
Network Inference Using
Independence Criteria

Petras Verbyla

Department of Pure Mathematics and Mathematical Statistics
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Peterhouse July 2018

I would like to dedicate this thesis to my loving mother.

Declaration

I hereby declare that except where specific reference is made to the work of others,
the contents of this dissertation are original and have not been submitted in whole
or in part for consideration for any other degree or qualification in this, or any other
university. This dissertation is my own work and contains nothing which is the outcome
of work done in collaboration with others, except as specified bellow.
Chapter 4 is joint work with Nina Desgranges. Nina Desgranges developed the initial
version of the Independence Criterion based PC algorithm and did the initial data
analysis. I reimplemented the Independence Criterion based PC algorithm for the R
package and carried out the final testing and data analysis. All other content is my
own work.

Petras Verbyla
July 2018

Acknowledgements

I would like to thank Dr. Lorenz Wernisch for all the academic and moral support.
For all of our discussions about mathematics and life in general.

Abstract

Biological systems are driven by complex regulatory processes. Graphical models play
a crucial role in the analysis and reconstruction of such processes. It is possible to
derive regulatory models using network inference algorithms from high-throughput
data, for example; from gene or protein expression data. A wide variety of network
inference algorithms have been designed and implemented. Our aim is to explore the
possibilities of using statistical independence criteria for biological network inference.
The contributions of our work can be categorized into four sections.
First, we provide a detailed overview of some of the most popular general independence
criteria: distance covariance (dCov), kernel canonical variance (KCC), kernel generalized
variance (KGV) and the Hilbert-Schmidt Independence Criterion (HSIC). We provide
easy to understand geometrical interpretations for these criteria. We also explicitly
show the equivalence of dCov, KGV and HSIC.
Second, we introduce a new criterion for measuring dependence based on the signal
to noise ratio (SNRIC). SNRIC is significantly faster to compute than other popular
independence criteria. SNRIC is an approximate criterion but becomes exact under
many popular modelling assumptions, for example for data from an additive noise
model.
Third, we compare the performance of the independence criteria on biological exper-
imental data within the framework of the PC algorithm. Since not all criteria are
available in a version that allows for testing conditional independence, we propose and
test an approach which relies on residuals and requires only an unconditional version
of an independence criterion.
Finally we propose a novel method to infer networks with feedback loops. We use
an MCMC sampler, which samples using a loss function based on an independence
criterion. This allows us to find networks under very general assumptions, such as
non-linear relationships, non-Gaussian noise distributions and feedback loops.

Table of contents

List of figures xvii

List of tables xxiii

Introduction 1

1 Background 3
1.1 Previous Work in Network Inference . 3

1.1.1 Correlation and Information Theory Based Methods 3
1.1.2 Boolean Networks . 5
1.1.3 Differential and Difference Equations Based Methods 5
1.1.4 Bayesian Networks . 6
1.1.5 Feedback Loop Inference . 6

1.2 Probabilistic Graphical Models . 7
1.2.1 Motivation . 7
1.2.2 Graph Theory Definitions . 7
1.2.3 Probabilistic Graphical Models 8
1.2.4 Conclusions . 13

1.3 PC Algorithm . 13
1.3.1 Skeleton Phase . 13
1.3.2 Collider Phase . 14
1.3.3 Transitive Phase . 15

1.4 Loss Function . 15
1.5 Kullback-Leibler Divergence . 17
1.6 Datasets . 18

1.6.1 Simulated Datasets . 18
1.6.2 Single-cell Datasets . 19
1.6.3 Schistosomiasis Dataset . 21

xii Table of contents

2 Network Inference of Discrete Bayesian Networks 25
2.1 Introduction . 25

2.1.1 Network Inference Problem . 25
2.1.2 Discrete Bayesian Network Inference 27

2.2 Structure Search . 27
2.3 Likelihood . 29

2.3.1 Likelihood for Discrete Variable 30
2.3.2 Priors . 34
2.3.3 Likelihood Equivalence . 34
2.3.4 Likelihood Equivalence Non-Preserving Priors 35

2.4 Missing Value Imputation in the Model 40
2.5 Parallel Tempered MCMC . 41

2.5.1 Issues with Chain Mixing . 41
2.5.2 Tempered MCMC . 42
2.5.3 Parallel Tempered MCMC . 43
2.5.4 Temperatures . 45

2.6 Results . 45
2.6.1 Small Examples . 46
2.6.2 11-Variable Examples . 48
2.6.3 Conclusions . 49
2.6.4 Single-Cell Datasets . 51
2.6.5 Schistosomiasis Dataset . 52
2.6.6 28-Variable Case . 56
2.6.7 Scaling to Larger Networks . 57

2.7 Discussion . 59
2.7.1 Model Limitations and Future Extensions 59

3 Independence Criteria 61
3.1 Introduction . 61

3.1.1 Independence . 61
3.2 Distance Correlation . 63

3.2.1 Introduction . 63
3.2.2 Motivation . 63
3.2.3 Definition of dCor . 65
3.2.4 Empirical Estimate of dCor . 67
3.2.5 Theoretical Justification of dCor 70

3.3 Kernel Canonical Correlation . 70

Table of contents xiii

3.3.1 Introduction . 70
3.3.2 Motivation . 71
3.3.3 Reproducing Kernel Hilbert Space 72
3.3.4 Definition of the F -correlation 77
3.3.5 Empirical Estimate of the F -correlation 78
3.3.6 Kernel Generalized Variance . 81

3.4 Hilbert-Schmidt Independence Criterion 84
3.4.1 The Hilbert-Schmidt Space . 84
3.4.2 Hilbert-Schmidt Independence Criterion 86
3.4.3 Empirical Estimate of HSIC . 87
3.4.4 Asymptotic Results . 88

3.5 Similarities between the Independence Criteria 91
3.5.1 Relationship between dCov and HSIC 92
3.5.2 Relationship between KGV and HSIC 95

3.6 Statistical Tests of Independence . 98
3.6.1 Introduction . 98
3.6.2 Test of the Unconditional Independence 98
3.6.3 Test of the Conditional Independence 100
3.6.4 Simulation Results for the Independence Tests 102

3.7 Signal to Noise Ratio Independence Criterion 105
3.7.1 Introduction . 105
3.7.2 Motivation . 106
3.7.3 Signal to Noise Ratio Independence Criterion 110
3.7.4 SNRIC and the General Independence 111
3.7.5 Definition of the SNRIC . 113
3.7.6 SNR Independence Test . 113
3.7.7 Unconditional Independence Test Examples 115
3.7.8 Counter Example to SNRIC . 121
3.7.9 SNRIC Conditional Independence Test 122
3.7.10 Proofs . 123

3.8 Conclusions . 125
3.8.1 Future Work . 126

4 Independence Criteria Based PC Algorithm 127
4.1 Introduction . 127
4.2 Kernel PC . 127
4.3 Inferring Directionality Using the Independence Criteria 129

xiv Table of contents

4.4 Results . 133
4.4.1 Comparison of Network Inference Algorithms 133
4.4.2 Data Simulated from an Artificial Network 134
4.4.3 Data Simulated by Re-sampling 134
4.4.4 Original Data . 139
4.4.5 Combining All Datasets . 140
4.4.6 Discovering Directions . 140
4.4.7 Schistosomiasis Dataset . 142

4.5 Discussion . 143
4.5.1 Model Limitations . 146
4.5.2 Future work . 147

5 MCMC Sampling Using Loss Function 149
5.1 Introduction/Motivation . 149
5.2 Model . 149

5.2.1 Structural Equation Model . 150
5.2.2 Additive Noise Model . 151

5.3 Theory . 153
5.4 Reversible Jump MCMC . 153

5.4.1 Jump to a Higher Dimensional Space 153
5.4.2 Centring Proposals . 155
5.4.3 Weak Non-Identifiability Approach 155
5.4.4 The Conditional Maximization Approach 156
5.4.5 Zeroth-Order Method . 156
5.4.6 Example 1: Weak Non-Identifiability 157
5.4.7 Example 2: Conditional Maximization 158
5.4.8 Jump to a Lower Dimensional Space or Removing an Edge . . . 158
5.4.9 Inverting an Edge . 159

5.5 Sampling from the Loss Function . 160
5.6 Algorithm . 162

5.6.1 Introduction . 162
5.6.2 Loss Function Based on Independence Criterion 163
5.6.3 Linear Model . 164
5.6.4 Piecewise Linear Model . 165
5.6.5 Prior . 166
5.6.6 Sampling Distribution . 167
5.6.7 Hyperparameters . 168

Table of contents xv

5.6.8 Sampler . 170
5.7 Results . 170

5.7.1 Simulating Data with Cycles . 170
5.7.2 Simulated Examples . 171
5.7.3 Single-Cell Data . 179
5.7.4 Schistosomiasis Dataset . 181

5.8 Discussion . 182
5.8.1 Model Limitations . 185
5.8.2 Future Work . 188

Conclusions 189

References 193

Appendix A Data 201

Appendix B Discrete Bayesian Network 203

Appendix C Independence Criteria 205
C.1 F -correlation . 205

C.1.1 Regularization of the F -correlation 206
C.1.2 Kernel Generalized Variance . 208
C.1.3 HSIC . 211

C.2 U-statistics . 219
C.3 Approximating Mutual information using Gaussian random variables . 223

Appendix D Kernel PC 225

List of figures

1.1 Example of an undirected edge (on the left) and a directed edge (on the
right). 7

1.2 Example of the parents (on the left) and the children (on the right) of a
node. 8

1.3 Example of a DAG (on the left) and a graph that is not a DAG (on the
right). 8

1.4 Examples of the chain (on the left), the fork (in the middle) and the
collider (on the right) graphs. 9

1.5 Example of a probabilistic graphical model. 10
1.6 Examples of three graphs with the same skeleton and same d-separations. 12
1.7 Collider phase. Z ̸∈ sepset(X, Y). 14
1.8 Meek’s rules. 15
1.9 Summary of known dependencies (after Sachs et al. (2005)). 20
1.10 Experimental dataset 8 from Sachs et al. (2005) after log-transformation. 20
1.11 Schistosomiasis dataset after the log-transformation 23

2.1 Example of underlying true network that leads to undirected edge. . . . 26
2.2 Graph G of the Bayesian Network. 33
2.3 On the left: bimodal distribution p(x); on the right: tempered distribu-

tion q(x) ∝ p(x) 1
10 , with temperature 10 42

2.4 Example of running 5 chains at temperatures t1, ..., t5 for 6 sweeps . . 44
2.5 Adjacency matrix for the original graph GCh and the output of MCMC

sampler. Matrix M element mij represents the probability with which
the ith node is a parent of the jth node. 47

2.6 Adjacency matrix for the original graph GT and the output of MCMC
sampler. 48

2.7 Adjacency matrix for the original graph GC and the output of MCMC
sampler. 49

xviii List of figures

2.8 Adjacency matrix for the original graph GTr and the output of MCMC
sampler. 50

2.9 Adjacency matrix for the original graph on 11 nodes G1 and the output
of MCMC sampler. 50

2.10 Adjacency matrix for the original graph on 11 nodes G2 and the output
of MCMC sampler. 51

2.11 Adjacency matrix for the original graph on 11 nodes G3 and the output
of MCMC sampler. 51

2.12 Results from datasets simulated from the Sachs Dataset 8. 52
2.13 Results from the Sachs Dataset 8. 53
2.14 Network from the single-cell data generated by the MCMC using the

discretized data. Green are the correctly identified edges, red are wrongly
identified edges and dashed black are the edges that the algorithm did
not find. Solid lines represent edges with high probability and dashed
lines represent edges with low probability. 53

2.15 The Schistosomiasis network adjacency matrix found by our algorithm
using Gibbs sampling for the missing value imputation. Matrix M

element mij represents the probability with which the ith node is a
parent of the jth node. 54

2.16 The Schistosomiasis network adjacency matrix found by our algorithm
using the MICE package for the missing value imputation. Matrix M
element mij represents the probability with which the ith node is a
parent of the jth node. 55

2.17 Network for the Schistosomiasis dataset; only the edges with probability
above 0.5 are shown. 55

2.18 The Schistosomiasis network adjacency matrix found by our algorithm
using the MICE package for the missing value imputation. Matrix M
element mij represents the probability with which the ith node is a
parent of the jth node. 56

3.1 Example of truly independent samples. 62
3.2 Original data divided into 4 quadrants. 65
3.3 Distances of the data from Figure 3.2. The colour of Section represents

the distances along the same coloured arrow in Figure 3.2, for example
the green section represents the distances between two quadrants both
at the top or both at the bottom, while the black section represents the
distances inside the quadrant. 65

List of figures xix

3.4 Example of data that is dependent but has zero correlation and a
function that allows us to extract a linear dependence from this data. . 72

3.5 Data from Figure 3.4a with function f from the Figure 3.4b applied to
one and both variables. 72

3.6 Data simulated with nonlinear dependencies 103
3.7 Dependency of p-values of HSIC and dCov tests on varying parameters,

kernel width λ for HSIC and index ξ for dCov. 104
3.8 Time efficiency of independence tests. 105
3.9 Dependency of the p-values of the HSIC Gamma test on a varying kernel

width parameter λ, noise level ϵ and the number of observations. Model:
Y ∼ sin(X) +N (0, σ2), X ∼ U(0, 10). 106

3.10 Summary of known dependencies with high (green) and low (gray) SNR. 111
3.11 CDF for SNR approximation using a Gamma distribution 115
3.12 Three examples of data with linear dependency and varying noise. . . . 116
3.13 Three examples of data with nonlinear dependency and varying noise. . 117
3.14 Three examples of data with circular dependency and varying noise. . . 118
3.15 Three examples of independent data after varying rotations applied. . . 119
3.16 Three examples of data with the noise level dependency and varying noise.120
3.17 Counterexample for SNRIC. 121

4.1 Model with a non-linear relationship and Gaussian noise. 130
4.2 Model with a linear relationship and a non-Gaussian noise. 130
4.3 Model with a linear relationship and a Gaussian noise. 131
4.4 Model with an unobserved latent variable. 132
4.5 Multiplicative noise model. 133
4.6 Toy simulated example on 9 nodes and 300 observations. 135
4.7 ROC curves to compare kPCs, dPC, SNR-PC and PC algorithms on

the toy simulated example. The solid lines are the mean ROC curve
and the dotted lines are the mean ROC curve ± one standard deviation. 135

4.8 Data simulated with non-reduced noise from dataset 8. 137
4.9 ROC curve to compare kPCs, dPC, SNR-PC and PC algorithms on the

data simulated with reduced noise from dataset 8. 138
4.10 ROC curves for dataset 8. 139
4.11 All 8 datasets combined. 140

xx List of figures

4.12 Output of the kPC-Resid algorithm on the data simulated from dataset
8. Colour coding: dashed black undirected or doubly directed edges
represent correctly identified undirected edges, green directed edges rep-
resent correct, while red directed edges represent incorrect orientations.
Dashed black oriented edges are from the previous phase. 142

4.13 Output of the dPC algorithm on the data simulated from the dataset 8. 142
4.14 Network for the Schistosomiasis dataset; only the edges present in all

four kPC variants with α = 0.1 are present. 143
4.15 The Schistosomiasis network adjacency matrix found by kPC algorithm

using various independence criteria. Matrix M element mij represents
the proportion of outcomes in which the ith node is a parent of the jth

node. 144

5.1 Example of a Structural Equation Model. 151
5.2 Example of a piece wise linear function. 165
5.3 The best solutions for different parameters. 169
5.4 Small example with a cycle. 173
5.5 Small example with 4 nodes and 4 edges, containing a cycle. Red

solid line represents the true parameter value, red dotted line the mean
MCMC sample value. 173

5.6 MCMC simulation for Figure 5.4 using 3 knots. 174
5.7 Second small example with a cycle. 174
5.8 Small example with 6 nodes and 8 edges, containing a cycle. Red

solid line represents the true parameter value, red dotted line the mean
MCMC sample value. 175

5.9 Example with 6 nodes and 7 edges, containing a “big” cycle of 4 nodes:
X3 → X4 → X5 → X6 → X3. 175

5.10 MCMC simulation for Figure 5.9. Red line represents the true parameter
value, red dotted lines the mean MCMC sample value. 176

5.11 Example with 7 nodes and 11 edges, containing two cycles: X3 ↔ X4

and X5 ↔ X6. 177
5.12 MCMC simulation for Figure 5.11. Red line represents the true parame-

ter value, red dotted lines the mean MCMC sample value. 178
5.13 Second small example with a cycle and non-linear relationship. 178
5.14 MCMC simulation for Figure 5.11. Solid lines represents the true

parameter values, dotted lines the mean MCMC sample values. 179

List of figures xxi

5.15 ROC curves for the datasets simulated from the single-cell dataset 8.
MCMC with loss function using linear relationships. 180

5.16 Network for the datasets simulated from the single-cell dataset 8. Green
are the correctly identified edges, red are wrongly identified edges and
dashed black are the edges that algorithm did not find. 181

5.17 ROC curves for the single-cell dataset 8. MCMC with loss function
using non-linear relationships. 181

5.18 ROC curves for one dataset simulated from the single-cell dataset 8.
MCMC with loss function using non-linear relationships. 182

5.19 The Schistosomiasis network adjacency matrix found by our algorithm.
Matrix M element mij represents the probability that the ith node is a
parent of the jth node. 183

5.20 The Schistosomiasis network adjacency matrix found by our algorithm.
Matrix M element mij represents the size of the effect of the ith node
on the jth node. 184

5.21 Network for the Schistosomiasis dataset; only the edges with probability
above 0.5 and parameters above 0.1 in absolute value are present. . . . 185

A.1 Data simulated from the single-cell dataset 8 after the log - transforma-
tion (from Sachs et al. (2005)). 201

B.1 Discrete MCMC effectiveness on data simulated from the single-cell
data, all eight datasets. 204

D.1 ROC curves to compare kPCs, dPC, SNR-PC and PC algorithms on
the data simulated from single-cell data from Sachs et al. (2005). 226

D.2 ROC curves to compare kPCs, dPC, SNR-PC and PC algorithms on all
8 datasets from Sachs et al. (2005). 227

List of tables

1.1 Chapters and types of networks . 19
1.2 Table of 8 single-cell datasets provided in Sachs et al. (2005). 21
1.3 Schistosomiasis dataset; variables used in the initial model 23

2.1 Probabilities of the Bayesian Network. 33
2.2 Data generated from the Bayesian Network. 33
2.3 Time taken and the mean Area Under the Curve achieved by the BN

MCMC algorithm for networks with various number of nodes and various
number of observations. 58

3.1 Testing independence criteria. All the p-value estimates are the mean of
100 p-values from repetitions for each of the four tests. The size of the
simulated sample is 300. 102

3.2 Relationship between independence criteria and the SNR’s for the linear
relationship with varying noise levels. 108

3.3 Relationship between independence criteria and the SNR’s for the non-
linear relationship with varying noise levels. 108

3.4 SNR1 for all 8 datasets combined. 110
3.5 SNR2 for all 8 datasets combined. 111
3.6 Combinations of distributions used to generate Figure 3.11. 115
3.7 The p-value estimates on the data with linear dependence and varying

noise. 117
3.8 The p-value estimates on the data with the non-linear dependence and

varying noise. 118
3.9 The p-value estimates on the circular dependency data with varying noise.118
3.10 The p-value estimates on the independent data after varying rotation. . 119
3.11 The p-value estimates on the data with the noise level dependency and

varying noise. 120

xxiv List of tables

3.12 The p-value estimates on the counter example for SNRIC data. 122

4.1 The mean p-values of the residuals of the regressions x on y and y on
x being independent in a model with non-linear relationship with a
Gaussian noise. 129

4.2 The mean p-values of the residuals of the regressions x on y and y

on x being independent in a model with a linear relationship with a
non-Gaussian noise. 130

4.3 The mean p-values of the residuals of the regressions x on y and y on x
being independent in a model with a linear relationship with a Gaussian
noise. 131

4.4 The mean p-values of the residuals of the regressions x on y and y on x
being independent in a model with an unobserved latent variable. . . . 131

4.5 The mean p-values of the residuals of the regressions x on y and y on x
being independent in a model that is not an additive noise model. . . . 132

4.6 Free parameters for kPCs and dPC. 134
4.7 Comparison of the PC algorithm versions on a small simulated example.

Number in the ith row and the jth column represents how many times
algorithm i outperformed the algorithm j. 136

4.8 Comparison of the PC algorithm versions on the data simulated from
dataset 8. 138

4.9 Comparison of the PC algorithm versions on all 8 simulated datasets. . 139
4.10 The average number of correctly and wrongly oriented edges as well as

not oriented edges for the algorithms. 141

5.1 Time taken to evaluate the SNR IC based loss function. Rows are the
number of observations, columns are the number of nodes. 186

5.2 Time taken to evaluate the dCov based loss function. Rows are the
number of observations, columns are the number of nodes. 187

5.3 Time taken to evaluate the HSIC based loss function. Rows are the
number of observations, columns are the number of nodes. 187

Introduction

Biological systems are driven by complex regulatory processes. Graphical models play a
crucial role in the analysis and reconstruction of such processes. It is possible to derive
regulatory models using network inference algorithms from high-throughput data, for
example, from gene or protein expression data. A wide variety of network inference
algorithms have been designed and implemented and necessitate common platforms for
assessment, for example, the DREAM network inference challenges (Marbach et al.,
2012), to provide objective means for choosing reliable inference algorithms.
Inference algorithms are based on a variety of statistical principles. However, most rely
on some form of estimating or testing the similarity or correlation between genes, for
example, GeneNet (Opgen-Rhein and Strimmer, 2007) and MutRank (Obayashi and
Kinoshita, 2009), or on mutual information as does CLR (Faith et al., 2007) and RelNet
(Butte and Kohane, 2000), or on regression and feature selection as does MRNET
(Meyer, 2010; Meyer et al., 2007) and Genie3 (Huynh-Thu et al., 2010).
The use of general independence criteria for network inference has been suggested in
contexts outside biological networks (Lippert et al., 2009). Our aim is to explore the
possibilities of using general independence criteria for biological network inference.
The contributions of our work can be categorized into four sections. First, we provide a
detailed overview of general independence criteria: distance covariance (dCov) Székely
et al. (2007), kernel canonical variance (KCC), kernel generalized variance (KGV)
(Bach and Jordan, 2002) and the Hilbert-Schmidt Independence Criterion (HSIC)
(Gretton et al., 2005). We provide an easy to understand geometrical intuition behind
these criteria. Sejdinovic et al. (2013) showed a general equivalence between distance
(for example dCov) and Reproducing Kernel Hilbert Spaces (for example HSIC) based
independence criteria. We explicitly show that dCov and KGV are equivalent to HSIC,
which provides more insight into the nature of the equivalence than the general result.
Second, we introduce a new criterion for measuring dependence based on the signal
to noise ratio (SNRIC). SNRIC is significantly faster than the previously mentioned
general independence criteria. SNRIC is an approximate criterion for dependence, but

2 List of tables

we show that in the special case of data coming from an additive and multiplicative
noise model, it is exact. Third, we compare the performance of the previously discussed
independence criteria on biological experimental data within the framework of the
PC algorithm. Since not all criteria are available in a version that allows for testing
conditional independence, we propose and test an approach which relies on residuals and
requires only an unconditional version of an independence criterion. The true network
is rarely known when assessing algorithms. Hence, we also propose a simulation method
that, starting from experimental data and a target network, produces simulated data
according to the dependency structure of the target network but which are otherwise
as close to the original data as possible in their noise characteristics and functional
(possibly non-linear) forms of dependencies. We make all algorithms and data available
as a package kpcalg (Verbyla et al., 2017) for the R statistical environment (R Core
Team, 2014). Finally we propose an MCMC sampler, which samples from a loss
function based on an independence criterion. This is a very flexible method which
performs well on networks with non-linear relationships, non-Gaussian noise terms and
cyclic relationships.
This thesis is organised as follows. In Chapter 1 we introduce the general framework
of the probabilistic graphical models and the datasets which will be used throughout
this work. In Chapter 2 we discuss network inference using an MCMC sampler. In
Chapter 3 we review general independence criteria and introduce SNRIC. In Chapter 4
we compare statistical tests for independence based on different independence criteria
within the framework of the PC algorithm. In Chapter 5 we introduce the MCMC
sampler using a loss function based on an independence criterion.

Chapter 1

Background

In this chapter we provide the required background to make this thesis as self-contained
as possible. We begin by discussing the work that has already been done in the network
inference. We discuss the most popular classes of inference algorithms, their advantages
and limitations. Then we provide the required theoretical background: we discuss
probabilistic graphical models that will be used throughout this thesis, as well as PC
algorithm (used in Chapter 4), loss function and Kullback-Leibler divergence (used in
Chapter 5). Finally we introduce datasets that we will be using in this thesis.

1.1 Previous Work in Network Inference

Network inference is increasing in popularity and therefore an increasing number of
methods is being developed. In this section we discuss the most popular approaches
used in the field. We summarize previous reviews on the network inference models
Hecker et al. (2009), Noor et al. (2013) and Banf and Rhee (2017). These reviews
define following broad categories of network inference algorithms: Correlation and
Information Theoretical methods, Boolean networks, Bayesian networks and Differential
and Difference Equation methods. We present each category in more detail as well as
their advantages and limitations.

1.1.1 Correlation and Information Theory Based Methods

Methods in this class use correlation (Pearson’s , Spearman’s (Usadel et al., 2009)
or weighted (Zhang and Horvath, 2005)) based or information theoretical (mutual
information, conditional mutual information or three way mutual information) value
function to determine a weight (importance) for each edge and removes edges with

4 Background

low weights (unimportant edges). These methods are relatively simple and have a low
computational cost therefore it is a good choice to deal with large networks. On the
other hand these methods tend to be symmetric so edges should be only interpreted
as showing co-regulation of genes rather than causal relationships. This is especially
important when considering cyclic relationships. We provide a short list of the most
relevant methods.

• RELNET (RELevance NETworks) (Butte and Kohane, 2000) starts from a
fully connected graph, assigns each edge a weight corresponding to the mutual
information between its nodes and removes edges that fall below a certain
threshold.

• Mutual Information network (Steuer et al., 2002) is a simple algorithm that keeps
edges that correspond to pairs of genes with high mutual information.

• Correlation network (Stuart et al., 2003) is a simple algorithm which keeps edges
that correspond to highly correlated (above a predetermined threshold) pairs of
genes.

• ARACNE (Algorithm for the Reverse engineering of Accurate Cellular NEtworks)
(Basso et al., 2005; Margolin et al., 2006) instead of considering independent edges,
considers triples of nodes removing the edge with smallest mutual information
score, assuming that it is most likely to be an indirect relationship.

• CLR (Context Likelihood of Relatedness) (Faith et al., 2007) works similarly to
other information theoretical network inference methods but considers a specially
tailored threshold for each gene pair rather than a global threshold.

• Soranzo et al. (2007) use conditional mutual information.

• MI3 (Luo et al., 2008) use three way mutual information.

• MRNET (minimum redundancy, maximum relevance) (Meyer, 2010; Meyer et al.,
2007) chooses the best set of predictors for each gene individually.

• C3NET (conservative causal core) (Altay and Emmert-Streib, 2010) keeps only
the edge with highest mutual information for each gene.

1.1 Previous Work in Network Inference 5

1.1.2 Boolean Networks

Boolean networks use binary data where each gene in the network can be in a state
“on” or “off”. Boolean networks are directed graphs where each edge is a Boolean
function consisting of logical operations “AND”, “OR”, “NOT”. Advantage of the
boolean networks is their interpretability. On the other hand using only two states
is usually not sufficient to represent genes accurately, so we incur information loss.
Boolean networks are time dependent and gene expression time series often have few
time points, which makes network reconstruction difficult. Example of a boolean
network is REVEAL (REVerse Engineering ALgorithm) by Liang et al. (1998).

1.1.3 Differential and Difference Equations Based Methods

Idea behind these methods is to use ordinary differential equations (ODEs) to express
the relationships between genes. Simplest approach is to use linear ODEs. Approxi-
mating linear ODEs as linear difference equations allows us to transform the problem
to a system of linear algebraic equations. Linear models yield good results if data
comes from a steady state of the system, otherwise results might be unstable (Filkov,
2005). Linear models often might be insufficient to explain complex biological systems
(Savageau, 1970) therefore non-linear models may be more appropriate. The shortcom-
ing of the non-linear models is that they have significantly more parameters than the
linear counterparts and the sample size of observations is often too small to reliably
identify these parameters. Some of the most popular methods are:

• Random forest (Breiman, 2001) for each gene a number of decision trees are
being grown and final result is an averaging over several trees

• NIR (Network Identification by multiple Regression) (Gardner et al., 2003) use
linear difference equations on steady state RNA expression measurements

• MNI (Microarray Network Identification) (di Bernardo et al., 2005) use linear
difference equations on steady state RNA expression measurements

• TSNI (Time-Series Network Identification) (Bansal et al., 2006) use linear differ-
ence equations on time series RNA expression measurements

• genie3 (Huynh-Thu et al., 2010) tree-based ensemble regression method

• TIGRESS algorithm (Haury et al., 2012) uses stability selection procedure to
produce more consistent results.

6 Background

1.1.4 Bayesian Networks

Network is represented by a directed acyclic graph G where each variable Xi is drawn
from conditional probability distribution Pr(Xi | Pa(Xi)), where Pa(Xi) is the set of
parents of Xi. Bayesian network inference techniques are covered in Heckerman (1996)
and Needham et al. (2007). Probabilistic framework is convenient to represent causal
relationships (Aluru, 2006). Disadvantages of Bayesian networks is that the number of
possible networks increase super-exponentially with the number of nodes, therefore it
is not feasible to compute the likelihood of all possible networks. To solve this problem
approximate sampling using Markov Chain Monte Carlo (MCMC) may be used (Tasaki
et al., 2015). Another issue is that the Bayesian network output is a directed acyclic
graph, i.e. cyclic relationships are not allowed. To circumvent this issue dynamical
Bayesian networks (Perrin et al., 2003; Van Berlo et al., 2003) were proposed.

1.1.5 Feedback Loop Inference

Regulatory feedback loops frequently occur in biological networks (Mangan and Alon,
2003; Marbach et al., 2012, 2010). Therefore it is important to have models that
are able to capture this important feature. Correlation and information theoretical
methods are symmetrical in nature and therefore cannot be easily used to infer feedback
loops. Asymmetric version of mutual information used by Rao et al. (2007) allows to
obtain directed networks that could be used to infer cyclic relationships. Boolean and
Bayesian networks use acyclic graph structure and therefore cannot deal with feedback
loops by construction. A workaround in the Bayesian network case is dynamical
Bayesian network, though it requires time series data. Differential equation based
models consider each gene separately and therefore may miss the feedback loops.
There has been some work done to specifically tackle the problem of cyclic relationships.
First provably correct algorithm to discover general linear directed graphs is Richard-
son’s Cyclic Causal Discovery algorithm (Richardson, 1996). Lacerda et al. (2008)
proposes to use independent component analysis (ICA) to discover cyclic causal models.
It builds on the work of Shimizu et al. (2006) and uses linear non-Gaussian structural
equation models. Hyttinen et al. (2010) and Antti Hyttinen (2012) also use structural
equation model to infer feedback loops. This approach assumes linear relationships
between variables, we discuss it in more detail in Section 5.2.1. In Chapter 5 we build
on their work by relaxing the linearity assumption.

1.2 Probabilistic Graphical Models 7

1.2 Probabilistic Graphical Models

1.2.1 Motivation

A Probabilistic Graphical Model is an efficient way of putting the knowledge about a
domain into a mathematical framework. It lies at the intersection of probability and
graph theory and can therefore benefit from results of both fields. In this section we
describe the mathematical framework of probabilistic graphical models. We start with
basic concepts from graph theory. We continue by introducing graphical models, and
argue why they are useful in analysing experimental datasets.

1.2.2 Graph Theory Definitions

Here we provide some essential definitions from graph theory and some examples.
Definitions are taken mainly from Murphy (2012) and Koller and Friedman (2009).
A graph G = (V,E) consists of a set of nodes (or vertices), V = {v1, ...vn}, and a set
of edges E = {(s, t) : s, t ∈ V } ⊆ V × V . An edge between two nodes v1 and v2 can be
either undirected, symbolically v1−v2, or directed, symbolically v1 → v2, see Figure 1.1
for an example.

A B

(a) Undirected edge.

A B

(b) Directed edge.

Fig. 1.1 Example of an undirected edge (on the left) and a directed edge (on the right).

We say that the graph is directed, if all its edges are directed. For any graph we
define its adjacency matrix M , to be an n× n square matrix such that M(u, v) = 1 iff
(u, v) ∈ E. The parents of a node v ∈ V is the set of all the nodes that feed into it, i.e.
PaG(v) = {u : (u, v) ∈ E} and the children of a node u ∈ V is the set of all the nodes
that feed out of it, i.e. ChG(u) = {v : (u, v) ∈ E}. Examples of parents and children
are provided in Figure 1.2.
For a directed graph, a path u v is a series of directed edges leading from u to v, i.e.
u v = (v1, v2, ..., vk) s.t. v1 = u, vk = v and (vi, vi+1) ∈ E, for all i = 1, 2, ...k − 1.
If v1 = vk and k ≥ 2 we say that the path (v1, ..., vk) is a cycle or a loop. A directed
acyclic graph or DAG is a directed graph with no directed cycles. In Figure 1.3 we
have two examples of graphs: the one on the left is a DAG, the one on the right is not
(as it has a directed cycle (A,C,D,B,A)).

8 Background

A

B

C

D

(a) Parents: PaG(D) = {A, B, C}.

A

B

C

D

(b) Children: ChG(A) = {B, C, D}.

Fig. 1.2 Example of the parents (on the left) and the children (on the right) of a node.

A

B

C

D

(a) Directed Acyclic Graph.

A

B

C

D

(b) Directed Cyclic Graph.

Fig. 1.3 Example of a DAG (on the left) and a graph that is not a DAG (on the right).

For a DAG, a topological ordering or total ordering is a numbering of nodes such that
parents have lower numbers than their children. The skeleton of a graph G = (V,E)
is a graph with the same set of vertices and the same edge structure, but all edges
undirected.
Lets consider a graph G = ({A,B,C}, {(A,B), (B,C)}) on three nodes, i.e the skeleton
of graph G is A− B − C. Then there are three possible edge orientations. A graph
G = ({A,B,C}, {(A,B), (B,C)}) is called

• a chain if it has edge orientation A ← B ← C or A → B → C. Example in
Figure 1.4a.

• a fork if it has edge orientation A← B → C. Example in Figure 1.4b.

• an invert fork (or v-structure) if it has edge orientation A → B ← C. In this
case the node Y is called a collider. Example in Figure 1.4c.

1.2.3 Probabilistic Graphical Models

The Probabilistic Graphical Model is a compact, graph based representation of the joint
probability distribution. Suppose we have a random variable X = {X1, X2, ..., XN}.

1.2 Probabilistic Graphical Models 9

A

B

C

(a) A chain.

A

B

C

(b) A fork.

A

B

C

(c) A collider.

Fig. 1.4 Examples of the chain (on the left), the fork (in the middle) and the collider
(on the right) graphs.

We can use a directed graph G = (V,E) to represent the joint probability distribution
of X. We start by defining V , the set of nodes of G as the index set of X, i.e.
every random variable Xi for i = 1, 2, ..., N represents a node in the graph. Given
a topological ordering we define ordered Markov property to be the assumption that
a node only depends on its immediate parents, i.e. u ⊥ AncG(u)\PaG(u) | PaG(u),
where AncG(u) are the predecessors of node u (Murphy, 2012). Then we say that
there is a directed edge from the node Xi to the node Xj, i.e. (Xi, Xj) ∈ E, if and
only if the random variable Xi is a parent of the random variable Xj. Assuming that
X = {X1, X2, ..., XN} is complete and closed system, directed edge (Xi, Xj) may be
interpreted as “Xi causes Xj”, while the lack of such an edge may be interpreted as
“Xi does not influence Xj directly” or “Xi and Xj are conditionally independent”.

Example

To better illustrate the idea of the probabilistic graphical models we will provide an
example similar to the one from Pearl (2000). Lets consider the graphical model
presented in Figure 1.5. This model consists of 5 variables, namely: the season (X1,
possible values are Spring, Summer, Autumn, Winter), whether sprinkler was on (X2,
yes/no), did it rain (X3, yes/no), if the pavement is wet (X4, yes/no) and finally if
the pavement is slippery (X5, yes/no). From the graph we can observe that “Season”
directly influences how likely it is to “Rain”, on the other hand we see that “Season”
does not directly influence the probability of the pavement being “Wet” but indirectly
via variables “Sprinkler“ and “Rain”, therefore there is no edge between “Season” and
“Wet”.

d-Separation

The concept of the d-separation was introduced in Pearl (2000). The d-separation (or
directional-separation) is a criterion for deciding, from a given causal graph, whether
a set of variables Y is independent of another set Z, given a third set W . The idea

10 Background

X1 Season

X2 Sprinkler X3 Rain

X4 Wet

X5 Slippery

P (X1 = i) = 1/4, i = 1, 2, 3, 4

P (X2 = 1) = 0.9 X1 = 1 or 2
P (X2 = 1) = 0.2 X1 = 3 or 4

P (X3 = 1) = 0.3 X1 = 1 or 2
P (X3 = 1) = 0.8 X1 = 3 or 4

P (X4 = 1) = 0.1 X2 = 1 X3 = 1
P (X4 = 1) = 0.8 X2 = 1 X3 = 2
P (X4 = 1) = 0.8 X2 = 2 X3 = 1
P (X4 = 1) = 0.9 X2 = 2 X3 = 2

P (X5 = 1) = 0.1 X4 = 1
P (X4 = 1) = 0.8 X4 = 2

Fig. 1.5 Example of a probabilistic graphical model.

is to associate the “dependence” with the “connectedness” (i.e., the existence of a
connecting path) and the “independence” with the “disconnectedness” or “separation”.
The only adjustment to this simple idea is to rigorously define what we mean by a
“connecting path”, given that we are dealing with a system of directed arrows in which
some vertices (those in the subset W) correspond to the measured variables, whose
values are known precisely. To account for the orientations of the arrows we use the
terms “d-separated” and “d-connected” (where d stands for “directional”).
Consider three disjoint subsets of variables Y, Z,W ⊆ X, which are represented as
subsets of nodes in a DAG G. We are interested in testing whether Y is independent
of Z given W , in any distribution compatible with G, i.e. Y ⊥G Z | W . In order to do
this we need to check whether the nodes corresponding to the variables in W block
all the paths from the nodes in Y to the nodes in Z. A path can be either blocked,
or open. Intuitively, ‘to block’ means to stop the flow of information (or correlation)
between the variables connected by such paths. Whether a path is blocked or open
can be determined using a criterion called the d-separation:

Definition 1.2.1. (d-separation Pearl (2000)): A path p is said to be d-separated (or
blocked) by a set of nodes M iff

• p contains a chain i → m → j or a fork i ← m → j (where i and j are not
connected) such that the middle node m is in M , or

• p contains an inverted fork (or collider) i→ m← j such that the middle node m
is not in M and such that no descendant of m is in M .

1.2 Probabilistic Graphical Models 11

We say that a set of nodes I is d-separated from a set of nodes J given a set of nodes
M iff each undirected path from every node i ∈ I to every node j ∈ J is d-separated
by M . Finally we can define the conditional independence properties in DAG as
XI ⊥G XJ | XM , written as d-sepG(Y ;Z | W) if and only if I is d-separated from a
set of nodes J given a set of nodes M (Murphy, 2012).
In order to understand the concept of the d-separation better lets consider the example
from the Section 1.2.3. If we only know what is the “Season” (X1), this provides us
with some information about whether the pavement is “Wet” (X4), i.e. X1 and X4

are not d-separated. On the other hand if we already know whether the “Sprinkler”
(X2) was on and whether there was “Rain” (X3) last night, we have all the information
about the probability of pavement being “Wet”, that is knowing the “Season” does
not provide us with any new information. In other words X1 and X4 are d-separated
by the subset {X2, X3}, or d-sepG(X1;X4 | {X2, X3}). This represents the first case of
the Definition 1.2.1.
Now lets consider a different case. X1 d-separates X2 and X3, i.e. if I know what
“Season” it is now, then whether the “Sprinkler” will be on and whether it will “Rain”
becomes independent random variables. On the other hand, if I also know whether the
pavement is “Wet”, this makes random variables “Sprinkler” and “Wet” dependent,
for example if I know that the pavement is wet, but it did not rain last night, then
it is very likely that the sprinkler must have been on. Therefore knowing X4 opens
the information flow between X2 and X3. This represents the second case of the
Definition 1.2.1.

Bayesian network

Suppose we have a random variable X = (X1, ..., XN). Then using the chain rule we
can write the probability p of X as

p(X) = p(X1, ..., Xn) = p(X1)p(X2 | X1)p(X3 | X1, X2)...p(XN | X1, ..., XN−1)
(1.2.1)

even in the simplest case where all Xi are binary random variables, this will require
2N − 1 of parameters to define; 1 parameter for p(X1), 2 parameters for p(X2 | X1) and
up to 2N−1 parameters for p(XN | X1, ..., XN−1). Now suppose the random variable
X can be represented as a DAG. Then the number of parameters required can be
significantly reduced. Given a random variable X = (X1, X2, ..., XN) and a DAG
G, choose a topological ordering Xk1 , Xk2 , ..., XkN of the elements of X, such that

12 Background

PaG(Xki) ∈ {Xk1 , Xk2 , ..., Xki−1}. This can be done as G is a DAG. For brevity let us
relabel Xki as Xi. Then for every Xi and any Xj , s.t. Xj /∈ Pa(Xi) ∪Xi and j < i, Xi

and Xj are d-separated by Pa(Xi), i.e. path Xj Xi is blocked by Pa(Xi). And so,
Xi and Xj are independent, given Pa(Xi). Therefore Pr(Xi | X1, ..., Xi−1) = Pr(Xi |
Pa(Xi)). Combining the chain rule with the above, we get:

Pr(X | G) = Pr(X1, X2, ..., Xn | G)

=
n∏
i=1

Pr(Xi | X1, ..., Xi−1, G) by Chain Rule

=
n∏
i=1

Pr(Xi | PaG(Xi)) by d-separation

(1.2.2)

In the special case when the joint probability density of X can be factorised in this
way, we call X a Bayesian network.

Definition 1.2.2. (Bayesian network): X is a Bayesian network with respect to a
graph G if its joint probability density function (with respect to a product measure)
can be written as a product of the individual density functions, conditional on their
parent variables:

p(X) =
∏
v∈V

p (Xv | PaG(Xv)) (1.2.3)

Equivalent networks

Having a skeleton of a graph and all the d-separations in it, does not necessarily
define the unique directed acyclic graph (DAG). For example see Figure 1.6. All three
examples have the same skeleton, namely A−B − C, and same d-separation, namely
d-sepG(A,C | B), but are different DAGs. Such networks are called equivalent.

A

B

C

(a) 1st equivalent network.

A

B

C

(b) 2nd equivalent network.

A

B

C

(c) 3rd equivalent network.

Fig. 1.6 Examples of three graphs with the same skeleton and same d-separations.

Definition 1.2.3. (Equivalent network): Two networks are equivalent if they have
same skeleton structures and the same v-structures (colliders). The set of all equivalent
networks is called an equivalence class.

1.3 PC Algorithm 13

An equivalence class may be represented by a partially directed acyclic graph (PDAG).
PDAG has both directed and undirected edges. Only the edges that have the same
orientation in all the networks in the equivalence class will be directed in the PDAG.
Edges that change their orientation (for example the edge A−B in the example above
can be oriented as A→ B in 1.6a and as A← B in 1.6b) will be left undirected in the
PDAG.

1.2.4 Conclusions

In this section we discussed probabilistic graphical models and how they can be used
to put the knowledge about a real life system into a probabilistic framework. We also
discussed ways of performing efficient computations in this set up, by using d-separation
and factorising the joint probability density. In conclusion a PGM provides us with a
probabilistic framework which is convenient to work with as well as easy to interpret;
the existence or absence of the edges in the model may be directly interpreted as the
existence or absence of direct influence between the variables.

1.3 PC Algorithm

The PC algorithm (named after its inventors Peter Spirtes and Clark Glymour (Spirtes
and Glymour, 1990)) consists of three distinct phases. The first (skeleton) phase finds
the skeleton of the PDAG, that is, it finds all adjacencies based on an independence test.
The second (collider) phase finds all colliders (Vi, Vk, Vj) and directs edges Vi → Vk and
Vj → Vk. The third (transitive) phase applies the Meek rules (Meek, 1995) to extend
all directions found in the collider phase to the rest of the PDAG. In this section we
discuss each phase in more detail.

1.3.1 Skeleton Phase

In the skeleton phase we start from a fully connected graph G = (VG, EG). Then for
every pair of connected vertices X, Y ∈ VG (that is for each edge {X, Y } ∈ EG) we test
whether X ⊥ Y | Z, where Z is a subset of their neighbours (could be an empty set,
then we would test for the unconditional independence). If X ⊥ Y | Z for some Z we
conclude that X does not directly influence Y (or the other way around) and delete the
edge {X, Y }, we also memorize the subset Z as the separating set (or sepset(X, Y)) of
X and Y . If X ̸⊥ Y | Z for any of the subsets of the neighbours Z we keep the edge.
The output of the skeleton phase is an undirected graph.

14 Background

X Y

Z

X Y

Z

Fig. 1.7 Collider phase. Z ̸∈ sepset(X, Y).

If the neighbourhood of X and Y has size m, there are 2m possible subsets Z that we
have to test. In practice we usually only test for the conditional independence with
the sets Z of size up to some k where k < m.
The PC algorithm can integrate a prior knowledge about the graph structure. Usually
this prior knowledge comes in the form of “the edge {x, y} is in G”, i.e. we are not
allowed to delete the edge {x, y} or “the edge {z, w} is not in G”, i.e. we remove
the edge {z, w} without even testing. This approach is taken in the implementation
of the PC algorithm in the R package pcalg. This form of adding prior knowledge
to the algorithm does not work for a datasets like the Schistosomiasis one. In the
Schistosomiasis dataset we know that variables belong to specified time slots: “before
treatment”, “24h after treatment”, “9 weeks after treatment” and “8 months after
treatment”. In more general case suppose we have k non-overlapping time slots. When
we test for the conditional independence between x and y which are from the time
slots kx and ky respectively, then we need to consider only the neighbours of x and y

from the time slots up to and including max(kx, ky). If a variable z is from a time slot
later than max(kx, ky), it can only be a child of x and y. We know that x and y can be
independent given z only if we are in one of the three cases: x→ z → y or x← z ← y

or x← z → y. In all three cases z must be a parent of either x or y.

1.3.2 Collider Phase

In the collider phase we start directing edges of the graph G. For every unshielded
collider (x, z, y), that is for every triple (x, z, y), where there are edges {x, z} and {y, z}
but no edge between x and y, we check if the node z is in the separating set of x and
y. If z ∈ sepset(x, y), then we are in one of the three cases: x→ z → y or x← z ← y

or x ← z → y, therefore we do not orient any of the edges. If on the other hand
z ̸∈ sepset(x, y) then it must be the case that x → z ← y and we orient the edges
accordingly. The output of the collider phase is a partially directed graph containing
both directed and undirected edges.

1.4 Loss Function 15

X

Y Z

X

Y Z

(a) 1st Meek’s Rule.

X

Y Z

X

Y Z

(b) 2nd Meek’s Rule.

X

Y Z

W X

Y Z

W

(c) 3rd Meek’s Rule.

Fig. 1.8 Meek’s rules.

1.3.3 Transitive Phase

In the transitive phase we repeatedly apply Meek’s rules (shown in Figure 1.8). The
first rule states, if we have directed edges x→ y and y → z and an undirected edge
x − z we must orient it as x → z, we do so because the opposite orientation would
create a cycle, which is not allowed in the DAG. The second rule states, if we have a
directed edge x→ y and an undirected edge y− z then we must direct it as y → z, the
opposite orientation would create an unshielded collider x → y ← z and we assume
we have found all the colliders in the collider phase. The third rule is slightly more
complicated: if we have x→ w ← z, x− y − z, there is no edge between x and z and
there is an undirected edge y − w we must direct it as y → w. As x − y − z is not
directed as a collider, it must be the case that y ∈ sepset(x, z) and therefore it is the
case that either y → x or y → z (or both). In either case directing y − w as y ← w

would create a cycle.
After repeatedly applying Meek’s rules for as many times as possible we end up with a
maximally directed PDAG.

1.4 Loss Function

In this section we introduce the concept of a loss function. In optimization, statistics
and decision theory, the loss function (sometimes referred to as the cost function) is
a function that maps a probabilistic event X and some rule δ onto a real number.

16 Background

Intuitively a loss function can be interpreted as a cost incurred by choosing a rule δ
when an event X occurs. The following definitions are taken from Wald (1950).

Definition 1.4.1. Loss Function: Let X be a random variable taking values in a
sample space (χ,B, Pθ), θ ∈ Θ and let D = {δ} be the space of all possible decisions
that can be taken on the basis of an observed X. Then any lower bounded real-valued
function L : Θ×D → R is called a Loss Function. The value of a loss function L at an
arbitrary point (θ, δ) ∈ (Θ, D) is interpreted as the cost incurred by taking a decision
δ ∈ D, when the true parameter is θ ∈ Θ.

Another important concept is the expected loss. It can be interpreted as the expected
cost to be incurred if we follow the rule δ.

Definition 1.4.2. Expected Loss:

R(θ, δ) = Eθ
[
l
(
θ, δ(X)

)]
=
∫
X
l
(
θ, δ(x)

)
pθ(x)dx

Here, θ is a fixed but unknown state of nature, X is a vector of observations stochas-
tically drawn from a population, Eθ is the expectation over all population values of
X, pθ is a probability measure over the event space of X (parametrized by θ) and the
integral is evaluated over the entire support of X.

Examples of Loss Function

Here we provide some examples of possible loss functions.

• Square loss (L2-norm)
l(θ, δ(x)) = (θ − δ(x))2

Square loss works very well for the regression problems, though it may over
penalize the outliers. It is minimized by the posterior mean.

• Absolute loss (L1-norm)
l(θ, δ(x)) = |θ − δ(x)|

Absolute loss can be applied to the regression problems just as well as the square
loss, also does not penalize the outliers as much. It is minimized by the the
posterior median.

• ϵ-insensitive loss
l(θ, δ(x)) = max(0, |θ − δ(x)| − ϵ)

This loss function is ideal when small amounts of error are acceptable.

1.5 Kullback-Leibler Divergence 17

1.5 Kullback-Leibler Divergence

Given two random variables X and Y with the probability density functions p and
q respectively we want to evaluate how similar these two pdfs are. For this task we
require some measure of similarity between distributions. The most popular choice for
such a measure is the Kullback-Leibler Divergence (DKL). In this section we introduce
the DKL and some of its properties. Most of the theory is taken from Bishop (2006)
and MacKay (2003).

Definition 1.5.1. Kullback-Leibler Divergence (discrete): For the discrete probability
distributions p(x) and q(x), the Kullback-Leibler divergence is defined to be:

DKL(p∥q) =
∑
x

p(x) log p(x)
q(x)

Definition 1.5.2. Kullback-Leibler Divergence (continuous): For the continuous
probability density functions p and q, the Kullback-Leibler divergence is defined to be:

DKL(p∥q) =
∫ ∞

−∞
p(x) log p(x)

q(x)dx

It is important to note that Kullback-Leibler divergence is not symmetric, i.e. DKL(p∥q) ̸=
DKL(q∥p). Therefore DKL, even though it is sometimes called ”KL-distance”, it is not
strictly a distance.

Proposition 1.5.1. The Kullback-Leibler Divergence satisfies

DKL ≥ 0

with equality if and only if p(x) = q(x).

As shown in Proposition 1.5.1 DKL is equal to zero if and only if distributions p(x) and
q(x) are equal for all x we can use the Kullback-Leibler Divergence as a measure for
similarity between two distributions.
Closely related to the Kullback-Leibler divergence is the concept of the entropy.
Intuitively entropy is a measure of unpredictability.

Definition 1.5.3. For a random variable X with the probability density function p,
the entropy H is defined as

H(X) = E
[
− log(p(X))] =

∫
p(x) log p(x)dx

18 Background

1.6 Datasets

In this section we introduce the datasets we are going to use throughout this thesis.

• Simulated datasets

• Experimental and simulated single-cell datasets

• Experimental Schistosomiasis dataset

The first set of datasets for testing all the algorithms will be simulated. In this case we
know the correct underlying network, noise distribution and the functional forms of the
relationships between the variables. The second set of datasets will be taken from Sachs
et al. (2005) as well as datasets simulated from them (more detail in Section 1.6.2).
These datasets allow us to have datasets with noise characteristics as close to the real
noise characteristics as possible while still maintaining knowledge about the underlying
networks. Finally the last set of datasets is from Schistosomiasis patients. In this
case we do not know the underlying network. These datasets also have a substantial
percentage of missing values.
It is plausible that all these datasets have non-linear relationships between variables as
well as cyclic relationships.
It is important to point out that Sachs et al. (2005) and Schistosomiasis datasets
were chosen as representative examples of experimental datasets rather than with a
specific biology driven question in mind. This is because the aim of this thesis is model
development and model comparison rather than answering a specific dataset dependant
biological question. Other possible datasets to consider are ones used in Hyttinen et al.
(2010). Datasets from Hyttinen et al. (2010) have less samples for the same number of
variables as the datasets that we used. They compensate by having time series data,
though models considered in this thesis are unable to use this additional information.

1.6.1 Simulated Datasets

In order to test any network inference algorithm, the first step is to check how well
it copes with finding a network from simulated data. That is we choose a network
G as well as its parameters θ and simulate data X from this network. Then we run
the network inference algorithm on the data X to find a network Ĝ. We expect that
Ĝ = G or at least Ĝ ≈ G using some metric. We are interested in how close to the
correct network can we get.

1.6 Datasets 19

In this thesis we explore three different types of algorithms and therefore need to be
able to generate from three different network types:

• discrete data from Bayesian networks

• continuous data from Bayesian networks

• continuous data from cyclic networks

Chapter data relationships cycles
1 discrete non-linear no
3 continuous non-linear no
4 continuous non-linear yes
Table 1.1 Chapters and types of networks

1.6.2 Single-cell Datasets

We are going to be using a well studied single-cell dataset on protein expression from
Sachs et al. (2005). The study comprises eight experimental datasets of single cell
measurements. Each dataset reports the expression level of eleven proteins: RAF,
MEK, ERK (aka P44.42), PLCγ, PIP2, PIP3, PKC, AKT, PKA, JNK, P38. The
number of observations (cells) varies from 700 to 900 cells per dataset. Each dataset
is characterised by the quantitative value of protein expression response to a specific
stimulatory cue or an inhibitory intervention (listed in Table 1.2).
Protein expression levels were obtained by flow cytometry measuring modification
states of proteins, such as phosphorylation through antibodies. These are single cell
measurements with each cell representing an independent observation. Only a few
protein modifications are monitored. For example, PKC phosphorylates RAF at S497,
S499, S259, however, only antibodies for RAF S259 were available. Consequently, some
dependencies between protein states might be missed. Despite these shortcomings,
some links between proteins are well established and shown in Figure 1.9a according
to Sachs et al. (2005). The subnetwork of only the measured variables is shown in
Figure 1.9b.
The graph in Figure 1.9b serves a twofold purpose. First, by exploiting the graph
structure and by resampling the data, as described in more detail in Section 4.4.3, we
generate datasets with characteristics close to real experimental datasets, but with

20 Background

(a) Classic signaling network and points
of intervention.

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

(b) Summary of known dependencies.

Fig. 1.9 Summary of known dependencies (after Sachs et al. (2005)).

RAF

0 2 4 0 2 4 6 0 2 4 4 6 8 0 2 4 6

0
2

4

0
2

4

MEK

PLCG

0
2

4

0
2

4
6

PIP2

PIP3

0
2

4
6

0
2

4

ERK

AKT

0
2

4
6

4
6

8

PKA

PKC

0
2

4
6

0
2

4
6

P38

0 2 4 0 2 4 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

0
2

4
6

JNK

(a) Scatterplots of the data in dataset 8.

Index

praf

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]Index

1 pmek

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

Index

1 plcg

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

Index

1 PIP2

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

Index

1 PIP3

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

Index

1 erk

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

Index

1 akt

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

Index

1 PKA

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

Index

1 PKC

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

Index

1 P38

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

1 pjnk

(b) Regressions between proteins in the
dataset 8. Cell in row i and column j
should be interpreted as a functional re-
lationship we get by regressing node i on
node j.

Fig. 1.10 Experimental dataset 8 from Sachs et al. (2005) after log-transformation.

known dependencies. They will serve as test sets for comparing the performance
of inference algorithms. Second, using the original datasets, the graph provides a
reference network for measuring performance of algorithms on experimental data.
Several limitations need to be kept in mind though. For some edges the direction
of causal influence remains ambiguous. The inference algorithms considered in the

1.6 Datasets 21

Dataset Intervention type Affected protein Number of samples
1 General perturbation 853
2 General perturbation 902
3 Inhibition AKT 911
4 Inhibition PKC 723
5 Inhibition PIP2 810
6 Inhibition MEK 799
7 General perturbation 848
8 Activation PKC 913

Table 1.2 Table of 8 single-cell datasets provided in Sachs et al. (2005).

first chapters (discrete Bayesian network MCMC and kernel PC) are based on the
assumption that the dependency structure can be represented by a directed acyclic
graph (we dropped this assumption in the last chapter where we use an MCMC sampler
with a loss function). Such assumption is likely to hold only approximately true in real
datasets. Also the selection of proteins is by no means complete and it is likely that
latent, unobserved variables induce additional dependencies.
Figure 1.10 show dependencies (in the i’th row and j’th column is the signal function f
of regression Xj = f(Xi).) and pairwise scatterplots between variables of the dataset 8.
Some dependencies are clear and close to linear, for example, RAF to MEK. Other
dependencies are far less obvious, for example, RAF to PKC. This pattern of clear
marginal dependencies between some of the related protein pairs but not all of them, is
present in all eight datasets, as a reminder that network inference is not easily reducible
to simple marginal correlation.

1.6.3 Schistosomiasis Dataset

For the Schistosomiasis dataset we do not have a reference network and this dataset
has a large percentage of the data missing. Schistosomiasis is a waterborne parasitic
infection caused by worms of the genus Schistosoma. The disease is endemic to
over 70 countries in Africa, South America and Asia. Approximately 600 million
people are at risk of infection, 200 million people are infected, and 200 000 deaths are
associated with the disease every year (Thétiot-Laurent et al. (2013)). The majority of
Schistosomiasis infections occur in children between the ages of 5 and 14 (The Carter
Center (2014)) and the intensity of infection is higher in males than females (Tukahebwa

22 Background

et al. (2013)). Schistosomiasis is the second most prevalent and socio-economically
devastating parasitic disease in tropical countries after malaria.
The Schistosoma parasite goes through several stages in its lifespan. First, the eggs
are eliminated from the human body with feces or urine. Then, the eggs hatch and
release miracidia, which swim and penetrate into a specific type of fresh water snail in
order to use it as an intermediate host. After leaving the snail, the infective larvae
swim and penetrate the skin of a human host. They then live in blood vessels for an
average of 7 years.
In its natural state the parasite lacks antigens, which makes it difficult for the immune
system to recognise. After being treated with the drug Praziquantel the parasite
dies, and its proteins trigger the immune system’s response. As part of this response,
cytokines are released; in particular interleukins such as IL-5, IL-10, IL-13, which in
turn stimulate B-lymphocyte production. B-lymphocytes produce immunoglobulins.
In this context, the immunoglobulin IgE is of particular interest (Dunne et al. (1992)).
The key question in this study is how treatment with Praziquantel, which releases
worm antigen into the blood, affects the levels of interleukins and immunoglobulins,
particularly IgE, and how this response confers long-term immunity.
In this study, we use data from 450 individuals (225 men and 225 women, varying
in age from 7 to 76), from a fishing community in Uganda, Lake Victoria. For each
individual, 28 variables were measured. The variables include: demographic ones (sex,
age), infection intensity (egg count in stool sample), levels of interleukins (Il-5, Il-10...),
and the levels of immunoglobulins (IgG, IgE...). Measurements were taken before
treatment, and then 24h, 9 weeks, 8 months and 2 years after the treatment.
From Figure 1.11b we observe that almost all variables have significant signal when
regressing on each other. In contrast to the Sachs datasets where signal is observed in
only few cliques. This will lead to a complicated conditional dependence structure. We
also observe some highly non-linear relationships between variables. We also provide
the scatterplots for the data in Figure 1.11a.
Missing data accounts for 17% of the total dataset. These values can be considered to
be missing completely at random, as they are absent mainly due to problems related
to the storage and analysis of blood and stool samples.
Based on previous work (Wernisch et al. (2007)) the dataset was reduced to 11 key
variables for the initial model. The reduced set of variables is provided in the Table 1.3
and the full set of variables is shown in Appendix A, Table A.1.

1.6 Datasets 23

sex

−1 1 −1 1 −2 1 −1.5 1.5 −2 1

−
1.

0
0.

5

−
1

1 age

egg_pre

−
2

1

−
1

1

ige_pre

igg4_pre

−
3

0
2

−
2

1

il5_24hr

il10_24hr

−
3

1
4

−
1.

5
1.

5

il13_24hr

ige_9wk

−
2

1

−
2

1

igg4_9wk

−1.0 0.5 −2 1 −3 0 2 −3 1 4 −2 1 −1 1

−
1

1egg_8mth

(a) Scatterplots for the Schistosomiasis
dataset.

0

sex

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]

●

0

3 age

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

●

0

3 egg_pre

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

●

0

3 ige_pre

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

●

0

3 igg4_pre

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

●

0

3 il5_24hr

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

●

0

3 il10_24hr

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

●

0

3 il13_24hr

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

●

0

3 ige_9wk

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

●

0

3 igg4_9wk

data2[, j][order(data2[, j])]te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

te
m

p$
fit

te
d.

va
lu

es
[o

rd
er

(d
at

a2
[,

j])
]

●

3 egg_8mth

(b) Signals in the Schistosomiasis dataset.

Fig. 1.11 Schistosomiasis dataset after the log-transformation

Name Type Time Missing Values
Sex Demographic Before treatment 0
Age Demographic Before treatment 0
Egg count pre Infection load Before treatment 0
IgE pre Immunoglobulin Before treatment 24
IgG4 pre Immunoglobulin Before treatment 11
IL-5 24 hrs Interleukin 24h after treatment 134
IL-10 24 hrs Interleukin 24h after treatment 62
IL-13 24 hrs Interleukin 24h after treatment 164
IgE 9 weeks Immunoglogulin 9 weeks after treatment 29
IgG4 9 weeks Immunoglogulin 9 weeks after treatment 26
Egg count 8 months Infection load 8 months 28

Table 1.3 Schistosomiasis dataset; variables used in the initial model

Chapter 2

Network Inference of Discrete
Bayesian Networks

2.1 Introduction

In this chapter we discuss network inference in the discrete Bayesian network setup.
The aim of this chapter is to introduce the network structure search that we will use in
Chapter 5. First we discuss the network inference problem in more detail. We provide
an algorithm for MCMC sampling from the network space. Finally we discuss results,
limitations and possible future extensions of the algorithm.

2.1.1 Network Inference Problem

Suppose that we have a causal network with N nodes, for example of the protein
interactions in a cell (as in Sachs et al. (2005)) or an immune system response (as in
Wernisch et al. (2007)). Also suppose that we have M samples from this network, this
could be protein expression levels measured from M cells (as in Sachs et al. (2005))
or levels of immunoglobulins and interleukins measured from the blood samples of M
patients (as in Wernisch et al. (2007)). Lets assume this network can be represented
by some graph G. Our task is to find this graph G given the M data points we have
sampled from the network.
Finding the correct graph G is a difficult combinatorial problem. Given that the
size of the set of the nodes VG is N , there are 2N(N−1) possible graphs on N nodes:
there are N(N − 1) possible edges (we allow both edges Xi → Xj and Xi ← Xj, for
all Xi, Xj ∈ VG) and each can be either “on” or “off”. Even for a modest number
of nodes the number of possible graphs is huge, for example if N = 10 there are

26 Network Inference of Discrete Bayesian Networks

245 ≈ 3.5× 1013 possible graphs. Exploring all the space is just not feasible. There are
two options, either to apply some variation of a greedy search algorithm (for example
a PC algorithm) or some stochastic search technique, for example, an MCMC sampler.
A large search space is not the only issue that we may run into trying to find the
graph G. In principal G may contain both directed and undirected edges. Let X and
Y be two variables that we have observations of, represented by two nodes in G. We
interpret a directed edge X → Y as “X directly influences Y ”. On the other hand
an undirected edge X − Y could be interpreted either as “X and Y are related, but
neither X directly influences Y or vice versa” or “either X directly influences Y or Y
directly influences X, but we cannot determine which one”. The first case can happen
due to a misspecified model, an example is presented in Figure 2.1. Z is not observed,
we observe only the values of X and Y . The true structure is X ← Z → Y . X and Y
will be highly dependent on each other. On the other hand it is neither the case that
X → Y nor X ← Y . Therefore we would expect to conclude that we will find only an
undirected edge.

X

Z

Y

(a) True model.

X

Z

Y

(b) Inferred model.

Fig. 2.1 Example of underlying true network that leads to undirected edge.

The second case can happen due to the symmetry in the model. Suppose data comes
from X ∼ N (0, 1) and Y ∼ X + N (0, 1). Then both X → Y and Y → X would
explain data equally well.
In the single-cell datasets from Sachs et al. (2005), we do not have observations of all
the proteins in the network. Therefore we have to work with a subgraph shown in
Figure 1.9b rather than the full network shown in Figure 1.9a. As shown in the simple
example from Figure 2.1, having latent variables might hinder our chances of finding
the true underlying network.
Another issue that may occur is missing values. For example in the Schistosomiasis
dataset around 17% of all data is missing. As long as the data is missing at random,
this should not cause insurmountable issues, but it would still reduce the ability of any
algorithm to find the correct network.

2.2 Structure Search 27

2.1.2 Discrete Bayesian Network Inference

In this chapter we will introduce an approach to solve a special case of the problem
proposed in Section 2.1.1, in particular an approach for the network inference of discrete
Bayesian networks. Recall that a Bayesian network is a directed acyclic graph. This
reduces the search space (the number of possible graphs) from 2N(N−1) to less than
3(N2) =

√
3N(N−1) (

(
N
2

)
distinct pairs of nodes u and v which can be disconnected,

connected u→ v or u← v). This space is still too large for exhaustive search. The
real simplification comes from the fact that we are considering only acyclic graphs.
This allows us to factorise the likelihood (this will be discussed in more detail in the
Section 2.3). Another simplification that we are making is considering discrete data.
Most of the time we will be presented with continuous data, it is natural to think about
both the protein expressions as in (Sachs et al., 2005) or interleukin/immunoglobulin
levels as in (Wernisch et al., 2007) as continuous variables. But discretizing the data
reduces the computation time.

2.2 Structure Search

As we have discussed above, our problem requires to find a DAG G. The search space
G in this case are all possible DAGs on N nodes. This space is too large to perform an
exhaustive search. Performing any greedy search does not guarantee to find a global
maximum - only a local one. In such a set up approximate sampling methods like
Markov Chain Monte Carlo (or MCMC) are known to perform well (Tasaki et al.,
2015). In this case we would define a probability for every possible graph on N nodes,
i.e. let pi = p(Gi), for all Gi ∈ G. We will use an MCMC sampling technique to sample
the probability distribution p to get an empirical approximation. Given that we run
the MCMC chain for long enough it is guaranteed to give an unbiased sample from the
correct distribution.
It is worth noting that in this case our search space is discrete and MCMC search in
discrete spaces is known to be notoriously hard. This is because there is no natural way
of making the MCMC jump proposal smaller, as it would be the case in the continuous
space (the distance between two points in G is at least one edge, i.e. it is bounded
below).
Two most popular methods are the Gibbs sampler (Geman and Geman, 1984) and
the Metropolis-Hastings method (Hastings, 1970; Metropolis et al., 1953). Suppose
the current state is Gi =

(
e1, e2, ..., eN(N−1)

)
∈ {0, 1}N(N−1), where ek ∈ {0, 1}, k =

1, ..., N(N − 1) defines the kth edge of the graph: either 0 for no edge or 1 for an

28 Network Inference of Discrete Bayesian Networks

edge. The Gibbs sampler draws a new value ek from the full conditional distribution
π(ek | e−k), where e−k = (ej : j ̸= k). In the network inference set up it would sample
one edge at a time, given the rest of the structure. The Metropolis-Hastings algorithm
proposes a jump from the state Gi to the state Gj with the probability r(Gi, Gj) and
accepts it with the probability

P (Gi → Gj | X) = min(1, Aij) (2.2.1)

where

Aij = L(Gj | X)π(Gj)r(Gj, Gi)
L(Gi | X)π(Gi)r(Gi, Gj)

(2.2.2)

Here L(G | X) is the likelihood of graph G given observed data X (can also be thought
of as P (X | G), i.e. the probability of observing data X if the true underlying model
is G) and π(G) is the prior of graph G.
In our search space, the natural way to transition between structures is to add an
edge, to remove an edge or to revert an edge. These are the jump proposals in our
MH algorithm. Suppose we are currently in state G, then we may propose to add a
new edge i→ j, to remove an existing edge i→ j or to revert an existing edge i→ j.
Let K be the number of parents of node j, then these proposals have the following
probabilities:

1. To add an edge: r(G,G ∪ {i→ j}) = 1
3N(N−K−1)

2. To remove an edge: r(G,G \ {i→ j}) = 1
3NK

3. To revert an edge: r(G,G \ {i→ j} ∪ {j → i}) = 1
3NK

Here we uniformly choose to add, remove or revert an edge; i.e. with probability 1
3 ,

we choose node j with probability 1
N

. Finally to add an edge we choose a non-parent
node i with probability 1

N−K−1 , given that K < N − 1, i.e. node j is not the child of
all other nodes. To remove/revert an edge we choose a parent node i with probability
1
K

, given that K > 0, i.e. node j has at least one parent. If the condition K < N − 1
for adding an edge or the condition K > 0 for removing/reverting an edge is not met,
we cannot propose such a jump. We set the proposal ratio to zero and keep the current
structure. If the required condition was met we get the following proposal ratios:

1. To add an edge: r(G∪{i→j},G)
r(G,G∪{i→j}) = N−K−1

K+1

2. To remove an edge: r(G\{i→j},G)
r(G,G\{i→j}) = K

N−K

2.3 Likelihood 29

3. To revert an edge: r(G\{i→j}∪{j→i}),G)
r(G,G\{i→j}∪{j→i}) = K

Krevert+1

Krevert is the number of parents of node i (the original parent node). Note that the
proposal ratios are consistent with the cases when the conditions were not met, i.e.
they produce zero.
This covers the MCMC search algorithm for the structures. To be able to calculate
the acceptance probability in Equation 2.2.2, we still need to find the likelihood of the
graph G given data X, i.e. L(G | X)π(G). We will discuss this in the next Section 2.3.

2.3 Likelihood

In this section we will discuss the likelihood for a discrete Bayesian network. We
will also provide an efficient way of calculating it. First of all we should note that
calculating

L(G | X) = p(X | G)π(G)∑
G∗∈G p(X | G∗)π(G∗)

directly is not feasible, because finding the normalizing constant 1∑
G∗

p(X|G∗)π(G∗) is
computationally very expensive (we would need to calculate p(X | G∗) for every G∗

and, as noted above, the number of DAGs is superexponential in the number of nodes),
but we can calculate L(Gi|X)

L(Gj |X) , as the normalizing constant cancels out. This is enough
for us to be able to use the Metropolis-Hastings (MH) approach to sample from the
space of DAGs.
We will use the fact that we are sampling only from directed acyclic graphs and therefore
we can factorize the likelihood. Suppose we have a random variable X = (X1, ..., XN).
First of all using the chain rule we can write the probability p of X as

p(X) = p(X1, ..., XN) = p(X1)p(X2 | X1)p(X3 | X1, X2)...p(XN | X1, ..., XN−1)
(2.3.1)

even in the simplest case where all Xi’s are binary random variables, this will require
a number of order 2N of parameters to define. Now suppose the random variable
X can be represented as a DAG. Then the number of parameters required can be
significantly reduced. Given a random variable X = {X1, X2, ..., XN} and a DAG
G, choose a topological ordering Xk1 , Xk2 , ..., XkN of the elements of X, such that
PaG(Xki) ∈ {Xk1 , Xk2 , ..., Xki−1}. This can be done as G is a DAG. For brevity let us
relabel Xki as Xi. Now for Xi and any Xj, s.t. Xj /∈ PaG(Xi) ∪Xi and j < i that is
Xj is not a descendent of Xi, Xi and Xj are d-separated by Pa(Xi), i.e. path Xj Xi

30 Network Inference of Discrete Bayesian Networks

is blocked by PaG(Xi). And so, Xi and Xj are independent, given PaG(Xi). Therefore
Pr(Xi | X1, ..., Xi−1) = Pr(Xi | Pa(Xi)). Combining the chain rule with the above, we
get:

p(X | G) = p(X1, X2, ..., Xn | G)

=
N∏
i=1

p(Xi | X1, ..., Xi−1, G) by Chain Rule

=
N∏
i=1

p(Xi | PaG(Xi)) by d-separation

(2.3.2)

Note that when we are using the jump proposal from the set of {add an edge, remove
and edge, revert an edge}, the parents of only one node will change.

• If we add an edge {i→ j}, only the parents of node j will change

• If we remove an edge {i→ j}, only the parents of node j will change

• If we revert an edge {i→ j}, only the parents of nodes i and j will change

Therefore in order to find the ratio of p(X|G∗)
p(X|G) we will need to calculate only one term

of the product from Equation 2.3.2.

Example

Suppose we proposed to add an edge i→ j. That is we are proposing a jump from the
graph G to the graph G∗ = G ∪ {i→ j}. Then

L(G∗ | X)
L(G | X) = p(X | G∗)π(G∗)

p(X | G)π(G) =
∏N
i=1 p(Xi | PaG∗(Xi))∏N
i=1 p(Xi | PaG(Xi))

π(G∗)
π(G)

= p(Xj | Pa∗
G(Xj))

p(Xj | PaG(Xj))
π(G∗)
π(G)

(2.3.3)

As only the parents of the node Xj changed moving from G to G∗ (that is PaG∗(Xj) =
PaG∗(Xj) ∪Xi and PaG∗(Xk) = PaG(Xk), for all k ̸= j), we need to calculate only one
term of the new likelihood, which significantly speeds up the process.

2.3.1 Likelihood for Discrete Variable

In this section we provide full details for the likelihood for discrete variables as the
introduction to Proposition 2.3.2. We are considering a network with N nodes and
we have M observations. We start with one node Xv (one random variable). Xv

2.3 Likelihood 31

is an M -dimensional discrete vector with Lv possible values for each component,
i.e. Xv = (Xv1, ..., XvM) ∈ {1, ..., Lv}M . We define all the possible parent nodes
configurations as Cv = (Cv1, ..., CvQv) ∈ {1, ..., Lv}Qv , where Qv = ∏

u∈PaG(Xv) Lu and
Lu is the number of possible values the node Xu can take. This node is summarised by
a Qv × Lv-dimensional vector nv = (nvql : q = 1, ..., Qv, l = 1, ..., Lv), where

nvql =
M∑
i=1

1 (Xvi = l) 1 (PaG(Xvi) = Cvq) , ∀l = 1, ..., Lv (2.3.4)

here Lv is the number of distinct values the random variable Xv can take, Qv is the
number of possible parent nodes configurations and i = 1, ...,M run through all M
observations. So nvql is the number of times the variable Xv had value l while having
the parent nodes configuration q.
We assume that the nv is distributed according to a Multinomial distribution with
parameter

θ = (θql : q = 1, ..., Qv; l = 1, ..., Lv)

and a Dirichlet prior

α = (αql : q = 1, ..., Qv; l = 1, ..., Lv)

That is

p(nv | θ) =
Qv∏
q=1

Lv∏
l=1

θ
nvql
vql

p(θ | α) = 1
Z

Qv∏
q=1

Lv∏
l=1

θ
αvql
vql

Z =
∫ Qv∏

q=1

Lv∏
l=1

θ
αvql
vql dθ =

Qv∏
q=1

∏Lv
l=1 Γ(αvql)

Γ(∑Lv
l=1 αvql)

(2.3.5)

Given this set up, we integrate out the parameter for a Multinomial distribution θ, to
obtain a conditional probability distribution p(n | α):

32 Network Inference of Discrete Bayesian Networks

p(nv | α) =
∫
p(n | θ)p(θ | α)dθ

=
Qv∏
q=1

Γ(∑Lv
l=1 αvql)∏Lv

l=1 Γ(αvql)

∫ Qv∏
q=1

Lv∏
l=1

θ
nvql+αvql−1
vql dθ

=
Qv∏
q=1

Γ(∑Lv
l=1 αvql)∏Lv

l=1 Γ(αvql)

Qv∏
q=1

∏Lv
l=1 Γ(nvql + αvql)

Γ(∑Lv
l=1 nvql + αvql)

=
Qv∏
q=1

Γ(∑Lv
l=1 αvql)

Γ(∑Lv
l=1 nvql + αvql)

Lv∏
l=1

Γ(nvql + αvql)
Γ(αvql)

(2.3.6)

Now we can write down the explicit form of the probability to observe data X given
the graph structure G and a prior α (equivalently the likelihood of the graph structure
G given data X). This is quite a convoluted definition where each parameter requires
many subscripts, so we will provide an explanatory example at the end of the subsection.
From Equation 2.3.2 it follows that the likelihood of a network is just a product of the
likelihoods of each node, therefore:

p(n | G,α) =
N∏
v=1

Qv∏
j=1

Γ(∑Lv
i=1 αvql)

Γ(∑Lv
l=1 nvql + αvql)

Lv∏
l=1

Γ(nvql + αvql)
Γ(αvql)

(2.3.7)

And so:

l(G | n, α) = log p(n | G,α) =
N∑
v=1

Qv∑
j=1

(
Γ(∑Lv

l=1 αvql)
Γ(∑Lv

l=1 nvql + αvql)
+

Lv∑
l=1

Γ(nvql + αvql)
Γ(αvql)

)
(2.3.8)

The likelihood in Equation. 2.3.8 is a sum. So after proposing an MH jump (to add,
remove or revert an edge) Gn → G∗, when we need to compare l(Gn | X) versus
l(G∗ | X) we need to calculate only a few terms of the new likelihood rather than all
of it.

Example

Lets consider a very simple example as shown in Figure 2.2. Let all three random
variables X, Y and Z be binary, i.e. X, Y, Z ∈ {1, 2} and follow the probability
distribution as defined in the Table 2.1 .

2.3 Likelihood 33

X

Z

Y

Fig. 2.2 Graph G of the Bayesian Network.

P (X = 1) = 0.5
P (Y = 1) = 0.5

P (Z = 1 | X = 1, Y = 1) = 0.9
P (Z = 1 | X = 1, Y = 2) = 0.8
P (Z = 1 | X = 2, Y = 1) = 0.8
P (Z = 1 | X = 2, Y = 2) = 0.1

Table 2.1 Probabilities of the Bayesian
Network.

nX1 = 528 nX2 = 472
nY 1 = 499 nY 2 = 501

nZ11 = 252 nZ12 = 21
nZ21 = 211 nZ22 = 44
nZ31 = 172 nZ32 = 54
nZ41 = 26 nZ42 = 220

Table 2.2 Data generated from the
Bayesian Network.

Also suppose we have a 1000 observations. They can be summarised as in Table 2.2.
The q in the nZq0 stands for the parents configuration: that is q = 1 means X = Y = 0,
q = 2 means X = 0 and Y = 1, q = 3 means X = 1 and Y = 0 and finally q = 4 means
X = Y = 1. As X and Y have no parents, they have only one “parents configuration”
(could think about it as an empty set), while Z has 2 parents and each parent can
attain 2 values, so it in total has 22 = 4 parents configurations. Finally we have a
uniform prior αvql = α = 1, for all v, q, l. The likelihood of G given data is

p(n | G,α) = p(nX | G,α)p(nY | G,α)p(nZ | G,α)

= Γ(2)
Γ(529 + 473)

Γ(529)
Γ(1)

Γ(473)
Γ(1)︸ ︷︷ ︸

nX

× Γ(2)
Γ(500 + 502)

Γ(500)
Γ(1)

Γ(502)
Γ(1)︸ ︷︷ ︸

nY

× Γ(2)
Γ(253 + 22)

Γ(253)
Γ(1)

Γ(22)
Γ(1)︸ ︷︷ ︸

nZ |X=1, Y=1

× Γ(2)
Γ(212 + 45)

Γ(212)
Γ(1)

Γ(45)
Γ(1)︸ ︷︷ ︸

nZ |X=1, Y=2

× Γ(2)
Γ(173 + 55)

Γ(173)
Γ(1)

Γ(55)
Γ(1)︸ ︷︷ ︸

nZ |X=2, Y=1

× Γ(2)
Γ(27 + 221)

Γ(27)
Γ(1)

Γ(221)
Γ(1)︸ ︷︷ ︸

nZ |X=2, Y=2

(2.3.9)

34 Network Inference of Discrete Bayesian Networks

2.3.2 Priors

There are two options to incorporate a prior knowledge in the network inference. We
can either use a prior on the structure or on the parameters.
There are couple of ways we can put a prior on the structure. We may put a prior directly
on the edges: for example in the Schistosomiasis dataset we have prior information
about when each variable was measured (“before treatment”, “24h after”, “9 weeks
after”, “8 months after” or “2 years after”). That means we have a partial ordering
of the nodes of the graph, a variable can only be influenced by other variables from
the same or earlier time slot. Therefore, we only allow edges {vi → vj}, such that vi
belongs to the same or previous time slice as vj . In the case of the datasets from Sachs
et al. (2005) we have the reference network, so we may encourage the edges that are
known to be present in the network. This considered, we might be more interested
in using a non-informative prior in order to test the efficiency of an algorithm. An
example of a non-informative prior would be a uniform prior, where every edge has the
same prior probability of being in the network. Another approach could be to put a
prior on an overall number of edges in the network. For example if we a priori believe
the network to have approximately q% of all possible edges we may use a binomial
prior:

π(G) =
(
E

e

)
qe(1− q)E−e (2.3.10)

where e = |EG| is the number of edges in G and E is the total number of possible
edges (if G has N nodes, then E =

(
N
2

)
).

Our other option is to put priors on the parameters. In the discrete Bayesian network
set up, that would be the prior α for the conditional probability densities (or CPDs) θ
in the Multinomial distribution. In our model we use Dirichlet priors since they are
conjugate to the Multinomial distribution (as shown in Equation 2.3.5). The prior
parameter α can be thought of as the fictitious observations that we will add to the
real ones.

2.3.3 Likelihood Equivalence

In the setup, as previously defined, the likelihood equivalence preserving priors are often
used on the CPDs. These priors are such that the likelihood of the model (X1 → X2)
is equal to the likelihood of the model (X1 ← X2). The idea behind this is that from
purely observational data we only infer conditional independence properties and not

2.3 Likelihood 35

causality (for example MacKay (2003)). This is not necessarily true for all types of
graphical models. We will discuss some ways to break the equivalence between these
models in the later chapters. But in the case of discrete Bayesian networks (or for
example linear models with Gaussian noise) it is indeed impossible to determine the
direction of causality from observed data.
An example of the likelihood equivalence preserving prior would be

αvql = α

Lv ×Qv

, for all q = 1, ...,Qv; l = 1, ..., Lv (2.3.11)

recall that Qv is the number of parent configurations for the node Xv, Lv is the number
of distinct values the node Xv can attain and α is just a scaling constant.

2.3.4 Likelihood Equivalence Non-Preserving Priors

Despite the fact that likelihood equivalence preserving priors are often chosen, in some
special cases we might be interested in breaking the symmetry they provide. Now we
will state and prove some results about likelihood equivalence non-preserving priors.
We assume a simple network of two nodes with two levels each

l1 = l(X1 → X2 | n, α)
l2 = l(X1 ← X2 | n, α)
n = (n11, n12, n21, n22)
α = (α11, α12, α21, α22, α1∗, α2∗, α∗1, α∗2)

(2.3.12)

The Dirichlet prior αij is the number of the fictitious observations in which X1 = i

and X2 = j. αi∗ is the number of the fictitious observations in which X1 = i, and
similarly, α∗j is the number of the fictitious observations in which X2 = j. For the
likelihood preserving prior αi∗ = αi1 + αi2, i.e. the number of fictitious observations
where (X1, X2) = (i, 1) and (X1, X2) = (i, 2) adds up to the number of fictitious
observations where X1 = i. By deviating from this prior we can control whether a
variable with more uncertainty will be more or less likely to be the causal one. For
example in the case of a uniform prior αi∗ = αij = α, the variable with less uncertainty
is more likely to be causal.

First we prove a lemma about the difference between two log gamma functions.

Lemma 2.3.1. For any real numbers x and ϵ, if ϵ≪ x, then

log Γ(x+ ϵ)− log Γ(x) ≈ ϵ log(x)

36 Network Inference of Discrete Bayesian Networks

Proof. We use an approximation for the gamma function from Whittaker and Watson
(1996) p. 261

log Γ(x) = (x− 1
2) log(x)− x+ log(

√
2π) +O(x−1) (2.3.13)

it follows that

log Γ(x+ ϵ)− log Γ(x) = (x+ ϵ− 1
2) log(x+ ϵ)− x− ϵ+ log(

√
2π)

− (x− 1
2) log(x) + x− log(

√
2π) +O(x−1)

=
(
x− 1

2

)
log

(
x+ ϵ

x

)
+ ϵ log (x+ ϵ)− ϵ+O(x−1)

=
(
x− 1

2

)
log

(
1 + ϵ

x

)
+ ϵ

(
log (x) + log

(
1 + ϵ

x

))
− ϵ+O(x−1)

=
(
x− 1

2

)(
ϵ

x
+O(x−2)

)
+ ϵ

(
log(x) +

(
ϵ

x
+O(x−2)

))
− ϵ+O(x−1)

= ϵ log(x) +O(x−1)
(2.3.14)

where penultimate equation holds due to the Taylor approximation for log(1 + ϵ
x
) =

ϵ
x

+O(x−2) as ϵ≪ x.

Proposition 2.3.2. For a prior uniform for the nodes with the same number of parents
(αij = α1, and αi∗ = α∗j = α0, for all i, j = 1, 2), then ∆l = l1 - l2 is proportional to
(2α1 − α0).

Proof. The log likelihood for the general case is given by

log p(n | G,α) =
N∑
v=1

Qv∑
q=1

(
Γ(∑Lv

l=1 αvql)
Γ(∑Lv

l=1 nvql + αvql)
+

Lv∑
l=1

Γ(nvql + αvql)
Γ(αvql)

)
(2.3.15)

Recall that the suffix v stands for the node, q for parents configuration and l for the
level. For model G1 = (X1 → X2) we can simplify the notation. X1 has no parents, so
n1ql = n11l = nl1 +nl2 and as X2 has one parent X1 which can attain two values, 1 and
2 we have n2ql = nql. Similarly for α11l = α0, for l = 1, 2 and α2ql = α1, for q, l = 1, 2,
here the subscript n for αn represents the number of parents. Equation 2.3.15 simplifies
to

2.3 Likelihood 37

log p(n | G1, α) = + log Γ(α0 + α0)− log Γ(α0)− log Γ(α0)
− log Γ(n11 + n12 + n21 + n22 + α0 + α0)
+ log Γ(n11 + n12 + α0) + log Γ(n21 + n22 + α0)︸ ︷︷ ︸

terms for X1

+ log Γ(α1 + α1)− log Γ(α1)− log Γ(α1)
− log Γ(n11 + n12 + α1 + α1) + log Γ(n11 + α1) + log Γ(n12 + α1)︸ ︷︷ ︸

terms for X2 | X1 = 1

+ log Γ(α1 + α1)− log Γ(α1)− log Γ(α1)
− log Γ(n21 + n22 + α1 + α1) + log Γ(n21 + α1) + log Γ(n22 + α2)︸ ︷︷ ︸

terms for X2 | X1 = 2
(2.3.16)

We get a similar expression for the log likelihood of model G2 = X1 ← X2. We define
∆l = l1 − l2 and we can write it as

∆l = + log Γ(n11 + n12 + α0)− log Γ(n11 + n12 + α1 + α1)
+ log Γ(n21 + n22 + α0)− log Γ(n21 + n22 + α1 + α1)
− log Γ(n11 + n21 + α0) + log Γ(n11 + n21 + α1 + α1)
− log Γ(n12 + n22 + α0) + log Γ(n12 + n22 + α1 + α1)

(2.3.17)

If α0 = 2α1 then ∆l = 0. This represents the likelihood equivalence preserving priors.
Suppose α0 ̸= 2α1, then we can we define ϵ as ϵ = α0 − 2α1 and we use Lemma 2.3.1
to find the relationship of ∆l and ϵ.
∆l is a sum of terms of the form

log Γ(nij + nkl + α0)− log Γ(nij + nkl + α1 + α1)

for i, j = 1, 2. As the prior α is much smaller than the number of observations n we
may apply Lemma 2.3.1 to get

log Γ(nij + nkl + α0)− log Γ(nij + nkl + 2α1)
= log Γ(nij + nkl + 2α1 + ϵ)− log Γ(nij + nkl + 2α1)
≈ ϵ log(nij + nkl + 2α1)

(2.3.18)

using notation ni∗ = ni1 + ni2 + 2α1 and similarly for n∗j with i, j = 1, 2 we simplify
Equation 2.3.17 to

38 Network Inference of Discrete Bayesian Networks

∆l ≈ ϵ (log(n1∗) + log(n2∗)− log(n∗1)− log(n∗2)) (2.3.19)

(log(n1∗) + log(n2∗)− log(n∗1)− log(n∗2)) is constant and this proves the claim.

Corollary 2.3.1. For a uniform prior (αij = αi∗ = α∗j = α, for all i, j = 1, 2),
the variable with a smaller variance is more likely to be the cause, i.e. l1 > l2 iff
Var(X1) ≤ Var(X2).

Proof. In Proposition 2.3.2 we showed that

∆l ≈ ϵ (log(n1∗) + log(n2∗)− log(n∗1)− log(n∗2)) (2.3.20)

where ni∗ = ni1 +ni2 +2α and in this case ϵ = α−2α = −α. By adding and subtracting
two α log(n) where n = 4α +∑

i,j nij, we get

∆l ≈ −α (log(n1∗) + log(n2∗)− 2 log(n)− log(n∗1)− log(n∗2) + 2 log(n))
≈ −α (log(p11) + log(p12)− log(p21)− log(p22))
= −α (log(p11p12)− log(p21p22))
= −α (log(Var(X1))− log(Var(X2)))
= α (log(Var(X2))− log(Var(X1)))

(2.3.21)

here p1j = nj∗
n

= p(X1 = j), similarly for p2j. Both variables are Bernoulli random
variables, so Var(Xi) = pi1pi2. We conclude that if we use the uniform prior, then
the variable with a smaller variance is more likely to be the cause, i.e. Var(X2) >
Var(X1)⇒ log(Var(X2)) > log(Var(X1))⇒ ∆l > 0⇒ l1 > l2 ⇒ p(X1 → X2 | n, α) >
p(X1 ← X2 | n, α).

This result naturally extends to random variables with more than two outcomes. We
are considering network with two nodes with L levels each

l1 = l(X1 → X2 | n, α)
l2 = l(X1 ← X2 | n, α)
n = (nij; i, j = 1, ..., L)
α = (αij, αi∗, α∗j; i, j = 1, ..., L)

(2.3.22)

2.3 Likelihood 39

Proposition 2.3.3. For a prior uniform for the nodes with the same number of parents
(αij = α1, and αi∗ = α∗j = α0, for all i, j = 1, 2), then ∆l = l1 - l2 is proportional to
(Lα1 − α0).

Proof. Proof goes exactly same way as the proof for Proposition 2.3.2, except in the
very last step we get

∆l ≈ ϵ

(
L∑
l=1

log(nl∗)−
L∑
l=1

log(n∗l)
)

(2.3.23)

where similarly as before ni∗ = ∑L
l=1 nil + Lα1

Corollary 2.3.2. Let p1l = nl∗
n

= p(X1 = l) and p2l = n∗l
n

= p(X2 = l) for l = 1, ..., L.
Then for a uniform prior (αij = αi∗ = α∗j = α, for all i, j = 1, 2), the variable
with a smaller product of probabilities is more likely to be the cause, i.e. l1 > l2 iff∏
j p1j ≤

∏
j p2j.

Proof. As in the proof of the previous corollary we start by adding and subtracting
L log(n) to the expression of ∆l

∆l ≈ (1− L)α
(

L∑
l=1

log(nl∗)− L log(n)−
L∑
l=1

log(n∗l) + L log(n)
)

= (1− L)α
(

L∑
l=1

log
(
nl∗
n

)
−

L∑
l=1

log
(
n∗l

n

))

= (1− L)α
(

L∑
l=1

log (p1l)−
L∑
l=1

log (p2l)
)

= (1− L)α
(

log
(

L∏
l=1

p1l

)
− log

(
L∏
l=1

p2l

))
(2.3.24)

This proves the claim.

It is difficult to interpret the meaning of ∏j p1j . We would suggest to think about it as
a Kullback-Leibler divergence between uniform random variable X0 and X1.
Let X0 be a uniform discrete random variable with L levels with probability density
function p0, i.e. p0(X0 = l) = 1/L for all l = 1, ..., L. Then the Kullback-Leibler
divergence (for more detail see Section 1.5) between X0 and X1 is defined as

DKL(p0∥p1) =
L∑
l=1

1
L

log
(
p1l

1/L

)
(2.3.25)

40 Network Inference of Discrete Bayesian Networks

we can simplify it to

DKL(p0∥p1) = 1
L

L∑
l=1

log (p1l) + 1
L

L∑
l=1

log (L) (2.3.26)

The difference between the products of probabilities for X1 and X2 can be written in
terms of the Kullback-Leibler divergences

(
L∑
l=1

log (p1l)−
L∑
l=1

log (p2l)
)

= L (DKL(p0∥p1)−DKL(p0∥p2)) (2.3.27)

We can rephrase Corollary 2.3.2 as: the random variable with smaller Kullback-Leibler
divergence from a uniform distribution is more likely to be the cause.

2.4 Missing Value Imputation in the Model

Missing values in a dataset are a big problem in many areas of statistics. One of the
approaches to dealing with missing data is omitting observations containing missing
values altogether. The Schistosomiasis dataset has 30.5% of data missing, so this
approach would not work.
We used two approaches to deal with the problem of missing data. The first one uses
the MICE (Multivariate Imputation by Chained Equations) package (van Buuren and
Oudshoorn (1999)) for R (Ihaka and Gentleman (1996)). Our second approach was to
use Gibbs sampling between MH jumps, i.e. sampling missing values using the Gibbs
sampler after each MH proposal (Heckerman et al. (1997)).
XO are observed values and X

(n)
M is the set of imputed missing values after nth MH

step. We sample a new structure proposal and missing values from the following
distributions:

Gn+1 | XO, X
(n)
M ∼ p(XO, X

(n)
M | Gn+1)p(Gn+1)
p(XO, X

(n)
M)

∝ p(XO, X
(n)
M | Gn+1)

X
(n+1)
M,i | XO, X

(n)
M,−i, Gn ∼

p((XO, X
(n+1)
M,i , X

(n)
M,−i | Gn)

p(XO, X
(n)
M,−i | Gn)

∝ p(XO, X
(n+1)
M,i , X

(n)
M,−i | Gn)

(2.4.1)

This is indeed a full MCMC sampler, as p(G) is uniform for all G, p(XO, X
(n)
M) is

uniform for all data and p(XO, X
(n)
M,−i | Gn) is constant for all X(n+1)

M,i between MH steps

2.5 Parallel Tempered MCMC 41

(here X(n+1)
O,i is the ith missing value at (n+ 1)st step and X

(n)
O,−i = {X(n+1)

O,1 , ..., X
(n+1)
O,i−1 ,

X
(n)
O,i+1, ..., X

(n)
O,Nmissing

}), i.e. 1, ..., i − 1 missing values sampled in (n + 1)st step and
i+ 1, ..., Nmissing missing values sampled in nth step.

Our Markov chain samples in the space

G × {1, 2} × ...× {1, 2}︸ ︷︷ ︸
Nmissing times

(2.4.2)

where G is the space of all possible structures, Nmissing is the total number of the
missing values and each node can take values in a set {1, 2}.
We start from some random point {G1, x1, ..., xNmissing}, i.e. some starting structure
G1 and some starting value xi for each missing value XM,i, i = 1, ..., Nmissing. Then in
each step n = 1, 2, ... we propose a structure change G∗ ∈ G. If the change is accepted
we change the structure into G∗, otherwise we keep the old structure Gn, then we
cyclically resample a new value xi ∈ {1, 2}, for each missing value XM,i, i = 1...Nmissing.

2.5 Parallel Tempered MCMC

2.5.1 Issues with Chain Mixing

Given that the Markov chain transition space is irreducible, the Metropolis-Hastings
algorithm is guaranteed to approximate any distribution it is sampling from, provided
it runs for long enough. But this is a theoretical result and it only says that we will get
a reliable result assuming we can wait as long as necessary. In practise, it could take
too long for the chain to converge. In order for the chain to converge quickly, it needs
to be able to make sufficiently big steps and have a good average proposal acceptance
rate. The traditional approach might not mix very well because it can get stuck in a
local mode or have a low average proposal acceptance rate.
A chain is especially likely to get stuck in a local mode in high dimensions, as the modes
of a distribution can be separated by large regions of extremely low probability. The
probability of accepting a step into this low probability region is very small, therefore,
once a chain enters a local mode it can take it a very long time to escape. Increasing
the step size of the proposal could increase its chance of escaping from a local mode (by
jumping over the low probability region altogether), but that reduces the acceptance
probability for an average jump even further.

42 Network Inference of Discrete Bayesian Networks

The second possible issue is a low average proposal acceptance rate. Usually this
problem can be tackled by reducing the step size, so that the current state and the
proposal come closer together and, therefore, the jump is more likely to be accepted.
Our model is prone to suffer from both issues. First of all we are working in a high
dimensional space so the probability distribution is very likely to have sharp peaks.
Furthermore, due to the discrete nature of our search space, the step size is fixed; the
newly proposed structure differs from the current structure by at least one edge. As
a result, it is impossible to decrease the step size in order to increase the acceptance
probability.

2.5.2 Tempered MCMC

It can be difficult to use Metropolis-Hastings to sample from a distribution with very
sharp peaks, because if a chain enters a local maximum it is very likely to get stuck
there.

−20 −10 0 10 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Distribution with t=1

p(
x)

−20 −10 0 10 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Distribution with t=10

q(
x)

Fig. 2.3 On the left: bimodal distribution p(x); on the right: tempered distribution
q(x) ∝ p(x) 1

10 , with temperature 10

2.5 Parallel Tempered MCMC 43

Consider the example in Figure 2.3. The distribution p(x) has very sharp peaks at
x = −10 and x = 10. MH is likely to get stuck in one of the modes and it can take a
very long time to find the other mode. It would be difficult to sample from p(x) using
MH. The distribution q(x), on the other hand, is much flatter and it would be much
easier for a MH sampler to sample from it. q(x) has the same modes as p(x), therefore
sampling from q(x) can help us find all the modes of p(x).
The underlying idea is that we can use a temperature parameter to “flatten” out
the distribution. MCMC will move and mix much faster on this flatter probability
distribution.
We can write a probability density as p(x) = exp(−E(x)), where E(x) is the en-
ergy of the system. For a given temperature t, probability distribution is p(x, t) =
exp(−E(x))1/t = exp(−E(x)/t). We say that we run the MCMC chain at the temper-
ature t.

2.5.3 Parallel Tempered MCMC

An MCMC chain with a temperature t = 1 will be sampling from the correct distribution,
but will explore the space slowly and will be prone to getting stuck in local modes. An
MCMC with a higher temperature will explore the space faster and have a better average
proposal acceptance rate, but it will not in fact be sampling from the distribution we
are actually interested in.
The parallel Tempered MCMC algorithm (Iba (2001), Earl and Deem (2008)) allows
us to deal with both of these issues. The idea behind the parallel tempered MCMC is
to run multiple chains at different temperatures. After a certain number of iterations,
we will propose a “sweep”, that is a chance for the chains to swap the states they are
currently in among themselves. This might propose a better state far away for the
lower temperature chain (which was found by the fast moving high temperature chain).
We are proposing the states swapping according to a detailed balance equation.

Here {tm,m = 1, ...,M} is a set of temperatures, such that 1 = t1 < t2 < ... < tM .
Nsweep is the number of sweeps. N is the number of iterations between sweeps. x(m)

i,j

is the state of the MCMC chain at the temperature tm at the jth iteration after the
(i− 1)st sweep.
We initialize M chains and run them at different temperatures. After every N steps
we perform a so-called sweep; that is we consider swapping the current states of the
chains. We propose to swap only the adjacent chains (chains with temperatures tm and
tm+1 for some m = 1, ...,M − 1). This is done in order to improve the swap acceptance

44 Network Inference of Discrete Bayesian Networks

Data: X - data, T - number of chains, Nsweep - number of sweeps, N - number of
iterations per sweep, {t1, ..., tT} - temperatures

Result: MCMC sample
initialize starting points x(m)

0,N , for m = 1...M ;
for i = 1 : Nsweep do

for τ = 1 : T do
assign x

(τ)
i,0 = x

(τ)
i−1,N ;

run the chain p(x, tτ) at the temperature tτ using MH for N steps starting
with x

(τ)
i,0 generating x(τ)

i,N

end
for τ = 1 : T − 1 do

swap x
(τ)
i,N with x

(τ+1)
i,N with probability ατ = min

(
1, p(x(τ+1)

i,N ,tm)p(x(τ)
i,N ,tm+1)

p(x(τ)
i,N ,tm)p(x(τ+1)

i,N ,tτ+1)

)
end

end
return {x(1)

i,j : i = 1, ..., Nsweep, j = 1, ..., N}
Algorithm 1: Parallel Tempered MCMC

rate (if the temperatures are very different a swap is very unlikely to be accepted). We
swap between the chains of temperatures tm and tm+1 with the probability αm. We
should note, that probability αm is analogous to the probability with which we would
accept simultaneous independent jumps x(m)

i,N → x
(m+1)
i,N in the chain of temperature tm

and x
(m+1)
i,N → x

(m)
i,N in the chain of temperature tm+1 proposed in the usual MH setup.

Sweep 1 Sweep 2 Sweep 3 Sweep 4 Sweep 5 Sweep 6

Chain at t1

Chain at t2

Chain at t3

Chain at t4

Chain at t5

Fig. 2.4 Example of running 5 chains at temperatures t1, ..., t5 for 6 sweeps

2.6 Results 45

Figure 2.4 shows an example of a parallel tempered MCMC, and we can observe how
over time the information from a high temperature chain 5 can be transmitted to a
low temperature chain 1.

2.5.4 Temperatures

Choosing the set of temperatures {tm,m = 1, ...,M} is a difficult problem. The
chains should mix well amongst themselves; it is important that mixing is not limited
to neighbouring chains only, as this would result in some chains never reaching the
lowest or highest temperatures. To accomplish this, the difference in the consecutive
temperatures tm and tm+1 cannot be too large for all m = 1, ...,M − 1. Furthermore,
the chain with the highest temperature needs to mix quickly, so the difference between
t1 and tM should be big enough to ensure that. As the complexity of the algorithm
grows linearly in M , we don’t want to accumulate too many chains. Satisfying all of
these conditions can be difficult. We used a geometric progression of temperatures, i.e.
tm = τm−1, for some τ . This approach is easy to implement and has been proven to
give good results (Earl and Deem (2008)). For these temperatures αm simplifies to:

αm = min
(

1, p(x
i
m+1, tm)p(xim, tm+1)

p(xim, tm)p(xim+1, tm+1)

)

= min
(

1, exp(−E(xm+1)/tm) exp(−E(xm)/tm+1)
exp(−E(xm)/tm) exp(−E(xm+1)/tm+1)

)

= min
(

1, exp((E(xm+1 − E(xm))(1
tm
− 1
tm+1

))
)

= min
(

1, exp((E(xm+1 − E(xm))(τ − 1
τm

))
)

In our case E(G) = −l(G | n, α) = − log Pr(n | G,α).
There are other ways of choosing the temperatures. For example, we could change the
temperatures dynamically, in order to keep swap acceptance high and similar at all
levels (Wang and de Freitas (2011), Hamze et al. (2010)).

2.6 Results

In this section we will discuss how our algorithm works in practice. First we will
cover how it works on small (6 nodes) simulated networks. These networks were
chosen to demonstrate the most representative structures that can be observed in the

46 Network Inference of Discrete Bayesian Networks

networks, namely: a chain (or a linear structure), unshielded or not unshielded colliders
(a collider with respectively marginally independent or dependent parents) and tree
structure. The real datasets that we will investigate are with 11 nodes, therefore we
will continue with a few examples of bigger (11 nodes) networks. Finally we will present
the results on the real and simulated Sachs datasets (Sachs et al. (2005)) (where we
have a gold-standard to evaluate our results) and the Schistosomiasis (where we do
not have a reference network to evaluate our results) dataset. Finally we will explore
the full (28 variable) Schistosomiasis dataset.

2.6.1 Small Examples

We started by testing our method on a few simulated examples. We generated 1000
data points from a Bayesian network and ran our algorithm in order to recreate the
network which generated this data. These are the results we got from running our
algorithm on four Bayesian networks on six nodes each.

Chain graph

The first example is a chain graph GCh; its structure is shown in Figure 2.5a. It
should be noted that when we use the likelihood equivalence preserving priors, graphs
G0, G1, ..., G5 all have equal likelihoods:

G0 = X1 → X2 → X3 → X4 → X5 → X6

G1 = X1 ← X2 → X3 → X4 → X5 → X6

...

G5 = X1 ← X2 ← X3 ← X4 ← X5 ← X6

The graph structure probability distribution on the dataset generated from GCh has a
very sharp peak on the subset G∗ = {Gi, i = 0, ..., 5}. So when our algorithm found
this subset it remained there for most of the time. It is worth noting that MCMC will
move through G∗ in a similar fashion to a symmetric random walk on {0, 1, ..., 5}. This
is exactly the result we see in Figure 2.5.

Tree graph

The second example is a tree graph GT ; its structure is shown in Figure 2.6a. We
should note that, when likelihood equivalence preserving priors are used, the edges

2.6 Results 47

X1 X2 X3 X4 X5 X6

(a) Chain graph GCh on 6 nodes

(b) The original Bayesian network (c) The Bayesian network found by our
algorithm

Fig. 2.5 Adjacency matrix for the original graph GCh and the output of MCMC sampler.
Matrix M element mij represents the probability with which the ith node is a parent
of the jth node.

e12 = {v1, v2} and e13 = {v1, v3} can be reversed one at a time, but not together,
without creating a collision node (so the conditional independence properties remain
the same), i.e. without changing the likelihood of the graph. This is exactly the result
we see in fig. 2.6: MCMC found the mode but was unable to determine the direction
of e12 and e13.

Collision graph

The third example is a ‘collision’ graph GC ; its structure is shown in Figure 2.7a. In
this graph, all three nodes which have parents are collision nodes. This suggests that
our algorithm should have no issues in finding the exact graph which generated the
data.
Note: if Z is a collision node, i.e. we have a structure X → Z ← Y , and we have data
n generated from this structure, then

l(X → Z ← Y | n)≫ l(X ← Z ← Y | n) = l(X → Z → Y | n) = l(X ← Z → Y | n)

We can see from Figure 2.7, that our algorithm did not, in fact, have any problem
finding GC and that there is no ambiguity about the direction of the edges in this case.

48 Network Inference of Discrete Bayesian Networks

X1

X2X3 X4X5

X6

(a) Tree graph GT on 6 nodes

(b) The original Bayesian network (c) The Bayesian network found by our
algorithm

Fig. 2.6 Adjacency matrix for the original graph GT and the output of MCMC sampler.

Triangle graph

The last example is a ‘triangle’ graph GTr; its structure is shown in fig 2.8a. In this graph
the node v6 is a collision node with marginally independent parents, while node v3 is a
collision node with non-independent parents, i.e. the nodes v1, v2, v3 create a triangular
structure. Any non-cyclic orientation of edges between these three nodes yields the
same likelihood, therefore we expect our algorithm to have difficulty determining the
orientation of edges between v1, v2, v3. The result produced by our algorithm is exactly
what we expected (shown in fig. 2.8). It found the connected subsets, determined the
orientation of edges {v4, v6} and {v5, v6}, but not the orientation of edges between the
nodes v1, v2, v3.

2.6.2 11-Variable Examples

Our original dataset (reduced case) has 11 variables, so it is important to check how
well our algorithm can deal with networks of 11 nodes. We tested it on a few networks
of 11 nodes. First we generated a random network structure and sampled 1000 data

2.6 Results 49

X1

X2

X3

X4

X5

X6

(a) Collision graph GC on 6 nodes

(b) The original Bayesian network (c) The Bayesian network found by our
algorithm

Fig. 2.7 Adjacency matrix for the original graph GC and the output of MCMC sampler.

points from it. We then ran our algorithm to recreate the network: Figures 2.9, 2.10
and 2.11 show three examples of the results.
The relatively simple structures in Figure 2.9 and Figure 2.10 meant that our algorithm
was able to reconstruct the networks up to the direction of a few edges. The edges
{v11, v5} and {v8, v7} in Figure 2.9 and {v9, v7} in Figure 2.10 are independent of
all the other edges. Therefore, the likelihood of the network is not affected by their
directionality, i.e. our algorithm will not be able to identify their direction if we use
likelihood equivalence preserving priors.
The network structure in Figure 2.11 is more complicated. As a result, our algorithm is
only able to determine clusters. This is expected, as the subsets of nodes {v5, v10, v11}
and {v3, v4, v6} form ‘triangle’ structures (discussed in Section 2.6.1).

2.6.3 Conclusions

These four examples were chosen because they cover the main possible edge config-
urations encountered in Bayesian networks. We observed that our algorithm is very
efficient in recognising collision nodes when the parents are marginally independent

50 Network Inference of Discrete Bayesian Networks

X1

X2

X3

X4

X5 X6

(a) Triangle graph GTr on 6 nodes

(b) The original Bayesian network (c) The Bayesian network found by our
algorithm

Fig. 2.8 Adjacency matrix for the original graph GTr and the output of MCMC sampler.

(a) The original Bayesian network (b) The Bayesian network found by our
algorithm

Fig. 2.9 Adjacency matrix for the original graph on 11 nodes G1 and the output of
MCMC sampler.

and can effectively find chains and triangular structures. However, as expected, it had
no efficient way of determining the orientation of edges in these structures.

2.6 Results 51

(a) The original Bayesian network (b) The Bayesian network found by our
algorithm

Fig. 2.10 Adjacency matrix for the original graph on 11 nodes G2 and the output of
MCMC sampler.

(a) The original Bayesian network (b) The Bayesian network found by our
algorithm

Fig. 2.11 Adjacency matrix for the original graph on 11 nodes G3 and the output of
MCMC sampler.

2.6.4 Single-Cell Datasets

For real datasets we start with the single-cell datasets from Sachs et al. (2005). These
are convenient because we have a reference network of “well known” dependencies from
the literature which we can use to evaluate our results. For brevity we present only
the results from Dataset 8 here. Results for the remaining datasets can be found in
the Appendix, Section B Figure B.1.
First we used the original single-cell Dataset 8 to generate 100 simulated datasets
using the reference network as described in Section 1.6.2. Then we ran an MCMC

52 Network Inference of Discrete Bayesian Networks

simulation on each of these datasets. To evaluate the results we used the receiver
operating characteristic (ROC) curve. The MCMC run gives us the probability of each
edge being in the network. Then we order the edges from the most likely to be included
in the network to the least likely and compare this ordering to the reference network
(i.e. we start with an empty network and add one edge at a time according to this
ordering and compare that network with the reference network). Note that in this case
we are comparing the undirected edges only, that is, the edges of the skeleton. Each
such network gives us a certain number of true/false positives/negatives which allows
us to create a ROC curve. In Figure 2.12 we present the 100 ROC curves generated in
this way. The 100 runs give us an area under a curve of 0.82± 0.04.

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

Mean ROC curve; AUC = 0.82 ± 0.04
Mean ROC curve + 1 standard deviation
Mean ROC curve − 1 standard deviation

Fig. 2.12 Results from datasets simulated from the Sachs Dataset 8.

Next we ran the algorithm on the original single-cell Dataset 8. Results are provided
in Figure 2.13. As expected the area under the ROC curve is slightly smaller than
in the simulated dataset case. This is to be expected as the original dataset is not
necessarily generated from the DAG. The result is still quite good and in the range
of one standard deviation from the mean of the area under the ROC curves from the
simulated datasets. Therefore the algorithm does not perform significantly worse on
the real data than on the simulated one.

2.6.5 Schistosomiasis Dataset

In this section we will demonstrate how our algorithm is able to deal with the Schisto-
somiasis dataset. Recall that Schistosomiasis data comes from known time slices, i.e.

2.6 Results 53

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

(a) Probabilities of each edge being in the final
model.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

Real points, AUC = 0.70
Convex hull, AUC = 0.78

(b) ROC curve.

Fig. 2.13 Results from the Sachs Dataset 8.

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

Fig. 2.14 Network from the single-cell data generated by the MCMC using the discretized
data. Green are the correctly identified edges, red are wrongly identified edges and
dashed black are the edges that the algorithm did not find. Solid lines represent edges
with high probability and dashed lines represent edges with low probability.

54 Network Inference of Discrete Bayesian Networks

before the treatment, 24h after the treatment, etc. We use this as a prior knowledge
by only allowing edges going from an earlier time slice to a later time slice but not
the other way around. In this dataset, 17.4% of all the values are missing. We used
two different approaches to deal with this (covered in detail in Section 2.4). Our first
approach used an MH algorithm with Gibbs sampling of the missing values between
MH steps. The results are shown in Figure 2.15.

(a) 1st simulation (b) 2nd simulation

(c) 3rd simulation (d) 4th simulation

Fig. 2.15 The Schistosomiasis network adjacency matrix found by our algorithm using
Gibbs sampling for the missing value imputation. Matrix M element mij represents
the probability with which the ith node is a parent of the jth node.

For the second approach we use the MICE package for R to create 50 datasets with
imputed values, run a simple MH algorithm on all of them, and finally pool the results.
We chose 50 datasets because this number of simulations can be done in a reasonable
amount of time and still provides a consistent result. In Figure 2.16 we provide the
result given by aggregating distributions from the first and second sets of twenty-five
imputed datasets. As we can see, the two distributions are almost identical (the order
of the 13 most likely edges is the same).

2.6 Results 55

(a) Aggregate result from the first 25 sim-
ulations

(b) Aggregate result from the second 25
simulations

Fig. 2.16 The Schistosomiasis network adjacency matrix found by our algorithm using
the MICE package for the missing value imputation. Matrix M element mij represents
the probability with which the ith node is a parent of the jth node.

sex

age

egg pre

ige pre

igg4 pre
il5 24h

il10 24h

il13 24h

ige 9wk

igg4 9wk

egg 8mth

Fig. 2.17 Network for the Schistosomiasis dataset; only the edges with probability
above 0.5 are shown.

The first approach samples from the correct distribution. But, because it needs to
resample all of the missing values each time the MH proposal is accepted, it takes
much longer than a simple MH algorithm on a dataset with no missing values, such
as the second approach. Using datasets where missing values are imputed with MICE
might seem dubious, because it is not necessarily clear if we are sampling from the
correct distribution. However we can see from Figures 2.15 and 2.16 that the two
approaches give almost the same result (the order of the 8 most likely edges is the
same). This suggests that the second approach, if not absolutely rigorous, is at least a

56 Network Inference of Discrete Bayesian Networks

good approximation. A graph consisting of edges with probabilities above 0.5 is shown
in Figure 2.17.

2.6.6 28-Variable Case

Finally, we ran our algorithm on all 28 variables of the Schistosomiasis dataset. It
would be inefficient to impute the missing values using the Gibbs sampler here. But,
having seen that imputing missing values using MICE and then running a simple MH
structure search produced good results in the 11-variable case, we used the same
approach here. We imputed 100 datasets, ran our algorithm on each of them, and
produced four distributions pooled from 25 imputed datasets each. The results are
shown in Figure 2.18.

(a) Aggregate result from 1st 25 simula-
tions

(b) Aggregate result from 2nd 25 simula-
tions

(c) Aggregate result from 3rd 25 simula-
tions

(d) Aggregate result from 4th 25 simula-
tions

Fig. 2.18 The Schistosomiasis network adjacency matrix found by our algorithm using
the MICE package for the missing value imputation. Matrix M element mij represents
the probability with which the ith node is a parent of the jth node.

2.6 Results 57

We observe that all 4 pooled distributions are very similar, which gives us some degree
of confidence that the MCMC did converge. However; very few edges have a high
probability, and quite a few edges have rather low, but still not negligible probabilities.
This suggests that in order to deal with networks this size, either our approach needs
to be altered, or additional post-processing is required.

2.6.7 Scaling to Larger Networks

In this thesis we are considering two experimental datasets both having 11 nodes. In
genomics these are quite modest sized datasets. In order to give an idea of how this
algorithm scales to larger networks we will consider networks on 20, 50 and 100 nodes.
All simulations are run using code implemented in R and using Intel(R) Core(TM)
i7− 7700HQ CPU @ 2.80GHz.
Example 1: Random network G20 on 20 nodes, 300 or 800 simulated observations from
G. Ran the MCMC search algorithm for 104, 105 and 106 iterations. Averages out at
approximately 7 seconds per 104 iterations, almost no difference in time taken to run
the algorithm when using dataset with 300 or 800 data points.
Example 2: Random network G40 on 50 nodes, 300 simulated observations from G.
Ran the MCMC search algorithm for 104, 105 and 106 iterations. Averages out at
approximately 9 seconds per 104 iterations.
Example 3: Random network G100 on 100 nodes, 300 simulated observations from
G. Ran the MCMC search algorithm for 104, 105 and 106 iterations. Averages out at
approximately 14 seconds per 104 iterations.
For full details see Table 2.3. From these examples we can observe that the number
of the observations does not impact the speed of the algorithm too much. On the
other hand the size of the network has a strong effect on the computational time. It is
important to note that it takes significantly more iterations of the MCMC to achieve
convergence and get a good AUC for the larger networks. This imposes a natural time
constraint on the viability of the algorithm, if we have a particularly large network it
may take infeasibly long to achieve the convergence of the MCMC. This is not specific
to this algorithm - convergence of the MCMC is a well known problem.
Few other considerations:
1) It is important to note that saving a full MCMC simulations is not very efficient in
terms of memory: even in the relatively small example of a graph on 20 nodes and
taking 10K iterations we would need to store a matrix 20× 20× 104 × 48B (20× 20
for each adjacency matrix, 104 each iterations, 48 Bytes to store a float number in

58 Network Inference of Discrete Bayesian Networks

Example # Nodes # Samples # Iterations Time taken AUC
1a 20 300 105 65s 0.86
1b 20 300 106 12min 0.92
1c 20 800 105 70s 0.88
1d 20 800 106 12.5min 0.97
2a 50 300 104 8.8s 0.76
2b 50 300 105 1.5min 0.83
2c 50 300 106 14.2min 0.93
3a 100 300 104 18.1s 0.65
3b 100 300 105 2.4min 0.82
3c 100 300 106 23.4min 0.89

Table 2.3 Time taken and the mean Area Under the Curve achieved by the BN
MCMC algorithm for networks with various number of nodes and various number of
observations.

R) which would require almost 2GB of memory. In order to avoid this we are using
thinning of the MCMC paths saving only every kth value.
2) Another issue is a dense graph, current implementation is storing a graph object
which contains information about the conditional probabilities of the child node, given
its parents nodes. We need to store 2∥PaG(Xi)∥ conditional probabilities, where PaG(Xi)
is the set of parents for the node Xi. A constraint on the number of parents is required
to prevent the memory explosion.
3) Using n cores this algorithm can be parallelized to achieve an almost n-fold increase
in the computation time. The less than n-fold increase is especially prominent in case
we are using the parallel tempered MCMC. In this case the chains need to communicate
at every sweep. This requires all the cores to finish there calculations, gather the
results to reorder the chains and then send the jobs back to separate cores. On the
other hand if we are running n chains at the same temperature we can just run all of
them and gather the results at the end, this would provide an almost n-fold increase
in computational speed as minimal extra actions are required: only one-off sending
jobs to separate cores and only one-off collecting all the completed jobs at the end.
4) The computational estimates are based on the current implementation of the
algorithm in R. R is not a compiled language and therefore it is significantly slower
than say C++.

2.7 Discussion 59

2.7 Discussion

We tested our algorithm on both simulated datasets and the experimental single-cell
(Sachs et al., 2005) and Schistosomiasis datasets (the reduced, 11-variable case and the
full, 28-variable case).
Our algorithm dealt with modestly-sized networks of up to 11 nodes reasonably well.
It was also able to deal with a large percentage of missing data. Larger networks
caused our algorithm some trouble, and further work is still required in order to find a
satisfactory network for the entire Shistosomiasis dataset with its 28 variables.
It is important to note that out algorithm had no proper means of determining the
directionality of edges in a chain or a triangular structure. This means that we are only
able to identify connected cliques, but still have no accurate method for inferring the
causality within them. This did not present much of an issue for the reduced 11-variable
Schistosomiasis dataset, because the partial ordering is quite close to the total ordering
(not more than three nodes per time slice). Therefore, the result showed clear edge
directionality, despite taking the form of a tree graph. On the other hand, in the
single-cell dataset we were only able to identify 4 cliques, but not the edge directionality
in them. The same can be said about the full, 28-variable Shistosomiasis dataset, which
was significantly more problematic, because there were considerably more nodes in
each time slice and this resulted in greater ambiguity in edge directionality.

2.7.1 Model Limitations and Future Extensions

The limitations of this approach are two fold.
First of all this method can only deal with discrete data. Actually it only works with
categorical data. If we discretize data into more than two buckets the closed form
likelihood would not take the ordering of the buckets into account. Future work would
involve extending the method for ordered discrete data and preferably for continuous
data. We are dealing with continuous data in Chapter 5 but we don’t have a closed
form solution for the likelihood in this case.
The second limitation is the size of the network that can be inferred using this algorithm.
As we have shown above there is strong relationship between the speed of the algorithm
and the size of the network that we can effectively find, i.e. the faster our algorithm
runs, bigger networks it can deal with. The first step in increasing the speed of the
algorithm would be to reimplement the current code using faster language such as
C++. Another avenue would be to incorporate a bolder MCMC jumps, for example
inverting entire chain subgraph, resampling all the parents of the node, etc. It would

60 Network Inference of Discrete Bayesian Networks

require some additional work in establishing the jump probabilities for these more
complex moves (the likelihood of the new graph would be calculated in the same way
as now, so to calculate the acceptance probability we would additionally need to find
the probabilities for the proposal of the jump and its inverse).

Chapter 3

Independence Criteria

3.1 Introduction

The aim of this chapter is to introduce a quantitative measure of independence of
a sample. Later on this measure will be used in Chapter 5. To do so we begin by
discussing the idea of independence. Then we present some of the most popular
independence criteria, such as Distance Correlation, Kernel Covariance and the Hilbert
Schmidt Independence Criterion. We also introduce a new way of estimating the
dependence between variables in a special case - the Signal to Noise Ratio Criterion.
Finally we discuss how these criteria can be used to produce statistical tests to measure
the dependence between the variables. We conclude with a comparison of these criteria
on simulated data.

3.1.1 Independence

In order to be able to discus any independence criteria, we need to define independence.
Intuitively two events are independent if they do not influence each other.
Suppose we have only two events A and B together with a probability measure p.
Then A and B are independent (written A ⊥ B) if their joint probability is equal to
the product of their probabilities, i.e. p(A ∩ B) = p(A)p(B). Now suppose we have
a finite set of events A = {Ai : i = 1, ..., n}. In this case there exists two degrees
of independence. We say that A is pairwise independent if every pair of events is
independent, i.e. p(Ai ∩ Aj) = p(Ai)p(Aj) for all distinct i, j = 1, ..., n, and that
A is mutually independent if every event is independent of any intersection of other
events, i.e. p(⋂ki=1 Aji) = ∏k

i=1 p(Aji) for all subsets of {Ai : i = 1, ..., n}. A pairwise
independent set of events does not have to be mutually independent.

62 Independence Criteria

Example: Consider tossing a fair coin twice. The space of possible outcomes is
{TT, TH,HT,HH}. Let us define three events: A = {HT,HH}, B = {TH,HH},
C = {TT,HH}. Now as the coin is fair p(A) = p(B) = p(C) = 1/2. Also p(A ∩B) =
p(A ∩ C) = p(B ∩ C) = p({HH}) = 1/4 so all the events are pairwise independent.
But p(A ∩ B ∩ C) = p({HH}) = 1/4 ̸= 1/8 = p(A)p(B)p(C) so these events are not
mutually independent.

Two random variables X and Y with the probability density functions fX and fY

respectively and the joint probability density function fX,Y are independent if and
only if fX,Y = fXfY . For a finite family of random variables X = (X1, ..., Xn) the
definitions of pairwise and mutual independence extend naturally as described above.
In real life applications we usually do not have access to probability density functions,
but only to a finite sample from a distribution. Therefore it is important to consider
what it means for a finite sample to be truly independent. Suppose we have a finite
sample z = ((x1, y1), ..., (xn, yn)) from two random variables X and Y . If the random
variables X and Y are independent, having information about one of them does not
give us any information about the distribution of the other, i.e. p(Y | X = xi) = p(Y),
for all xi. This will happen only if the finite sample x and y lies on the grid, as in
Figure 3.1. If data does in fact lie on a grid as in Figure 3.1a, then for example knowing
that, say, x1 = 10 gives us know additional knowledge about y1, y1 is equally likely
to be any integer from 1 to 20. Note that any squeezing or expanding transformation
along the axis (as in Figures 3.1b and 3.1c) of the grid preserves the independence of
the data.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

5
10

15
20

x

y

(a) Data on an exact grid.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20

5
10

15
20

x

y

(b) Data on a grid: squeezed.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

0
5

10
15

20

x

y

(c) Data on a grid: expanded.

Fig. 3.1 Example of truly independent samples.

Suppose we are considering two genes and we are interested in determining whether
one of them directly influences another. All we have is a finite sample of measurements

3.2 Distance Correlation 63

of these protein expression levels. We may treat these two proteins as true underlying
random variables and the sample of measurements as the realisations from their
distributions. Now the question is “how can we make an inference about whether the
underlying random variables are dependent or not, given only the finite sample?” We
cannot be absolutely sure about the underlying probability distributions given only the
finite sample, but we may create a statistical test which will give us the probability
of the underlying random variables being independent given this sample. Trying to
construct such a test (and ensuring that it would be correct and efficient) will be the
goal of this chapter.

3.2 Distance Correlation

3.2.1 Introduction

In this section we discuss the first independence criteria - the correlation of distance
or the Distance Correlation Criterion (dCov) which was introduced in (Székely et al.,
2007), a different theoretical justification was later on provided in (Székely et al.,
2009). We start from this criteria as it is conceptually the easiest. We start by giving
some motivation why this might be a good criteria to look at in order to evaluate the
dependence between variables. We will continue by providing a rigorous mathematical
justification for this criterion and finally we will provide an empirical estimate that
can be used in practice.

3.2.2 Motivation

The easiest method to estimate whether a sample z = ((xi, yi), i = 1, ..., n) is dependent
is to look at the covariance of x and y, i.e. Cov(x, y) = n−1∑n

i=1(xi− x̄)(yi− ȳ), where
x̄ = n−1∑n

i=1 xi is the mean of x, equivalently ȳ is the mean of y. We can go one step fur-
ther and look at the correlation (defined as Cor(x, y) = Cov(x, y)/

√
Cov(x, x)Cov(y, y))

in order to have a scale-free parameter. After we have calculated the correlation of
our sample, we may compare that with expected correlation in case X and Y would
be independent and find the probability to observe data as extreme as ours given the
underlying independent variables. This provides as with a statistical test to determine
whether the underlying random variables are independent or not.
The problem with this approach is that the covariance and similarly the correlation
can catch only linear dependencies. Correlation is significantly different from zero if
and only if large values of x (significantly greater than x̄) go together with large values

64 Independence Criteria

of y and small values of x (significantly smaller than x̄) go together with small values
of y (positively correlated variables); or vice versa, large values of x with small values
of y and small values of x with large values of y (negative correlated variables). But
what if we have, say, a quadratic relationship: y = x2? Clearly this is not independent,
but for x symmetrically distributed around zero, we will find that the correlation of x
and y is very close to zero.
Székely et al. (2007) proposed to deal with this problem by looking at the correlation
of the distances between the datapoints instead of the correlation of the datapoints
themselves. Suppose we have a sample (x, y) = ((x1, y1), ..., (xn, yn)). Instead of looking
at the Cor(x, y) we look at Cor(dx, dy), where dx = (∥xi − xj∥, i, j = 1, ..., n) is an n2

dimensional vector of Euclidean distances between each pair of x’s and dy is defined in
a similar fashion. The exact independence criterion proposed in Székely et al. (2007)
is slightly more complicated than just Cor(dx, dy) (we will cover that in the following
section), but for a motivation this approximation is good enough.
We may think of the correlation as asking a question: “if x is large (small), is y also
large (small)?” While in the set up of the correlation of distances, given two points
(xi, yi) and (xj, yj) the question becomes: “if xi and xj are far apart (close together),
is yi and yj also far apart (close together)?”
In order to make this concept clearer lets consider the data samples in Figure 3.2 and
the distances between the datapoints in Figure 3.3. We start with 4 quadrants, each
a perfect grid. Data is truly independent in Figure 3.2a and therefore the data in
Figure 3.2a also lie on a grid. Then we start moving the two bottom quadrants closer
together as shown in Figures 3.2b & 3.2c. Data is no longer independent as knowing y,
i.e. whether we are in the top or bottom half, gives us a different distribution of x.
Looking just at the correlation of x and y does not tell us anything - the dataset is
symmetric with respect to the vertical axis, therefore the correlation is zero. On the
other hand if we look at Figure 3.3 we clearly see that the symmetry is being broken
and the correlation of distances dx and dy tells us that data is not independent any
more as the correlation of distances is significantly (we will discuss what “significantly”
precisely means and how to quantify that in the following sections) different from zero.
So if instead of considering the correlation of original data x and y we consider the
correlation of the distances between the datapoints dx and dy we get a numerical
estimate of how dependent is the data, as the correlation of dx and dy will be zero if
and only if the data would lie on the grid. This provides us with the first independence
criteria: the Distance Correlation Criterion.

3.2 Distance Correlation 65

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−20 −10 0 10 20 30

−
20

−
10

0
10

20
30

x

y

(a) Bottom quadrants apart,
Cor(x, y) = 0.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−20 −10 0 10 20 30

−
20

−
10

0
10

20
30

x
y

(b) Bottom quadrants closer,
Cor(x, y) = 0.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−20 −10 0 10 20 30

−
20

−
10

0
10

20
30

x

y

(c) Bottom quadrants to-
gether, Cor(x, y) = 0.

Fig. 3.2 Original data divided into 4 quadrants.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

0
10

20
30

40
50

dx

d y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) Distances of the data from
3.2a, Cor(dx, dy) = 0.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

0
10

20
30

40
50

dx

d y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b) Distances of the data
from 3.2b, Cor(dx, dy) =
0.12.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

0
10

20
30

40
50

dx

d y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(c) Distances of the data from
3.2c, Cor(dx, dy) = 0.24.

Fig. 3.3 Distances of the data from Figure 3.2. The colour of Section represents the
distances along the same coloured arrow in Figure 3.2, for example the green section
represents the distances between two quadrants both at the top or both at the bottom,
while the black section represents the distances inside the quadrant.

3.2.3 Definition of dCor

So far we have only given a motivation why using the correlation of distances might be
a good way of estimating the dependency between two variables. In this section we
will provide a short theoretical justification of the dCor, a more detailed explanation is
provided in Székely et al. (2007) and Székely et al. (2009).
Suppose we have two random variables X ∈ X ⊂ Rp and Y ∈ Y ⊂ Rq (for the majority
of the work in this thesis we may assume p = q = 1) with characteristic functions
ϕX(t) = E

[
eitX

]
and ϕY (t) = E

[
eitY

]
respectively. Denote the joint characteristic

66 Independence Criteria

function of X and Y by ϕX,Y (t, s) = E
[
ei(tX+sY)

]
. If the random variables X and Y

are independent, then ϕXϕY = ϕX,Y must hold. Therefore in order to check whether
X and Y are independent we should test the hypothesis

H0 : ϕX,Y = ϕXϕY vs. H1 : ϕX,Y ̸= ϕXϕY (3.2.1)

To formalise this idea we introduce some terminology. For any function f : Rp×Rq → R,
the weighted norm (written as ∥ · ∥w) in the weighted L2 space of the functions on Rp+q

is defined by
∥f(t, s)∥2

w =
∫
Rn+m

|f(t, s)|2w(t, s)dtds,

where w(t, s) is an arbitrary strictly positive everywhere weight function for which the
integral above exists.
Székely et al. (2007) defines a measure of dependence V between the random variables
X and Y as

V2(X, Y ;w) = ∥ϕX,Y (t, s)− ϕX(t)ϕY (s)∥2
w

=
∫
Rp+q
|ϕX,Y (t, s)− ϕX(t)ϕY (s)|2w(t, s)dtds,

(3.2.2)

such that V2(X, Y,w) = 0 if and only if X and Y are independent. This V is analogous
to the absolute value of the covariance measure. Equivalently to the correlation measure
we can define Rw:

Rw = V(X, Y,w)√
V2(X,X,w)V2(Y, Y, w)

(3.2.3)

It is important to note that not all the weight functions w give “interesting” results.
We want Rw to be scale invariant, that is, invariant with respect to transformations
(X, Y)→ (ϵX, ϵY) for any ϵ > 0. Scale invariance eliminates the necesity to consider
data normalization. Rw must also be positive for dependent variables. As Székely et al.
(2007) point out, if w is integrable and both X and Y have finite variance, then the
Taylor expansion of the underlying characteristic functions show, that

lim
ϵ→0

V(ϵX, ϵY, w)√
V2(ϵX, ϵX,w)V2(ϵY, ϵY, w)

= Cor(X, Y) (3.2.4)

Thus for uncorrelated X and Y and integrable w the Rw can be arbitrarily close to
zero, even if X and Y are not independent.

3.2 Distance Correlation 67

One (but not the only) possible weight function is suggested by Székely et al. (2007):

w0(t, s) = 1
cpcq|t|1+p

p |s|1+q
q

,

where
cp = π(1+p)/2

Γ((1 + p)/2) .

Now we have all the required pieces to define the distance covariance:

Definition 3.2.1. (Distance Covariance): Let X ∈ X ⊂ Rp and Y ∈ Y ⊂ Rq be
two random variables with finite first moments, then the Distance Covariance (dCov)
between random vectors X and Y is the non-negative number V(X, Y) defined by

V2(X, Y) = V2(X, Y,w0) = ∥ϕX,Y (t, s)− ϕX(t)ϕY (s)∥2
w0

= 1
cpcq

∫
Rp+q

|ϕX,Y (t, s)− ϕX(t)ϕY (s)|2

|t|1+p
p |s|1+q

q

dtds.
(3.2.5)

Similarly we define the Distance Variance (or dVar) for a random variable X ∈ X ⊂ Rn

as V2(X) = V2(X,X,w0) = ∥fX,Y (t, s) − fX(t)fY (s)∥2
w0 and finally the Distance

Correlation (or dCor) as R, where

R2(X, Y) =

V2(X,Y)√

V2(X)V2(Y)
, V2(X)V2(Y) > 0,

0, V2(X)V2(Y) = 0.

So it follows that for any two non-constant random variables X and Y the distance
correlation R(X, Y) is equal to zero if and only if fX,Y = fXfY , i.e. the random
variables X and Y are independent. This is a theoretical result and R(X, Y) would be
identically zero only under an infinite sample. In practice we have a finite sample and
therefore we are interested in an empirical estimate of R(X, Y). We discuss this in the
following section.

3.2.4 Empirical Estimate of dCor

So far we have provided the theoretical definition of the distance correlation and how
it can be used to measure the dependence between two random variables. Now we
provide the empirical estimate of the distance correlation from a finite sample Székely
et al. (2007). The connection between the theoretical definition and empirical estimate
will be made in Section 3.2.5.

68 Independence Criteria

Let X ∈ X ⊂ Rp and Y ∈ Y ⊂ Rq be two random variables and suppose we have
n observations: (x, y) = ((x1, y1), ..., (xn, yn)). Then we define the Gram distance
matrices K and L as Kij = ∥xi−xj∥ and Lij = ∥yi− yj∥. Next we define the following
auxiliary variables

Ki∗ = 1
n

n∑
j=1

Kij K∗j = 1
n

n∑
i=1

Kij K∗∗ = 1
n2

n∑
i,j=1

Kij

Li∗ = 1
n

n∑
j=1

Lij L∗j = 1
n

n∑
i=1

Lij L∗∗ = 1
n2

n∑
i,j=1

Lij

(3.2.6)

Then we define the centred Gram distance matrices K̃ and L̃ as

K̃ij = Kij −Ki∗ −K∗j +K∗∗

L̃ij = Lij − Li∗ − L∗j + L∗∗
(3.2.7)

Alternatively we can write K̃ = HKH and L̃ = HLH, where Hij = δij − 1
n
.

Lets consider what the centred Gram distance matrices K̃ represent. Lets go back
to the interpretation of Section 3.2.2. Instead of working with vectors x and y we
chose to look at the vectors dx and dy of the distances between the points of x and
y respectively. The correlation Cor(dx, dy) is the same as Cor

(
(dx − d̄x), (dy − d̄y)

)
.

Now dx − d̄x is the same vector as Kij −K∗∗ (if we transform the matrix into a vector
and order elements in the correct way), i.e. we normalize by subtracting the mean
distance from each element of the vector. On the other hand, to produce K̃ij from Kij ,
we normalized by subtracting the mean distance from each of the points xi and xj and
adding the mean distance. So we can think about K̃ as a vector of distances with a
slightly different normalization - one that stronger penalizes the outliers.

Example: In this example we demonstrate the effect on the outliers by K̃ and
Kij −K∗∗. Consider an example with two outliers: x = (−1, 0, ..., 0︸ ︷︷ ︸

98 times

, 1).

Then dx = K = (2, 2, 1, ..., 1︸ ︷︷ ︸
392 times

, 0, ..., 0︸ ︷︷ ︸
9606 times

) (not considering the ordering of the elements).

Now dx − d̄x = K −K∗∗ = (1.96, 1.96, 0.96, ..., 0.96︸ ︷︷ ︸
392 times

,−0.04, ...,−0.04︸ ︷︷ ︸
9606 times

), while

K̃ = (−1.96,−1.96, 0.04, 0.04, 0.02, ..., 0.02︸ ︷︷ ︸
392 times

,−0.004, ...,−0.004︸ ︷︷ ︸
9604 times

). We can generalize this:

suppose we have n data points and there are nout outliers. Then using dx − d̄x will
produce ≈ n × nout outliers (this is because every distance involving the outlier as

3.2 Distance Correlation 69

one of the two points will be an outlier in its own right) while K̃ will keep the same
number ≈ nout of the outliers.

We provide the definitions for the empirical estimates of the distance covariance,
variance and correlation:

Definition 3.2.2. (Empirical Distance Covariance): For a finite sample (x, y) =
((x1, y1), ..., (xn, yn)) from the pair of random variables (X, Y) the Empirical Estimate
of the Distance Covariance Vn is defined by

V2
n(x, y) = 1

n2

n∑
i,j=1

K̃ijL̃ij (3.2.8)

similarly the Empirical Estimate of the Distance Variance Vn is defined by

V2
n(x) = V2

n(x, x) = 1
n2

n∑
i,j=1

K̃2
ij (3.2.9)

finally the Empirical Estimate of the Distance Correlation Rn is defined by

R2
n(x, y) =

V2
n(x,y)√

V2
n(x)V2

n(y)
, V2

n(x)V2
n(y) > 0,

0, V2
n(x)V2

n(y) = 0.
(3.2.10)

We should note that there is no inherent difference whether we think about the K as
a matrix or a vector of distances. If we choose to think about K as a vector rather
than a matrix we can think of the empirical estimate of distance covariance as a dot
product between K̃ and L̃ (and normalizing by dividing by the its length, recall that
∥K∥ = ∥L∥ = n2). There is another interpretation of V2

n:

Proposition 3.2.1. The empirical estimate of the distance covariance V2
n can be

written as
V2
n(x, y) = 1

n2 Tr K̃L̃ (3.2.11)

Proof. Matrices K̃ and L̃ are symmetric, therefore L̃ = L̃T and so

n∑
i,j=1

K̃ijL̃ij =
n∑

i,j=1
K̃ijL̃ji = Tr K̃L̃ (3.2.12)

70 Independence Criteria

This is of interest because the trace of a matrix is equal to the sum of its eigenvalues,
i.e.

TrA =
n∑
i=1

λi (3.2.13)

where λi’s are the eigenvalues of A. So the empirical estimate of the distance covariance
is equal to (normalized) sum of all the eigenvalues of the product of the centred Gram
distance matrices K̃L̃. This gives a different interpretation of the meaning of this
independence criteria.

3.2.5 Theoretical Justification of dCor

So far we have given the theoretical definition of the distance correlation and its
empirical estimate, the last step that has to be made is to show that the empirical
estimate is indeed meaningful. To do so we provide a theorem and its corollary
taken from Székely et al. (2007), which show that the empirical estimates of distance
covariance and correlation tend to the real distance covariance and correlation as the
number of observations ten to infinity. For the proofs please refer to the original paper
Theorem 2 and Corollary 1.

Theorem 3.2.2 (Székely et al. (2007)). If E|X|p <∞ and E|Y |q <∞, then almost
surely

lim
n→∞

V2
n(x, y) = V2(X, Y) (3.2.14)

Corollary 3.2.1 (Székely et al. (2007)). If E(|X|p + |Y |q) <∞, then almost surely

lim
n→∞

R2
n(x, y) = R2(X, Y) (3.2.15)

This theorem finishes the presentation of the first of the independence criteria, the
correlation of distances or dCor. We will come back to it in later sections when we
will be discussing statistical tests to evaluate the probability of random variables being
independent.

3.3 Kernel Canonical Correlation

3.3.1 Introduction

In this section we discuss the second independence criteria, the kernel canonical
correlation (or F-correlation) first introduced by Bach and Jordan (2002). The

3.3 Kernel Canonical Correlation 71

intuition behind their criteria is very different from the previous one, the correlation
of distances, but as we will see later, the empirical estimate has many similarities.
We follow the same pattern as before: we start by the motivation why the canonical
correlation is worth looking at, and continue with a formal definition and empirical
estimate.

3.3.2 Motivation

The underlying idea behind the correlation of distances was: “correlation catches only
the linear trends, can we upgrade it to catch any sort of relationship?” This time we
will be asking a slightly different question: “can I apply some simple transformation to
data to extract a clear signal?” This is not a well defined question, we need to be more
specific about what we mean by a “simple” transformation and a “clear” signal. For
the time being lets define the simple transformation as a continuous function on the
data and clear signal as a linear relationship. Then the previously very vague question
may be written as

ρF = max
(f,g)∈F×G

Cor(f(x), g(y)), (3.3.1)

Here x ∈ X ⊆ Rp and y ∈ Y ⊆ Rq are two random variables and F is a space of all
continuous functions from X to R while G is a space of all continuous functions from
Y to R.

Example: To illustrate this idea consider a simple example. Consider the data from
Figure 3.4a. The variables x and y are dependent, but have zero correlation. In this
case we may extract a clear linear signal by applying a simple piece-wise linear function
shown in Figure 3.4b (it is essentially a permutation function that moves everything
from the interval (−1.5,−0.5) to the interval (−0.5, 0.5) and vice versa). After applying
this function to the variable y only we don’t achieve anything (see Figure 3.5a) but if
we apply f to both variables we get a very clear signal, correlation of −0.73. In this
example we used the same function for both variables, but in general they would be
different. Also we do not claim that f is the function that maximizes Cor(f(x), g(y)),
it simply is some function that extracts a clear signal and that is sufficient to show
that x and y are not independent.

72 Independence Criteria

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

y

(a) Data that is dependent but has zero
correlation, Cor(x, y) = 0.01.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

t

f(
t)

(b) Example of a function f that helps to
extract a linear dependency from the data

Fig. 3.4 Example of data that is dependent but has zero correlation and a function
that allows us to extract a linear dependence from this data.

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

f(
y)

(a) Data with function f applied only to
y, still zero correlation, Cor(x, f(y)) = 0.

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

f(x)

f(
y)

(b) Data with function f applied to both
x and y, Cor(f(x), f(y)) = −0.73.

Fig. 3.5 Data from Figure 3.4a with function f from the Figure 3.4b applied to one
and both variables.

3.3.3 Reproducing Kernel Hilbert Space

After some motivation why the transformations in Equation 3.3.1 are potentially
helpful to discover dependencies we provide a formal definition. The definition of

3.3 Kernel Canonical Correlation 73

the F-correlation relies heavily on the Hilbert spaces theory. To make our work
self-contained we provide the necessary theory in this section. We start by defining
normed and Hilbert spaces (definitions mainly taken from Sutherland (2009)), then
we introduce the reproducing kernels and the Reproducing Kernel Hilbert Spaces as
defined in Gretton et al. (2005) and Gretton et al. (2008).

Definition 3.3.1. (Metric space): Let X be an arbitrary non-empty set. Then a
function d : X ×X → R is a metric, or distance function, on X if

1. d(x, y) ≥ 0, ∀x, y ∈ X , and d(x, y) = 0 iff x = y;

2. d(x, y) = d(y, x), ∀x, y ∈ X ;

3. d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ X .

A metric space (X , d(·, ·)) is a set X equipped with a metric d.

Definition 3.3.2. (Normed space): Let F be a vector space over R. A function
∥ · ∥F : F → [0,∞) is said to be a norm on F if

1. ∥f∥F = 0 iff f = 0 (norm separates points);

2. ∥αf∥F = |α|∥f∥F , ∀α ∈ R, ∀f ∈ F (positive homogeneity);

3. ∥f + g∥F ≤ ∥f∥F + ∥g∥F , ∀f, g ∈ F (triangle inequality).

A normed vector space (F , ∥ · ∥F) is a vector space F equipped with a norm ∥ · ∥F .

Definition 3.3.3. (Convergent sequence): A sequence {fn}∞
n=1 of elements of a normed

vector space (F , ∥ · ∥F) is said to converge to f ∈ F if for every ϵ > 0, there exists
N ∈ N, such that for all n ≥ N , ∥fn − f∥ < ϵ.

Definition 3.3.4. (Cauchy sequence): A sequence {fn}∞
n=1 of elements of a normed

vector space (F , ∥ · ∥F) is said to be a Cauchy sequence if for every ϵ > 0, there exists
N ∈ N, such that for all n,m ≥ N , ∥fn − fm∥ < ϵ.

Definition 3.3.5. (Complete space): A metric space X is complete, if every Cauchy
sequence in X converges (to a point of X).

Definition 3.3.6. (Banach space): Banach space is a complete normed space, i.e. it
contains the limits of all its Cauchy sequences.

Definition 3.3.7. (Inner product space): Let F be a vector space over R. A function
⟨·, ·⟩F : F × F → R is said to be an inner product on F if

74 Independence Criteria

1. ⟨αf + βg, h⟩F = ⟨αf, h⟩F + ⟨βg, h⟩F , ∀α, β ∈ R, ∀f, g, h ∈ F ;

2. ⟨f, g·⟩F = ⟨g, f ·⟩F , ∀f, g ∈ F ;

3. ⟨f, f ·⟩F ≥ 0 and ⟨f, f ·⟩F = 0 iff f = 0.

An inner product space (F , ⟨·, ·⟩F) is a vector space F equipped with an inner product
⟨·, ·⟩F .

Definition 3.3.8. (Hilbert space): Hilbert space is a complete inner product space.

Definition 3.3.9. (Linear operator): Let F and G be normed linear spaces over R,
then an operator L : F → G, is called a linear operator iff

1. L(αf) = αLf , ∀α ∈ R, ∀f ∈ F (homogeneity);

2. L(f + g) = Lf + Lg, ∀f, g ∈ F (additivity).

Definition 3.3.10. (Operator norm): The operator norm of a linear operator L : F →
G is defined as

∥L∥ = sup
f∈F

∥Lf∥G

∥f∥F

Definition 3.3.11. (Bounded operator): The linear operator L : F → G is said to be
bounded operator if ∥L∥ <∞.

Definition 3.3.12. (Positive definite kernel): Let X be an arbitrary non-empty set.
Let F be a Hilbert space of functions f : X → R. A asymmetric function k : X×X → R
is called a positive definite kernel of F if

n∑
i,j=1

cicjk(xi, xj) ≥ 0 (3.3.2)

for all n ∈ N, x1, ..., xn ∈ X and c1, ..., cn ∈ R.

Example An example of a positive definite kernel is the widely used Gaussian (some-
times called radial basis function) kernel:

k(x, x′) = exp
(
−(x− x′)2

2σ2

)
(3.3.3)

Definition 3.3.13. (Reproducing kernel): Let X be an arbitrary non-empty set. Let
F be a Hilbert space of functions f : X → R. A symmetric function k : X ×X → R is
called a reproducing kernel of F if

3.3 Kernel Canonical Correlation 75

1. ∀x ∈ X , k(x, ·) ∈ F ;

2. ∀x ∈ X ,∀f ∈ F , ⟨f, k(x, ·)⟩F = f(x) (the reproducing property).

Let X be an arbitrary non-empty set. Let F be a Hilbert space of functions f : X → R.
Then a feature map is a function φ : X → F . For every feature map φ there is a
corresponding reproducing kernel k such that

k(x, x′) = ⟨φx(·), φx′(·)⟩F (3.3.4)

Choose a feature map to be φx(·) = k(x, ·), the it follows directly from Definition 3.3.13
that

⟨φx(·), φx′(·)⟩F = ⟨k(x, ·), k(x′, ·)⟩F = k(x, x′) (3.3.5)

Example To illustrate the relationship between the feature maps and the reproducing
kernels we go back to our example of the Gaussian kernel from Equation 3.3.3. In this
case we can show explicitly that for the corresponding feature map

φx(y) = (πσ2/2)−1/4 exp
(
−(x− y)2

σ2

)
(3.3.6)

with an inner product space F equipped with an inner product

⟨f(·), g(·)⟩F =
∫ ∞

−∞
f(y)g(y)dy (3.3.7)

relationship k(x, x′) = ⟨φx(·), φx′(·)⟩F holds.

76 Independence Criteria

⟨φx(·),φx′(·)⟩F =
∫ ∞

−∞
φx(y)φx′(y)dy

= 1√
πσ2/2

∫ ∞

−∞
exp

(
−(x− y)2

σ2

)
exp

(
−(x′ − y)2

σ2

)
dy

= 1√
πσ2/2

∫ ∞

−∞
exp

(
−(x2 − 2xy + y2 + x′2 − 2x′y + y2)

σ2

)
dy

= 1√
πσ2/2

∫ ∞

−∞
exp

−
(

2y2 − 4y x+x′

2 + 2
(
x+x′

2

)2
− 2

(
x+x′

2

)2
+ x2 + x′2

)
σ2

 dy

= 1√
πσ2/2

∫ ∞

−∞
exp

−2
(
y − x+x′

2

)2
− 1

2 (x− x′)2

σ2

 dy
= exp

(
− (x− x′)2

2σ2

)∫ ∞

−∞

1√
2π(σ/2)2

exp

−
(
y − x+x′

2

)2

2(σ/2)2

 dy
= exp

(
− (x− x′)2

2σ2

)
= k(x, x′)

(3.3.8)

Definition 3.3.14. Let X be an arbitrary non-empty set. Let F be a Hilbert space
of functions f : X → R. Given a feature map φ : X → R and a finite sample
x = {x1, ..., xn} ∈ X, the φ-image of x in F , denoted Fφx , is a linear subspace of F
spanned by the functions φxi(·), for all xi ∈ x, i.e.

Fφ =
(

n∑
i=1

αiφxi(·): ∀αi ∈ R and xi ∈ x
)

(3.3.9)

Definition 3.3.15. (Reproducing Kernel Hilbert Space): Let X be an arbitrary non-
empty set and let F be a Hilbert space of functions f : X → R. For any fixed x ∈ X
let δx : F → R be defined as δx : f → f(x). Then the Hilbert space F is said to be a
Reproducing Kernel Hilbert Space (RKHS) if δx is a bounded operator ∀x ∈ X .

The following definitions are taken from Hunter and Nachtergaele (2001).

Definition 3.3.16. If x, y are vectors in a Hilbert space H, then we say that x and
y are orthogonal, written x ⊥ y, if ⟨x, y⟩ = 0. We say that subsets A and B are
orthogonal, written A ⊥ B, if ∀x ∈ A, y ∈ B x ⊥ y holds. The orthogonal complement

3.3 Kernel Canonical Correlation 77

A⊥ of a subset A is the set of vectors orthogonal to A.

A⊥ = {x ∈ H | x ⊥ y,∀y ∈ A}

Definition 3.3.17. Let H be a Hilbert space. A maximal orthonormal subset u ⊂ H
is called an orthonormal basis of H.

Lemma 3.3.1 (Hunter and Nachtergaele (2001)). A Hilbert space H is separable iff
H has a countable orthonormal basis u ⊂ H.

3.3.4 Definition of the F-correlation

After providing the necessary definitions we introduce the F -correlation

Definition 3.3.18. (F-correlation): Let X ∈ X ⊂ Rp and Y ∈ Y ⊂ Rq be two
random variables. Let F and G be the Hilbert spaces of functions from X and Y
respectively to R. Let φ : X → F and ψ : Y → G be feature maps corresponding to
some reproducing kernels. Then the F-correlation ρF between φx and ψy is defined as

ρF(X, Y) = max
(f,g)∈F×G

Cor(⟨φX , f⟩F , ⟨ψY , g⟩G),

As φx and ψy both correspond to some reproducing kernels it follows from Defini-
tion 3.3.13 that ⟨φx, f⟩F = f(x),∀f ∈ F and ⟨ψy, g⟩G = g(y),∀g ∈ G. We can rewrite
Definition 3.3.18 in a simpler form

ρF = max
(f,g)∈F×G

Cor(f(X), g(Y)). (3.3.10)

Note that the F-correlation depends on two Hilbert spaces F and G which could
in principal be different. For the notational convenience we will keep calling it F-
correlation.
The following theorem provides the connection between the F-correlation and the
general independence (proof is provided in the original paper).

Theorem 3.3.2 (Bach and Jordan (2002)). (Independence and F -correlation): If F
and G are the reproducing kernel Hilbert spaces corresponding to the Gaussian kernels
on X = Y = R, then ρF = 0 if and only if the variables X and Y are independent.

After we have motivated the usage of a new independence criterion, namely the F-
correlation, and have formally defined it, we show how to estimate it for finite samples
in next section.

78 Independence Criteria

3.3.5 Empirical Estimate of the F-correlation

So far we have provided the formal definition of the F -correlation and how it can be
used to measure the dependence between two random variables. Next we provide the
empirical estimate for the F -correlation from a finite sample.
Let X ∈ X ⊂ Rp and Y ∈ Y ⊂ Rq be two random variables and suppose we have n
observations: (x, y) = ((x1, y1), ..., (xn, yn)). Suppose we want to make an empirical
estimate of the F -correlation between the random variables X and Y , i.e. we want to
find

ρ̂F(x, y) = max
(f,g)∈F×G

Ĉor
(
f(x), g(y)

)
(3.3.11)

Here and throughout this thesis the hat symbol will mean the empirical estimate, i.e.
ρ̂F denotes the empirical estimate of ρF .
Let Fφx ⊆ F and Gψy ⊆ G represent the φx and ψy images of the data points. To
make the notation less cumbersome we will use the short hand notation Fφ = Fφx
and Gψ = Gψy . Then we can write any f ∈ F and g ∈ G as f = ∑n

i=1 αiφxi + f⊥ and
g = ∑n

i=1 βiψyi +g⊥, where f⊥ and g⊥ are in the orthogonal complements to Fφ and Gψ
respectively. Now assuming that all the x’s and y’s are distinct and using the feature
maps related to the Gaussian kernels we have that (φxi , i = 1, ..., n) are the basis of Fφ
(similarly the ψyi are the basis for Gψ). Therefore we can write the empirical estimate
of the covariance as

Ĉov
(
⟨φx, f⟩Fφ , ⟨ψy, g⟩Gψ

)
= 1
n

n∑
i=1
⟨φxi , f⟩Fφ⟨ψyi , g⟩Gψ

and rewrite Equation 3.3.11 in a more convenient form

ρ̂F(x, y) = max
(f,g)∈Fφ×Gψ

Cor
(
f(x), g(y)

)
The following proposition provides us with a way to transform the problem of maxi-
mizing over all functions into a linear maximization problem

Proposition 3.3.3. Let (x, y) = ((x1, y1), ..., (xn, yn)) be observations from the two
random variables X and Y . Let K and L, defined as Kij = k(xi, xj) and Lij = l(yi, yj)
for some kernels k and l, be their kernel matrices respectively, then

max
(f,g)∈Fφ×Gψ

Ĉov(f(x), g(y)) = max
α,β∈Rn

1
n
αT K̃L̃β (3.3.12)

where K̃ = KH, L̃ = LH and H is a matrix with elements Hij = δij − 1/n.

3.3 Kernel Canonical Correlation 79

Proof. Proof is provided in the Appendix, Section C , Proposition C.1.1.

Proposition 3.3.4. Let M be an n× n matrix, then

max
∥α∥=∥β∥=1

αTMβ = |λmax|

where λmax is the largest (in absolute value) eigenvalue of M .

Proof. Let λi be the eigenvalues of M and ei be the corresponding eigenvectors. We
use the eigenvalue and eigenvector decomposition for M , i.e.

M = ΣTDΣ

where D is a diagonal matrix with elements Dii = λi and Σ is a matrix of eigenvectors
of M with ith column being eigenvector ei, then we can rewrite the maximization
problem as

max
∥α∥=∥β∥=1

αTMβ = max
∥α∥=∥β∥=1

αTΣTDΣβ

= max
∥α∥=∥β∥=1

(Σα)TD(Σβ)

= max
∥α′∥=∥β′∥=1

α′TDβ′

= max
∥α′∥=∥β′∥=1

n∑
i=1

λiα
′
iβ

′
i = |λmax|

Note: It is important to note that if we are considering an optimisation problem with
a constraint ∥α∥ = ∥β∥ = 1, then it follows from Proposition 3.3.4 that

max
∥α∥=∥β∥=1

αT K̃L̃β = |λmax| (3.3.13)

where λmax is the largest (in absolute value) eigenvalue of the matrix K̃L̃. So the
problem of maximizing over the space of functions F becomes a problem of finding
the largest eigenvalue. Another interesting observation is that in the case of the
F-correlation we are looking for the largest eigenvalue of the product of the kernel
matrices, while in the case of the distance covariance we were looking for the sum of all
eigenvalues of the product of the distance matrices. In both cases we have independence
if the corresponding values (the maximal eigenvalue or the sum of the eigenvalues) are
equal to zero. Now if the largest eigenvalue is zero, then the sum of eigenvalues will also
be zero, equivalently if the sum of all eigenvalues is zero, then the largest eigenvalue

80 Independence Criteria

must be zero as well. Note that here we are dealing with only non-negative eigenvalues
therefore “largest” eigenvalue is equivalent to “largest in the absolute value” (this is
the case because K̃ and L̃ are symmetric positive definite matrices and therefore there
product K̃L̃ is similar to a positive semi-definite matrix K̃−1/2(K̃L̃)K̃1/2 = K̃1/2L̃K̃1/2

which is congruent to L̃).
After similar calculations we also obtain:

V̂ar(f(x)) = 1
m
αT K̃K̃α

and
V̂ar(g(y)) = 1

m
βT L̃L̃β.

Putting these results together, the empirical estimate of F -correlation becomes that of
performing the following maximization:

ρ̂F(x, y) = max
α,β∈RN

αT K̃L̃β(
αT K̃K̃α

)1/2 (
βT L̃L̃β

)1/2 (3.3.14)

Without the loss of generality we may use the normalization αT K̃K̃α = 1 and βT L̃L̃β =
1.
So finding the empirical estimate of ρF becomes a constrained maximization problem:

max αT K̃L̃β
w.r.t. αT K̃K̃α = βT L̃L̃β = 1

(3.3.15)

Compare this with the constrained optimization problem for the F -covariance we have
discussed in Proposition 3.3.3

max αT K̃L̃β
w.r.t. αTα = βTβ = 1

(3.3.16)

It is the same optimization problem, only the constraints are different.
To solve this constrained optimization problem we use Lagrange multipliers. Differenti-
ating 3.3.14 with respect to α and β yields:K̃L̃β = αT K̃L̃β

αT K̃K̃α
K̃K̃α

L̃K̃α = αT K̃L̃β
βT L̃L̃β

L̃L̃β
(3.3.17)

Using the normalization conditions αT K̃K̃α = βT L̃L̃β = 1 we can rewrite this as

3.3 Kernel Canonical Correlation 81

 0 K̃L̃

L̃K̃ 0

 α

β

 =
(
αT K̃L̃β

) K̃K̃ 0
0 L̃L̃

 α

β

 (3.3.18)

Naming αT K̃L̃β = λ (recall that this is the quantity we want to maximize over) we can
write the optimization problem in Equation 3.3.14 as a generalized eigenvalue problem

 0 K̃L̃

K̃L̃ 0

 α

β

 = λ

 K̃K̃ 0
0 L̃L̃

 α

β

 (3.3.19)

Or alternatively:
 K̃K̃ K̃L̃

L̃K̃ L̃L̃

 α

β

 = (1 + λ)
 K̃K̃ 0

0 L̃L̃

 α

β

 (3.3.20)

The generalized eigenvalue problem in 3.3.19 has eigenvalues {λ1,−λ1, ..., λp,−λp}.
If λ′ is an eigenvalue with a corresponding eigenvector (α′ β′)T then −λ′ is also an
eigenvalue with a corresponding eigenvector (α′ -β′)T . Alternative version 3.3.20 has
eigenvalues {1 + λ1, 1 − λ1, ..., 1 + λp, 1 − λp}. We note, that for 3.3.20 finding the
maximal generalized eigenvalue 1 + λmax, where λmax is the empirical estimate of the
F-correlation, is equivalent to finding the minimal generalized eigenvalue, 1− λmax.
So we can find the canonical correlation by finding the minimal eigenvalue of 3.3.20.
Bach and Jordan (2002) points out that the un-regularised F -correlation is not a par-
ticularly useful estimate. In many cases (for example the Gaussian kernels and distinct
data points) the kernel matrices are invertible and the F -correlation is identically equal
to one. To overcome this issue they introduced the Regularised F-correlation. In the reg-
ularized approach we replace the generalized eigenvalue problem from Equation 3.3.19,
by

 0 K̃L̃

L̃K̃ 0

 α

β

 = λ

(
K̃ + pκ

2 I
)2

0
0

(
L̃+ qκ

2 I
)2

 α

β

 (3.3.21)

here κ is the regularization parameter and I is the identity matrix. For the more
detailed explanation off this regularization approach please refer to the Appendix C.

3.3.6 Kernel Generalized Variance

So far we have discussed the kernel canonical correlation or the F-correlation that
was introduced in the Bach and Jordan (2002). Finding an empirical estimate of the

82 Independence Criteria

F -correlation is equivalent to finding the largest eigenvalue of the generalized eigenvalue
problem 3.3.19.
Bach and Jordan (2002) proposed the generalization of F-correlation - the Kernel
Generalized Variance (KGV). KGV uses all the eigenvalues of the generalised eigenvalue
problem 3.3.20 (in this aspect it is more similar to the distance covariance), KGV also
has a close relationship with the mutual information.
We start by defining the mutual information and showing its relationship to the
eigenvalues in the Gaussian variable case.

Definition 3.3.19. The mutual information of two random variables X and Y is
defined as

I(X, Y) =
∫
X

∫
Y
p(x, y) log

(
p(x, y)
p(x)p(y)

)
dxdy (3.3.22)

where p(x, y) is the joint probability distribution function of X and Y , and p(x) and
p(y) are the marginal probability distribution functions of X and Y respectively.

Proposition 3.3.5. Two random variables X and Y are independent if and only if
their mutual information I(X, Y) is equal to zero.

Proof. Proof is provided in the Appendix C, Proposition C.1.3.

For Gaussian random variables there is a simple relationship between F-correlation
and the mutual information.

Proposition 3.3.6. Let X ⊂ Rp and Y ⊂ Rq be two multivariate Gaussian random

variables with covariance matrix C =
 C11 C12

C21 C22

. Then their mutual information is

I(X, Y) = −1
2 log

(
detC

detC11 detC22

)
(3.3.23)

Proof. Proof is provided in the Appendix C, Proposition C.1.4.

Recall from Section 3.3.5, that for two multivariate Gaussian random variable their
F-correlation is equal to the largest eigenvalue λmax of the generalized eigenvalue
problem C11 C12

C21 C22

 α

β

 = (1 + λ)
 C11 0

0 C22

 α

β

 (3.3.24)

Its eigenvalues come in pairs: {1 − λ1, 1 + λ1, ..., 1 − λn, 1 + λn}. For invertible
B, the eigenvalues of a generalized eigenvector problem Av = λBv are the same

3.3 Kernel Canonical Correlation 83

as the eigenvalues of the eigenvector problem B−1Av = λv. It follows that the
product of the eigenvalues can be expressed as the ratio of the determinants, i.e.∏
i λi = det(B−1A) = det(A)

det(B) . So the ratio of determinants detC
detC11 detC22

is equal to the
product of the generalized eigenvalues of Equation 3.3.24. Therefore we can rewrite
the mutual information between the two multivariate Gaussian random variables X
and Y from Proposition 3.3.6 as

I(X, Y) = −1
2 log

n∏
i=1

(1− λi)(1 + λi) = −1
2

n∑
i=1

log(1− λ2
i) (3.3.25)

This relationship between the mutual information and the eigenvalues of the covari-
ance matrices gives the motivation to define a new dependence measure: the Kernel
Generalized Variance. Instead of using only the largest eigenvalue of the generalized
eigenvector problem 3.3.20 as in the F -correlation case, we use all of the eigenvalues
for the Kernel Generalized Variance.

Definition 3.3.20. (Kernel Generalised Variance): Let X ∈ X ⊂ Rp and Y ∈ Y ⊂ Rq

be two random variables. Let F and G be the Hilbert spaces of functions from X
and Y respectively to R. Suppose we have a finite number of observations (x, y) =
((x1, y1), ..., (xn, yn)) from X and Y . Let k and l be two reproducing kernels with
corresponding feature maps φ : X → F and ψ : Y → G and the kernel matrices K and
L, defined as Kij = k(xi, xj) and Lij = l(yi, yj). Then the Kernel Generalised Variance
between x and y is defined as

KGV(x, y) = −1
2 log detC

detD = −1
2

n∑
i=1

log(1− λ2
i)

where C =

(
K̃ + pκ

2 I
)2

K̃L̃

L̃K̃
(
L̃+ qκ

2 I
)2

, D =

(
K̃ + pκ

2 I
)2

0
0

(
L̃+ qκ

2 I
)2

 and

λi’s are the generalized eigenvalues of Cv = λDv.

Note that in the above definition we provided the regularised version. If X and Y are
multivariate Gaussian random variables the KGV is exactly their mutual information.
In this section we have introduced two independence criteria, namely the Kernel
Canonical Correlation and the Kernel Generalised Variance. We have provided the
motivation to use these independence criteria as well as their formal definitions and
empirical estimates.

84 Independence Criteria

3.4 Hilbert-Schmidt Independence Criterion

In this section we discuss the Hilbert-Schmidt Independence Criterion (HSIC) which
was introduced in Gretton et al. (2005) and Gretton et al. (2008). This is the last
independence criterion from the literature that we are introducing. We chose to present
it last as it is the most theoretically involved out of the three independence criteria
(dCov, F-correlation and HSIC) but it provides more flexibility than the others. It
relies on the same theoretical background as the canonical correlation - the Reproducing
Kernel Hilbert Space. Necessary theoretical background is provided in Section 3.3.3.
It also uses the theory of the Hilbert-Schmidt spaces, required definitions are provided
in the following section.
We are not providing a motivational example for the HSIC as it follows the same ideas
as for the Kernel Canonical Correlation in Section 3.3.2. Given two random variables
X ∈ X and Y ∈ Y, if we can find two functions f : X → R and g : Y → R such that
Cov(f(X), g(Y)) is significantly different from zero, we conclude that random variables
X and Y are not independent.
We start this section by giving the necessary background for the Hilbert-Schmidt
spaces, then present the HSIC and its empirical estimate. Lastly we provide some of
the asymptotic properties of the HSIC.

3.4.1 The Hilbert-Schmidt Space

Lets consider two Hilbert spaces F and G such that F = {f s.t. f : X → R} and
G = {g s.t. g : Y → R}. Then for each element x ∈ X there is a corresponding
element φx(·) ∈ F such that ⟨φx, φx′⟩F = k(x, x′), where k : X × X → R is a unique
positive definite kernel. We require that F is separable (it is sufficient that the kernel
is continuous and X is separable). The second RKHS G, with kernel l(·, ·) and feature
map ψ on the separable space Y is defined similarly.
As the RKHS F and G are separable, they have countable orthonormal basis by the
Lemma 3.3.1. Now we have the required notation to provide the definition for the
Hilbert-Schmidt norm and operator.

Definition 3.4.1. (Hilbert-Schmidt norm): Let C : G → F be a linear operator.
Then, provided the sum converges, the Hilbert-Schmidt (HS) norm of C is defined as

∥C∥2
HS :=

∑
i,j

⟨Cvi, uj⟩2F (3.4.1)

where ui and vj are the orthonormal bases of F and G respectively.

3.4 Hilbert-Schmidt Independence Criterion 85

Definition 3.4.2. (Hilbert-Schmidt operator): Let C : G → F be a linear operator.
C is a Hilbert-Schmidt operator if its HS norm exists. The Hilbert-Schmidt space is a
separable Hilbert space of the Hilbert-Schmidt operators HS(G,F) : G → F with the
inner product

⟨C,D⟩HS :=
∑
i,j

⟨Cvi, uj⟩F⟨Dvi, uj⟩F (3.4.2)

The HSIC relies on a special Hilbert Schmidt operator - the Cross Covariance Operator.
Before we can define it, we first need to introduce the Tensor Product Operator. Consider
two functions f ∈ F and g ∈ G. Then the tensor product operator f ⊗ g : G → F is
defined as

(f ⊗ g)h := f⟨g, h⟩G for all h ∈ G (3.4.3)

Before we can define the cross covariance operator we first state and prove a result
about the HS norm of the tensor products.

Proposition 3.4.1. (HS norm of Tensor Products): The Hilbert-Schmidt inner product
of two tensor products can be rewritten in the following way

⟨f ⊗ g, h⊗ k⟩HS = ⟨f, h⟩F⟨g, k⟩G (3.4.4)

Proof. Proof is provided in the Appendix C, Proposition C.1.5.

Another important concept is the mean element of the Hilbert space F . Let (X ,Γ, pX)
and (Y ,Λ, pY) be two probability spaces, i.e. X and Y are two separable spaces with
the Borel sets Γ and Λ and probability measures pX and pY respectively. Let F and G
be two Hilbert spaces of functions from X and Y respectively to R (as defined before).
Let φ : X → F and ψ : Y → G be two feature maps corresponding to some reproducing
kernels. Then we define the mean elements µx(·) ∈ F and µy(·) ∈ G with respect to
these measures as

⟨µX , f⟩F := EX

[
⟨φX , f⟩F

]
= EX

[
f(X)

]
∀f ∈ F

⟨µY , g⟩G := EY

[
⟨ψY , g⟩G

]
= EY

[
g(Y)

]
∀g ∈ G

(3.4.5)

That is, µx is the element of F such that its inner product with any f ∈ F is equal to
the expected value of f over the probability space (X ,Γ, pX).
It follows that

86 Independence Criteria

∥µx∥2
F = ⟨µX , µX⟩F = EX

[
⟨φX , µX⟩F

]
= EX

[
EX′

[
⟨φX , φX′⟩F

]]
= EX,X′

[
⟨φX , φX′⟩F

]
= EX,X′

[
k(X,X ′)

] (3.4.6)

Here we treat the random variables X and X ′ as two independent copies of a random
variable with the same distribution.
Now we have all the required pieces to define the essential object of the HSIC, namely
the Cross-Covariance Operator.

Definition 3.4.3. (Cross-Covariance operator): The cross-covariance operator associ-
ated with the joint measure pxy on (X × Y ,Γ× Λ) is a linear operator CXY : G → F
defined as

⟨f, CXY g⟩F = EXY

[
(f(X)− EX [f(X)]) (g(Y)− EY [g(Y)])

]
(3.4.7)

Note that this is equivalent to ⟨f, CXY g⟩F = Cov(f(X), g(Y)), as it was defined in the
previous section. Using the following explicit calculation

⟨f, CXY g⟩F = ⟨f,Exy

[
(φX − µX)⊗ (ψY − µY)

]
g⟩F

= EXY ⟨f, (φX − µX) ⟨ψY − µY , g⟩G⟩F

= EXY

[
(⟨f, φX⟩F − ⟨f, µX⟩F) (⟨g, ψY ⟩G − ⟨g, µY ⟩G)

]

= EXY

[
(f(X)− EX [f(X)]) (g(Y)− EY [g(Y)])

]

We can write the cross-covariance operator itself as

CXY := EXY

[
(φX − µX)⊗ (ψY − µY)

]
(3.4.8)

3.4.2 Hilbert-Schmidt Independence Criterion

Now we introduce the Hilbert-Schmidt Independence Criterion as it was presented in
Gretton et al. (2005) and Gretton et al. (2008).

Definition 3.4.4. (HSIC): Given separable RKHSs F and G and a joint probability
measure pxy over (X ×Y ,Γ×Λ), we define the Hilbert-Schmidt Independence Criterion

3.4 Hilbert-Schmidt Independence Criterion 87

(HSIC) as the squared HS-norm of the associated cross-covariance operator Cxy:

HSIC(pxy,F ,G) := ∥Cxy∥2
HS (3.4.9)

This definition is not very convenient for actually calculating the HSIC as it involves
the tensor product and the mean elements of the Hilbert spaces which are not intuitive
quantities. The following Lemma gives a convenient way of finding the HSIC in terms
of kernels.

Lemma 3.4.2 (Gretton et al. (2005)). The Hilbert-Schmidt Independence Criterion
can be expressed in terms of kernels in the following way:

HSIC(pXY ,F ,G) = EX,Y,X′,Y ′

[
k(X,X ′)l(Y, Y ′)

]
− 2EX,Y

[
EX′

[
k(X,X ′)

]
EY ′′

[
l(Y, Y ′′)

]]
+ EX,X′

[
k(X,X ′)

]
EY,Y ′

[
l(Y, Y ′)

] (3.4.10)

Proof. The proof can be found in the original paper, we also provide a more explicit
version of the proof in the Appendix C, Lemma C.1.6.

3.4.3 Empirical Estimate of HSIC

So far we have introduced the necessary terminology of the Hilbert-Schmidt spaces and
defined the Hilbert-Schmidt Independence Criterion. In this section we will provide an
empirical estimate of the HSIC.

Definition 3.4.5. Let (x, y) = ((x1, y1), ..., (xn, yn)) ⊆ (X ×Y)n be a series of n inde-
pendent observations drawn from pXY . An unbiased estimator of the HSIC(pXY ,F ,G),
written HSIC(x, y), is given by a sum of three U-statistics

HSIC(x, y) := 1
(n)2

∑
(i,j)∈in2

kijlij +−2 1
(n)3

∑
(i,j,q)∈in3

kijliq + 1
(n)4

∑
(i,j,q,r)∈in4

kijlqr (3.4.11)

Here (n)k = n!
(n−k)! and ink are all k-tuples drawn from 1, 2, ..., n without replacement. A

biased estimator of HSIC, written HSICb(x, y), is given by as a sum of three V-Statistics

HSICb(x, y) := 1
n2

m∑
i,j=1

kijlij +−2 1
n3

m∑
i,j,q=1

kijliq + 1
n4

m∑
i,j,q,r=1

kijlqr

= 1
n2 TrKHLH

(3.4.12)

88 Independence Criteria

here H,K,L ∈ Rn×n, Kij = kij = k(xi, xj), Lij = lij = l(yi, yj) and Hij = δij − n−1.

For a detailed presentation of the U-statistics, see Appendix, Section C.2. The
HSIC estimate in Equation 3.4.11 is unbiased as all three U-statistics are unbiased
estimates: each summand comes from independent samples. The unbiased estimate of
EX,Y

[
EX′

[
k(X,X ′)

]
EY ′′

[
l(Y, Y ′′)

]]
is 1

(m)3

∑
(i,j,q)∈im3 kijliq. We want (x, y), x′ and y′ to

come from three different samples as the expectation over X, Y is over pXY (therefore
x and y come from the same sample i) and expectations over X ′ and Y ′ are over the
independent marginal probability distributions pX (from sample j) and pY (from sample
q). Similarly we want two independent samples to estimate EX,Y,X′,Y ′

[
k(X,X ′)l(Y, Y ′)

]
and four independent samples to estimate EX,X′

[
k(X,X ′)

]
EY ′′,Y ′′′

[
l(Y ′′, Y ′′′)

]
. The

difference between the unbiased and biased estimates is that in the biased estimate we
allow the indices of the different sums to be equal.

Theorem 3.4.3 (Gretton et al. (2005)). Let EXY denote the expectation taken over
n independent samples (xi, yi) drawn from pXY . Then

HSIC(pxy,F ,G) = EXY

[
HSICb(X, Y)

]
+O(n−1) (3.4.13)

Proof. The proof can be found in the original paper, we also provide a more explicit
version of a proof in the Appendix C, Theorem C.1.7.

We have shown that 1
m2 TrKHLH is a good empirical estimate of the HSIC. Recall

that the trace is the sum of the eigenvalues of the matrix. So the empirical estimate of
the HSIC is the (normalized) sum of the eigenvalues of KHLH, we should note the
similarities with the kernel canonical correlation which used the largest eigenvalue and
kernel generalized variance which used the product of the eigenvalues of the matrix
HKHHLH respectively as their empirical estimate.

3.4.4 Asymptotic Results

In this subsection we provide an asymptotic approximation for the HSIC estimate, for
a statistical test of independence from a finite sample.
First define an auxiliary variable hijqr:

hijqr = 1
4!

∑
(t,u,v,w)∈P(i,j,q,r)

ktultu − 2ktultv + ktulvw (3.4.14)

Where P(i, j, q, r) denotes all the permutations of integers (i, j, q, r). Then we can
write HSICb(x, y) as

3.4 Hilbert-Schmidt Independence Criterion 89

HSICb(x, y) = 1
m4

n∑
i,j,q,r=1

hijqr (3.4.15)

and the U-statistic HSICs(x, y) corresponding to HSICb(x, y) as

HSICs(x, y) = 1
(m)4

m∑
i,j,q,r=1

hijqr (3.4.16)

Note that for a large m

HSICb(x, y) = m(m− 1)(m− 2)(m− 3)
m4 HSICs(x, y) = HSICs(x, y) +O(m−1)

(3.4.17)
Recall that we are working in the following set up. Suppose we have two random
variables X ∈ X ⊂ Rm and Y ∈ Y ⊂ Rm and a finite set of observations (x, y) =
((x1, y1), ..., (xn, yn)). We are interested in testing

H0 : fX,Y = fXfY vs. H1 : fX,Y ̸= fXfY (3.4.18)

i.e. the null hypothesis “X and Y are independent” v.s. the H1 “X and Y are not
independent”. The following two theorems (Theorems 1 and 2 from Gretton et al.
(2008)) provide the asymptotic results for the HSICb(X, Y) under both H0 and H1.

Theorem 3.4.4. Under the H1, HSICb(X, Y) converges in distribution as m→∞ to
a Gaussian according to

√
m(HSICb(X, Y)− HSIC(pXY ,F ,G))→ N (0, σ2

u) (3.4.19)

where
σ2
u = 16

(
Ei [Ejqr[hijqr]]2 − HSIC (pXY ,F ,G)

)
(3.4.20)

Proof. Special case of the Theorem C.2.3 in the Appendix, Section C.2.

Theorem 3.4.5. Under the H0, the U-statistic HSICs(x, y) is degenerate, that is
Ei[hijqr] = 0. In this case, HSICb(x, y) converges in distribution according

nHSICb(X, Y)→
∞∑
k=1

λkZ
2
k (3.4.21)

90 Independence Criteria

where Zk ∼ N (0, 1) i.i.d., and λk are the solutions to the eigenvalue problem

λlψl(zi) = EZj ,Zq ,Zr

[
hijqr(zi, Zj, Zq, Zr)ψl(zi)

]
(3.4.22)

Proof. Special case of the Theorem C.2.4 in the Appendix, Section C.2.

We should note that Székely et al. (2009) provide similar results to Theorems 3.4.4
& 3.4.5 for the distance covariance. This comes as no surprise, as we will see in the
following section, there is a very close relationship between the distance covariance and
the HSIC.
Under the null hypothesis, that is assuming that X and Y are independent, we can
approximate the null distribution (the infinite sum of chi-squared random variables)
by the two parameter Gamma distribution.

HSICb(X, Y) ∼ Γ(α, β) (3.4.23)

where
α = (E(HSICb(X, Y))2

Var(HSICb(X, Y)) and β = Var(HSICb(X, Y))
E(HSICb(X, Y)) (3.4.24)

Theorem 3.4.6 (Gretton et al. (2008)). (Mean of HSICb(X, Y)): Under H0 the mean
of HSICb(X, Y) is

E(HSICb(X, Y)) = m−1
(
EXY kl − EXk∥µY ∥2 − EY l∥µX∥2 + ∥µX∥2∥µY ∥2

)
(3.4.25)

Here EXk = EX [k(X,X)] and EY l = EY [l(Y, Y)]. ∥µX∥2 = EXX′k(X,X ′), where X
and X ′ are independent and identically distributed.

Proof. Proof can be found in the original paper, we also provide a more explicit version
of a proof in the Appendix C.1.3, Theorem C.1.8.

Theorem 3.4.7 (Gretton et al. (2008)). (Variance of HSICb(X, Y)): Under H0 the
variance of HSICb(X, Y) is

Var(HSICb(X, Y)) = 2(m− 4)(m− 5)
(m)4

∥Cxx∥2
HS∥Cyy∥2

HS (3.4.26)

Here ∥Cxx∥2
HS = 1

m2 TrKHKH +O(m−1).

Proof. Proof can be found in the original paper, we also provide a more explicit version
of a proof in the Appendix C.1.3, Theorem C.1.9.

3.5 Similarities between the Independence Criteria 91

Distance Kernel: For the distance kernel k(xi, xj) = ∥xi−xj∥ Equation 3.4.25 simplifies
to

E(HSICb(X, Y)) ≈ m−1∥̂µx∥
2
∥̂µy∥

2
(3.4.27)

Gaussian Kernel: For the Gaussian kernel k(xi, xj) = exp
(

−∥xi−xj∥2

σ2

)
Equation (3.4.25)

simplifies to

E(HSICb(X, Y)) ≈ m−1
(

1− ∥̂µx∥
2)(

1− ∥̂µy∥
2)

(3.4.28)

Here ∥̂µx∥2 = 1
(m)2

∑
i,j∈i2m k(xi, xj) and ∥̂µy∥2 = 1

(m)2

∑
i,j∈i2m l(yi, yj). These approxi-

mations hold because for the distance kernel EX [k(X,X)] = 0 and for the Gaussian
kernel EX [k(X,X)] = 1.

3.5 Similarities between the Independence Criteria

So far we have introduced three independence criteria: the distance covariance, the
kernel canonical correlation (and its alternative the kernel generalized variance) and
the Hilbert Schmidt Independence Criterion. They all had different motivation and
the theoretical interpretation of these criteria was different. Despite this, there are
quite a few similarities among them. First of all they all rely on the eigenvalues of the
product of the kernel matrices. In the case of the distance covariance we use a special
type of kernel - the Euclidean distance. For the kernel canonical correlation Bach and
Jordan (2002) suggested to use the Gaussian kernel and finally there is no restriction
for the kernel in the HSIC, therefore it could be considered as a generalized version.
In this section we discuss the similarities between the three previously introduced
independence criteria. Sejdinovic et al. (2013) established the equivalence between
the distance-based (e.g. dCov) and RKHS-based (e.g. HSIC) statistics to measure
dependence. We on the other hand show explicitly that dCov and KGV can be treated
as the special cases of the HSIC with specific kernels. These are less general results than
what Sejdinovic et al. (2013) showed but provides more intuition into the relationship
between the independence criteria.

92 Independence Criteria

3.5.1 Relationship between dCov and HSIC

We start by presenting the relationship between the distance covariance and the HSIC.
dCov and HSIC are one of the most popular independence criteria therefore this
relationship is of great interest. We use some of the ideas presented in Schölkopf (2001).
To begin with we note the similarities between the empirical estimates of the dCov
(Definition 3.2.2) 1

n2
∑n
i,j=1 K̃ijL̃ij and HSIC (Definition 3.4.5) 1

n2 TrKHLH, where
K̃ = HKH.
First note that HH = H as

HH = (In − n−111T)(In − n−111T)
= In − n−111T − n−111T + n−21n1T

= In − n−111T = H

(3.5.1)

Secondly recall that ∑n
i,j=1 K̃ijL̃ij = Tr K̃L̃ (shown in Proposition 3.2.1). It follows

that

Tr K̃L̃ = Tr(HKH)(HLH) = Tr(KHH)(LHH) = TrKHLH (3.5.2)

We see that both empirical estimates have the same form up to the definition of
the matrices K and L. Before we can prove that dCov is a special case of HSIC in
Proposition 3.5.5, we need to state and prove some auxiliary results.

Definition 3.5.1. A symmetric function k : X × X → R for which for all n ∈ N, for
all x1, x2, ..., xn ∈ X and for all c1, c2, ...cn ∈ R we have

n∑
i,j=1

cicjk(xi, xj) ≥ 0

is called a positive definite (pd) kernel.

Definition 3.5.2. A symmetric function k : X × X → R for which for all n ∈ N, for
all x1, x2, ..., xn ∈ X and for all c1, c2, ...cn ∈ R, s.t. ∑n

i=1 ci = 0 we have

n∑
i,j=1

cicjk(xi, xj) ≥ 0

is called a conditionally positive definite (cpd) kernel.

Proposition 3.5.1. (Distance measure is a (cpd) kernel): The negative Euclidean
squared distance d2 : R× R→ R defined as d2(x, y) = −∥x− y∥2 for all x, y ∈ R is a
cpd kernel.

3.5 Similarities between the Independence Criteria 93

Proof. For any n ∈ N, for all x1, x2, ..., xn ∈ X and for all c1, c2, ...cn ∈ R, s.t. ∑n
i=1 ci =

0 we have

−
n∑

i,j=1
cicj∥xi − xj∥2 = −

n∑
i,j=1

cicj
(
∥xi∥2 − 2⟨xi, xj⟩+ ∥xj∥2

)

= −
(n∑
j=1

cj

)
︸ ︷︷ ︸

=0

(n∑
i=1

ci∥xi∥2
)

+ 2
n∑

i,j=1
cicj⟨xi, xj⟩ −

(n∑
i=1

ci

)
︸ ︷︷ ︸

=0

(n∑
j=1

cj∥xj∥2
)

= 2
n∑

i,j=1
cicj⟨xi, xj⟩ = 2∥

m∑
i=1

cixi∥2 ≥ 0

Proposition 3.5.2 (Berg et al. (1984)). If k : X ×X → [−∞, 0] is a cpd kernel, then
so is − (−k)α, α ∈ (0, 1).

Corollary 3.5.1. Negative Euclidean distance is a cpd kernel.

Proof. The negative Euclidean squared distance d2(x, y) = −∥x − y∥2 is a cpd by
Proposition 3.5.1, then by Proposition 3.5.2 the negative Euclidean distance defined as
d(x, y) = −(−d2(x, y)1/2 = −∥x− y∥ is also a cpd.

Proposition 3.5.3 (Schölkopf (2001)). Let K be a symmetric matrix, let 1 ∈ Rn be
the vector of all ones, I be a n× n identity matrix and some vector c ∈ Rn satisfies
1T c = 1, then

K̃ :=
(
I − cT1

)
K
(
I − cT1

)
is positive definite iff K is conditionally positive definite.

Proof. “⇒” Suppose K̃ is positive definite, i.e. for any a ∈ Rn, we have

0 ≤ aT K̃a = aTKa+ aT1cTKc1Ta− aTKc1Ta− aT1cTKa

If ∑n
i=1 ai = aT1 = 1Ta = 0, then the three last terms vanish. So we have that

aTKa ≥ 0, i.e. K is conditionally positive definite.
“⇐” Suppose K is conditionally positive definite. The map (I − c1T) has its range in
the orthogonal complement of 1, as for any a ∈ Rn,

1T (I − c1T)a = 1Ta− 1T c︸︷︷︸
=1

1Ta = 0

94 Independence Criteria

Moreover, being symmetric and satisfying (I − c1T)2 = I − Ic1T − c1T I + c1T c︸︷︷︸
=1

1T =

(I − c1T), the map (I − c1T) is a projection. Thus K̃ is the restriction of K to the
orthogonal complement of 1, and by definition of conditional positive definiteness, that
is precisely the space where K is positive definite.

Proposition 3.5.4 (Schölkopf (2001)). Let k be a symmetric kernel, x1, ..., xn ∈ X
and let c1, ..., cn ∈ R, s.t. ∑n

i=1 ci = 1. Then

k̃(x, x′) := 1
2

(
k(x, x′)−

n∑
i=1

cik(x, xi)−
n∑
i=1

cik(xi, x′) +
n∑

i,j=1
cicjk(xi, xj)

)

is positive definite if and only if k is conditionally positive definite.

Proof. Consider a set of points x′
1, ..., x

′
n′ ∈ X , n′ ∈ N and let K be the (n+n′)×(n+n′)

Gram matrix based on x1, ..., xn, x
′
1, ..., x

′
n′ . Apply proposition 3.5.3 using cn+1 = ... =

cn+n′ = 0.

Proposition 3.5.5. The empirical estimate of the distance covariance is a special case
of the empirical estimate of the HSIC.

Proof. Let x = (x1, ..., xm) ∈ X n and y = (y1, ..., ym) ∈ X n be two samples, K and L

be Euclidean distance matrices for x and y respectively, with elements Kij = ∥xi− xj∥
and Lij = ∥yi − yj∥, H be an n × n matrix, with elements Hij = δij − 1/n. Define
K̃ = HKH, L̃ = HLH. We define the empirical estimate for the distance covariance
between x and y as dCov(x, y) = 1

n2 Tr K̃L̃. K̃− = −HKH, L̃− = −HLH are positive
definite matrices by Propositions 3.5.1, 3.5.3 and 3.5.4. Using kernels K̃− and L̃−

the Hilbert-Schmidt independence criterion for samples x and y can be defined as
HSIC(K̃−, L̃−).

dCov(x, y) = 1
n2 Tr K̃L̃ = 1

n2 Tr(HKH)(HLH)

= 1
n2 Tr(H(−HKH)H)(H(−HLH)H) = HSIC(K̃−, L̃−)

So it follows that the dCov is the Hilbert-Schmidt independence criterion with a specific
reproducing kernels represented by the Gram matrices −HKH and −HLH (K and L
are matrices of Euclidean distances).

3.5 Similarities between the Independence Criteria 95

3.5.2 Relationship between KGV and HSIC

In the following section we point out some similarities between the Kernel Generalised
Variance and the Hilbert-Schmidt Independence Criterion. Before we can do that we
need to state and prove some results.

Proposition 3.5.6. (Alternative form of 3.3.20): Let rκ(K) =
(
K̃ + nκ

2 I
)−1

K̃ =
K̃
(
K̃ + nκ

2 I
)−1

. Then the eigenvalue problem

 I rκ(K)rκ(L)
rκ(L)rκ(K) I

 α̂

β̂

 = (1 + λ)
 α̂

β̂

 (3.5.3)

is equivalent to the generalised eigenvalue problem 3.3.20, i.e. they both have the same
eigenvalues.

Proof. First of all we will introduce some new notation K̃κ = K̃ + nκ
2 I, rκ(K) =

K̃−1
κ K̃ = K̃K̃−1

κ and α̂ = K̃κα. Similarly for L̃κ, rκ(L) and β̂. Then

 K̃2
κ K̃L̃

L̃K̃ L̃2
κ

 α

β

 = (1 + λ)
 K̃2

κ 0
0 L̃2

κ

 α

β

 K̃−1

κ 0
0 L̃−1

κ

 K̃2
κ K̃L̃

L̃K̃ L̃2
κ

 α

β

 = (1 + λ)
 K̃−1

κ 0
0 L̃−1

κ

 K̃2
κ 0

0 L̃2
κ

 α

β

 K̃κ K̃−1

κ K̃L̃

L̃−1
κ L̃K̃ L̃κ

 α

β

 = (1 + λ)
 K̃κ 0

0 L̃κ

 α

β

 I K̃−1

κ K̃L̃L̃−1
κ

L̃−1
κ L̃K̃K̃−1

κ I

 K̃κα

L̃κβ

 = (1 + λ)
 K̃κα

L̃κβ

 I rκ(K)rκ(L)
rκ(L)rκ(K) I

 α̂

β̂

 = (1 + λ)
 α̂

β̂

Note that this gives us an alternative form for the Kernel Generalised Variance as well.
Namely:

KGV(x, y) = −1
2 log det

 I rκ(K)rκ(L)
rκ(L)rκ(K) I

 (3.5.4)

96 Independence Criteria

Proposition 3.5.7. Let M =
 A B

C D

 be a block matrix. Then its determinant

can be written as

detM = det
(
AD −BD−1CD

)
Proof.

det
 A B

C D

 = det
 A B

C D

 det
 I 0
−D−1C I

= det

(
A−BD−1C

)
det (D) = det

(
AD −BD−1CD

)

Definition 3.5.3. Let M be an n× n dimensional matrix, with elements mij, then

∥M∥HS =
(

n∑
i,j=1

m2
ij

)1/2

is called its Hilbert-Schmidt or Frobenius norm.

Proposition 3.5.8. Let M be an n× n dimensional matrix, with elements mij and
eigenvalues λ1, ..., λn, then its Hilbert-Schmidt norm squared is equal to the sum of its
eigenvalues squared, that is

∥M∥2
HS =

n∑
i=1

λ2
i

Proof. If λ is an eigenvalue of M , i.e. Mu = λu, for some eigenvector u, then λ2 is the
eigenvalue of the matrix MMT , as MMTu = Mλu = λ2u. Then, recalling that the
trace of a matrix is equal to the sum of its eigenvalues, it follows that

∥M∥2
HS =

n∑
i,j=1

m2
ij = Tr

(
MMT

)
=

n∑
i=1

λ2
i

Proposition 3.5.9. Let M be an n × n dimensional matrix with a small Hilbert-
Schmidt norm, i.e. its eigenvalues are small, then

− 1
2 log det

(
I −MMT

)
≈ 1

2 Tr
(
MMT

)
(3.5.5)

3.5 Similarities between the Independence Criteria 97

Proof. If λ is an eigenvalue of M , i.e. Mu = λu, for some eigenvector u, then λ2 and
1− λ2 are the eigenvalues of the matrices MMT and I −MMT respectively.

(
I −MMT

)
u = u− λ2u =

(
1− λ2

)
u

If |ϵ| ≪ 1, then it follows from the Taylor expansion that

log(1− ϵ) = ϵ+ o(ϵ) ≈ ϵ

Now combining the above we have

−1
2 log det

(
I −MMT

)
= −1

2
∑
i

log
(
1− λ2

i

)
≈ 1

2
∑
i

λ2
i = 1

2 Tr
(
MMT

)

Close to the independence, we have

ρ̂F = max
f,g∈F

Ĉor(f(x)g(y))≪ 1⇒ λmax ≪ 1 (3.5.6)

So the conditions for Proposition 3.5.9 holds and we have:

KGV(x, y) = −1
2 log det

 I rκ(K)rκ(L)
rκ(L)rκ(K) I

= −1

2 log det
(
I − rκ(K)rκ(L)rκ(L)rκ(K)

)
by Proposition 3.5.7

≈ 1
2 Tr

(
rκ(K)2rκ(L)2

)
by Proposition 3.5.9.

= 1
n

Tr
(√n

2 rκ(K)2
√
n

2 rκ(L)2
)

= HSIC
(√n

2 rκ(K)2,

√
n

2 rκ(L)2
)

So it follows that the KGV is approximately the Hilbert-Schmidt independence criterion
with a specific reproducing kernels represented by the Gram matrices

√
n
2 rκ(K)2 and√

n
2 rκ(L)2 instead of K̃ and L̃.

98 Independence Criteria

3.6 Statistical Tests of Independence

3.6.1 Introduction

We introduced three different approaches to estimate the general independence between
two random variables. We also introduced their empirical estimates, i.e. the way to
estimate how dependent a pair of random variables (X, Y) is, given a finite sample
(x, y) = ((x1, y1), ..., (xn, yn)) of the random variables. All the empirical estimates give
us a single number. We know that a value of zero would mean independence, but this
can happen only if all our observations lie on an exact grid, which happens with zero
probability. What we are actually interested in is testing the independence hypothesis,
i.e. testing

H0 : X ⊥ Y vs. H1 : X ̸⊥ Y (3.6.1)

As in the case of any hypothesis testing we are interested in the confidence with which
we could reject H0. That is, we are interested in a p-value, the probability to observe
data as dependent as (x, y) if H0 is true, i.e. if the random variables X and Y are
truly independent.
We are interested in two tests, the unconditional independence test which test hypothesis
as in Equation 3.6.1 and the conditional independence test that tests whether X and
Y are independent given random variable(s) Z, i.e.

H0 : X ⊥ Y | Z vs. H1 : X ̸⊥ Y | Z (3.6.2)

In this section we present statistical tests for both unconditional and conditional
dependence, as well as compare the independence tests themselves. We consider the
distance covariance and the HSIC only, as the F-correlation and similarly the KGV
are computationally very expensive. As we have shown before, the distance covariance
is equivalent to the HSIC using a special kernel based on the Euclidean distance.
Nevertheless we will keep referring to it as the distance covariance and we will refer to
the HSIC with a Gaussian kernel as the HSIC.

3.6.2 Test of the Unconditional Independence

In this section we discuss the unconditional independence tests. We present two
different approaches, namely the permutation test and the gamma test. Recall that
we have a finite sample (x, y) = ((x1, y1), (x2, y2), ..., (xn, yn)) from a pair of random

3.6 Statistical Tests of Independence 99

variables X and Y . We are interested in testing H0: X and Y are independent versus
H1: X and Y are not independent.

Permutation Test

The first test is a simple permutation test. The idea behind it is that permuting y
removes any dependency between x and y. Therefore we can compare the IC(x, y)
(here IC stands for our chosen independence criterion) with IC(x, yρ), where yρ is the
permutation ρ applied to the sample y. We choose the number of permutations r,
and create r permuted samples y(j) = {yρj(i)}, j = 1, . . . , r. Then the p-value p is
the fraction of times the IC(x, y) is smaller than the IC(x, y(j)). If X and Y are truly
independent, permuting y will not change much and we will get a large p-value p and
therefore we will not be able to reject the null hypothesis (X and Y are independent).
On the other hand if X and Y were not independent, IC(x, y) will be much larger than
any of the IC(x, y(j)), we will get a very small p-value (i.e. probability to observe data
as dependent as (x, y) given that X and Y are independent is very low) and we will be
able to reject the H0. Algorithm of the permutation independence test is provided in
Algorithm 2.

Data: x, y, r
Result: p-value
Calculate ICr+1 = IC(x, y) ;
for i in 1 : r do

Permute y to get y(i) ;
Calculate ICi = IC(x, y(i))

end
Calculate p-value as p =

∑n

i=1 1(ICr+1<ICi)
r+1 ;

return p
Algorithm 2: Permutation test

Gamma Test

The second approach is to use the Gamma approximation of the HSIC under the null
hypothesis as discussed in Section 3.4.4. The same approximation works for the dCov.
The value of the asymptotic distribution of the empirical estimate IC(x, y) under the
null hypothesis of independence is approximated by a Gamma distribution: IC(x, y) ∼

100 Independence Criteria

Gam(α, θ) where α is the shape parameter and θ is the scale parameter calculated as

α = E[ÎCX,Y]2

Var(ÎCX,Y)
, θ = Var(ÎCX,Y)

E[ÎCX,Y]

The p-value is then obtained as an upper-tail quantile of IC(x, y).

Efficient calculation

Computing IC(x, y) for both the dCov and HSIC is expensive with complexity O(n3)
(we need to multiply n×n kernel matrices), n being the sample size. Naively calculating
the empirical estimate r + 1 times for the permutation test is extremely slow. (Bach
and Jordan, 2002) suggested an incomplete Cholesky factorization for finding the F -
correlation efficiently. Using the m steps factorization reduces the complexity to O(nm3)
for a chosen m < n. In more detail, K and L are approximated by K̃ ≈ UxDxU

T
x , with

the matrix of eigenvectors Ux and the matrix of eigenvalues Dx of size n×m and m×m,
respectively. Similarly L̃ ≈ UyDyU

T
y . This factorization is suitable since, with slowly

decaying kernel functions, Gram matrices often have a low effective rank. Instead of
permuting the entries of y and recalculating the Gram matrix, we exploit the one-to-one
relationship between samples yi and the rows and columns of the Gram matrix L, since
L(i, j) = l(yi, yj) (with a symmetric kernel function l). In the calculation of H(x, y(i))
we use L(j) = PjLP

T
j ≈ PjUyDyU

T
y P

T
j , with a permutation matrix Pj permuting rows

according to permutation ρj. This means that an incomplete Cholesky decomposition
needs to be performed only once for all permuted datasets y(i), and consequent values
H(x, y(i)) can be obtained simply by permuting coordinates of the eigenvectors in Uy

(K̃ is kept the same).

3.6.3 Test of the Conditional Independence

The unconditional independence test provides us with a tool to check for an inde-
pendence between two random variables X and Y . But we also may be interested
in checking for a conditional independence, for example within the PC algorithm (to
be discussed in more detail in the next chapter) or if we are interested in a mutual
rather than pairwise independence. That is, we want to test the hypothesis as in
Equation 3.6.2.
We explore two approaches. The first, permutation-cluster test suggested in Gretton
et al. (2009) and Tillman (2009), is based on a conditional version of the HSIC from the
Fukumizu et al. (2008). The alternative test we propose here is based on the residuals.

3.6 Statistical Tests of Independence 101

It is simpler in that it only requires an unconditional version of the HSIC and can be
readily applied to other independence criteria for which there is no conditional version
readily available that allows integration of a conditioning set of variables, as in the
case of the dCov.

Permutation-Cluster Test

Fukumizu et al. (2008) provide an estimator for a conditional version HSIC(X, Y | Z)
of the HSIC for a sample set (xi, yi, zi), i = 1, . . . , n as

H(x, y | z) = 1
2 Tr(K̃L̃− 2K̃M̃M̃−2

ϵ M̃L̃+ K̃M̃M̃−2
ϵ M̃L̃M̃M̃−2

ϵ M̃) (3.6.3)

where K̃, and L̃ are defined as before for x, and y, M̃ is the analogous Gram matrix for
z and M̃ϵ = (M̃+ϵIn). ϵ is a regularization parameter that needs to be carefully selected
(see the Results section). The calculation of HSIC(X, Y | Z) is computationally very
expensive, but the same simplifications can be used as in the unconditional case.
In order to obtain a p-value for rejecting independence based on the estimator (3.6.3)
for the conditional HSIC criterion, the samples are clustered according to the Euclidean
distance between the z coordinates of samples. Sample labels of y are only permuted
within each cluster, thus ensuring that the permuted samples break dependency
between x and y for an approximately fixed z but retain their dependency on z. For
the clustering we use a k-means algorithm (Hartigan and Wong (1979) implemented in
R function kmeans()). A larger number of clusters is desirable to achieve an almost
constant z within each cluster. On the other hand, enough samples are required in
each cluster to achieve a permutation of labels that breaks any conditional dependency
between x and y. For the sample sizes considered here, good results were obtained
with a constant cluster number of 10.

Residuals Test

As a simpler alternative to obtain p-values for the conditional HSIC we propose to
test residuals for independence based on any unconditional test of independence. The
residuals rx and ry are obtained by regressing x and y on z in a nonlinear fashion. The
regression removes the dependencies between x and y due to z and consequently the
residuals should be independent if X ⊥P Y | Z. For regression we use a generalized
additive model (GAM, see Hastie and Tibshirani (1986)) as implemented in the R
function gam() in the library mgcv (Wood, 2004, 2011) with default settings). That is,
we regress y on a set of variables xi, i ∈ {1, . . . , p} as y = f0 +∑p

i=1 fi(xi) + ε where fi

102 Independence Criteria

are spline functions (selected by cross-validation) and ε is Gaussian noise. We have
now the option of using either the permutation or Gamma test from Section 3.6.2 on
the residuals.

3.6.4 Simulation Results for the Independence Tests

In this section we compare the power of various independence tests to find dependence
in simulated data. We will also discuss the choice of parameters for these tests.
We expect the effectiveness of the independence criteria to depend crucially on the
signal to noise ratio. We therefore tested the HSIC and dCov on 300 samples simulated
from Y ∼ sin(X) +N (0, σ2), X ∼ U(0, 10) for varying noise levels σ2 and signal range
of 2 from −1 to 1. X and Y are dependent, hence independence should be rejected
with low p-values. The simulated data are shown in Figure 3.6. Table 3.1 lists the
p-values for combinations of methods from Section 3.6.2 and varying noise levels σ. All
the p-values are a mean of 100 replications of the test. The size of the simulated sample
is 300, as this is a reasonably typical sample size for the high-throughput experiments.
At σ = 10 variables X and Y are effectively independent. As expected the p-value is
less and less reliable for detecting dependency for samples with increasing noise levels.
In this simple test both criteria, HSIC and dCov, behave similarly.

Test σ = 1 σ = 2 σ = 5 σ = 10
HSIC permutation < 0.001 0.04 0.37 0.48
HSIC gamma 4e-13 0.04 0.38 0.49
dCov permutation < 0.001 0.06 0.37 0.47
dCov gamma 5e-08 0.07 0.37 0.54

Table 3.1 Testing independence criteria. All the p-value estimates are the mean of 100
p-values from repetitions for each of the four tests. The size of the simulated sample is
300.

Both HSIC and dCov uses kernel matrices. The HSIC uses a Gaussian kernel which
depends on the width parametes λ, i.e.

K(i, j) = exp
(
−∥xi − xj∥

2

2λ2

)
(3.6.4)

and the dCov uses the distance kernel, which depends on the power parameter ξ, i.e.

K(i, j) = ∥xi − xj∥ξ (3.6.5)

3.6 Statistical Tests of Independence 103

(a) y = sin(x) +N (0, 1), x = U(0, 10). (b) y = sin(x) +N (0, 4), x = U(0, 10).

(c) y = sin(x) +N (0, 25), x = U(0, 10). (d) y = N (0, 25), x = U(0, 10).

Fig. 3.6 Data simulated with nonlinear dependencies

Figures 3.7a) to c) show p-values for different HSIC tests when the kernel width λ

varies from 0.001 to 1000. We note that in order to reject independence successfully λ
needs to be chosen carefully, particularly with higher noise. If λ is very small, then
k(x, y) ≈ 0 for almost all x ̸= y, and the Gram matrix is close to the identity matrix.
Gram matrix being close to the identity matrix also means that its eigenvalues do
not decay fast enough and the incomplete Cholesky decomposition is not accurate,
therefore the results can be misleading: p-values for different methods differ greatly.
If λ is too large, then k(x, y) ≈ 1, for all x, y and the Gram matrix is ill-conditioned.
In this case any dependency between the variables is hard to detect. Based on these
figures we choose a kernel width in the range λ ∈ (0.5, 9). Note that HSIC is not scale
invariant and so the suggested λ range has to be scaled appropriately in case we would
choose to use a non-normalized data. In case we would choose to use a not normalized
data, λ should be scaled appropriately. Furthermore we observe that the permutation
and Gamma tests both with and without incomplete Cholesky decomposition always
give very similar results for this range of λ. Therefore, for further analysis we will use

104 Independence Criteria
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Kernel width

p
va

lu
e

0.
00

1

0.
01 0.

1

0.
5 1 4 9 25 36 49 10
0

10
00

permutation test /w inc. Chol.
permutation test
gamma test /w inc. Chol.
gamma test

(a) HSIC, σ = 1.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kernel width

p
va

lu
e

0.
00

1

0.
01 0.

1

0.
5 1 4 9 25 36 49 10
0

10
00

permutation test /w inc. Chol.
permutation test
gamma test /w inc. Chol.
gamma test

(b) HSIC, σ = 2.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kernel width

p
va

lu
e

0.
00

1

0.
01 0.

1

0.
5 1 4 9 25 36 49 10
0

10
00

permutation test /w inc. Chol.
permutation test
gamma test /w inc. Chol.
gamma test

(c) HSIC, σ = 10.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

p
va

lu
e

0.
01 0.

1

0.
5 1

1.
25 1.

5

1.
75

1.
95

σ = 1
σ = 2
σ = 5
σ = 10

(d) dCov, σ = 1, 2, 5, 10.

Fig. 3.7 Dependency of p-values of HSIC and dCov tests on varying parameters, kernel
width λ for HSIC and index ξ for dCov.

the Gamma test with an incomplete Cholesky decomposition since it is computationally
most efficient (as seen in Figure 3.8).
Figure 3.7d) shows the dependency of p-values on the power parameter ξ of the dCov.
For simplicity we set ξ = 1, although smaller values might work even better.
Finally Figure 3.9 show a large simulation of HSIC Gamma test only, number of
observations changes from 100 to 1500, noise ϵ changes from 1 to 10 and the width
parameter λ changes from 0.001 to 1000. The ability to detect dependence goes up
with the number of observations and goes down with the increase in noise.

3.7 Signal to Noise Ratio Independence Criterion 105

0
50

10
0

15
0

20
0

Number of observations

T
im

e
(s

ec
)

100 200 300 400 500 600 700 800

permutation test
distance covariance test
permutation test /w inc. Chol.
gamma test /w inc. Chol.
gamma test

(a) Time taken by different methods
to find the p-value

0
1

2
3

4

Number of observations

T
im

e
(s

ec
)

100 200 300 400 500 600 700 800

distance covariance test
permutation test /w inc. Chol.
gamma test /w inc. Chol.
gamma test

(b) Close up of Figure 3.8a without
the HSIC permutation test.

Fig. 3.8 Time efficiency of independence tests.

3.7 Signal to Noise Ratio Independence Criterion

3.7.1 Introduction

We have introduced three independence criteria from the literature. In the essence
they all rely on finding eigenvalues of some matrix. Given n observations we are
dealing with n2 × n2 kernel matrices. Multiplying such matrices or finding their trace
or determinant might be time consuming (even when we use the incomplete Cholesky
decomposition). Another consideration is that in our network inference models we
are mainly considering the additive noise models which significantly restrict the form
of the dependencies that two variables may have. Lastly in Section 3.6 we observed
that the ability of the statistical independence tests highly depend on the ratio of the
signal in the data to the noise. First two considerations raises a question: maybe we
do not need a general independence criterion, maybe something simpler (and much
faster to calculate) would work just as well? The last observation suggests that the
answer might be in the signal to noise ratio. So we came up with a new independence
criterion, namely the Signal to Noise Ratio Independence Criterion (or SNRIC).
In this section we will introduce the idea of the Signal to Noise Ratio IC and provide
a theoretical and empirical motivation, why it might be an interesting quantity to
consider in the light of the network inference. Finally we will provide some theoretical
results to justify using it.

106 Independence Criteria
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

λ

p−
va

lu
e

0.
00

1

0.
00

5

0.
01 0.

1

0.
5 1 2 4 9 16 25 10
0

50
0

10
00

ε=1
ε=2
ε=5
ε=10

(a) 100 observations.
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
λ

p−
va

lu
e

0.
00

1

0.
00

5

0.
01 0.

1

0.
5 1 2 4 9 16 25 10
0

50
0

10
00

ε=1
ε=2
ε=5
ε=10

(b) 200 observations.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

p−
va

lu
e

0.
00

1

0.
00

5

0.
01 0.

1

0.
5 1 2 4 9 16 25 10
0

50
0

10
00

ε=1
ε=2
ε=5
ε=10

(c) 300 observations.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

p−
va

lu
e

0.
00

1

0.
00

5

0.
01 0.

1

0.
5 1 2 4 9 16 25 10
0

50
0

10
00

ε=1
ε=2
ε=5
ε=10

(d) 400 observations.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

p−
va

lu
e

0.
00

1

0.
00

5

0.
01 0.

1

0.
5 1 2 4 9 16 25 10
0

50
0

10
00

ε=1
ε=2
ε=5
ε=10

(e) 500 observations.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

p−
va

lu
e

0.
00

1

0.
00

5

0.
01 0.

1

0.
5 1 2 4 9 16 25 10
0

50
0

10
00

ε=1
ε=2
ε=5
ε=10

(f) 600 observations.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

p−
va

lu
e

0.
00

1

0.
00

5

0.
01 0.

1

0.
5 1 2 4 9 16 25 10
0

50
0

10
00

ε=1
ε=2
ε=5
ε=10

(g) 750 observations.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

p−
va

lu
e

0.
00

1

0.
00

5

0.
01 0.

1

0.
5 1 2 4 9 16 25 10
0

50
0

10
00

ε=1
ε=2
ε=5
ε=10

(h) 1000 observations.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

p−
va

lu
e

0.
00

1

0.
00

5

0.
01 0.

1

0.
5 1 2 4 9 16 25 10
0

50
0

10
00

ε=1
ε=2
ε=5
ε=10

(i) 1500 observations.

Fig. 3.9 Dependency of the p-values of the HSIC Gamma test on a varying kernel
width parameter λ, noise level ϵ and the number of observations. Model: Y ∼
sin(X) +N (0, σ2), X ∼ U(0, 10).

3.7.2 Motivation

Theoretical motivation

Independence criterion, such as HSIC or dCov, is a great way of estimating relationship
between data. However they do have their limitations. It tests the dependence between
two variables X and Y given only a finite sample (x, y) = ((x1, y1), ..., (xn, yn)). This

3.7 Signal to Noise Ratio Independence Criterion 107

implies that an empirical independence criteria will never (with probability 0) be
exactly equal to zero, i.e. there will always be some dependence due to the finiteness of
the sample. This suggests to explore the connection between the IC ability to detect
dependence and the Signal to Noise Ratio (SNR) in the data. If the real SNR is too
small we cannot expect the IC to detect dependence.
We assume a model Y ∼ f(X) + ϵ, where f is the signal and ϵ is the noise. After
regressing Y on X we get yi = si + ϵi, where we assume si = f(xi) to be the signal
and ϵi to be the noise. We use notation S = {s1, ..., sn} and ϵ = {ϵ1, ..., ϵn}.
We consider two different signal to noise ratios, defined as:

• Variance based: SNR1 =
√

Var(S)
Var(ϵ)

• Amplitude based: SNR2 = max(S)−min(S)
max(ϵ)−min(ϵ)

Linear relationship

First we considered the simplest relationship between X and Y - a linear relationship.

X ∼ U [0, 1],
Y ∼ SX + U [0, 1].

(3.7.1)

In our simulations the signal S varies from 1 to 2−5, i.e. S ∈ {1, 2−1, ..., 2−5}. Sample
size is 900.
The empirical estimate of SNR1 given signal S is:

Var(ϵ) ≈ Var(U [0, 1]) = 1/12
Var(S) ≈ Var(SX) ≈ Var(U [0, S]) = S2/12

SNR1(S) ≈ S

(3.7.2)

The empirical estimate of SNR2 given signal S is:

max(ϵ)−min(ϵ) ≈ max(U [0, 1])−min(U [0, 1]) = 1
max(S)−min(S) ≈ max(U [0, S])−min(U [0, S]) = S

SNR2(S) ≈ S

(3.7.3)

We observe the expected results, shown in Table 3.2. If the SNR is smaller than some
threshold (in this case around 0.1) we do not observe dependence and the statistical
tests cannot reject the null hypothesis (variables are independent) any more.

108 Independence Criteria

S dCov perm dCov gamma HSIC perm HSIC gamma SNR1 SNR2

1 0.0099 0 0 0 1.006 0.977
1/2 0.0099 0 0 0 0.505 0.490
1/4 0.0099 0 0 0 0.265 0.247
1/8 0.0219 0.0108 0.0154 0.0151 0.134 0.127
1/16 0.1907 0.2039 0.1943 0.1943 0.077 0.070
1/32 0.3827 0.3958 0.3854 0.3766 0.055 0.050

Table 3.2 Relationship between independence criteria and the SNR’s for the linear
relationship with varying noise levels.

S dCov perm dCov gamma HSIC perm HSIC gamma SNR1 SNR2

1 0.0099 0 0 0 0.861 0.821
1/2 0.0099 0 0 0 0.434 0.416
1/4 0.0099 0 0 0 0.221 0.211
1/8 0.0396 0.0320 0.0375 0.0381 0.118 0.110
1/16 0.2473 0.2635 0.2518 0.2492 0.071 0.063
1/32 0.4073 0.4200 0.4102 0.3992 0.055 0.048

Table 3.3 Relationship between independence criteria and the SNR’s for the non-linear
relationship with varying noise levels.

Sinusoidal relationship

We continue by investigating the non-linear relationship between variables X and Y

and its effect on the SNR and the independence criteria. We chose the sinusoidal
relationship:

X ≈ U [0, 10]
Y ≈ S sin(X) + U [0, 1]

(3.7.4)

As in the linear case, the signal varies from 1 to 2−5, i.e. S ∈ {1, 2−1, ..., 2−5}. Empirical
results are provided in Table 3.3. We observe the same behaviour, at the threshold of
approximately 0.1 the statistical independence tests cannot reject independence any
more.

3.7 Signal to Noise Ratio Independence Criterion 109

Empirical motivation

While exploring the single-cell datasets from Sachs et al. (2005) we noticed that some
edges are found easily while kernel PC (for full discussion see Chapter 4 Section 4)
fails to find others, which are suppose to be there based on the golden standard. The
reason becomes evident if we look at the datasets from an SNR point of view. Consider
the matrix of SNR values for all the variables regressed on each other. We would not
expect to find an edge between two variables if the SNR is below the threshold in both
directions. On the other hand, if the SNR is large it does not necessarily imply an
edge between the variables as their dependence might be a result of latent variables.
That is, SNR(x, y) > “threshold” can be caused by:

• x→ y

• x← y

• x← z → y

• x→ z → y

• x← z → y

Only in the first two cases would we find an edge between x and y. In the other cases
x and y are independent conditioned on z. Even given this consideration, we can treat
this SNR matrix as an “upper bound” on what graph structure we may expect to find.
Tables 3.4 and 3.5 are comprised of the SNR1 and SNR2 values, where the value in
the ith row and jth column is the SNR for Xj regressed on Xi. Values greater than
the thresholds determined above (the p-value for the independence criteria based test
is < 0.05) are in red. We note that both approaches yield almost identical result.
Values in bold are the ones where we expect to find a dependency. Based on the SNR
matrix we conclude that 7 of the well known dependencies are extremely unlikely to
be detected even in the generated data model:

• pKA → pRAF

• PKC → pRAF

• pMEK → ERK

• PIP3 → AKT

• pLCγ → PKC

• pKA → P38

• PKC → pJNK

Edge PKC → PIP2 is right on the verge of the threshold in both SNR approaches. We
expect to detect the remaining 8 well known dependencies based on their large SNR:

110 Independence Criteria

• pRAF → pMEK

• pLCγ → PIP2

• PIP3 → pLCγ

• PIP3 → PIP2

• pKA → ERK

• pKA → AKT

• PKC → P38

• PKC → pJNK

Based on the SNR approach we conclude that we would expect to have:

• True positive: 8− 9

• True negative: 37

• False positive: 2

• False negative: 7− 8

This result agrees with our simulations.
As the SNR is much quicker to calculate and it gives results very similar to the ones
produced using the independence criteria it might be advantageous to explore this
path more.

pRAF pMEK pLCγ PIP2 PIP3 ERK AKT pKA PKC p38 pJNK

pRAF 0.00 12.19 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
pMEK 11.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pLCγ 0.00 0.00 0.00 3.91 0.21 0.00 0.00 0.00 0.00 0.00 0.00
PIP2 0.00 0.00 3.93 0.00 0.53 0.00 0.00 0.00 0.01 0.00 0.00
PIP3 0.00 0.00 0.28 0.52 0.00 0.00 0.00 0.01 0.00 0.00 0.00
ERK 0.00 0.00 0.00 0.00 0.00 0.00 3.86 0.51 0.00 0.00 0.00
AKT 0.00 0.00 0.00 0.00 0.00 4.43 0.00 0.65 0.00 0.00 0.00
pKA 0.00 0.00 0.00 0.00 0.00 0.52 0.54 0.00 0.00 0.00 0.00
PKC 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 7.39 0.55
P38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.01 0.00 0.41
pJNK 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.34 0.00

Table 3.4 SNR1 for all 8 datasets combined.

The following Figure 3.10 shows the graph structure and the edges of high (green) and
low (gray) SNR.

3.7.3 Signal to Noise Ratio Independence Criterion

The results from Section 3.7.2 give us the idea that SNR can be used to establish
a measurement of independence between two variables. To transform this idea into
a working criterion we start by defining the relationship between the SNR and the

3.7 Signal to Noise Ratio Independence Criterion 111

pRAF pMEK pLCγ PIP2 PIP3 ERK AKT pKA PKC p38 pJNK

pRAF 0.00 1.46 0.04 0.04 0.07 0.05 0.06 0.05 0.04 0.03 0.04
pMEK 1.51 0.00 0.03 0.04 0.06 0.06 0.04 0.03 0.03 0.04 0.02
pLCγ 0.07 0.08 0.00 0.76 0.31 0.05 0.06 0.09 0.02 0.04 0.02
PIP2 0.08 0.03 0.73 0.00 0.58 0.05 0.05 0.07 0.06 0.05 0.03
PIP3 0.08 0.06 0.38 0.47 0.00 0.03 0.03 0.10 0.04 0.07 0.02
ERK 0.03 0.02 0.09 0.04 0.06 0.00 1.75 0.71 0.02 0.08 0.03
AKT 0.03 0.03 0.04 0.03 0.07 1.41 0.00 0.75 0.02 0.03 0.02
pKA 0.02 0.03 0.03 0.02 0.04 0.56 0.69 0.00 0.02 0.04 0.03
PKC 0.07 0.05 0.06 0.11 0.05 0.06 0.06 0.12 0.00 1.17 0.44
P38 0.06 0.04 0.04 0.03 0.04 0.06 0.07 0.09 0.97 0.00 0.42
pJNK 0.09 0.05 0.05 0.03 0.04 0.02 0.05 0.04 0.43 0.53 0.00

Table 3.5 SNR2 for all 8 datasets combined.

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

Fig. 3.10 Summary of known dependencies with high (green) and low (gray) SNR.

general independence, then we provide some theoretical results and finally provide
empirical estimates of its performance with respect to other independence criteria on
simulated examples.

3.7.4 SNRIC and the General Independence

Recall that random variables X and Y are independent if and only if their joint
probability density function factorizes to the product of their marginal pdfs, i.e.
fX,Y = fXfY . An alternative way of defining the independence between two random
variables is using moment generating functions.

112 Independence Criteria

Theorem 3.7.1. Suppose that X and Y are random variables with the moment
generating functions MX and MY respectively and the joint moment generating function
MX,Y , then X and Y are independent if and only if

MX,Y (s, t) = MX(s)MY (t) (3.7.5)

These definitions are equivalent as the second equality in the equation below is true if
and only if fX,Y = fXfY .

MX,Y (s, t) =
∫
esX+tY fX,Y (x, y)dxdy =

∫
esXfX(x)dx

∫
etY fY (y)dy = MX(s)MY (t)

Proposition 3.7.2. Random variables X and Y with the support X are independent
iff

EY [Y n | X = x] = EY [Y n], ∀x ∈ χ and ∀n = 1, 2, ... (3.7.6)

Proof. Write the moment generating functions as MX(s) = EX [esX], MY (t) = EY [etY]
and MX,Y (s, t) = EX [esX+tY]. It follows that

EX,Y [esX+tY] = EX

[
esXEY |X [etY | X]

]
= EX

[
esXEY |X

[∞∑
n=0

tn

n!Y
n | X

]]

= EX

[
esX

∞∑
n=0

tn

n!EY |X [Y n | X]
]

= EX

[
esX

∞∑
n=0

tn

n!EY [Y n]
]

= EX [esX]EY [etY]

(3.7.7)

It follows from Theorem 3.7.1 that X and Y are independent.

To make this work we need to estimate µkY |x = E[Y k|X = x] for any k and all x.
We only have a finite sample (x, y) = ((x1, y1), ..., (xn, yn)). We define an empirical
estimate of µkY |x as µ̂kY |i:

µkY |i(ϵ, n) = 1
ni(n, ϵ)

∑
j:∥xi−xj∥<ϵ

ykj (3.7.8)

where

ni(n, ϵ) =
n∑
j=1

1(j : ∥xi − xj∥ < ϵ)

3.7 Signal to Noise Ratio Independence Criterion 113

is the size of an ϵ radius ball centred at xi, i.e. the number of observations in this ball.
Taking the limits in a correct order yields:

lim
ϵ→0

(lim
n→∞

µkY |i(ϵ, n)) = E[Y k|X = xi] (3.7.9)

therefore µ̂kY |i is an asymptotically correct estimate of µkY |x.

3.7.5 Definition of the SNRIC

To establish a general independence criterion we would need to calculate all the
moments of Y conditioned on X = x (finding E[Y k|X = x] for all k = 1, 2, ... and
x ∈ X), but that is not feasible.
We hope that it is sufficient to calculate only a few of the conditional moments to
infer some knowledge about the dependence between the random variables X and
Y . As it turns out, if we assume a specific functional form (namely an additive and
multiplicative noise model) between the random variables, it is enough to calculate
only the first two conditional moments. This turns out to be sufficient for most of the
practical implications.
We also need to choose the regression method. We chose to use cubic regression.
This was done due to the time constraint of using SNRIC in long MCMC simulations
done in Chapter 5. We show in Section 3.7.7 that cubic regression works well on a
wide range of simulated examples and therefore is a good compromise between time
efficiency and accuracy of the method. Future work is to extend SNRIC to use a more
sophisticated regression method, for example splines from R package mgcv like we did
in the conditional independence test using residuals (see Section 3.6.3). This method
is more flexible and has in-built protection from over-fitting but is too slow to be used
in the current MCMC framework (for more detail see Section 5.6.2).
Algorithm 3 shows how to calculate the empirical estimate of the SNRIC.
In this algorithm we are following the first interpretation of SNR, i.e. SNR =

√
Var(Signal)
Var(noise) .

SNRµ can be interpreted as the signal to noise ratio of E[Y | X = x] = signal(x)+noise
and SNRV can be interpreted as the signal to noise ratio of Var[Y | X = x] =
signal(x) + noise (it is equivalent to E[Y 2 | X = x] but provides better interpretability).

3.7.6 SNR Independence Test

Similarly as in the kernel independence criterion (such as HSIC or dCov) case, SNRIC
provides us only with a number which is not necessarily meaningful without a context.

114 Independence Criteria

Data: x, y
Result: SNR(y, x) the empirical estimate of the SNRIC
Regress y on x to obtain y = f1(x) + ϵ1

Calculate SNRµ(y, x) =
√

Var(f1(x))
Var(ϵ1)

Calculate the “second moment estimate” of Y : V̂ar[y] = (y − f1(x))2

Regress V̂ar[y] on x to obtain V̂ar[y] = f2(x) + ϵ2

Calculate SNRV (y, x) =
√

Var(f2(x))
Var(ϵ2)

SNR(y, x) = max
(
SNRµ(y, x), SNRV (y, x)

)
return SNR(y, x)

Algorithm 3: Empirical estimate of the SNRIC

Note that SNRIC can be used on its own in the MCMC sampling scheme, where our
aim would be to minimize it across all variable pairs. In the context of the PC algorithm
we are trying to answer the question whether two random variables are independent
or not. In order to do so we require a test that will provide us with a p-value (the
probability to observe a sample at least as dependent as our sample, given that the
two random variables are actually independent). We provide two approaches inspired
by the kernel independence tests, namely the permutation test and the Gamma test.

Permutation test

Permutation test works in exactly the same way as the HSIC or dCov permutation
tests. This approach requires to recalculate the independence criteria many times, so
might be time consuming. In order to reduce some of the calculations we may reuse
some of the previous results. We are using a linear regression in our implementation.

Gamma test

The alternative is to approximate the SNR(X, Y) distribution under the null hypothesis
(X and Y are independent) by a Gamma distribution. We currently do not have a
closed form for this distribution. But it is worth noting that the Gamma approximation
is much more affected by the number of points in the sample, rather than by the actual
distribution of the random variables themselves. We can see this in Figure 3.11. For the
sample sizes of 100, 300, 500 and 1000 we plotted the cumulative distribution function
for SNR(X, Y) where X and Y are independent random variables sampled from the
combination of distributions provided in Table 3.6. We observe that for the sample
sizes of at least 300 all the CDF’s are almost identical and are well approximated by

3.7 Signal to Noise Ratio Independence Criterion 115

the Gamma distribution. This suggests, that we can approximate the SNR(X, Y) IC
under the null hypothesis by a Gamma distribution for any underlying real distributions
of X and Y , based on the sample size alone.

X Y
Uniform(0,1) Uniform(0,1)
Uniform(0,1) Normal(0,1)
Normal(0,1) Normal(0,1)
Normal(0,1) Gamma(1,1)
Gamma(1,1) Gamma(500,0.2)
Gamma(1,1) Mixture of N(-5,1) and N(5,1)

Table 3.6 Combinations of distributions used to generate Figure 3.11.

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SNR distribution for different sample size

x

P
(S

N
R

 <
 x

)

n=100
n=300
n=500
n=1000
gamma approx

Fig. 3.11 CDF for SNR approximation using a Gamma distribution

3.7.7 Unconditional Independence Test Examples

In this section we explore the effectiveness of the SNR (permutation and Gamma) tests
in comparison with the well established general independence tests based on the distance

116 Independence Criteria

covariance (using the dCov permutation variant) and the Hilbert Schmidt Independence
Criteria (using the HSIC gamma variant). To do so we use five different dependence
structures commonly used in literature: linear dependence, non-linear dependence,
rotation of independent data, latent dependence and finally the heteroscedastic data.

Linear dependency

Linear dependency model:

X ∼ U [−2, 2],
Y ∼ X +N(0, σ2)

(3.7.10)

The example of the dataset generated using this model is provided in Figure 3.12. In
Table 3.7 we provide the p-values of four independence tests applied to the datasets
generated from this model. We are using the SNRIC permutation and gamma, dCov
permutation and HSIC gamma tests. Each value in the table is the mean of each
test applied to 100 simulated datasets from the linear dependency model. The results
between the SNRIC permutation, SNRIC gamma and dCov permutation tests are very
close, the HSIC gamma test seems to perform similarly, but slightly worse in this case.

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

−2 −1 0 1 2

−
4

−
2

0
2

4

x

y

(a) ϵ ∼ N(0, 1).

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
30

−
20

−
10

0
10

20
30

x

y

(b) ϵ ∼ N(0, 25).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
15

−
10

−
5

0
5

10
15

x

y

(c) ϵ ∼ N(0, 100).

Fig. 3.12 Three examples of data with linear dependency and varying noise.

Non-linear dependency

Non-linear dependency model:

X ∼ U [−2, 2],
Y ∼ cos(X) +N(0, σ2)

(3.7.11)

3.7 Signal to Noise Ratio Independence Criterion 117

Test σ = 1 σ = 2 σ = 3 σ = 5 σ = 10 σ = 100
SNR perm 0.01 0.01 0.01 0.01 0.17 0.48
SNR gamma 0.00 0.00 0.00 0.00 0.14 0.40
dCov perm 0.01 0.01 0.01 0.01 0.15 0.53
HSIC gamma 0.00 0.00 0.00 0.06 0.56 0.58

Table 3.7 The p-value estimates on the data with linear dependence and varying noise.

The example of the datasets generated using this model is provided in Figure 3.13. In
Table 3.8 we provide the p-values of four independence tests. The set up for generating
the table is the same as in the linear dependence case. Results produced by all four
tests are again very similar with the SNRIC based tests being slightly worse. This
can be explained by the fact that the SNRIC tests are taking into account only up to
the cubic term in regressing Y on X, it does not give us a perfect regression in this
case. We should note that the number of power terms taken in the regression can be
manually tuned for any network inference problem if we believe that it is required. The
time efficiency loss will not be too large as the leading term in the linear regression
will be the number of sample points, not the number of covariates.

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

x

y

(a) ϵ ∼ N(0, 1).

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
5

0
5

x

y

(b) ϵ ∼ N(0, 4).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
10

−
5

0
5

10

x

y

(c) ϵ ∼ N(0, 9).

Fig. 3.13 Three examples of data with nonlinear dependency and varying noise.

Latent dependency

Latent dependency model:

Θ ∼ U [−π, π],
X ∼ cos(Θ) + U [−ϵ/2, ϵ/2],
Y ∼ sin(Θ) + U [−ϵ/2, ϵ/2]

(3.7.12)

118 Independence Criteria

Test σ = 1 σ = 1.5 σ = 2 σ = 2.5 σ = 3 σ = 4
SNRIC perm 0.01 0.02 0.08 0.14 0.23 0.33
SNRIC gamma 0.00 0.01 0.05 0.10 0.18 0.27
dCov perm 0.01 0.01 0.01 0.02 0.06 0.14
HSIC gamma 0.00 0.00 0.01 0.03 0.12 0.24

Table 3.8 The p-value estimates on the data with the non-linear dependence and varying
noise.

The example of the datasets generated using this model is provided in Figure 3.14. In
Table 3.9 we provide the p-values of four independence tests. The set up for generating
the table is the same as in the linear dependence case. SNRIC based tests produce
better results in this case: they still find dependence with the noise level σ = 2, while
dCov and HSIC based tests declare independence. This can be explained by the fact
that the SNRIC is specifically designed to catch the varying noise levels of Y with
respect to X (Var[Y | X = x] for varying x), while the dCov and HSIC are more
general independence tests.

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

(a) ϵ ∼ U [0, 1].

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−1 0 1 2 3

−
1

0
1

2
3

x

y

(b) ϵ ∼ U [0, 2].

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

−1 0 1 2 3 4

−
1

0
1

2
3

4

x

y

(c) ϵ ∼ U [0, 3].

Fig. 3.14 Three examples of data with circular dependency and varying noise.

Test σ = 1 σ = 2 σ = 2.2 σ = 2.5 σ = 3 σ = 3.5
SNRIC perm 0.01 0.09 0.13 0.27 0.43 0.47
SNRIC gamma 0.00 0.07 0.10 0.22 0.35 0.40
dCov perm 0.01 0.37 0.37 0.44 0.48 0.48
HSIC gamma 0.00 0.28 0.31 0.42 0.48 0.47

Table 3.9 The p-value estimates on the circular dependency data with varying noise.

3.7 Signal to Noise Ratio Independence Criterion 119

Rotational dependency

Rotational dependency model:

Z ∼ U [−0.5, 0.5] + 4 Bern(0.5)− 2,
W ∼ U [−0.5, 0.5] + 4 Bern(0.5)− 2,
X ∼ cos(θ)× Z + sin(θ)×W,
Y ∼ − sin(θ)× Z + cos(θ)×W

(3.7.13)

The example of the dataset generated using this model is provided in Figure 3.15. In
Table 3.10 we provide the p-values of four independence tests. The set up for generating
the table is the same as in the linear dependence case. All four tests performed similarly
well in this case.

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

● ●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x

y

(a) θ = π/4.

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

● ●

●

●

● ●

●
●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x

y

(b) θ = π/16.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●
● ●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

x

y

(c) θ = π/128.

Fig. 3.15 Three examples of independent data after varying rotations applied.

Test θ = π/4 θ = π/8 θ = π/16 θ = π/32 θ = π/64 θ = π/128
SNRIC perm 0.01 0.01 0.01 0.01 0.01 0.04
SNRIC gamma 0.00 0.00 0.00 0.00 0.00 0.02
dCov perm 0.01 0.01 0.01 0.01 0.01 0.09
HSIC perm 0.00 0.00 0.00 0.00 0.00 0.06
Table 3.10 The p-value estimates on the independent data after varying rotation.

Heteroscedastic data

Noise level dependency model:

120 Independence Criteria

X ∼ U [−2, 2],
Y ∼ X × U [−0.5, 0.5] +N(0, σ2)

(3.7.14)

The example of the datasets generated using this model is provided in Figure 3.16. In
Table 3.11 we provide the p-values of four independence tests. The set up for generating
the table is the same as in the linear dependence case. SNRIC based tests produce
better results in this case: they still find dependence with the noise level σ = 0.8, while
the dCov and HSIC based tests declare independence. This can be explained in the
same way as in the latent dependency case.

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●●

●

●

●

●● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

(a) ϵ ∼ N(0, 0.01).

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

x

y

(b) ϵ ∼ N(0, 0.25).

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

x

y

(c) ϵ ∼ N(0, 1).

Fig. 3.16 Three examples of data with the noise level dependency and varying noise.

Test σ = 0.5 σ = 0.6 σ = 0.7 σ = 0.8 σ = 0.9 σ = 1
SNRIC perm 0.01 0.01 0.01 0.02 0.28 0.31
SNRIC gamma 0.00 0.00 0.00 0.01 0.23 0.25
dCov perm 0.01 0.01 0.06 0.18 0.38 0.44
HSIC gamma 0.00 0.00 0.02 0.09 0.35 0.42

Table 3.11 The p-value estimates on the data with the noise level dependency and
varying noise.

Conclusions

We note that both the SNRIC permutation and Gamma tests produced very similar p-
values in all five cases, this acts as the reassurance that using the estimated parameters
for the Gamma approximation works well in practice. Also we should note that the
p-values produced by the SNRIC tests are overall very similar to the ones of the

3.7 Signal to Noise Ratio Independence Criterion 121

dCov and HSIC tests. SNRIC tests outperformed the general independence tests in
the cases where dependency comes from varying levels of noise (circular and varying
noise models) and were slightly worse in the non-linear dependency model, where the
polynomial regression in the SNRIC failed to regress data correctly. This can be easily
fixed by using either more power terms in the polynomial regression or use a better
regression method (for example non-linear regression with splines), but this would
reduce computational speed.

3.7.8 Counter Example to SNRIC

So far we have shown that if data comes from the additive noise model SNRIC based
test perform almost as well as the general independence criteria based tests. On the
other hand if data does not come from an additive noise model there is no guarantee
that SNRIC would be able to find dependency. Consider an example from Figure 3.17.

●● ●● ● ●● ●●● ● ● ●● ●●●●● ●●● ● ●● ●● ● ●●● ● ●● ● ●● ●● ● ●● ● ●●● ●●● ● ●●● ● ●● ●● ●● ● ●● ● ●●●●●● ●● ●● ●●● ●● ● ●● ●●●● ●●● ●● ●● ● ●●● ●● ● ●● ●● ●● ● ●● ●●● ●● ●● ● ●● ●●● ●●● ●● ● ●● ●●●●● ● ●● ●●●● ● ●●● ● ●●●● ●● ● ●●●● ●● ●● ● ●● ●●● ● ●●● ●● ● ●●●● ●● ●● ● ●● ● ● ● ●●●● ●● ● ● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●● ● ●●● ●● ● ●● ●● ●● ●●● ●●● ● ●●●● ●●● ●● ●● ●● ●●● ● ●● ●● ●● ● ●● ●● ● ● ●●●●●● ● ●● ●●● ●●● ●● ●● ●● ●● ● ●● ● ●● ●● ●● ●● ● ● ●● ● ●● ●●●● ● ●●● ●● ●●● ● ● ●●●● ●● ●● ● ●● ● ●● ●● ●●● ●● ●● ●● ●●●● ●● ●● ●●● ● ●● ●● ●●● ●●●● ●●●●● ● ●● ●● ●●●●●● ●●●●● ● ●●● ●● ● ●● ●● ●●● ● ● ●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

x

y

(a) Scatterplot.

Z ∼ Bern(0.5)
X | Z = 0 ∼ N(0, 1),
Y | Z = 0 ∼ 2Bern(0.5)− 1,
X | Z = 1 ∼ 2Bern(0.5)− 1,
Y | Z = 1 ∼ N(0, 1)

(b) Distribution.

Fig. 3.17 Counterexample for SNRIC.

In this case E[X | Y = y] = 0 and E[X2 | Y = y] = 1 for all y ∈ R. Similarly
E[Y | X = x] = 0 and E[Y 2 | X = x] = 1 for all x ∈ R. SNRIC is considering only the
first two conditional moments therefore it is unable to detect the dependence between
X and Y . The general independence criteria find clear dependence between S and Y ,
see Table 3.12.

122 Independence Criteria

Test SNRIC perm SNRIC gamma dCov perm HSIC gamma
p-value 0.57 0.56 <0.01 0.07

Table 3.12 The p-value estimates on the counter example for SNRIC data.

3.7.9 SNRIC Conditional Independence Test

We have presented the SNRIC based independence test and discussed its performance
in comparison to the dCov and HSIC based independence tests. We should note that
having only the unconditional variant of the independence test is not sufficient for
applying this criterion in the PC algorithm framework. Therefore in this section we
introduce the SNRIC conditional independence test and discuss its performance with
respect to other options such as dCov-resid, HSIC-resid and HSIC-clust.
The SNR conditional independence test uses a similar approach to the dCov/HSIC
residuals conditional independence tests. Given observations from the random variables
X, Y and Z we want to check if X and Y are independent given Z. Suppose we have
m triples of observations {(x1, y1, z1), ..., (xm, ym, zm)}.

Data: x, y, z, ϵ
Result: p-value
Regress observations x on z to obtain the conditional mean estimates mx(i) ;
Regress observations y on z to obtain the conditional mean estimates my(i) ;
Regress expected variance (x−mx)2 on z to obtain the conditional variance
estimates Vx(i) ;

Regress expected variance (y −my)2 on z to obtain the conditional variance
estimates Vy(i) ;

Calculate the residuals of x given z as rx(i) = xi−mx(i)
max(
√
Vx(i),ϵ)

;

Calculate the residuals of y given z as ry(i) = yi−my(i)
max(
√
Vy(i),ϵ)

;

Calculate the p-value p for SNR(rx, ry);
return p

Algorithm 4: SNR conditional independence test

The algorithm depends on an additional regularization parameter ϵ, which is required
for the stability of the algorithm. The predicted variance could be arbitrarily close to
zero and that would result in a very large variability of the residuals.

3.7 Signal to Noise Ratio Independence Criterion 123

3.7.10 Proofs

As discussed above the SNR(X, Y) being equal to zero does not mean that the
underlying random variables X and Y are truly independent. Though in some special
cases where we assume specific relationship between X and Y SNRIC being zero
is equivalent to X and Y being independent. In this subsection we provide some
theoretical results on when the SNRIC being zero implies independence.

Theorem 3.7.3. Assume Y follows an additive and multiplicative noise model, that is

Y | x ∼ h(x, U, V) = f(x) + U × g(x) + V, (3.7.15)

where U and V are independent random variables and f and g are piece-wise continuous
functions. If the conditions 3.7.16 and 3.7.17 are met, then Y = h(V), i.e. Y is a
function of V only and is independent of X.

E
[
h(x, U, V) | x = x1

]
= E

[
h(x, U, V) | x = x2

]
, for all x1, x2 ∈ X (3.7.16)

E
[
h2(x, U, V) | x = x1

]
= E

[
h2(x, U, V) | x = x2

]
, for all x1, x2 ∈ X (3.7.17)

Proof. Suppose the condition 3.7.16 holds, i.e. for all x1, x2 ∈ X

0 = E
[
h(x, U, V) | x = x1

]
− E

[
h(x, U, V) | x = x2

]
= f(x1) + µUg(x1) + µv − f(x2)− µUg(x2)− µV
= f(x1)− f(x2) + µU

(
g(x1)− g(x2)

) (3.7.18)

then it follows that

f(x1) + µUg(x1) = f(x2) + µUg(x2), ∀x1, x2 ∈ X (3.7.19)

this is equivalent to

f(x) + µUg(x) = C, for some constant C and ∀x ∈ X (3.7.20)

this is equivalent to

f(x) = −µUg(x) + C, for some constant C and ∀x ∈ X (3.7.21)

Now we can rewrite h as

124 Independence Criteria

Y = h(x, U, V) = (U − µU)g(x) + C + V (3.7.22)

Suppose the condition 3.7.17 holds, i.e. for all x1, x2 ∈ X

0 = E
[
h2(x, U, V) | x = x1

]
− E

[
h2(x, U, V) | x = x2

]
= Var

[
h(x, U, V) | x = x1

]
− Var

[
h(x, U, V) | x = x2

]
= Cov((U − µU)g(x1) + C + V, (U − µU)g(x1) + C + V)
− Cov((U − µU)g(x2) + C + V, (U − µU)g(x2) + C + V)

= Var(U)g2(x1) + Var(C)
=0

+ Var(V) + 2Cov(U − µU , C)
=0

g(x1)

+ 2Cov(V,C)
=0

+ Cov(U − µU , V)g(x1)

− Var(U)g2(x2)− Var(C)
=0

− Var(V)− 2Cov(U − µU , C)
=0

g(x2)

− 2Cov(V,C)
=0

− Cov(U − µU , V)g(x2)

= Var(U)(g2(x1)− g2(x2)) + Cov(U, V)(g(x1)− g(x2))

=
(
g(x1)− g(x2)

)(
Var(U)

(
g(x1) + g(x2)

)
+ Cov(U, V)

)

(3.7.23)

Now it follows that either (a):

g(x1)− g(x2) = 0, ∀x1, x2 ∈ X (3.7.24)

but then it follows that g is a constant function.
Or (b):

Var(U)
(
g(x1) + g(x2)

)
+ Cov(U, V) = 0, ∀x1, x2 ∈ X (3.7.25)

We can rewrite this as

Var(U)
(
g(x1) + g(x2)

)
= −Cov(U, V), ∀x1, x2 ∈ X (3.7.26)

if we have x1, x2, x3, such that

g(x1) + g(x2) ̸=0
g(x1) + g(x3) ̸=0
g(x2)− g(x3) ̸=0

(3.7.27)

then

3.8 Conclusions 125

0 = −Cov(U, V)− (−Cov(U, V))
= Var(U)

(
g(x1) + g(x2)

)
− Var(U)

(
g(x1) + g(x3)

)
= Var(U)

(
g(x2)− g(x3)

)
̸=0

⇒ Var(U) = 0⇒ Cov(U, V) = 0

(3.7.28)

Now from both (a) and (b) it follows that

Y | x ∼ α1 + α2U + V, for some constants α1, α2 (3.7.29)

That is Y is independent of X.

The converse follows immediately from the Proposition 3.7.2 ifX and Y are independent,
then E[Y n | X = x1] = E[Y n] = E[Y n | X = x2].

3.8 Conclusions

In this chapter we have presented three independence criteria from the literature.
Original papers provided only the theoretical justification of the criteria. We provided
the geometrical intuition behind these criteria. Sejdinovic et al. (2013) showed the
equivalence between the distance based and the RKHS based independence criteria.
We showed the equivalence in the case of the most popular independence criteria such
as dCov, KGV and HSIC explicitly. dCov and HSIC has parameters that have to be set
correctly in order to use them successfully. We have explored the space of parameters
for different number of observations, varying noise levels and different dependence
structures and provided suggestions for the appropriate ranges for these parameters.
Finally we introduced a new approach to test for the dependence between variables,
the SNRIC. We showed that at least with a simulated data it is just as effective as the
general independence criteria while being significantly faster.
All statistical tests based on dCov, HSIC and SNRIC did a very good job in determining
whether the samples are independent, with dCov and HSIC based tests performing
slightly better. Though it is important to note that for dCov and HSIC the computa-
tional complexity of the criteria is quadratic in the number of observations, so they
become quite slow to use on data with a large number of samples. Under the current
implementation the computational complexity of SNRIC is linear in the number of
observations.

126 Independence Criteria

In the following two chapters we will use these independence criteria for the network
inference. First in the greedy search style algorithm like PC in Section 4 and finally in
a full MCMC sampler in Section 5.

3.8.1 Future Work

1. We showed that dCov is a special case of HSIC with a special Euclidean distance
kernel. So in the essence we were comparing HSIC with Gaussian kernel and
HSIC with Euclidean distance kernel. An interesting avenue for the future work
would be to test whether HSIC work better with other kernels, for example linear,
polynomial, hyperbolic tangent, Laplacian or Bessel. They are conveniently
implemented in kernlab (Karatzoglou and Smola, 2003) package for the R
statistical environment (R Core Team, 2014).

2. Current implementation of SNRIC uses polynomial regression. This choice was
made to maximize the computational efficiency (polynomial regression is fastest
choice after linear regression) while preserving sufficiently good performance
(SNRIC performed equally well as the general independence criteria in all cases
except the periodic relationships between variables). Future extensions of the
method would involve finding a better regression method that would provide better
accuracy for the method while not compromising its computational efficiency.
Possible approach would be to use splines (for example cubic splines, B-splines
(de Boor, 1978) or P-splines (Eilers and Marx, 1996)).

Chapter 4

Independence Criteria Based PC
Algorithm

4.1 Introduction

In this chapter we discuss the possibility to use independence criteria in network
inference. This Chapter is joint work with Nina Desgranges.
To do so we use a variation of the popular PC algorithm. The idea was introduced in
Gretton et al. (2009) and Tillman (2009). They use the Hilbert-Schmidt Independence
Criterion (for full detail, see Section 3.4) for testing for independence and the cluster
permutation conditional independence test (for full detail, see Section 3.6.3). We
expand on this approach by adding more independence criteria, namely the distance
covariance based dCov and the signal to noise ratio based SNRIC. Previously the dCov
was implemented as a package in R, we implemented the HSIC and SNRIC as well as
the adjusted PC version the kPC in the R package kpcalg (Verbyla et al., 2017).
We start this chapter by introducing the PC algorithm variation, the kPC. We continue
by discussing the performance of using different independence criteria in the kPC on
both simulated and experimental datasets (experimental datasets are discussed in more
detail in Section 1.6).

4.2 Kernel PC

The original PC algorithm consists of the three phases described in Section 1.3: skeleton,
collider and transitive. Gretton et al. (2009) presented a variation of the PC algorithm
(for full detail see Section 1.3), the kernel PC or kPC. The main differences between

128 Independence Criteria Based PC Algorithm

kPC and PC is the usage of the general independence criteria instead of a Z-test for the
independence test and the generalized transitive phase instead of the transitive phase.
We have discussed the general independence criteria in Section 3. Now we provide
some insight into the generalized transitive phase (for full details refer to Gretton et al.
(2009)).
We assume that the data comes from an additive noise model (discussed in more detail
in Section 5.2.2), i.e.

Xi = fi(PaG(Xi)) + ϵi, for all i = 1, ...,m (4.2.1)

Suppose we have an undirected edge x− y with the correct directionality x→ y and
the true model y = f(x) + ϵ, for some function f and the noise term ϵ (independent of
everything else). We can regress either y on x to get the first model: y = f̂(x) + ry,
or x on y to get the second model: x = ĝ(y) + rx. If either f is non-linear or ϵ is
non-Gaussian, then we will be able to distinguish between the two models (for more
detail refer to the (Shimizu et al., 2006)).
There are three possible outcomes:

1. We get independence of the residuals in both models, i.e. ry ⊥ x , and rx ⊥ y.
We leave the edge undirected. This could happen if the relationship f between x
and y is linear and the noise is Gaussian.

2. We don’t get independence of the residuals in either model, i.e. ry ̸⊥ x , and
rx ̸⊥ y. This could happen because the data does not follow the additive noise
model or there are unobserved latent variables, i.e. our model is in some way
misspecified.

3. Finally, we could get independence of the residuals in one of the model, i.e.
ry ⊥ x , but not in the other, i.e. rx ̸⊥ y. In this case we conclude that the
correct orientation is x→ y. This is the outcome we are looking for, it happens
if the data is correctly defined by the additive noise model (or at least it is
sufficiently close to the true model) and we have either non-linear relationship or
non-Gaussian noise.

In the generalized transitive phase we alternatively perform the above orientation
algorithm and apply Meek’s rules until no more orientation can be found. This
approach allows us to find significantly more orientations as we show in Section 4.4.6.

4.3 Inferring Directionality Using the Independence Criteria 129

4.3 Inferring Directionality Using the Independence
Criteria

As we have discussed above, we may use the independence criteria to determine the
direction of single edges. This is neither possible in the traditional PC algorithm nor
in the discrete Bayesian Network case (as discussed in Section 2.6). We provide some
simulated examples that illustrate how given that the data comes from an additive
noise model the independence criteria can be used to determine the directionality of
edges. We also show, how this approach may fail, if assumptions are not met, e.g. data
comes from a different model or there are latent variables.
The first example is a non-linear relationship with Gaussian noise: X ∼ N(0, 1),
Y ∼ X2 + N(0, 1). The original dataset is shown in Figure 4.1a and Figures 4.1b
and 4.1c show the residuals after regressing y on x and x on y respectively. We repeated
the simulation 100 times and the resulting mean p-values of the HSIC, dCov and SNRIC
tests are provided in Table 4.1. We may conclude that all tests found the residuals of y
regressed on x independent of x, i.e. ry ⊥ x, but not the other way around, i.e. rx ̸⊥ y.
Therefore in the generalized transitive phase we could safely infer x→ y directionality.

Method p-value for ry ⊥ x p-value for rx ⊥ y

HSIC 0.7 0
dCov 0.86 0.01
SNRIC 0.7 0.01

Table 4.1 The mean p-values of the residuals of the regressions x on y and y on x being
independent in a model with non-linear relationship with a Gaussian noise.

The second example is a linear relationship with a non-Gaussian noise: X ∼ U [0, 10],
Y ∼ 0.2X + U [0, 1]. The original dataset is shown in Figure 4.2a and Figures 4.2b
and 4.2c show the residuals after regressing y on x and x on y respectively. We repeated
this simulation 100 times, the resulting mean p-values of the HSIC, dCov and SNRIC
tests are provided in Table 4.2. We may conclude that all tests found the residuals of y
regressed on x independent of x, i.e. ry ⊥ x, but not the other way around. Therefore
in the generalized transitive phase we could safely infer x→ y directionality.
The third example is a linear relationship with a Gaussian noise: X ∼ N(0, 1),
Y ∼ 0.2X + N(0, 1). The original dataset is shown in Figure 4.3a and Figures 4.3b
and 4.3c show the residuals after regressing y on x and x on y respectively. We repeated
this simulation 100 times, the resulting mean p-values of the HSIC, dCov and SNRIC

130 Independence Criteria Based PC Algorithm

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

● ●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

−2 −1 0 1 2 3

−
2

0
2

4
6

8
10

x

y

(a) True model: y = sin(x) +
ϵ.

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

−2 −1 0 1 2 3
−

2
−

1
0

1
2

3

x

r y

(b) 1st model: y = f̂(x) + ry.

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−2 0 2 4 6 8 10

−
2

−
1

0
1

2
3

y

r x

(c) 2nd model: x = ĝ(y) + rx

Fig. 4.1 Model with a non-linear relationship and Gaussian noise.

Method p-value for ry ⊥ x p-value for rx ⊥ y

HSIC 0.77 0
dCov 0.76 0.05
SNRIC 0.65 0.01

Table 4.2 The mean p-values of the residuals of the regressions x on y and y on x being
independent in a model with a linear relationship with a non-Gaussian noise.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

x

y

(a) True model: y = 0.2x + ϵ.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

x

r y

(b) 1st model: y = f̂(x) + ry.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
2

−
1

0
1

2

y

r x

(c) 2nd model: x = ĝ(y) + rx

Fig. 4.2 Model with a linear relationship and a non-Gaussian noise.

tests are provided in Table 4.3. We may conclude that all tests found both the residuals
of y regressed on x independent of x, i.e. ry ⊥ x, and the residuals of x regressed on
y independent of y, i.e. rx ⊥ y. Therefore we could not infer any directionality from
such data. This is an expected result, because both models Y ∼ 0.2X +N(0, 1) and
X ∼ 5Y +N(0, 1) explain the data.

4.3 Inferring Directionality Using the Independence Criteria 131

Method p-value for ry ⊥ x p-value for rx ⊥ y

HSIC 0.55 0.48
dCov 0.78 0.75
SNRIC 0.65 0.64

Table 4.3 The mean p-values of the residuals of the regressions x on y and y on x being
independent in a model with a linear relationship with a Gaussian noise.

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−30 −20 −10 0 10 20 30

−
5

0
5

x

y

(a) True model: y = 0.2x + ϵ.

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−30 −20 −10 0 10 20 30

−
3

−
2

−
1

0
1

2
3

x

r y

(b) 1st model: y = f̂(x) + ry.

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

−5 0 5

−
15

−
10

−
5

0
5

10

y

r x

(c) 2nd model: x = ĝ(y) + rx

Fig. 4.3 Model with a linear relationship and a Gaussian noise.

The fourth example is a model including a latent non-observed variable: Z ∼ U [0, 10],
X ∼ cos(Z) + U [0, 1], Y ∼ sin(Z) + N(0, 1). The original dataset is shown in
Figure 4.4a and Figures 4.4b and 4.4c show the residuals after regressing y on x and x
on y respectively. We repeated this simulation 100 times, the resulting mean p-values
of the HSIC, dCov and SNRIC tests are provided in Table 4.4. We may conclude that
all tests found neither the residuals of y regressed on x independent of x, i.e. ry ̸⊥ x,
nor the residuals of x regressed on y independent of y, i.e. rx ̸⊥ y. Therefore we could
not infer any directionality from such data. This is an expected result, because neither
model x ∼ f(y) + ϵx nor y ∼ g(y) + ϵy is the correct one. This is a good example of
how unobserved latent variables might prevent correct network inference.

Method p-value for ry ⊥ x p-value for rx ⊥ y

HSIC 0.01 0
dCov 0.01 0.01
SNRIC 0.01 0.01

Table 4.4 The mean p-values of the residuals of the regressions x on y and y on x being
independent in a model with an unobserved latent variable.

132 Independence Criteria Based PC Algorithm

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4 6

−
5

0
5

x

y

(a) True model: y = 0.2x + ϵ.

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

−4 −2 0 2 4 6

−
5

0
5

x

r y

(b) 1st model: y = f̂(x) + ry.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

−5 0 5

−
6

−
4

−
2

0
2

4
6

y

r x

(c) 2nd model: x = ĝ(y) + rx

Fig. 4.4 Model with an unobserved latent variable.

The fifth and the last example is a multiplicative noise model, i.e. data does not come
from an additive noise model: X ∼ U [0, 10], Y ∼ cos(X)×U [0, 1]. The original dataset
is shown in Figure 4.5a and Figures 4.5b and 4.5c show the residuals after regressing
y on x and x on y respectively. We repeated this simulation 100 times, the resulting
mean p-values of the HSIC, dCov and SNRIC tests are provided in Table 4.5. We may
conclude that all tests found neither the residuals of y regressed on x independent
of x, i.e. ry ̸⊥ x, nor the residuals of x regressed on y independent of y, i.e. rx ̸⊥ y.
Therefore we could not infer any directionality from such data. This is an expected
result, because neither model x ∼ f(y) + ϵx, nor y ∼ g(y) + ϵy is the correct one, i.e.
the true underlying model is not an additive noise model. This is a good example of
how assuming a wrong model might prevent correct network inference.

Method p-value for ry ⊥ x p-value for rx ⊥ y

HSIC 0.01 0
dCov 0.01 0.01
SNRIC 0.01 0.01

Table 4.5 The mean p-values of the residuals of the regressions x on y and y on x being
independent in a model that is not an additive noise model.

These five examples illustrate some of the possible situations we may encounter in the
network inference while trying to direct edges. We showed that if the model is well
specified and we have either non-linear relationships (1st example) or the non-Gaussian
noise (2nd example), inferring the directionality of edges is possible. On the other
hand if the model is misspecified (4th and 5th examples) or we are dealing with a

4.4 Results 133

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

(a) True model: y = 0.2x + ϵ.

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

x
r y

(b) 1st model: y = f̂(x) + ry.

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
4

−
2

0
2

4

y

r x

(c) 2nd model: x = ĝ(y) + rx

Fig. 4.5 Multiplicative noise model.

truly linear relationship with a Gaussian noise (3rd example) we are unable to find the
directionality of the edges.

4.4 Results

We first investigate the effectiveness of the independence criteria in finding depen-
dencies in small simulated examples. We continue with a larger scale example with
data simulated by permutation resampling from the single-cell datasets. Finally we
present our results for the the single-cell datasets from Sachs et al. (2005) and the
Schistosomiasis dataset.

4.4.1 Comparison of Network Inference Algorithms

The performances of the algorithms are compared using ROC curves sensitivity over
specificity while varying the p-value cutoff required by the test for statistical inde-
pendence in the PC algorithm. Unless otherwise stated we focus on the absence and
presence of edges in the inferred graphs ignoring their direction when calculating
specificity and sensitivity.
Three types of datasets are considered: data simulated from a simple known network,
data obtained by permuting residuals after fitting a network to single-cell data from
Sachs et al. (2005), and finally the original data from the same study. Parameters of
the algorithms were fixed as in Table 4.6.
For easy reference we label the algorithms as follows. The standard PC algorithm as
implemented in the R package pcalg with the gaussCItest criterion (implementing
Fisher’s z-test for correlation) is labelled PC. The PC algorithm based on the dCov from

134 Independence Criteria Based PC Algorithm

Table 4.6 Free parameters for kPCs and dPC.

Parameter kPC-Clust kPC-Resid dPC
of Permutations 300 300 500
Kernel width λ 1 1 NA
Regularization parameter ϵ 0.1 NA NA
of clusters 30 NA NA

Section 3.2 is labelled dPC. The PC algorithm based on the HSIC from Section 3.4 is
labelled kPC. The kPC version based on the Permutation-cluster test from Section 3.6.3
is labeled kPC-Clust. The kPC version based on the Residuals test of Section 3.6.3
with the Gamma approximation is labelled kPC-Resid. Finally the PC algorithm based
on the SNRIC from Section 3.7 is labelled SNR-PC.

4.4.2 Data Simulated from an Artificial Network

The network and relationships between the nodes are described in Figures 4.6a & 4.6b.
To generate the data we start by generating values for the parent-less nodes according
to their probability distributions provided in Figure 4.6b, we continue by generating
values for the nodes whose parents are already generated according to their probability
distributions and relationships with parent nodes provided in Figure 4.6b. Since the
network contains non-linear relationships and non-Gaussian noise, as expected, the PC
algorithm performed worst (area under the ROC curve of 0.76±0.05 averaged over a 100
runs). Close to perfect performance was achieved by dPC (0.96± 0.04) and kPC-Clust
(0.98± 0.05), though SNR-PC (0.92± 0.03) and kPC-Resid (0.89± 0.05) showed very
similar results. Figure 4.7 shows the mean ROC curves (solid lines) and one standard
deviation spreads (dashed lines) for repeatedly simulated data. Table 4.7 shows how
many times algorithms outperformed each other out of 100 runs. All independence
criteria based algorithms outperformed the traditional PC 98− 100 times out of 100.
Note that the number of times the algorithm i outperformed the algorithm j and vice
versa does not have to add up to 100 as on some datasets they might perform equally
well, i.e. get the same area under the ROC curve. This happens quite often due to the
small number of edges.

4.4.3 Data Simulated by Re-sampling

Next we compare the performance of the algorithms on samples obtained by fitting a
plausible network to the single-cell data in Sachs et al. (2005) and re-sampling residuals.

4.4 Results 135

X1 X2

X3 X4

X5

X6 X7

X8 X9

(a) Graph of the toy simulated example
on 9 nodes

X1 ∼ U [0, 10]
X2 ∼ U [0, 3]
X3 ∼ sin(X1) +X2 + 0.6U [0, 1]
X4 ∼ N [0, 1]
X5 ∼ X3 +X4 + 2U [0, 1]
X6 ∼ N [0, 1]
X7 ∼ N [0, 1]
X8 ∼ X6 +X3

7 +N [0, 1]
X9 ∼ X2

7 +N [0, 1]

(b) Relationships between the nodes

Fig. 4.6 Toy simulated example on 9 nodes and 300 observations.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, µAUC=0.96 & σAUC=0.04
kPC−Resid, µAUC=0.89 & σAUC=0.05
kPC−Clust, µAUC=0.98 & σAUC=0.03
SNR−PC, µAUC=0.92 & σAUC=0.05
PC, µAUC=0.76 & σAUC=0.05

Fig. 4.7 ROC curves to compare kPCs, dPC, SNR-PC and PC algorithms on the toy
simulated example. The solid lines are the mean ROC curve and the dotted lines are
the mean ROC curve ± one standard deviation.

As we discussed in Section 1.6, we have a reference network for these datasets, given in
Figure 1.9b. This allows us to generate a simulated dataset from a real one. There are
two benefits of doing so. First of all we still control the structure of the underlying

136 Independence Criteria Based PC Algorithm

dPC kPC-Resid kPC-Clust SNR-PC PC
dPC 0 84 23 77 100
kPC-Resid 12 0 6 32 98
kPC-Clust 58 88 0 82 100
SNR-PC 18 65 11 0 99
PC 0 2 0 0 0

Table 4.7 Comparison of the PC algorithm versions on a small simulated example.
Number in the ith row and the jth column represents how many times algorithm i
outperformed the algorithm j.

network but obtain more realistic noise distributions. Second instead of one dataset, we
can generate many allowing us to run our algorithms multiple times and get confidence
interval on any metric we are going to use to evaluate the algorithms.
As outlined in the introduction, the data consist of eight datasets of expression levels of
eleven proteins, each dataset obtained after specific experimental interventions. Here
we present only the results from the dataset 8, the rest is provided in Appendix D,
Figure D.1. Protein PKC was inhibited for dataset 8. Since PKC was externally
modified no causal arcs lead into PKC. The network is that of Figure 1.9b with arcs
into PKC removed.
For the simulation we used the causal model of Figure 4.8a. The data generation starts
from parent-less nodes (PKC and PKA). These variables are assigned the original
values from the samples in the experimental dataset. Next, recursively iterating over
nodes whose parents already have assigned values, a generalised additive model is fitted
to obtain mean estimates and residuals for the experimental sample values of the focus
node when regressing on the values previously assigned to its parents. These residuals
are permuted before being added to mean estimates to obtain re-sampled values to
assign to the focus node.
This procedure ensures that only the assumed dependencies as captured in the non-
linear regressions on parents are maintained, while all other dependencies are removed
by permuting residuals. On the other hand, the noise characteristics of the original data
are maintained to some degree. In particular, some focus nodes show little functional
dependence (see Figure 1.10b, for example PKC → RAF shows almost no signal)
on their parents, that is, a very low signal to noise ratio. This is a characteristic of
experimental data as well. In order to explore the influence of this signal to noise ratio,
additional data sets are simulated with residuals scaled down by a factor k before being
added to mean estimates, improving on the signal to noise ratio.

4.4 Results 137

Figure A.1 in Appendix A show the dependencies and pairwise scatterplots between
variables of the dataset simulated from dataset 8. All the dependencies and scatterplots
look almost identical to the ones of the real dataset 8 in Figure 1.10, which gives us
some confidence that simulating in this way preserves most of the properties of the
original dataset.

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

(a) Graph to simulate from the Dataset 8.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity
dPC, AUC = 0.819 ± 0.03
kPC−Resid, AUC = 0.808 ± 0.03
kPC−Clust, AUC = 0.807 ± 0.03
SNR−PC, AUC = 0.792 ± 0.04
PC, AUC = 0.739 ± 0.04

(b) ROC curve to compare kPCs, dPC,
SNR-PC and PC algorithms on the simu-
lated Dataset 8.

Fig. 4.8 Data simulated with non-reduced noise from dataset 8.

Figure 4.8b shows that all the PC versions based on the general independence criteria
significantly outperform the traditional PC algorithm. dPC, kPC-Resid and kPC-Clust
result in the mean areas under the ROC curve greater than 0.8, SNR-PC of 0.79 while
that of PC is only 0.74. The standard deviation for all algorithms is almost the same,
approximately 0.03 − 0.04. Performance is worse than for the toy example above.
This is mainly due to a small signal to noise ratio for many relationships: on visual
inspection many relationships in Figure 1.9b are hardly noticeable in the data. This
results in the regression step not capturing much signal. On the other hand, real data
are likely to show this type of noise characteristics. The effect of varying the scaling
factor k for the residual noise is shown in Figure 4.9. Generally, as expected, with
lower noise performance improves. Reducing noise 10 times increased the AUC by
approximately 0.05, which is significantly more than one standard deviation (≈ 0.03).
It would be possible to argue that we are considering only the mean area under the
curve but the performance of the PC and kPC algorithms are highly correlated over
networks, making the comparisons of mean performance less informative. We are

138 Independence Criteria Based PC Algorithm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.848 ± 0.03
kPC−Resid, AUC = 0.834 ± 0.03
kPC−Clust, AUC = 0.84 ± 0.03
SNR−PC, AUC = 0.847 ± 0.03
PC, AUC = 0.766 ± 0.03

(a) 3 times reduced noise.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.874 ± 0.02
kPC−Resid, AUC = 0.859 ± 0.03
kPC−Clust, AUC = 0.862 ± 0.03
SNR−PC, AUC = 0.862 ± 0.02
PC, AUC = 0.759 ± 0.02

(b) 10 times reduced noise.

Fig. 4.9 ROC curve to compare kPCs, dPC, SNR-PC and PC algorithms on the data
simulated with reduced noise from dataset 8.

actually interested in the probability that the kPC algorithm performs better than the
PC algorithm. Table 4.8 shows how many times which algorithm outperformed others
out of 100 runs on the different datasets simulated from the dataset 8. On the data
simulated from dataset 8 the dPC, kPC-Resid, kPC-Clust and SNR-PC outperform
the PC algorithm 96, 92, 93 and 89 out of a 100 iterations. Table 4.9 provides the
average results over datasets simulated from all 8 datasets (800 simulated datasets
in total). kPC algorithms still outperform the original PC algorithm approximately
nine times out of ten. Among themselves the kPC versions perform very similarly with
dPC having a slight edge over the both kPC versions and SNR-PC.

dPC kPC-Resid kPC-Clust SNR-PC PC
dPC 0 60 58 68 96
kPC-Resid 31 0 47 62 92
kPC-Clust 31 45 0 63 93
SNR-PC 25 31 32 0 89
PC 3 8 5 4 0

Table 4.8 Comparison of the PC algorithm versions on the data simulated from dataset
8.

4.4 Results 139

dPC kPC-Resid kPC-Clust SNR-PC PC
dPC 0.00 56.12 54.38 53.62 90.50
kPC-Resid 32.88 0.00 42.88 46.75 86.62
kPC-Clust 34.88 43.88 0.00 46.75 85.62
SNR-PC 36.50 44.50 44.25 0.00 87.00
PC 5.50 7.00 9.25 8.12 0.00

Table 4.9 Comparison of the PC algorithm versions on all 8 simulated datasets.

4.4.4 Original Data

Finally we tested all the algorithms on the original single-cell data from Sachs et al.
(2005). Again we only show the results on dataset 8 here, the rest of the results are
provided in the Appendix D, Figure D.2. We expect to find the skeleton of the graph
in Figure 4.10a derived from Figure 1.9a as in the previous section. In Figure 4.10b we
see the ROC curves for five versions of the PC algorithms. Results are very similar to
the ones seen for simulated data: dPC, kPCs and SNR-PC outperform PC and are
quite similar among themselves. We may conclude that independence criteria based
PC versions are a significant improvement on the traditional PC algorithm on the real
data as well as the simulated one.

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

(a) Skeleton of the graph we expect to find
from the Dataset 8.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.782
kPC−Resid, AUC = 0.802
kPC−Clust, AUC = 0.793
SNR−PC, AUC = 0.765
PC, AUC = 0.726

(b) ROC curves to compare kPCs, dPC
and PC algorithms on the Dataset 8.

Fig. 4.10 ROC curves for dataset 8.

140 Independence Criteria Based PC Algorithm

4.4.5 Combining All Datasets

The eight datasets of Sachs et al. (2005) have slightly different dependence structures
due to variation in the external interventions. Combining information from all datasets
should improve reconstruction of the underlying graph structure. To test this intuition
we combine a consensus graphical structure from networks fitted to each dataset. Two
types of consensus networks are obtained. The first takes edges that appear in at
least one of the individual networks (labelled union network). The second calculates
the typical average occurrence of edges over all edges in the union network and over
all eight networks. Then only those edges of the union network are retained which
occur (across all eight networks) more often than this typical average. We label
this network above-average network. More sophisticated approaches are conceivable,
however, here we only wanted to investigate whether there is potential improvement
by combining networks at all, and the effect of the choice of an independence criterion
on the consensus network. We compare the output of our algorithm to the skeleton
illustrated in Figure 4.11a derived from Figure 1.9a and corresponding ROC curves are
shown in Figure 4.11b and 4.11c.
Combining networks results in a slight improvement overall compared to Figure 4.10
with a trade-off between sensitivity and specificity shifted between the two types of
combinations. The general independence criteria are again superior.

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

(a) Graph

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.84 ± 0.03
kPC−Resid, AUC = 0.825 ± 0.03
kPC−Clust, AUC = 0.798 ± 0.04
SNR−PC, AUC = 0.816 ± 0.04
PC, AUC = 0.824 ± 0.04

(b) Union network

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.802 ± 0.02
kPC−Resid, AUC = 0.787 ± 0.02
kPC−Clust, AUC = 0.799 ± 0.02
SNR−PC, AUC = 0.817 ± 0.03
PC, AUC = 0.758 ± 0.01

(c) Above-average network

Fig. 4.11 All 8 datasets combined.

4.4.6 Discovering Directions

So far we have looked at performance of algorithms when inferring the skeleton of a
DAG with undirected edges only. The PC algorithm adds an edge orienting phase
exploiting collider patterns and transitive closure requirements as formalised in the

4.4 Results 141

Meek rules (Meek, 1995) in the collider phase. Exploiting non-linear relationships and
non-Gaussian noise additional edges might be oriented. This is achieved by the PC
algorithm extended by the generalised transitive phase which incorporates background
knowledge emerging from testing directions exploiting non-linearity and non-Gaussian
noise.
With an imperfect independence test or data that do not strictly follow modelling
assumptions, ambiguities can arise when orienting edges, possibly leading to cycles and
doubly oriented edges. There are no general rules how to resolve such ambiguities. In
this section we ignore doubly oriented edges as undirected for the purpose of assessing
algorithms.
Results comparing algorithms by the number of correct predicted orientations are
presented in Table 4.10. Free parameters were fixed as in Table 4.6. The kernel PC
using the generalized transitive phase adds many more orientations to those found
by the original PC algorithm. To generate Table we used a 100 datasets simulated
from the dataset 8 (same as in Section 4.4.3) and took the average over the correctly,
wrongly and non-oriented edges. The kPC algorithms orients almost all the edges, with
5.5 (SNR-PC) to 6.5 (kPC) of them being correct and approximately 2 being wrong,
while the PC algorithm gives only 3.5 correct, 3 wrong and 1.3 non-oriented edge.

Method Correctly oriented Wrongly oriented Not oriented Total correct
edges edges edges edges

dPC 6.07 1.95 0.14 8.16
kPC-Resid 6.64 1.31 0.11 8.06
kPC-Clust 6.46 1.68 0.09 8.23
SNR-PC 5.43 2.11 0.26 7.80
PC 3.47 3.04 1.34 7.85

Table 4.10 The average number of correctly and wrongly oriented edges as well as not
oriented edges for the algorithms.

We illustrate some of the results from Table 4.10. Figure 4.12 shows the output
graphs of the orientation phases of the algorithm kPC-Resid. In the collider step one
v-structure is identified correctly, namely Plcγ → Pip2← Pip3, while another wrongly,
namely Aktγ → Pka← Erk. Since there are no more colliders no further edge can be
oriented at the transitive step. However, exploiting non-linearity and non-Gaussian
noise it is straightforward to orient the rest of the edges in the Generalised transitive
phase.

142 Independence Criteria Based PC Algorithm

Finally, for comparison with the kPC algorithm, Figure 4.13 shows the output of
the dPC algorithm on simulated dataset 8. In contrast to the kPC-Resid algorithm
the dPC does not mistake Pka for a collider and therefore is able to correctly orient
Aktγ ← Pka→ Erk in the generalized transitive step. Though it does orient the edge
Plcγ → Pip3 wrongly.

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

(a) Skeleton and Collider
step

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

(b) Transitive step

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

(c) Generalized transitive
step

Fig. 4.12 Output of the kPC-Resid algorithm on the data simulated from dataset 8.
Colour coding: dashed black undirected or doubly directed edges represent correctly
identified undirected edges, green directed edges represent correct, while red directed
edges represent incorrect orientations. Dashed black oriented edges are from the
previous phase.

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

(a) Skeleton and Collider
step

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

(b) Transitive step

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

(c) Generalized transitive
step

Fig. 4.13 Output of the dPC algorithm on the data simulated from the dataset 8.

4.4.7 Schistosomiasis Dataset

Finally we applied the kPC algorithms to the Schistosomiasis dataset. As we discussed
in Section 1.6.3 this dataset has a more complex structure than the single-cell datasets,

4.5 Discussion 143

i.e. almost every pair of variables is (at least unconditionally) dependent. Therefore we
expect a much denser graph. In Figure 4.15 we provide the results of kPC algorithm
applied to the Schistosomiasis 11 variable dataset. We do not have a reference network
for this network to compare our results with. We present combined outputs of the kPC
algorithm at a different cut off α = 0.1, ..., 0.8. Recall that low α means that we are
less likely to reject the independence hypothesis, i.e. we are more likely to remove an
edge. The darkest edges were present in all of the outputs, i.e. we are certain about
them, while the lightest edges were present only in the outputs with high α, i.e. we
are not very certain about them. Different independence criteria produced similar but
not identical results. At the lowest α cut off 12 edges were found by all four methods,
another edge by at least three methods and there were 17 edges in total identified by
at least one algorithm. All kPC versions found significantly more relationships than
the MCMC on the discretized data from Section 2.6.5. This could be explained by the
information loss when discretizing the data.

sex

age

egg pre

ige pre

igg4 pre
il5 24h

il10 24h

il13 24h

ige 9wk

igg4 9wk

egg 8mth

Fig. 4.14 Network for the Schistosomiasis dataset; only the edges present in all four
kPC variants with α = 0.1 are present.

4.5 Discussion

The purpose of this study was to investigate how far probabilistic independence criteria
for continuous data that go beyond linear relationships and Gaussian noise can improve
the identification of edges and their orientation in a causal graph when applied to
experimental data and data simulated in a realistic fashion from experimental data.
We analysed two different criteria proposed in the literature, the Hilbert-Schmidt

144 Independence Criteria Based PC Algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11

sex

age

egg_pre

ige_pre

igg4_pre

il5_24h

il10_24h

il13_24h

ige_9wk

igg4_9wk

egg_8mth

(a) dPC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11

sex

age

egg_pre

ige_pre

igg4_pre

il5_24h

il10_24h

il13_24h

ige_9wk

igg4_9wk

egg_8mth

(b) kPC-Resid

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11

sex

age

egg_pre

ige_pre

igg4_pre

il5_24h

il10_24h

il13_24h

ige_9wk

igg4_9wk

egg_8mth

(c) kPC-Clust

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11

sex

age

egg_pre

ige_pre

igg4_pre

il5_24h

il10_24h

il13_24h

ige_9wk

igg4_9wk

egg_8mth

(d) SNR-PC

Fig. 4.15 The Schistosomiasis network adjacency matrix found by kPC algorithm using
various independence criteria. Matrix M element mij represents the proportion of
outcomes in which the ith node is a parent of the jth node.

Independence Criterion or HSIC, and the Distance Covariance Criterion or dCov,
and a Signal to Noise Ratio Independence Criterion or SNRIC in the context of the
popular PC algorithm that relies on measures of probabilistic independence for network
inference. The distance covariance is a natural extension of the Pearson correlation
parameter Székely et al. (2007). To our knowledge this is the first implementation and
application of the dCov to causal or network inference. All algorithms discussed in

4.5 Discussion 145

this study are available as kpcalg (Verbyla et al., 2017) package for the R statistical
environment (R Core Team, 2014).
Overall, our findings confirm that the performance of general independence criteria
is decisively better over that based on linear relationships with Gaussian noise on
simulated as well as experimental data in terms of correct undirected edges as well as
of correct directions. Secondly, we find only little difference between the performance
of the HSIC, dCov and SNRIC in general, with the dCov showing slightly better
performance for some datasets.
In order to assess the algorithms in a realistic scenario we applied them to a well-known
experimental dataset for which the network is approximately known based on biological
knowledge. Of course, this knowledge of the network might be inaccurate and we
therefore propose a generic way to simulate data based on experimental data and an
approximate or putative network structure that keeps much of the noise characteristics
of the original data but reproduces those and only those conditional dependencies
required by the network. As we demonstrate in our analysis these simulated datasets
form an excellent compromise between retaining much of the non-linear and non-
Gaussian characteristics of the original data, but for an exactly known network. As
we see in our study one difficulty remains: if some arcs of the assumed network are
not supported by the data, for example, if there is little dependency in the data in
the first place between two variables which we wish to connect in the network, our
method is unable to create such dependency artificially. Nevertheless, as long as
the assumed network reflects most of the dependencies in the experimental data, the
simulated data are useful for comparative studies between different algorithms as shown
in Section 4.4.3.
The PC algorithm requires a test for conditional independence. Independence criteria
might, however, only be available in an unconditional form. We propose a simple
procedure, based on fitting non-linear regressions, to adapt such criteria to the condi-
tional independence case. Since there is a conditional version of the HSIC available we
had an opportunity to compare the conditional HSIC (in algorithm kPC-Clust) with
our adaptation of the unconditional HSIC (in algorithm kPC-Resid). As can be seen
throughout the study, the adapted kPC-Resid version, particularly on experimental
and realistically simulated data, is performing comparably to the conditional version
with the conditional HSIC having a slight advantage. It is worth noting that kPC-Clust
involves calculating the empirical estimate of the conditional HSIC (3.6.3) which is
computationally significantly more expensive than the unconditional HSIC (3.4.12),

146 Independence Criteria Based PC Algorithm

therefore in practice kPC-Clust can be up to 5− 10 times slower than kPC-Resid or
dPC.
The empirical estimation of HSIC depends on parameters such as the kernel width λ

and the regularisation parameter ϵ. Here we used simulations to find sensible ranges for
these parameters. It should be noted that the HSIC is not scale invariant and therefore
the parameter ranges we propose are only suitable for normalized data. Another
advantage of the dCov is that it is less affected by parameter choices, essentially only
the power parameter ξ which can be safely set to a value between 0.1 and 1 without
affecting the results too much. dCov is scale invariant, therefore values for ξ works for
any data.
The PC algorithm is very restrictive in its assumptions on the dependency structure.
For example, cycles or unobserved variables are excluded. It would be interesting to
see whether inference techniques allowing such more complex assumptions benefit from
general independence criteria in the same way the PC algorithm does.
The PC algorithm is firmly based in a frequentist statistical framework. Bayesian
inference is often strongly dependent on specific noise models through the likelihood
function. It needs to be explored how to incorporate independence criteria in a Bayesian
framework, possibly through a form of loss likelihood (Bissiri et al., 2016). We will
explore this path in the next chapter. A different approach would be to test the effect
of different kernels in the HSIC, for example linear, polynomial, hyperbolic tangent,
Laplacian or Bessel. They are conveniently implemented in kernlab (Karatzoglou and
Smola, 2003) package for the R statistical environment (R Core Team, 2014).

4.5.1 Model Limitations

In this chapter we have shown that the general independence criteria based PC algorithm
is an efficient tool in inferring networks structure and outperforms the conventional
PC algorithm most of the time. The main limitations of this algorithm comes from
the framework of the PC algorithm.

1. First of all ICPC is a greedy algorithm and as every greedy algorithm it is not
guaranteed to find the global maximum (the optimal network structure) just the
local maximum.

2. Algorithm has hyper-parameters, such as maximum number of parents and the
independence cut-off, which have to be chosen prior to running the algorithm
and the output might be sensitive to these choices.

4.5 Discussion 147

3. ICPC is susceptible to the existence of latent variables.

4. ICPC cannot deal with cycles.

5. Finally it is important to point out that the current implementation is using
regression based unconditional independence testing for the conditional inde-
pendence tests (Section 3.6.3). We have shown that this works well when data
follows some functional relationships, but in principle this is not strictly correct.

4.5.2 Future work

Based on the model limitations discussed in Section 4.5.1 we propose the following
paths of possible future extensions. First four limitations are the same as for the
original PC algorithm and it is not in the scope of this work to deal with them. We
only propose possible extensions with respect to the last limitation.

1. The first step would be to implement the general independence criteria based tests
in C++ or other compiled programming language. This would greatly increase
the computational time of the algorithm.

2. Another avenue for the future work is more theoretical rather than programming
based. Currently we are only aware of the Cluster-HSIC conditional independence
test which is significantly slower than the residual counterparts. ICPC method
would strongly benefit if we could develop a fast full conditional independence
test and use it instead of either the residuals based independence tests or the
Cluster-HSIC.

Chapter 5

MCMC Sampling Using Loss
Function

5.1 Introduction/Motivation

So far we have discussed approaches to infer a network structure, when the true
underlying graph structure is a directed acyclic graph. In real life biological datasets
this is a very strong assumption, which fails more often than not. Occasionally we may
ignore the existence of the cyclic structures and still hope to get a meaningful result,
but this is more of an exception, rather than a rule. In this chapter we present a model
capable of dealing with datasets generated from the networks that have cycles. As we
have discussed in section 1.1, networks with feedback loops inference is a particularly
complex problem.
In Chapter 2 we introduced an MCMC sampler for network structures, in Chapter 3
we introduced a quantitative way of estimating dependence in the sample: general
independence criteria, in Chapter 4 we showed the potential of using these independence
criteria in the network inference. Finally in this chapter we are bringing all the pieces
together to build an algorithm that can infer networks with non-linear relationships,
feedback loops and non-Gaussian noise.

5.2 Model

We start by describing the model that we assume is generating the data. We would
like our model to have the following properties:

150 MCMC Sampling Using Loss Function

• to be as flexible as possible, we would like our model to be able to capture all
possible relationships between the data. Therefore we want to allow flexible
non-linear relationships, possible cyclic structures and any noise.

• to be parametric or semi-parametric, we would like to be able to use our model
for future predictions or at least to be able to evaluate it on a left out test subset
of the data.

• to be able to estimate the parameters of our model.

Combining these desired properties, we decided to use an additive noise model.

5.2.1 Structural Equation Model

First we introduce a Structural Equation Model (SEM), for more detail see Murphy
(2012). SEM is a special kind of directed mixed graph where all relationships are linear
Gaussian and cycles are allowed. SEMs are widely used, especially in economics and
social science. Usually a directed edge is interpreted as a causality and a directed cycle
is interpreted as a feedback loop (for example Pearl (2000)).
Suppose we have n variables X = (X1, ..., Xn), then SEM can be defined as a series of
full conditionals:

Xi = µi +
n∑
j=1

wijXj + ϵi, where ϵ ∼ N (0,Σ)

Now if I −W is invertible we can rewrite the above as:

X = (I −W)−1(µ+ ϵ)

And so the joint probability distribution is given by X ∼ N (µ̂, Σ̂), where µ̂ = (I −
W)−1µ and Σ̂ = (I −W)−1Σ(I −W)−T . This means that x is distributed as a joint
Gaussian and there is nothing inherently causal in it.

Example

Here is a small example of a structural equation model on 4 nodes, also shown in
Figure 5.1.

5.2 Model 151

x1

x2

x3

x4

 =

0 0.8 0 0

0.7 0 0 0
0.8 0 0 0
0 −0.5 0 0

x1

x2

x3

x4

+

ϵ1

ϵ2

ϵ3

ϵ4

x1

x2

x3

x4

ϵ1

ϵ2

ϵ3

ϵ4

0.70.8

0.8

−0.5

Fig. 5.1 Example of a Structural Equation Model.

5.2.2 Additive Noise Model

The Structural Equation Model is not very flexible, it allows only linear relationships
and Gaussian noise, both are strong assumptions that are very likely to fail in a real
life example. The additive noise model (Hoyer et al., 2009) we are using can be thought
of as an extension of the SEM. We relax the assumption of the linear relationships and
Gaussian noise, i.e. now we allow any non-linear relationship between the variables
and any noise distribution, while still allowing cyclic structures in the model, just like
in a SEM.

Xi =
n∑
j=1

f(Xj, θij) + ϵi

Here we assume all ϵi to be independent of each other. Note that a SEM is a special
case of an additive noise model, that is if we take the relationship f to be linear, i.e.
f(x, θ) = θx and the noise to be Gaussian, i.e. ϵ ∼ N (0,Σ) this becomes exactly a
SEM.

152 MCMC Sampling Using Loss Function

Example

We present a simple example showing the importance of correctly identifying a cycle in
the network. Suppose data is generated by a simple cyclic model from Equation 5.2.1.

X ∼ αY + ϵX ; ϵX ∼ N(0, 1)
Y ∼ βX + ϵY ; ϵY ∼ N(0, 1)

(5.2.1)

We are interested in the effect of X on Y . Suppose we overlook the cyclic relationship
between X and Y and try to fit a non-cyclic model Y ∼ β̂X + ϵ. Using a least square
regression to find β̂, we would have to minimize

min
β̂

(Y − β̂X)2

Using a substitution we can rewrite Equation 5.2.1 as

X = αβX + αϵY + ϵX = 1
1− αβ (ϵX + αϵY)

Y = αβY + βϵX + ϵY = 1
1− αβ (βϵX + ϵY)

To find β̂ we consider the expectation

E(Y − β̂X)2 = E
[

1
(1− αβ)2

(
(1− αβ̂)ϵY + (β − β̂)ϵX

)2
]

= 1
(1− αβ)2

(
(1− αβ̂)2E[ϵ2

Y] + 2(1− αβ̂)(β − β̂)E[ϵXϵY] + (β − β̂)2E[ϵ2
X]
)

= 1
(1− αβ)2

(
(1− αβ̂)2 + (β − β̂)2

)

After differentiating with respect to β̂ and equating to zero we get β̂ = β+α
1+α2 . β̂ = β if

and only if α = 0, i.e. the relationship is truly not cyclic. Though suppose the true
parameters are: α = −0.6 and β = 0.4, then β̂ ≈ −0.15. Not only the magnitude of
the estimate is wrong but the sign as well. If we are interested in parameters of the
relationships (for example we are interested in predictive power), then missing a cycle
can lead to very wrong conclusions.

5.3 Theory 153

5.3 Theory

Markov Chain Monte Carlo (MCMC) methods are very popular (Tasaki et al., 2015).
They overcome issues such as the necessity to calculate the probability for every sample
point. For example the often used Metropolis-Hastings algorithm requires only the
ratio of probabilities at two points, so we avoid calculating the normalising constant
for the probability distribution. For a detailed discussion of using MCMC sampler for
structure search see Section 2.2. There are two possible issues that may arise. Firstly
how do we sample from models that have different numbers of parameters, for example
in the network inference the number of parameters depend on the network structure
(the number of edges in the network). The other problem arises if we do not have a
probability distribution to sample from. For example if we are using an additive noise
model and we do not assume a probability distribution for the noise terms, then we
are unable to define a probability distribution for our model. It could also be the case
that just calculating the ratio of probabilities is already computationally infeasible.
In the following section we discuss possible approaches to work around these problems.
We first introduce a reversible jump MCMC in Section 5.4 and then a possibility to
sample from a loss function instead of the likelihood in Section 1.4.

5.4 Reversible Jump MCMC

Using an MCMC sampler in order to find a network involves sampling the network
structure as well as sampling the parameters for each structure. This means that when
the MCMC chain jumps to a different structure it effectively changes the dimensionality
of the space it is sampling from. This raises a question how to form the proposal
distribution in order that the MCMC chain could sample both correctly and efficiently.
The problem of the correct sampling distribution is discussed in Green (1995) and how
to form an efficient jump proposal which would be accepted with a high probability is
discussed in Brooks et al. (2003).

5.4.1 Jump to a Higher Dimensional Space

Suppose we want to propose a jump from the state in a model Mi with the parameters
θi (which is from the ni dimensional space Θi) to the state in a higher dimensional
model Mj with the parameters θj (which is from the nj dimensional space Θj), i.e.
nj > ni. In our network inference case this happens when we want to propose to add
an edge. Green (1995) proposes to generate an nj − ni dimensional random vector v

154 MCMC Sampling Using Loss Function

from some proposal density φnj−ni(v) = ∏nj−ni
k=1 φ(vk). Then to propose the next state

θj = fi,j(θi, v), using some function fi,j : Θi × Rnj−ni → Θj. This move is accepted
with probability

P {(Mi, θi), (Mj, θj)} = min (1, Ai,j(θi, θj)) (5.4.1)

where

Ai,j(θi, θj) = π(Mj, θj)
π(Mi, θi)

rji(Mj, θj,Mi)
rij(Mi, θi,Mj)

1
φnj−ni(v)

∣∣∣∣∣∂fi,j(θi, v)∂(θi, v)

∣∣∣∣∣ (5.4.2)

rij(Mi, θi,Mj) is the probability to propose a jump from the model Mi with parameters
θi to the model Mj, for more details see Section 2.2. We suppose that all the models
M1, ...,Mi, ... have the priors p(M1), ..., p(Mi), ... respectively. We also suppose that
the model Mi has the parameters θi with the priors pi(θi), θi ∈ Θi. Finally given the
model Mi and its parameters θi the likelihood of the data x is given by Li (x|θi). So
the posterior density is given by

π (Mi, θi) ∝ Li (x|θi) pi(θi)p(Mi)

Example: Simple nested models

Suppose we have simple nested models. That is ni = k, nj = k + 1 and we are using
the identity function f , i.e. fk,k+1(θk, v) = (θk, v). Also suppose we draw our proposal
v from N(0, σ2). Then (5.4.2) simplifies to

Ak,k+1(θk, θk+1) = Lk+1(x | θk, v)
Lk(x | θk)

pk+1 ((θk, v))
pk(θk)

p(Mk+1)
p(Mk)

rk+1,k(Mk+1,Mk)
rk,k+1(Mk,Mk+1)

1
φ(v)

(5.4.3)
where

φ(v) = (2πσ2)−1/2 exp(−v2/2σ2)

and the proposal rk,k+1 is independent of the parameters θk.

Adding an Edge

As stated before, in the case of the network inference a jump to a higher dimensional
space is necessary when adding an edge. Suppose we propose to add an edge {x→ y},
i.e. to move from the graph Gi to the graph Gj = Gi ∪ {x → y}. In this case we

5.4 Reversible Jump MCMC 155

would also need to propose the parameter(s) θxy for the edge {x → y}. Here we
can use the proposal function f as an identity function, i.e. the proposed state is
θj = fi,j(θi, v) = (θi, v). In this case the acceptance probability Ai,j from Equation
5.4.2 simplifies to:

Ai,j(θi, θj) = π(Mj, θj)
π(Mi, θi)

rji
rij

1
φn(v) (5.4.4)

here φn is the proposal distribution for the parameters of the new edge and n is the
number of parameters per edge (one in the case of linear model and the number of the
linear elements in the piece-wise linear model). We also dropped the dependence of
the structure change proposal rij on the parameters θi (equivalently for the rji) as this
depends only on the structure of the graph Gi and not on its parameters θi

5.4.2 Centring Proposals

In order to be able to deal with cases more complicated than the simple nested model,
Brooks et al. (2003) suggests to introduce a set of centring functions. A centring
function cij : Θi → Θj can be defined as

c(θi) = f (θi, b(θi))

where b(θi) = bij(θi) is some real-valued function, often taken to be identically zero.
This defines a special point b(θi) for the proposal vector v which is mapped to a special
point c ∈ Θj in the higher dimensional space Θj . There are various ways to choose the
centring functions c (which essentially is defined by the choice of the function b). We
discuss two options proposed by Brooks et al. (2003):

1. Weak non-identifiability

2. Conditional maximization

5.4.3 Weak Non-Identifiability Approach

Suppose we want to make a jump from a model Mi with the parameters θi ∈ Θi

to a higher dimensional model Mj with the parameters c(θi) ∈ Θj. The weak non-
identifiability approach relies on finding the jump proposal c(θi) such that the proba-
bilistic models (in terms of likelihood) defined by θi ∈ Θi and c(θi) ∈ Θj are identical.
For example in the SEM case, models θi and (θi, 0) are identical in terms of the
likelihood.

156 MCMC Sampling Using Loss Function

5.4.4 The Conditional Maximization Approach

An alternative to the weak non-identifiability approach is a so called conditional
maximization. Our overall goal is to choose a proposal which is likely to be accepted.
Therefore when considering where to jump to in the higher dimensional space, an
obvious choice for the proposal is the posterior modes in the higher dimensional model.
The conditional maximization approach is to maximize the posterior distribution
π (Mj, h(θi, u)) with respect to u to obtain the maximizing value û, say, i.e.

û = argmax
u

π (Mj, h(θi, u))

Then our centring point is chosen so that c(θi) = h(θi, û). Thus, we are essentially
conditioning on the current state θi and centring at the posterior conditional mode.

5.4.5 Zeroth-Order Method

Now we shall introduce the simplest method for choosing the proposal distribution.
Suppose that we are currently in a state θi and we wish to sample for v which can be
used to generate a state in the new model, θj (recall that θj = f(θi, v)). We choose
the distribution of v so that, for the jump between θi and its image in θj under the
centring function c(θi), the acceptance ratio given in equation 5.4.2 is identically equal
to 1, i.e.

Aij (θi, c(θi)) = 1 (5.4.5)

Usually we are choosing the distribution of v from a family of canonical distributions
with a low number of parameters (for example a normal N (µ, σ2) or uniform U [−α, α]).
Another option suggested by (Brooks et al., 2003) is to use the higher order methods.
For example a first order method would require to simultaneously solve both:

Aij (θi, c(θi)) = 1
∇vAij (θi, c(θi)) = 0

The higher order methods give more accurate proposals (the probability to accept the
jump to a higher dimensional model is higher) but they are computationally more
expensive.

5.4 Reversible Jump MCMC 157

5.4.6 Example 1: Weak Non-Identifiability

We present a simple example to make the concept of the zeroth-order centring more
clear. Lets consider a SEM (as described in Section 5.2.1) on n nodes, i.e. we assume
that our data x is generated by the following model:

xi = µi +
n∑
j=1

wijxj + ϵi, where ϵ ∼ N (0,Σ)

In this case the possible models M are all possible graph structures on n nodes. There
are n(n− 1) possible edges, and therefore there are 2n(n−1) of possible graph structures.
Lets assume a uniform prior on these models p(Mi) = 2−n(n−1),∀i = 1, ..., 2n(n−1).
An ni dimensional model Mi has parameters θi (in this case these are the weights wij ’s
of the non-zero edges of the graph). Lets assume the prior for θi to be

pi(θ) = (2πσ2
a)−ni/2

ni∏
k=1

exp(−θ2
k/2σ2

a)

Now suppose we want to propose to add an edge to the current model Mi which already
has k edges. Then ni = k and nj = k + 1. Suppose we do that by drawing a random
variable v from the normal distribution, i.e. v ∼ q = N (0, σ2). We are using the
identity function for the next state generation, i.e. f(θi, v) = (θi, v), and therefore∣∣∣∂fi,j(θi,v)
∂(θi,v)

∣∣∣ = 1. Now the likelihoods Lk(X | θk) and Lk+1(X | (θk, 0)) are equal, so we
expect to accept this jump with probability 1.
Equation (5.4.2) simplifies to

Ak,k+1(θk, (θk, 0)) = Lk+1(x | θk, 0)
Lk(x | θk)

pk+1(θk, 0)
pk(θk)

p(Mk+1)
p(Mk)

rk+1,k

rk,k+1

1
q(0) (5.4.6)

Note that Lk+1(x | θk, 0) = Lk(x | θk) and p(Mk+1) = p(Mk), then setting the
acceptance ratio to 1, Equation 5.4.6 simplifies to

Ak,k+1(θk, (θk, 0)) = (2πσ2
a)−1/2

1
rk+1,k

rk,k+1

1
(2πσ2)−1/2 = 1 (5.4.7)

We can solve the above 5.4.7 for σ to obtain

σ2 = σ2
a

(
rk,k+1

rk+1,k

)2

(5.4.8)

So it follows that in the above SEM model, if we attempt to make a jump to a higher
dimensional model by adding an edge and we sample the parameter for that edge

158 MCMC Sampling Using Loss Function

from the distribution N
(

0, σ2
a

(
rk,k+1
rk+1,k

)2
)

, then the edge with a parameter 0 would be
accepted with the probability 1.

5.4.7 Example 2: Conditional Maximization

Lets consider the same set up as in the previous example. Let p(Mi), pi(θ) and u be
same as before. But this time lets use v ∼ q = N (µ, σ2), for some fixed µ (suppose
we are sampling the parameter for an edge X → Y , then we could use µ = Cov(X,Y)

Var(X) in
order to maximize the acceptance of the jump).

Ak,k+1(θk, (θk, µ)) = Lk+1(x | θk, µ)
Lk(x | θk)

pk+1(θk, µ)
pk(θk)

p(Mk+1)
p(Mk)

rk+1,k

rk,k+1

1
q(µ)

= Lk+1(x | θk, µ)
Lk(x | θk)

(2πσ2
a)−1/2 exp(−µ2/2σ2

a)
1

rk+1,k

rk,k+1

1
(2πσ2)−1/2

(5.4.9)
We can solve this for σ to obtain

σ2 = σ2
a exp(µ2/σ2

a)
(

Lk(θk)
Lk+1 ((θk, µ))

)2 (
rk,k+1

rk+1,k

)2

This has a greater computational cost, because we need to calculate the ratio of the
likelihoods. This is a viable choice as we are proposing a direct jump to the mode of
distribution.

5.4.8 Jump to a Lower Dimensional Space or Removing an
Edge

So far we have discussed the reversible MCMC jump from a lower dimensional space
to a higher dimensional space. In the context of the network inference this would
represent adding an edge. Now we discuss the acceptance probability of removing an
edge, i.e. the proposal of going from a higher dimensional space to a lower dimensional
space.
Suppose we are currently in a graph Gj and we propose to remove an edge {x→ y} with
parameters θxy, i.e. we propose a jump from the graph Gj with parameters θj to the
graph Gi = Gj\{x→ y} with parameters θi. We can rewrite this as Gj = Gi∪{x→ y}
and θj = (θi, θxy) in order to keep it consistent with the jump to the higher dimensional
space from Section 5.4.1. We accept this jump with the probability

5.4 Reversible Jump MCMC 159

P {(Gj, θj), (Gi, θi)} = min (1, Aj,i(θj, θi)) = min
(
1, A−1

i,j (θi, θj)
)

where

Ai,j(θi, θj) = π(Gj, θj)
π(Gi, θi)

rji
rij

1
φn(θxy)

just like in Section 5.4.1, Equation 5.4.4, where θxy are the parameters for the edge
{x→ y} that we propose to remove and the φn is the probability distribution that we
would use for the proposal of the parameters for the edge {x→ y} if we would propose
to make a jump from Gi to Gj = Gi ∪ {x→ y}.

5.4.9 Inverting an Edge

In the network inference MCMC sampling a useful jump proposal is to invert an edge.
Suppose we want to invert an edge x→ y, i.e. we are proposing a jump from a graph
Gi = Gk ∪ {x→ y} with parameters (θ, θxy) to Gj = Gk ∪ {y → x} with parameters
(θ, θyx). We can think about this as first removing an edge x→ y and then adding an
edge y → x., i.e. Gi → Gk → Gj.
Lets suppose that we are using the weak non-identifiability centring. In this case we
would be proposing the jump from Gi to Gk with the acceptance probability:

Ai,k ((θ, θxy), θ) = π(Gk, θ)
π (Gi, (θ, θxy))

rki
rik

φn(θxy)
1

and the jump from Gk to Gj with the acceptance probability:

Ak,j ((θ, θxy), θ) = π (Gi, (θ, v))
π(Gk, θ)

rjk
rkj

1
φ′
n(v)

Now we can combine the above to get the acceptance probability for the jump from Gi

with parameters (θ, θxy) to Gj with parameters (θ, v) as

Ai,j ((θ, θxy), (θ, v)) = π (Gi, (θ, v))
π (Gi, (θ, θxy))

rji
rij

φn(θxy)
φ′
n(v)

in this case v is the proposed parameters for the (inverted) edge y → x. Note that the
parameter proposal distributions φn and φ′

n are not the same in general. In order to
preserve the weak non-identifiability centring we have:
In the n = 1 case:

160 MCMC Sampling Using Loss Function

φn ∼N
(

0, σ2
a

(
rki
rik

)2
)

φ′
n ∼N

0, σ2
a

(
rjk
rkj

)2

Otherwise

φn ∼N
(
0,Σ (σa, rki, rik)

)
φ′
n ∼N

(
0,Σ (σa, rjk, rkj)

)

5.5 Sampling from the Loss Function

Suppose we have observations x from a (semi) parametric model

X ∼ f(θ, ϵ)

where X is the random variable that we can observe, f is some function that we know,
θ are some parameters that we want to infer and ϵ is some random noise that we cannot
observe.
We are interested in the estimation of the unknown parameters θ. We want to use a
Bayesian set up and we have a prior π(θ) for θ. The usual approach would be to use
the likelihood

L(θ | x) = fθ(x)

This would allow us to obtain the posterior probability distribution p(θ | x) (for
example by using the MCMC Metropolis Hastings sampling) from the

p(θ | x) ∝ L(θ | x)π(θ)

But what happens if we do not have fθ(x) and therefore we do not have the likelihood
L(θ | x)? It is possible that even though we do not have a likelihood, we still may have
some loss function l(x, θ) (for full detail see Section 1.4). For example a loss function
based on some independence criterion, as described in Section 5.6.2. Now we explore
how we can obtain a probability distribution over the parameters θ given observed
data x using a loss function l(x, θ). This approach is taken from Bissiri et al. (2016).
A natural first step is to try to minimise the expected loss R(x, p), where p is the
probability density function of the parameters θ. That is we are interested in finding a

5.5 Sampling from the Loss Function 161

distribution p over the parameters θ, which minimises the expected loss, that is we
want to solve:

p̂(θ) = argmin
p

R(x, p)

= argmin
p

∫
l(x, θ)p(θ)dθ

This is minimised by the Dirac delta function δα where α is the value of θ that minimises
the loss function l(x, θ), i.e.

p̂ ∼ δα,

α = argmin
θ

l(x, θ)

This is not a particularly interesting result from a Bayesian point of view as this does
not provide us with an interesting distribution to sample from. The Dirac delta function
has all its probability mass in one point. This suggests to upgrade our approach by
introducing the entropy: try finding a distribution p that simultaneously minimises
the expected loss and maximises the entropy:

p̂(θ) = argmin
p

R(x, p) +H(θ)

= argmin
p

∫
l(x, θ)p(θ)dθ +

∫
p(θ) log p(θ)dθ

= argmin
p

∫
p(θ) log p(θ)

exp(−l(x, θ))dθ

= argmin
p

D
(
p∥ exp(−l(x, θ))

)
Now from Proposition 1.5.1 it follows that this problem is minimised by

p̂ ∝ exp(−l(x, θ))

This provides us with a non-degenerate distribution p̂ that we are able to sample
from. This idea can be taken one step further. Suppose we have a prior π(θ) over the
parameters θ. Now instead of maximising the entropy of the parameters θ we could
minimise the “distance” from p̂ to the prior π. In order to minimise the distance we
should minimise the Kullback-Leibler divergence. It is also interesting to note, that
the entropy of θ is essentially the Kullback-Leibler divergence between its probability
density function p and a “flat”, constant prior, i.e. H(θ) = DKL(p∥ const).
In this case we would like to minimise the expected loss and the Kullback-Leibler
divergence to the prior π(θ) together, our minimisation problem becomes

162 MCMC Sampling Using Loss Function

p̂(θ) = argmin
p

ωR(x, p) +D(p∥π)

= argmin
p

ω
∫
l(x, θ)p(θ)dθ +

∫
p(θ) log p(θ)

π(θ)dθ

= argmin
p

∫
p(θ) log p(θ)

exp(−ωl(x, θ))π(θ)dθ

= argmin
p

D
(
p∥ exp(−ωl(x, θ))π(θ)

)
And so just as above, it follows that it is minimised by

p̂ ∝ exp(−ωl(x, θ))π(θ)

Note that we introduced a weight ω. This hyper-parameter allows us to choose how
much weight we put on the loss function and how much on the prior.
This approach provides us with a distribution that we can sample from using MCMC
Metropolis Hastings. We should note that the loss function is essentially taking the
place of the log-likelihood in the traditional approach.

5.6 Algorithm

5.6.1 Introduction

In this subsection we introduce the algorithm for the network reconstruction, which
allows non-linear relationships between the variables, non-Gaussian noise and cyclic
structures. Our algorithm is an MCMC sampler, which samples from a loss function
instead of the usual log-likelihood. The loss function (in this case it might be more
convenient to view it as a cost function) is defined as the overall unexplained dependence
left in the residuals. This raises some questions: how do we quantify the “dependence”
in this context? and then how do we define “overall dependence”? To answer the first
question is not too difficult: we may use an independence criterion (for example a
distance covariance, Hilbert Schmidt independence criterion or signal to noise ratio
criterion, for more detail see Section 3) to give us a numerical evaluation of how
dependent a sample is. In our model we used the sum of all pairwise dependencies
between the variables to measure the “overall dependency”. A future extension could be
to look at the mutual independence rather than the pairwise independence, though we
currently do not have theoretical results to estimate the empirical mutual independence.

5.6 Algorithm 163

5.6.2 Loss Function Based on Independence Criterion

Lets assume we have observed data x which we assume was generated from a network
on n nodes, i.e x = (x1, ..., xn), where xi = (xi1, ...xim), that is we have n variables
and m observations. We furthermore assume that this data is being generated by the
additive noise model defined in Section 5.2.2

xi =
∑
j ̸=i

f(xj, βi,j) + ϵi, ∀i = 1, ..., n

where ϵi are all independent and βi,j = {βi,j,1, ..., βi,j,k} are the k-dimensional vectors
of parameters.
In the additive noise model we do not assume any particular distribution for the noise
terms ϵi, therefore it is not possible to define a true Bayesian model and define a
probability to observe data x given parameters β and equivalently we do not have a
likelihood for our parameters β given the data x. What we can do, is define some
meaningful loss function and sample the parameters using this loss function instead of
the likelihood. We have introduced the general concept of the loss function in Section
1.4 and how to use it to sample with an MCMC in Section 5.5. Now it is time to discuss
how it can be used in the context of the network inference using an Independence
Criterion. Independence Criterion on its own provides us with a numerical value
which can be interpreted as “how independent are the two samples”. Given a graph
on n nodes we would have n samples and so we would need to estimate

(
n
2

)
pairwise

independence criteria.
Let r = (r1, ..., rn) be the residuals of this data after regressing it using the model with
parameters θ = {θi,j : i, j = 1, ..., n} and θi,j = {θi,j,1, ..., θi,j,k}. We write the residuals
as

r = g(x, θ)

where g = {g1, g2, ..., gn} is an n-dimensional function with components gi:

ri = gi(x, θ) = xi −
∑
j ̸=i

f(xj, θi,j)

If we succeeded to find the correct parameters, that is θi,j = βi,j, for all i, j = 1, ..., n,
the residuals ri will be independent. We may use a loss function to estimate how
independent the residuals are. One possible definition is:

164 MCMC Sampling Using Loss Function

l(x, θ) =
n∑
i=1

∑
j ̸=i

IC(ri, rj)

=
n∑
i=1

∑
j ̸=i

IC(gi(x, θ), gj(x, θ))

Note that this can be interpreted as an absolute loss function. Here the “true” parameter
value would be zero, i.e. true independence and IC(ri, rj) is the prediction using the
decision θ. As all the independence criteria are difficult to interpret, it is easiest to
justify an absolute loss function. On the other hand if we are more interested in
penalizing strong dependences more than average dependence using Lp-norm for p > 1
might be better, i.e.

l(x, θ, p) =
 n∑
i=1

∑
j ̸=i

(IC(ri, rj))p
1/p

5.6.3 Linear Model

Lets assume we have observations x = (x1, ..., xn), where xi = (xi1, ...xim), that is we
have n variables and m observations. First we discuss the simplest possible model, i.e.
a linear model. The model defined in Section 5.2.2 with a linear function f , is

f(x, β) = βx

The model is very similar to the Structural Equation Model (with the exception that
we allow any noise ϵ distribution). We assume that the data is being generated by the
additive noise model

xi =
∑
j ̸=i

βi,jxj + ϵi, ∀i = 1, ..., n

where ϵi are all independent of each other and of βi,j and βi,j ∈ R.
Using this model we can specify the loss function from the previous Section 5.6.2 as

l(x, θ) =
n∑
i=1

∑
j ̸=i

IC(ri, rj)

=
n∑
i=1

∑
j ̸=i

IC
xi −∑

l ̸=i
θilxl, xj −

∑
k ̸=j

θjkxk

5.6 Algorithm 165

5.6.4 Piecewise Linear Model

One possible extension of a linear model defined above is a piecewise linear model.
This preserves the simplicity of linear functions but allows approximation of any
continuous function. There are multiple parametrizations of a piecewise linear function,
for example:

f1(x;α, k) =
∑
i

αi(min(x− ki, ki+1 − ki))+

f2(x; β, k) =
∑
i

βi(x− ki)+

here k represents the “knots”, i.e. the points where the slope of function can change and
α or β represents the slopes in-between two consecutive knots. Example of a piecewise
linear function is provided in Figure 5.2, here the knots are x = {0, 0.2, 0.4, 0.6, 0.8, 1}
and the slopes are α = {−1,−0.5, 0, 0.5, 1} for the f1 and β = {−1, 0.5, 0.5, 0.5, 0.5}
for f2. Note that βi = αi−αi−1, for i = 2, 3, 4, 5, this is no coincidence, as all piecewise
functions can be easily re-parametrised for a different set up. We found the form of f1

to be more convenient. The main reason is the interpretability of parameters αi, it is
precisely the slope in the segment i (while for example βi is the difference of slopes
in segment i+ 1 and i). For example if our MCMC provides us with the parameters
(−1, 0, 1) for an edge, we can interpret that as a quadratic relationship, while (1, 0, 1)
could be interpreted a cubic and (0, 1, 0) as a sigmoid function.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

30
−

0.
25

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

x

z

Fig. 5.2 Example of a piece wise linear function.

Using this model we can specify the loss function from Section 5.6.2 as

l(x, θ) =
n∑
i=1

∑
j ̸=i

IC(ri, rj)

=
n∑
i=1

∑
j ̸=i

IC (xi − f1(xj; θij, k), xj − f1(xi; θji, k))

166 MCMC Sampling Using Loss Function

In this case we assume to use the same list of knots k for all variables x1, ..., xn. This
is feasible if we normalize the data. If for some reason we would prefer to keep data on
different scales, we may use a different set of knots ki for each variable xi. This may
be even more appropriate if, for example, we assume only some of the relationships to
be non-linear (we need a different number of knots depending on how non-linear the
relationship is).

5.6.5 Prior

We intend to use a Bayesian approach and to have a full MCMC sampler. In the
network inference case this requires a prior on both the models and the parameters.
Lets suppose we have n observed variables and the space of possible models is all the
possible networks on n nodes, then there are 2n(n−1) possible models (we allow the
edges in both directions). Let the model G = (VG, EG) be a graph. Here are some
possible priors on the models

1. p1(G) = 2−n(n−1), this is a uniform prior on all the models

2. p2(G) =
(
n(n−1)

k

)
qk(1− q)n(n−1)−k, this is a binomial prior, here k is the number

of edges in the model M and 0 ≤ q ≤ 1 is the a priori expected percentage of
edges

Most of the time we do not have any prior knowledge (for example from human experts)
about the possible structure of the network. In this case it is natural to assume a
uniform prior on all possible models. On the other hand we might expect a certain
density of the network (for example from other networks in the same field), then it
might be a better idea to use a prior distribution with a mode at a network with
≈ qn(n− 1) number of edges. Such a prior can also serve as a tool to force a sparse
solution.
After choosing a prior for the models, we still need to define a prior for the parameters
of the model. Here are some possibilities:

q1 (θ;G, p) ∝
∏

i,j:{i,j}∈EG

exp (−∥θij∥p)

q2 (θ;G, σ) ∝
∏

i,j:{i,j}∈EG

exp
(
−∥θij∥

2
2

2σ2

)

q3 (θ;G, f) ∝
∏

i,j:{i,j}∈EG

exp (−f (θij))

5.6 Algorithm 167

Recall that θij is a k-dimensional vector, where k is the number of parameters required
to parametrize an edge. For the first prior q1 we would need to specify the norm
parameter p ≥ 1, this parameter can be used to have some control on the parameters
θij. Lets recall that

∥θ∥p =
(

k∑
l=1

θpl

)1/p

Now lets consider a constrained minimisation problem:

min
θ
∥θ∥p

∥θ∥1 = C

for some constant C. This is minimised by θl = C/k for all l. So choosing p larger
than 1 forces the parameters θijl for the edge i→ j to be closer to each other. If for
example we choose the piece wise linear parametrisation f1 defined in Section 5.6.4,
this will prioritize a linear relationship (that is all the slopes in the piecewise linear
parametrisation being the same). The larger the parameter p the greater will be the
cost of choosing different slopes.
The second prior q2 is just a joint Gaussian centred at zero. In this case we can choose
the diffusion parameter σ. The smaller the σ parameter, more concentrated around
zero is the prior probability and larger the penalty for choosing non-zero parameters.
The third prior q3 is just a general case covering both q1 and q2, we can choose any
function f . One possible option could be

f(θ) = ω1 (∥θ∥1)p1 + ω2 (Var (θ))p2 (5.6.1)

We have 4 parameters we can adjust in order to enforce the desired properties of
relationships between variables in the network. For example increasing ω2 will force
MCMC towards linear relationships, as if a piecewise linear function with parameter θ
represents different slopes then the variance of parameter θ will be non-zero. Parameter
ω1 will determine the overall size of parameters (in the sampler ω represents the weight
we put on the loss function with respect to the prior), while the power parameters p1

and p2 determine how strongly we punish the small or large parameters.

5.6.6 Sampling Distribution

We combine the above ideas to define a full distribution to sample from. We chose to
use the prior p2 for the models as it gives more flexibility with respect to the sparsity

168 MCMC Sampling Using Loss Function

of the network and the prior q3 for the parameters as it allows us to flexibly penalize
non-linear relationships. Combining it all we get

pG,θ|x ∝ exp (−ωl (X, θ)) p (G) p (θ;G)

∝ exp
−ω n∑

i=1

∑
j ̸=i

IC(ri, rj)
 p (G) 1

C(|EG|)
∏

i,j:{i,j}∈EG

exp (−f (θij))

∝ exp
− n∑

i=1

∑
j ̸=i

(ωIC(ri, rj)− 1({i, j} ∈ EG) + log(C(|EG|))f (θij))
 p(G)

(5.6.2)
If we use f as defined in Equation 5.6.1, we have 5 parameters for control: ω, ω1, ω2

and p1, p2. Parameter ω has essentially the same purpose as the parameters ω1 and ω2

therefore we are keeping it fixed and changing only the ratios ωi
ω

, i = 1, 2. Note that
in the parallel tempering approach if we keep the ratios ωi

ω
fixed and change ω this is

equivalent to adjusting the temperature.

5.6.7 Hyperparameters

As we have discussed above our sampling distribution has 4 hyperparameters that have
to be set, namely:

• ω1 determines the overall importance of the loss function (or overall penalty for
a relationship)

• ω2 determines how strongly a non-linear relationship is penalized

• p1 determines how strongly are penalized the small and large parameters for the
linear term

• p2 determines how strongly are penalized the small and large parameters for the
non-linear term

Lets consider an example of a simple model X → Y , where data is sampled from the
model

X ∼ U [−1, 1]
Y ∼ f1(X;α = {0.8, 0, 0.8}, k = {−1,−1/3, 1/3, 1}) + U [−0.5, 0.5]

5.6 Algorithm 169

Here f1 is a piece-wise linear function as defined in 5.6.4. We consider parameters
in the following ranges: ω1, ω2 ∈ {2−6, 2−5, ..., 24} and p1, p2 ∈ {2−5, 2−4, ..., 20}. De-
pending on the hyper parameters, 5 different types of outcomes will be most likely
as demonstrated in Figure 5.3a: true non-linear relationship (demonstrated by the
red line), penalized non-linear relationship (all piece-wise linear gradients are closer
to each other as to reduce the variance among them; demonstrated by the blue line),
best linear approximation (all gradients for piece-wise linear elements are equal, i.e.
zero variance; demonstrated by the purple line), linear approximation with gradient
being reduced (demonstrated by the green line) and no relationship at all (it is more
expensive to have any non-zero parameter than the full value of dependence criterion;
demonstrated by the orange line). Here we demonstrate only some examples of the
best solutions. As we continuously vary the hyper-parameters the transition between
them is continuous as well. We chose to fix the power parameters p1 and p2 and show
different solutions for varying ω1 and ω2, but same result can be achieved by fixing ω’s
and varying the power parameters as seen in Figure 5.3b. It is important to note that
by just varying the power parameter we cannot enforce the zero solution (we want to
keep the power parameters smaller than one because it allows to penalize small values
more).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

p1 = 0.5 ; p2 = 0.5

X

Y

w1 = 0.031; w2 = 0.031
w1 = 0.031; w2 = 0.125
w1 = 0.5; w2 = 0.125
w1 = 1; w2 = 0.125
w1 = 2; w2 = 0.125

(a) Varying parameters ω1 and ω2.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

w1 = 0.5 ; w2 = 0.031

X

Y

p1 = 0.125; p2 = 0.062
p1 = 0.125; p2 = 0.125
p1 = 1; p2 = 0.125

(b) Varying parameters p1 and p2.

Fig. 5.3 The best solutions for different parameters.

170 MCMC Sampling Using Loss Function

5.6.8 Sampler

For our sampler we are using the loss function defined in Equation 5.6.2. Based
on the discussion in Section 5.6.7 we set the values of the hyperparameters to be:
p1 = p2 = 0.5, ω1 = ω2 = 2−4 and ω = 200. ω was chosen to provide a good acceptance
rate for the jumps inside the highest temperature chain (around 0.2).
The loss function involves calculating IC(ri, rj) for all i, j = 1, ..., n. If we restrict our
algorithm to only making moves “add”, “remove”, “revert” or “update” an edge, then
at most two residuals will change (two in the case of changing the directionality of the
edge, otherwise only one). This implies that we actually do not have to recalculate all
the pairwise independence criteria. For example if we updated (changed the parameters
for) edge Xi → Xj, then only the residuals rj has changed, so we need to calculate
only IC(ri, rj) for all i ̸= j. This is a significant simplification for large n as now we
only need to calculate order of n independence criteria rather than order of n2.

5.7 Results

5.7.1 Simulating Data with Cycles

In order to be able to generate data from the networks with cycles we first need to
discuss what does a cycle in a network represent? Suppose we have n-dimensional
variable X = (X1, ..., Xm) which is generated by a dynamical system. Let tk for
k = 1, 2, ... be arbitrary spaced time points, then the state of the system at time tk
(denoted as X[tk]) is the function of the state of the system at time tk−1, i.e.

X[tk] = f(X[tk−1], ϵ), for all k = 1, 2, ...

here f is n-dimensional function, i.e. f = (f1, ..., fn) andXi[tk] = fi(X1[tk−1], ..., Xn[tk−1], ϵ),
for all i = 1, ..., n and k = 1, 2, We think of ϵ as some initial conditions that deter-
mines the evolution of the dynamical system.
Example An example of such a dynamical system is a structural equation model

Xk = WXk−1 + ϵ

We provide two interpretations of a cyclic relationship in a network. First interpretation
is given by Fisher (1970). He suggested that there is a long observation period (tk−m, tk)
and much shorter reaction period (tk−i−1, tk−i). The observed value x[tk] at time tk is
a mean over the observation period, i.e.

5.7 Results 171

x[tk] = 1
m

m∑
i=0

f(X[tk−i, ϵ]), for all k = 1, 2, ...

Using the SEM example we can rewrite this as

x = 1
m

m∑
i=0

W iϵ

Another interpretation is that the observed value is an observation from the converged
dynamical system, i.e. x = x[tk] for tk such that x[tk] = x[tk−1]. Using the SEM
example (given that I −W is invertible)

x = (I −W)−1ϵ

Note that if I −W is invertible, then limm→∞
∑m
i=0 W

i = (I −W)−1, so both interpre-
tation yield very similar result and therefore very similar approaches to generating
data from a dynamical system with a cycle, but we follow the second one. First we
generate the noise term for each observation (which represents a different patient or a
single cell) i as ϵi ∼ p from some noise distribution p. Initialize the dynamical system
at X0 = ϵ. Then we run the dynamical system till it converges (usually 100 iterations
is enough): Xi = f(Xi−1) + ϵ. Note that function f has to be chosen carefully for the
dynamical system to converge, in the SEM example we must choose the weight matrix
W so that I −W would be invertible. The pseudo code for the algorithm is provided
in Algorithm 5.

5.7.2 Simulated Examples

In this section we discuss the results of our algorithm on small networks. We used a
very small and slightly bigger examples with a 2-cycle, an example with 4-cycle and
finally an example with 2 2-cycles. First we consider only the linear relationships.
Finally we consider some examples with non-linear relationships.
For all these examples we ran 6 chains at temperatures varying from 1 to 1/4. The
ratio between temperatures was chosen to provide a good acceptance rate for swaps
between two consecutive chains. We ran each chain for 106 iterations and we allowed
the chains to swap every 103 iterations, i.e. 103 times in total (for a detailed explanation
of tempered MCMC, see Section 2.5). It is always difficult to determine whether the
MCMC has converged, but as in this case we know the correct networks and their
parameters we conclude that this is sufficient, we provide an example MCMC run for
each example and it is clear that the chains has converged.

172 MCMC Sampling Using Loss Function

Data: n the number of observations
m the number of variables
p = (p1, ..., pm) the noise term distribution
f = (f1, ..., fm) the functional relationships

Result: Data sample
for i = 1 : n do

for j = 1 : m do
ϵij ∼ pj generate the noise term for each variable
Xij = ϵij initiate the starting point for the dynamical system

end
for k = 1 : 100 do

for j = 1 : m do
Xij = fj(Xi1, ..., Xim) + ϵij run the dynamical system till it converges

end
end

end
return X = Xij for i = 1, 2, ..., n and j = 1, ...,m.

Algorithm 5: Algorithm to simulate data from a network with a cycle.

Simple network with a cycle

The first example (see Figure 5.4) is a network on 4 nodes with 4 edges, all relationships
are linear, noise is uniform. It has one cycle with 2 nodes. Figure 5.5a shows the
MCMC chain at the lowest temperature (we assume that this is the chain that is
sampling from the “true” distribution), the red solid line shows the true parameter
value and the red dashed line show the mean of the MCMC sample. We see that the
chain converged very well and is nicely sampling the parameters in the neighbourhood
of the true parameters. Figure 5.5b shows the MCMC chain at the highest temperature,
we see that it is exploring the full region of possible parameters and therefore provides
a good mixing. Though we should point out that because it is moving around so
much it does not provide good estimates of the parameters. Finally in Figure 5.6 we
present the MCMC chain using 3 knots. As all the relationships are linear we expect
the piece-wise linear function to have tangents of the piece-wise linear segments very
close to each other. We observe that the chain has converged well and recovered the
linear relationships between variables, only the edge X1 → X3 shows a little bit of
non-linearity.

5.7 Results 173

X1 X2

X3 X4

0.5 0.8

0.7

0.8

Fig. 5.4 Small example with a cycle.

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 1 −> 1 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 1 −> 2 ;
 p= 0.02

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 1 −> 3 ;
 p= 1

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 1 −> 4 ;
 p= 0.01

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 2 −> 1 ;
 p= 0.02

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 2 −> 2 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 2 −> 3 ;
 p= 0.01

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 2 −> 4 ;
 p= 0.96

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 3 −> 1 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 3 −> 2 ;
 p= 0.05

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 3 −> 3 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 3 −> 4 ;
 p= 1

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 4 −> 1 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 4 −> 2 ;
 p= 0.05

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 4 −> 3 ;
 p= 1

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 4 −> 4 ;
 p= 0

(a) MCMC simulation for Figure 5.4 using
2 knots, chain at the temperature t = 1.

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 1 −> 1 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 1 −> 2 ;
 p= 0.12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 1 −> 3 ;
 p= 0.86

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 1 −> 4 ;
 p= 0.09

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 2 −> 1 ;
 p= 0.12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 2 −> 2 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 2 −> 3 ;
 p= 0.02

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 2 −> 4 ;
 p= 0.42

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 3 −> 1 ;
 p= 0.06

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 3 −> 2 ;
 p= 0.76

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 3 −> 3 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 3 −> 4 ;
 p= 1

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 4 −> 1 ;
 p= 0.05

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 4 −> 2 ;
 p= 0.6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 4 −> 3 ;
 p= 1

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 4 −> 4 ;
 p= 0

(b) MCMC simulation for Figure 5.4 using
2 knots, chain at the temperature t = 0.25

Fig. 5.5 Small example with 4 nodes and 4 edges, containing a cycle. Red solid line
represents the true parameter value, red dotted line the mean MCMC sample value.

Bigger network with a cycle

The second example (see Figure 5.7) is a slightly bigger (but still small) graph on 6
nodes with 8 edges. We are still using the linear relationships and non-Gaussian noise.
In Figures 5.8a and 5.8b we provide two sample MCMC runs. The first run allows only
2 knots per edge, that is only linear relationships are allowed, while the second run
allows 3 knots per edge. As before we observe that MCMC chains converged well to the
true parameter values. The MCMC run in Figure 5.8b has both the parameter values
for each edge close to each other, so we may conclude that the penalty for non-linearity
was chosen well.

174 MCMC Sampling Using Loss Function

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 1 −> 1 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 1 −> 2 ;
 p= 0.02

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 1 −> 3 ;
 p= 1

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 1 −> 4 ;
 p= 0.01

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 2 −> 1 ;
 p= 0.02

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 2 −> 2 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 2 −> 3 ;
 p= 0.01

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 2 −> 4 ;
 p= 0.96

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 3 −> 1 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 3 −> 2 ;
 p= 0.05

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 3 −> 3 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 3 −> 4 ;
 p= 1

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 4 −> 1 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 4 −> 2 ;
 p= 0.05

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 4 −> 3 ;
 p= 1

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 4 −> 4 ;
 p= 0

Fig. 5.6 MCMC simulation for Figure 5.4 using 3 knots.

X1

X2

X3

X4

X5 X6
0.5

0.3

0.8

0.7 0.8

0.4

0.6

-0.6

Fig. 5.7 Second small example with a cycle.

Network with a bigger cycle

The third example (see Figure 5.7) is a network on 6 nodes and 7 edges, containing a
“big” cycle of 4 nodes. In Figure 5.10 we provide a sample MCMC run. We note that
not only did it correctly identified the cycle, but also the directionality of the cycle.
All the correct edges has the posterior probabilities above 0.98 and edges that are not
in the network has probabilities of at most 0.08.

5.7 Results 175

−
1.

0
0.

0
1.

0
edge 1 −> 1 ;

 p= 0

−
1.

0
0.

0
1.

0

edge 1 −> 2 ;
 p= 1

−
1.

0
0.

0
1.

0

edge 1 −> 3 ;
 p= 0.99

−
1.

0
0.

0
1.

0

edge 1 −> 4 ;
 p= 0.36

−
1.

0
0.

0
1.

0

edge 1 −> 5 ;
 p= 0.99

−
1.

0
0.

0
1.

0

edge 1 −> 6 ;
 p= 0.14

−
1.

0
0.

0
1.

0

edge 2 −> 1 ;
 p= 0.13

−
1.

0
0.

0
1.

0
edge 2 −> 2 ;

 p= 0

−
1.

0
0.

0
1.

0

edge 2 −> 3 ;
 p= 0.08

−
1.

0
0.

0
1.

0

edge 2 −> 4 ;
 p= 0.99

−
1.

0
0.

0
1.

0

edge 2 −> 5 ;
 p= 0.05

−
1.

0
0.

0
1.

0

edge 2 −> 6 ;
 p= 0.23

−
1.

0
0.

0
1.

0

edge 3 −> 1 ;
 p= 0.05

−
1.

0
0.

0
1.

0

edge 3 −> 2 ;
 p= 0.03

−
1.

0
0.

0
1.

0
edge 3 −> 3 ;

 p= 0

−
1.

0
0.

0
1.

0

edge 3 −> 4 ;
 p= 1

−
1.

0
0.

0
1.

0

edge 3 −> 5 ;
 p= 0.92

−
1.

0
0.

0
1.

0

edge 3 −> 6 ;
 p= 0.08

−
1.

0
0.

0
1.

0

edge 4 −> 1 ;
 p= 0.04

−
1.

0
0.

0
1.

0

edge 4 −> 2 ;
 p= 0.02

−
1.

0
0.

0
1.

0

edge 4 −> 3 ;
 p= 1

−
1.

0
0.

0
1.

0
edge 4 −> 4 ;

 p= 0

−
1.

0
0.

0
1.

0

edge 4 −> 5 ;
 p= 1

−
1.

0
0.

0
1.

0

edge 4 −> 6 ;
 p= 0.11

−
1.

0
0.

0
1.

0

edge 5 −> 1 ;
 p= 0.1

−
1.

0
0.

0
1.

0

edge 5 −> 2 ;
 p= 0.03

−
1.

0
0.

0
1.

0

edge 5 −> 3 ;
 p= 0.02

−
1.

0
0.

0
1.

0

edge 5 −> 4 ;
 p= 0.03

−
1.

0
0.

0
1.

0
edge 5 −> 5 ;

 p= 0

−
1.

0
0.

0
1.

0

edge 5 −> 6 ;
 p= 1

−
1.

0
0.

0
1.

0

edge 6 −> 1 ;
 p= 0.03

−
1.

0
0.

0
1.

0

edge 6 −> 2 ;
 p= 0.03

−
1.

0
0.

0
1.

0

edge 6 −> 3 ;
 p= 0.01

−
1.

0
0.

0
1.

0

edge 6 −> 4 ;
 p= 0.01

−
1.

0
0.

0
1.

0

edge 6 −> 5 ;
 p= 0.01

−
1.

0
0.

0
1.

0
edge 6 −> 6 ;

 p= 0

(a) MCMC simulation for Figure 5.7 using
2 knots.

−
1.

0
0.

0
1.

0

edge 1 −> 1 ;
 p= 0

−
1.

0
0.

0
1.

0

edge 1 −> 2 ;
 p= 0.97

−
1.

0
0.

0
1.

0

edge 1 −> 3 ;
 p= 0.98

−
1.

0
0.

0
1.

0

edge 1 −> 4 ;
 p= 0.09

−
1.

0
0.

0
1.

0

edge 1 −> 5 ;
 p= 0.96

−
1.

0
0.

0
1.

0

edge 1 −> 6 ;
 p= 0.05

−
1.

0
0.

0
1.

0

edge 2 −> 1 ;
 p= 0.08

−
1.

0
0.

0
1.

0

edge 2 −> 2 ;
 p= 0

−
1.

0
0.

0
1.

0

edge 2 −> 3 ;
 p= 0

−
1.

0
0.

0
1.

0

edge 2 −> 4 ;
 p= 0.98

−
1.

0
0.

0
1.

0

edge 2 −> 5 ;
 p= 0.07

−
1.

0
0.

0
1.

0

edge 2 −> 6 ;
 p= 0.02

−
1.

0
0.

0
1.

0

edge 3 −> 1 ;
 p= 0

−
1.

0
0.

0
1.

0

edge 3 −> 2 ;
 p= 0.01

−
1.

0
0.

0
1.

0

edge 3 −> 3 ;
 p= 0

−
1.

0
0.

0
1.

0

edge 3 −> 4 ;
 p= 1

−
1.

0
0.

0
1.

0

edge 3 −> 5 ;
 p= 0.55

−
1.

0
0.

0
1.

0

edge 3 −> 6 ;
 p= 0.11

−
1.

0
0.

0
1.

0

edge 4 −> 1 ;
 p= 0.02

−
1.

0
0.

0
1.

0

edge 4 −> 2 ;
 p= 0.02

−
1.

0
0.

0
1.

0

edge 4 −> 3 ;
 p= 0.98

−
1.

0
0.

0
1.

0

edge 4 −> 4 ;
 p= 0

−
1.

0
0.

0
1.

0

edge 4 −> 5 ;
 p= 0.98

−
1.

0
0.

0
1.

0

edge 4 −> 6 ;
 p= 0.28

−
1.

0
0.

0
1.

0

edge 5 −> 1 ;
 p= 0.08

−
1.

0
0.

0
1.

0

edge 5 −> 2 ;
 p= 0.04

−
1.

0
0.

0
1.

0

edge 5 −> 3 ;
 p= 0.02

−
1.

0
0.

0
1.

0

edge 5 −> 4 ;
 p= 0.04

−
1.

0
0.

0
1.

0

edge 5 −> 5 ;
 p= 0

−
1.

0
0.

0
1.

0

edge 5 −> 6 ;
 p= 1

−
1.

0
0.

0
1.

0

edge 6 −> 1 ;
 p= 0

−
1.

0
0.

0
1.

0

edge 6 −> 2 ;
 p= 0

−
1.

0
0.

0
1.

0

edge 6 −> 3 ;
 p= 0

−
1.

0
0.

0
1.

0

edge 6 −> 4 ;
 p= 0

−
1.

0
0.

0
1.

0

edge 6 −> 5 ;
 p= 0.05

−
1.

0
0.

0
1.

0

edge 6 −> 6 ;
 p= 0

(b) MCMC simulation for Figure 5.7 using
3 knots.

Fig. 5.8 Small example with 6 nodes and 8 edges, containing a cycle. Red solid line
represents the true parameter value, red dotted line the mean MCMC sample value.

X1

X2

X3

X4

X5

X6

0.4

0.8

0.8

0.7 0.6

0.80.8

Fig. 5.9 Example with 6 nodes and 7 edges, containing a “big” cycle of 4 nodes:
X3 → X4 → X5 → X6 → X3.

Network with two cycle

The fourth example (see Figure 5.11) is a network on 7 nodes with 11 edges, containing
two cycles. In Figure 5.12 we provide a sample MCMC run. All the correct edges
has the posterior probabilities of at least 0.9, but this time some of the edges that
are not in the network has quite high posterior probabilities, e.g. p(X5 → X1) = 0.57,
p(X1 → X6) = 0.26, p(X7 → X1) = 0.26. Though we should note that even though

176 MCMC Sampling Using Loss Function

−
1.

0
0.

0
1.

0
edge 1 −> 1 ;

 p= 0

−
1.

0
0.

0
1.

0

edge 1 −> 2 ;
 p= 1

−
1.

0
0.

0
1.

0

edge 1 −> 3 ;
 p= 0.03

−
1.

0
0.

0
1.

0

edge 1 −> 4 ;
 p= 0.03

−
1.

0
0.

0
1.

0

edge 1 −> 5 ;
 p= 0.03

−
1.

0
0.

0
1.

0

edge 1 −> 6 ;
 p= 0.01

−
1.

0
0.

0
1.

0

edge 2 −> 1 ;
 p= 0.05

−
1.

0
0.

0
1.

0
edge 2 −> 2 ;

 p= 0

−
1.

0
0.

0
1.

0

edge 2 −> 3 ;
 p= 0.07

−
1.

0
0.

0
1.

0

edge 2 −> 4 ;
 p= 1

−
1.

0
0.

0
1.

0

edge 2 −> 5 ;
 p= 0.02

−
1.

0
0.

0
1.

0

edge 2 −> 6 ;
 p= 1

−
1.

0
0.

0
1.

0

edge 3 −> 1 ;
 p= 0.03

−
1.

0
0.

0
1.

0

edge 3 −> 2 ;
 p= 0.03

−
1.

0
0.

0
1.

0
edge 3 −> 3 ;

 p= 0

−
1.

0
0.

0
1.

0

edge 3 −> 4 ;
 p= 0.97

−
1.

0
0.

0
1.

0

edge 3 −> 5 ;
 p= 0.08

−
1.

0
0.

0
1.

0

edge 3 −> 6 ;
 p= 0.02

−
1.

0
0.

0
1.

0

edge 4 −> 1 ;
 p= 0.02

−
1.

0
0.

0
1.

0

edge 4 −> 2 ;
 p= 0.01

−
1.

0
0.

0
1.

0

edge 4 −> 3 ;
 p= 0.06

−
1.

0
0.

0
1.

0
edge 4 −> 4 ;

 p= 0

−
1.

0
0.

0
1.

0

edge 4 −> 5 ;
 p= 0.98

−
1.

0
0.

0
1.

0

edge 4 −> 6 ;
 p= 0.03

−
1.

0
0.

0
1.

0

edge 5 −> 1 ;
 p= 0.02

−
1.

0
0.

0
1.

0

edge 5 −> 2 ;
 p= 0.03

−
1.

0
0.

0
1.

0

edge 5 −> 3 ;
 p= 0.05

−
1.

0
0.

0
1.

0

edge 5 −> 4 ;
 p= 0.03

−
1.

0
0.

0
1.

0
edge 5 −> 5 ;

 p= 0

−
1.

0
0.

0
1.

0

edge 5 −> 6 ;
 p= 1

−
1.

0
0.

0
1.

0

edge 6 −> 1 ;
 p= 0.01

−
1.

0
0.

0
1.

0

edge 6 −> 2 ;
 p= 0.02

−
1.

0
0.

0
1.

0

edge 6 −> 3 ;
 p= 1

−
1.

0
0.

0
1.

0

edge 6 −> 4 ;
 p= 0.04

−
1.

0
0.

0
1.

0

edge 6 −> 5 ;
 p= 0.1

−
1.

0
0.

0
1.

0
edge 6 −> 6 ;

 p= 0

Fig. 5.10 MCMC simulation for Figure 5.9. Red line represents the true parameter
value, red dotted lines the mean MCMC sample value.

these edges appear in the model quite often, their mean parameter values are very
close to zero. This suggests that when dealing with real data, where we do not know
the true underlying network, we should consider not only the posterior probabilities of
the edges but the magnitude of their parameters as well.

Example with non-linear relationship

The last example (see Figure 5.13) is a network on 4 nodes with 3 edges containing a
cycles and non-linear relationship X1 → X4, i.e. X4 ∼ f1(X1;α = (−0.8, 0, 0.8))+ ϵ. In
Figure 5.14 we provide a sample MCMC run. We observe that both linear relationships
were identified as such, i.e. all 3 parameters are close to each other and the true
parameter value. The non-linear relationship was also identified correctly with just a
slightly minimized parameter values.

5.7 Results 177

X1 X2

X3

X4 X5

X6

X7

0.3

0.7

0.8 0.9

0.6

0.7

0.8

0.4

0.6

-0.5

0.5

Fig. 5.11 Example with 7 nodes and 11 edges, containing two cycles: X3 ↔ X4 and
X5 ↔ X6.

Discussion

In this subsection we considered 5 small simulated examples, each exhibiting a trait
of interest: a cycle, big cycle, two cycles or non-linear relationships. When the true
relationship between the variables is linear and the piece-wise linear function is used,
algorithm correctly identifies relationship to be linear and uses the tangents for all
the piece-wise linear elements very close to each other. When the relationship is truly
non-linear the algorithm is capable of finding correct parameters for the non-linear
function (granted that we were using the correct model, i.e. the piece-wise linear
relationships). We also observed that as the networks are getting larger and more
complicated we may have to rely not only on the posterior probabilities of the edges,
but on the parameter estimates as well. Edge being in the model with relatively high
probability but having a parameter very close to zero is a good indication that the
edge actually should not be in the final model. This raises a question that maybe a
more sophisticated penalty terms for edges with low parameters should be used.

178 MCMC Sampling Using Loss Function

−
1.

0
0.

0
1.

0
edge 1 −> 1 ;

 p= 0

−
1.

0
0.

0
1.

0

edge 1 −> 2 ;
 p= 0.96

−
1.

0
0.

0
1.

0

edge 1 −> 3 ;
 p= 0.92

−
1.

0
0.

0
1.

0

edge 1 −> 4 ;
 p= 0.09

−
1.

0
0.

0
1.

0

edge 1 −> 5 ;
 p= 0.94

−
1.

0
0.

0
1.

0

edge 1 −> 6 ;
 p= 0.26

−
1.

0
0.

0
1.

0

edge 1 −> 7 ;
 p= 0.06

−
1.

0
0.

0
1.

0

edge 2 −> 1 ;
 p= 0.21

−
1.

0
0.

0
1.

0
edge 2 −> 2 ;

 p= 0

−
1.

0
0.

0
1.

0

edge 2 −> 3 ;
 p= 0.19

−
1.

0
0.

0
1.

0

edge 2 −> 4 ;
 p= 0.91

−
1.

0
0.

0
1.

0

edge 2 −> 5 ;
 p= 0.09

−
1.

0
0.

0
1.

0

edge 2 −> 6 ;
 p= 0.92

−
1.

0
0.

0
1.

0

edge 2 −> 7 ;
 p= 0.6

−
1.

0
0.

0
1.

0

edge 3 −> 1 ;
 p= 0.15

−
1.

0
0.

0
1.

0

edge 3 −> 2 ;
 p= 0.12

−
1.

0
0.

0
1.

0
edge 3 −> 3 ;

 p= 0

−
1.

0
0.

0
1.

0

edge 3 −> 4 ;
 p= 0.94

−
1.

0
0.

0
1.

0

edge 3 −> 5 ;
 p= 0.16

−
1.

0
0.

0
1.

0

edge 3 −> 6 ;
 p= 0.1

−
1.

0
0.

0
1.

0

edge 3 −> 7 ;
 p= 0.91

−
1.

0
0.

0
1.

0

edge 4 −> 1 ;
 p= 0.07

−
1.

0
0.

0
1.

0

edge 4 −> 2 ;
 p= 0.12

−
1.

0
0.

0
1.

0

edge 4 −> 3 ;
 p= 1

−
1.

0
0.

0
1.

0
edge 4 −> 4 ;

 p= 0

−
1.

0
0.

0
1.

0

edge 4 −> 5 ;
 p= 0.09

−
1.

0
0.

0
1.

0

edge 4 −> 6 ;
 p= 0.17

−
1.

0
0.

0
1.

0

edge 4 −> 7 ;
 p= 0.12

−
1.

0
0.

0
1.

0

edge 5 −> 1 ;
 p= 0.57

−
1.

0
0.

0
1.

0

edge 5 −> 2 ;
 p= 0.04

−
1.

0
0.

0
1.

0

edge 5 −> 3 ;
 p= 0.09

−
1.

0
0.

0
1.

0

edge 5 −> 4 ;
 p= 0.09

−
1.

0
0.

0
1.

0
edge 5 −> 5 ;

 p= 0

−
1.

0
0.

0
1.

0

edge 5 −> 6 ;
 p= 0.89

−
1.

0
0.

0
1.

0

edge 5 −> 7 ;
 p= 0.91

−
1.

0
0.

0
1.

0

edge 6 −> 1 ;
 p= 0.18

−
1.

0
0.

0
1.

0

edge 6 −> 2 ;
 p= 0.28

−
1.

0
0.

0
1.

0

edge 6 −> 3 ;
 p= 0.05

−
1.

0
0.

0
1.

0

edge 6 −> 4 ;
 p= 0.09

−
1.

0
0.

0
1.

0

edge 6 −> 5 ;
 p= 0.96

−
1.

0
0.

0
1.

0
edge 6 −> 6 ;

 p= 0

−
1.

0
0.

0
1.

0

edge 6 −> 7 ;
 p= 0.11

−
1.

0
0.

0
1.

0

edge 7 −> 1 ;
 p= 0.26

−
1.

0
0.

0
1.

0

edge 7 −> 2 ;
 p= 0.11

−
1.

0
0.

0
1.

0

edge 7 −> 3 ;
 p= 0.06

−
1.

0
0.

0
1.

0

edge 7 −> 4 ;
 p= 0.07

−
1.

0
0.

0
1.

0

edge 7 −> 5 ;
 p= 0.17

−
1.

0
0.

0
1.

0

edge 7 −> 6 ;
 p= 0.12
−

1.
0

0.
0

1.
0

edge 7 −> 7 ;
 p= 0

Fig. 5.12 MCMC simulation for Figure 5.11. Red line represents the true parameter
value, red dotted lines the mean MCMC sample value.

X2 X1

X3 X4

(-0.8,0,0.8)

0.4

0.5

Fig. 5.13 Second small example with a cycle and non-linear relationship.

5.7 Results 179

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 1 −> 1 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 1 −> 2 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 1 −> 3 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 1 −> 4 ;
 p= 1

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 2 −> 1 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 2 −> 2 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 2 −> 3 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 2 −> 4 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 3 −> 1 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 3 −> 2 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 3 −> 3 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 3 −> 4 ;
 p= 1

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 4 −> 1 ;
 p= 0.01

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 4 −> 2 ;
 p= 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 4 −> 3 ;
 p= 1

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

edge 4 −> 4 ;
 p= 0

Fig. 5.14 MCMC simulation for Figure 5.11. Solid lines represents the true parameter
values, dotted lines the mean MCMC sample values.

5.7.3 Single-Cell Data

In this section we present the results of the MCMC sampler using an independence
criterion based on a loss function on the single-cell data from (Sachs et al., 2005). As
in the previous Chapters 2 and 4 we first used the 100 simulated datasets simulated
from dataset 8. We ran the MCMC for 106 iterations using 6 chains at temperatures
ranging from 1 to 1/4. We used 2 knots, i.e. linear relationships. The current approach
enables us to find directions of edges as well as cycles therefore we are presenting two
different ROC curves: one for an undirected graph (skeleton) and one for directed
graph. ROC curves are shown in Figure 5.15. The area under the ROC curve for
the skeleton is 0.831/pm0.04, this is better result than all the kPC variants which
gave areas under the ROC curve from 0.8 to 0.81, though these results are within one
standard deviation. A better metric is the number of times MCMC with loss function

180 MCMC Sampling Using Loss Function

outperformed the kPC variants: 71 for dPC, 77 for kPC-Resid, 72 for kPC-Clust, 70
for SNR-PC and 95 for original PC. The area under the ROC curve for the directed
graph is 0.777± 0.04, as expected it is slightly lower than the undirected version. We
provide the consensus network for the single-cell data in Figure 5.16. We note that the
algorithm found all the relationships with non-negligible signal to noise ratio as well as
correctly identified the cycle PIP2↔ PIP3. The other cycle that we would expect
to find is PIP2 ↔ PKC but this is expected as the signal between these variables
is very small, all 4 independence tests (dCov or HSIC criterion using permutation or
gamma approximation tests) give quite large p-values; they vary from 0.1 to 0.15. The
only two wrong edges, namely P38→ PKC and AKT → PKA are correct edges but
with a reversed directionality. This suggests that the relationships P38− PKC and
AKT −PKA might not be well approximated by a linear function. Finally we provide
the results of running the MCMC with loss function on the single-cell dataset 8 in
Figure 5.17. Based on the observations from simulated datasets we used non-linear
relationships with 4 knots. Results are even better than for the simulated dataset but
it is well within one standard deviation from the mean. Recall from previous chapters
that the simulated data was always easier to deal with and was giving larger area under
the curve than the experimental one. We conclude that using non-linear relationships
may help significantly when inferring network from the experimental data.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

Undirected, AUC = 0.831 ± 0.04
Directed, AUC = 0.777 ± 0.04

Fig. 5.15 ROC curves for the datasets simulated from the single-cell dataset 8. MCMC
with loss function using linear relationships.

5.7 Results 181

Raf

Mek

Plcγ Pip2

Pip3

Erk

Akt

Pka

Pkc

P38 Jnk

Fig. 5.16 Network for the datasets simulated from the single-cell dataset 8. Green are
the correctly identified edges, red are wrongly identified edges and dashed black are
the edges that algorithm did not find.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

Undirected, AUC = 0.835
Directed, AUC = 0.783

Fig. 5.17 ROC curves for the single-cell dataset 8. MCMC with loss function using
non-linear relationships.

5.7.4 Schistosomiasis Dataset

Finally we present the results on the Schistosomiasis dataset. As we have discussed
in previous chapters we do not know the true underlying network for this dataset
so evaluating results is difficult. We start with linear relationships. We present the
output of 4 sample MCMC runs in Figure 5.19. All four MCMC runs produced

182 MCMC Sampling Using Loss Function

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

Undirected, AUC = 0.821
Directed, AUC = 0.826

Fig. 5.18 ROC curves for one dataset simulated from the single-cell dataset 8. MCMC
with loss function using non-linear relationships.

slightly different posterior distributions for edges being in the network. But as we have
learned from small simulated examples, when network gets relatively big looking at
the probabilities of edges being in the network might not be sufficient. Therefore we
present the actual mean parameter values for each of the edge in Figure 5.20. The
mean parameter values for all four chains are essentially identical. We conclude that
the MCMC chains converged successfully.

5.8 Discussion

The aim of this chapter was to explore the possibility of combining the probabilistic
independence criteria with the MCMC sampling techniques for network inference. To
achieve this we used ideas taken from Bissiri et al. (2016), this allowed us to come up
with an MCMC sampler that samples from a distribution defined by a general loss
function rather than a likelihood. Choosing the loss function to be the sum of pairwise
independence of the residuals allowed us to naturally incorporate the probabilistic
independence criterion.
Our algorithm dealt with small examples containing cycles and non-linear relationships
very well. It was both able to perfectly reconstruct the skeleton of the network and
find the directionality of edges and cycles. As expected the convergence gets worse as
networks get larger, we may end up with edges that have strictly positive posterior

5.8 Discussion 183

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11

sex

age

egg_pre

ige_pre

igg4_pre

il5_24h

il10_24h

il13_24h

ige_9wk

igg4_9wk

egg_8mth

(a) 1st simulation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11

sex

age

egg_pre

ige_pre

igg4_pre

il5_24h

il10_24h

il13_24h

ige_9wk

igg4_9wk

egg_8mth

(b) 2nd simulation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11

sex

age

egg_pre

ige_pre

igg4_pre

il5_24h

il10_24h

il13_24h

ige_9wk

igg4_9wk

egg_8mth

(c) 3rd 25 simulation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11

sex

age

egg_pre

ige_pre

igg4_pre

il5_24h

il10_24h

il13_24h

ige_9wk

igg4_9wk

egg_8mth

(d) 4th simulation

Fig. 5.19 The Schistosomiasis network adjacency matrix found by our algorithm. Matrix
M element mij represents the probability that the ith node is a parent of the jth node.

probability but negligible parameters. This suggests that if we want to use only the
posterior probabilities of the edges and to not rely on their parameters we would have
to introduce new penalty terms for “empty” edges, i.e. edges with parameters very
close to zero.
Next we explored the performance of our algorithm on experimental single-cell datasets.
We first attempted to use only the linear relationships as it significantly reduces the
number of parameters that have to be estimated. The results were slightly better than
the ones produced by the greedy search type kPC algorithm from Section 4 or the

184 MCMC Sampling Using Loss Function

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11

sex

age

egg_pre

ige_pre

igg4_pre

il5_24h

il10_24h

il13_24h

ige_9wk

igg4_9wk

egg_8mth

(a) 1st simulation

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11

sex

age

egg_pre

ige_pre

igg4_pre

il5_24h

il10_24h

il13_24h

ige_9wk

igg4_9wk

egg_8mth

(b) 2nd simulation

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11

sex

age

egg_pre

ige_pre

igg4_pre

il5_24h

il10_24h

il13_24h

ige_9wk

igg4_9wk

egg_8mth

(c) 3rd simulation

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11

sex

age

egg_pre

ige_pre

igg4_pre

il5_24h

il10_24h

il13_24h

ige_9wk

igg4_9wk

egg_8mth

(d) 4th simulation

Fig. 5.20 The Schistosomiasis network adjacency matrix found by our algorithm. Matrix
M element mij represents the size of the effect of the ith node on the jth node.

MCMC sampler using discretized data from Section 2. We observed that all the false
negatives (edges that are supposed to be in the network but were not found by the
algorithm) were the edges with very low signal to noise ratio, while most of the false
positive (edges found by the algorithm that are not truly there) were the correct edges
that were inverted. This suggested that linear approximation might not be sufficient.
We continued by using the non-linear relationships, we used 4 knots which is sufficient
to approximate the most common relationships, i.e. linear, quadratic, cubic, sigmoid,

5.8 Discussion 185

sex

age

egg pre

ige pre

igg4 pre
il5 24h

il10 24h

il13 24h

ige 9wk

igg4 9wk

egg 8mth

Fig. 5.21 Network for the Schistosomiasis dataset; only the edges with probability
above 0.5 and parameters above 0.1 in absolute value are present.

etc. This produced similar results in terms of the skeleton, but significantly better
results in terms of the directed networks.
Finally we explored the Schistosomiasis dataset. We do not have a consensus network
in this case therefore it is difficult to evaluate results. Using linear relationships
gave a consistent network which is a good estimate that the MCMC has converged.
Allowing the non-linear relationships created more convergence issues. It suggests that
for a dense network like Schistosomiasis with non-linear relationships the probability
surface is significantly more complicated and some different approach than the parallel
tempering might be required.
Our work provides empirical evidence that it is possible to combine a probabilistic
independence based loss function with an MCMC sampler for network inference. This
approach finds network well but is computationally slow.

5.8.1 Model Limitations

In this chapter we discussed the algorithm of inferring network by MCMC sampling
from a loss function based on an independence criterion. We have shown this to be a

186 MCMC Sampling Using Loss Function

very flexible approach that can deal with non-linear relationships between variables,
non-Gaussian noise and loops. Despite the flexibility and the good performance, the
main limitation of this algorithm is its computational complexity and therefore its
speed.
We have discussed the problems that arise in network inference when using MCMC
based structure search in Section 2.7.1. Introducing a semi-parametric model such
as MCMC sampling from a loss function based on an independence criterion adds an
additional layer of complexity. Now we need to sample parameters as well as structure.
Empirically we determined that approximately 20 parameter update proposals to
every structure update proposal works quite well. This estimate is for linear and
two piece piece-wise linear relationships between variables and for networks under 12
nodes. Using a more complex relationships (e.g. with more than two piece-wise linear
components) might require more parameter update proposals per one structure update
proposal to give an efficient sampling. Sampling parameters as well as structures results
in having to run MCMC chain at least 20 times longer to achieve same result as in the
closed form Discrete Bayesian Network case of Chapter 2 (there we were sampling only
structures).
Second issue is the lack of closed form for the likelihood. We circumvent this issue by
sampling from the loss function. But calculating the loss function, which in this case is
based on some independence criteria is computationally expensive.

n = 4 n = 8 n = 16
100 0.01 0.03 0.06
200 0.01 0.03 0.07
400 0.01 0.03 0.07
800 0.02 0.04 0.08
1600 0.02 0.05 0.12
3200 0.03 0.09 0.19

Table 5.1 Time taken to evaluate the SNR IC based loss function. Rows are the number
of observations, columns are the number of nodes.

From Tables 5.1-5.3 we observe that time taken to evaluate the independence criterion
based loss function grows approximately linearly with respect to the number of nodes
n. This is expected as after updating an edge (and therefore updating the residuals
of a node) we have to calculate the independence criterion value for all the pairs of
nodes including the updated node. A more interesting observation is the increase in
time with respect to the number of observations. The computational time for dCov

5.8 Discussion 187

n = 4 n = 8 n = 16
100 0.00 0.01 0.02
200 0.01 0.02 0.05
400 0.03 0.07 0.17
800 0.17 0.39 0.90
1600 0.93 2.36 4.89
3200 5.53 12.86 27.89

Table 5.2 Time taken to evaluate the dCov based loss function. Rows are the number
of observations, columns are the number of nodes.

n = 4 n = 8 n = 16
100 0.05 0.07 0.18
200 0.06 0.13 0.29
400 0.11 0.26 0.53
800 0.21 0.53 1.06
1600 0.53 1.14 2.37
3200 1.24 2.99 6.48

Table 5.3 Time taken to evaluate the HSIC based loss function. Rows are the number
of observations, columns are the number of nodes.

increases approximately quadratic and the computational time for HSIC increases
approximately linearly. This is expected as dCov requires multiplying matrices of order
n2 × n2 while HSIC uses incomplete Cholesky decomposition so needs to multiply
matrices of order n2 × k, wehere k is the number of eigenvalues we keep. HSIC is
slightly slower than dCov for the datasets with less than 800 observations, this can be
explained by their implementation. dCov is implemented in C++ and HSIC is currently
only implemented in R, which is computationally much slower programming language.
On the other hand for the datasets with more than 800 observations HSIC is faster.
This can be explained as HSIC is using incomplete Cholesky decomposition while the
dCov implementation in the Energy Rizzo and Szekely (2014) package does not use
it, therefore for very high dimensional matrices, the slower R implementation with
the incomplete Cholesky decomposition becomes more time efficient than the full
dimension matrix multiplication using C++ implementation. Finally the SNRIC shows
only marginal increase in the computational time with the number of observations. This
makes SNRIC more suitable for network inference when large number of observations
is present.

188 MCMC Sampling Using Loss Function

Lets make a crude time estimate for inferring a network using the loss function based
MCMC. Lets consider a graph on 16 nodes with 300 observations. From Table 2.3 we
need at least 105 structure sampling iterations to get a satisfactory result. As in this
case we are sampling parameters as well as structure, we have to run our algorithm for
at least 26 iterations. For the network of this size we would need to run one iteration
for 0.06 sec for SNR IC, 0.17 sec for dCov and 0.5 sec for HSIC based algorithm. To
run the algorithm would approximately take between 33h for SNR to 294h for HSIC.
This is a very crude estimate and this calculation could significantly benefit from
running parallel MCMC. We can see that even a network of modest size can be very
time consuming to infer.

5.8.2 Future Work

Future work could take two main directions.
First avenue is increasing the speed of the algorithm. As we have discussed in Sec-
tion 4.5.2 the first step would be to implement SNR IC, HSIC and dCov with incomplete
Cholesky decomposition in a fast compiled language such as C++. Next step would be
to explore the fast versions of current independence criteria, for example fast version
of dCov (Huo and Székely, 2016).
Other approach to continue this work would be to use a mutual independence criteria.
Current implementation defines loss function as a sum of pair-wise independence
criteria over all pairs of residuals. It is sufficient if we assume that data comes from
the additive noise model. If we would choose to relax this assumption we would need
to test for mutual independence rather than pairwise independence.

Conclusions

In this final chapter we summarise the key points considered in this thesis and place
our contributions in the context of other work in the field. We finish off by describing
some of the limitations of this work, and suggest possible areas for future research.
In Chapter 1 we introduced a way of combining graph theory and probability theory
as a framework for probabilistic graphical models. We then use this framework for
network inference; we represent a network with a graph and the underlying probability
distribution.
In Chapter 2 we discussed the discrete Bayesian network inference using the MCMC
sampler technique. The main goal was to introduce the structure search and discuss
efficient MCMC sampling using parallel tempering. We applied this algorithm to
simulated data as well as discretized experimental data. We discussed two approaches
for datasets with missing values. Imputing values in preprocessing, for example using R
package MICE, and a full MCMC sampler which samples the network structures as well
as the missing values. Both approaches provided very similar results in terms of the
network inference. Imputing the missing values in the preprocessing step is significantly
faster therefore this approach is recommended when dealing with large networks, when
a full sampler becomes too slow. Finally we showed that the likelihood equivalence
non-preserving priors affect whether a variable with more uncertainty is more likely to
be the causal one. For the possible future extensions we propose to consider expanding
a possible MCMC jump space, for example inverting entire chain subgraph, resampling
all the parents of the node, etc. It would require additional work in order to establish
the jump probabilities for these more complex moves and their inverses.
In Chapter 3 we discussed three independence criteria from the literature. Namely,
distance covariance criterion (dCov), kernel canonical correlation (KCC) and Hilbert-
Schmidt Independence Criterion (HSIC). For each, we provided a simple geometrical
interpretation which was not given in the original papers. We also established explicit
relationships between them showing how each could be considered as a special case
of HSIC. Both dCov and HSIC showed similar performance in term of testing for

190 MCMC Sampling Using Loss Function

independence. dCov is slightly faster to calculate therefore might be preferable to HSIC.
We also introduced a new approach to estimating the dependence between variables
from an additive and multiplicative noise model: the SNRIC. SNRIC is not as general as
the previous three criteria, but it works in most of the practical cases and is significantly
faster to calculate than both dCov and HSIC. SNRIC performed similarly to dCov and
HSIC in testing for independence. SNRIC performed slightly better then dCov and
HSIC when dealing with heteroscedastic data and data where dependence is due to
latent variables and performed slightly worse on data with periodic relationships. An
interesting avenue for the future work would be to investigate the effect of other kernels
on HSIC, for example linear, polynomial, hyperbolic tangent, Laplacian or Bessel. They
are conveniently implemented in kernlab (Karatzoglou and Smola, 2003) package for
the R statistical environment (R Core Team, 2014). Current implementation of SNRIC
uses polynomial regression. This choice was made to maximize the computational
efficiency while preserving sufficiently good performance. Future extensions of the
method would involve finding a better regression method that would provide better
accuracy for the method while not compromising its computational efficiency. Possible
approach would be to use splines (for example cubic splines, B-splines or P-splines).
In Chapter 4 we discussed a greedy search based PC algorithm extension: Independence
Criterion based PC or ICPC. ICPC uses a general independence criterion rather than
a Fisher’s z-test. ICPC using HSIC (kernel PC or kPC) was introduced in Gretton
et al. (2009) and Tillman (2009). We developed an alternative to kPC: dPC using the
distance covariance criterion. The kPC algorithm in the original paper only used a
full conditional independence test (cluster permutation test). We developed a faster
approach to testing for conditional independence using unconditional independence
test on the residuals after regressing variables on the conditional set. To the best
of our knowledge the kPC algorithm has not yet been implemented in a ready to
use package. We implemented kPC and dPC algorithms in an R package kpcalg
(Verbyla et al., 2017). All algorithms performed similarly in terms of finding the
underlying network. kPC-cluster which uses cluster permutation test is significantly
slower than the kPC-Resid and the dPC-Resid. Due to similar performance but
different implementation we suggest to use dPC-Resid for networks with less than
1000 observations and kPC-Resid for networks with more than 1000 observations. The
first avenue of future work is to implement the general independence criteria based
tests in C++ or other compiled programming language. This would greatly increase
the computational time of the algorithms. Another avenue for the future work is
more theoretical rather than programming based. Currently we are only aware of

5.8 Discussion 191

the Cluster-HSIC conditional independence test which is significantly slower than the
residual counterparts. ICPC method would strongly benefit if we could develop a
fast full conditional independence test and use it instead of either the residuals based
independence tests or the Cluster-HSIC.
We started by defining the framework in Chapter 1, we introduced the MCMC tech-
niques for network inference in Chapter 2, we discuss the general independence criteria
in Chapter 3 we showed the potential of using independence criteria in network inference
in Chapter 4 and finally we combine everything in one algorithm in Chapter 5.
In Chapter 5 we presented an MCMC sampler using a general loss function. Doing
so allowed us to sample from any loss function instead of the likelihood. We used a
loss function based on the independence criterion. This allowed us to sample from
the distribution defined by the amount of dependence left in the residuals. This is a
very flexible approach because it does not assume a functional form of the relationship
between variables or the noise distributions and allows cyclic relationships between
variables.
It is important to note that the MCMC sampler from loss function algorithm presented
in Chapter 5 still has some shortcomings. In the experimental datasets it is often the
case that latent variables are present. Current iteration of the algorithm is unable
to deal with latent variables. A possible future development would be to incorporate
latent variables into the MCMC sampler. Another issue is missing data, we used R
package MICE to impute the missing data. A full MCMC sampler that samples network
structure and parameters, and imputes the missing data (similar to the MCMC sampler
in Chapter 2) would be another natural extension. We need to choose an independence
criterion for the loss function. SNRIC is fast to calculate, but in general, it is an
approximation of a general independence criterion. In Chapter 5 we assume that the
data comes from an additive noise model so SNRIC is an exact independence criterion
rather than just an approximation of a general independence criterion. Although if
we would like to relax the additive noise model condition, SNRIC might not work any
more. HSIC and dCov are general independence criteria, but both are expensive to
calculate. Therefore it would be convenient to have a fast implementation of a general
independence criterion. Finally, although we used a pairwise independence criterion
for the loss function, it would be desirable to use a mutual independence criterion in
the future.

References

Altay, G. and Emmert-Streib, F. (2010). Revealing differences in gene network inference
algorithms on the network level by ensemble methods. Bioinformatics 26 (14) (2010)
1738–1744.

Aluru, S. (2006). Handbook of Computational Molecular Biology. Chapman and
Hall/CRC, Boca Raton, FL.

Antti Hyttinen, Frederick Eberhardt, P. O. H. (2012). Learning linear cyclic causal
models with latent variables. Journal of Machine Learning Research 13(Nov):3387-
3439, 2012.

Bach, F. R. and Jordan, M. I. (2002). Kernel independent component analysis. The
Journal of Machine Learning Research 3(Jul):1-48, 2002, 3:1–48.

Banf, M. and Rhee, S. Y. (2017). Computational inference of gene regulatory net-
works: Approaches, limitations and opportunities. Biochim Biophys Acta. 2017
Jan;1860(1):41-52.

Bansal, M., Gatta, G., and di Bernardo, D. (2006). Inference of gene regulatory
networks and compound mode of action from time course gene expression profiles.
Bioinformatics, 22 (7) (2006), pages 815–822.

Basso, K., Margolin, A., Stolovitzky, G., Klein, U., Dalla-Favera, R., and Califano, A.
(2005). Reverse engineering of regulatory networks in human b cells. Nat. Genet.,
37 (2005), pages 382–390.

Berg, C., Christensen, J. P. R., and Ressel, P. (1984). Harmonic Analysis on Semigroups.
Springer, New York.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer, New York.

Bissiri, P., Holmes, C., and Walker, S. G. (2016). A general framework for updating
belief distributions. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), Volume 78(Issue 5, November 2016):1103–1130.

Breiman, L. (2001). Random forests. Mach. Learn. 45 (1) (2001) 5–32.

Brooks, S. P., Giudici, P., and Roberts, G. (2003). Efficient construction of reversible
jump markov chain monte carlo proposal distributions. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 65, 3–39.

194 References

Butte, A. and Kohane, I. (2000). Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements. Proceeding of the Pacific
Symposium on Biocomputing (2000), pages 418–429.

de Boor, C. (1978). A Practical Guide to Splines. Springer-Verlag.

Denker, M. (1985). Asymptotic Distribution Theory in Nonparametric Statistics. Fr.
Vieweg & Sohn, Braunschweig, Wiesbaden.

di Bernardo, D., Thompson, M., Gardner, T., Chobot, S., Eastwood, E., Wojtovich,
A., Elliott, S., Schaus, S., and Collins, J. (2005). Chemogenomic profiling on a
genome-wide scale using reverse-engineered gene networks. Nat. Biotechnol., 23 (3)
(2005), pages 377–383.

Dunne, D. W., Butterworth, A. E., Fulford, A. J., Kariuki, H., Langley, J., Ouma, J.,
Capron, A., Pierce, R. J., and Sturrock, R. F. (1992). Immunity after treatment of
human schistosomiasis: association between ige antibodies to adult worm antigens
and resistance to reinfection. European J. Immunology, 22(6), 1483–94.

Earl, D. and Deem, W. (2008). Parallel tempering: Theory, applications, and new
perspectives. Physical Chemistry Chemical Physics Issue 23, 2005: 3910-6.

Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with b-splines and penalties.
Statist. Sci. Volume 11, Number 2 (1996), 89-121.

Faith, J., Hayete, B., Thaden, J., Mogno, I., Wierzbowski, J., Cottarel, G., Kasif,
S., Collins, J., and Gardner, T. (2007). Large-scale mapping and validation of
escherichia coli transcriptional regulation from a compendium of expression profiles.
PLoS Biol., 5 (1) (2007), p. e8.

Ferguson, T. S. (2005). U-statistics. Notes for Statistics 200C, Spring 2005.

Filkov, V. (2005). Handbook of computational molecular biology. Chapman & Hall/CRC
Computer and Information Science Series.

Fisher, F. (1970). A correspondence principle for simultaneous equation models.
Econometrica, 38(1), 73-92. doi:10.2307/1909242.

Fukumizu, K., Gretton, A., Sun, X., and Schölkopf, B. (2008). Kernel measures of
conditional dependence. In Platt, J. C., Koller, D., Singer, Y., and Roweis, S. T.,
editors, Advances in Neural Information Processing Systems 20, pages 489–496.
Curran Associates, Inc.

Gardner, T., di Bernardo, D., Lorenz, D., and Collins, J. (2003). Inferring genetic
networks and identifying compound mode of action via expression profiling. Science,
301 (2003), pages 102–105.

Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 6(6):721–
741.

References 195

Green, P. J. (1995). Reversible jump markov chain monte carlo computation and
bayesian model determination. Biometrika, 82 (4): 711–732.

Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B. (2005). Measuring statistical
dependence with hilbert-schmidt norms. In Algorithmic learning theory, pages 63–77.
Springer.

Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Schölkopf, B., and Smola, A. J.
(2008). A kernel statistical test of independence. In Platt, J. C., Koller, D., Singer,
Y., and Roweis, S. T., editors, Advances in Neural Information Processing Systems
20, pages 585–592. Curran Associates, Inc.

Gretton, A., Spirtes, P., and Tillman, R. E. (2009). Nonlinear directed acyclic structure
learning with weakly additive noise models. In Bengio, Y., Schuurmans, D., Lafferty,
J. D., Williams, C. K. I., and Culotta, A., editors, Advances in Neural Information
Processing Systems 22, pages 1847–1855. Curran Associates, Inc.

Hamze, F., Dickson, N., and Karimi, K. (2010). Robust parameter selection for parallel
tempering. International Journal of Modern Physics C.

Hartigan, J. A. and Wong, M. A. (1979). A k-means clustering algorithm. Journal
of the Royal Statistical Society. Series C (Applied Statistics) Vol. 28, No. 1 (1979),
28:100–108.

Hastie, T. and Tibshirani, R. (1986). Generalized additive models. Statistical Science,
Vol. 1, No. 3 (Aug., 1986), pages 297–310.

Hastings, W. K. (1970). Monte carlo sampling methods using markov chain and their
applications. Biometrika (1970), 57, 1, p. 97.

Haury, A.-C., Mordelet, F., Vera-Licona, P., and Vert, J.-P. (2012). Tigress: Trustful
inference of gene regulation using stability selection. BMC Syst. Biol. 6 (2012) 145.

Hecker, M., Lambeck, S., Toepfer, S., van Someren, E., and Guthke, R. (2009).
Gene regulatory network inference: Data integration in dynamic models—a review.
Biosystems, Volume 96(Issue 1, April 2009):86–103.

Heckerman, D. (1996). A tutorial on learning with bayesian networks. Microsoft
Research Tech. Report, MSR-TR-95-06.

Heckerman, D., Meek, C., and Cooper, G. (1997). A bayesian approach to causal
discovery. Technical report, Microsoft Research.

Hoyer, P. O., Janzing, D., Mooij, J. M., Peters, J., and Schölkopf, B. (2009). Nonlinear
causal discovery with additive noise models. In Koller, D., Schuurmans, D., Bengio,
Y., and Bottou, L., editors, Advances in Neural Information Processing Systems 21,
pages 689–696. Curran Associates, Inc.

Hunter, J. K. and Nachtergaele, B. (2001). Applied Analysis. World Scientific Pub. Co.
Inc.

196 References

Huo, X. and Székely, G. J. (2016). Fast computing for distance covariance. Techno-
metrics, 58(4):435–447.

Huynh-Thu, V., Irrthum, A., Wehenkel, L., and Geurts, P. (2010). Inferring regulatory
networks from expression data using tree-based methods. PloS one 5 (9). (2010),
5(9):e12776.

Hyttinen, A., Eberhardt, F., and Hoyer, P. O. (2010). Causal discovery for linear cyclic
models with latent variables. on Probabilistic Graphical Models, page 153.

Iba, Y. (2001). Extended ensemble monte carlo. Int.J.Mod.Phys. C12 (2001) 623-656.

Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and graphics. J.
of Comp. and Graphical Statistics Vol. 5, No. 3 (Sep., 1996), pages 299–314.

Karatzoglou, A. and Smola, A. (2003). kernlab – a kernel methods package. Proceedings
of the 3rd International Workshop on Distributed Statistical Computing (DSC 20013).

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and
Techniques. MIT Press.

Lacerda, G., Spirtes, P., Ramsey, J., and Hoyer, P. O. (2008). Discovering cyclic causal
models by independent components analysis. Proceedings of the Twenty-Fourth
Conference on Uncertainty in Artificial Intelligence (UAI2008).

Lee, A. J. (1990). U-Statistics. New York : Marcel Dekker.

Liang, S., Fuhrman, S., and Somogyi, R. (1998). Reveal, a general reverse engineering
algorithm for inference of genetic network architectures. Proceeding of the Pacific
Symposium on Biocomputing (1998), pages 18–29.

Lippert, C., Stegle, O., Ghahramani, Z., and Borgwardt, K. (2009). A kernel method
for unsupervised structured network inference. JMLR Workshop and Conference
Proceedings Volume 5:368-375.

Luo, W., Hankenson, K., and Woolf, P. (2008). Learning transcriptional regulatory
networks from high throughput gene expression data using continuous three-way
mutual information. BMC Bioinf. 9 (2008) 467.

MacKay, D. (2003). Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press.

Mangan, S. and Alon, U. (2003). Structure and function of the feed-forward loop
network motif. Proc. Natl. Acad. Sci. U. S. A. 100 (21) (2003) 11980–11985.

Marbach, D., Costello, J. C., Küffner, R., Vega, N. M., Prill, R. J., Camacho, D. M.,
amd The DREAM5 Consortium, K. R. A., Kellis, M., Collins, J. J., and Stolovitzky,
G. (2012). Wisdom of crowds for robust gene network inference. Nature Methods 9,
796–804 (2012).

Marbach, D., Prill, R. J., Schaffter, T., Mattiussi, C., Floreano, D., and Stolovitzky, G.
(2010). Revealing strengths and weaknesses of methods for gene network inference.
Proc Natl Acad Sci USA 2010; 107:6286–6291.

References 197

Margolin, A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., and R. Favera,
A. C. (2006). Aracne: an algorithm for the reconstruction of gene regulatory networks
in a mammalian cellular context. BMC Bioinform., 7 (Suppl. 1) (2006), p. S7.

Meek, C. (1995). Causal inference and causal explanation with background knowledge.
In Proceedings of the Eleventh conference on Uncertainty in artificial intelligence,
pages 403–410. Morgan Kaufmann Publishers Inc.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.
(1953). Equation of state calculations by fast computing machines. J. Chem. Phys.
21, 1087 (1953), 21(6):1087–1092.

Meyer, P. (2010). Information-theoretic inference of gene networks using backward
elimination. Conference on bioinformatics and computational biology, 2010,.

Meyer, P. E., Kontos, K., Lafitte, F., and Bontempi, G. (2007). Information-theoretic
inference of large transcriptional regulatory networks. EURASIP J Bioinform Syst
Biol. 2007:79879, 2007(1):1–9.

Murphy, K. P. (2012). Machine Learning A Probabilistic Perspective. The MIT Press.

Needham, C., Bradford, J., Bulpitt, A., and Westhead, D. (2007). A primer on learning
in bayesian networks for computational biology. PLoS Comput. Biol., 3 (8) (2007),
p. e129.

Noor, A., Serpedin, E., Nounou, M., Nounou, H., Mohamed, N., and Chouchane, L.
(2013). An overview of the statistical methods used for inferring gene regulatory
networks and protein-protein interaction networks. Advances in Bioinformatics,
2013, 953814.

Obayashi, T. and Kinoshita, K. (2009). Rank of correlation coefficient as a comparable
measure for biological significance of gene coexpression. DNA research 2009, 16(5):249–
260.

Opgen-Rhein, R. and Strimmer, K. (2007). From correlation to causation networks: a
simple approximate learning algorithm and its application to high-dimensional plant
gene expression data. BMC systems biology 2007; 1: 37., 1(1):37.

Pearl, J. (2000). Causality: models, reasoning and inference, volume 29. Cambridge
Univ Press.

Perrin, B., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., and d’Alché Buc, F.
(2003). Gene networks inference using dynamic bayesian networks. Bioinformatics
19 (Suppl. 2), ii138–ii148.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Rao, A., Hero III, A., States, D., and Engel, J. (2007). Using directed information to
build biologically relevant influence networks. Comput. Syst. Bioinformatics Conf.
6, 145–156.

198 References

Richardson, T. S. (1996). A discovery algorithm for directed cyclis graphs. Proceedings
of the Twelfth Conference on Uncertainty in Artificial Intelligence (UAI1996).

Rizzo, M. L. and Szekely, G. J. (2014). E-statistics.

Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., and Nolan, G. P. (2005). Causal
protein-signaling networks derived from multiparameter single-cell data. Science
2005 Aug 19;309(5738):1187, 308(5721):523–529.

Savageau, M. (1970). Biochemical Systems Analysis. Addison-Wesley, Reading.

Schölkopf, B. (2001). The kernel trick for distances. In Leen, T. K., Dietterich, T. G.,
and Tresp, V., editors, Advances in Neural Information Processing Systems 13, pages
301–307. MIT Press.

Sejdinovic, D., Sriperumbudur, B., Gretton, A., Fukumizu, K., et al. (2013). Equivalence
of distance-based and rkhs-based statistics in hypothesis testing. The Annals of
Statistics 2013, 41(5):2263–2291.

Shimizu, S., Hoyer, P. O., Hyvärinen, A., and Kerminen, A. (2006). A linear non-
gaussian acyclic model for causal discovery. Journal of Machine Learning Research,
7(Oct):2003–2030.

Soranzo, N., Bianconi, G., and Altafini, C. (2007). Comparing association network
algorithms for reverse engineering of large-scale gene regulatory networks: synthetic
versus real data. Bioinformatics 23 (13) (2007) 1640–1647.

Spirtes, P. and Glymour, C. N. (1990). A fast algorithm for discovering sparse causal
graphs. Technical report, Carnegie Mellon University.

Steuer, R., Kurths, J., Daub, C., Weise, J., and Selbig, J. (2002). The mutual informa-
tion: detecting and evaluating dependencies between variables. Bioinformatics, 18
(Suppl. 2) (2002), pages S231–S240.

Stuart, J., Segal, E., Koller, D., and Kim, S. (2003). A gene-coexpression network for
global discovery of conserved genetic modules. Science, 302 (5643) (2003), pages
249–255.

Sutherland, W. A. (2009). Introduction to Metric and Topological Spaces (2nd Edition).
Oxford University Press.

Székely, G. J., Rizzo, M. L., Bakirov, N. K., et al. (2007). Measuring and testing
dependence by correlation of distances. The Annals of Statistics Volume 35, Number
6 (2007), 2769-2794, 35(6):2769–2794.

Székely, G. J., Rizzo, M. L., et al. (2009). Brownian distance covariance. The Annals
of Applied Statistics Volume 3, Number 4 (2009), 1236-1265., 3(4):1236–1265.

Tasaki, S., Sauerwine, B., Hoff, B., Toyoshiba, H., Gaiteri, C., and Neto, E. C. (2015).
Bayesian network reconstruction using systems genetics data: comparison of mcmc
methods. Genetics 199 (4) (2015) 973–989.

References 199

The Carter Center (2014). Schistosomiasis control program.

Thétiot-Laurent, S., Boissier, J., Robert, A., and Meunier, B. (2013). Schistosomi-
asis chemotherapy. Angew Chem Int Ed Engl. 2013 Jul 29;52(31):7936-56. doi:
10.1002/anie.201208390.

Tillman, R. E. (2009). Learning directed graphical models from nonlinear and non-
gaussian data. Master thesis.

Tukahebwa, E. M., Magnussen, P., Madsen, H., Kabatereine, N. B., Nuwaha, F., Wilson,
S., and Vennervald, B. J. (2013). A very high infection intensity of schistosoma
mansoni in a ugandan lake victoria fishing community is required for association
with highly prevalent organ related morbidity. PLoS Negl Trop Dis. 2013 Jul
25;7(7):e2268. doi: 10.1371/journal.pntd.0002268. Print 2013.

Usadel, B., Obayashi, T., Mutwil, M., Giorgi, F., Bassel, G., Tanimoto, M., Chow, A.,
Steinhauser, D., Persson, S., and Provart, N. (2009). Co-expression tools for plant
biology: opportunities for hypothesis generation and caveats. Plant Cell Environ.
32 (12) (2009) 1633–1651.

Van Berlo, R., van Someren, E., and Reinders, M. (2003). Studying the conditions for
learning dynamic bayesian networks to discover genetic regulatory networks. Simul.:
Trans. Soc. Model. Simul. Int. 79 (12), 689–702.

van Buuren, S. and Oudshoorn, K. (1999). Flexible multivariate imputation by mice.
Technical report, TNO report PG/VGZ/99.054.

Verbyla, P., Desgranges, N. I. B., and Wernisch, L. (2017). kpcalg: Kernel PC Algorithm
for Causal Structure Detection.

Wald, A. (1950). Statistical decision functions. Wiley.

Wang, Z. and de Freitas, N. (2011). Predictive adaptation of hybrid monte carlo
with bayesian parametric bandits. NIPS24 Deep Learning and Unsupervised Feature
Learning Workshop.

Wernisch, L., Houghton, J., and D., D. (2007). Structural equation modeling of immune
response to schistosomiasis infection. Technical report, MRC Biostatistic Unit.

Whittaker, E. and Watson, G. (1996). A course of modern analysis. Cambridge
University Press.

Wood, S. (2004). Stable and efficient multiple smoothing parameter estimation for
generalized additive models. Journal of the American Statistical Association, 99:673–
686.

Wood, S. (2011). Fast stable restricted maximum likelihood and marginal likelihood es-
timation of semiparametric generalized linear models. Journal of the Royal Statistical
Society. Series B (Statistical Methodology), 73(1):3–36.

Zhang, B. and Horvath, S. (2005). A general framework for weighted gene co-expression
network analysis. Stat. Appl. Genet. Mol. Biol. 4 (2005) Article17.

Appendix A

Data

Index

praf

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]Index

1 pmek

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

Index

1 plcg

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

Index

1 PIP2

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

Index

1 PIP3

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

Index

1 erk

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

Index

1 akt

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

Index

1 PKA

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

Index

1 PKC

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

Index

1 P38

data.0[, j][order(data.0[, j])]re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

re
gr

$f
itt

ed
.v

al
ue

s[
or

de
r(

da
ta

.0
[,

j])
]

1 pjnk

(a) Signals between proteins in the simu-
lated dataset 8.

RAF

1 3 5 0 2 4 6 0 2 4 6 4 6 8 1 3 5

0
2

4

1
3

5

MEK

PLCG

−
2

2
4

0
2

4
6

PIP2

PIP3

0
4

8

0
2

4
6

ERK

AKT

0
2

4
6

4
6

8

PKA

PKC

0
2

4
6

1
3

5

P38

0 2 4 −2 2 4 0 4 8 0 2 4 6 0 2 4 6 −1 2 4 6

−
1

2
4

6

JNK

(b) Plot of the data in the simulated
dataset 8.

Fig. A.1 Data simulated from the single-cell dataset 8 after the log - transformation
(from Sachs et al. (2005)).

Name Type Time Missing values

Sex Demographic Before treatment 0
Age Demographic Before treatment 0
Weight Demographic Before treatment 0
Egg count pre Infection load Before treatment 0
IL-4 pre Interleukin Before treatment 136
IL-5 pre Interleukin Before treatment 141

202 Data

IL-10 pre Interleukin Before treatment 44
IL-13 pre Interleukin Before treatment 134
IL-4R pre Interleukin Before treatment 215
IL-5R pre Interleukin Before treatment 137
IL-13R pre Interleukin Before treatment 135
Eutaxin pre Immunoglogulin Before treatment 80
IgE pre Immunoglogulin Before treatment 24
IgG1 pre Immunoglogulin Before treatment 12
IgG4 pre Immunoglogulin Before treatment 11
IL-5 24 hrs Interleukin 24h after treatment 134
IL-10 24 hrs Interleukin 24h after treatment 62
IL-13 24 hrs Interleukin 24h after treatment 164
IL-4R 24 hrs Interleukin 24h after treatment 187
IL-5R 24 hrs Interleukin 24h after treatment 119
IL-13R 24 hrs Interleukin 24h after treatment 126
Eutaxin 9 weeks Immunoglogulin 9 weeks after treatment 125
IgE 9 weeks Immunoglogulin 9 weeks after treatment 29
IgG1 9 weeks Immunoglogulin 9 weeks after treatment 57
IgG4 9 weeks Immunoglogulin 9 weeks after treatment 26
Egg count 8 months Infection load 8 months after treatment 28
Egg count 2 years Infection load 2 years after treatment 53

Table A.1 Schistosomiasis dataset; all variables

Appendix B

Discrete Bayesian Network

204 Discrete Bayesian Network

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

Mean ROC curve; AUC = 0.76 ± 0.04
Mean ROC curve + 1 standard deviation
Mean ROC curve − 1 standard deviation

(a) Dataset 1.

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

Mean ROC curve; AUC = 0.807 ± 0.05
Mean ROC curve + 1 standard deviation
Mean ROC curve − 1 standard deviation

(b) Dataset 2.

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

Mean ROC curve; AUC = 0.786 ± 0.04
Mean ROC curve + 1 standard deviation
Mean ROC curve − 1 standard deviation

(c) Dataset 3.

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

Mean ROC curve; AUC = 0.796 ± 0.05
Mean ROC curve + 1 standard deviation
Mean ROC curve − 1 standard deviation

(d) Dataset 4.

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

Mean ROC curve; AUC = 0.767 ± 0.05
Mean ROC curve + 1 standard deviation
Mean ROC curve − 1 standard deviation

(e) Dataset 5.

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

Mean ROC curve; AUC = 0.819 ± 0.05
Mean ROC curve + 1 standard deviation
Mean ROC curve − 1 standard deviation

(f) Dataset 6.

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

Mean ROC curve; AUC = 0.769 ± 0.06
Mean ROC curve + 1 standard deviation
Mean ROC curve − 1 standard deviation

(g) Dataset 7.

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

Mean ROC curve; AUC = 0.82 ± 0.04
Mean ROC curve + 1 standard deviation
Mean ROC curve − 1 standard deviation

(h) Dataset 8.

Fig. B.1 Discrete MCMC effectiveness on data simulated from the single-cell data, all
eight datasets.

Appendix C

Independence Criteria

C.1 F-correlation

Proposition C.1.1. Let (x, y) = ((x1, y1), ..., (xn, yn)) be observations from the two
random variables X and Y . Let K and L, defined as Kij = k(xi, xj) and Lij = l(yi, yj)
for some kernels k and l, be their kernel matrices respectively, then

max
(f,g)∈Fφ×Gψ

Ĉov(f(x)g(y)) = max
α,β∈Rn

1
n
αT K̃L̃β (C.1.1)

where K̃ = KH, L̃ = LH and H is a matrix with elements Hij = δij − 1/n.

206 Independence Criteria

Proof.

max
(f,g)∈Fφ×Gψ

Ĉov(f(X)g(Y)) = max
(f,g)∈Fφ×Gψ

ÊX,Y

[(
f(X)− ÊX [f(X)]

)(
g(Y)− ÊY [g(Y)]

)]

= max
(f,g)∈Fφ×Gψ

ÊX,Y

[
f(X)g(Y)

]
− ÊX

[
f(X)ÊY

[
g(Y)

]]

− ÊY

[
ÊX

[
f(X)

]
g(Y)

]
+ ÊX

[
f(X)

]
ÊY

[
g(Y)

]
= max

α,β∈Rn
1
n

n∑
l=1

[
n∑
i=1

αik(xi, xl)
]

︸ ︷︷ ︸
f(xl)

[
n∑
j=1

βjk(yj, yl)
]

︸ ︷︷ ︸
g(yl)

− 1
n

n∑
l=1

[
1
n

n∑
k=1

n∑
i=1

αik(xi, xk)
]

︸ ︷︷ ︸
ÊX [f(X)]

[
n∑
j=1

βjk(yj, xl)
]

− 1
n

n∑
l=1

[
n∑
i=1

αik(xi, xl)
] [

1
m

n∑
k=1

n∑
j=1

βjk(yj, yk)
]

︸ ︷︷ ︸
ÊY [g(Y)]

+
[

1
n

n∑
l=1

(
n∑
i=1

αik(xi, xl)
)][

1
m

n∑
k=1

(
n∑
j=1

αik(yj, yk)
)]

= max
α,β∈Rn

1
n
αTKLβ − 1

m

[
(1
n
αTK1)1T

][
Lβ

]

− 1
n

[
αTK

][
1(1
n

1TLβ)
]

+
[
(1
n
αTK1)1T

][
1(1
n

1TLβ)
]

= max
α,β∈Rn

1
n
αT (K − 1

m
K11T)(L− 1

m
L11T)β

= max
α,β∈Rn

1
n
αTK(I − 1

m
11T)L(I − 1

m
11T)β

= max
α,β∈Rn

1
n
αTKHLHβ

C.1.1 Regularization of the F-correlation

Bach and Jordan (2002) points out that the un-regularised F -correlation is not a par-
ticularly useful estimate. In many cases (for example for Gaussian kernels and distinct
data points) the kernel matrices are invertible and the F -correlation is identically equal
to one.

C.1 F -correlation 207

Proposition C.1.2. Let K be an n× n invertible matrix, then the rows of K span
Rn.

Proof. Let (e1, ..., en) be the usual basis for Rn, i.e. (ei)j = δij . Then any vector v ∈ Rn

can be written as
v =

n∑
i=1

aiei

for some constants ai. As K is invertible, K−1v exists and again we can write it as

K−1v =
n∑
i=1

biei

For some constants bi. Then pre-multiplying by K yields

v = KK−1v =
n∑
i=1

bi(Kei)

We conclude that any vector v ∈ Rn can be written in terms of Kei, that is the rows
of K.

Denote the linear span of K̃ by VK ⊂ Rn and the linear span of L̃ by VL ⊂ Rn. Consider
the geometrical interpretation of Equation 3.3.14

ρ̂F(x, y) = max
u∈VK ,v∈VL

uTv

(uTu)1/2 (vTv)1/2 = cos(u, v)

The linear span of H (recall Hij = δij − 1/n) is the orthogonal compliment of the
vector of all ones. Then if K and L are invertible their linear spans are all of Rn, and
so the linear spans of K̃ and L̃ are the same. Therefore we can always take u equals
v in the equation above which yields the empirical estimate of F-correlation being
identically one.
To overcome this issue Bach and Jordan (2002) introduced the Regularised F-correlation:

ρκF = max
(f,g)∈F×G

Cov (f(x)g(y))

(Var (f(x)) + κ∥f∥2
F)1/2 (Var (g(y)) + κ∥g∥2

G

)1/2

In order to find the empirical estimate of the regularised F-correlation from a finite
sample we expand Var (f(x)) + κ∥f∥2

F with respect to κ to obtain:

208 Independence Criteria

Var (f(x)) + κ∥f∥2
F = 1

n
αT K̃2α + καT K̃α

= 1
n
αT

(
K̃2 + nκK̃ + n2κ2

4 I

)
α− αTαNκ

2

4

≈ 1
n
αT

(
K̃ + nκ

2 I
)2
α, for κ≪ 1.

This gives us the Empirical Estimate of Regularised F -correlation ρκF as

ρ̂κF = max
α,β∈Rn

αT K̃L̃β(
αT

(
K̃ + nκ

2 I
)2
α
)(

βT
(
L̃+ nκ

2 I
)2
β
)

After using the regularization the generalized eigenvalue problem 3.3.20 becomes:
(
K̃ + nκ

2 I
)2

K̃L̃

L̃K̃
(
L̃+ nκ

2 I
)2

 α

β

 = (1+λ)

(
K̃ + nκ

2 I
)2

0
0

(
L̃+ nκ

2 I
)2

 α

β

(C.1.2)

As before to find the F -correlation we need to find the largest eigenvalue λmax of C.1.2.

C.1.2 Kernel Generalized Variance

Proposition C.1.3. Two random variables X and Y are independent if and only if
their mutual information I(X, Y) is equal to zero.

Proof. “⇒” If X and Y are independent, then p(x, y) = p(x)p(y). So log p(x,y)
p(x)p(y) =

log 1 = 0, i.e. I(X, Y) = 0.

C.1 F -correlation 209

“⇐”

I(X, Y) =
∫
X

∫
Y
p(x, y) log p(x, y)

p(x)p(y)dxdy

= −
∫
X

∫
Y
p(x, y) log p(x)p(y)

p(x, y)

= −EX,Y

[
log p(x)p(y)

p(x, y)

]

≥ − log
(

EX,Y

[
p(x)p(y)
p(x, y)

])
by Jensen’s inequality

= − log
(∫

X,Y
p(x, y)p(x)p(y)

p(x, y) dxdy

)

= − log
(∫

X,Y
p(x)p(y)dxdy

)

= − log
((∫

X
p(x)dx

)(∫
Y
p(y)dy

))
= − log 1 = 0

with equality iff p(x)p(y)
p(x,y) is constant, i.e. p(x, y) = αp(x)p(y). But this can only happen

if p(x, y) = p(x)p(y), i.e. X and Y are independent.

Proposition C.1.4. Let X ⊂ Rp and Y ⊂ Rq be two multivariate Gaussian random

variables with covariance matrix C =
 C11 C12

C21 C22

. Then their mutual information is

I(X, Y) = −1
2 log

(
detC

detC11 detC22

)
(C.1.3)

210 Independence Criteria

Proof. Let Z = (X, Y). Without lost of generality lets assume that E[X] = E[Y] = 0.

I(X, Y) =
∫
X,Y

1
(2π)n/2|C|1/2 exp

(
−1

2(x, y)TC−1(x, y)
)

× log
1

(2π)n/2|C|1/2 exp
(
−1

2(x, y)TC−1(x, y)
)

1
(2π)n/2|C11|1/2|C22|1/2 exp

(
−1

2x
TC−1

11 x− 1
2y

TC−1
22 y

)dxdy
=
∫
X,Y

1
(2π)n/2|C|1/2 exp

(
−1

2(x, y)TC−1(x, y)
)

×−1
2 log |C|

|C11||C22|

(
(x, y)TC−1(x, y)− xTC−1

11 x− yTC−1
22 y

)
dxdy

= −1
2 log |C|

|C11||C22|
− 1

2EX,Y

[
(X, Y)TC−1(X, Y)−XTC−1

11 X − Y TC−1
22 Y

]

= −1
2 log |C|

|C11||C22|
− 1

2EX,Y

[
Tr
(
(X, Y)TC−1(X, Y)

)
− Tr

(
XTC−1

11 X
)

− Tr
(
Y TC−1

22 Y
)]

= −1
2 log |C|

|C11||C22|
− 1

2EX,Y

[
Tr
(
C−1(X, Y)(X, Y)T

)
− Tr

(
C−1

11 XX
T
)

− Tr
(
C−1

22 Y Y
T
)]

= −1
2 log |C|

|C11||C22|
− 1

2 Tr
(
C−1EX,Y

[
(X, Y)(X, Y)T

])

+ 1
2 Tr

(
C−1

11 EX,Y

[
XXT

])
+ 1

2 Tr
(
C−1

22 EX,Y

[
Y Y T

])

= −1
2 log |C|

|C11||C22|
− 1

2 Tr
(
C−1C

)
+ 1

2 Tr
(
C−1

11 C11
)

+ 1
2 Tr

(
C−1

22 C22
)

= −1
2 log |C|

|C11||C22|
− 1

2(p+ q) + 1
2p+ 1

2q

= −1
2 log |C|

|C11||C22|

C.1 F -correlation 211

C.1.3 HSIC

Proposition C.1.5. (HS norm of Tensor Products): The Hilbert-Schmidt inner
product of two tensor products can be rewritten in the following way

⟨f ⊗ g, h⊗ k⟩HS = ⟨f, h⟩F⟨g, k⟩G

Proof. Let u = {u1, u2, ...} and v = {v1, v2, ...} be the orthonormal basis for F and G
respectively. Let f, h ∈ F and g, k ∈ G. Then from the definition of the HS norm, it
follows that

⟨f ⊗ g, h⊗ k⟩HS =
∑
i,j

⟨(f ⊗ g)vi, uj⟩F⟨(h⊗ k)vi, uj⟩F

=
∑
i,j

⟨f⟨g, vi⟩G, uj⟩F⟨h⟨k, vi⟩G, uj⟩F

=
∑
i

[∑
j

⟨f, uj⟩F⟨g, vi⟩G⟨h, uj⟩F⟨k, vi⟩G
]

=
∑
i

⟨g, vi⟩G⟨k, vi⟩G
[∑

j

⟨f, uj⟩F⟨h, uj⟩F
]

=
(∑

i

〈∑
n

g̃nvn, vi

〉
G

〈∑
n

k̃nvn, vi

〉
G

)

×
(∑

j

〈∑
n

f̃nun, uj

〉
F

〈∑
n

h̃nun, uj

〉
F

)

=
(∑

i

g̃ik̃i

)(∑
j

f̃jh̃j

)

= ⟨f, h⟩F⟨g, k⟩G

The first equality follows from definition of Hilbert-Schmidt norm (3.4.2), the second
equality follows from definition of tensor product (3.4.3). Here we wrote f = ∑

n f̃nun

and similarly for g, h and k.

Lemma C.1.6. (HSIC in terms of kernels): Hilbert-Schmidt Independence Criterion
can be expressed in terms of kernels in the following way:

HSIC(pxy,F ,G) = Ex,y,x′,y′

[
k(x, x′)l(y, y′)

]
− 2Ex,y

[
Ex′

[
k(x, x′)

]
Ey′

[
l(y, y′)

]]
+ Ex,x′

[
k(x, x′)

]
Ey,y′

[
l(y, y′)

]

212 Independence Criteria

Proof.

∥Cxy∥2
HS = ⟨Exy

[
φx ⊗ ψy

]
− µx ⊗ µy,Ex′y′

[
φx′ ⊗ ψy′

]
− µx′ ⊗ µy′⟩HS

= Ex,y,x′,y′

[
⟨φx ⊗ ψy, φx′ ⊗ ψy′⟩HS

]
− 2Ex,y

[
⟨µx ⊗ µy, φx ⊗ ψy⟩HS

]
+ ⟨µx ⊗ µy, µx ⊗ µy⟩HS

= Ex,y,x′,y′

[
⟨φx, φx′⟩F⟨ψy, ψy′⟩G

]
− 2Ex,y

[
⟨µx, φx⟩F⟨µy, ψy⟩G

]
+ ⟨µx, µx⟩F⟨µy, µy⟩G

= Ex,y,x′,y′

[
⟨φx, φx′⟩F⟨ψy, ψy′⟩G

]
− 2Ex,y

[
Ex′⟨φx′ , φx⟩FEy′⟨ψy′ , ψy⟩G

]
+ ExEx′⟨φx, φx′⟩FEyEy′⟨ψy, ψy′⟩G

= Ex,y,x′,y′

[
k(x, x′)l(y, y′)

]
− 2Ex,y

[
Ex′

[
k(x, x′)

]
Ey′

[
l(y, y′)

]]
+ Ex,x′

[
k(x, x′)

]
Ey,y′

[
l(y, y′)

]
The first equality follows from the linearity of the Hilbert-Schmidt norm. The second
equality follows from Equation 3.4.4. The third equation follows from the definition
of µx = Ex′ [φ(x′)] and µy = Ey′ [φ(y′)]. The fourth equality follows from linearity of
expectation and definition of ⟨φx, φx′⟩F = k(x, x′).

Theorem C.1.7. Let EXY denote the expectation taken over n independent samples
(xi, yi) drawn from pXY . Then

HSIC(pXY ,F ,G) = EXY

[
HSICb(X, Y,F ,G))

]
+O(n−1) (C.1.4)

Proof. We begin by writing out the explicit form of TrKHLH

TrKHLH = TrK
(
I − n−111T

)
L
(
I − n−111T

)
= Tr

(
KL− n−1K11TL− n−1KL11T + n−2K11TL11T

)
= TrKL− n−1 TrK11TL− n−1 TrKL11T + n−2 TrK11TL11T

= TrKL− 2n−1 Tr 1TLK1 + n−2 Tr 1TK11TL1

= TrKL− 2n−11TKL1 + n−21TK11TL1

C.1 F -correlation 213

Now we will simplify each of the three terms separately. We need to take the expectation
over n independent samples (xi, yi), we denote this by taking expectation over (X, Y)
and (X ′, Y ′) where X and X ′ are independent and identically distributed, similarly for
Y and Y ′.

E[TrKL] = EX,Y

[∑
i

KiiLii

]
+ EX,Y,X′,Y ′

 ∑
(i,j)∈in2

KijLji

= O(n) + n!

(n− 2)!EX,Y,X′,Y ′

[
k(X,X ′)l(Y, Y ′)

]
Kii is a constant for all i (constant will depend on the choice of kernel: Kii = 1 for
Gaussian kernel, Kii = 0 for Euclidean distance kernel).

E[1TKL1] = EX,Y

[∑
i

KiiLii

]
+ EX,Y,X′,Y ′

 ∑
(i,j)∈in2

(KiiLij +KijLjj)

+ EX,Y,X′,Y ′′

[∑
(i,j,q)∈in3

KijLjq

]

= O(n) +O(n2) + n(n− 1)(n− 2)EX,Y,X′,Y ′′

[
EX′

[
k(X,X ′)

]
EY ′′

[
l(Y, Y ′′)

]]
= O(n2) + n!

(n− 3)!EX,Y,X′,Y ′

[
EX′

[
k(X,X ′)

]
EY ′

[
l(Y, Y ′)

]]

There are n terms in the first summand, n(n− 1) terms in the second summand and
n(n− 1)(n− 2) terms in the third summand.

E[1TK11TL1] = E
[∑
i,j

Ki,j

∑
i,j

Li,j

]
=

∑
i,j,q,r

EX,Y ′,X′′,Y ′′′′

[
Ki,jLq,r

]

= EX,Y

[∑
i

KiiLii

]
+ EX,Y,X′,Y ′

 ∑
(i,j)∈in2

(KiiLij +KijLjj)

+ EX,Y,X′,Y ′′

 ∑
(i,j,q)∈in2

(KiiLjq +KijLiq +KijLqq)

+
∑

(i,j,q,r)∈i4n

EX,X′,Y ′′,Y ′′′

[
KijLqr

]

= O(n3) + n!
(n− 4)!EX,X′

[
k(X,X ′)

]
EY ′′,Y ′′′

[
l(Y ′′, Y ′′′)

]
There are n, n(n−1) and n(n−1)(n−2) terms in the first, second and third summand
respectively. The fourth summand has n(n− 1)(n− 2)(n− 3) terms.

214 Independence Criteria

Combining all three terms and using approximation 1
nk

n!
(n−k−1)! = 1 +O(n−1) we get:

E
[1
n2 TrKHLH

]
= EX,Y,X′,Y ′

[
k(X,X ′)l(Y, Y ′)

]
+ EX,Y

[
EX′

[
k(X,X ′)

]
EY ′

[
l(Y, Y ′)

]]
+ EX,X′

[
k(X,X ′)

]
EX,X′

[
l(Y, Y ′)

]
+O(n−1)

= ∥CXY ∥2
HS +O(n−1)

Theorem C.1.8. (Mean of HSICb(X, Y)): Under H0 the mean of HSICb(X, Y) is

E(HSICb(X, Y)) = n−1
(
EXY kl − EXk∥µY ∥2 − EY l∥µX∥2 + ∥µX∥2∥µY ∥2

)
Here EXk = EXk(X,X) and EY l = EY l(Y, Y).

Proof. First recall that the unbiased estimator of HSIC has form

HSIC(X, Y) = 1
(n)2

n∑
(i,j)∈in2

kijlij − 2 1
(n)3

n∑
(i,j,q)∈in2

kijliq + 1
(n)4

n∑
(i,j,q,r)∈in4

kijlqrkijliq

where (n)k = n!
(n−k)! and (i)nk are all k-tuples drawn from 1, 2, ..., n without replacement.

The biased estimator of HSIC has form

HSICb(x, y) = 1
n2

n∑
i,j=1

kijlij − 2 1
n3

n∑
i,j,q=1

kijliq + 1
n4

n∑
i,j,q,r=1

kijlqrkijliq

Under null hypothesis (that isX and Y are independent) we have that E(HSIC(X, Y)) =
0. Therefore we have E(HSICb(X, Y)) = E(HSICb(X, Y)−HSIC(X, Y)). Lets consider
terms of this difference:

1
n2

n∑
i,j=1

kijlij −
1

(n)2

∑
(i,j)∈in2

kijlij = 1
n2

n∑
i=1

kiilii + n(n− 1)− n2

n2(n)2

∑
(i,j)∈in2

kijlij

= 1
n2

n∑
i=1

kiilii −
1

n(n)2

∑
(i,j)∈in2

kijlij

(C.1.5)

C.1 F -correlation 215

1
n3

n∑
i,j,q=1

kijliq −
1

(n)3

∑
(i,j,q)∈in3

kijliq

= 1
n3

n∑
i,j=1

kiilii + 1
n3

∑
(i,j)∈in2

(kiilij + kijlii + kijlij)

+ (n)3 − n3

n3(n)3

∑
(i,j,q)∈im3

kijliq

= 1
n3

n∑
i,j=1

kiilii + 1
n3

∑
(i,j)∈in2

(kiilij + kijlii + kijlij)

− 3
n(n)3

∑
(i,j,q)∈im3

kijliq +O(n−5)

(C.1.6)

1
n4

n∑
i,j,q,r=1

kijlqr −
1

(n)4

∑
(i,j,q,r)∈in4

kijlqr

= 1
n4

n∑
i=1

kiilii + 1
n4

∑
(i,j)∈in2

(kiilij + kijlii + kijlij)

+ 1
n4

∑
(i,j,q)∈in3

(kiiljq + 4kijliq + kijlqq) + (n)4 − n4

n4(n)4

∑
(i,j,q,r)∈in4

kijlqr

= 1
n4

n∑
i=1

kiilii + 1
n4

∑
(i,j)∈in2

(kiilij + kijlii + kijlij)

+ 1
n4

∑
(i,j,q)∈in3

(kiiljq + 4kijliq + kijlqq)−
6

n(n)4

∑
(i,j,q,r)∈im4

kijlqr +O(n−6)

(C.1.7)

There is 4 before term kijliq in Equation C.1.7 as there are 4 combinations of indices
i, j, q, r in kijlqr that two indices would agree and the other two would differ: i = q,
i = r, j = q and j = r. Combining terms from Equations C.1.5-C.1.7 we get

216 Independence Criteria

HSICb(x, y)− HSIC(x, y) =
(1
n2 −

2
n3 + 1

n4

) n∑
i=1

kiilii

+
(
−2 1

n3 + 1
n4

) ∑
(i,j)∈in2

(kiilij + kijlii)

+ 1
n4

∑
(i,j,q)∈in3

(kiiljq + kijlqq) +
(
− 1
n(n)2

− 2
n3 + 1

n4

) ∑
(i,j)∈in2

kijlij

+
(

4 1
n4 + 2 3

n(n)3

) ∑
(i,j,q)∈in3

kijliq −
6

n(n)4

∑
(i,j,q,r)∈in4

kijlqr

≈ 1
n2

n∑
i=1

kiilii −
2

n(n)2

∑
(i,j)∈in2

(kiilij + kijlii)

+ 1
n(n)3

∑
(i,j,q)∈in3

(kiiljq + kijlqq)−
3

n(n)2

∑
(i,j)∈in2

kijlij

+ 10
n(n)3

∑
(i,j,q)∈in3

kijliq −
6

n(n)4

∑
(i,j,q,r)∈in4

kijlqr

(C.1.8)

Approximation is taken by dropping the lower order terms. Now we take the expectation
of Equation C.1.8. We use notation EX [k(X,X)] = EXk, EXY Y ′ [k(X,X)l(Y, Y ′)] =
EXY Y ′kl, where X and X ′ are independent and identically distributed.

nE(HSICb(X, Y)) = nE(HSICb(X, Y)− HSIC(X, Y))
= EXY kl − 2 (EXY Y ′kl + EXX′Y kl)

+ EXY ′Y ′′kl + EXX′Y ′′kl

− 3EXX′Y Y ′kl + 10EXX′Y Y ′′kl − 6EXX′kEY Y ′l

At independence HSIC(X, Y) = 0 and three last terms merge; as X, X ′, Y and Y ′ are
all independent we can factorize expectation as EXX′Y Y ′′kl = EXX′kEY Y ′′l . We get

E(HSICb(X, Y)) = n−1
(
EXY kl − EXk∥µY ∥2 − EY l∥µX∥2 + ∥µX∥2∥µY ∥2

)
where ∥µX∥2 = EXX′ [k(X,X ′)] and ∥µY ∥2 = EY Y ′ [l(Y, Y ′)].

Theorem C.1.9. (Variance of HSICb(X, Y)): Under H0 the variance of HSICb(X, Y)
is

Var(HSICb(X, Y)) = 2(n− 4)(n− 5)
(n)4

∥CXX∥2
HS∥CY Y ∥2

HS

C.1 F -correlation 217

Here ∥CXX∥2
HS = 1

n2 TrKHKH +O(n−1).

Proof. We first express HSICb(x, y) as

HSICb(x, y) = 1
m4

∑
(i,j,q,r)∈im4

hijqr (C.1.9)

where
hijqr = 1

4!
∑

(t,u,v,w)∈P(i,j,q,r)
ktultu − 2ktultv + ktulvw

here P(i, j, q, r) denotes all the permutations of (i, j, q, r).
We start by computing the variance of the symmetric U-statistics HSICs(x, y) associated
with C.1.9

HSICs(x, y) = 1
(m)4

∑
(i,j,q,r)∈im4

hijqr

Using the symmetry of kij and lij in their index orderings we can make the following
simplification

hijqr = 1
6[kij(lij + lqr) + kiq(liq + ljr) + kir(lir + ljq)

+ kjq(ljq + lir) + kjr(ljr + liq) + kqr(lqr + lij)]

− 1
12

∑
(t,u,v)∈P(i,j,q,r)

ktu[ltv + luv]

Summation in the last term is taken over all ordered triples (t, u, v) selected without
replacement from (i, j, q, r). Recall that HSICs(x, y) is a U-statistic. It follows from
Theorem C.2.1 that variance of HSICs(X, Y) is

Var(HSICs(X, Y)) =
(
n

4

)−1 4∑
k=1

(
4
k

)(
n− 4
4− k

)
ζk

we only need to consider

ζ1 = Ei,j,q

[
(Er[hijqr])2

]
and ζ2 = Ei,j

[
(Eq,r[hijqr])2

]
as other terms decay faster than ζ2 and can be neglected. Under the null hypothesis
we have degeneracy ζ1 = 0. So (C.1.3) simplifies to

Var(HSICs(X, Y)) = 72(n− 4)(n− 5)
n(n− 1)(n− 2)(n− 3)ζ2 +O(n−3)

218 Independence Criteria

To make expressions easier to follow we introduce new notation: Eq,r := EXqYqXrYr . We
continue by finding Eq,r[hijqr]. Using the fact that X and Y are independent under
the null hypothesis, we get

Eq,r

[
ktulvw

]
= Eq,r

[
ktu
]
Eq,r

[
lvw
]
, for all (t, u, v, w) ∈ P(i, j, q, r)

Also for all distinct i, j, q and r

Eq,r

[
ktu
]

=

kij, if {t, u} = {i, j}
EXk(xi, X), if t = i and u ∈ {q, r}

EXX′k(X,X ′), if {t, u} = {q, r}

To make expressions easier to follow we introduce new notation: EXki := EX [k(xi, X)]
and EXX′k := EXX′ [k(X,X ′)].

12Eq,r[hijqr] = kij(2lij + 2EY Y ′l − 2EY li − 2EY lj)
− 2EXki(lij + EY Y ′l − EY li − EY lj)
− 2EXkj(lij + EY Y ′l − EY li − EY lj)
+ EXX′k(2lij + 2EY Y ′l − 2EY li − 2EY lj)

= 2(kij − EXki − EXkj + EXX′k)(lij − EY li − EY lj + EY Y ′l)

Again using the assumption thatX and Y are independent, the expectation Ei,j [Eq,r[hijqr]]2

factorises into a product of expectation over X and over Y . The first is

Ei,j

[
kij − EXki − EXkj + EXX′k

]2
= Ei,j

[
⟨φXi , φXj⟩ − ⟨φXi , µX⟩ − ⟨µX , φXj⟩+ ⟨µX , µX⟩

]2
= Ei,j⟨φXi − µX , φXj − µX⟩2F
= Eij⟨(φXi − µX)⊗ (φXi − µX), (φXj − µX)⊗ (φXj − µX)⟩HS
= ∥CXX∥2

HS

The second is ∥CY Y ∥2
HS by symmetry. Combining these expressions, we get

Var(HSICs(X, Y)) = 2(n− 4)(n− 5)
(n)4

∥CXX∥2
HS∥CY Y ∥2

HS +O(n−3) (C.1.10)

The variance of HSICb(X, Y) is identical, since the additional terms that arise from
the bias vanish faster than the leading terms retained in (C.1.10).

C.2 U-statistics 219

C.2 U-statistics

Results about the asymptotic behaviour of the Hilbert-Schmidt Independence Criterion
relies heavily on the concept of U-statistics. In this section we present some of the
essential definitions and properties of the U-statistics. We are following the exposition
from the lecture notes by Ferguson (2005), for a more detailed presentation refer to Lee
(1990) and Denker (1985).

Definition C.2.1. (Estimable parameter): Let P be a family of probability measures
on an arbitrary measurable space. Let θ(P) denote a real-valued function defined for
P ∈ P. We say that θ(P) is an estimable parameter within P, if for some integer
m there exists an unbiased estimator of θ(P) based on m i.i.d. random variables
distributed according to P ; that is, if there exists a real-valued measurable function
h(x1, ..., xm) such that

EP (h(X1, ..., Xm)) = θ(P) for all P ∈ P ,

when X1, ..., Xm are i.i.d. with distribution P . The smallest integer m with this
property is called the degree of θ(P).

Definition C.2.2. (U-statistic): For a real-valued measurable function, h(x1, ..., xm)
and for a sample, X1, ..., Xn, of size n ≥ m from a distribution pX , a U-statistic with
kernel h of order k is defined as

Un = Un(h) =
(
n

m

)−1 ∑
Cm,n

h (Xi1 , ..., Xim) (C.2.1)

where the summation is over the set Cm,n of all
(
n
m

)
combinations of m integers,

i1 < ... < im chosen from {1, 2, ..., n} without replacement.

We define

hk(x1, ..., xk) = E[h(X1, ..., Xm) | X1 = x1, ..., Xk = xk]
= E[h(x1, ..., xk, Xk+1, ..., Xm)]

Theorem C.2.1 (Ferguson (2005)). (Variance of U-statistics): For a U-statistic Un
given by Equation C.2.1 with E[h(X1, ..., Xm)]2 <∞,

Var(Un) =
(
n

m

)−1 m∑
k=1

(
m

k

)(
n−m
m− k

)
ζk

220 Independence Criteria

where

ζk = Var(hk(X1, ..., Xk))

If ζ2
m <∞, then Var(Un) ∼ m2ζ1/n for large n.

Proof.

Var(Un) = Var
((

n

m

)−1 ∑
Cm,n

h(Xi1 , ..., Xim)h(Xi1 , ..., Xim)
)

=
(
n

m

)−2 ∑
i∈Cm,n

∑
j∈Cm,n

Cov
(
h(Xi1 , ..., Xim), h(Xj1 , ..., Xjm)

)

Proposition C.2.2 (Ferguson (2005)). For (i1, ..., im) and (j1, ..., jm) in Cm,n and
Xi1 , ..., Xim , Xj1 , ..., Xjm i.i.d.,

Cov(h(Xi1 , ..., Xim), h(Xj1 , ..., Xjm))
= Cov(hk(X1, ..., Xk), h(X1, ..., Xm)) = ζk

where k is the number of common elements between (i1, ..., im) and (j1, ..., jm).

Proof.

Cov(h(Xi1 , ..., Xim), h(Xj1 , ..., Xjm))
= Cov(h(X1, ..., Xk, Xk+1, ..., Xm), h(X1, ..., Xk, X

′
k+1, ..., X

′
m))

= E
[
(h(X1, ..., Xk, Xk+1, ..., Xm))(h(X1, ..., Xk, X

′
k+1, ..., X

′
m))

]

− E
[
(h(X1, ..., Xk, Xk+1, ..., Xm))

]
E
[
(h(X1, ..., Xk, X

′
k+1, ..., X

′
m))

]

= E
[
h(X1, ..., Xk, Xk+1, ..., Xm)h(X1, ..., Xk, X

′
k+1, ..., X

′
m)
]
− θ2

= EX1,...,Xk

[
E
[
h(X1, ..., Xk, Xk+1, ..., Xm)h(X1, ..., Xk, X

′
k+1, ..., X

′
m)|X1, ..., Xk

]]
− θ2

= E
[
hk(X1, ..., Xk)hk(X1, ..., Xk)

]
− θ2

= ζk

Here θ = Eh(X1, ..., Xm). We get the first equality using the fact that (i1, ..., im) and
(j1, ..., jm) have k elements in common and h is symmetric. HereXk+1, ..., Xm, X

′
k+1, ..., X

′
m

C.2 U-statistics 221

are i.i.d. We get the third equality by conditioning on X1, ..., Xk and using the definition
of hk, as then two terms become independent.
The same argument shows that Cov(hk(X1, ..., Xk), h(X1, ..., Xm)) = ζk.

The number of m-tuples (i1, ..., im) and (j1, ..., jm) having exactly k elements in common
is
(
n
m

)(
m
k

)(
n−m
m−k

)
as there are

(
n
m

)
ways to choose (i1, ..., im), there are

(
m
k

)
ways to

choose k elements in this m-tuple that will also be in (j1, ..., jm) and finally
(
n−m
m−k

)
ways to choose other m− k elements for (j1, ..., jm) out of remaining n−m elements.
Therefore,

Var(Un) =
(
n

m

)−2 m∑
k=0

(
n

m

)(
m

k

)(
n−m
m− k

)
ζk

=
(
n

m

)−1 m∑
k=0

(
m

k

)(
n−m
m− k

)
ζk

If ζm <∞, then ζi <∞ for all i < m. For large n, the first term of the sum dominates
since it is of the largest order. The coefficient of ζ1 is m

(
n−m
m−1

)
/
(
n
m

)
∼ m2/n.

Theorem C.2.3 (Ferguson (2005)). If ζm <∞, then

√
n(Un − θ)→ N (0,m2ζ1)

Proof. Let

U∗
n = m

n

n∑
k=1

(h1(Xk)− θ)

Then since m(h1(Xk) − θ) are i.i.d. with mean 0 and variance m2ζ1, the central
limit theorem implies that

√
nU∗

n → N (0,m2ζ1). We continue by showing that
√
nU∗

n

is asymptotically equivalent to
√
n(Un − θ) and so they both have same limiting

distribution. It is enough to show that nE(U∗
n − (Un − θ))2 → 0.

nE(U∗
n − (Un − θ))2 = nVar(U∗

n)− 2nCov(U∗
n, Un) + nVar(Un)

222 Independence Criteria

nVar(U∗
n) = m2ζ1

nVar(Un)→ m2ζ1

nCov(U∗
n, Un) = m(

n
m

) n∑
k=1

∑
j∈Cm,n

Cov(h1(Xk), h(Xj1 , ..., Xjm))

= m(
n
m

)n(n− 1
m− 1

)
ζ1 = m2ζ1

As by Theorem C.2.1

Cov(h1(Xk), h(Xj1 , ..., Xjm)) =

0, if k /∈ {j1, ..., jm}

ζ1, if k ∈ {j1, ..., jm}

There are n choices for k and for any fixed k there are
(
n−1
m−1

)
choices of set {j1, .., jm}

containing k.

Definition C.2.3. We say that a U-statistic has a degeneracy of order k if ζ1 = ... =
ζk = 0 and ζk+1 > 0.

Theorem C.2.4 (Ferguson (2005)). Let Un be the U-statistic associated with a
symmetric kernel of degree 2, degeneracy of order 1, and expectation θ. Then

n(Un − θ)→
∞∑
k=1

λk(Z2
k − 1)

where Z1, Z2, ... are independent N (0, 1) and λ1, λ2, ... are the eigenvalues of

h(x1, x2)− θ =
∞∑
k=1

λkψk(x1)ψk(x2)

where φk’s are the orthonormal sequences, i.e.

Eψi(X1)ψj(X2) =

1 if i = j,

0 if i ̸= j.

C.3 Approximating Mutual information using Gaussian random variables 223

C.3 Approximating Mutual information using Gaus-
sian random variables

Let XG and Y G denote Gaussian random variables that have the same covariance
structure as X and Y . Namely:

E(XY T) = P,E(X) = px, E(Y) = py, E(XXT) = Dpx , E(Y Y T) = Dpy

Here Dpx = diag(px) and Dpy = diag(py).

Then IG = I(XG, Y G) = −1
2 log det

(
I − CCT

)
= −1

2 log det
(
I − CTC

)
. Where

C = D−1/2
px

(
P − pxpTy

)
D−1/2
py (the correlation matrix).Then ’close to independence’,

we can assume Pij = pxipyj (1 + ϵij) (here ϵ has small norm). Then we can rewrite C as
C = D−1/2

px

(
P − pxpty

)
D−1/2
py = D1/2

px ϵD
1/2
py and so C also has small norm. So we have:

IG = −1
2 log det

(
I − CCT

)
≈ 1

2 Tr
(
CCT

)
And so we obtain:

IG ≈ 1
2 Tr

(
DpxϵDpyϵ

T
)

= 1
2
∑
ij

ϵ2
ijpxipyj

For non-Gaussian random variables X and Y we expand the mutual information
I = I(X, Y)

I =
∑
ij

pxipyj (1 + ϵij) log pxipyj (1 + ϵij)
pxipyj

1≈
∑
ij

pxipyj

(
ϵij + 1

2ϵ
2
ij

)
2= 1

2
∑
ij

ϵ2
ijpxipyj

1. Using Taylor expansion: (1 + ϵij) log (1 + ϵij) ≈ ϵij + 1
2ϵ

2
ij

2. ∑ij pxipyjϵij = ∑
ij pxipyj (1 + ϵij)−

∑
ij pxipyj = ∑

ij Pij −
∑
ij pxipyj = 1− 1 = 0

So we conclude that for any random variables X and Y their mutual information I is
the same up to the second order to the mutual information IG of Gaussian random
variables XG and Y G with same covariance structure as X and Y .

Appendix D

Kernel PC

226 Kernel PC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.813 ± 0.03
kPC−Resid, AUC = 0.801 ± 0.03
kPC−Clust, AUC = 0.806 ± 0.03
SNR−PC, AUC = 0.809 ± 0.04
PC, AUC = 0.729 ± 0.03

(a) Dataset 1.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.788 ± 0.02
kPC−Resid, AUC = 0.788 ± 0.02
kPC−Clust, AUC = 0.788 ± 0.02
SNR−PC, AUC = 0.785 ± 0.03
PC, AUC = 0.77 ± 0.01

(b) Dataset 2.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.824 ± 0.03
kPC−Resid, AUC = 0.81 ± 0.03
kPC−Clust, AUC = 0.81 ± 0.03
SNR−PC, AUC = 0.814 ± 0.04
PC, AUC = 0.749 ± 0.02

(c) Dataset 3.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.805 ± 0.03
kPC−Resid, AUC = 0.796 ± 0.02
kPC−Clust, AUC = 0.79 ± 0.02
SNR−PC, AUC = 0.804 ± 0.04
PC, AUC = 0.762 ± 0.02

(d) Dataset 4.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.816 ± 0.03
kPC−Resid, AUC = 0.801 ± 0.03
kPC−Clust, AUC = 0.804 ± 0.03
SNR−PC, AUC = 0.809 ± 0.05
PC, AUC = 0.751 ± 0.04

(e) Dataset 5.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.802 ± 0.02
kPC−Resid, AUC = 0.799 ± 0.02
kPC−Clust, AUC = 0.794 ± 0.02
SNR−PC, AUC = 0.795 ± 0.03
PC, AUC = 0.75 ± 0.02

(f) Dataset 6.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.819 ± 0.03
kPC−Resid, AUC = 0.808 ± 0.03
kPC−Clust, AUC = 0.807 ± 0.03
SNR−PC, AUC = 0.792 ± 0.04
PC, AUC = 0.739 ± 0.04

(g) Dataset 7.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.811 ± 0.02
kPC−Resid, AUC = 0.801 ± 0.02
kPC−Clust, AUC = 0.804 ± 0.03
SNR−PC, AUC = 0.8 ± 0.04
PC, AUC = 0.761 ± 0.02

(h) Dataset 8.

Fig. D.1 ROC curves to compare kPCs, dPC, SNR-PC and PC algorithms on the data
simulated from single-cell data from Sachs et al. (2005).

227

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.796
kPC−Resid, AUC = 0.742
kPC−Clust, AUC = 0.729
SNR−PC, AUC = 0.75
PC, AUC = 0.688

(a) Dataset 1.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.796
kPC−Resid, AUC = 0.807
kPC−Clust, AUC = 0.742
SNR−PC, AUC = 0.768
PC, AUC = 0.745

(b) Dataset 2.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.797
kPC−Resid, AUC = 0.775
kPC−Clust, AUC = 0.779
SNR−PC, AUC = 0.744
PC, AUC = 0.765

(c) Dataset 3.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.742
kPC−Resid, AUC = 0.742
kPC−Clust, AUC = 0.808
SNR−PC, AUC = 0.756
PC, AUC = 0.718

(d) Dataset 4.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.748
kPC−Resid, AUC = 0.747
kPC−Clust, AUC = 0.725
SNR−PC, AUC = 0.742
PC, AUC = 0.739

(e) Dataset 5.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.771
kPC−Resid, AUC = 0.744
kPC−Clust, AUC = 0.75
SNR−PC, AUC = 0.762
PC, AUC = 0.725

(f) Dataset 6.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.782
kPC−Resid, AUC = 0.802
kPC−Clust, AUC = 0.793
SNR−PC, AUC = 0.765
PC, AUC = 0.726

(g) Dataset 7.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

dPC, AUC = 0.777
kPC−Resid, AUC = 0.802
kPC−Clust, AUC = 0.835
SNR−PC, AUC = 0.742
PC, AUC = 0.752

(h) Dataset 8.

Fig. D.2 ROC curves to compare kPCs, dPC, SNR-PC and PC algorithms on all 8
datasets from Sachs et al. (2005).

	Table of contents
	List of figures
	List of tables
	Introduction
	1 Background
	1.1 Previous Work in Network Inference
	1.1.1 Correlation and Information Theory Based Methods
	1.1.2 Boolean Networks
	1.1.3 Differential and Difference Equations Based Methods
	1.1.4 Bayesian Networks
	1.1.5 Feedback Loop Inference

	1.2 Probabilistic Graphical Models
	1.2.1 Motivation
	1.2.2 Graph Theory Definitions
	1.2.3 Probabilistic Graphical Models
	1.2.4 Conclusions

	1.3 PC Algorithm
	1.3.1 Skeleton Phase
	1.3.2 Collider Phase
	1.3.3 Transitive Phase

	1.4 Loss Function
	1.5 Kullback-Leibler Divergence
	1.6 Datasets
	1.6.1 Simulated Datasets
	1.6.2 Single-cell Datasets
	1.6.3 Schistosomiasis Dataset

	2 Network Inference of Discrete Bayesian Networks
	2.1 Introduction
	2.1.1 Network Inference Problem
	2.1.2 Discrete Bayesian Network Inference

	2.2 Structure Search
	2.3 Likelihood
	2.3.1 Likelihood for Discrete Variable
	2.3.2 Priors
	2.3.3 Likelihood Equivalence
	2.3.4 Likelihood Equivalence Non-Preserving Priors

	2.4 Missing Value Imputation in the Model
	2.5 Parallel Tempered MCMC
	2.5.1 Issues with Chain Mixing
	2.5.2 Tempered MCMC
	2.5.3 Parallel Tempered MCMC
	2.5.4 Temperatures

	2.6 Results
	2.6.1 Small Examples
	2.6.2 11-Variable Examples
	2.6.3 Conclusions
	2.6.4 Single-Cell Datasets
	2.6.5 Schistosomiasis Dataset
	2.6.6 28-Variable Case
	2.6.7 Scaling to Larger Networks

	2.7 Discussion
	2.7.1 Model Limitations and Future Extensions

	3 Independence Criteria
	3.1 Introduction
	3.1.1 Independence

	3.2 Distance Correlation
	3.2.1 Introduction
	3.2.2 Motivation
	3.2.3 Definition of dCor
	3.2.4 Empirical Estimate of dCor
	3.2.5 Theoretical Justification of dCor

	3.3 Kernel Canonical Correlation
	3.3.1 Introduction
	3.3.2 Motivation
	3.3.3 Reproducing Kernel Hilbert Space
	3.3.4 Definition of the F-correlation
	3.3.5 Empirical Estimate of the F-correlation
	3.3.6 Kernel Generalized Variance

	3.4 Hilbert-Schmidt Independence Criterion
	3.4.1 The Hilbert-Schmidt Space
	3.4.2 Hilbert-Schmidt Independence Criterion
	3.4.3 Empirical Estimate of HSIC
	3.4.4 Asymptotic Results

	3.5 Similarities between the Independence Criteria
	3.5.1 Relationship between dCov and HSIC
	3.5.2 Relationship between KGV and HSIC

	3.6 Statistical Tests of Independence
	3.6.1 Introduction
	3.6.2 Test of the Unconditional Independence
	3.6.3 Test of the Conditional Independence
	3.6.4 Simulation Results for the Independence Tests

	3.7 Signal to Noise Ratio Independence Criterion
	3.7.1 Introduction
	3.7.2 Motivation
	3.7.3 Signal to Noise Ratio Independence Criterion
	3.7.4 SNRIC and the General Independence
	3.7.5 Definition of the SNRIC
	3.7.6 SNR Independence Test
	3.7.7 Unconditional Independence Test Examples
	3.7.8 Counter Example to SNRIC
	3.7.9 SNRIC Conditional Independence Test
	3.7.10 Proofs

	3.8 Conclusions
	3.8.1 Future Work

	4 Independence Criteria Based PC Algorithm
	4.1 Introduction
	4.2 Kernel PC
	4.3 Inferring Directionality Using the Independence Criteria
	4.4 Results
	4.4.1 Comparison of Network Inference Algorithms
	4.4.2 Data Simulated from an Artificial Network
	4.4.3 Data Simulated by Re-sampling
	4.4.4 Original Data
	4.4.5 Combining All Datasets
	4.4.6 Discovering Directions
	4.4.7 Schistosomiasis Dataset

	4.5 Discussion
	4.5.1 Model Limitations
	4.5.2 Future work

	5 MCMC Sampling Using Loss Function
	5.1 Introduction/Motivation
	5.2 Model
	5.2.1 Structural Equation Model
	5.2.2 Additive Noise Model

	5.3 Theory
	5.4 Reversible Jump MCMC
	5.4.1 Jump to a Higher Dimensional Space
	5.4.2 Centring Proposals
	5.4.3 Weak Non-Identifiability Approach
	5.4.4 The Conditional Maximization Approach
	5.4.5 Zeroth-Order Method
	5.4.6 Example 1: Weak Non-Identifiability
	5.4.7 Example 2: Conditional Maximization
	5.4.8 Jump to a Lower Dimensional Space or Removing an Edge
	5.4.9 Inverting an Edge

	5.5 Sampling from the Loss Function
	5.6 Algorithm
	5.6.1 Introduction
	5.6.2 Loss Function Based on Independence Criterion
	5.6.3 Linear Model
	5.6.4 Piecewise Linear Model
	5.6.5 Prior
	5.6.6 Sampling Distribution
	5.6.7 Hyperparameters
	5.6.8 Sampler

	5.7 Results
	5.7.1 Simulating Data with Cycles
	5.7.2 Simulated Examples
	5.7.3 Single-Cell Data
	5.7.4 Schistosomiasis Dataset

	5.8 Discussion
	5.8.1 Model Limitations
	5.8.2 Future Work

	Conclusions
	References
	Appendix A Data
	Appendix B Discrete Bayesian Network
	Appendix C Independence Criteria
	C.1 F-correlation
	C.1.1 Regularization of the F-correlation
	C.1.2 Kernel Generalized Variance
	C.1.3 HSIC

	C.2 U-statistics
	C.3 Approximating Mutual information using Gaussian random variables

	Appendix D Kernel PC

