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S1-1 General model4

S1-1.1 Model and definitions5

Patches undergo disturbances that lead to the extinction of all the species consid-6

ered ( = 1, 2, . . . , s). The patches are disturbed at rate μ, where  is the age of a7

patch, i.e. the time since it was last disturbed. Let X be the maximum age a patch8

can reach, i.e. patches are systematically disturbed at age X. In the special cases9

developed later, there is no such sharp limit, and X just tends to infinity.10

The model describes the changes in p,,t, the mixed joint probability density of11

patch age  (a continuous r.v.) and occupancy by species  (a discrete r.v.) at time t.12

The marginal probability of occupancy by species  is13

p,•,t =
∫ X

0
p,,td .

Similarly, the marginal probability density of patch age  at time t is denoted as p•,,t14

(see Section S1-3 for a more explicit definition), and sums to unity as any p.d.f.:15

∫ X

0
p•,,td = 1 .

Lastly, the probability that a patch of age  is occupied by species  at time t is16

denoted as:17

p|,t =
p,,t

p•,,t
.

The general model can be expressed as the following partial differential equation18

(repeating Eq. 1 in the main text):19
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∂p,,t

∂
+
∂p,,t

∂t
= − (μ + e)p,,t + (cp,•,t +m) (p•,,t − p,,t) . (S1-1)

Since all patches are empty following a disturbance, p,0,t = 0 for all  = 1, 2, . . . , s,20

and for all t ≥ 0. If there is a maximum patch age X, p,,t = 0 for all  > X. Otherwise,21

lim→+∞ p,,t = 0.22

At steady-state, we can drop the subscript t, and Eq. S1-1 becomes:23

dp,

d
= − (μ + e)p, + (cp,• +m) (p•, − p,) , (S1-2)

where p•, is the stationary probability density of the age  of a patch.24

Table S1-1 lists the model parameters/variables and their definitions.25

S1-1.2 Steady state distribution of patch age26

The stationary distribution of patch age satisfies27

dp•,

d
= −μp•, .

Therefore, p•, can be expressed as:28

p•, = p•,0 exp
�

−
∫ 

0
μydy

�

, (S1-3)

where p•,0 is an implicit factor such that
∫ X

0 p•,d = 1, since p•, is the probability29

density function of the host age . The function p•, is decreasing with respect30

to . In the special case where μ = μ (a constant) and X is infinite, it is simply31

an exponential distribution with rate μ. In general, depending on μ, p•, can take32

various shapes, including for instance uniform or Weibull distributions.33

S1-1.3 Occupancy conditional on patch age34

From Eq. S1-2 and S1-3 and the rule of differentiation of a ratio (p,/p•,), the steady-35

state probability of occupancy conditioned to patch age (p|) satisfies:36

dp|

d
= −ep| + (cp,• +m)

�

1 − p|
�

,
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Parameter Meaning

s number of species considered; species are indexed with , j = 1, 2, . . . , s
c colonization rate of species  (per occupied patch)
m immigration rate from outside the metacommunity of species 
e local extinction rate of species 
μ catastrophic disturbance rate of a patch of age  (noted μ if constant)
X maximum patch age (if any)
N total number of sites (patches) in the co-occurrence matrix considered

Variable Meaning

t time
 age of a patch, i.e. the time since the last catastrophic disturbance event
F,t force of colonization/immigration of species  at time t

F steady-state force of colonization/immigration of species 
p,,t fraction of patches that have age  and are occupied by species  at time t

p•,,t fraction of patches that have age  at time t

p,•,t overall occupancy of species , i.e. the fraction of patches it occupies
p|,t fraction of patches of age  that are occupied by spp. : p|,t = p,,t/p•,,t
p, steady-state fraction of patches that have age  and are occupied by spp. 
p•, steady-state fraction of patches that have age 

p,• overall occupancy of species  at steady-state
p∗
,• overall occupancy of species  after permutations in the co-occurrence matrix

p| fraction of patches of age  that are occupied by species : p| = p,/p•,
π/ relative distribution profile of species : π/ = p|/p,•
π∗
/

relative distribution profile of species  after permutations in the matrix

π−1/z inverse function of π/
p,z the probability density function of π/
q∅,t, fraction of patches that have age  and are unoccupied at time t

q,t, fraction of patches that have age  and are occupied by a single species 
q{,j},t, fraction of patches that have age  and are occupied by both species  and j

q,t,• overall fraction of patches occupied by species  only at time t

q{,j},t,• overall fraction of patches occupied by both species  and j at time t

q∅, steady-state fraction of patches that have age  and are unoccupied
q, steady-state fraction of patches that have age  and are singly occupied

q{,j}, steady-state fraction of patches that have age  and are doubly occupied
q,j,• overall fraction of patches occupied by both species  and j at steady-state
q∗
,j,• overall fraction of co-occurrences of species  and j after permutations

C,j partial C-score between two species: C,j = N2(p,• − q,j,•)(pj,• − q,j,•)
 relative occupancy of species  in the matrix:  = p,•/

∑s
k=1 pk,•

π̂ weighted-average of the species distribution profiles: π̂ =
∑s
k=1kπk/

Table S1-1: Model variables and parameters.
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with p|0 = 0. This can be solved as37

p| =
cp,• +m

cp,• +m + e
(1 − exp(−(cp,• +m + e))) . (S1-4)

S1-1.4 Overall steady state occupancy38

The steady state occupancy of a species is defined implicitly by39

p,• =
∫ X

0
p|p•,d , (S1-5)

with p| given in Eq. S1-4.40

In general, this admits no explicit solution. However, we can solve for p,• using a41

simple iterative algorithm:42

1. Set p,• to some non-zero initial value, e.g. 1
2 ;43

2. Update its value using eq. S1-5;44

3. Repeat 2 until the value of p,• no longer changes (fixed point).45

S1-1.5 Relative distribution profiles46

The relative distribution profile of species  is defined as in Eq. 2 in the main text:47

π/ =
p|

p,•
=

1

p,•

cp,• +m

cp,• +m + e
(1 − exp (−(cp,• +m + e))) . (S1-6)

We note that the mean value of the profile is one:48

E(π/) =
∫ X

0
π/yp•,ydy =

∫ X

0

p,y

p•,yp,•
p•,ydy = 1 . (S1-7)

Let49

A =
1

p,•

cp,• +m

cp,• +m + e
, and R = cp,• +m + e .

We have:50

π/ = A [1 − exp (−R)] .

We note that π,0 = 0 for all , and that lim→X π/ = A(1 − exp (−RX)). The latter51

is between 1 and A, since on the one hand π/ is strictly increasing w.r.t. , and52
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E(π/) = 1, and on the other hand lim→∞ π/ = A.53

To obtain the distribution (probability density) of π/ values, we first compute the54

inverse function π−1/z , that returns the patch age for which a particular value z of π/55

is obtained. From the above expression of π/ we get:56

π−1
/z
=
1

R
ln
�

A

A − z

�

.

It then follows that the probability density function of π/ is:57

p,z =
dπ−1/z
dz

p•,π−1,z
=

p•,π−1,z
R(A − z)

,

defined on the interval 0 < z < A(1− exp (−RX)). This expression was used to draw58

the distribution of π/ values in the inset of Figure 2 in the main text. The variance59

of the above distribution is a metric of species “fastness” (see main text).60

We also note that since π/ and πj/ are increasing functions of  (Eq. S1-6),61

Harris’ inequality applies:62

∫ X

0
p•,π/πj/d ≥

∫ X

0
p•,π/d

∫ X

0
p•,πj/d = 1 , (S1-8)

or equivalently Cov(π/,πj/) ≥ 0.63

Lastly, we remark that the variance of the average community profile (see Eq. 964

in the main text) can also be expressed as:65

Vr(π̂) =
s
∑

k=1

s
∑

ℓ=1

kℓ Cov(πk/,πℓ/) .

S1-1.6 The relative distribution profiles cross exactly once66

The following lemma will be used in the theorem of the next section.67

Lemma. In the general metacommunity model S1-1, for any pair of species , j, the68

relative distribution profiles π/ and πj/ cross exactly once beyond the initial point69

( = 0), unless π/ = πj/ for all .70

Proof. Let71

δ = π/ − πj/ = A [1 − exp (−R)] − Aj
�

1 − exp
�

−Rj
��

.
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Differentiating with respect to ,72

dδ

d
= AR exp (−R) − AjRj exp

�

−Rj
�

,

with δ0 = 0. Let us show that δ has a single optimum (maximum or minimum). Let73

∗ be such that δ′
∗
= 0, where the prime denotes the slope of δ. We find a unique74

possible such ∗:75

∗ =
log

�

AR
AjRj

�

R − Rj
.

Therefore, regardless the initial sign of δ′

, δ cannot change sign more than once

(for some  > ∗). Since

E(δ) =
∫ X

0
p•,δd =

∫ X

0
p•,(π, − π,) = 0 ,

δ must change sign at least once. Hence, δ changes sign exactly once. That76

means that any pair of profiles π/,πj/ cross exactly once beyond the initial point77

( = 0).78

S1-1.7 Variances and initial slopes of the relative distribution pro-79

files80

Theorem. In the general metacommunity model S1-1, for any pair of species , j, the81

inequality Vr(π/) < Vr(πj/) is equivalent to π′
/0 > π′

j/0, meaning that the variance82

of the profile is entirely determined by the initial slope of the profile.83

Proof. The inequality Vr(π/) < Vr(πj/) is equivalent to84

∫ X

0
π2
/
p•,d <

∫ X

0
π2
j/
p•,d .

This inequality can equivalently be expressed as:85

∫ X

0
(π2

/
− π2

j/
)p•,d =

∫ X

0
(π/ + πj|)(π/ − πj/)p•,d =

∫ X

0
(π/ + πj/)δp•,d < 0 .

Since (π/ + πj/) is increasing w.r.t. , E(δ) = 0, and using the preceding lemma,86

it is necessary and sufficient that δ is positive on the interval (0,∗) for the above87
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inequality to be satisfied. This condition is satisfied if and only if δ′0 = AR − AjRj > 0.88

Therefore, the above inequality is equivalent to AR > AjRj. For k = , j,89

AkRk = ck +
mk

pk,•
= π′

k/0 ,

where the prime denotes differentiation w.r.t. . Hence the equivalence:90

Vr(π/) < Vr(πj/)⇐⇒ π′
/0 > π′

j/0 ,

91

Note: this equivalence between initial slope and variance holds for any species,92

but does not hold for the average profile of several species. Therefore the initial93

slope of the average relative distribution profile cannot be taken as a proxy for94

Vr(π̂). It is therefore not a good proxy of average fastness.95

S1-2 Link with classical metapopulation models96

The model (Eq. S1-1) generalizes the classical mainland-island and Levins metapop-

ulation models, which are characterized by μ() = μ (a constant) for all , and

X → +∞. To show the connection, we integrate both sides of Eq. S1-1 over  on

[0,+∞). The l.h.s. simplifies to

�

lim
→+∞

p,,t − p,0,t
�

+
dp,•,t

dt
=
dp,•,t

dt
,

which yields97

dp,•,t

dt
= (cp,•,t +m) (1 − p,•,t) − (μ + e)p,•,t . (S1-9)

We recognize a classical metapopulation model. The special cases c = 0 and m = 098

correspond to the mainland-island and Levins models, respectively.99

7



S1-2.1 Steady-state occupancy in classical models100

At steady-state, Eq. S1-9 becomes:101

0 = (cp,• +m) (1 − p,•) − (μ + e)p,• . (S1-10)

Solving for p,• in Eq. S1-10 yields two real roots. One can easily check that only the102

largest root is positive. The biologically relevant equilibrium is therefore103

p,• =
c − (e + μ +m) +

Ç

m2
 + 2(e + c + μ)m + (e − c + μ)2

2c
, (S1-11)

which requires c > 0.104

Mainland-island model. Assuming c = 0, solving for p,• in Eq. S1-10 yields105

p,• =
m

m + e + μ
. (S1-12)

Levins model. Assuming m = 0, Eq. S1-11 simplifies to106

p,• = 1 −
e + μ

c
, (S1-13)

provided c > e + μ. Otherwise p,• = 0.107

S1-2.2 Expressions of the variance/covariance of relative profiles108

The overall fractions of patches occupied by species  only, species j only, and both109

species  and species j, are q,t,•, qj,t,•, and q{,j},t,•, respectively. The fractions of110

patches occupied by species  and species j are p,t,• = q,t,• + q{,j},t,• and pj,t,• =111

qj,t,• + q{,j},t,•, respectively. Integrating both sides of Eq. S1-14 w.r.t. ,112

dq,t,•

dt
= F,t(1 − q,t,• − qj,t,• − q{,j},t,•) − eq,t,• − μq,t,• + ejq{,j},t,• − Fj,tq,t,• ,

dqj,t,•

dt
= Fj,t(1 − q,t,• − qj,t,• − q{,j},t,•) − ejqj,t,• − μqj,t,• + eq{,j},t,• − F,tqj,t,• ,

dq{,j},t,•

dt
= Fj,tq,t,• + F,tqj,t,• − (e + ej + μ)q{,j},t,• .

8



The above system of equations can equivalently be expressed as:113

dp,t,•

dt
= F,t(1 − p,t,•) − (e + μ)p,t,• ,

dpj,t,•

dt
= Fj,t(1 − pj,t,•) − (ej + μ)pj,t,• ,

dq{,j},•

dt
= Fj,t(p,t,• − q{,j},t,•) + Fj,t(pj,t,• − q{,j},t,•) − (e + ej + μ)q{,j},• .

At steady-state, we can drop the t subscripts: for k = , j,114

pk,• =
Fk

Fk + ek + μ
, and q{,j},• =

Fjp,• + Fpj,•
Fj + F + e + ej + μ

= p,•pj,•

Fj
pj,•
+ F

p,•

F + Fj + e + ej + μ
.

Combining both equations,115

q{,j},• = p,•pj,•
F + Fj + e + ej + 2μ

F + Fj + e + ej + μ
= p,•pj,•

�

1 +
μ

F + Fj + e + ej + μ

�

.

Therefore (see Eq. 5 in the main text),116

Cov(π/,πj/) =
μ

F + Fj + e + ej + μ
.

Using the fact that the force of colonization/immigration of species  (Eq. S1-15) is117

F = c(q,• + q{,j},•) +m = cp,• +m,118

Cov(π/,πj/) =
μ

cp,• +m + cjpj,• +mj + e + ej + μ
.

Last, using the expression of p,• from Eq. S1-11, we obtain:119

Cov(π/,πj/) =
2μ

∑

k∈{,j}

�

mk + ek + ck +
Ç

m2
k + 2(ek + ck + μ)mk + (ek − ck + μ)2

� .

As a special case, for any species :120

Vr(π,) = Cov(π/,π/) =
μ

m + e + c +
Ç

m2
 + 2(e + c + μ)m + (e − c + μ)2

.
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Mainland-island model. Assuming c = 0 and rearranging yields:121

Cov(π/,πj/) =
μ

m +mj + e + ej + μ
, and Vr(π/) =

μ

2(e +m) + μ
.

Levins model. Assuming m = 0, using and rearranging yields:122

Cov(π/,πj/) =
μ

c + cj − μ
, and Vr(π/) =

μ

2c − μ
.

S1-2.3 Parameter conditions to have identical relative profiles123

We define as similar species that have the same relative distribution profile: for any124

pair of similar species , j, π/ = πj/ for all . The latter equality is equivalent to125

p| = κpj|, which is again equivalent to p, = κpj,, with κ = p,•/pj,•.126

Using Eq. S1-4, this means that the following pair of equations must be satisfied:127

cp,• +m + e = cjpj,• +mj + ej ,

cp,• +m = κ(cjpj,• +mj) .

Mainland-island model. Assuming c = 0, using Eq. S1-12, and rearranging128

yields:129

m = κmj ,

e = (1 − κ)mj + ej .

In the mainland-island model, similar species may differ in both extinction and130

immigration rates, provided they respect the above relationships.131

Levins model. Assuming m = 0, using Eq. S1-13, and rearranging yields:132

c = cj ,

e = (1 − κ)(cj − μ) + κej .

In the Levins model, similar species must have equal colonization rates, but their133

extinction rates may differ provided they respect the above relationship.134

10



S1-3 Independence of co-occurrences within age classes135

In this section, we keep track of co-occurrences between two non-interacting species.136

We will show that the probability that a patch of age  is occupied by both species137

is equal to the product of the probabilities that a patch of age  is occupied by each138

species irrespective of the other species. The demonstration is inspired from and139

extends earlier studies in epidemiology (Kucharski and Gog, 2012; Hamelin et al.,140

2019).141

We consider the following model, which looks into the general metacommunity142

model S1-1 into more detail for any pair of species in the set of s species considered.143

These species are indexed by  = 1, 2 without loss of generality. Let q∅,t,, q,t,,144

and q{1,2},t, be the fractions of patches unoccupied, occupied by a single species145

( = 1, 2), and occupied by both species, respectively. For  > 0,146

∂q∅,t,

∂t
+
∂q∅,t,

∂
= −(F1,t + F2,t + μ)q∅,t, + e1q1,t, + e2q2,t, ,

∂q1,t,

∂t
+
∂q1,t,

∂
= F1,tq∅,t, − (F2,t + μ + e1)q1,t, + e2q{1,2},t, , (S1-14)

∂q2,t,

∂t
+
∂q2,t,

∂
= F2,tq∅,t, − (F1,t + μ + e2)q2,t, + e1q{1,2},t, ,

∂q{1,2},t,

∂t
+
∂q{1,2},t,

∂
= F2,tq1,t, + F1,q2,t, − (μ + e1 + e2)q{1,2},t, ,

and, for  = 0:147

q∅,t,0 =
∫ X

0
μ(q∅,t, + q1,t, + q2,t, + q{1,2},t,)d + q∅,t,X + q1,t,X + q2,t,X + q{1,2},t,X ,

q1,t,0 = 0 , q2,t,0 = 0 , q{1,2},t,0 = 0 .

The force of colonization/immigration of species  = 1, 2, F,t, can for instance take148

the form:149

F,t = c

∫ X

0
(q1,t, + q{1,2},t,)d +m .

We set p•,t, = q∅,t, + q1,t, + q2,t, + q{1,2},t,. We have, for  > 0,150

∂p•,t,

∂t
+
∂p•,t,

∂
= −μp•,t, ,
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and, for  = 0,

p•,t,0 =
∫ X

0
μp•,t,d + p•,t,X .

Steady-state analysis. At steady state, the state variables do not depend on151

time t, and the model simplifies to (keeping the same notations for convenience):152

dq∅,

d
= −(F1 + F2 + μ)q∅, + e1q1, + e2q2, ,

dq1,

d
= F1q∅, − (F2 + μ + e1)q1, + e2q{1,2}, ,

dq2,

d
= F2q∅, − (F1 + μ + e2)q2, + e1q{1,2}, ,

dq{1,2},

d
= F2q1, + F1q2, − (μ + e1 + e2)q{1,2} ,

with initial conditions:153

q∅,0 =
∫ X

0
μ(q∅, + q1, + q2, + q{1,2},)d + q∅,X + q1,X + q2,X + q{1,2},X ,

q1,0 = 0 , q2,0 = 0 , q{1,2},0 = 0 .

The force of colonization/immigration of species  = 1, 2, F, can for instance take154

the form:155

F = c

∫ X

0
(q1, + q{1,2},)d +m . (S1-15)

We set p•, = q∅, + q1, + q2, + q{1,2},. The distribution p•, has been expressed in156

Eq. S1-3.157

Next we define the probabilities for a patch to be unoccupied, occupied by a158

single species ( = 1, 2), and occupied by both species, given patch age :159

q∅| =
q∅,

p•,
, q1| =

q1,

p•,
, q2| =

q2,

p•,
, q{1,2}| =

q{1,2},

p•,
.

Note that q∅| + q1| + q2| + q{1,2}| = 1. Using the fact that160

q′∅| =
�

q∅,

p•,

�′

=
q′∅,

p•,
− q∅|

p′•,

p•,
=
q′∅,

p•,
+ μq∅| ,
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and similarly for other conditional probabilities, we obtain:161

dq∅|

d
= −(F1 + F2)q∅| + e1q1| + e2q2| ,

dq1|

d
= F1q∅| − (F2 + e1)q1| + e2q{1,2}| ,

dq2|

d
= F2q∅| − (F1 + e2)q2| + e1q{1,2}| ,

dq{1,2}|

d
= F2q1| + F1q2| − (e1 + e2)q{1,2}| ,

with initial conditions162

q∅|0 =
q∅,0

p•,0
= 1 ,

q1|0 = 0 , q2|0 = 0 , q{1,2}|0 = 0 .

Let163

p1| = q1| + q{1,2}| , p2| = q2| + q{1,2}| , Δ = q{1,2}| − p1|p2| .

We have164

dp1|

d
= F1(q∅| + q2|) − e1(q1| + q{1,2}|) ,

= F1(1 − p1|) − e1p1| ,

and similarly for the derivative of p2| w.r.t. . Thus165

d(p1|p2|)

d
= F1(1 − p1|)p2| + F2(1 − p2|)p1| − (e1 + e2)p1|p2| .

Using166

dq{1,2}|

d
= F1(p2| − q{1,2}|) + F2(p1| − q{1,2}|) − (e1 + e2)q{1,2}| ,

d(p1|p2|)

d
= F1(p2| − p1|p2|) + F2(p1| − p1|p2|) − (e1 + e2)p1|p2| ,

we end up with:167

dΔ

d
= −(F1 + F2 + e1 + e2)Δ , Δ0 = 0 .
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Therefore, Δ = 0 for all . Hence, for all  ≥ 0,168

q{1,2}| = p1|p2| .

As a consequence,169

q1,2,• =
∫ X

0
q{1,2}|p•,d =

∫ X

0
p1|p2|p•,d .

S1-4 The case of immune species170

In this section, we consider species that are immune to disturbance events (hereafter171

immune species) separately from vulnerable (non-immune) species.172

For immune species, the boundary conditions of the general model S1-1 have to

be updated in the following way: for all immune species indexed by , and for all

t ≥ 0,

p,0,t =
∫ X

0
μp,,td + p,X,t .

Since species have nonzero individual extinction rates (for all , e > 0), we have173

limX→+∞ p,X,t = 0.174

The patches that have age zero at time t are those that are disturbed at time t:175

p•,0,t =
∫ X

0
μp•,,td + p•,X,t .

Integrating both sides of Eq. S1-1 w.r.t. ,176

(p,X,t − p,0,t) +
dp,•,t

dt
= −

∫ X

0
μp,,td − ep,•,t + (cp,•,t +m)(1 − p,•,t) ,

which yields
dp,•,t

dt
= (cp,•,t +m) (1 − p,•,t) − ep,•,t .

At steady-state, we omit the t subscripts:177

0 = (cp,• +m) (1 − p,•) − ep,• . (S1-16)
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We also have178

p,0 =
∫ X

0
μp,d + p,X . (S1-17)

and179

p•,0 =
∫ X

0
μp•,d + p•,X .

Let us check that p̌, = p,•p•, is solution of Eq. S1-1 at steady-state (i.e. Eq.180

S1-2) with initial condition S1-17. At  = 0,181

p̌,0 = p,•p•,0 =
∫ X

0
μp,•p•,d + p,•p•,X =

∫ X

0
μp̌,d + p̌,X ,

which is consistent with Eq. S1-17. We also have182

dp̌,

d
= −μp,•p•, = −μp̌, .

Since183

−ep̌, + (cp,• +m)(p•, − p̌,) = p•, (−ep,• + (cp,• +m)(1 − p,•)) = 0 ,

(see Eq. S1-16), one can equally write184

dp̌,

d
= −μp̌, − ep̌, + (cp,• +m)(p•, − p̌,) ,

which is consistent with Eq. S1-2.185

Therefore, p, = p,•p•,, meaning that patch age and occupancy are independent186

random variables for immune species.187

As a consequence, p| = p,/p•, = p,•, hence π/ = p|/p,• = 1 for all . In188

other words, immune species have the same relative distribution profile as infinitely189

fast non-immune species. The predictions made for very fast non-immune species190

hold for immune species as well. Pairing an immune species with any other type of191

species is expected to generate spurious competition.192
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