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Abstract

Motivation: Single-cell sequencing brings about a revolutionarily high resolution for finding differentially expressed
genes (DEGs) by disentangling highly heterogeneous cell tissues. Yet, such analysis is so far mostly focused on
comparing between different cell types from the same individual. As single-cell sequencing becomes cheaper and
easier to use, an increasing number of datasets from case–control studies are becoming available, which call for
new methods for identifying differential expressions between case and control individuals.

Results: To bridge this gap, we propose barycenter single-cell differential expression (BSDE), a nonparametric
method for finding DEGs for case–control studies. Through the use of optimal transportation for aggregating distri-
butions and computing their distances, our method overcomes the restrictive parametric assumptions imposed by
standard mixed-effect-modeling approaches. Through simulations, we show that BSDE can accurately detect a var-
iety of differential expressions while maintaining the type-I error at a prescribed level. Further, 1345 and 1568 cell
type-specific DEGs are identified by BSDE from datasets on pulmonary fibrosis and multiple sclerosis, among which
the top findings are supported by previous results from the literature.

Availability and implementation: R package BSDE is freely available from doi.org/10.5281/zenodo.6332254. For real
data analysis with the R package, see doi.org/10.5281/zenodo.6332566. These can also be accessed thorough GitHub
at github.com/mqzhanglab/BSDE and github.com/mqzhanglab/BSDE_pipeline. The two single-cell sequencing data-
sets can be download with UCSC cell browser from cells.ucsc.edu/?ds¼ms and cells.ucsc.edu/?ds¼lung-pf-control.

Contact: rg681@cam.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA sequencing (scRNAseq) aims at profiling the gene ex-
pression in every cell of a given sample, by sequencing their genomes,
transcriptomes or proteomes. As such, it overcomes the limitation of
the bulk analysis and enables researchers to inspect the spatial–
temporal details of a biological procedure with high resolutions. With
this technology, the type and the life-cycle status of each cell can be
observed and traced. Due to the complex nature of biological proce-
dures, to better understand the mechanisms behind, single-cell
sequencing is instrumental in detecting cell heterogeneity, finding rare
cell types, selecting specialized biomarkers and characterizing rare
molecular features at the cellular level (Giladi and Amit, 2018).

One common strategy for understanding the intrinsic and extrin-
sic biological processes in scRNAseq is to detect the differentially
expressed (DE) genes. Through such analyses, the signal from a cer-
tain cell type can be isolated and examined. Yet, there are some
challenges. For example, scRNAseq data are highly heterogeneous

and usually come with a large number of zero counts, which compli-
cates statistical modeling and analysis.

In a bulk RNAseq analysis, the overall expression level is point
estimated by a count (Category A of Fig. 1). Alternatively, the
single-cell data, which contain more information, are represented as
an empirical distribution over counts, where each cell contributes
a count (Categories B–D of Fig. 1). Naturally, there could be two
levels of comparison: cell level and individual level.

First, two cell types from an individual can be compared through
their distributions. There are already quite a few methods available
from the literature for this purpose, including off-the-shelf statistical
tests, such as Mann–Whitney U-test, as well as purpose-built para-
metric and non-parameteric methods, such as SCDE (Kharchenko
et al., 2014), MAST (Finak et al., 2015), scDD (Korthauer et al.,
2016), EMDomics (Nabavi et al., 2016), D3E (Delmans and
Hemberg, 2016), Monocle (Trapnell et al., 2014; Qiu et al., 2017),
SINCERA (Guo et al., 2015), edgeR (Robinson et al., 2010),
DESeq2 (Love et al., 2014), DEsingle (Miao et al., 2018) and
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SigEMD (Wang and Nabavi, 2018), to name a few. In terms of the
taxonomy given in Figure 1, most of them fall into Category B, ex-
cept for those originally designed for bulk analysis (edgeR and
DESeq2) that belong to Category A.

Further, DE analysis can be performed between two groups of
individuals, which is the focus of our paper. In contrast to bulk ana-
lysis, existing methods for this type of comparison are scarce; see
Zhang et al. (2022) for a recent proposal. Some earlier proposals,
such as MUSCAT (Crowell et al., 2020) and aggregateBioVar
(Thurman et al., 2021), are based on summarizing counts from cer-
tain single-cell sequences into a ‘pseudo-bulk’ RNAseq (Category C
of Fig. 1). Then, methods from Category A are immediately applic-
able to these summarized counts; however, as we will see from simu-
lations, summarization discards distributional information and
hence cannot detect nuanced differential expressions. At the mo-
ment, arguably the most common approach towards such a com-
parison is based on mixed-effect models. For example, the hurdle
model (e.g. Finak et al., 2015), which specifies a logistic regression
model for the expression rate and a linear model for the logarithmic
non-zero expression, can be fitted with a mixed effect. Fixed effects
are fitted on the case/control indicator (along with other covariates),
and random effects are fitted by introducing individual-level random
intercepts; see Velmeshev et al. (2019, Supp. Mat.) for such an ana-
lysis on autism data. Yet, performing valid statistical inference (e.g.
testing DE at a prescribed significance level) for the fitted mixed-
effect model can be challenging. As we will show in Section 3.2, due
to the presence of random effects, standard likelihood ratio tests are
typically inapplicable to these settings. Further, the suitability of the
hurdle model is limited by its parametric assumptions, which may
not hold in real data.

To adapt DE analysis to conventional case–control studies, we
propose barycenter single-cell differential expression (BSDE), which
performs comparison in two stages. The first stage is to aggregate

individual-level distributions into a case group distribution and a
control group distribution by finding the corresponding Wasserstein
barycenters. The second stage is to compare the two group-level dis-
tributions in terms of their Wasserstein distance. The Wasserstein
barycenter and distance are defined nonparametrically in terms of
optimal transportation of probability measures, which does not rely
on restrictive parametric assumptions. The type-I error can be read-
ily controlled with a permutation P-value or its Monte Carlo
approximation.

It is worth mentioning that BSDE, by design, differentiates itself
from other methods by comparing distributions instead of simple
summary statistics of distributions (e.g. mean). To illustrate the dif-
ferences, we propose a taxonomy of current methods as shown in
Figure 1. We also note that recently Wasserstein distance (or the
earth mover’s distance) has been introduced for differential expres-
sion analysis; see, e.g., Nabavi and Beck (2015), Nabavi et al.
(2016) and Wang and Nabavi (2017, 2018), which employ the dis-
tance as a test statistic for comparing distributions. However, we
argue that our method goes one step further in utilizing the tools
from optimal transportation—the case and control distributions
themselves are aggregated from the individual level as their respect-
ive Wasserstein barycenters.

2 Materials and methods

We propose BSDE, a nonparametric procedure based on optimal
transportation of probability distributions. For two distributions,
their Wasserstein distance (also known as the earth mover’s dis-
tance) is defined as the minimal cost (in terms of some cost/loss func-
tion) of ‘transporting’ the mass of one distribution to the other.
Throughout, we will focus on the Wasserstein distance W2 between
distributions P and Q, defined as

A B C D

Fig. 1. Methods for differential expression analysis can be divided into four categories: (A) Traditional bulk DE analysis methods (e.g. DESeq2 and edgeR) compare cases with

controls from bulks of cells. The expressions are represented as per gene, per individual; cell type is ignored. (B) Cell-level DE analysis methods simply combine each cell as a

sample and compare the expression levels between case cells and control cells. Many purpose-built methods belong to this category, including SCDE, MAST, EMDomics,

D3E, Monocle, SINCERA, DEsingle and SigEMD. (C) Sample-level pseudo-bulk analysis methods (e.g. aggregateBioVar and MUSCAT) combines (A) and (B) by executing in

two steps. First, expressions per gene, per individual of a given cell cluster are summarized, which essentially converts data into a bulk format. Then methods from (A) are

applied to the summarized data. (D) Sample-level distribution-based DE analysis (our method BSDE) aggregates the expressions of a given cell type across cells and individuals

into a distribution. The aggregated case distribution and control distribution are compared for identifying differential expressions
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W2ðP;QÞ ¼ min
c2PðP;QÞ

cðx; yÞdc
n o1=2

;

where the loss function cðx; yÞ ¼ jjx� yjj2 is the square Euclidean
distance. The set PðP;QÞ refers to the set of couplings between
probability distributions P and Q, i.e., the set of bivariate distribu-
tions with P and Q as margins. Although other loss functions c(x, y)
can be considered in principle as well, the square loss is a safe de-
fault choice (similar to being the default for regression problems)
and its properties are well studied.

Defined as such, it can be argued that the Wasserstein distance is
more informative than other definitions of distance or divergence
(e.g. total variation, Kullback–Leibler) between distributions as it
takes account of the metric information captured by the loss func-
tion, which in our context, translates to the difference in expression
levels.

This further induces a notion of average for a set of distributions.
Let P1; . . . ;Pn be a collection of distributions on metric space X .
Their Wasserstein barycenter is defined as the minimizer to

min
l

Xn

i¼1

W2
2 ðl;PiÞ; l 2 PðXÞ;

where PðXÞ is the set of probability measures on X . Note that the
square loss is strongly convex and the Wasserstein barycenter is
uniquely defined (Agueh and Carlier, 2011, Proposition 3.5).
Compared to the arithmetic average of distributions, the
Wasserstein barycenter, by additionally using the metric informa-
tion, better aligns with our intuition of an averaged distribution; see
Figure 2B for an illustration.

Wasserstein distance and barycenter enjoy many appealing prop-
erties (Villani, 2009) and find applications in various domains,
including image processing (Gramfort et al., 2015), computer graph-
ics (Rabin et al., 2011), and very recently, computationally biology
(Schiebinger et al., 2019).

As depicted in Figure 2C, BSDE proceeds in two stages.

1. Distribution aggregation. Suppose there are l cases and n controls.

Let P1; . . . ;Pl be the empirical histograms of case data and

Q1; . . . ;Qn be the empirical histograms of control data. The histo-

grams are typically built on the count data under the commonly

used x7! logðxþ 1Þ transform to reduce skewness. Further, to ease

computation, the histograms are built with a common set of

breakpoints. Let P̂ and Q̂ be the respective Wasserstein barycen-

ters:

P̂ ¼ argminl

Xl

i¼1

W2
2 ðl;PiÞ;

Q̂ ¼ argmin�
Xn

j¼1

W2
2 ð�;QjÞ;

where l and � are minimized over 1D probability distributions,

which, without loss of generality, can also be restricted to the set

of histograms with the given breakpoints. In practice, to speed

up computation, entropy-regularized versions of P̂ and Q̂ are

computed with the Sinkhorn–Knopp matrix scaling algorithm

(Benamou et al., 2015), for which we use the implementation

provided by Python package POT (Flamary et al., 2021).

2. Distribution comparison. Our test statistic is simply taken to be

the Wasserstein distance between the two aggregated histograms:

k̂ ¼W2ðP̂; Q̂Þ;

which is computed with the fast Greenkhorn algorithm
(Altschuler et al., 2017).

We reject the null-hypothesis of no differential expression between case
and control for larger values of k̂. We use permutation to control the
type-I error. Under the null hypothesis, the case and control labels can
be permuted without changing the distribution of statistic k̂. In fact,
under the null, the statistics computed under permutations are exchange-
able. The P-value can be approximated by taking a large number of ran-
dom permutations. Let kð1Þ; . . . ; kðNÞ be the statistic computed from N
(e.g. N¼1000) random permutations. The P-value is approximated as

p ¼
1þ

PN
i¼1

Ifk̂ðiÞ � k̂g

1þN
:

The method is implemented in R package BSDE, available from
https://github.com/mqzhanglab/BSDE.

3 Results

In what follows, we compare BSDE with a number of competing
methods on simulated and real datasets.

Fig. 2. Description of the method and the simulation protocol. (A) Four types of differential expression in single-cell sequencing that are considered in simulations.

(B) Wasserstein barycenter versus arithmetic averaging. Barycenter minimizes the total cost of ‘moving distributions to the averaged distribution. (C) BSDE aggregates case/

control distributions by finding their respective Wasserstein barycenters. Then, the Wasserstein distance of the two group-level distributions is compared to permutation coun-

terparts for testing significance. (D) The simulation protocol roughly follows that of Lun and Marioni (2017)
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3.1 Methods for comparison
In view of the taxonomy given by Figure 1, we consider the follow-
ing methods for comparison.

1. MAST (glm, Finak et al., 2015), a mixed-effect model for the cell-

level DE analysis. We fit the model in R with

b0¼MAST::zlm(formula ¼ � diagnosis, sca ¼ sca,

method ¼ ‘glmer’, ebayes ¼ FALSE, parallel ¼ TRUE)

and conduct inference with MAST::lrTest(b0, ‘diagnosis’),

where diagnosis represents the case/control label.

2. MAST (mixed effect, Finak et al., 2015), a slight variation of the

previous method. The model is fitted with

b1¼MAST::zlm(formula ¼ � diagnosis þ (1—ind), sca

¼ sca, method ¼ ‘glmer’, ebayes ¼ FALSE, parallel ¼
TRUE) and the test is called with MAST::lrTest(b1, ‘diagno-

sis’). Here, ind represents the individual label and diagnosis

represents the case/control label. Though not recommended by the

software manual, this type of analysis is seen from the literature

(e.g. Schirmer et al., 2019; Velmeshev et al., 2019).

3. DESeq2 (Love et al., 2014), a state-of-the-art method for bulk

RNAseq analysis. We treat the sum of raw counts from all cells

of each individual as a ‘bulk count’.

4. aggregateBioVar (Thurman et al., 2021) sums up counts from

certain cell types to form the ‘pseudo-bulk’ counts and then

applies DESeq.

5. MUSCAT (Crowell et al., 2020) is also a method based on

pseudo-bulk counts. We perform DE analysis using function

pbDS provided in their R package.

6. Mann–Whitney U-test on the cell level. Expression from each

cell is treated as an independent observation.

7. Mann–Whitney U-test on the subject (pseudo-bulk) level.

3.2 Simulations
3.2.1 Simulation protocol

The simulation protocol is illustrated in Figure 2D. We generate 3000
genes from a particular type of cell of n case subjects and n control sub-
jects (n¼5, 10, 20), with each subject having m cells
(m ¼ 20; 50; 100;200; 400). We simulate the basic parameters (mean,
dispersion and dropout) by drawing from a distribution fitted with a
reference dataset, the scRNAseq data on single-nuclei genomics of aut-
ism (Velmeshev et al., 2019). Given a set of basic parameters, expres-
sion levels are simulated from a zero-inflated negative binomial model.

More concretely, consider simulating the expression levels of
gene i. For each individual j, we estimate parameters l̂ ij (mean), û ij

(dispersion), ẑ ij (dropout rate) and r̂ij (cell level variability) from the
reference dataset (on the logarithmic scale). To capture the variabil-
ity of these parameters across individuals, we fit a four-variate
Gaussian distribution. Then, the expression level of gene i on the kth
cell of individual j, denoted by Yijk in Figure 2D, is simulated from
zero-inflated negative binomial model ZINBðlijk;uij; zijÞ, where
ðlij;uij; zij; rijÞ is drawn from the four-variate Gaussian (on the loga-
rithmic scale) and further lijk � Nðlij; r

2
ijÞ for each cell k.

3.2.2 Types of differential expression

We introduce four types of DE in our simulated data, where the size
of each type is controlled by a factor r; see Figure 2A.

1. Mean DE: The size factor is varied from rl ¼ 1:1; 1:2; 1:5; 2; 4.

Parameters ðl�;u�; z�Þ are specified relative to ðl;u; zÞ as

l� ¼ l
rl
; u� ¼ ul

lþð1�rlÞu ; z� ¼ z

such that case and control variances are the same.

2. Variance DE: The size factor is varied from

rv ¼ 1:1;1:2;1:5;2; 4. Parameters ðl�;u�; z�Þ are specified rela-

tive to ðl;u; zÞ as

l� ¼ l; u� ¼ ul
rvlþðrv�1Þuþðrv�1Þzul

and z� ¼ z such that the mean remains the same.

3. Proportion DE: The size factor is varied from

rp ¼ 0:6; 0:7; 0:8; 0:9. Counts are simulated from either mixture

rpZINBðl1;u; zÞ þ ð1� rpÞZINBðl2;u; zÞ or the component-

swapped ð1� rpÞZINBðl1;u; zÞ þ rpZINBðl2;u; zÞ.
4. Multimodality DE: The size factor is varied from

rm ¼ 0:1;0:2;0:3;0:4. Counts are simulated from either a two-

component mixture 1 2= ZINBðl1;u; zÞ þ 1 2= ZINBðl2;u; zÞ, or its

single-component counterpart ZINBðl�;u�; z�Þ. The parameters

are related by

l1 ¼ l2ð1þrmÞ
1�rm

and

l� ¼ l2

1�rm
; u� ¼ u

1þr2
mþr2

mu2 ; z� ¼ z

such that the mean and the variance are unchanged.

3.2.3 Results

We compare BSDE with competing methods in terms of (i) the type-
I error under the null hypothesis of no differential expression be-
tween case and control and (ii) the detection power under the four
types of differential expression considered. The significance level is
chosen to be 0.05. The power is defined as the proportion of P-values
no more than 0.05. For more details on the simulation, the reader is
referred to https://github.com/mqzhanglab/BSDE\_pipeline.

The results are presented in Figure 3, where rows correspond to
different settings of n�m; additional settings can be found in the
Supplement. From the left panel, we can see that BSDE and the
subject-level Mann–Whitney U-test are the only two methods that
control the type-I error at the nominal level. In particular, as men-
tioned in Section 1, the uncorrected likelihood ratio-based inference
for MAST fails to control the type-I error due to the presence of ran-
dom effects; the model-based inference for DESeq2 is also found to
exceed the nominal level possibly due to misspecification of the
parametric model.

In terms of the detection power, strictly speaking, it is only fair
to compare methods that maintain the type-I error guarantee. The
subject-level Mann–Whitney test hardly has any power. In contrast,
BSDE seems to be able to detect differential expression with excel-
lent power in all cases. In particular, we find that the differential ex-
pression in variance seems challenging to most of the methods—
those based on bulk or summary ‘pseudo-bulk’ counts are unable to
detect these signals. The only other method that seems powerful is
MAST (mixed effect), which unfortunately does not tightly control
the type-I error.

3.3 Analysis of pulmonary fibrosis and multiple

sclerosis
To demonstrate the use of BSDE on real data, we take two public,
case-control study datasets from single-nucleus sequencing: the pul-
monary fibrosis (PF) dataset (Habermann et al., 2020, GSE135893)
and the multiple sclerosis (MS) dataset (Schirmer et al., 2019,
PRJNA544731). The PF dataset contains 20 cases and 10 controls;
the MS dataset contains 12 cases and 9 controls. The data were col-
lected with 10� Genomics Single-Cell 30 system and were prepro-
cessed with software CellRanger. The cell types and meta-
information were annotated. We imported data from the matrices
with Unique Molecular Identifier counts, with additional normaliza-
tion and log transformation.

3.3.1 Results on PF

We summarize the results in Figure 4. Figure 4A shows the
subject-level distributions of the number of cells from case and
control samples. There is no significant difference (P-value¼0.16,
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two-sided Bonferroni-corrected t-test) in the numbers of cells be-
tween case and control. Figure 4B displays the differentially
expressed genes (DEGs) in epithelial cells detected by BSDE. Most
signals are found in epithelial cell types SCG3A2þ, AT2, Basal,

MUC5Bþ and AT1. Among these cell types, we perform Gene
Ontology (GO) enrichment analysis; the significant pathways are
reported in Figure 4C. Further, within each of the aforementioned
cell types, in Figure 4D, we contrast the Wasserstein barycenter

Fig. 3 Selected simulation results for comparing BSDE and competing methods. Columns: type-I error (nominal level 0.05 is marked by the red line) under the null hypothesis

(no differential expression) and power under four types of differential expression considered in Section 3.2.2. Rows: different settings for the number of subjects and the num-

ber of cells; results from more settings are available in the Supplementary Material

Fig. 4. Analysis of the pulmonary fibrosis (PF) dataset. (A) Subject-level distributions of the number of cells from case and control samples. (B) Number of differentially

expressed genes identified by BSDE and competing methods. (C) Significant pathways of Gene Ontology (GO) enrichment analysis within the top six epithelial cell types.

(D) Case and control Wasserstein barycenter distributions for the top four differentially expressed genes (log-transformed expression)
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distributions between case and control for the top four DEGs.
Only those genes with a median expression level above four are
ranked.

Support from the literature. In light of these findings, we review pre-
vious results from the literature on the identified cell types and
DEGs related to PF; see Table 1 and Table S1 (Supplementary

Materials). In particular, DEG-enriched cell types SCGB3A2 (Cai
and Kimura, 2015; Zuo et al., 2020), AT2 (Parimon et al., 2020;
Wu et al., 2020), MUC5B (Peljto et al., 2013; Seibold et al., 2011;
Zuo et al., 2020) and Basal (Carraro et al., 2020; Richeldi et al.,
2017) have been previously reported.

3.3.2 Results on MS

The results are summarized in Figure 5. Figure 5A shows the
subject-level distributions of the number of cells from case and con-
trol samples. No significant difference (P-value¼0.71, two-sided
Bonferroni-corrected t-test) in the numbers of cells is observed be-

tween case and control. Figure 5B displays the top eight cell types
with the largest DEGs. Signals are enriched in cell types IN-VIP,
microglia, OL-A, OPC and astrocytes. Among these cell types, the
significant pathways of GO enrichment analysis are reported in
Figure 5C. Further, in Figure 5D, we contrast the case and the con-
trol Wasserstein barycenter distributions for the top four DEGs in
five cell types.

Support from the literature. MS is one of the most common demyeli-
nating diseases of the central nervous system. BSDE successfully
detects cell-type-specific DEGs in L2-L3 EN, OL-A, IN-VIP, astro-
cytes, microglia and OPC, whose pathological roles have been estab-
lished in the literature; see Table 2 and Supplementary Table S2 for
more details. Additionally, we correlate the DEGs identified by
BSDE and other methods with those reported by Patsopoulos et al.
(2019) from a GWAS study. In that study, the International
Multiple Sclerosis Genetics Consortium identified more than 233
MS risk loci from more than 47 000 cases and 68 000 controls; see
Figure 5C. For the aforementioned cell types where BSDE finds the
strongest signal, the findings seem to achieve a high percentage of
overlap with the GWAS study.

4 Discussion

Traditionally, scRNAseq datasets are collected from many cells of
different cell types, but from only a few individuals, due to the high
cost of sequencing and technical limitations. Consequently, most
methods developed for scRNAseq analysis are focused on differen-
tial expression across cell types, instead of that between case and
control individuals. However, as single-cell sequencing becomes
cheaper and easier to use, an increasing number of datasets from
case-control studies, especially those related to complex human dis-
eases such as autism (Velmeshev et al., 2019), PF (Habermann et al.,
2020) and MS (Schirmer et al., 2019), are now available to us. Our

Table 1. Previous reports of DEG-enriched cell types in PF that are identified by BSDE

Cell type Previous reports References

AT2 Tension-activated TGF-beta signaling in AT2 cells Wu et al. (2020)

AT2 Apoptotic death of AT2 cells in PF patients, introduced by ER stress and mitochondrial dysfunction. Parimon et al. (2020)

Basal Abnormal dysfunction of basal cells in PF. Richeldi et al. (2017)

Basal Basal cells are dynamically regulated in PF. Carraro et al. (2020)

MUC5Bþ club cells Genetic association between MUC5B promoter polymorphism and PF patient survival. Peljto et al. (2013)

MUC5Bþ club cells The rs35705950, 3 kb upstream of the MUC5B is found in 38% of PF cases but in only 9% of controls. Seibold et al. (2011)

MUC5Bþ club cells Proportion of MUC5Bþ club cells significantly is increased in PF patients. Zuo et al. (2020)

SCGB3A2 Molecular phenotype of SCGB3A2 club cells was altered in PF lungs. Zuo et al. (2020)

SCGB3A2 Experiment in Scgb3a2-transgenic mouse shows SCGB3A2 is an anti-fibrotic agent. Cai and Kimura (2015)

Fig. 5. Analysis of the multiple sclerosis (MS) dataset. (A) Subject-level distributions of the number of cells from case and control samples. (B) Top cell types with the largest

number of differentially expressed genes (DEGs) detected by BSDE. (C) Left: the total number of DEGs identified by each method. Right: the percentage of identified DEGs

that overlap with the GWAS findings reported in Patsopoulos et al. (2019). (D) Case and control Wasserstein barycenter distributions for the top four differentially expressed

genes (log-transformed expression)
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method is developed to extend DE analysis to these emerging data-
sets, which could play a vital role in biomedical research.

A major challenge of such analysis is to compare individual-level
distributions between case and control. Traditionally, parametric
models (e.g. log-normal, Poisson, zero-inflated negative binomial)
are developed to fit these distributions, through which the compari-
son can be performed with parametric two-sample tests. However,
the control of type-I error is not guaranteed if the model is misspeci-
fied, or when a naive likelihood ratio test is applied to mixed-effect
models (see Section 3.2). In fact, misspecification is highly likely for
real datasets, where batch effects, heterogeneity and dropouts are
frequently observed. Through a fully nonparametric approach based
on permutation tests and optimal transport, our method is free from
these issues. Further, subject-level distributions within case/control
are aggregated via Wasserstein barycenter, a type of distributional
averaging that takes account of the metric information in data, i.e.,
the difference in expression levels. Compared to other types of aver-
aging (e.g. arithmetic) that ignore the metric information, the result-
ing aggregated distributions are much more informative; see
Figures 4D and 5D. Additionally, BSDE is computationally afford-
able thanks to recent developments of fast algorithms for (entropy-
regularized) optimal transport (Altschuler et al., 2017; Cuturi,
2013; Cuturi and Doucet, 2014).

Data-driven methods for identifying differential expression pro-
vide important guidelines by suggesting candidate genes for further
experimental studies. To this end, a short list of key genes is more
valuable than a long list of irrelevant genes. With its nonparametric
flexibility, strict type-I error guarantee and excellent detection
power, BSDE is applicable to a wide range of DE analyses for case–
control studies.
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