then pinch off, causing an exchange,
i.e. there was unbalanced exchange flow.

Following Hunt & Coffey (2010), the buoyancy-driven imposed flow rate (upward or
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a1 a2 a3 a4

Circular -0.81 1.1 -0.43 0.055
Square -2.4 2.5 -0.78 0.076

Table 1: Coefficients of (9.3) for the calculation of the dimensionless unbalanced exchange
volume flux (to 2 s.f.) through circular and square openings.

downward) Frp,i can be evaluated as

Frp,i =
Qp,i

a
5/4
p g |ρrm−ρ∞|ρ∞

= 21/2λ−1/2p

(
1

c2p
+

1

c2sR
2

)−1/2
, (9.1)

where

R =
as
ap
, λp =

√
ap

h
. (9.2a, b)

The constants cp and cs are the loss coefficients associated with the primary and
secondary openings respectively and h is the depth of the layer of density ρrm. The
displacement flow limit is when the secondary opening has no discernible effect on the
volume flow rate through the primary opening. Theoretically, this is achieved as R � 1
for ap > 0.

Having evaluated Frp,i using (9.1), the unbalanced exchange flow rate for this
buoyancy-driven imposed flow may be evaluated on substituting for Fri = Frp,i into the
analysis presented in §3-§7. However, to facilitate the use of the theoretical developments
by practitioners, including the non-specialist, polynomial best fit equations have been
calculated to allow rapid, straightforward prediction of unbalanced exchange volume
flux, while avoiding numerical integration. The relationships in figure 7 can be well
approximated (maximum difference = 0.0004) by the cubic

Frp,ex = a1Fr
3
p,i + a2Fr

2
p,i + a3Frp,i + a4, (9.3)

where the coefficients {a1, a2, a3, a4} for each geometry are given in table 1. In balanced
exchange, Frp,i ≡ 0, (9.3) reduces to Frp,ex = a4. Table 1 gives Frp,ex = 0.055 and
Frp,ex = 0.076 for a circular and square opening respectively, cf. (4.9) and (7.5). In
a natural ventilation context one could achieve Frp,i ≡ 0 by closing the intake vent

(as ≡ 0) and thus achieve a flow rate of 0.055 or 0.076 a
5/4
p g′1/2 m3s−1 for a circular or

square opening, respectively.
Beyond the predictive capability outlined above, a second implication of our work

to room airflows is as follows. For a natural ventilation situation, where the aim is
often to maximise the volume flux into the building, figure 7 shows that for a given
area, a circular opening will result in a greater total flow rate than a square opening for
Frp,i > 0.088. Therefore, if the majority of the operating range will be with Frp,i > 0.088,
a circular opening will result in greater flow rates, a result that may be useful for
design. Conversely, for Frp,i < 0.088 a square vent provides the higher flow rate.
For some ventilation strategies, whether natural or mechanical, inflow at the exhaust
opening (herein the primary opening) is undesirable, for example if it contravenes smoke
ventilation regulations. With this in mind, beginning with Frp,i � Frp,iC and reducing
the imposed flow rate, the analysis in §7 suggests that unbalanced exchange will initiate
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at a circular opening before a square one, and therefore a square opening is more suitable
in this context.

9.2. Source conditions that prevent bidirectional flow in nozzles

Another application of the theory developed is to the design and operation of plume
nozzles, such as may be used in the laboratory modelling of ocean outfalls (e.g. Wilkinson
1988). Focus here is on nozzles that discharge fluid vertically. As discussed in §1, a
decrease in the dimensionless flow rate supplied to the nozzle, Fri, i.e. the imposed flow
rate, corresponds to the plume, that forms from the fluid discharged, becoming lazier (cf.
Hunt & Kaye 2005). Our analysis predicts, for a uniform velocity profile across the exit
plane, that the operation of the nozzle is successful providing a critical outflow Froude
number of Fri ≈ 0.3 is met, or exceeded. If the flow rate imposed by the supply is lower,
such that the outflow Froude number is below this value, an unbalanced exchange flow at
the exit is to be anticipated. This is particularly undesirable in practice as the transport
of sediment-laden salt water into the outfall can lead to a blockage (Wilkinson 1988).

10. Conclusions

We have developed and validated a mathematical model for predicting the flow rate
associated with the vertical transport of fluid across an opening in a horizontal plane that
connects two homogeneous bodies of miscible, incompressible, inviscid fluid of different
density that are statically unstable and subject to an imposed flow rate through the
opening. Triggered by buoyancy forces, finger-like instabilities that grow on the unstable
interface in the plane of the opening pinch off and, thereby, exchange fluid (upward
and downward) between the two fluid bodies. Our primary aim has been to predict the
flow rates of this exchange for the general case in which the upward and downward flow
rates are not equal in magnitude, so-called unbalanced exchange flow. The scales of the
practical problems of interest are such that the exchanges are turbulent and the density
differences are small compared with a characteristic reference density.

Reasoning that the transport of fluid across the opening is governed by the extent to
which instabilities on the interface are able to grow against the opposing imposed flow, we
model the volume of fluid pinched off as a function of the imposed flow rate and establish
closed form solutions for the relative magnitudes of the upflow and downflow. We first
focus on circular openings and then consider square openings. The relative timescales for
the growth of the instabilities and the imposed flow rate give the scaling for unbalanced
exchange flow and our governing parameter, Fri.

When the imposed flow is zero, our model reduces to the limiting case of ‘balanced
exchange flow’, in which the upflow and downflow are of equal magnitude. This was the
single case considered by Epstein (1988). As the imposed flow increases from zero, we
predict that the volume flux exchanged across the opening decreases monotonically until
a minimum, or critical, imposed flow rate is reached for which the instabilities are just
swept out of the opening and the exchange flow ceases. At this minimum imposed flow
velocity, our predictions agree with those of Linden et al. (1990) for unidirectional flow
through openings in a box.

In the context of building ventilation flows, our work is representative of the case
in which a high-level vent in a flat roof links a warm interior environment to a cooler
exterior. As such, our model for unbalanced exchange flows resolves the contradiction
between the unidirectional (idealised displacement) flow theory of Linden et al. (1990)
and the balanced exchange flow theory of Epstein (1988).

Our predictions show close agreement with the independent measurements of Epstein
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& Kenton (1989) and Varrall et al. (2017) across the whole range of possible unbalanced
flows. Moreover, our prediction of an imposed flow rate at the threshold between un-
balanced exchange and unidirectional flow, a dimensionless critical imposed flow rate of
0.29 for circular vents, shows reasonable agreement with the value of 0.33 deduced from
the measurements of Hunt & Coffey (2010). These findings indicate that the shape of
the perturbation and our a priori treatment of the imposed velocity as uniform were not
unreasonable.

That the limiting cases and threshold tally with existing theory and that good agree-
ment with the data is achieved across the whole range of unbalanced exchange flows gives
confidence in the practical use of the model as a predictive tool, for example, for use by
architects and ventilation engineers in the control of airflows in modern buildings. To aid
this practical application we provide polynomial fits to our theoretical results that allow
the non-specialist to rapidly deploy the theoretical model developed herein.
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Appendix A. Why a separable variable solution is not possible

Sweeney et al. (2013) investigated the Rayleigh-Taylor instability in an infinite vertical
cylinder of radius R, which requires solving

λu +∇p =
1

Re
∇2u and ∇ · u = 0, (A 1)

subject to appropriate boundary conditions. Here λ is the growth rate, u(ur, uθ, uz) is
the velocity, p is the static pressure and Re is the Reynolds number. They showed that
for z > 0 there are the separable solutions in cylindrical polar coordinates (r, θ, z)

uz =
(
A1e

−kz +A2e
−qz) Jm(kr)eimθ+λt (A 2)

ur =
1

2

(
A1e

−kz +A2
q

k
e−qz

)
(Jm+1(kr)− Jm−1(kr))eimθ+λt (A 3)

iuθ =
1

2

(
A1e

−kz +A2
q

k
e−qz

)
(Jm+1(kr) + Jm−1(kr))eimθ+λt (A 4)

p =
λ

k

(
A1e

−kz) Jm(kr)eimθ+λt (A 5)

where q =
√
k2 + λRe, with corresponding solutions of similar form in z < 0. In the above,

i =
√
−1 is the imaginary unit, Jm is the Bessel function of the first kind of order m,

and k is the radial wavenumber, of which there will be a different value for each m. The
constants A1 and A2 are arbitrary.

An important feature of these solutions is that the boundary condition of no fluid
penetration through the cylinder walls can be set using only one coordinate, that is we
require ur = 0 on r = R ∀z . There is no dependence on θ or z and we are not interested
in the solution for r > R, i.e. outside the cylinder.
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By contrast, if we consider a circular opening of radius R in an infinite horizontal plane
at z = 0 (figure 1a), we can no longer express the no-penetration boundary condition,
which is now uz = 0 on z = 0 for r > R, using only one coordinate. This means we cannot
have a straightforward variable separable solution that meets the boundary condition.
The only way to ensure that uz = 0 on z = 0 for r > R is with A1 = A2 = 0, however
this means uz and also ur, uθ and p are identically zero throughout the whole domain.
Whilst this is a solution, it is trivial and offers no insight.

More generally, assume we could find a different separable solution for the vertical
velocity uz = f(r)Θ(θ)h(z) such that f(r) was zero for r > R but not for r < R - i.e.
precisely the form needed in the plane of the opening. This would ensure no penetration
through the plane but also that uz = 0 throughout the fluid for r > R (i.e. at all z)
when there is no physical reason for this to be the case. Alternatively, we could assume
we could find h(z) such that h(0) = 0, meeting the no-penetration boundary condition
but also preventing exchange across the opening. Therefore, a separable solution that
satisfies the boundary conditions is not possible.

Appendix B. Calculation of the radial wavenumber k

For balanced exchange flow the volumes enclosed by the perturbation (4.3) above and
below the plane of the opening must be equal (figure 5a). Therefore

2πη̂

∫ r1

0

r(J0(kr)− J0(kD/2)) dr = −2πη̂

∫ D/2

r1

r(J0(kr)− J0(kD/2)) dr (B 1)

⇒ r1J1(kr1)

k
− r21J0(kD/2)

2
=
r1J1(kr1)

k
− r21J0(kD/2)

2
− DJ1(kD/2)

2k
+
D2J0(kD/2)

8
(B 2)

⇒ J1(kD/2) =
kDJ0(kD/2)

4
. (B 3)

This has roots kD = 10.27, 16.83, 23.24, (to 4 s.f.) etc. However, only with kD = 10.27
does the perturbation have the observed form (Varrall et al. 2016), with a single central
region of rising fluid and a single outer annulus of descending fluid. The condition η(r1) =
0 implies J0(kr1) = J0(kD/2), for which the only solution for kr1 < kD/2 is kr1 = 2.7
(to 2 s.f.), so that 2r1/D = 0.52 (to 2 s.f.).
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