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Abstract

Background

Immune infiltration of breast tumours is associated with clinical outcome. However, past

work has not accounted for the diversity of functionally distinct cell types that make up the

immune response. The aim of this study was to determine whether differences in the cellular

composition of the immune infiltrate in breast tumours influence survival and treatment

response, and whether these effects differ by molecular subtype.

Methods and Findings

We applied an established computational approach (CIBERSORT) to bulk gene expression

profiles of almost 11,000 tumours to infer the proportions of 22 subsets of immune cells. We

investigated associations between each cell type and survival and response to chemother-

apy, modelling cellular proportions as quartiles. We found that tumours with little or no

immune infiltration were associated with different survival patterns according to oestrogen

receptor (ER) status. In ER-negative disease, tumours lacking immune infiltration were

associated with the poorest prognosis, whereas in ER-positive disease, they were associ-

ated with intermediate prognosis. Of the cell subsets investigated, T regulatory cells and M0

and M2 macrophages emerged as the most strongly associated with poor outcome, regard-

less of ER status. Among ER-negative tumours, CD8+ T cells (hazard ratio [HR] = 0.89,

95% CI 0.80–0.98; p = 0.02) and activated memory T cells (HR 0.88, 95% CI 0.80–0.97;

p = 0.01) were associated with favourable outcome. T follicular helper cells (odds ratio

[OR] = 1.34, 95% CI 1.14–1.57; p < 0.001) and memory B cells (OR = 1.18, 95% CI 1.0–

1.39; p = 0.04) were associated with pathological complete response to neoadjuvant chemo-

therapy in ER-negative disease, suggesting a role for humoral immunity in mediating

response to cytotoxic therapy. Unsupervised clustering analysis using immune cell propor-

tions revealed eight subgroups of tumours, largely defined by the balance between M0, M1,

PLOS Medicine | DOI:10.1371/journal.pmed.1002194 December 13, 2016 1 / 24

a11111

OPENACCESS

Citation: Ali HR, Chlon L, Pharoah PDP, Markowetz

F, Caldas C (2016) Patterns of Immune Infiltration

in Breast Cancer and Their Clinical Implications: A

Gene-Expression-Based Retrospective Study. PLoS

Med 13(12): e1002194. doi:10.1371/journal.

pmed.1002194

Academic Editor: Marc Ladanyi, MSKCC, UNITED

STATES

Received: July 25, 2016

Accepted: November 4, 2016

Published: December 13, 2016

Copyright: © 2016 Ali et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The complete dataset

used for all analyses is available at https://github.

com/cclab-brca.

Funding: HRA is an NIHR Academic Clinical

Lecturer and was a recipient of a Career

Development Fellowship from The Pathological

Society of GB and N Ireland, and a Starter Grant for

Clinical Lecturers from the Academy of Medical

Sciences. LC, CC, and FM received funding from

the CRUK & EPSRC Cancer Imaging Centre in

Cambridge & Manchester (grant C197/A16465).

The funders had no role in study design, data

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1002194&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/cclab-brca
https://github.com/cclab-brca


and M2 macrophages, with distinct survival patterns by ER status and associations with

patient age at diagnosis. The main limitations of this study are the use of diverse platforms

for measuring gene expression, including some not previously used with CIBERSORT, and

the combined analysis of different forms of follow-up across studies.

Conclusions

Large differences in the cellular composition of the immune infiltrate in breast tumours

appear to exist, and these differences are likely to be important determinants of both prog-

nosis and response to treatment. In particular, macrophages emerge as a possible target

for novel therapies. Detailed analysis of the cellular immune response in tumours has the

potential to enhance clinical prediction and to identify candidates for immunotherapy.

Author Summary

Why Was This Study Done?

• Previous studies have shown that certain immune cells present in breast tumours are

associated with risk of relapse.

• Whether particular immune cell types are associated with a greater or lesser risk of

relapse, however, and how these effects differ by breast cancer subtype, remains unclear.

What Did the Researchers Do and Find?

• We conducted a large analysis of breast tumour gene expression profiles available in the

public domain (10,988 cases) to derive estimates of the relative proportions of 22 subsets

of immune cells, in order to investigate associations between the proportion of each cell

type and disease relapse or response to chemotherapy.

• We found that higher proportions of some immune cell types were associated with

greater risk of relapse (or greater chemotherapy response), whereas others were associ-

ated with lesser risk, and that these associations were often different according to the

oestrogen receptor (ER) status of the tumour.

• In tumours lacking expression of ER, we found that the presence of CD8+ T cells and

activated memory T cells was associated with a reduction in the risk of relapse, while

tumours with high proportions of T follicular helper cells were more likely to respond

to neoadjuvant chemotherapy.

• In ER-positive tumours, the presence of M0 macrophages was associated with poor

prognosis.

• T regulatory cells were associated with poor prognosis in both ER-positive and ER-neg-

ative tumours.
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What Do These Findings Mean?

• These findings establish a complex relationship between the heterogeneity of intratu-

moural immune cells, tumour molecular subtype, and disease progression in breast

cancer.

• Treatments that aim to boost the immune response to tumours, i.e., immunotherapies,

are effective in only a subset of patients, and our findings may help to identify this

patient group and suggest targets for the development of new immunotherapies.

Introduction

Breast cancer is characterised by biological and clinical diversity. Genomic changes in cancer

cells have been extensively investigated to identify patient subgroups with different prognoses

and different responses to treatment, as well as to find new drug targets [1–3]. However, breast

tumours are composed of intimate mixtures of cancer cells and non-cancer cells. The roles of

these non-cancer cells remain poorly understood. Non-cancer cells compose varying propor-

tions of tumours and include stromal cells, vascular cells, and infiltrating immune cells. Of

these, infiltrating immune cells seem the most likely to improve the prediction of clinical out-

come and to be effectively targeted by drugs. This is because recent trials of drugs that target

immune checkpoints [4–7]—physiological pathways that regulate the immune response to self

as well as immune response duration and severity in disease—have shown that they can signifi-

cantly prolong the survival of a subset of patients with solid tumours including melanoma,

non-small-cell lung carcinoma, renal cell carcinoma [5], and, most recently, triple-negative

breast cancer [6]. Also, past studies have shown that the immune response is associated with

both clinical outcome and response to treatment in breast cancer [8–13]. Owing to technical

limitations, these studies have necessarily been limited to a very narrow view of the immune

response, generally including only one or two cell types. The immune response, however, is

characterised by numerous specialised cell types that interact in a highly coordinated manner.

To better understand the nature and diversity of the immune response to breast tumours, it is

therefore necessary to enumerate immune cells in a way that accounts for the breadth of their

specialised functions. In addition, to reliably investigate the interaction of the immune

response with different molecular subtypes of breast cancer, it is also necessary to analyse very

large cohorts of patients encompassing the molecular diversity of the disease.

The aim of this study was to quantify the cellular composition of the immune response in

breast tumours in order to investigate its relationship with molecular subtype, survival, and

response to chemotherapy. We applied a recently described gene expression deconvolution

algorithm (CIBERSORT) [14], which estimates the relative proportions of 22 distinct func-

tional subsets of immune cells, to almost 11,000 breast tumour transcriptomes with clinical

annotation and data in the public domain.

Methods

Gene Expression Datasets

This study made use of data in the public domain. Details of ethical approval and patient con-

sent for all 56 studies can be found in their corresponding publications specified in S1 Table.

In total, 56 studies were included, of which 32 were compiled and curated by Haibe-Kains

Patterns of Immune Infiltration in Breast Cancer

PLOS Medicine | DOI:10.1371/journal.pmed.1002194 December 13, 2016 3 / 24



et al. (data available at http://compbio.dfci.harvard.edu/pubs/sbtpaper/) as previously

described [15]. Additional studies were downloaded from Gene Expression Omnibus and

ArrayExpress. Data from The Cancer Genome Atlas (TCGA) were downloaded from the

TCGA data portal in April 2016. All studies with gene expression data from primary breast

tumours were considered eligible, with no specific exclusion criteria applied. One study was

removed because the article had since been retracted [16]. Studies are summarised, together

with accession numbers, in S1 Table. Cases identified as replicates by Haibe-Kains et al. were

removed (n = 181). Samples with the same accession identifier were also removed (n = 697).

Further replicates were identified by computing Pearson correlations between all samples aris-

ing from the same centre. Samples with Pearson correlations of 0.99 or greater were consid-

ered replicates (n = 248). Where replicate cases were identified, all but one record were

removed from further analysis. In total, 10,988 cases were available for analysis following

removal of replicate records. Details of which samples were included at each stage of analysis

are illustrated in Fig 1 as a flowchart. Each tumour sample corresponded to one patient. No

protocol or prospective analysis plan was specified for the study.

Molecular Subtyping and Inference of Infiltrating Immune Cells

Oestrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) status were

preferentially determined by study annotation. Where unavailable, normalised gene expres-

sion data were used to infer probable ER or HER2 status using a two-component Gaussian

finite mixture model using maximum likelihood estimation on a per-study basis, in a manner

similar to that previously described [17]. Where more than one probe was available for either

gene, the probe associated with the highest log-likelihood from the mixture regression model

was used. Whether inferred receptor status was considered sufficiently reliable for analysis was

determined by examining histograms of the distribution of expression values and the relative

proportions of inferred positive and negative tumours. Where the distribution of expression

data clearly departed from two Gaussian distributions or where inferred proportions of posi-

tive and negative status were judged implausible based on study annotation, inferred ER and

HER2 status was not used in further analysis.

Classification into the ten IntClust molecular subtypes was achieved based on gene expres-

sion data using the iC10 package [18] in R, as previously described [2]. Distributions of molec-

ular and clinical characteristics by study are detailed in S2 Table.

Normalised gene expression data were used to infer the relative proportions of 22 types of

infiltrating immune cells using the CIBERSORT algorithm. For the TCGA dataset [3], RNA

sequencing data were transformed using voom [19] (variance modelling at the observational

level), converting count data to values more similar to those resulting from microarrays. The

22 cell types inferred by CIBERSORT encompass B cells, T cells, natural killer cells, macro-

phages, dendritic cells, eosinophils, and neutrophils, amongst others. CIBERSORT is a decon-

volution algorithm that uses a set of reference gene expression values (a “signature matrix” of

547 genes) considered a minimal representation for each cell type and, based on those values,

infers cell type proportions in data from bulk tumour samples of mixed cell types using sup-

port vector regression [14]. CIBERSORT derives a p-value for the deconvolution for each sam-

ple using Monte Carlo sampling, providing a measure of confidence in the results. Gene

expression datasets were prepared using standard annotation files and data uploaded to the

CIBERSORT web portal (http://cibersort.stanford.edu/), with the algorithm run using the

default signature matrix at 1,000 permutations. Since we pooled numerous studies published

over some years, the technologies used to measure gene expression differed substantially, with

variable representation of the 547 genes that comprise the signature matrix. In order to
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estimate the effect of this variable representation, we used 100 cases from the METABRIC

study, where 87% of the genes are represented. We randomly deleted signature matrix genes in

increments of 10% (55 genes) until 7% of genes remained to produce a graded representation

Fig 1. Study flowchart detailing the flow of samples at each stage of analysis. *[15]. †[16]. ER, oestrogen

receptor; pCR, pathological complete response; MI, multiple imputation; TGCA, The Cancer Genome Atlas.

doi:10.1371/journal.pmed.1002194.g001
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of signature matrix genes. We ran CIBERSORT across these conditions and compared the out-

put. Immune cytolytic activity representing the geometric mean of GZMA and PRF1 is another

in silico measure of immune infiltration, as described by Rooney et al. [20]. Immune cytolytic

activity for the TCGA dataset was used, as provided in the supplement of Rooney et al. [20],

and was calculated for the METABRIC study as the geometric mean of GZMK and PRF1.

Statistical Analyses

Associations between inferred proportions of immune cell types and survival were tested using

Cox regression. Analyses were conducted separately for ER-negative and ER-positive disease

to account for this fundamental difference in breast cancer and for known violations of the

Cox proportional-hazards assumption [21]. Cox regression analyses were stratified by study,

with the five contributing centres of the METABRIC [1] study considered separate strata.

Although the diversity of studies included meant that different types of follow-up were

recorded, a single survival time variable was generated to enable derivation of more precise

estimates owing to larger sample size. Where more than one type of follow-up was available,

the following hierarchy was used to select one: (1) relapse-free survival, (2) distant metastasis-

free survival, (3) disease-specific survival, and (4) overall survival. The type of survival time

available for each study is detailed in S1 Table. Survival analyses were truncated at 15 y. Cases

with a CIBERSORT p-value of<0.05 were included in the main survival analysis. Quartiles of

the proportion of each cell type were computed for survival analysis and modelled as continu-

ous variables in order to derive more easily interpretable hazard ratios (HRs). Quartiles were

calculated separately by ER status or relevant subgroup. Where all samples were included in

analyses irrespective of CIBERSORT p-value, cases with an empirical CIBERSORT p� 0.05

formed a separate baseline reference category to which the quartiles of proportion, based on

cases with an empirical CIBERSORT p< 0.05, were compared, yielding five groups in total (0:

all cases with a CIBERSORT p� 0.05, 1–4: quartiles of immune cell proportion for remaining

cases with a CIBERSORT p< 0.05). Heterogeneity of estimates in subgroup analyses was

tested using Cochran’s Q test. Where subgroup analyses comprised both ER-positive and ER-

negative tumours, models were adjusted for ER status and an interaction term allowed to vary

as a function of the logarithm of time included, accounting for violations of the proportional-

hazards assumption. Interaction terms between ER and cell type proportion were included in

Cox regression models to evaluate differences in effect by ER status. Immune cell subsets sig-

nificantly associated with outcome in unadjusted analyses were included in multivariable

models. Multivariable analyses were adjusted for lymph node status (negative, positive),

tumour size (<10 mm, 10–19 mm, 20–29 mm, 30–49 mm, 50+ mm), histological grade, and

HER2 status. Ordinal categories of tumour size and histological grade were modelled as con-

tinuous variables. The log-rank statistic was used to assess differences in survival between

groups as depicted in Kaplan-Meier survival plots. Analyses complied with STROBE criteria

[22]. A STROBE checklist is provided as S3 Table.

To assess the association between different immune cell types and response to chemother-

apy, we used data from studies of neoadjuvant chemotherapy (where patients received chemo-

therapy before surgery). The endpoint of these studies was pathological complete response

(pCR). Although there is some variation in the definition of pCR, it usually refers to the com-

plete elimination of cancer cells, as assessed by careful histology of the primary tumour bed fol-

lowing surgery. Associations between different immune cell types and pCR were assessed by

logistic regression. Quartiles of proportions of each immune cell type were modelled as contin-

uous variables. Analyses were conducted separately by ER status, since ER itself is strongly

associated with pCR [23]. Multivariable analyses were adjusted by lymph node stage, tumour
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stage, histological grade, and HER2 status. Ordinal categories of node stage, tumour stage, and

grade were modelled as continuous variables.

We addressed the possibility of selection bias due to missing data in multivariable models

by deriving estimates based on multiply imputed datasets. Multiple imputation is a method for

inferring the probable values of missing covariables repeatedly across several datasets, then

deriving estimates for each dataset, and finally combining estimates in a manner that accounts

for the variability between and within datasets. We imputed clinical covariables (tumour size

or T stage, node status or N stage, grade, and HER2 status) across fifty datasets using the ice

command in Stata [24]. Datasets were imputed separately for survival analyses and analyses of

pCR. Quartiles of all immune cell subsets and clinical covariables were included in imputation

models. An outcome variable was included for both survival imputation models (Nelson-

Aalen cumulative hazard estimator and an outcome indicator variable) and pCR imputation

models (pCR) [25]. Estimates were combined using Rubin’s rules.

We further addressed the possibility that variable selection based on univariable analysis

may lead to exclusion of some variables that may be associated with outcome when confound-

ing is properly controlled [26]. We accounted for the possibility of confounding by all immune

cell subsets and clinical variables by fitting multivariable models (26 predictors) via penalised

maximum likelihood using the package glmnet [27] with the penalisation factor selected based

on cross-validation.

Associations between continuous and categorical variables were tested using the Kruskal-

Wallis test. Correlations between immune cell subsets were evaluated using the Pearson corre-

lation coefficient. For univariable analyses of the 22 immune cell subsets, adjustment for multi-

ple testing was conducted by calculating q-values using the Benjamini-Hochberg method.

To investigate whether distinct classes of immune cell infiltration are present in different

tumours and whether these classes are associated with different clinical outcome, we con-

ducted hierarchical clustering of immune cell proportions. Values were rescaled to lie between

zero (for the smallest value observed) and one (for the greatest value observed) for each cell

type to ensure comparability between rare (low overall proportion) and abundant (high overall

proportion) cell types. Hierarchical clustering of these data by Ward’s method was conducted

across all samples. A combination of the Duda-Hart index and the associated pseudo-T-

squared statistic was used to explore the likely number of distinct clusters in the data. The asso-

ciations between clusters and clinical outcome were tested using the methods described above.

All analyses were conducted using R version 3.3 [28] or Stata SE version 14.1 (StataCorp).

The complete dataset used for all analyses is available at https://github.com/cclab-brca.

Results

Performance of CIBERSORT across Studies

Fig 2A depicts a summary of the 56 included studies, totalling 10,988 cases of breast cancer.

Gene expression was measured using a variety of platforms, as detailed in S1 Table. S1 Fig

depicts the proportion of the 547 genes composing the signature matrix that were available

for analysis by study. The mean number of genes represented was 447 (range 12–529). S2 and

S3 Figs depict comparative summaries of CIBERSORT output across 100 cases from the

METABRIC study where signature matrix genes were randomly deleted in increments of 10%

(55 genes). S2 Fig shows that the empirical CIBERSORT p-value was highly sensitive to dimin-

ishing representation of the signature matrix, with over half of the samples (n = 53) with a

CIBERSORT p< 0.05 at 87% representation but none at�27% representation. However, of

the samples associated with p< 0.05, inferred cell proportions showed relatively small differ-

ences (S3 Fig), although this differed by cell type. These findings imply that, while variable
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representation of the signature matrix inevitably influences the accuracy of the inferred

immune cell populations, this effect is not large when analyses are limited to cases with a

CIBERSORT p< 0.05. At a threshold of CIBERSORT p< 0.05, 55% of samples (6,071/10,988)

yielded data on infiltrating immune cells, while at a threshold of p< 0.01, 40% (4,385/10,988)

of samples yielded data. Unless otherwise specified, analyses were restricted to samples with a

CIBERSORT p< 0.05. Of these samples, the least variable cell type between studies was eosin-

ophils (0%–3%), while the most variable was plasma cells (<1%–27%).

CIBERSORT p-Values Reflect the Overall Proportion of Immune Cells

There were large differences in the proportions of samples at different p-value thresholds

between studies, spanning the whole range of 0% through 100% of samples. This was only

partly explained by ER status and representation of genes by different platforms. Notably, a

larger proportion of samples from neoadjuvant studies were associated with a significant p-

value. We hypothesized that the p-value derived by CIBERSORT, which tests the null hypothe-

sis that none of the cells that comprise the signature matrix are present in a given sample [14],

would reflect the proportion of a sample that comprises immune cells versus non-immune

cells, where a greater proportion of non-immune cells would produce a correspondingly larger

p-value. We tested this hypothesis against another in silico metric of inflammation (immune

cytolytic activity [20]) in the two largest datasets: TCGA and METABRIC. Cytolytic activity

has previously been defined by Rooney et al. as the geometric mean of GZMA and PRF1
expression [20]. For TCGA we used cytolytic activity as computed by Rooney et al. For

METABRIC we computed the geometric mean based on GZMK and PRF1 expression because

there was no probe for GZMA. However, GZMA and GZMK are highly correlated (Pearson

correlation = 0.93 in the TCGA dataset). Cytolytic activity was most strongly correlated with

the proportion of gamma-delta T cells (Pearson correlation = 0.51 in ER-positive and 0.49 in

ER-negative disease) and M1 macrophages (Pearson correlation = 0.57 in ER-positive and 0.39

in ER-negative disease) in the TCGA and METABRIC studies at a CIBERSORT p< 0.05 (S4

and S5 Figs). Fig 2B depicts the strong ordinal relationship between different p-value thresh-

olds and cytolytic activity in both the TCGA and METABRIC datasets. The relationship

between cytolytic activity and the empirical CIBERSORT p-value strongly suggests that the

p-value reflects the relative proportion of a sample composed of immune versus non-immune

cells. We further tested this hypothesis by exploring the association between p-value thresholds

and survival. Fig 2B shows that in ER-negative tumours, a p< 0.01, corresponding to a greater

proportion of immune cells, was associated with significantly improved survival (log-rank p<
0.0001), while a p� 0.05 was associated with the poorest outcome, and p� 0.01 but<0.05

showed an intermediate outcome, though not significantly different to that of the p� 0.05

group (log-rank p = 0.2). In contrast, in ER-positive disease, survival time did not differ signi-

ficantly by the proportion of infiltrating immune cells as measured by CIBERSORT p-value

(pinteraction < 0.001). This interaction between the prognostic effect of immune cells and ER

status is well known [8,29,30], supporting the conclusion that CIBERSORT p-values reflect

proportions of immune versus non-immune cells.

Proportions of different immune cells were weakly to moderately correlated. S6 and S7 Figs

depict correlation matrices between immune cell subsets by ER status. Patterns of correlation

were broadly similar irrespective of ER status. Among ER-positive tumours, neutrophils and

natural killer cells showed the strongest positive correlation (Pearson correlation = 0.36), while

resting memory T cells and CD8+ T cells showed the strongest negative correlation (Pearson

correlation = −0.34). In ER-negative disease, T regulatory cells and CD8+ cells showed the

strongest positive correlation (Pearson correlation = 0.33), and, as for ER-positive tumours,
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resting memory T cells and CD8+ T cells showed the strongest negative correlation (Pearson

correlation = −0.33).

Prognostic Subsets of Immune Cells

Different immune cell subsets were associated with favourable outcome in ER-positive com-

pared to ER-negative disease (Fig 3). Fig 3A depicts the unadjusted HRs and 95% confidence

intervals for quartiles of cell type proportion by ER status. Restricting analyses to samples with

a CIBERSORT p< 0.05, there were 2,653 patients with a median follow-up of 6.2 y for ER-pos-

itive disease, with the type of follow-up being relapse-free survival for 759 patients (171

events), distant metastasis-free survival for 976 patients (278 events), disease-specific survival

for 529 patients (110 events), and overall survival for 389 patients (117 events). For ER-nega-

tive disease, there were 1,398 patients with a median follow-up of 4.4 y, with the type of follow-

up being relapse-free survival for 298 patients (78 events), distant metastasis-free survival for

524 patients (180 events), disease-specific survival for 321 patients (92 events), and overall sur-

vival for 255 patients (91 events). Eosinophils (pinteraction by ER status = 0.052) and monocytes

(pinteraction by ER status = 0.04) were significantly associated with improved outcome in ER-

positive disease, whereas CD4+ activated memory T cells (pinteraction by ER status = 0.2) and

CD8+ T cells (pinteraction by ER status = 0.03) were associated with improved outcome in ER-

negative disease. In general, however, T cells tended to be associated with favourable outcome

irrespective of ER status, though at varying significance. The exception to this general trend

was T regulatory cells, which were associated with poorer outcome in both ER-positive (HR

1.18, 95% CI 1.08–1.28; p< 0.001) and ER-negative (HR 1.17, 95% CI 1.06–1.30; p = 0.002)

disease, consistent with their proposed role as pro-tumourigenic immune suppressors [31,32].

Similarly, in ER-positive disease, both M0 and M2 macrophages were associated with poorer

outcome, with a similar pattern in ER-negative disease, though non-significant for M0 macro-

phages (p = 0.2). Of these, M2 macrophages are thought to have an immune-suppressive pro-

tumourogenic role [33,34]. Similar associations for M0 macrophages raise the possibility that

there is some functional overlap between these two subsets of macrophages in the context of

tumour-associated inflammation. Multivariable analyses adjusted for known prognostic fac-

tors revealed that in ER-positive disease (Table A in S1 Appendix), T regulatory cells (HR 1.15,

95% CI 1.04–1.26; p = 0.005), memory B cells (HR 0.92, 95% CI 0.84–1.00; p = 0.05), and M0

macrophages (HR 1.12, 95% CI 1.01–1.24; p = 0.04) all contributed to the model, with very simi-

lar imputed estimates (Table B in S1 Appendix). For comparison, Tables C and D in S1 Appen-

dix show these same models for ER-negative disease. In ER-negative disease, M2 macrophages

(HR 1.15, 95% CI 1.0–1.33; p = 0.05), CD8+ T cells (HR 0.87, 95% CI 0.75–1.00; p = 0.05), and

T regulatory cells (HR 1.2, 95% CI 1.06–1.35; p = 0.005) all contributed to the adjusted model

(Table E in S1 Appendix), with similar estimates based on multiple imputation, though CD8+ T

cells ceased to be significant (HR 0.92, 95% CI 0.82–1.02; p = 0.1; Table F in S1 Appendix). For

comparison, Tables G and H in S1 Appendix show these same models for ER-positive disease.

Based on CIBERSORT data, Gentles al. previously reported neutrophils and plasma cells to be

prognostic in both lung and breast cancer, with effects in opposing directions [35]. This obser-

vation was partly reproduced here insofar as the direction of effect was similar, with a greater

proportion of neutrophils associated with poorer outcome in ER-negative disease and a greater

proportion of plasma cells associated with better outcome in ER-positive disease (Fig 3). Tables

I and J in S1 Appendix depict multivariable Cox regression models with penalised maximum

likelihood estimation. Both models show attenuated but similar effects compared to the other

multivariable models, with T regulatory cells associated with the largest point estimates in both

ER-positive (HR = 1.13) and ER-negative disease (HR = 1.11).
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Variation in Prognostic Effect of Immune Cells by Molecular Subtype

We conducted exploratory subgroup analyses of the prognostic effect of all 22 immune cell

subsets by molecular subtype defined by ER and HER2, and by the IntClust classifier based on

genomic drivers [2] (S8 and S9 Figs). It should be noted that these two sets of subgroup analy-

ses (based on ER/HER2 and IntClust, respectively) divide the same data in two different ways.

Fig 3. Prognostic associations of subsets of immune cells. (A) Unadjusted HRs (boxes) and 95% confidence intervals (horizontal lines) limited

to cases with CIBERSORT p-value < 0.05. Box size is inversely proportional to the width of the confidence interval. Asterisks denote estimates with

a q-value < 0.05. (B) Survival plots of quartiles of immune cell subsets. Depicted p-values are from log-rank tests. ER, oestrogen receptor; HR,

hazard ratio; NK cells, natural killer cells.

doi:10.1371/journal.pmed.1002194.g003
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In subgroups defined by ER and HER2, significant heterogeneity of prognostic effect was

observed for four cell subsets, of which three were of myeloid lineage. Activated memory T

cells were associated with favourable outcome in all subgroups except ER+/HER2− tumours

(HR 1.0, 95% CI 0.92–1.08), with the largest effect observed in the ER−/HER2+ subgroup (HR

0.73, 95% CI 0.60–0.89; pheterogeneity = 0.022). In contrast, M0 macrophages were most strongly

associated with poorer outcome in the ER+/HER2− subgroup (HR 1.25, 95% CI 1.15–1.37;

pheterogeneity = 0.024) compared to the other subgroups. Most strikingly, both activated den-

dritic cells and neutrophils showed the greatest heterogeneity of prognostic effect: a strong

association with poor outcome in ER+/HER2+ tumours but not in the other subgroups. How-

ever, these cell types were not correlated in the ER+/HER2+ subgroup (Pearson correla-

tion = 0.08) or overall (Pearson correlation = 0.07). Specifically, among this subset of patients,

activated dendritic cells showed a strong association with poor outcome (HR 1.3, 95% CI

1.14–1.49), while in all other subgroups, including ER−/HER2+ tumours, the point estimate

was less than one (pheterogeneity = 0.0008). Similarly, neutrophils showed a clear association

with poor outcome in the context of ER+/HER2+ disease (HR 1.37, 95% CI 1.18–1.60) but not

in the other subgroups (pheterogeneity = 0.0007).

Among subgroups defined by IntClust classification, plasma cells and activated mast cells

showed significant heterogeneity of effect. Plasma cells were associated with favourable out-

come among some ER-positive subgroups (IntClust 4+, IntClust 8, and IntClust 7) but not

among other subgroups (pheterogeneity = 0.03), while activated mast cells were associated with

poorer outcome in IntClust 5 (HER2-positive disease), IntClust 8, and IntClust 9 but not oth-

ers (pheterogeneity = 0.03). These analyses warrant cautious interpretation as, despite a large over-

all sample size, they are relatively underpowered given the large number of subgroups.

Tumours Lacking Immune Infiltration

Previous reports of the association between different immune cell types and outcome in breast

cancer, including our large analysis of cytotoxic T cells [8], have generally found an association

of immune cell types with survival in ER-negative breast cancer and little or no association in

ER-positive breast cancer [8,36]. Our present findings partly contradicted these observations.

Previous studies, however, included tumours lacking immune cells as well as those that con-

tained them. Since our analyses were limited to tumours with at least moderate immune infil-

tration based on cytolytic activity (CIBERSORT p< 0.05), we hypothesized that comparison

to a different reference population, i.e., one limited to tumours with moderate to high infiltra-

tion of immune cells, might explain why our observations differed from those previously

reported. To test this hypothesis we undertook exploratory survival analyses where we investi-

gated the association between all 22 cell subsets and outcome across three overlapping popula-

tions: those with a CIBERSORT p< 0.01, those with a CIBERSORT p< 0.05, and all cases

irrespective of CIBERSORT p-value. For analyses of the whole population, cases with a p�
0.05 were taken as a separate reference group since they showed very low immune cell infiltra-

tion based on cytolytic activity. Fig 4 depicts the results of these analyses. In general, we found

that in ER-negative disease, as the size of the population increased to include tumours with

low or no infiltration, the prognostic effect of the majority of immune cell types shifted toward

improved outcome, whereas in ER-positive disease, the shift was toward the null. This was

observed irrespective of whether the point estimate for the high infiltration (CIBERSORT p<
0.01) population was more or less than one to begin with: it fell closer to one in ER-positive

disease and fell below one in ER-negative disease. This finding indicates a general trend that

differs by ER status. In ER-positive disease, tumours lacking immune infiltration were associ-

ated with an outcome that was intermediate or similar to tumours with low or high infiltration,
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whereas in ER-negative disease, tumours lacking immune infiltration were associated with a

poorer outcome compared to tumours with infiltration, irrespective of its degree. This is fur-

ther illustrated in Fig 5, which depicts survival plots highlighting the population with tumours

showing low to no infiltration. We speculate that this finding may explain many of the contra-

dictory reports of the prognostic effect of different immune cell subsets in breast cancer, and

possibly in other solid tumours [37]. Moreover, it potentially has profound implications for

inclusion of immune infiltrates as part of clinical prognostic models.

Immune Predictors of Response to Chemotherapy

We used data from studies of neoadjuvant chemotherapy to assess the association between

subsets of immune cells and pCR to chemotherapy (Fig 6). pCR is associated with improved

survival, and this association is greatest in aggressive subtypes of breast cancer, which are

more often ER negative [23]. Therefore we conducted analyses separately by ER status. In ER-

negative tumours, T follicular helper cells (Tfh cells) showed the strongest association with

pCR (odds ratio [OR] 1.34, 95% CI 1.14–1.57; p< 0.001; pinteraction by ER status = 0.03), while

M2 macrophages showed the strongest association with a lack of pCR and, therefore, resis-

tance to chemotherapy (OR 0.78, 95% CI 0.66–0.92; p = 0.003; pinteraction by ER status = 0.02).

This may partly explain the association between M2 macrophages and poorer outcome in

ER-negative disease. Multivariate analysis in ER-negative disease (Table O in S1 Appendix)

revealed that both M2 macrophages (OR 0.75, 95% CI 0.58–0.96; p = 0.02) and resting mast

Fig 4. Hazard ratios for three overlapping populations defined by CIBERSORT p-value. Boxes represent hazard ratios, and vertical lines

are 95% confidence intervals. Box size is inversely proportional to the width of the confidence interval. ER, oestrogen receptor; NK cells, natural

killer cells.

doi:10.1371/journal.pmed.1002194.g004
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cells (OR 0.77, 95% CI 0.61–0.97; p = 0.03) contributed to the adjusted model in the complete

case analysis (n = 332), but estimates based on multiple imputation (Table P in S1 Appendix)

revealed that M2 macrophages (OR 0.83, 95% CI 0.96–1.00; p = 0.05), memory B cells (OR 1.2,

95% CI 1.01–1.42; p = 0.04), and Tfh cells (OR 1.31, 95% CI 1.11–1.56; p = 0.002) all contrib-

uted to the adjusted model (n = 566). In ER-positive disease, both memory B cells and mono-

cytes showed a strong association with a lack of pCR. However, in survival analyses, both these

cell types were associated with better rather than worse outcome. The basis of this apparent

contradiction in ER-positive breast cancer is not known, and pCR has not been generally

accepted as an endpoint for assessing the effectiveness of chemotherapy in ER-positive disease

[23]. Estimates based on multivariable models with penalised maximum likelihood estimation

did not show any associations between the 26 predictors and pCR. This is likely to be related,

in part, to the modest power of these models relative to the number of predictors.

Immune Clusters Associated with Outcome and Patient Age

We investigated whether distinct patterns of immune infiltration could be discerned based on

the 22 immune cell proportions by conducting hierarchical clustering of all samples. We

Fig 5. Survival plots highlighting the patient subgroup with tumours containing little or no immune infiltration by CIBERSORT p-value.

Depicted p-values are from log-rank tests. ER, oestrogen receptor; T-regs, T regulatory cells.

doi:10.1371/journal.pmed.1002194.g005
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interpreted the Duda-Hart index and the associated pseudo-T-squared statistic to indicate

eight clusters in the data (S10 Fig). Cell proportions by cluster are depicted in Fig 7, and their

distributions as box plots in S11 and S12 Figs. Clusters were associated with distinct patterns

Fig 6. Association between immune cell subsets and response to neoadjuvant chemotherapy. (A) Boxes represent ORs from

unadjusted logistic regression models. Horizontal lines are 95% confidence intervals. Box size is inversely proportional to the width of the

confidence interval. Asterisks denote estimates with q-value < 0.05. (B) Spine plots depicting the association between quartiles of immune cell

subsets and pCR. ER, oestrogen receptor; NK cells, natural killer cells; OR, odds ratio; pCR, pathological complete response.

doi:10.1371/journal.pmed.1002194.g006
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of survival in ER-positive and ER-negative disease (Fig 8). Cluster 7, defined by high levels of

M0 and M2 macrophages, and cluster 8, defined by a high level of M2 macrophages though

relatively low level of M0 and M1 macrophages, were both associated with poor outcome in

ER-negative and ER-positive disease. In contrast, cluster 5, defined by moderate levels of M0

and M1 macrophages and plasma cells and a high level of resting memory T cells, was associ-

ated with poor outcome in ER-negative tumours but with the best outcome in ER-positive dis-

ease. Clusters were significantly, but modestly, associated with ER status (p< 0.001) and with

Fig 7. Hierarchical clustering of all samples based on immune cell proportions. Stacked bar charts of samples ordered by cluster assignment. NK cells,

natural killer cells.

doi:10.1371/journal.pmed.1002194.g007

Fig 8. Survival plots by cluster separately for ER-positive and ER-negative disease. Depicted p-values are from log-rank tests. ER, oestrogen

receptor.

doi:10.1371/journal.pmed.1002194.g008
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IntClust subtype (p< 0.001; S13 Fig). The association with ER status was largely due to clusters

3 and 4. Cluster 3 was particularly enriched for ER-positive tumours (77% compared to 62%

overall), while cluster 4 was enriched for ER-negative tumours (45% compared to 38% overall).

Immune clusters were also associated with patient age in ER-positive disease (p< 0.001),

with a weak association in ER-negative disease (p = 0.05). Women with ER-positive tumours

assigned to cluster 1 (defined by high levels of neutrophils and CD8+ T cells) were on average

53 y old at diagnosis, while those with tumours assigned to cluster 3 (defined by high levels

of M2 macrophages, CD8+ T cells, and plasma cells) were on average 60 y old. Collectively,

these findings suggest that there is considerable variability in the nature of the immune infil-

trate across breast tumours—partly determined by molecular characteristics of the primary

tumour—and that this influences clinical outcome.

Discussion

Based on deconvolution of bulk gene expression data from nearly 11,000 cases of breast cancer,

we uncovered distinct patterns of immune infiltration between tumours, complex associations

with clinical outcome for different subsets of immune cells that depend on ER status, and

immune mediators of both sensitivity and resistance to chemotherapy.

Advances in computational methods have reinvigorated the potential of large public reposi-

tories of genomic data collected over the past two decades. Using a state-of-the-art deconvolu-

tion algorithm, CIBERSORT [14], to infer the proportions of 22 immune cell subsets from

tumour transcriptomes, we have conducted, to our knowledge, the most comprehensive

analysis of the clinical impact of the immune response in breast cancer to date. We found that

some immune suppressor cells (T regulatory cells and M2 macrophages) were associated with

poorer outcome but that M0 macrophages too showed similar associations with survival.

Previous experiments have shown that tumours may attract T regulatory cells to evade the

immune response [31,32], and although subsets of T regulatory cells with different functions

in cancer continue to be discovered [38], our findings support the tumour-promoting role of

T regulatory cells. The distinction between “polarised states” of macrophages is, however, the

subject of some dispute [34]. The M1 (activated; anti-tumoural) and M2 (alternatively acti-

vated; pro-tumoural) phenotypes are associated with distinct immunoregulatory functions,

but it has been argued that they represent extremes of a spectrum of functional states rather

than truly distinct cell types [34]. Tumours are likely to contain macrophages in a variety of

such states, and our finding of an association between M0 macrophages and poorer outcome

may reflect this gradation of function. We also found that the proportions of M0, M1, and M2

macrophages defined several immune cell signatures in our clustering analysis, with prognos-

tic implications. Moreover, higher proportions of M2 macrophages were associated with a

lack of response to chemotherapy in ER-negative tumours, suggesting that they may mediate

resistance mechanisms—a conclusion supported by previous preclinical experiments [39].

Collectively, these findings demonstrate the potential of tumour-associated macrophages as

biomarkers in breast cancer. In particular, they highlight the necessity of accounting for the

diversity of macrophages’ functional states rather than treating them all equally. This is of spe-

cial importance because treatments to combat the tumour-promoting roles of macrophages

are already in early phase clinical trials [40]. These approaches block colony stimulating factor

1 (CSF1) signalling by targeting colony stimulating factor 1 receptor (CSF1R) [39,41]. Preclini-

cal evidence also supports the potential of CSF1R inhibition in breast cancer in conjunction

with conventional chemotherapy [39]. Inhibition of CSF1R has been shown not to kill macro-

phages but to lead to a change in their functional state to a state thought to be anti-tumoural

[34,42]. In this respect, this approach might be considered a differentiation therapy of the
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tumour microenvironment, again emphasising the need for practical biomarkers that account

for the variety of functional states of macrophages in cancer tissue.

We also found Tfh cells to be strongly associated with response to chemotherapy in ER-neg-

ative breast cancer. Tfh cells play an important role in the maintenance and development of

germinal centres and the selective evolution of high-affinity plasma cells and memory B cells

from antigen-specific B cells. They have not been widely investigated in solid tumours, but,

based on genomic and histological analyses, they have recently been shown to play a role in

breast tumours with extensive immune infiltration and, in particular, in the response to che-

motherapy [43]. Whether this effect is exerted through tumour-specific antibody-dependent

mechanisms is uncertain, but there is some evidence for tumour-antigen-specific responses by

B cells in breast cancer [44,45], as well as observations of an association between plasma cells

and outcome across solid tumours [35,46,47]. Moreover, the fact that cross-reactive antibodies

targeting tumour neoepitopes underpin some paraneoplastic syndromes such as scleroderma

[48] strongly implies that tumour-antigen-specific antibody production can be part of the host

response to tumours. The presence of Tfh cells in breast cancer was also shown to be a reliable

indicator of an organised immune response including tertiary lymphoid structures [43]. Our

findings further support this observation since memory B cells were also associated with

response to chemotherapy in ER-negative tumours (Fig 6), with the strength of the association

second only to that of Tfh cells. In the clinical setting, these findings lend support to the use of

tumour-infiltrating lymphocytes as predictors of response to neoadjuvant chemotherapy but

also suggest that specifically accounting for the abundance of Tfh cells in dense immune infil-

trates may substantially improve predictive accuracy.

We found that tumours with little or no immune infiltration showed fundamental differ-

ences in patterns of patient survival based on ER status. In ER-negative disease, these tumours

were associated with poorer outcome compared to tumours with immune infiltration regard-

less of immune cell subset. Poorer outcome in patients with tumours that have failed to evince

an immune infiltrate is consistent with the idea that, in general, the immune response is

tumouricidal, albeit variably effective depending on its context and composition. For example,

increasing proportions of M0 macrophages were associated with poorer outcome, but the group

lacking immune infiltration was associated with survival poorer than that of patients with

tumours in the highest quartile of M0 macrophage proportion, rather than better survival than

the group in the first quartile, which is what might be expected if the association of survival with

M0 macrophages followed a strictly ordinal pattern. Whether these ER-negative tumours lack-

ing an immune infiltrate have been extensively immunoedited [49] and are therefore no longer

immunogenic, whether they enact an alternative approach to evade immune infiltration, or

whether the host is not able to mount an immune response is unknown. However, their natural

history appears consistent with the view of the immune response as an extrinsic tumour sup-

pressor, in contrast to the findings in the group of ER-positive tumours that lack immune infil-

tration. This group was not associated with a survival pattern easily explained by the immune

response. Women with ER-positive tumours lacking immune infiltration had a survival out-

come intermediate between that of women with tumours with high and low infiltration, irre-

spective of cell type. This observation is more suggestive of tumours that do not evince an

immune response from conception rather than of immunoedited tumours. It also implies

that tumours lacking an immune response are not next in sequence to those with a minimal

response but differ more fundamentally, and should be excluded from relevant biomarker anal-

yses. Finally, this group of patients is likely to gain the least from new immune checkpoint inhib-

itors unless a way of inducing an effective immune response is coupled with this approach.

Previous immune profiling studies in breast cancer have used either genomic data or in situ

histological analyses to quantify the immune response [8,29,36,50,51]. These approaches have

Patterns of Immune Infiltration in Breast Cancer

PLOS Medicine | DOI:10.1371/journal.pmed.1002194 December 13, 2016 18 / 24



confirmed the prognostic significance of the immune response, particularly in ER-negative dis-

ease, but have been of limited resolution, often including only one or two cell types. While this

has enabled very large scale analyses and candidate clinical assay development, much of the func-

tional variation implicit in the immune response, and its clinical importance, is missed. Studies

using multiparametric flow cytometry and immunofluorescence have produced an expanded,

but still limited, view of the immune response at cellular resolution [52], but have been restricted

to very small sample sizes, precluding analysis of association with clinical outcome. One recent

analysis of genomic data also deconvolved tumour transcriptomes to estimate the presence of

230 murine haematopoietic lineage profiles, generating “cell lineage scores” for patients, and

investigated their association with outcome [53]. While an important advance on previous work,

this approach has not been as extensively validated as CIBERSORT, and the analysis comprised

a much smaller sample size than the present work and did not directly address associations with

treatment response. Recent pan-cancer analyses using quantitative genomic approaches have

also uncovered important associations between immune cell subsets and survival across tumour

types [35,54]. Our study further advances knowledge of the clinical impact of the immune

response, particularly highlighting diverse associations with outcome related to different func-

tional cell subsets and, importantly, accounts for the significance of molecular subtype.

This was a large analysis of tumour samples from a great breadth of studies in which we

enumerated the immune response in detail. Our conclusions are likely, therefore, to be reliable

and generalizable. This is the main strength of the study; however, in increasing our sample

size we made use of historic studies, some of which were profiled using platforms not formally

validated for use with CIBERSORT, which is the main limitation of this work. Therefore, the

reliability of the inferred immune infiltrate in some studies is uncertain. Similarly, in our effort

to derive precise and reliable estimates of association with clinical outcome, we collated diverse

and heterogeneous studies with different types of follow-up, which is a second limitation. While

this is not ideal, it should be noted that relapse or metastasis is highly correlated with disease-

specific survival, and our conclusions are substantially more reliable because our approach

increased statistical power. A large proportion of patients who experience disease relapse or

metastasis will ultimately succumb to their disease, though at a later time point, which, all other

factors being equal, may attribute slightly greater weight to relapse-free or metastasis-free sur-

vival. It is likely that this effect will be larger for ER-positive disease because patients with meta-

static ER-positive breast cancer tend to experience longer survival than those with ER-negative

breast cancer. Another related limitation is the relatively short average follow-up for each

patient: the median follow-up was 6.2 y for ER-positive patients and 4.4 y for ER-negative

patients. For both subsets this falls short of capturing all disease-related events. Patients with ER-

positive disease continue to experience relapse well beyond 10 y, while those with ER-negative

disease invariably experience relapse within the first 5 y [21], and some of these events were not

represented in this analysis. While the diversity of studies included in the analysis increases the

generalizability our findings, it is also a limitation insofar as patients are likely to have experi-

enced differences in clinical care owing to differences in date of diagnosis, clinical setting, geog-

raphy, and treatment. It is, however, unlikely that these differences affected the inferred immune

cell populations of primary tumours; if anything, these differences are likely to diminish associa-

tions between the immune response and clinical outcome, raising the possibility that our obser-

vations underestimate these effects and may include false negatives. Finally, the associations

reported here arise from discovery analyses and require validation in independent studies.

Our analysis of 22 immune cell subsets in breast cancer has revealed important associations

with clinical outcome that have the potential to identify patients who could benefit from

immunotherapies, as well as highlighting possible targets for new drugs. Coupling reliable

deconvolution algorithms with large-scale genomic data has the potential to further uncover
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the clinical and biological significance of the plethora of non-cancer cells that comprise the

tumour microenvironment in breast cancer.
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