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A B S T R A C T

Elevated intraocular pressure (IOP) is an important risk factor for glaucoma. Mechanisms involved in its
homeostasis are not well understood, but associations between metabolic factors and IOP have been reported. To
investigate the relationship between levels of circulating metabolites and IOP, we performed a metabolome-wide
association using a machine learning algorithm, and then employing Mendelian Randomization models to fur-
ther explore the strength and directionality of effect of the metabolites on IOP. We show that O-methylascorbate,
a circulating Vitamin C metabolite, has a significant IOP-lowering effect, consistent with previous knowledge of
the anti-hypertensive and anti-oxidative role of ascorbate compounds. These results enhance understanding of
IOP control and may potentially benefit future IOP treatment and reduce vision loss from glaucoma.

1. Introduction

Glaucoma is a leading cause of irreversible blindness and an im-
portant public health concern. Better understanding of its pathophy-
siology is important because it might lead to earlier detection and im-
proved management strategies. Glaucoma and intraocular pressure
(IOP) are tightly correlated genetically and epidemiologically [1], but
our understanding of cell and tissue-level processes underlying elevated
IOP and glaucoma are not well understood.

The eyes share cellular metabolic pathways and physiological me-
chanisms with other organs and tissues. Genes associated with IOP and
POAG are involved, among others, in systemic lipid metabolism [1,2],
lysosomal endocytosis [3] and angiogenesis [1,4]. Additionally, both
IOP [5] and POAG [6] are strongly associated with the components of
the metabolic syndrome (hyperglycemia, hyperlipidemia and high
systemic blood pressure).

The purposes of this work were to investigate the relationship be-
tween circulating metabolites and IOP, by performing a metabolome-
wide association study, and to examine the causality direction of such
relationships, using Mendelian Randomization (MR) in independent
population-based cohorts.

2. Materials and methods

2.1. Study design

This work followed two stages. First, associations between circu-
lating metabolite levels of individual metabolites and IOP were iden-
tified in a population-based cohort (TwinsUK). Subsequently,
Mendelian Randomization (MR) analyses in two independent popula-
tions were used to validate the relationship between circulating meta-
bolite levels and IOP and assess causality.

2.2. Populations and subjects

2.2.1. TwinsUK
This is a volunteer cohort recruited from the general population in

the United Kingdom [7]. Included in this study are 1763 adults (684
twin pairs and 395 singletons), for whom both metabolite levels and
eye measurements including IOP were available.

The IOP measurements were taken using a non-contact air-puff
tonometer (Ocular Response Analyzer, ORA, Reichert, Buffalo, NY). The
mean IOP was calculated from four readings (two from each eye).
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Subjects who were receiving IOP-lowering medications or had IOP-al-
tering surgery were excluded from the analyses.

2.2.2. UK Biobank
UK Biobank is a large multisite cohort study of UK residents aged

40–69 years. Participants’ IOP was measured once per eye using ORA.
Participants with a history of eye surgery or injury and with IOP
measurements in the top and bottom 0.5 percentiles were excluded. The
pre-treatment IOP of the 1571 participants under IOP-lowering medi-
cation was imputed as 130% of the measured mean IOP to allow for
medication effect as previously recommended [8–10]. IOP was calcu-
lated as the mean of right and left eye ORA IOPcc parameter values for
each participant. Effect size estimations for subsequent MR analyses
were extracted from the results of association between genotypes and
IOP, described elsewhere [1].

2.2.3. EPIC-Norfolk
EPIC-Norfolk is one of the UK arms of the European Prospective

Investigation into Cancer (EPIC) study [11]. Detailed ophthalmic as-
sessments using ORA and genotypes were available for 8623 partici-
pants. The quality control, inclusion and exclusion criteria, QC steps
and linear regression methods that were used to generate results, are
described in detail elsewhere [1].

2.2.4. Ethical approvals
This study was conducted in accordance with the principles of the

Declaration of Helsinki and the Research Governance Framework for
Health and Social Care. All participants gave informed consent after
appropriate ethics committee approval: Guy's and Saint Thomas (GSTT)
for the TwinsUK, the North-West Research Ethics Committee for the UK
Biobank and the Norfolk Local Research Ethics Committee and East
Norfolk & Waveney NHS Research Governance Committee for the EPIC-
Norfolk participants.

2.3. Metabolite measurements

Non-targeted metabolite detection and quantification was con-
ducted using the platform provided by Metabolon Inc. (Durham, USA)
on fasting plasma samples as previously described [12]. Quality control
steps for the 529 measured metabolites are reported elsewhere [12],
and they included batch-effect data normalization, outlier (> 4 SD)
removal and subsequently inverse-normalization [13]. Only 313 me-
tabolites that were measured in at least 90% of subjects were included
in analyses.

2.4. Statistical analyses

2.4.1. Random Forest analysis of metabolite effects on IOP
Although metabolites may be univariably associated with genetic

factors, their ratios and other higher-order forms of interaction between
more than one metabolite have physiologic relevance and are under
tight genetic control [12]. Simple linear regression models therefore are
incapable of fully modelling these interactions. Here, we employed a
Random Forest [14] machine learning technique (RF) which agnosti-
cally identifies the metabolites that are most influential over an out-
come, regardless of the specific model through which the effect is
mediated. These models implicitly capture higher order interactions
between variables [15]. We used RF to rank all available metabolites
according to the Breiman-Cutler “VIMP” values [14]. Importance
ranking has no associated probabilities, or formal thresholds of sig-
nificance, nor any need for multiple-testing correction as long as all
variables are tested jointly at the same time. To control for bias from
predictor variables’ (metabolites) differing variances [16], all variables
were standard inverse-normalized as previously described [13]. The
‘mtry’ parameter was fine-tuned to minimize the out-of-bag errors. The
parameters of the RF analyses were set as nTree=10,000 and

maxNodes=10 and mtry =140. The models also included con-
foundants such as ages at IOP measurement and when the blood sam-
ples were drawn, body height and weight, but only the relative im-
portance of metabolites over IOP measurements is being reported.
Specifically, the model included a mixed model adjustment term to
address the family relationships among the participants of the TwinsUK
cohort.

Analyses reported here were conducted using all available meta-
bolites that passed QC; analyses on subsets of unrelated metabolites
(not shown) did not produce fundamental alterations in the importance
ranking of the metabolites representing their clusters. Analyses were
run in the ‘randomForestSRC’ package, version 2.5.1 in R 3.4.1(www.
cran.r-project.org).

2.4.2. Mendelian randomization comparisons of genetic effects
We aimed to validate the findings and assess causality for the most

important metabolite identified in the RF analysis stage, through an MR
model. We used as instrumental variables (IV) SNPs that associated
with plasma metabolite levels (exposure) on IOP (outcome).

Effects of genetic variants over metabolite levels were obtained from
a published study [12]. We used SNPs that showed association at either
GWAS-significant (p < 10−08), but also at suggestive levels
(p < 10−06) in the final published joint meta-analyses [12]. Estimates
of effect sizes and standard errors for the association between the se-
lected SNPs and metabolites were from the Kooperative Ge-
sundheitsforschung in der Region Augsburg (KORA) cohort and were
obtained from previously published reports [17]. Only SNPs that were
independent (on different chromosomes or at least 4 million base pairs
apart and r2< 0.1) were used for the analyses. Estimated effect sizes
and standard errors for association of the SNPs with IOP were obtained
from a GWAS of 103,382 European participants of the UK Biobank and
separately from 6595 participants in the EPIC-Norfolk study, as re-
ported elsewhere [1].

Three MR methods were used: inverse variance weighted median,
inverse-variance weighted and MR-Egger. These analyses are usually
interpreted together to jointly evaluate the relationship between ex-
posure and outcome [18,19] and don’t require multiple testing cor-
rection. The MR-Egger regression test intercept evaluates evidence for
directional pleiotropy; intercepts significantly different from the origin
suggest directional pleiotropy, where the underlying Instrument
Strength Independent of Direct Effect (InSIDE) assumption may not be
satisfied [20]. Analyses were performed using the ‘MendelianRando-
mization’ R package [21].

3. Results

3.1. O-methylascorbate levels are associated with IOP

We studied the plasma levels of 313 metabolites in the dataset of
1772 TwinsUK participants, for whom IOP measurements were also
available. The main demographic and clinical characteristics of the
sample are summarized in Table 1.

A random forest (RF) analysis ordered metabolites according to the
importance of their association with IOP (Fig. 1). The highest-ranking
metabolite in order of importance was O-methylascorbate [22]. This is
a known metabolic product of the L-ascorbic acid (Vitamin C) [23].
Polymorphic changes of the sequences of the COMT, but also KLF12,
SIL1, FDFT1 and PPPC5 genes are associated with O-methylascorbate
levels [12]. The second ranking metabolite from the RF analysis was
alpha-hydroxyvalerate, an amino acid metabolite. High in the rankings
(Supplementary Table 1) were also carnitine, involved in lipid transfer
across the mitochondrial membrane [24] and phenylacetylglutamine, a
metabolite of glutamate, an antioxidative stress marker.
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3.2. O-methylascorbate reduces IOP in independent populations

We followed up on the highest-ranking metabolite from the RF
analysis. To validate results, we explored the relationship between O-
methylascorbate and IOP in two independent populations. We used as
genetic instruments single nucleotide polymorphisms (SNPs) that were
significantly associated with O-methylascorbate levels in the KORA
cohort [12], and examined their association with IOP, initially, in the
UK Biobank cohort (Supplementary Table 2). A Mendelian Randomi-
zation (MR) model found a significant relationship between exposure
(the O-methylascorbate levels) and IOP. All three models (Table 2,
Fig. 2a) showed a statistically significant inverse relationship between
the circulating levels of this metabolite and IOP (weighted median
p=0.02, robust IVW p=2.4×10−10 and RM-Egger
p=3.33×10−06). There was no statistical evidence of pleiotropy
(MR-Egger Intercept= 0.00). We further used the same instrumental
variables(IVs) to build a second MR model in another independent
dataset. The MR results in the EPIC-Norfolk dataset were consistent

with the results obtained in the UK Biobank, with statistically sig-
nificant effects of O-methylascorbate on IOP (Table 2 and Fig. 2b).

To further exclude pleiotropy, we reversed our MR models to use
IOP as the putative risk, SNPs significantly associated with IOP, de-
scribed elsewhere [1] (Supplementary Table 3) as IVs, IOP as exposure
and O-methylascorbate as the outcome of interest. In contrast to the
previous results, none of the tests were statistically significant
(Supplementary Table 4), which further suggests that O-methy-
lascorbate levels causally affect IOP and not vice versa.

4. Discussion

Here we report, for the first time, that O-methylascorbate, a Vitamin
C metabolite, is part of metabolic mechanisms that control IOP in the
general population. Previous works suggested that levels of Vitamin C
are reportedly inversely correlated with systemic [25] and pul-
monary [26,27] blood pressure, as well as IOP [28,29]. Although it also
enhances endothelial function [30], much of its anti-hypertensive

Table 1
Main demographic and clinical characteristics of the participating cohorts. Mean and standard deviations are given for each parameter; missing values (“NA”)
are used for variables not measured in a particular cohort.

TwinsUK UK Biobank EPIC-Norfolk

Variable Mean Standard Deviation Mean Standard Deviation Mean Standard Deviation

Age at the time IOP was measured (years) 55 9.13 54.4 7.8 68.8 8
Age when blood samples were taken (years) 58.4 9.87 NA NA NA NA
Sex (women: men) 1755: 8 NA 55,103: 48,279 NA 3725:3059 NA
Mean intraocular pressure (mmHg) 15.6 3.18 16.1 3.5 16.8 3.6
Central corneal thickness (µm) 544.9 39.58 NA NA – –
Weight (kg) 69.45 13.6 77.98 15.9 74.2 14.1
Height (cm) 161.8 6.16 170.1 9.4 166.4 9.1

Fig. 1. Plot of the VIMP parameter (relative importance) of the associations with IOP of 313 metabolite variables tested in the Random Forest analysis. The
metabolites with highest importance are labeled (X- 12063 uncharacterized metabolite, identity unknown).

Table 2
Mendelian Randomization (MR) study results for IOP in the UK Biobank and EPIC-Norfolk cohorts. For each of the three methods used, the β estimate,
standard errors (SE) and associated p-values are reported. The Penalized robust MR-Egger intercept is not a MR model, but if different from 0 would provide evidence
of directional pleiotropy and potential violation of the instrumental variable assumptions.

UK Biobank EPIC

Method Beta SE p-value Beta SE p-value

Penalized weighted median −0.696 0.304 0.022 −3.219 1.371 0.019
Robust inverse-variance weighted −0.674 0.106 2.04× 10−10 −2.891 0.678 2.5× 10−05

Robust MR-Egger −0.637 0.137 3.33× 10−06 −4.536 0.689 4.6× 10–11

Penalized robust MR-Egger (Intercept) −0.001 0.006 0.855 0.048 0.026 0.071
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effects are likely mediated by its powerful antioxidative properties,
which provide protection from the radical oxygen species [31].

Photooxidative stress in the eye leads to trabecular meshwork de-
gradation [32], elevated IOP due to increased aqueous outflow re-
sistance [33] and ultimately glaucoma [34]. Vitamin C is highly con-
centrated in the aqueous humor and forms the first line of defense
against free radicals in the eyes [35]. The O-methylascorbate, a natu-
rally occurring metabolite, is less cytotoxic [36] and has a strong re-
ductive capacity against photooxidative stress [37].

Our study combined metabolomic and genetic data to identify me-
tabolic processes that modulate IOP in healthy populations. Our MR
results shows that genetic factors that raise O-methylascorbate levels
are associated with lower IOP. For example, the rs4680 G allele leads to
higher COMT activity [38], and increased enzymatic conversion of
Vitamin C into O-methylascorbate [12]. This variant is also associated
with lower IOP, likely through the antioxidant properties of its enzy-
matic reaction product. The correlations of effects observed over sev-
eral genes that independently control O-methylascorbate levels sug-
gests that O-methylascorbate effect on IOP is real and not the result of
confounding.

Several considerations are needed for the correct interpretation of
these findings. First, O-methylascorbate effects over IOP homeostasis
are likely modest and not deterministic. The metabolome platform that
we used, only provides semi-quantitative results, but its standard-nor-
malized output may be used to assess the strength of statistical asso-
ciations, but not reliable effect size estimation. Second, the metabo-
lomic platform we used only assesses a fraction of the metabolites
present in complex organisms and could have overlooked metabolites
equally or more relevant to IOP homeostasis. Third, the TwinsUK dis-
covery cohort had power limitations and is almost exclusively female,
while associations between oxidative biomarkers and glaucoma are
reportedly stronger in men [29]. Finally, while the causal inference
statistical methods suggest a causative role for O-methylascorbate in
IOP, MR methodologies critically rely on several assumptions, whose
violations would change the interpretation of causality [19]. Until
further experimental confirmation, the relationship of O- methy-
lascorbate with IOP is simply probabilistic.

Our study demonstrates that Vitamin C metabolism is involved in
the control of intraocular pressure. These findings provide an additional
insight into the role antioxidative stress-related mechanisms in in-
traocular, and maybe blood pressure homeostasis. Further work will be
necessary to establish the exact mechanisms of pressure reduction via

ascorbate metabolites and establish whether these mechanisms may
have any role for the clinical management of IOP or glaucoma.
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