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The Microevolution and Epidemiology of
Staphylococcus aureus Colonization during
Atopic Eczema Disease Flare

Catriona P. Harkins1,2,3, Kerry A. Pettigrew1, Katarina Oravcová1,4, June Gardner2, R.M. Ross Hearn2,
Debbie Rice5, Alison E. Mather6, Julian Parkhill7, Sara J. Brown2,8, Charlotte M. Proby2,3 and
Matthew T.G. Holden1
Staphylococcus aureus is an opportunistic pathogen and variable component of the human microbiota.
A characteristic of atopic eczema (AE) is colonization by S. aureus, with exacerbations associated with an
increased bacterial burden of the organism. Despite this, the origins and genetic diversity of S. aureus colo-
nizing individual patients during AE disease flares is poorly understood. To examine the microevolution of
S. aureus colonization, we deep sequenced S. aureus populations from nine children with moderate to severe
AE and 18 non-atopic children asymptomatically carrying S. aureus nasally. Colonization by clonal S. aureus
populations was observed in both AE patients and control participants, with all but one of the individuals
carrying colonies belonging to a single sequence type. Phylogenetic analysis showed that disease flares were
associated with the clonal expansion of the S. aureus population, occurring over a period of weeks to months.
There was a significant difference in the genetic backgrounds of S. aureus colonizing AE cases versus controls
(Fisher exact test, P ¼ 0.03). Examination of intra-host genetic heterogeneity of the colonizing S. aureus pop-
ulations identified evidence of within-host selection in the AE patients, with AE variants being potentially
selectively advantageous for intracellular persistence and treatment resistance.

Journal of Investigative Dermatology (2018) 138, 336e343; doi:10.1016/j.jid.2017.09.023
INTRODUCTION
Clinical studies have shown a link between Staphylococcus
aureus and the pathogenesis of atopic eczema (AE). Affected
individuals are characteristically prone to colonization by
this pathogen (Hauser et al., 1985; Leyden et al., 1974), with
disease severity correlating to bacterial burden and number
of colonized sites (Tauber et al., 2016).

There has been a shift toward understanding how cuta-
neous dysbiosis contributes to AE etiology (Chng et al., 2016;
Kennedy et al., 2016). Metagenomic analysis has shown that
changes in populations of microbial communities are signif-
icantly associated with disease activity in AE, and that
increased in S. aureus is linked to increasing severity
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(Kong et al., 2012). Although providing a more holistic
overview of microbial population structure in AE, current
metagenomic approaches have thus far failed to resolve the
fine-scale population dynamics of S. aureus in AE or the
genetic changes occurring in the colonizing population of
this versatile pathogen.

Whole-genome sequencing is a high-resolution genotyping
tool that can be used to study within-host evolution and
transmission. Deep-sequencing studies of S. aureus pop-
ulations have shown heterogeneity arising within the host
and the impact on the disease-causing potential of the pop-
ulation (Azarian et al., 2016; Paterson et al., 2015; Young
et al., 2012). By using whole-genome sequencing to geneti-
cally characterize bacteria, it is possible to investigate how
populations differentiate and adapt within a host during
colonization and to reconstruct the evolutionary events
shaping populations (Didelot et al., 2016). In this study, we
deep sequenced S. aureus populations from children with AE,
enabling us to investigate the microevolution of colonization
during disease flare. From this, we have uncovered evidence
of selection enriching for colonization by S. aureus of specific
genetic backgrounds, as well as genetic diversification pro-
moting the survival and persistence of these strains during
colonization of AE patients.

RESULTS
S. aureus colonization in cases and controls

Nine AE patients were recruited through Ninewells Hospital
in Dundee, UK, and skin swabs were obtained from five body
sites, including a nostril, two areas of inflamed eczema skin,
and two separate areas of clinically unaffected skin. All were
s. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology. This is
pen access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1. Participant characteristics of atopic eczema
cases and healthy nasal carriage controls

Phenotype
Atopic Eczema

Cases
Nasal Carriage

Controls

Total number 9 18

Age in years, mean (range) 1.4 (0.25e4) 6.6 (5e8)

Sex, n 4 males/5 females 9 males/9 females

EASI score, mean (range)1 24.4 (12.8e37) N/A

Atopic disease, n

Atopic eczema 9 0

Asthma 0 0

Hay fever 2 0

Food allergy 3 0

Other inflammatory skin disease 0 0

Abbreviations. EASI, Eczema Area Severity Index; N/A, not applicable.
1This range excludes patient 5, who had locally severe disease only.
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Figure 1. Genetic diversity of S. aureus strains associated with AE flares. The

distribution of the clonal complex (CC) structure of S. aureus isolates from

AE patients (n ¼ 9) and nasal carriage control participants (n ¼ 18). In the

single patient in whom co-colonization (patient 8) was observed, both CCs

identified in the colonizing population are represented. Skin and extra-nasal

carriage was found in four AE patients (see Supplementary Table S2), three of

whom were carrying CC1 isolates at both sites; one was carrying CC121

isolates (see Supplementary Table S3). Skin-only carriage isolates in AE

patients (n ¼ 5) were distributed across clonal backgrounds (see

Supplementary Tables S2 and S3). AE, atopic eczema.
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colonized by S. aureus at one or more sampled sites. Eighteen
community S. aureus nasal carriers were selected from the
larger control study population, from whom swabs were
taken from a single nostril. Extra-nasal skin swab from control
participants were in all instances negative for S. aureus.
Control age matching was attempted, but age-appropriate
carriers identified had a history of atopy and were therefore
excluded on this basis (Table 1).

All cases had generalized moderate to severe eczema,
the exception being patient 5, who had locally severe
disease only (see Supplementary Table S1 online). Four of
the nine cases (44%) were nasally colonized in addition to
eczema-affected skin, and seven (78%) were also colo-
nized on clinically unaffected skin. Bacterial burden var-
ied across colonization sites within individuals and among
individuals (see Supplementary Table S2 online). Where
available, five colonies from the primary isolation plates
were randomly selected per swabbed body site to provide
representative sampling and detect co-colonization
(Votintseva et al., 2014). In patients with low bacterial
burden, fewer than five colonies were available for whole-
genome sequencing. Eczema site subsampling was
included to investigate S. aureus population heterogeneity
within disease sites. We undertook whole-genome
sequencing of 10e28 colonies per AE case, depending
on recovered colony counts.

AE patients are colonized with distinct clonal populations of
S. aureus

All controls and all but one case were colonized by clonal
populations of S. aureus represented by a single sequence
type (ST) defined by multilocus sequence typing (see
Supplementary Table S3 online). The exception, patient 8,
was co-colonized by two distinct STs. Comparison of the
genetic backgrounds of the S. aureus colonizing populations
in cases and controls showed different ST distributions
(Figure 1). Eczema patients were more frequently colonized
with STs belonging to clonal complex (CC) 1; four of the nine
AE cases (44%) carried STs belonging to CC1 (ST1 and
ST188), compared with a single control (6%; Fisher exact
test, P ¼ 0.03). Conversely, control participants were prin-
cipally colonized with CC30; 11 of the 18 controls (61%)
carried STs belonging to CC30 (ST30 and ST2889), compared
with one case (11%; Fisher exact test, P ¼ 0.02). This sug-
gested that a subset of the S. aureus population is more
frequently associated with colonization in AE. Overall, the
proportions of CCs of isolates from cases and controls
showed a significant difference in the distribution in CC
of strains on the basis of disease status (Fisher exact test,
P ¼ 0.005).

Clonal expansion of S. aureus populations in AE patients

The observed clonal populations in patients suggest that
during disease flare there is a clonal expansion within the
host, that is, the S. aureus growing on eczema skin originates
from a small progenitor population within the individual. To
provide a high-resolution view of the colonizing populations,
we characterized the genomic diversity of the isolates and
examined their phylogenetic relationships. As a measure of
the relative within-host diversities of S. aureus populations,
we examined the core genome of the sequenced isolates to
identify single-nucleotide polymorphisms (SNPs). The levels
of diversity we observed in both patients and control partic-
ipants were comparable to those of previous studies exam-
ining the in-host population diversity of S. aureus during
carriage (maximum pairwise SNP distance differentiating
colonies from AE cases was 26 and in controls was 17)
(Golubchik et al., 2013; Tong et al., 2015).

In AE cases where nasal colonization was detected, col-
onies derived from skin and nasal sites were interspersed
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Figure 2. Clonal expansion and

self-transmission in patient 1. (a)

Maximum likelihood (ML) core SNPs

tree illustrating genetic relationships

of colonies across three body sites.

Body diagram shows sampling site;

branch label coloring corresponds to

site from which colony was obtained.

Perforated boxes indicate transmission

between body sites. *b-lactamase

carrying plasmid is absent. Branch

labels: E, eczema (1 lateral/2 medial
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using ST188 reference. Scale bar ¼
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throughout the phylogeny, suggesting exchange of S. aureus
between sites rather than niche-specific populations
(Figures 2a, and see Supplementary Figure S1 online). Com-
parison of the relative genetic diversities of populations from
the different body sites in patient 1 showed a significant
difference in the pairwise SNP distance separating colonies
from different body sites (Kruskal-Wallis rank sum test,
P ¼ 3.9 � 10e06) (Figure 2b). Nasal isolates were distin-
guished by the greatest mean SNP distance per colony, sug-
gesting that the S. aureus sampled from the patient’s nose had
diversified over a longer period (Figure 2b). There was a
significant difference in the pairwise SNP distance observed
between nasal isolates and the eczema 1 subsampling site
isolates (Wilcoxon-Mann-Whitney test, P ¼ 0.015) but
not compared with eczema 2 subsite colonies (Wilcoxon-
Mann-Whitney test, P ¼ 0.16). This shows that there is
genetic and spatial diversity even within a single sampled
site. Conversely, the absence of diversity in S. aureus from
unaffected skin suggests very recent colonization of the site
or potential variable replication rates influenced by the
nutrient availability in the differing colonization environment
(Figure 2a). The distribution of nasal isolates throughout the
phylogeny, including basally, and intermingling with eczema
isolates suggests that the nasal carriage represents a more
established population and hence a potential source of
S. aureus-colonizing diseased skin, therefore representing
self-transmission.

The S. aureus from AE cases and controls exhibited over-
lapping distributions of relative population diversities (pa-
tients, 0.1e2.6 SNPs/colony/individual; control participants,
0.0e3.4 SNPs/colony/individual), suggesting similar patterns
of within-host diversification between the two groups (see
Supplementary Table S4 online), even though the sampling in
the controls was limited to a single niche. Using previously
calculated mutation rates for S. aureus, we estimated the age
Journal of Investigative Dermatology (2018), Volume 138
of the sampled population for each participant. This sug-
gested periods of 0 weeks to 37 months in patients and from
less than a week to 24 months in control participants for the
population to have diverged from a common ancestor
(Figure 3).

Evidence of adaption in the colonizing population

Diseased skin represents a physiologically distinct coloniza-
tion environment compared with nasal epithelium, the pri-
mary carriage site of S. aureus in humans. We therefore
hypothesized that the genomes of S. aureus from AE cases
may exhibit evidence of environmental selection and adap-
tion compared with controls. However, comparison of the
distribution of mutation types between patients and control
participants did not show a significant difference in frequency
of nonsynonymous, synonymous, or intergenic SNPs (chi-
square test, P ¼ 0.74) (see Supplementary Figure S2a online).
Examining the functional distribution of nonsynonymous
mutations showed several gene categories differentially rep-
resented between study populations, but this was also not
significant (Fisher exact test, P ¼ 0.27) (see Supplementary
Figure S2b).

In the absence of signals of selection in AE cases at the
cohort level, we looked for evidence of biologically and
clinically relevant adaptation occurring in S. aureus at the
patient level. Another source of variation in the S. aureus
genome is in its content of mobile genetic elements, which
constitute the accessory genome (Lindsay and Holden, 2006).
Two instances of accessory genome diversification were
identified in AE patients with loss/gain events of mobile ge-
netic elements carrying genes potentially advantageous for
environmental survival. Subsampling within a single site in
patient 5 showed two distinct clades, separated by 26 SNPs,
defining isolates derived from opposing borders of the site
(Figure 4a). The absence of intervening variants suggested
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that in the sampled skin there had either been two separate
acquisitions of the clade populations from a genetically
closely related external population or a single acquisition and
MRSA252
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expression of agrA, a global virulence regulator (Cheung
et al., 2011; Fowler et al., 2004), were identified; one col-
ony contained a nonsense mutation, and 18 colonies con-
tained a frameshift mutation (Figure 4b). The phylogenetic
context of these isolates showed they arose independently
during the predicted period of colonization. The convergent
evolution of mutations in this key regulator is evidence of a
strong selective pressure favoring reduced virulence in this
population.

DISCUSSION
Deep sequencing has allowed an unprecedented view of the
microevolutionary changes occurring during carriage in AE,
with evidence of selection for specific strain backgrounds
colonizing AE skin. In-depth analysis of within-host genetic
variation showed differences that affect both the pathogenic
potential of the bacterial cells and their response to common
clinical interventions.

Healthy nasal carriage controls exhibited a similar clonal
population structure, indicating that the observed clonal
expansion in AE was not a unique facet of the disease but
rather a reflection of the natural colonization dynamics of
S. aureus. In this regard, AE-affected skin represents an
additional opportunistic niche for colonization, distinguished
by an apparent selection for certain S. aureus lineages. A
previous study of S. aureus strains from Korean AE patients
did not find prevailing genotypes (Kim et al., 2009). How-
ever, the authors reported that one third of the isolates
belonged to CC1, the same lineage differentially prevailing in
our patients. This clonal lineage has recently been reported
for its prevalence in AE patients in association with filaggrin
mutations (Clausen et al., 2017). Nasal carriage studies by
definition investigate niche-site colonization and repeatedly
show CC30 and CC45 as the dominant lineages (Melles et al.,
2004; Monecke et al., 2009). CC30 was the most prevalent
lineage in our control participants, in agreement with these
previous studies and more recently by Fleury et al. (2017).
These findings raise the question of whether there are
lineage-specific features making them more adept at colo-
nization of the vastly differing cutaneous environments of the
nasal versus inflamed eczema skin. This emphasizes an area
where future studies must be directed.

The nose is often cited as the primary reservoir of S. aureus
colonization associated with AE (Hoeger et al., 1992;
Lomholt et al., 2005). Our study established evidence of
self-transmission; however, in five of nine cases nasal colo-
nization was notably absent, suggesting that the colonizing
population was potentially derived from an extrinsic source.
In these cases, transmission could have arisen from contact
with a carrier, such as a family member or from the envi-
ronment. It equally is possible that the point prevalence
sampling did not capture transitory nasal carriage or that
there was an unsampled reservoir as the source of self-
transmission. An extended study assessing longitudinal
colonization of individuals and their close contacts is needed
to elucidate the origins of the flare-associated S. aureus
population.

In this study, five AE cases had carriage populations esti-
mated to have diverged from a common ancestor more than
Journal of Investigative Dermatology (2018), Volume 138
12 months previously (Figure 3). In four of these cases, the
predicted ancestral origins of the clonal colonizing popula-
tion predates the age of the child. This suggests that the ori-
gins of the diversity observed in these individuals’
populations may have arisen during carriage within another
host, with subsequent transmission of part of that population
to the individual. Familial cross-transmission of S. aureus is
likely to be highly relevant, and currently little is understood
about this in the context of AE, although it has been shown
that households are important reservoirs for transmission and
diversification of S. aureus (Knox et al., 2015). In the future,
serially sampling AE patients and their family members
would enable us to assess the impact that selective sweeps
and transmission bottlenecks have on shaping the diversity
we observe in AE colonization.

From the most mature colonization populations, we
uncovered clear evidence of selection shaping the pop-
ulations, providing insights into mechanisms of bacterial
persistence and other potential origins of the clonally
expanded populations in these individuals. Data from two
AE cases showed bacterial genetic responses linked with
intracellular survival. The homoplastic mutations of agrA in
patient 4 are strongly indicative of selection being exerted
on the colonizing population. A recent in vitro study
showed that agr mutants are able to internalize and persist
within keratinocytes subverting host clearance, with agr
mutants being recovered from keratinocytes at a frequency
of over 58% (Soong et al., 2015). Independent mutations in
agrA suggest that intracellular colonization and survival may
have contributed to the persistence of S. aureus in patient 4.
It is worth noting that intracellular populations are less
penetrable by antimicrobial therapy and are therefore a
potential cause of treatment failure. The fusA mutation in
the S. aureus population in patient 1 who had previous
exposure to fusidic acid is associated with a small colony
variant phenotype (Norström et al., 2007). Small colony
variants are phenotypic subpopulations occurring within a
parent strain that are slow growing and show increased
propensity to persist within host cells (Sendi and Proctor,
2009). Intracellular S. aureus has been reported in the
context of both Darier disease and chronic rhinosinusitis as
a cause of antimicrobial therapy failure (Hayes et al., 2015;
von Eiff et al., 2001). Thus, we show two different mecha-
nisms in separate cases that would support intracellular
persistence and treatment resistance.

These findings highlight the therapeutic challenges of
effectively eradicating S. aureus colonization in AE. During
colonization there are potentially unrecognized genetic ad-
aptations that render the population both insensitive and
inaccessible to antimicrobial therapy, consequently pro-
longing proinflammatory interaction with the host. Longitu-
dinal follow-up of the colonizing population for assessment
of diversity, evidence of adaptation, and impact of therapies
will advance our understanding of the relationship
between S. aureus and disease activity. This is of particular
relevance in children prone to repeated infective flares, for
whom identifying and understanding genetic adaptation in
the colonizing population may improve precision of
treatment.
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MATERIALS AND METHODS
Recruitment and sampling

Prospective AE case and community control sampling studies

received ethical approval from the Nottingham 1eEast Midlands

Research Ethics Committee (14/EM/1299) and East of Scotland

Research Ethics service (15/ES/0153), respectively. Studies were

conducted in accordance with the principles of the Declaration of

Helsinki. Written informed parental consent and child assent were

obtained before participation.

Cases were recruited at pediatric eczema clinics in Ninewells

Hospital, Dundee, UK, between February and October 2015.

Community control samples were obtained from 306 school chil-

dren in Tayside and North Fife, UK, between November 2015 and

February 2016. Case study inclusion criteria were age of 0e8 years

and dermatologist-diagnosed moderate to severe AE. Exclusionary

criteria were antimicrobials (systemic or topical) within the pre-

ceding 4 weeks, topical antiseptics within the preceding 2 weeks, or

UV therapy within 3 months. The control participant study inclusion

criterion was age of 0e12 years. Samples obtained from control

study participants with parent-reported history of inflammatory skin

disease, antibiotic therapy (<4 weeks previously), antiseptic therapy

(<2 weeks), or UV therapy (<3 months) were not used as compar-

ators in this study. Controls were selected from this study collection

on the basis of age proximity to cases and no history of atopy or

antimicrobial use, as per case criteria.

All participants were examined by an experienced dermatologist,

and AE disease severity was scored using the Eczema Area Severity

Index (Hanifin et al., 2001). Clinical history was obtained from pa-

tients during clinical review and from control participants via

parental questionnaire. Cases were swabbed (Transtube Amies swab,

Medical Wire, Corsham, England) from five sites including a single

nostril, two areas of inflamed eczema, and two separate areas of

unaffected skin. Eczema sites were subsampled, whereby a swab

was taken from the lateral and medial border of the site, 4 cm apart.

Controls were sampled from a single nostril and antecubital fossa.

Bacterial isolation

Swabs were plated on Brilliance Staph 24 selective agar (Oxoid, UK)

and incubated at 37 �C for 24 hours. Selective enrichment was also

undertaken with swabs being used to inoculate 3 ml of Nutrient

Broth with 7.5% NaCl (Oxoid, Basingstoke, UK) grown statically at

37 �C for 18 hours. 100 ml of broth was plated on selective agar, as

described earlier. Colonies were then subcultured onto Brain Heart

Infusion agar (Sigma Aldrich, Gillingham, UK) and confirmed as

S. aureus by PCR detection of species-specific femB gene (Paterson

et al., 2012).

DNA extraction and whole-genome sequencing

Genomic DNA was extracted from overnight cultures of single col-

onies grown at 37 �C using Masterpure Gram Positive DNA purifi-

cation kit (Epicentre, Cambridge, UK) as per the manufacturer’s

protocol. DNA libraries were prepared using Nextera XT Library

Preparation Kit (Illumina, Cambridge, UK) and quantified using

Qubit High Sensitivity assay (LifeTechnologies, Paisley, UK) and

Agilent Bioanalyser (Agilent, Stockport, UK). Libraries were

normalized, pooled, and sequenced as paired-end reads on a MiSeq

Genome Sequencer (Illumina).

Bioinformatic and statistical analyses

Fastq files from MiSeq sequencing (see Supplementary Table S7

online) were assembled de novo with Velvet (Zerbino and Birney,
2008). Multilocus sequence types were predicted from sequence

reads using SRST2 (Inouye et al., 2014). To identify SNPs, sequence

reads were aligned to a reference genome of the same clonal

complex (see Supplementary Table S8 online) using SMALT (http://

www.sanger.ac.uk/science/tools/smalt-0). The default mapping

parameters and SNP filtering were as previously described by

(Hsu et al., 2015). Where an appropriate reference was unavailable,

a de novo assembly from the participants’ samples was used for

mapping; typically this was the assembly with the lowest number of

contigs derived from the highest number of reads. Accessory

genome regions (see Supplementary Table S9 online) were identified

in the reference chromosomes using Artemis Comparison Tool

(Carver et al., 2008) to compare pairwise BLASTN (Altschul et al.,

1990) comparisons of reference genome sequences. Accessory

regions were then masked from SNP alignments. The remaining core

genome SNPs were individually curated by inspection of BAM files

in Artemis to exclude false positives (see Supplementary Table S10

online); the subsequent SNPs were then used to construct

maximum likelihood phylogenies with RAxML (Stamatakis, 2006).

Indels were identified using GATK (https://software.broadinstitute.

org/gatk/). Each participant’s reads were re-mapped to the de novo

assembly, and GATK was used to identify indels compared with

the patient reference sequence. Indels were curated by manual

inspection of BAM files in Artemis (Rutherford et al., 2000).

The relative diversity in each participant’s colony population was

calculated by dividing the number of core genome SNPs per

sequenced colony per individual. Temporal calculation for the age

of the S. aureus populations was based on half the maximum pair-

wise core SNP distance, and base substitution rates were derived

from analysis of the major S. aureus lineages as described by

Uhlemann et al., 2014. A rate of 1.6 � 10e6 SNPs/site/year was

chosen as a median between published ranges. For each reference

chromosome used, an expected base substitution rate per month was

calculated based on the size of their respective core genomes.

Functional classification of genes was conducted on the MSSA476

reference genome (Holden et al., 2004), using the previously

described classification scheme in Gram-positive organisms

(Weinert et al., 2015). All comparative statistics were performed as

two-tailed tests using R software version 3.3.1 (R Core Team, 2016).

Data access

Short reads for all sequenced isolates have been submitted to the

European Nucleotide Archive (http://www.ebi.ac.uk/ena/) under

project accession PRJEB20148.
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