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SUMMARY 

Although tctp expression in many areas of the human brain was reported more than 

15 years ago, little was known about how it functions in neurons. The early notion 

that Tctp is primarily expressed in mitotic cells, together with reports suggesting a 

relative low abundance in the brain [1], has perhaps potentiated this almost complete 

disregard for the study of Tctp in the context of neuron biology. However, recent 

evidence has challenged this view, as a number of independent genome-wide 

profiling studies identified tctp mRNA among the most enriched in the axonal 

compartment across diverse neuronal populations, including embryonic retinal 

ganglion cells [2-5]. Considering the emerging parallels between axon guidance and 

cancer cell invasion [6], the axonal expression of cancer-associated tctp was 

suggestive of it holding an unexplored role in the assembly of neuronal circuits. Our 

study revealed that Tctp is necessary for the accurate and timely development of axon 

projections during the formation of retinal circuits via its association with the survival 

machinery of the axon [7]. The findings overall indicate that compromised pro-

survival signaling in Tctp-deficient axons results in mitochondrial dysfunction and a 

subsequent decrease in axonal mitochondrial density. These effects likely translate 

into a metabolic state inadequate to support the normal guidance and extension 

processes of a developing axon. 



1.INTRODUCTION 

1.A Features of Axon Development 

The arrangement of retinal neurons in the brain reflects that of the light-sensitive cells 

in the retina and, ultimately, the visual world. During embryonic development, 

independent of the birthplace in the retina, retinal ganglion cell (RGC) axons extend 

in the direction of the optic nerve head, where they collect to exit the eye and form the 

optic nerve. In vertebrates, once past the midline optic chiasm in the ventral di-

encephalon, retinal ganglion cell axons grow to the optic tectum, their most prominent 

synaptic target in the midbrain, and arborize in a topographic array that, in essence, 

copies the spatial map in the retina onto the brain. Likewise, several other neuronal 

projections are concurrently established in the embryonic brain; so, how do axons 

succeed in finding their way? 

 

Observations in vivo of developing axonal projections have discovered that their 

growth is highly directed, with axons navigating along a prescribed trajectory en route 

to their respective synaptic targets and making very few errors of navigation in the 

process [8-11]. This remarkable pathfinding fidelity depends on successive spatial 

signals – guidance cues – presented in the embryonic landscape and integrated by the 

growth cone, a sensory and motile structure at the tip of developing axons. Axon 

trajectories are thus seemingly divided into shorter segments in such a way that the 

effort of navigating towards a distant target is reduced to the simpler task of reaching 

consecutive intermediate points.  

 

Four evolutionary conserved families of signaling molecules that function as 

instructive – chemotactic – guidance cues are classically described for their 

widespread roles in axon guidance: netrins, semaphorins, slits and ephrins. In addition 

to these chemical signals, growth cones are also instructed by cell-cell and cell-matrix 

physical adhesions that provide not only an effective roadmap for navigation but also 

an essential platform for the protrusive behavior of the growth cone [12, 13]. These 

contacts can be mediated by members of the integrin, cadherin and, most prominently, 

immunoglobulin (IgG) superfamilies. Importantly, the actions of these various signals 

are not mutually exclusive, but rather coordinately act to ensure that axon navigation 

ensues unerringly. Indeed, the involvement of various instructive signals even along a 



short trajectory considerably diminishes the likelihood of guidance errors and pro-

motes the necessary fidelity in the establishment of neuronal connections. 

1.B Axonal mRNA Localization – One in Thousands 

The synapse underlies one the neuron’s most striking features: the axon-dendrite 

duality, with the inherent cellular and molecular polarization of the nerve cell that it 

encompasses [14]. Necessarily asymmetric in function, these two compartments 

receive an independent assortment of organelles, membrane components and 

molecules from the cell body [15]. Subcellular RNA localization has emerged as a 

particularly prevalent and cost-efficient mechanism of outsourcing genomic 

information in these highly polarized cells, where the site of transcription can be far 

removed from the final destination of the protein [16, 17]. Mechanistically, specific 

transcripts can be precisely localized to subcellular compartments using the ‘address’ 

information harbored in their untranslated regions (UTRs), which function as cis-

acting platforms for regulatory RNA-binding proteins (RBPs) and small non-coding 

RNAs [18]. Subsequently, local, ‘on-site’ synthesis confers both spatial and temporal 

precision, as the new protein is present only where and when a biological demand for 

it exists (Figure 1). It is this mRNA-based mechanism that, for example, allows the 

growth cone to enjoy a certain degree of functional autonomy in its guidance process 

[16]. 

 

Still, it was not until the recent appreciation of the complexity of the axonal 

transcriptome – several independent genome-wide screens have identified thousands 

of mRNAs localizing in the axonal compartment of embryonic and adult neuronal 

cells [2-5] – that the functional significance of this cellular mechanism was fully 

grasped. Indeed, the prevailing view at the turn of the century was that axons did not 

synthesize proteins but that instead the proteome in the this compartment was 

maintained by a constant provision of proteins synthesized in the cell body and 

transported along the axon [16, 19]. Significant evidence linking local mRNA 

translation to many aspects of axonal biology has since overwhelmingly dismissed 

this notion. It is now known that axonal mRNA translation regulates not only growth 

cone guidance decisions [20-24], where its involvement was originally studied, but 

also axon elongation [25, 26], axon maintenance and degeneration [3, 27-29], as well 

as nerve injury and axon regeneration responses [30-32], among other processes [16]. 

 



In turn, the impact of local protein synthesis in such diverse cellular mechanisms 

underlines a crucial aspect of axonal RNA localization: the dynamic nature of the 

local transcriptome. Indeed, even within the same population of neurons, comparative 

profiling of two different developmental stages has revealed that axons contain ‘age’-

specific mRNA pools. For example, mRNAs encoding branching-promoting 

cytoskeletal proteins and synaptic vesicle proteins, which intuition suggests being 

irrelevant during the pathfinding stages, are only found in target-arrived axons [4]. It 

is noteworthy, however, that all of the axonal populations analyzed to date appear to 

have a common core of transcripts, such as those encoding mitochondrial and 

ribosomal proteins [16], suggesting that these molecules are implicated in ‘everyday’ 

axon upkeep. This also seems to be the case with Tctp: its transcript is ranked among 

the most enriched in the axonal compartment of diverse embryonic and adult neuronal 

populations (Table 1), which indicates that Tctp has a constitutive axonal function. 

 

1.C Axon Guidance and Cancer – Shared features 

The parallels between the processes of axon guidance and cancer cell invasion hinted 

that Tctp, a protein associated with malignancy, plays a particularly important role 

during the wiring of neuronal circuits (Box 1). Indeed, from the continuous changes in 

motility and adhesion, or the crosstalk with the surrounding environment, the 

challenges faced by a metastatic cell echo those overcome by a pathfinding growth 

cone as it navigates through the developing brain.  

 

Curiously, a short incursion into the history of the classical axon guidance molecules 

reveals an association with cancer pathology dating back to their discovery, 

suggesting that common signaling pathways operate in both contexts. The Epha1 

gene, for example, was cloned from a carcinoma cell line in 1987 in a screen for 

novel tyrosine kinase receptors with oncogenic potential, and the first Ephrin ligand 

was also described by a group working in the context of cancer [33]. Likewise, the 

Dcc gene, the prototypical Netrin-1 receptor, was originally identified as a tumor 

suppressor in advanced stages of colorectal carcinoma (hence its designation, deleted 

in colorectal cancer) [34]. Only in the mid-1990s did their association with axon 

guidance mechanisms begin to be established [35, 36].  

 



However, the links between these processes are perhaps best illustrated by the recent 

characterization of frequent mutations and copy number variations in classical axon 

guidance genes in tumors derived from pancreatic ductal adenocarcinoma and liver 

fluke-associated cholangiocarcinoma patients [37, 38], or the ongoing cancer clinical 

trials targeting axon guidance molecules. Finally, it is also relevant to note that tctp is 

not the only cancer-associated transcript localizing in developing axons; in fact, the 

‘cancer’ gene ontology (GO) term is among the most significantly enriched in these 

axonal transcriptomes [4, 5], underlying the cellular and molecular commonalities 

between both contexts. 

 

1.D Axonal Mitochondria  

Since, as a general rule, neuronal cells cannot be replaced throughout the individual’s 

lifetime [39], the preservation of functional neural circuits must necessarily rely on 

effective axonal protective mechanisms. Classical conjectures supported the view that 

the process of axonal degeneration ensued from deficient sustenance from the cell 

body (e.g. as a result of cell body death) [40]. However, it is now well established that 

the axonal degenerative cascade can be actively promoted by in situ death pathways 

and is counteracted by locally acting and, to some extent, axon-specific pro-survival 

mechanisms [40]. Moreover, adequate metabolic provision – and hence 

mitochondria– is pivotal to axonal function, as the demand for energy, metabolites 

and calcium buffering is particularly elevated at axons terminals (e.g. to support 

synaptic transmission) [41]. Indeed, many mitochondrial dysfunctions trigger 

neurodegenerative disorders with prominent axonal phenotypes [42-44], suggesting 

that axons are indeed particularly vulnerable to mitochondrial compromise. Similarly, 

a growing axon is dependent on adequate mitochondrial operation, as it requires the 

continuous provision of energy for its extension in the embryonic brain. It follows 

that neurons must preserve a damage-prone mitochondrial network to maintain 

functionality and integrity.



2. TCTP IN NEURONAL CIRCUITRY ASSEMBLY 

Given that the identification of tctp as a potential candidate of study stemmed from 

genome-wide profiling screens, we initially sought to validate that its transcripts 

localize to retinal ganglion cell axons and growth cones at a time when the Xenopus 

laevis retinotectal projection is developinga. In situ hybridization showed robust tctp 

signal in the optic fiber layer and in the optic nerve head, axon-only structures 

through where retinal ganglion cell axons navigate to exit the eye. Additionally, in 

eye explants, tctp mRNA signal could be detected in the growth cone of retinal 

ganglion cell axons. In concordance with tctp mRNA axonal localization, Tctp protein 

was similarly detected in these retinal ganglion cell structures. Ample mRNA and 

protein signals were also found in the inner and outer plexiform layers, suggestive of 

localization in the neurites of other retinal neurons, as well as in the photoreceptor 

layer, populated by light-sensitive neurons, and the ciliary marginal zone, a 

neurogenic niche in the retina. Significantly, our initial investigations also showed 

that tctp expression is nearly tenfold higher than actb in retinal ganglion cell axons as 

measured by quantitative PCRb, confirming tctp as a highly enriched axonal 

transcript. 

 

Further analyses revealed that Tctp is implicated in the development of the 

retinotectal projection (Figure 2). Specifically, Tctp depletion using antisense 

morpholino oligonucleotides results in splayed projections that fail to innervate the 

optic tectum at the normal developmental time window (Figure 2A). These effects 

are not a consequence of extracellularly acting Tctp, as normal retinal ganglion cell 

axons develop unerringly through a Tctp-deficient optic tract pathway (Figure 2B). 

Moreover, in vivo time-lapse imaging of developing Tctp-depleted retinal axons 

revealed that their rate of extension was about half of that observed in controls, 

excluding the possibility that the axonal phenotypes observed are a result of an 

underlying delay in eye development. 

 

We began our characterization of Tctp axonal mode of action by focusing on 

mitochondria. This line of investigation unexpectedly arose while examining the 

																																																								
a	The retinotectal projection is formed by the nerve fibers of retinal ganglion cells, which connect the 
retina to the optic tectum.	
b actb is a well-characterized axon-enriched mRNA [16, 23].  



histology of Tctp-depleted retinas for signs of delayed development. Curiously, 

although the gross stratification of the retina was unaffected, we noted obvious signs 

of degeneration in the photoreceptor layer of Tctp morphants. The subsequent finding 

that Tctp expression in these cells is confined to the mitochondria-rich inner 

segments, together with reports documenting Tctp as part of the mitochondrial 

proteome [45, 46], suggested a potential link between Tctp and mitochondrial 

functionc. These indeed proved to be insightful observations, as Tctp morphant retinas 

show reduced total ATP levels. Following on this result, we measured a ~20% decline 

in the membrane potential of mitochondria from Tctp-depleted axonsd, as well as a 

significant decrease in the number of axonal mitochondria. Importantly, this decrease 

in axonal mitochondrial density was not accompanied by changes in overall 

mitochondrial biogenesis or mass, arguing for a phenotype with predominantly axonal 

repercussions. Indeed, examination of mitochondrial transport dynamics in axons 

showed that a higher proportion of these organelles move towards the cell body in 

axons deficient in Tctp than in controls, in line with previous reports showing that 

dysfunctional mitochondria are selectively ‘shipped’ to the cell body for repair and/or 

degradation [47, 48]. 

 

How does mitochondrial dysfunction develop from Tctp deficiency? An attractive 

possibility stemmed from reports linking Tctp to the B-cell lymphoma 2 (Bcl2) family 

of proteins, which play key mediator roles of mitochondrial integrity and apoptosis 

[49]. Significantly, embryonic sensory neurons lacking Bcl2, the prototypic member 

of this family, show reduced axon growth rates [50], a phenotype encountered in Tctp 

morphants. Particularly well defined is the association between Tctp and myeloid cell 

leukemia 1 (Mcl1) [51-53], a neuroprotective Bcl2-related pro-survival factor [54], 

which prompted us to explore whether these two proteins shared a functional 

relationship in axons. We first showed that axonal Tctp interacts with Mcl1 using a 

proximity ligation assay, complementing previous biochemical data with an approach 

that allows the examination of protein-protein interactions with subcellular precision. 

Second, we looked for signs of unbalanced pro-survival signaling in Tctp-depleted 

																																																								
c	It is relevant to note that photoreceptor degeneration is frequently characterized by bioenergetic 
decline. For example, mitochondrial dysfunction is reported in age-related macular degeneration.	
d	The mitochondrial membrane potential (ΔΨm) is a parameter directly related to the ability of cells to 
generate ATP by oxidative phosphorylation and thus serves as cardinal indicator of mitochondrial 
function.	



axons e[51, 55-58]. Both cleaved Caspase-3 and P53 levels were found to be elevated 

in axons in the absence of Tctp. Third, consistent with the idea that Tctp works via 

Mcl1 and the survival machinery to regulate axon development, Mcl1 morphants 

show similar, albeit milder, axon misprojection phenotypesf. Finally, since the N-

terminal region of Tctp is required for its pro-survival properties [52, 53], we were 

able to test whether Tctp pro-survival interactions are a requirement for normal axon 

development. To this end, we designed a mutated transgene encoding a truncated Tctp 

protein devoid of pro-survival activity (Tctp40-172aa). Tctp40-172aa retains Tctp’s 

signature motifs, as well as the interactions domains of several known Tctp-

interacting proteins, but lacks those necessary for the association with Mcl1 [52]. 

Unlike full-length tctp, co-delivery of tctp40-172aa with a tctp-targeting morpholino 

failed to prevent the abnormal development of the retinotectal projection resulting 

from Tctp deficiency. Collectively, these various findings suggest that Tctp regulates 

axon development through its association with the survival machinery of the axon 

(Figure 3). 

 

 

 

 

 

  

																																																								
e	Tctp stabilizes Mcl1 biological activity, and promotes the degradation of P53, which itself 
counteracts the pro-survival actions of Mcl1 at the mitochondria. Hence, we speculated that Tctp 
deficiency resulted in compromised pro-survival signaling.	
f	This milder phenotype may be due to compensation by other members of the Bcl-2 family.	



3. SUMMARY AND FUTURE DIRECTIONS 

Neurons are highly compartmentalized cells with great energy demands. Given their 

elongated morphology and unique metabolic requirements, mitochondrial operation 

needs to be appropriately regulated in these cells to sustain normal neuronal 

functioning. This assumes particular relevance at distal axon terminals, which require 

the localized presence of mitochondria to support growth, maintenance, and synaptic 

transmission [48]. Significantly, our study identified Tctp as a key checkpoint for 

normal axon development by impacting on axonal mitochondrial homeostasis. Given 

the importance of maintaining an operational mitochondrial network during axon 

development and overall neuronal function, it is perhaps not surprising that all axonal 

populations analyzed to date at the transcriptome level contain a large proportion of 

mitochondria-related mRNAs [16]. In fact, it has been demonstrated that up to 25% of 

all proteins synthesized in nerve terminals become associated with mitochondria [59]. 

Hence, our efforts to characterize Tctp in the context of axon development typify the 

significant biological investment put into supporting these organelles subcellularly. 

 

Whereas we focused exclusively on examining the role of Tctp in axon development, 

future work should aim at elucidating its implications in the adult nervous system. 

Indeed, the decreased Tctp protein expression levels observed in Down syndrome and 

Alzheimer’s disease [60], pathologies associated with mitochondrial dysfunction [41, 

61], together with the finding that tctp is also among the most abundant transcripts in 

adult axons, prompt speculation that Tctp holds an important lifelong axonal function. 

However, given that Tctp is required for the assembly of neural circuitry, temporal 

control over its knockdown will be a key aspect of any successful approach. This 

could be achieved by crossing the existing tctp-floxed heterozygous mouse line with 

an inducible, neuron-specific Cre recombinase strain [62, 63]. Considering that proper 

mitochondrial operation is an imperative of synaptic homeostasis [48], such strategy 

would, for example, allow one to study Tctp in the context of synaptic function 

independently of preceding defects in neural circuitry formation.  



Box 1: Neuronal connectivity and Cancer Metastasis – Historical parallels? 

Historically, the neuroscience field debated two explanatory hypotheses regarding the 

wiring of the nervous system. The ‘resonance theory’ explained the developmental 

patterning of the central nerve tracts on a purely mechanical basis, by schemes of 

initially non-selective growth that, based on the validity of the connection formed, 

were later maintained or eliminated [29, 30]. A second framework proposed that 

selective chemical or electrical forces guided neuronal connections and found initial 

support in the experiments of John Langley in the late ninetieth century [31]. The 

extensive studies of Roger Sperry on how regenerating frog retinal ganglion cell 

axons are arranged when re-innervating their target categorically proved the latter 

hypothesis [32-34]. In his most dramatic experiment, Sperry rotated the eye 180º on 

its dorsoventral axis after severing the optic nerve and noted that it lead to the animal 

having inverted vision; that is, the axons were originating from reversed positions in 

the eye yet managing to find their appropriate synaptic connections in the brain. He 

concluded that “the cells and fibers of the brain and cord must carry some kind of 

individual identification tags, presumably cytochemical in nature, by which they are 

distinguished one from another almost, in many regions, to the level of the single 

neuron” [34], a molecular view of the structuring of the nervous system which 

remains largely unchallenged to date [35]. 

 

This idea resonates with the seminal work of Stephen Paget, an English surgeon who 

published in 1889 what has come to be known as the ‘seed and soil’ hypothesis, for it 

embodies an idea quite akin to that implied in Sperry’s chemoaffinity postulate. Paget 

noted, in the process of analysis of more than 900 autopsy records, that tumor 

metastasis contains an organ-specific, non-random character: “The evidence seems to 

me irresistible that in cancer of the breast the bones suffer in a special way (...) Some 

bones suffer more than others; the disease has its seats of election” [242]. From these 

observations, he equated that metastases depend on certain cancer cells – the ‘seeds’ – 

having a specific affinity for the environment of certain organs – the ‘soil’ – correctly 

concluding, with sound resemblance to modern day theories of neural circuitry 

assembly, that only when both ‘seed’ and ‘soil’ were compatible would metastasis 

form [216, 243]. 

 

 



ACKNOWLEDGEMENTS 

Our work was supported by Fundação para a Ciência e a Tecnologia [fellowship 

SFRH/BD/33891/2009 to Cláudio Roque] and a Wellcome Trust Programme Grant 

[085314/Z/08/Z to Christine Holt]. Cláudio Roque is grateful to the Doctoral 

Programme in Experimental Biology and Biomedicine as well as the Center for 

Neuroscience and Cell Biology at University of Coimbra. 

 
   



REFERENCES 
 
1. Thiele, H., et al., Expression of the gene and processed pseudogenes encoding the 

human and rabbit translationally controlled tumour protein (TCTP). Eur J Biochem, 
2000. 267(17): p. 5473-81. 

2. Taylor, A.M., et al., Axonal mRNA in uninjured and regenerating cortical 
mammalian axons. J Neurosci, 2009. 29(15): p. 4697-707. 

3. Andreassi, C., et al., An NGF-responsive element targets myo-inositol 
monophosphatase-1 mRNA to sympathetic neuron axons. Nat Neurosci, 2010. 13(3): 
p. 291-301. 

4. Zivraj, K.H., et al., Subcellular profiling reveals distinct and developmentally 
regulated repertoire of growth cone mRNAs. J Neurosci, 2010. 30(46): p. 15464-78. 

5. Gumy, L.F., et al., Transcriptome analysis of embryonic and adult sensory axons 
reveals changes in mRNA repertoire localization. RNA, 2011. 17(1): p. 85-98. 

6. Harburg, G.C. and L. Hinck, Navigating breast cancer: axon guidance molecules as 
breast cancer tumor suppressors and oncogenes. J Mammary Gland Biol Neoplasia, 
2011. 16(3): p. 257-70. 

7. Roque, C.G., et al., Tumor protein Tctp regulates axon development in the embryonic 
visual system. Development, 2016. 143(7): p. 1134-48. 

8. Crossland, W.J., et al., The specification of the retino-tectal projection in the chick. J 
Comp Neurol, 1974. 155(2): p. 127-64. 

9. Lance-Jones, C. and L. Landmesser, Pathway selection by chick lumbosacral 
motoneurons during normal development. Proc R Soc Lond B Biol Sci, 1981. 
214(1194): p. 1-18. 

10. Holt, C.E. and W.A. Harris, Order in the initial retinotectal map in Xenopus: a new 
technique for labelling growing nerve fibres. Nature, 1983. 301(5896): p. 150-2. 

11. Raper, J.A., M. Bastiani, and C.S. Goodman, Pathfinding by neuronal growth cones 
in grasshopper embryos. I. Divergent choices made by the growth cones of sibling 
neurons. J Neurosci, 1983. 3(1): p. 20-30. 

12. Lowery, L.A. and D. Van Vactor, The trip of the tip: understanding the growth cone 
machinery. Nat Rev Mol Cell Biol, 2009. 10(5): p. 332-43. 

13. O'Donnell, M., R.K. Chance, and G.J. Bashaw, Axon growth and guidance: receptor 
regulation and signal transduction. Annu Rev Neurosci, 2009. 32: p. 383-412. 

14. Barnes, A.P. and F. Polleux, Establishment of axon-dendrite polarity in developing 
neurons. Annu Rev Neurosci, 2009. 32: p. 347-81. 

15. Hirokawa, N. and R. Takemura, Molecular motors and mechanisms of directional 
transport in neurons. Nat Rev Neurosci, 2005. 6(3): p. 201-14. 

16. Jung, H., B.C. Yoon, and C.E. Holt, Axonal mRNA localization and local protein 
synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci, 
2012. 13(5): p. 308-24. 

17. Jung, H., et al., Remote control of gene function by local translation. Cell, 2014. 
157(1): p. 26-40. 

18. Andreassi, C. and A. Riccio, To localize or not to localize: mRNA fate is in 3'UTR 
ends. Trends Cell Biol, 2009. 19(9): p. 465-74. 

19. Lasek, R.J., C. Dabrowski, and R. Nordlander, Analysis of axoplasmic RNA from 
invertebrate giant axons. Nat New Biol, 1973. 244(136): p. 162-5. 

20. Campbell, D.S. and C.E. Holt, Chemotropic responses of retinal growth cones 
mediated by rapid local protein synthesis and degradation. Neuron, 2001. 32(6): p. 
1013-26. 

21. Brittis, P.A., Q. Lu, and J.G. Flanagan, Axonal protein synthesis provides a 
mechanism for localized regulation at an intermediate target. Cell, 2002. 110(2): p. 
223-35. 

22. Wu, K.Y., et al., Local translation of RhoA regulates growth cone collapse. Nature, 
2005. 436(7053): p. 1020-4. 



23. Leung, K.M., et al., Asymmetrical beta-actin mRNA translation in growth cones 
mediates attractive turning to netrin-1. Nat Neurosci, 2006. 9(10): p. 1247-56. 

24. Leung, L.C., et al., Coupling of NF-protocadherin signaling to axon guidance by cue-
induced translation. Nat Neurosci, 2013. 16(2): p. 166-73. 

25. van Kesteren, R.E., et al., Local synthesis of actin-binding protein beta-thymosin 
regulates neurite outgrowth. J Neurosci, 2006. 26(1): p. 152-7. 

26. Hengst, U., et al., Axonal elongation triggered by stimulus-induced local translation 
of a polarity complex protein. Nat Cell Biol, 2009. 11(8): p. 1024-30. 

27. Cox, L.J., et al., Intra-axonal translation and retrograde trafficking of CREB 
promotes neuronal survival. Nat Cell Biol, 2008. 10(2): p. 149-59. 

28. Yoon, B.C., et al., Local translation of extranuclear lamin B promotes axon 
maintenance. Cell, 2012. 148(4): p. 752-64. 

29. Baleriola, J., et al., Axonally synthesized ATF4 transmits a neurodegenerative signal 
across brain regions. Cell, 2014. 158(5): p. 1159-72. 

30. Verma, P., et al., Axonal protein synthesis and degradation are necessary for efficient 
growth cone regeneration. J Neurosci, 2005. 25(2): p. 331-42. 

31. Ben-Yaakov, K., et al., Axonal transcription factors signal retrogradely in lesioned 
peripheral nerve. EMBO J, 2012. 31(6): p. 1350-63. 

32. Perry, R.B., et al., Subcellular knockout of importin beta1 perturbs axonal retrograde 
signaling. Neuron, 2012. 75(2): p. 294-305. 

33. Pasquale, E.B., Eph receptors and ephrins in cancer: bidirectional signalling and 
beyond. Nat Rev Cancer, 2010. 10(3): p. 165-80. 

34. Mehlen, P., C. Delloye-Bourgeois, and A. Chedotal, Novel roles for Slits and netrins: 
axon guidance cues as anticancer targets? Nat Rev Cancer, 2011. 11(3): p. 188-97. 

35. Tessier-Lavigne, M. and C.S. Goodman, The molecular biology of axon guidance. 
Science, 1996. 274(5290): p. 1123-33. 

36. Serafini, T., et al., Netrin-1 is required for commissural axon guidance in the 
developing vertebrate nervous system. Cell, 1996. 87(6): p. 1001-14. 

37. Biankin, A.V., et al., Pancreatic cancer genomes reveal aberrations in axon 
guidance pathway genes. Nature, 2012. 491(7424): p. 399-405. 

38. Ong, C.K., et al., Exome sequencing of liver fluke-associated cholangiocarcinoma. 
Nat Genet, 2012. 44(6): p. 690-3. 

39. Dekkers, M.P., V. Nikoletopoulou, and Y.A. Barde, Cell biology in neuroscience: 
Death of developing neurons: new insights and implications for connectivity. J Cell 
Biol, 2013. 203(3): p. 385-93. 

40. Pease, S.E. and R.A. Segal, Preserve and protect: maintaining axons within 
functional circuits. Trends Neurosci, 2014. 37(10): p. 572-82. 

41. Friedman, J.R. and J. Nunnari, Mitochondrial form and function. Nature, 2014. 
505(7483): p. 335-43. 

42. Nunnari, J. and A. Suomalainen, Mitochondria: in sickness and in health. Cell, 2012. 
148(6): p. 1145-59. 

43. Delettre, C., et al., Nuclear gene OPA1, encoding a mitochondrial dynamin-related 
protein, is mutated in dominant optic atrophy. Nat Genet, 2000. 26(2): p. 207-10. 

44. Alexander, C., et al., OPA1, encoding a dynamin-related GTPase, is mutated in 
autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet, 2000. 
26(2): p. 211-5. 

45. Fountoulakis, M., et al., The rat liver mitochondrial proteins. Electrophoresis, 2002. 
23(2): p. 311-28. 

46. Rezaul, K., et al., A systematic characterization of mitochondrial proteome from 
human T leukemia cells. Mol Cell Proteomics, 2005. 4(2): p. 169-81. 

47. Miller, K.E. and M.P. Sheetz, Axonal mitochondrial transport and potential are 
correlated. J Cell Sci, 2004. 117(Pt 13): p. 2791-804. 

48. Sheng, Z.H. and Q. Cai, Mitochondrial transport in neurons: impact on synaptic 
homeostasis and neurodegeneration. Nat Rev Neurosci, 2012. 13(2): p. 77-93. 



49. Czabotar, P.E., et al., Control of apoptosis by the BCL-2 protein family: implications 
for physiology and therapy. Nat Rev Mol Cell Biol, 2014. 15(1): p. 49-63. 

50. Hilton, M., G. Middleton, and A.M. Davies, Bcl-2 influences axonal growth rate in 
embryonic sensory neurons. Curr Biol, 1997. 7(10): p. 798-800. 

51. Liu, H., et al., Stabilization and enhancement of the antiapoptotic activity of mcl-1 by 
TCTP. Mol Cell Biol, 2005. 25(8): p. 3117-26. 

52. Yang, Y., et al., An N-terminal region of translationally controlled tumor protein is 
required for its antiapoptotic activity. Oncogene, 2005. 24(30): p. 4778-88. 

53. Zhang, D., et al., Physical and functional interaction between myeloid cell leukemia 1 
protein (MCL1) and Fortilin. The potential role of MCL1 as a fortilin chaperone. J 
Biol Chem, 2002. 277(40): p. 37430-8. 

54. Mori, M., et al., Expression of apoptosis inhibitor protein Mcl1 linked to 
neuroprotection in CNS neurons. Cell Death Differ, 2004. 11(11): p. 1223-33. 

55. Amson, R., et al., Reciprocal repression between P53 and TCTP. Nat Med, 2012. 
18(1): p. 91-9. 

56. Rho, S.B., et al., Anti-apoptotic protein TCTP controls the stability of the tumor 
suppressor p53. FEBS Lett, 2011. 585(1): p. 29-35. 

57. Vaseva, A.V. and U.M. Moll, The mitochondrial p53 pathway. Biochim Biophys 
Acta, 2009. 1787(5): p. 414-20. 

58. Leu, J.I., et al., Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 
complex. Nat Cell Biol, 2004. 6(5): p. 443-50. 

59. Gioio, A.E., et al., Local synthesis of nuclear-encoded mitochondrial proteins in the 
presynaptic nerve terminal. J Neurosci Res, 2001. 64(5): p. 447-53. 

60. Kim, S.H., et al., Decreased brain histamine-releasing factor protein in patients with 
Down syndrome and Alzheimer's disease. Neurosci Lett, 2001. 300(1): p. 41-4. 

61. Pagano, G. and G. Castello, Oxidative stress and mitochondrial dysfunction in Down 
syndrome. Adv Exp Med Biol, 2012. 724: p. 291-9. 

62. Chen, S.H., et al., A knockout mouse approach reveals that TCTP functions as an 
essential factor for cell proliferation and survival in a tissue- or cell type-specific 
manner. Mol Biol Cell, 2007. 18(7): p. 2525-32. 

63. Susini, L., et al., TCTP protects from apoptotic cell death by antagonizing bax 
function. Cell Death Differ, 2008. 15(8): p. 1211-20. 

 

  



FIGURES AND TABLES 

Figure 1. Axonal mRNA localization and local protein synthesis 

 

(A) Subcellular targeting of specific mRNAs depends on the recognition of 

localization barcodes by nuclear and cytoplasmic trans-acting factors (TAFs), which 

collectively associate as part of higher-order messenger ribonucleoprotein (mRNP) 

complexes. Most of the axon-targeting elements that have been identified are situated 

in the 3’UTR of the mRNAs, and are decoded by various TAFs operating 

synchronously. Some functionally related transcripts share similar axon-targeting 

motifs and are regulated by common sets of TAFs, a property that allows these 

messages to be translated simultaneously with temporal and spatial precision. 

(B1) Upon recruiting additional adapter proteins (not depicted), mRNPs are shipped 

along cytoskeletal tracts by motor-driven active transport mechanisms towards their 

subcellular destination. Notably, mRNAs are maintained in a translationally dormant 

state during the assembly and transport phases. 

(B2) By modulating the activation of mTORC1 signaling and, in parallel, eliciting 

changes in the binding affinity of specific TAFs, various local stimuli, including 

guidance cues, can bring about concerted alterations in gene expression programs. 

  



Figure 2. Tctp is required for axon development in the embryonic visual system 

(A) tctp knockdown in vivo was achieved using an antisense oligonucleotide 

morpholino (MO) delivered into both dorsal blastomeres of four-cell stage Xenopus 

laevis, which give rise to the entire central nervous system. The retinotectal projection 

was labeled by intra-ocular delivery of a fluorescent lipophilic dye (DiI) at stage 40, 

when pioneer axons have completed their stereotyped growth through the optic tract 

(OT) and reached their target area. Whereas control embryos consistently developed 

compact axon profiles and had innervated the optic tectum, Tctp deficiency resulted 

in stunted and splayed projections that lagged in their development. The retinotectal 

projection is labeled in orange by DiI. Dashed contour delineates the contralateral, 

dye-filled eye. 

(B) Tctp displays IgE-dependent histamine-releasing activity and other cytokine-like 

extracellular roles. Consequently, it could regulate axon development through its 

effects in the embryonic brain environment. To test this possibility, we devised an 

approach that generates embryos deficient in Tctp only in one half of the nervous 

system. Because the retinotectal projection projects contralaterally (i.e., axons from 

the left eye extend towards the right side of the brain), this methodology allowed us to 

probe the effects of a Tctp-deficient optic tract pathway. Overall, normal axons 

developed unaffected through the Tctp morphant environment, suggesting that the 

observed axon phenotypes are independent of Tctp acting extracellularly. 

 

 

 

 
  



Figure 3. Mechanistic insights into the role of Tctp in neuronal circuitry 

assembly 

The normal physiologic scenario is illustrated in (A), whereas the consequences of 

Tctp deficiency on axon development programs uncovered by our study are shown in 

(B).  



 
  



 
  



 
  



Table 1 
 
 
Table 1 | tctp is a highly enriched axonal mRNA 

 

Neuronal type Embryonic Adult Methodology Rank Ref. 

Dorsal Root Ganglia 
(Rat) ✓ ✓ Microarray 31st / 69th [5] 

Cortical Neurons 
(Rat) 

Not 
investigated 

✓ 
(aged in culture) Microarray 11th [2] 

Sympathetic Neurons 
(Rat) 

✓ 
(perinatal) 

Not 
investigated SAGE analysis 5th [3] 

      Retinal Ganglion Cells 
(Frog) a ✓b Not 

investigated Microarray 83rd / 72nd [4] 

Retinal Ganglion Cells 
(Mouse) a ✓ Not 

investigated Microarray 23rd [4] 

Retinal Ganglion Cells 
(Frog) ✓ Not 

investigated RT-qPCR n.a.c 
 [7] 

  
a mRNAs isolated specifically from the growth cone compartment. 
b Present in ‘pathfinding’ and ‘target-arrived’ axons. 
c 10-fold higher than actb. 


