Outcome following surgery to treat septic peritonitis in 95 cats in the United Kingdom

1 <u>Abstract</u>

22

2 Objective: To review the cause, management and outcome in a large group of cats with septic peritonitis (SP) within the United Kingdom (2008-2018) and to identify if 3 previously identified prognostic factors were associated with survival. 4 5 Materials and Methods: Clinical records from ten UK referral hospitals were reviewed. 6 Data collected included signalment, clinicopathological data, intra- and post-operative 7 management. Serum albumin concentration, serum glucose concentration, serum lactate 8 concentration, ionised calcium, presence of intraoperative hypotension, and correct 9 empirical antibiosis were analysed via logistic regression for association with survival. 10 **Results:** Ninety-five cats were included. The overall survival rate was 66%. Lethargy 11 (89%) and anorexia (75%) were the most common clinical signs of SP in the cat, with 12 abdominal pain and vomiting in 44% and 27% of cases respectively. Gastro-intestinal 13 leakage was the most common cause of contamination. 14 Intraoperative hypotension (p=0.033, OR 0.173, 95% CI 0.034-0.866) was associated 15 with non-survival. 16 Clinical Significance: This study describes the largest group of cats with SP and an 17 overall survival rate of 66%. Clinical signs and causes were similar to previous reports. Intraoperative hypotension was associated with non-survival. 18 19 20 21

23 <u>Introduction</u>

24 Septic peritonitis (SP) is characterised by inflammation of the peritoneum, secondary to bacterial, fungal or mycobacterial contamination of the peritoneal space. Successful 25 treatment requires timely diagnosis, hemodynamic supportive treatment, surgical 26 27 exploration of the abdomen with identification and control of the source of bacterial 28 contamination, and intensive post-operative care (Parsons et al, 2009). 29 There is a limited number of studies evaluating SP in cats and the previously reported 30 survival rates range from 20-70% (Mueller et al, 2001, Costello et al, 2004, Ruthrauff 31 2009, Parsons et al, 2009, Kellet-Gregory et al, 2010, Dayer et al, 2013, Kalafut et al, 32 2018, Scotti et al, 2019). Most studies have included only a small number of animals, but the largest study described 83 cases and investigated whether physical examination 33 34 findings, admission clinicopathological data, time from presentation to surgical

35 intervention, empirical antimicrobial use, or culture results were associated with

36 outcome. It concluded that cats with elevated serum glucose concentration at presentation

37 or receiving the incorrect empirical antibiosis were less likely to survive (Scotti et al,

38 2019). An earlier study assessing ionised calcium in 55 cats with SP did not show any

39 association with survival to discharge, but failure for ionised calcium to normalize during

40 hospitalisation was a negative prognostic indicator (Kellett-Gregory et al, 2010).

Electronic databases (Medline (Pubmed) and Science Direct) were searched with the
keywords 'septic peritonitis' 'cat' 'feline' on June 2018, January 2020 and January 2021.
Occasional single case reports of feline septic peritonitis were identified, but no other
case series or larger studies have been identified.

The primary aim of this study was to report the survival and clinical findings for a large group of cats with SP in the United Kingdom. The secondary aim was to assess whether the serum albumin concentration, serum glucose concentration, serum lactate concentration, ionised calcium, presence of intraoperative hypotension, or correct empirical antibiosis were associated with survival. These factors have been investigated in previous studies in septic peritonitis and confirmed common findings of risk factors across multiple studies may guide further prospective research and aid clinical treatment.

54 <u>Materials and Methods</u>

55 Clinical records from January 2008 to January 2018 were reviewed from ten UK small 56 animal referral hospitals (5 private and 5 university multidisciplinary institutions). A data 57 table and guidelines for completion were submitted to each institution. Inclusion criteria 58 was any cat having surgery for bacterial SP diagnosed either by the presence of 59 degenerate neutrophils and intracellular bacteria on abdominocentesis sample cytology, 60 and /or a peritoneal fluid-to-blood glucose value greater than 1.12mmol/L difference 61 (Bonczynski at al, 2003), and / or a positive peritoneal fluid culture. Cats were excluded 62 if they did not have any clinicopathological data available (minimum of venous blood gas 63 analysis required), the data set was excessively incomplete in multiple areas, or the 64 primary surgeon in charge of the case was not a specialist in small animal surgery

(Diplomate of the European College of Veterinary Surgeons / Diplomate of the American 65 College of Veterinary Surgeons / RCVS Diplomate in Small Animal Soft Tissue Surgery) 66 67 or resident working under direct specialist supervision. Surgical case log records were 68 searched using the keywords 'septic peritonitis', data was filtered to include only the 69 study period (January 2008 - January 2018) and to only include feline patients. The 70 search was performed during July/August 2018 by six operators working independently 71 but using the same search criteria. Information obtained from clinical records included 72 signalment, clinical signs/examination findings and presence of concurrent disease, 73 duration of clinical signs prior to surgery, clinical pathology data (haematology, serum 74 biochemistry, electrolytes, venous blood gas analysis) from the immediate pre-operative 75 period (within 12 hours of the start of surgery), method of diagnosis, whether any 76 relevant previous surgery had been performed, American Society of Anesthesiologists 77 (ASA) physical status classification system status (as determined by a board-certified 78 anaesthetist or European College of Veterinary Anaesthesia and Analgesia / European 79 College of Veterinary Surgeons / American College of Veterinary Surgeons or a resident 80 under their supervision), source of bacterial contamination, method of abdominal closure, 81 use of closed negative pressure abdominal drains, incidence of intra-operative 82 hypotension (defined as systolic blood pressure <90mmHg, or mean blood pressure 83 <60mmHg for at least 10 minutes), incidence of intra-operative death, 84 perioperative/postoperative antibiosis, bacteria type and sensitivity profile, enteral 85 feeding tube placement (including type), and histopathology. Survival to hospital 86 discharge was recorded as a binary outcome. Of those which failed to survive, cause of 87 death was recorded (intra-operative vs post-operative, death vs euthanasia). For those

cases that survived, duration of hospitalisation to discharge was recorded. Bacterial
sensitivity profiles were assessed to determine whether appropriate empirical antibiotics
were chosen.

91

92 <u>Statistics</u>

93 Descriptive statistics were used to report results for all variables. Continuous variables 94 were assessed for normality using the Shapiro-Wilk test. Normally distributed data were 95 reported as mean \pm standard deviation and non-normally distributed data as median 96 (range). In order to investigate for prognostic factors (albumin concentration, neutrophil 97 count, serum glucose concentration, ionised calcium, presence of intraoperative 98 hypotension, correct empirical antibiosis) univariable binary logistic regression was used 99 to calculate odds ratio's (OR) and 95% confidence intervals (95%CI). Factors with a p value < 0.1 were analysed in a multivariable logistic regression model. Goodness-of-fit is 100 reported via a Hosmer-Lemeshow test. Significance was set at p <0.05. 101 102 103 Results 104 One hundred and twenty-three cats were identified by the surgical case log searches and

assessed for eligibility, of which 28 records were excluded for excessively incomplete

106 data sets. 95 cats were included. Breeds included domestic shorthair (n=55), domestic

107 longhair (n=10) and exotic (n=30). There were 65 male cats (61 neutered, 4 entire) and

108 30 female cats (28 neutered, 2 entire). Median patient weight 4.1kg (1.4-9.5kg) and age

109 was 63 months (4-249 months). The most common clinical signs and clinical

111	clinical signs until surgery was 3.5 days (0-42 days).
112	Sixty-three cats survived to discharge (66%). Of the 32 cats that did not survive, four did
113	not survive the anaesthetic event, 12 died in the post-operative period, and 16 were
114	euthanized in the post-operative period.
115	
116	The source of peritoneal bacterial contamination is shown in Table 2. Twenty cats (21%;
117	12 survivors and 8 non-survivors) had undergone a previous procedure implicated as a
118	cause of the peritonitis, including enterotomy/enterectomy which had fully or partially
119	dehisced (n=15), laparotomy ovariohysterectomy (n=1), negative exploratory coeliotomy
120	with subsequent necrotising pancreatitis (n=1), cystocentesis which resulted in septic
121	uroabdomen (n=1), septic biliary peritonitis following ultrasound guided
122	cholecystocentesis (n=1) and biopsy of an abscessed mesenteric lymph node (n=1). Of
123	those 15 cats with a dehisced enterotomy/enterectomy, 13 (87%) survived.
124	
125	Haematology and serum biochemistry results are shown in Tables 3 and 4 respectively.
126	
127	Diagnosis of SP was made cytologically in 82 cases (86%) and on culture of peritoneal
128	fluid in 13 cases (14%). Peritoneal-to-blood glucose was not used as the primary
129	diagnostic method by any center for the included cases.
130	
131	ASA grade is shown in table 5. Intra-operative hypotension occurred in 10 (16%)
132	survivors and 18 (56%) non-survivors. Intra-operative cardiopulmonary arrest resulting in

examination findings at presentation are shown in Table 1. Median time from onset of

133	patient death occurred in three cases, and in one case the patient was euthanised intra-
134	operatively due to diffuse mass lesions affecting the ileocaecal-colic junction, mesentery
135	and diaphragm. The abdomen was closed primarily in all cases and open peritoneal
136	drainage was not reported in this cohort. An abdominal drain was placed at the discretion
137	of the surgeon in 41 cases (27 survivors,14 non-survivors). Surviving patients were
138	hospitalised for a median of 6 days (1-38 days). A feeding tube was placed at the time of
139	surgery in 50 cats (36 survivors, 14 non-survivors), comprising 37 oesophagostomy
140	tubes, four gastrostomy tubes, four jejunostomy tubes, and five naso-oesophageal tubes.
141	
142	Histology was available for 58/91 (60%) of the surviving cats; neoplasia was identified in
143	12 of these samples (7 survivors, 5 non-survivors). Positive post-operative aerobic
144	cultures were available for 64 cases; of the remaining cases 4 cultures were not available
145	as they were not submitted / cancelled following intra-operative death and were negative
146	in 27 cases (all had received systemic antibiotics pre-sampling). The most commonly
147	cultured organism was Escherichia coli (n=30). Other organisms cultured were
148	Pasteurella spp. (n=6), Enterococcus faecalis (n=6), Bacteroides spp. (n=3),
149	Streptococcus spp. (n=4), Clostridia spp. (n=3), Proteus spp. (n=3), Actinomyces spp.
150	(n=3), Staphylococcus spp. (n=2), mixed anaerobes (n=2), Yersinia spp. (n=1),
151	Pseudomonas spp. (n=1), and Nocardia spp. (n=1). Intra-operative and post-operative
152	antibiotics were administered by intravenous injection in all cases and continued enterally
153	with restoration of enteral nutritional intake. Antibiotic choices used are shown in Table
154	6.

156 Antimicrobial susceptibility testing was available for 54 cultures (for 10 cases type of

157 bacteria was available but it was not possible to retrieve sensitivity data). Initial empirical

antibiotic choice was deemed to be effective in 41/54 cases, with 28 (52%) cases that

survived and 13 (48%) that did not. Where initial empirical antibiotic choice was deemed

unsuitable, 8 (62%) cases survived and 5 (38%) did not.

161

162 Univariate analysis of potential prognostic factors identified from previous studies was as

163 follows: albumin concentration (p=0.008, OR 1.112 95%CI 1.028-1.204), correct

164 empirical antibiosis (p=0.653, OR 1.346, 95%CI 0.368-4.923), serum lactate

165 concentration (p=0.051, OR 0.746, 95%CI .556-1.002), serum glucose concentration

166 (p=0.360, OR 1.062, 95%CI 0.933-1.209), ionised calcium (p=0.392, OR 2.593, 95%CI

167 0.292-23.134), presence of intraoperative hypotension (p=0.000, OR 0.147, 95%CI

168 0.056-0.388). The factors albumin concentration, lactate concentration and hypotension

169 were used to build the multivariable model, which is shown in table 7. Only

170 intraoperative hypotension showed significance in the multivariable model (p=0.033, OR

171 0.173 95%CI 0.034-0.866). Hosmer-Lemeshow goodness-of-fit for the model was

172 p=0.431.

173

174 <u>Discussion</u>

The overall survival rate in this study was 66%, and the aetiopathogenesis, clinical signs and outcome are similar to what has previously been reported for SP in cats treated surgically. In agreement with previous studies we found lethargy (89%) and anorexia (75%) to be the most common clinical signs of SP in the cat, with abdominal pain and vomiting in only 44% and 27% of cases respectively. Gastro-intestinal leakage was the
most common cause of contamination. This is the largest group of cats reported with SP,
and this information provides more evidence regarding prognosis and clinical signs for
decision making.

183

184 Intraoperative hypotension (defined as systolic blood pressure <90mmHg, or mean blood 185 pressure <60mmHg for at least 10 minutes) was associated with an approximately 82% decrease in the odds of survival (p=0.033, OR 0.173 95%CI 0.034-0.866). Hypotension 186 associated with sepsis is multifactorial, often secondary to reduced intravascular volume, 187 188 loss of systemic vascular resistance, and decreased cardiac contractility. Septic shock is 189 defined as persistent hypotension despite adequate fluid resuscitation and carries a worse 190 prognosis than sepsis alone in humans (Schoenberg et al, 1998). Anaesthetic agents 191 decrease blood pressure via decreasing cardiac contractility and systemic vascular 192 resistance in a dose-dependent fashion, however sustained hypotension during 193 anaesthesia of a systemically healthy animal is unlikely in the referral setting. Therefore, 194 sustained intraoperative hypotension during surgery for SP in cats likely indicates those 195 cats with more severe sepsis or septic shock. Unfortunately, the presence of pre-operative 196 septic shock was incompletely recorded and temporal associations between hypotension 197 and possible causes could not be fully investigated. The increased odds of mortality in hypotensive patients may therefore be as a direct result of sustained intraoperative 198 199 hypotension and decreased oxygen delivery to vital organs, or secondary to more severe 200 pre-existing pathology.

Reduced serum albumin concentration was statistically associated with death on
univariable analysis but not multivariable analysis (p=0.241, OR 1.064, 95%CI 0.9591.180). Hypoalbuminemia in sepsis is caused by decreased synthesis, increased leakage
into the interstitial / third space compartment, and persistent catabolism, and is associated
with a worse prognosis in humans with surgical sepsis (Sun et al, 2015). Reports in cats
have been contradictory, with some studies finding that hypoalbuminaemia had no effect
or resulted in increased mortality.

209

210 Dehiscence following full thickness gastrointestinal biopsy in cats has been reported previously in a study of 172 cats (two cases (1.2%) confirmed and four (2.3%) cases 211 presumed). However, there is a lack of information on the management of the subsequent 212 213 SP (Swinbourne et al, 2017). Based on a literature search, the management of SP 214 subsequent to enterotomy/enterectomy dehiscence is only reported in 5 cases (Parsons et 215 al, 2009), of which 4 cases survived (80%) and 1 was euthanised (20%), which is a similar proportion to the larger number we report of 15 cases (87% survival). Dogs with 216 SP have a higher prevalence of gastrointestinal origin SP than cats in our study (51%), 217 218 with 75% of 64 dogs with SP in one study having a gastrointestinal source (Dickinson et 219 al, 2015). Of these 42 (62.6%) had undergone a previous abdominal surgery. In one study 220 of 20 dogs with SP of gastrointestinal origin only, 80% of animals had breakdown of an 221 enterotomy/enterectomy (Adams et al, 2014). Therefore, in a population of animals with 222 SP, intestinal dehiscence appears to be a less prevalent cause in cats compared to dogs. 223

224 Initial antibiotic choice for cases of SP in cats is empirically based on clinicians' 225 determination of the most likely bacterial contaminants, and the antibiotics most likely to 226 be effective against these contaminants and application of rational antimicrobial usage consensus guidelines to ensure appropriate stewardship and minimise the development of 227 228 resistance. Previous literature has documented that the majority of bacterial contaminants 229 are gram-negative (Parsons et al, 2009; Costello et al, 2004) but has not reported 230 sensitivity testing. Scotti et al, 2019 showed a survival benefit associated with appropriate 231 initial empirical antibiotic selection, however no such benefit was noted in our study 232 (p=0.653, OR 1.346, 95%CI 0.368-4.923). Scotti et al, 2019 also reported that serum glucose concentration was significantly greater in cats with SP that did not survive. In our 233 234 study there was no association between glucose concentration and survival (p=0.360, OR 1.062, 95%CI 0.933-1.209). 235

236

In previous studies, ionised hypocalcaemia (<1.2mmol/L) has been found to be prevalent
in cats with SP, and its failure to normalise associated with poorer prognosis (KelletGregory, 2010). Our study only looked at ionised calcium at a single time-point (preoperative) and so could not draw direct comparison, however pre-operative ionised
calcium concentration was not associated with survival.

242

Parson et al, 2009 reported that serum lactate may be a useful prognostic indicator in cats
with SP, with lactate levels in survivors being significantly lower than non-survivors. We
did not find that lactate was statistically significantly associated with survival in the
univariate (p=0.051, OR 0.746, 95%CI .556-1.002) or multivariable models. Serum

247 lactate concentration was only available for 44 of the 95 cats in this study and therefore 248 lack of significance may demonstrate a genuine lack of association or be a Type II error 249 associated with limited sample size. Low overall sample size and certain variables only having data input for a limited number of cases are limitations of this study, which may 250 251 result in Type II statistical error. A further limitation is that it is a retrospective study with 252 data collected by multiple authors, which may enable reporting inaccuracies and selection 253 bias. This is a multi-center study only based in the United Kingdom, therefore cats may 254 have been treated differently based on which center they were managed at, and 255 differences may exist between cats in the UK and cats in other geographical locations. An 256 additional limitation was only including cats where surgery was attempted. This was 257 designed to prevent a skew towards non-survival due to euthanasia for financial reasons. 258 However, this may result in a bias towards overall survival of SP, as cats that were 259 considered too unwell for anaesthesia and surgery were not included. 260 261 In conclusion, this is the largest retrospective report of septic peritonitis in cats. The

overall survival rate was 66%, which is important information for veterinarians and

263 owners. Intraoperative hypotension was associated with failure to survive to discharge.

264

References:

 Adams, R. J., Doyle, R. S., Bray, J. P., & Burton, C. A. (2014). Closed Suction Drainage for Treatment of Septic Peritonitis of Confirmed Gastrointestinal Origin in 20 Dogs. Veterinary Surgery, 43 (7), 843–851.

265	2.	Bonczynski, J.J., Ludwig, L.L., Barton, L.J. Loar, A., Peterson, M.E., (2003)
266		Comparison of Peritoneal Fluid and Peripheral Blood pH, Bicarbonate, Glucose,
267		and Lactate Concentration as a Diagnostic Tool for Septic Peritonitis in Dogs and
268		Cats. Vet Surg 32(2) 161-166.
269	3.	Brady, C. A., Otto, C. M., Van Winkle, T. J., & King, L. G. (2000). Severe sepsis
270		in cats: 29 cases (1986-1998). Journal of the American Veterinary Medical
271		Association, 217(4), 531–535.
272	4.	Dayer T, Howard J, Spreng D. (2013) Septic peritonitis from pyloric and non-
273		pyloric gastrointestinal perforation: prognostic factors in 44 dogs and 11 cats.
274		JSAP 54(12) 625-629
275 276	5.	Cortellini S, Seth M, Kellett-Gregory LM. (2015) Plasma lactate concentrations in
277		septic peritonitis: a retrospective study of 83 dogs (2007-2012). J Vet Emerg Crit
278		Care. 25: 388–395.
279	6.	Costello, M.F., Drobatz, D.J., Aronson, L.R., King, L.G. (2004). Underlying
280		cause, pathophysiologic abnormalities, and response to treatment in cats with
281		septic peritonitis: 51 cases (1990–2001) JAVMA 225(6) 897-902.
282	7.	Dickinson AE, Summers JF, Wignal J, Boag AK, Kerr I. (2015) Impact of
283		appropriate empirical antibiotic therapy on outcome of dogs with septic
284		peritonitis. JVECC 25(1) 152-159
285	8.	Greenfield CL, Walshaw R (1987) Open peritoneal drainage for treatment of
286		contaminated peritoneal cavity and septic peritonitis in dogs and cats: 24 cases
287		(1980–1986). J Am Vet Med Assoc 191:100–105 4.

288	9.	Kalufat, S.R., Schwarts, P., Currao, R.L., Levein, A.S., Moore, G.E. (2018)
289		Comparison of Initial and Postlavage Bacterial Culture Results of Septic
290		Peritonitis in Dogs and Cats. JAAHA 54(5) 257-266.
	10.	Kellett-Gregory L, Mittleman Boller E, Brown DC, Silverstein DC. (2010)
		Ionized calcium concentrations in cats with septic peritonitis: 55 cases (1990-
		2008). J Vet Emerg Crit Care, 20(4), 398-405.
291	11.	Mueller, M.G., Ludwig, L.L, Barton, L.J., (2001) Use of closed-suction drains to
292		treat generalized peritonitis in dogs and cats: 40 cases (1997–1999). JAVMA
293		219(6) 789-794.
	12.	Parsons, K. J., Owen, L. J., Lee, K., Tivers, M. S., & Gregory, S. P. (2009). A
		retrospective study of surgically treated cases of septic peritonitis in the cat (2000-
		2007). Journal of Small Animal Practice, 50(10), 518-524.
	13.	Ruthrauff CM, Smith J, Glerum L. (2009) Primary Bacterial Septic Peritonitis in
		Cats: 13 Cases. J Am Anim Hosp Assoc 45:268-276.
	14.	Schoenberg MH, Weiss M, Radermacher P. (1998) Outcome of patients with
		sepsis and septic shock after ICU treatment. Langenbeck Arch Surg. 383(1) 44-
		48.
294	15.	Scotti, K. M., Koenigshof, A., Sri Jayantha, L. S. H., Kato, M., Bishop, M., Barr,
295		J. W., & Pashmakova, M. B. (2019). Prognostic indicators in cats with septic
296		peritonitis (2002–2015): 83 cases. Journal of Veterinary Emergency and Critical

297 Care 29(6) 647–652.

298	16. Staatz AJ, Monnet E, Seim HB III. (2002) Open peritoneal drainage versus
299	primary closure for the treatment of septic peritonitis in dogs and cats: 42 cases
300	(1993–1999). Vet Surg 31:174–180
301	17. Sun JK, Sun F, Wang X, Yuan ST, Zheng SY, Mu XW. (2015) Risk factors and
302	prognosis of hypoalbuminemia in surgical septic patients. PeerJ. 3:e1267.
303	18. Swinbourne F, Jeffery N, Tivers MS, Artingstall R, Bird F, Charlesworth T, et al.
304	(2017) The incidence of surgical site dehiscence following full-thickness
305	gastrointestinal biopsy in dogs and cats and associated risk factors. JSAP 58(9)
306	495–503.
307 308	
309	
310	
311	