
This space is reserved for the EPiC Series header, do not use it

Reasoning with Concept Diagrams about Antipatterns

Zohreh Shams1, Mateja Jamnik1, Gem Stapleton2, and Yuri Sato2

1 Computer Laboratory, University of Cambridge, Cambridge, UK
{zohreh.shams,mateja.jamnik}@cl.cam.ac.uk

2 Visual Modelling Group, University of Brighton, Brighton, UK
{g.e.stapleton, y.sato}@brighton.ac.uk

Abstract

Ontologies are notoriously hard to define, express and reason about. Many tools have
been developed to ease the debugging and the reasoning process with ontologies, however
they often lack accessibility and formalisation. A visual representation language, concept
diagrams, was developed for expressing and reasoning about ontologies in an accessible
way. Indeed, empirical studies show that concept diagrams are cognitively more accessible
to users in ontology debugging tasks. In this paper we answer the question of “ How can
concept diagrams be used to reason about inconsistencies and incoherence of ontologies?”.
We do so by formalising a set of inference rules for concept diagrams that enables stepwise
verification of the inconsistency and/or incoherence of a set of ontology axioms. The
design of inference rules is driven by empirical evidence that concise (merged) diagrams
are easier to comprehend for users than a set of lower level diagrams that offer a one-to-one
translation of OWL ontology axioms into concept diagrams. We prove that our inference
rules are sound, and exemplify how they can be used to reason about inconsistencies and
incoherence. Finally, we indicate how our rules can serve as a foundation for new rules
required when representing ontologies in diverse new domains.

1 Introduction

Ontologies are sets of statements that represent properties of individuals, classes and proper-
ties, that have mainly been expressed using symbolic notations such as description logics [3]
and OWL [1]. Although ontologies are widely used for knowledge representation in domains in-
volving diverse stakeholders, the languages they are expressed in are often inaccessible to those
unfamiliar with mathematical notations. To address this shortcoming some ontology editors,
such as Protégé [2], provide visualisation facilities. Instead of using diagrams as an auxiliary
tool to aid comprehension and accessibility, like in Protégé, some have taken one step further by
using a logic that is fundamentally diagrammatic (e.g., [4, 7]). However, these diagrammatic
notations are either informal [4] or do not fully exploit the potential of formal diagrammatic
notations (e.g., [7]). Concept diagrams [14] are designed for expressing ontologies by taking into
account cognitive theories of what makes a diagrammatic notation accessible, in particular to
novice users [5]. They are extensions of Euler diagrams and, in addition to closed curves for set
representation, they use dots (spiders) and arrows for individuals and properties, respectively.

Similar to traditional logical systems, concept diagrams are also equipped with inference
rules. Thus, they can be used not only for specifying ontologies, but also for reasoning about and
evaluating ontologies. Debugging ontologies plays a key role in ontology evaluation [12]. Two
main characteristics of an ontology that are often checked during debugging are inconsistency
and incoherence. Patterns that give rise to inconsistency and incoherence, i.e., antipatterns,
capture states of affairs resulting in the creation of unintended model-instances of an ontology [6,
9]. An inconsistent ontology is one that cannot have any model and, so, entails anything [11],
whereas an incoherent ontology is one that entails an unsatisfiable (i.e., empty) class or property.
In order to derive meaningful conclusions from an ontology, inconsistencies and incoherences
must be detected and eliminated, so that the ontology is repaired before publishing.

Concept diagrams have been used for incoherence checking in the past and, in fact, there
is empirical evidence [13] that when conducting incoherence checking, novice users perform
significantly better using concept diagrams as opposed to using OWL [1] or description logics [3].
The same study also compares user performance in incoherence detection tasks when ontology
axioms are translated to concept diagrams one by one, with user performance when the axioms
are translated and merged into a single diagram: merging concept diagrams makes it easier
for humans to reason about incoherence in ontologies [13]. This result coincides with cognitive
evidence [18] that humans often mentally merge the representations corresponding to axioms
into one when performing inconsistency and incoherence checking tasks.

In this paper, we address the question of “How can concept diagrams be used to reason
about inconsistencies and incoherence of ontologies?”. We address this by presenting a set of
concept diagrams inference rules that do not lead to one-to-one translations of ontology axioms.
Rather, they merge a number of axioms into a concise and cognitively more accessible concept
diagram. We base our design of inference rules on empirical evidence that concise (merged)
diagrams are easier to comprehend for users than a set of lower level diagrams that express
equivalent information [13]. Thus, the central role of our inference rules is to enable stepwise
verification of the inconsistency and/or incoherence of a set of ontology axioms. We prove that
our concept diagrams inference rules are sound and exemplify how they can be used to spot
inconsistency and incoherence. Finally, we indicate how the set of rules that we introduced can
serve as a basis for devising new inference rules for representing ontologies in new domains. We
argue that concept diagrams are an ontology reasoning tool accessible to diverse non-expert
stakeholders.

This paper is organised as follows. In Section 2 we give an overview of the syntax and
semantics of concept diagrams, followed by Section 3 that introduces how concept diagrams are
reasoned with for inconsistency and incoherence checking of ontologies. In Section 4 we review
the related work and finally, we conclude in Section 5.

2 Concept Diagrams

This section presents the syntax and semantics of concept diagrams [19]. We start with an ex-
ample in Figure 1. This concept diagram has the following syntax and semantic interpretation:

• One dot – called a spider – which represents a named individual, s;

• Two boundary rectangles (represented by ◻) each of which represents the universal set.

• Seven curves, representing seven sets, five of which have labels A to E. The two curves
without labels represent anonymous sets. The spatial relationships between curves and
spiders within a boundary rectangle convey semantics. For examples, the syntax within
the LHS rectangle says that the individual s is in the set B; B is a subset of A; the sets
A and C are disjoint; and the anonymous set is a subset of C. we discuss arrows).

Figure 1: A concept diagram.

• Shading (e.g., inside curve B) which is used to place upper bounds on set cardinality: in
a shaded region, all elements are represented by spiders. Thus, the only element in B is
s.

• Two arrows, one of which is solid and the other one is dashed and annotated with ≥ 1.
Arrows are used to convey semantics about binary relations, using their sources and
targets. The solid arrow asserts that things in A are only related to things in C under
op1. The unlabelled curve, say c1, targeted by op1 represents the set of things to which
elements of A are related under op1. The dashed arrow is sourced on c1 and again targets
an unlabelled curve. This unlabelled curve, say c2, represents a subset of D to which
elements of c1 are related under op2. of c2 inside the curve labelled D expresses that Y
is subset of D. The dashed arrow’s annotation, ≥ 1, places a constraint on the set c1: all
elements of c1 must be related to at least one element of c2 under op2.

Note also that a solid arrow (e.g., op1) from a curve to an unnamed subset of another curve
represents the well-known ontology axiom of “All Values From”. Similarly, a dashed arrow
(e.g., op2) with cardinality ≥ 1 from a curve to an unnamed subset of another curve Next, we
give formal accounts of the syntax and semantics of concept diagrams.

2.1 Syntax

When using concept diagrams for ontology representation, ontology classes, individuals in
classes, and object properties, are respectively represented by curves, spiders and arrows. These
require labels. Therefore, we start by defining three pairwise disjoint sets, LS (for identifying
particular individuals), LC (for particular classes), and LA (for object properties), which are,
respectively, sets of names for spiders, curves and arrows. Informally, in concretely drawn
diagrams (as opposed to their sentential abstract representation), spiders and curves are al-
lowed to be unlabelled, as seen in Figure 1. Formally, however, these unlabelled entities act as
variables. As such, we define two further pairwise disjoint, countably infinite sets (also disjoint
from the former three), VS (for anonymous individuals), VC (for anonymous classes) which are
variables for spiders and curves respectively. In drawn concept diagram, we typically omit
labels for variables to avoid clutter. However, if the same anonymous spider or curve appears
more than once, so that the variable label is used on more than one spider or curve, then this
label must be drawn. Further, we define LA− = {op− ∶ op ∈ LA}, allowing us to denote inverse
properties.

At the abstract level, concept diagrams include a set of spiders that are chosen from a
countably infinite set, S. In a drawn diagram, each spider is a tree whose nodes are placed in
distinct zones (i.e., dots connected by lines placed in ‘minimal’ regions in the diagram). Any
two spiders may be joined by ÔÔ, to assert that two individuals are the same. For example, if
s in Figure 1 was joined to, say s′ (i.e., s ÔÔ s′), they would be the same individual. Also,

ÔÔ may be annotated with ? (i.e.,
?
ÔÔ) to indicate uncertainty about equality: the two spiders

may represent either equal or distinct individuals.

Concept diagrams also include closed curves, selected from a countably infinite set, C. The
closed curves give rise to zones that are regions inside some or none of the curves. Formally, a
zone is a pair of finite, disjoint sets of curves, (in,C/in), where C ⊆ C is a finite set of curves.
Intuitively, (in,C/in) is inside every curve of in ⊆ C and outside every curve of C/in. For
example, in Figure 1, both LHS and RHS diagram components have five zones.

Arrows are another component of concept diagrams. At the abstract level, arrows are of
the form (s, t, ○) and all of them are labelled. Here, s is the arrows source, t is the target
and ○ is either → or ⇢. Arrows can be sourced on the boundary rectangle, curves or spiders.
Arrow labels can be object properties, or their inverses. Arrows can also be assigned labels that
express minimum, maximum and equality cardinality constraints. These labels are written on
arrows in diagrams as ≤ n, ≥ n and = n; formally they are ordered pairs, such as (≤, n).

Prior to defining concept diagrams, we define class and object property diagrams (Defi-
nition 1) that are the main building blocks of concept diagrams, and allow assertions to be
made about classes and object properties of an ontology in a universe (i.e., within a boundary
rectangle).

Definition 1 (Class and object property diagram). A class and object property diagram,
χ = (S,C,Z,Z∗, η, τ=, τ?,A, λs, λc, λa, λ#) consists of:
1. S ⊂ S that is a finite set of spiders;
2. C ⊂ C that is a finite set of curves;
3. Z that is a set of zones such that Z ⊆ {(in,C/in) ∶ in ⊆ C}.
4. Z∗ ⊆ Z that is a set of shaded zones;
5. η ∶ S → P(Z)/{∅} that is a function that returns the location of each spider. P(Z)

represents the set of subsets (i.e., powerset) of Z, and since the habitat of a spider has to
be a non-empty set of zones, we remove ∅ from P(Z);

6. τ= that is a reflexive, symmetric relation on S that identifies whether two spiders are
joined by an equals sign; (s1, s2) ∈ τ= means that s1 is joined to s2 by ÔÔ (indicating they
are the same);

7. τ? that is a reflexive, symmetric relation on S, disjoint from τ=. It identifies if two spiders

are joined by
?
ÔÔ; (s1, s2) ∈ τ? means s1 is joined to s2 by

?
ÔÔ (indicating that s1 and s2

may or may not be equal);
8. A that is a finite multiset of arrows such that for all (s, t, ○) in A, s and t are in S∪C∪{◻};
9. λs ∶ S → LS ∪ VS that is a function that maps spiders to spider labels;
10. λc ∶ C → LC ∪ VC that is a function that maps curves to curve labels;
11. λa ∶ A→ LA ∪LA− that is a function that maps arrows to arrow labels or their inverses.
12. λ# ∶ A→ (≤,=,≥)×N that is a partial function that maps arrows to cardinality constraints.
We write S(χ) to denote the set of spiders in χ and so forth for the other sets.

We are now in a position to define concept diagrams. A concept diagram (Definition 2), is
a set of class and object property diagrams, possibly with additional arrows that have a source
inside one boundary rectangle and a target inside another. Figure 1, op2 is an arrow that has
its source and target in two different rectangles. additional arrows are chosen from LA and
they may be annotated with cardinalities. Below is the formal definition of concept diagrams.
Item 2 of this definition guarantees that the set of arrows in Ao have their source and targets in
two different rectangles (e.g., op2 in Figure 1). In other words, these arrows are different from
the set A in class and object property diagrams, when the source and target of the arrows are
within the same rectangle (e.g., op1 in Figure 1).

Definition 2 (Concept Diagram). A concept diagram d = (COP,Ao, λo, λ#), has components
defined as follows:

1. COP is a finite set of class and object property diagrams such that for any pair of distinct
diagrams, χi and χj, in COP, S(χi) ∩ S(χj) = ∅ and C(χi) ∩C(χj) = ∅.

2. Ao is a finite multiset of arrows such that for all (s, t, ○) in Ao,
(a) s ∈ ⋃

χ∈COP
S(χ)∪C(χ)∪ ({◻}× COP) and t ∈ ⋃

χ∈COP
S(χ)∪C(χ)∪ ({◻}× COP), and

(b) for all diagrams, χ, in COP it is not the case that s ∈ S(χ) ∪ C(χ) ∪ {(◻, χ)} and
t ∈ S(χ) ∪C(χ) ∪ {(◻, χ)},

3. λo ∶ Ao → LA ∪LA− is a function that maps arrows to object property and their inverses,
4. λ# ∶ Ao → {≤,=,≥} ×N is a partial function that maps arrows to cardinality constraints.

2.2 Semantics

We take a standard approach to defining the semantics of concept diagrams. First, the vocab-
ulary over which the logic is defined is interpreted appropriately (Definition 3), which is the
basis for our definition of a model for a concept diagram (Definition 5).

Definition 3 (Interpretation). An interpretation is a pair, I = (U, .I), where
• U is a non-empty set, called the universal set,
• for each element i in LS , iI is an element of U ,
• for each element c in LC, cI is a subset of U ,
• for each element op in LA, opI is a binary relation on U .

We also need to interpret the variables and zones in class and object property diagrams. To
do so, we first extend interpretations to variables.

Definition 4 (Extended Interpretation). Given an interpretation, I = (U, .I), an extended

interpretation is a pair, I ′ = (U, .I′), such that

• for each element x in VS , xI
′

is an element of U , and
• for each element X in VC, XI′ is a subset of U .

Definition 5 (Model). 1 Let d = (COP,Ao, λo, λ#) be a concept diagram and let I = (U, .I) be

an interpretation. I is a model for d if there exists an extended interpretation, I ′ = (U, .I′),
such that
1. for each class and object property diagram χi, in COP

(a) the union of the sets represented by the zones in χ is U , that is ⋃
z∈Z(χ)

zI
′ = U , where

each zone z = (in,C/in) represents the set zI
′ = (⋂

κ∈in
λc(κ)I

′)/(⋃
κ∈C/in

λc(κ)I
′);

(b) each shaded zone in χ represents a set containing only elements mapped to by spiders

in χ, that is zI
′ ⊆ ⋃

σ∈S(χ)
{λs(σ)I

′};

(c) for each spider, σ, in χ, λs(σ)I
′

is an element in the set denoted by one of the zones
in which σ is placed;

(d) any two spiders, σ1 and σ2, in χ not joined by ÔÔ map to distinct elements, that is

λs(σ1)I
′ ≠ λs(σ2)I

′

;
(e) any two spiders, σ1 and σ2, in χ joined by ÔÔ but not annotated with ? map to the

same element, that is λs(σ1)I
′ = λs(σ2)I

′

;

1For simplicity and succinctness, the definition treats sets rather than a case split for single elements and
sets. Thus, we treat single elements as singleton sets. For example, when assigning meaning to arrows in the
second part of this definition, a spider represents an element via its label, but we treat this element as a singleton
set.

(f) for each solid arrow, aj, with source s, target t and label op, the image of opI when
the domain is restricted to the set represented by s, equals to the set represented by
t;

(g) for each dashed arrow, aj, with source s, target t and label op, the image of opI

when the domain is restricted to the set represented by s, is a superset of the set
represented by t;

(h) if an arrow is annotated with cardinality constraint, (◇, n), then each element of the
source set is related to ◇n elements in the target set, and

2. for each connecting arrow, aj, in Ao with source in χi and target in χj,
(a) if aj is a solid arrow with source s, target t and label op, the image of opI when the

domain is restricted to the set represented by s, equals to the set represented by t;
(b) if aj is a dashed arrow with source s, target t and label op, the image of opI when the

domain is restricted to the set represented by s, is a superset of the set represented
by t;

(c) if aj is annotated with a cardinality constraint, (◇, n), then each element of the source
set is related to ◇n elements in the target set.

Let D be a set of concept diagrams. Then I is a model for D if I is a model for each concept
diagram in D.

3 Reasoning with Concept Diagrams

Similar to traditional logical systems, concept diagrams are equipped with inference rules.
Reasoning with concept diagrams involves using different kinds of inference rules including
first-order logic rules (e.g., substitution [5]), pure diagrammatic rules (e.g., Delete Syntax, see
Section 3.1), and rules that combine information from two diagrams. The latter category allows
merging concept diagrams. In what follows, we first mention the existing inference rules for
concept diagrams. Next, based on existing rules, we introduce inference rules that are tailored
for merging concept diagrams and thus support inconsistency/incoherence checking tasks.

3.1 Existing Inference Rules

Here we briefly explain the set of sound inference rules devised before [5]. They are applicable
to the fragment of concept diagrams we characterised in Section 2. Figure 2 exemplifies each
inference rule. Rules are displayed in two dimensions, the conclusions and premises separated
by a line. For instance, d1 d2

d3
R shows rule R with premises d1 and d2 and conclusion d3.

• Delete Syntax (del): this inference rule removes syntax from a diagram.
• Copy Spider (c): this rules copies a spider in a curve from diagram d1 to d2, where d2

contains the same curve with no spider.
• Copy Curve 1 (cc1): this inference rule copies curve C from diagram d2 to d1, where both

diagrams contain curve B, while C is a curve containing B only in d2.
• Copy Curve 2 (cc2): this inference rule copies curve B from diagram d2 to d1, where both

diagrams contain spider s2 and s2 is in curve B in d2 only.

Apart from del that is information weakening, the other three rules are equivalences.

In addition, concept diagrams are a superset of spider diagrams [8], thus we inherit all of
the inference rules for spider diagrams (as used in Speedith [20], a diagrammatic reasoner for
spider diagrams). Due to space limitation, we refer the readers to [20] for details.

Figure 2: Inference rules from [5].

3.2 Incoherence and Inconsistency

We begin by defining what it means for D, a set of concept diagrams representing axioms in
ontology o, to be incoherent and inconsistent [17].

Definition 6 (Incoherence). A set of concept diagrams, D, is incoherent, if one of the fol-
lowing conditions is met:

• there is a label, A, in LC such that for all models, I = (U, .I), for D AI = ∅,
• there is a label, op, in LA such that for all models, I = (U, .I), for D opI = ∅,

Such empty labels are called unsatisfiable.

According to Definition 6, to prove that ontology o is incoherent, we have to show that a
class or an object property is unsatisfiable (i.e., empty). When using a set of concept diagrams,
D, to define o, the task is thus to prove a lemma of the form:

(i) a curve labelled A necessarily represents an empty class, or
(ii) an arrow labelled op necessarily represents an empty object property.

A lemma of type (i) is proved if, carrying out the proof visually, we derive a diagram in
Figure 3a: an entirely shaded region with no spiders represents the empty set in any model.
Type (ii) lemmas are proved if the proof derives a diagram in Figure 3b, in which the target of
the arrow is entirely shaded with no spiders: this target represents the empty set, implying the
image of op is empty, thus op is an empty relation.

For example, both top inference rules in Figure 4 spot an incoherence by showing that A is
unsatisfiable. On the left, we have that curve A is disjoint from itself, which is only possible
when A is empty. On the right, we have that the the universal image of op is restricted to B,
while there is set A such that the partial image of A under op includes C. However, C and B
are disjoint. Since the universal image of op is restricted to B, the image of A under p cannot
be outside B, which is clearly not the case here. So A is empty. The bottom inference rule
shows that object property op is empty, because the first premise displays the image of op as a
subset of intersection of B and C, while the second premise defines B and C as disjoint.

We now define what it means for a set of concept diagrams to be inconsistent. Compared
to incoherence, inconsistency requires much stronger conditions to be met. As we proceed, we
also adopt ⊥ as a canonical representation of inconsistency.

(a) A is empty. (b) op is empty.

Figure 3: Representation of incoherence in concept diagrams.

Figure 4: Incoherence examples.

Definition 7 (Inconsistency). A set of concept diagrams, D, is inconsistent, if it has no
models.

Diagrams in Figure 5 show antipatterns that lead to inconsistency. In the top left, we
state that A and B are disjoint and then we assert that they have at least one element, s1, in
common. Both classes A and B are inconsistent in this case. Inconsistency in the top right
figure is caused by class B, since if B is a subset of A it cannot have an element, such as s1,
that is not in A. The bottom rule shows an example of an inconsistent object property, where
we first have that the image of A under op is restricted to B, then we have that the image is
restricted to C, while B and C are disjoint non-empty sets.

3.3 Using Inference Rules to Detect Incoherence and Inconsistency

Having defined incoherence and inconsistency, we now design inference rules that facilitate their
detection. We derive proofs for Lemma 1 and Lemma 2 that show that two sets of axioms are
incoherent and inconsistent, respectively. To prove these lemmas we design inference rules that
step-by-step take us from the axioms to the goal state in which the lemma is proved. These
inference rules are general and can then be used for similar reasoning cases in the same or a
different ontology. Our approach to designing inference rules is driven by the requirements of
the proof, rather than in isolation from the proof. Therefore, we believe that, in addition to
being sound, proof driven inference rules give rise to more natural proofs. In contrast, the
established common approach to designing inference rules in logic is primarily driven by the
requirements of the theoretical properties (e.g., soundness and completeness) of the rules.

Figure 5: Inconsistency examples.

(a) (b) (c) (d)
isEnhancedBy 1

SuperPower

isEnhancedBy
Thunder GodDevice SuperPower

GodDevice

Device

Figure 6: A set of incoherent axioms.

The following lemma shows that the set of axioms in Figure 6 is incoherent.

Lemma 1. Thunder is empty.

Proof. Figure 7 shows the proof.

In this proof (Figure 7), we aim to establish that “Thunder” is empty from axioms in
Figure 6. In the first step, Axioms (c) and (d) are merged by using inference rule cc. cc is one
of existing rules for spider diagrams [8] and stands for copy contour (contours in spider diagrams
are equivalent to curves in concept diagrams) and is introduced in Speedith [20]. Applying cc
to diagram d copies the curve labelled “GodDevice” from diagram (d) to diagram (e), giving
diagram (e) as conclusion. In the next step (e) and (a) are merged using cc twice in a row.
“SuperPower” already exists in (a), so the two curves being copied from (e) to (a), are “Device”
and “GodDevice”. The result of merging (e) and (a) gives (f). Next, (f) and (b) are merged
using rule mrg1 . This rule is formally defined in Definition 8.

Definition 8 (rule mrg1). Let d1 and d2 be two concept diagrams, each containing an arrow,
a1 and a2 respectively, labelled op such that
1. a1 is solid, its source is some boundary rectangle, ◻, and its target is a curve, c1t in χ1t;
2. a2 is dashed or solid and its source and target are curves c2s and c2t in χ2s and χ2t,

respectively, while c2t is properly contained in c3.
Also let χ1t in d1 contain curve c4 disjoint from c1t, such that c4 has the same label as c3 in
d2. Now let d3 be a concept diagram such that d3 is a copy of d1 with a new arrow, a3, and two
new curves, c5, and c6 as follows:
1. c5 is added to the boundary rectangle that is the source of a1 in d1,
2. c5 has the same label as c2s in d2 ,
3. c6 is added inside c4 from d1,
4. c6 has the same label as c2t in d2 ,
5. a3 is sourced on c5 and targets c6, and
6. a3 has the same shape (i.e., dashed or solid), label and cardinality as a2 in d2.
Then diagram d1 can be merged with diagram d2 to form diagram d3 using rule mrg1 .

Thunder isEnhancedBy
SuperPower

isEnhancedBy 1

(c) (d)

SuperPower

GodDevice

Device

(e)

SuperPower

GodDevice (a)

SuperPower

isEnhancedBy

(f)

SuperPower

isEnhancedBy

GodDevice

(b)
isEnhancedBy 1

Thunder GodDevice

(g) GodDevice

(h)

Thunder

Figure 7: A proof of Lemma 1.

Figure 8: Inference rule mrg1.

(m) (n) (o)
isMemberOf

AlienTeam
Robot

isMemberOf

HumanTeam HumanTeamRobot

Figure 9: A set of inconsistent axioms.

mrg1 is exemplified in Figure 8, where in the left hand premise c1t and c4 are represented
by curves labelled A and B. On the right, c2s, c3, and c2t are represented by curves labelled
C, B, and D. In the conclusion, c5,and c6 are represented by curves C and D.

After merging (f) and (b) and deducing (g), the next inference rule used in Figure 7 is
incoh2, defined in Definition 9, and exemplified in Figure 4.

Definition 9 (rule incoh2). Let d be a concept diagram with two arrows a1 and a2 with the
same label op, such that
1. a1 is solid, its source is some boundary rectangle and its target is curve c1t in another

boundary rectangle that frames concept and object property diagram χt,
2. a2 is dashed or solid, its source is curve c2s whose label is in LC and which is in the

boundary rectangle that is the source of a1, its target is curve c2t in χt and it is annotated
with (◇, n) where ◇ ∈ {≥,=} and n ≥ 1,

3. c2t and c1t are disjoint.
Applying rule incoh2 to d gives d′, where d′, in its boundary rectangle, contains a single curve
c3 that is all shaded, contains no spiders and has the same label as c2s in d.

Applying rule incoh2 to (g) gives (h), where “Thunder” is fully shaded (i.e., is empty) and
therefore the lemma is proved and the set of axioms in Figure 6 is incoherent.

We now prove a lemma that shows that the set of axioms in Figure 9 is inconsistent.

Lemma 2. Robot is inconsistent.

Proof. Figure 10 shows the proof.

In the above proof, we aim to establish that “Robot” is inconsistent, using axioms presented
in Figure 9. The first inference rule used in Figure 10 merges Axioms (m) and (n) using img5.
This inference rule is exemplified in Figure 11 (top left corner). According to this rule if we
have two assertions stating the universal image of property op as classes c1t and c2t, then they
must represent the same set and therefore, all the spiders in one belong to the other one too.
The other inference rules in Figure 11, named img6, img7 and img8, are variants of img5 with
different combination of arrows. We will discuss these variants in Section 3.4. Definition 10
formalises img5 and the conditions under which it is applicable.

Definition 10 (rule img5). Let d1 and d2 be two concept diagrams, each containing a solid
arrow a1 and a2, labelled op, such that
(i) a1’s source is some boundary rectangle, and its target is curve c1t in χ1t, where c1t is

properly contained by some other curve c3,
(ii) a2’s source is some boundary rectangle, and its target is curve c2t in χ2t.
Let d3 be a copy of d2 with an additional curve c4, such that
(i) c4 is added to χ2t and it splits each existing zone into two, one inside and one outside c4

except the zones inside c2t, which are not split but are all inside c4, and
(ii) the label of c4 is the same as c3 in χ1t.
Diagram d2 can be merged with curve c3 from d1 to form d3 using rule img5.

(m) isMemberOf

AlienTeam
Robot

(n) isMemberOf

HumanTeam

AlienTeam
Robot

HumanTeam

isMemberOf

(o)

HumanTeamRobot

(q)

Robot

HumanTeam

(r)

Figure 10: A proof of Lemma 2.

Figure 11: Inference rule img5 and its variants.

By applying img5 to Axioms (m) and (n), we deduce diagram (q). Next, applying rule del
to (q) gives (r). del is one of the existing rules for concept diagrams that was explained in
Section 3.1. Merging (r) with Axiom (o) is done using inference rule incons1 (exemplified in
Figure 5), that is described in Definition 11.

Definition 11 (rule incons1). Let d1 and d2 be two concept diagrams such that there are two
curves in d1, say c1 and c2, that are disjoint, while d2 contains two curves c3 and c4 with at
least one spider in their intersection. If c1 and c2 in d1 have the same labels as c3 and c4 in
d2, respectively, rule incons1 spots the inconsistency and concludes false (�).

By applying incons1 to r and o, we deduce false, and spot the inconsistency of “Robot”
and hence the inconsistency of a set of axioms presented in Figure 9.

3.4 Correctness

In order to evaluate the results in this paper, we investigate the soundness and completeness
of inference rules introduced. Rules used in proofs of Lemma 1 and Lemma 2 are cc, mrg1,
incoh2, img5, del and incons1. cc and del are proved sound in [5] and [20], respectively. Due to
space limitation, below we only prove the soundness of rule incoh2. Other rules can be proven
sound in a similar manner.

Theorem 3. Rule incoh2 (Definition 9) is sound.

Proof. (Sketch) We need to show that any model for the premise (d), is also a model for
the conclusion (d′). Let I = (U, .I) be an interpretation such that there exists an extension,

I ′ = (U, .I′) that shows I is a model for d. Then for the solid arrow a1, the image of opI
′

equals λc(c1t)I
′

. Due to the cardinality constraint, (◇, n), on a2, each element of λc(c2s)I
′

is

related to at least one element of λc(c2t)I
′

under opI
′

. Suppose, for proof by contradiction, that

λc(c2s)I
′ ≠ ∅. Let e ∈ λc(c2s)I

′

and let e′ be an element in λc(c2t)I
′

that e is related to under

opI
′

. Then e′ is an element of λc(c1t)I
′

. So λc(c1t)I
′ ∩ λc(c2t)I

′ ≠ ∅. On the other hand, since

I is a model for d, and c1t and c2t are disjoint in d, we have λc(c1t)I
′ ∩λc(c2t)I

′ = ∅. Therefore

the assumption that λc(c2s)I
′ ≠ ∅ is false. Consider now the only curve, c3, in d′. Since λc(c)

is a label in LC , any extension, I ′′, of I clearly ensures λc(c3)I
′′ = ∅. Since c3 is entirely shaded,

I satisfies d′. Hence, I is a model for d′, as required.

Ensuring completeness in most logical systems is hard. For a diagrammatic logic for ontolo-
gies based on concept diagrams, the difficulty is caused by (i) the existence of several syntactic
elements for concept diagrams (e.g., spiders, curves, shading, etc.); and (ii) the constant need
to devise new rules to capture the inference required when reasoning about ontologies repre-
senting different domains. We conjecture that concept diagrams, as defined here, correspond to
a fragment of second-order logic with one and two place predicates. One-place and two-place
predicates arise due to the use of labelled curves and arrows respectively. Second-order (existen-
tial) quantification occurs through the use of unlabelled curves. Although concept diagrams do
not contain quantifiers in their syntax, an equivalent fragment of SOL would need to do so. For
instance, two non-overlapping labelled curves, A and B say, give rise to (first-order) universal
quantification and express ∀x ¬(A(x)∧B(x)). Due to the restricted way in which second-order
quantification arises, finding a complete set of inference rules should be possible. As a step
toward completeness, here we explain a systematic approach to extend a set of inference rules
for a specific ontology with respect to the syntactic elements of concept diagrams. Exploring
the systematic approaches to extend inference rules allows devising a larger and more compre-
hensive set of rules that are more likely to cover the inference requirements of new ontologies
representing other domains.

We explain the extensibility of inference rules by referring to Figures 11 and 12, where we
systematically come up with variants for the pattern of rule img5 that was directly used in the
proof of Lemma 2. Inference rules img6, img7 and img8 in Figure 11, show the variant of img5
for other combination of arrows. We focus on arrows because no previous work has introduced
inference rules in presence of both solid and dashed arrows. Since we only have two types of
arrows (dashed and solid), the four possible combinations are when (i) they are both solid (as
in img5), (ii) the first one (i.e. the left hand one) is solid and the second one (i.e. the right
hand one) is dashed (as in img6); (iii) the first one is dashed and the second one is solid (as in
img7); and when (iv) they are both dashed (as in img8).With respect to arrows, img5 can also
have variants when both arrows have cardinalities, or none do, or else the first one does, while

Figure 12: More variants for Inference rule img5.

the second one does not. Apart from arrows, img5 can have variants with respect to the other
syntactic elements such as curves and spiders. For instance, the source of op in the premises of
each rule can be a specific curve rather than a boundary rectangle. Likewise, the target of the
arrows can be a boundary rectangle or a spider instead of a curve. As an example, we provide
four more variants for inference rule img5 in Figure 12, namely img9 to img12. These variants
assume that the source of op in the first premise is a curve rather than a boundary rectangle
and also they do not make any assumptions about existence of spiders in curves.

4 Related Work and Discussion

Debugging ontologies is a challenging task. A variety of tools, in particular visualisation
tools [15, 16], have been developed to help ontology engineers with the debugging process.
Similar to these efforts, concept diagrams attempt to aid debugging ontologies through visu-
alisations. However, we argue that in addition to having cognitive advantages over DL and
OWL [13], concept diagrams are cognitively more accessible than ontology visualisation meth-
ods based on node-link diagrams (e.g., SOVA [15] and VOWL [16]). This can naturally be
explained by referring to better well-matchedness [10] of concept diagrams to ontologies. Well-
matchedness of a notation is assessed based on how well its syntax and semantics mirror each
other. Concept diagrams use syntactic spatial relationships (e.g., curve containment) to reflect
the corresponding semantics (e.g., subset relation). In node-link diagrams classes and prop-
erties are represented as nodes, while different arrow-like connectors are used to capture the
relation between the nodes. In contrast to concept diagrams, node-link diagrams use topological
relations to convey semantics (e.g., subset superset relation is expressed using an arrow with a
hollow end). Since these diagrams are not well-matched with the semantics, users have to mem-
orise the purpose of multitude of different connectors and arrows. The lack of well-matchedness
in tools like [15, 16] suggests that they may not be as cognitively effective as concept diagrams.

In addition to cognitive advantages, concept diagrams are fully formalised, which is not
the case for several ontology visualisation tools (e.g., UML diagrams [4]) that are merely for
visual modelling. As a formalised logical system, concept diagrams can be used not only as a
visualisation tool, but also as a reasoning tool. The reasoning capability of concept diagrams
was first highlighted in [5]. The fragment of concept diagrams they use allows quantifiers over
elements and subsets of the universe, but unlike the fragment we use, does not include dashed

arrows to represent “Some Values From” axioms. In designing our inference rules, we build on
the set of inference rules from [5] that are applicable to the fragment of concept diagrams we
use here (i.e., those that are not dealing with quantifiers). Unlike [5], we focus on inference
rules for merging and hence for antipattern checking.

Similar to our work, concept diagrams have recently been used for the detection and justifi-
cation of antipatterns [13]. However, in [13] the focus is on the specification and representation
of incoherence using concept diagrams rather than the inference rules and the reasoning mech-
anism that checks incoherence. In contrast, our goal is to design inference rules for reasoning.
Moreover, we use these inference rules for reasoning about both, incoherence and inconsistency.

5 Conclusion and Future Work

In this paper we described how to reason about inconsistency and incoherence in ontologies
using concept diagrams. Unlike, many visual tools for ontology engineering [15, 16], concept
diagrams are designed to be formal, yet accessible, evidenced by empirical studies [13]. There
are two alternatives to use concept diagrams as ontology debugging tool, namely (i) to prove
a one to one translation of ontology axioms in concept diagrams; and (ii) to merge ontology
axioms in a single concept diagram.We focused on the latter. This choice was informed by
existing cognitive empirical evaluations [18, 13] and resulted in proposing a set of inference
rules for merging concept diagrams. We showed that the inference rules we introduced are
sound, and moreover how they can be used in proofs of inconsistency and incoherence. In
addition, we explained how these rules can be extended to cover similar cases.

We conjecture that the fragment of concept diagrams used in this paper (Section 2) is as
expressive as second-order logic with one and two place predicates. In the future we will extend
the set of inference rules for this fragment with the aim of achieving completeness. Next we will
devise inference rules for more expressive versions [5] of concept diagrams that allow variable.

We will use concept diagrams and inference rules presented for them in this paper in building
the first mechanised reasoning system for concept diagrams and reasoning about antipatterns
in ontology engineering. A very exciting aspect of the future work from this perspective is the
empirical studies that we have outlined to inform the intuitiveness of the inference rules we are
implementing. We strongly believe that the intuitiveness of the inference rules can significantly
contribute to a more accessible reasoner for ontology engineering. In fact, right now we are
conducting an empirical study that compares the accessibility and expressiveness of concept
diagrams for inconsistency checking in ontologies with OWL [1] and VOWL [16].

Acknowledgments

This research was funded by a Leverhulme Trust Research Project Grant (RPG-2016-082) for
the project entitled Accessible Reasoning with Diagrams.

References

[1] The OWL2 web ontology language. https://www.w3.org/TR/owl2-direct-semantics/, Dec. 2016.

[2] Protégé: A free, open-source ontology editor. http://protege.stanford.edu, December 2016.

[3] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics. In Handbook on Ontologies,
pages 21–43. 2009.

[4] Saartje Brockmans, Raphael Volz, Andreas Eberhart, and Peter Löffler. Visual modeling of OWL
DL ontologies using UML. In The Semantic Web 2004: Third International Semantic Web Con-
ference, volume 3298 of Lecture Notes in Computer Science, pages 198–213. Springer, 2004.

[5] Peter Chapman, Gem Stapleton, John Howse, and Ian Oliver. Deriving sound inference rules for
concept diagrams. In 2011 IEEE Symposium on Visual Languages and Human-Centric Computing,
VL/HCC 2011, pages 87–94. IEEE, 2011.

[6] Óscar Corcho, Catherine Roussey, Luis Manuel Vilches Blázquez, and Iván Pérez. Pattern-based
OWL ontology debugging guidelines. In Proceedings of the Workshop on Ontology Patterns (WOP
2009), volume 516 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.

[7] Frithjof Dau and Peter W. Eklund. A diagrammatic reasoning system for the description logic
ACL. Journal of Visual Languages and Computing, 19(5):539–573, 2008.

[8] Joseph Gil, John Howse, and Stuart Kent. Formalizing spider diagrams. In 1999 IEEE Symposium
on Visual Languages, pages 130–137. IEEE Computer Society, 1999.

[9] Giancarlo Guizzardi and Tiago Prince Sales. Detection, simulation and elimination of semantic
anti-patterns in ontology-driven conceptual models. In Conceptual Modeling - 33rd International
Conference, ER 2014, pages 363–376. Springer International Publishing, 2014.

[10] Corin A. Gurr. Effective diagrammatic communication: Syntactic, semantic and pragmatic issues.
Journal of Visual Languages and Computing, 10(4):317–342, 1999.

[11] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Explaining inconsistencies in OWL ontologies.
In Scalable Uncertainty Management, Third International Conference, SUM 2009, volume 5785 of
Lecture Notes in Computer Science, pages 124–137. Springer, 2009.

[12] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF to OWL:
the making of a web ontology language. Journal of Web Semantics, 1(1):7–26, 2003.

[13] Tie Hou, Peter Chapman, and Andrew Blake. Antipattern comprehension: An empirical evalua-
tion. In Formal Ontology in Information Systems - Proceedings of the 9th International Conference,
volume 283 of Frontiers in Artificial Intelligence and Applications, pages 211–224. IOS Press, 2016.

[14] J. Howse, G. Stapleton, K. Taylor, and P. Chapman. Visualizing ontologies: A case study. In
International Semantic Web Conference, pages 257–272. Springer, 2011.

[15] Nili Itzik and Iris Reinhartz-Berger. SOVA - A tool for semantic and ontological variability analysis.
In Joint Proceedings of the CAiSE 2014 Forum and CAiSE 2014 Doctoral Consortium, volume
1164 of CEUR Workshop Proceedings, pages 177–184. CEUR-WS.org, 2014.

[16] Steffen Lohmann, Stefan Negru, Florian Haag, and Thomas Ertl. Visualizing ontologies with
VOWL. Semantic Web, 7(4):399–419, 2016.

[17] Guilin Qi and Anthony Hunter. Measuring incoherence in description logic-based ontologies. In
International Semantic Web Conference, volume 4825 of Lecture Notes in Computer Science, pages
381–394. Springer, 2007.

[18] Marco Ragni, Sangeet Khemlani, and P. N. Johnson-Laird. The evaluation of the consistency of
quantified assertions. Memory & Cognition, 42(1):53–66, 2014.

[19] Gem Stapleton, John Howse, Peter Chapman, Aidan Delaney, Jim Burton, and Ian Oliver. For-
malizing Concept Diagrams. In Visual Languages and Computing, pages 182–187. Knowledge
Systems Institute, 2013.

[20] Matej Urbas, Mateja Jamnik, and Gem Stapleton. Speedith: A reasoner for spider diagrams.
Journal of Logic, Language and Information, 24(4):487–540, 2015.

	Introduction
	Concept Diagrams
	Syntax
	Semantics

	Reasoning with Concept Diagrams
	Existing Inference Rules
	Incoherence and Inconsistency
	Using Inference Rules to Detect Incoherence and Inconsistency
	Correctness

	Related Work and Discussion
	Conclusion and Future Work

