Supporting information for "Metacommunity dynamics and the detection of species associations in co-occurrence analyses: why patch disturbance matters" (*Functional Ecology*, 2022)

Appendix S1 Mathematical supplements

3 Vincent Calcagno, Nik J. Cunniffe, Frédéric M. Hamelin

4 S1-1 General model

5 S1-1.1 Model and definitions

⁶ Patches undergo disturbances that lead to the extinction of all the species consid-⁷ ered (i = 1, 2, ..., s). The patches are disturbed at rate μ_X , where x is the age of a ⁸ patch, i.e. the time since it was last disturbed. Let X be the maximum age a patch ⁹ can reach, i.e. patches are systematically disturbed at age X. In the special cases ¹⁰ developed later, there is no such sharp limit, and X just tends to infinity.

The model describes the changes in $p_{i,x,t}$, the mixed joint probability density of patch age x (a continuous r.v.) and occupancy by species i (a discrete r.v.) at time t. The marginal probability of occupancy by species i is

$$p_{i,\bullet,t} = \int_0^X p_{i,x,t} \mathrm{d}x \, .$$

¹⁴ Similarly, the marginal probability density of patch age x at time t is denoted as $p_{\bullet,x,t}$

15 (see Section S1-3 for a more explicit definition), and sums to unity as any p.d.f.:

$$\int_0^X p_{\bullet,x,t} \mathrm{d}x = 1$$

Lastly, the probability that a patch of age x is occupied by species i at time t is denoted as:

$$p_{i|x,t}=\frac{p_{i,x,t}}{p_{\bullet,x,t}}.$$

The general model can be expressed as the following partial differential equation
 (repeating Eq. 1 in the main text):

$$\frac{\partial p_{i,x,t}}{\partial x} + \frac{\partial p_{i,x,t}}{\partial t} = -(\mu_x + e_i)p_{i,x,t} + (c_i p_{i,\bullet,t} + m_i)(p_{\bullet,x,t} - p_{i,x,t}).$$
(S1-1)

Since all patches are empty following a disturbance, $p_{i,0,t} = 0$ for all i = 1, 2, ..., s, and for all $t \ge 0$. If there is a maximum patch age X, $p_{i,x,t} = 0$ for all x > X. Otherwise, $\lim_{x \to +\infty} p_{i,x,t} = 0$.

At steady-state, we can drop the subscript t, and Eq. S1-1 becomes:

$$\frac{dp_{i,x}}{dx} = -(\mu_x + e_i)p_{i,x} + (c_i p_{i,\bullet} + m_i)(p_{\bullet,x} - p_{i,x}), \qquad (S1-2)$$

where $p_{\bullet,x}$ is the stationary probability density of the age x of a patch.

Table S1-1 lists the model parameters/variables and their definitions.

²⁶ S1-1.2 Steady state distribution of patch age

²⁷ The stationary distribution of patch age satisfies

$$\frac{\mathrm{d}p_{\bullet,x}}{\mathrm{d}x} = -\mu_x p_{\bullet,x} \, .$$

Therefore, $p_{\bullet,X}$ can be expressed as:

$$p_{\bullet,x} = p_{\bullet,0} \exp\left(-\int_0^x \mu_y dy\right), \qquad (S1-3)$$

²⁹ where $p_{\bullet,0}$ is an implicit factor such that $\int_0^X p_{\bullet,x} dx = 1$, since $p_{\bullet,x}$ is the probability ³⁰ density function of the host age x. The function $p_{\bullet,x}$ is decreasing with respect ³¹ to x. In the special case where $\mu_x = \mu$ (a constant) and X is infinite, it is simply ³² an exponential distribution with rate μ . In general, depending on μ_x , $p_{\bullet,x}$ can take ³³ various shapes, including for instance uniform or Weibull distributions.

³⁴ S1-1.3 Occupancy conditional on patch age

From Eq. S1-2 and S1-3 and the rule of differentiation of a ratio $(p_{i,x}/p_{\bullet,x})$, the steadystate probability of occupancy conditioned to patch age $(p_{i|x})$ satisfies:

$$\frac{dp_{i|x}}{dx} = -e_i p_{i|x} + (c_i p_{i,\bullet} + m_i) (1 - p_{i|x}),$$

Parameter	Meaning
S	number of species considered; species are indexed with $i, j = 1, 2,, s$
Ci	colonization rate of species <i>i</i> (per occupied patch)
mi	immigration rate from outside the metacommunity of species <i>i</i>
ei	local extinction rate of species <i>i</i>
$\mu_{\mathbf{x}}$	catastrophic disturbance rate of a patch of age x (noted μ if constant)
X	maximum patch age (if any)
N	total number of sites (patches) in the co-occurrence matrix considered
Variable	Meaning
t	time
x	age of a patch, i.e. the time since the last catastrophic disturbance event
F _{i,t}	force of colonization/immigration of species <i>i</i> at time <i>t</i>
Fi	steady-state force of colonization/immigration of species <i>i</i>
$p_{i,x,t}$	fraction of patches that have age x and are occupied by species i at time t
$p_{\bullet,x,t}$	fraction of patches that have age x at time t
$p_{i,\bullet,t}$	overall occupancy of species <i>i</i> , i.e. the fraction of patches it occupies
$p_{i x,t}$	fraction of patches of age x that are occupied by spp. <i>i</i> : $p_{i x,t} = p_{i,x,t}/p_{\bullet,x,t}$
$p_{i,x}$	steady-state fraction of patches that have age x and are occupied by spp. i
$p_{\bullet,x}$	steady-state fraction of patches that have age x
$p_{i,\bullet}$	overall occupancy of species <i>i</i> at steady-state
$p_{i,\bullet}^*$	overall occupancy of species <i>i</i> after permutations in the co-occurrence matrix
$p_{i x}$	fraction of patches of age x that are occupied by species i: $p_{i x} = p_{i,x}/p_{\bullet,x}$
$\pi_{i/x}$	relative distribution profile of species <i>i</i> : $\pi_{i/x} = p_{i x}/p_{i,\bullet}$
$\pi^*_{i/x}$	relative distribution profile of species <i>i</i> after permutations in the matrix
$\pi^*_{i/x} \ \pi^{-1}_{i/z}$	inverse function of $\pi_{i/x}$
$p_{i,z}$	the probability density function of $\pi_{i/\chi}$
$q_{\emptyset,t,x}$	fraction of patches that have age x and are unoccupied at time t
$q_{i,t,x}$	fraction of patches that have age x and are occupied by a single species i
q {i,j},t,x	fraction of patches that have age x and are occupied by both species i and j
qi,t,∙	overall fraction of patches occupied by species <i>i</i> only at time <i>t</i>
q {i,j},t,∙	overall fraction of patches occupied by both species <i>i</i> and <i>j</i> at time <i>t</i>
$q_{\varnothing,x}$	steady-state fraction of patches that have age x and are unoccupied
$q_{i,x}$	steady-state fraction of patches that have age x and are singly occupied
q {i,j},x	steady-state fraction of patches that have age x and are doubly occupied
qi,j,∙	overall fraction of patches occupied by both species i and j at steady-state
$q_{i,j,\bullet}^*$	overall fraction of co-occurrences of species i and j after permutations
$C_{i,j}$	partial C-score between two species: $C_{i,j} = N^2 (p_{i,\bullet} - q_{i,j,\bullet}) (p_{j,\bullet} - q_{i,j,\bullet})$
Wi	relative occupancy of species <i>i</i> in the matrix: $w_i = p_{i,\bullet} / \sum_{k=1}^{s} p_{k,\bullet}$
$\hat{\pi}_{x}$	weighted-average of the species distribution profiles: $\hat{\pi}_x = \sum_{k=1}^{s} w_k \pi_{k/x}$

Table S1-1: Model variables and parameters.

with $p_{i|0} = 0$. This can be solved as

$$p_{i|x} = \frac{c_i p_{i,\bullet} + m_i}{c_i p_{i,\bullet} + m_i + e_i} \left(1 - \exp(-(c_i p_{i,\bullet} + m_i + e_i)x) \right) .$$
(S1-4)

38 S1-1.4 Overall steady state occupancy

³⁹ The steady state occupancy of a species is defined implicitly by

$$p_{i,\bullet} = \int_0^X p_{i|X} p_{\bullet,X} \mathrm{d}X \,, \tag{S1-5}$$

40 with $p_{i|x}$ given in Eq. S1-4.

In general, this admits no explicit solution. However, we can solve for $p_{i,\bullet}$ using a simple iterative algorithm:

1. Set
$$p_{i,\bullet}$$
 to some non-zero initial value, e.g. $\frac{1}{2}$;

2. Update its value using eq. S1-5;

3. Repeat 2 until the value of $p_{i,\bullet}$ no longer changes (fixed point).

⁴⁶ S1-1.5 Relative distribution profiles

⁴⁷ The relative distribution profile of species *i* is defined as in Eq. 2 in the main text:

$$\pi_{i/x} = \frac{p_{i|x}}{p_{i,\bullet}} = \frac{1}{p_{i,\bullet}} \frac{c_i p_{i,\bullet} + m_i}{c_i p_{i,\bullet} + m_i + e_i} \left(1 - \exp\left(-(c_i p_{i,\bullet} + m_i + e_i)x\right)\right).$$
(S1-6)

⁴⁸ We note that the mean value of the profile is one:

$$\mathsf{E}(\pi_{i/x}) = \int_0^X \pi_{i/y} p_{\bullet,y} \mathrm{d}y = \int_0^X \frac{p_{i,y}}{p_{\bullet,y} p_{i,\bullet}} p_{\bullet,y} \mathrm{d}y = 1.$$
(S1-7)

49 Let

$$A_i = \frac{1}{p_{i,\bullet}} \frac{c_i p_{i,\bullet} + m_i}{c_i p_{i,\bullet} + m_i + e_i}$$
, and $R_i = c_i p_{i,\bullet} + m_i + e_i$.

50 We have:

$$\pi_{i/x} = A_i \left[1 - \exp\left(-R_i x\right) \right]$$

⁵¹ We note that $\pi_{i,0} = 0$ for all *i*, and that $\lim_{x\to X} \pi_{i/x} = A_i(1 - \exp(-R_iX))$. The latter ⁵² is between 1 and A_i , since on the one hand $\pi_{i/x}$ is strictly increasing w.r.t. *x*, and ⁵³ $E(\pi_{i/x}) = 1$, and on the other hand $\lim_{x\to\infty} \pi_{i/x} = A_i$.

To obtain the distribution (probability density) of $\pi_{i/x}$ values, we first compute the inverse function $\pi_{i/z}^{-1}$, that returns the patch age for which a particular value z of $\pi_{i/x}$ is obtained. From the above expression of $\pi_{i/x}$ we get:

$$\pi_{i/z}^{-1} = \frac{1}{R_i} \ln \left[\frac{A_i}{A_i - z} \right].$$

⁵⁷ It then follows that the probability density function of $\pi_{i/\chi}$ is:

$$p_{i,z} = \frac{\mathrm{d}\pi_{i/z}^{-1}}{\mathrm{d}z} p_{\bullet,\pi_{i,z}^{-1}} = \frac{p_{\bullet,\pi_{i,z}^{-1}}}{R_i(A_i-z)},$$

⁵⁸ defined on the interval $0 < z < A_i(1 - \exp(-R_iX))$. This expression was used to draw ⁵⁹ the distribution of $\pi_{i/x}$ values in the inset of Figure 2 in the main text. The variance ⁶⁰ of the above distribution is a metric of species "fastness" (see main text).

⁶¹ We also note that since $\pi_{i/x}$ and $\pi_{j/x}$ are increasing functions of x (Eq. S1-6), ⁶² Harris' inequality applies:

$$\int_{0}^{X} p_{\bullet,X} \pi_{i/X} \pi_{j/X} dx \ge \int_{0}^{X} p_{\bullet,X} \pi_{i/X} dx \int_{0}^{X} p_{\bullet,X} \pi_{j/X} dx = 1, \qquad (S1-8)$$

or equivalently $Cov(\pi_{i/x}, \pi_{j/x}) \ge 0$.

Lastly, we remark that the variance of the average community profile (see Eq. 9 in the main text) can also be expressed as:

$$\operatorname{Var}(\hat{\pi}) = \sum_{k=1}^{s} \sum_{\ell=1}^{s} w_k w_\ell \operatorname{Cov}(\pi_{k/x}, \pi_{\ell/x}).$$

66 S1-1.6 The relative distribution profiles cross exactly once

⁶⁷ The following lemma will be used in the theorem of the next section.

Lemma. In the general metacommunity model S1-1, for any pair of species i, j, the relative distribution profiles $\pi_{i/x}$ and $\pi_{j/x}$ cross exactly once beyond the initial point (x = 0), unless $\pi_{i/x} = \pi_{j/x}$ for all x.

71 Proof. Let

$$\delta_{x} = \pi_{i/x} - \pi_{j/x} = A_{i} [1 - \exp(-R_{i}x)] - A_{j} [1 - \exp(-R_{j}x)].$$

⁷² Differentiating with respect to x,

$$\frac{\mathrm{d}\delta_x}{\mathrm{d}x} = A_i R_i \exp\left(-R_i x\right) - A_j R_j \exp\left(-R_j x\right) ,$$

with $\delta_0 = 0$. Let us show that δ_x has a single optimum (maximum or minimum). Let x* be such that $\delta'_{x*} = 0$, where the prime denotes the slope of δ_x . We find a unique possible such x*:

$$x^* = \frac{\log\left(\frac{A_i R_i}{A_j R_j}\right)}{R_i - R_j}.$$

Therefore, regardless the initial sign of δ'_x , δ_x cannot change sign more than once (for some $x > x^*$). Since

$$\mathsf{E}(\delta_{x}) = \int_{0}^{X} p_{\bullet,x} \delta_{x} \mathrm{d}x = \int_{0}^{X} p_{\bullet,x}(\pi_{i,x} - \pi_{i,x}) = 0,$$

 $_{76}$ δ_x must change sign at least once. Hence, δ_x changes sign exactly once. That means that any pair of profiles $\pi_{i/x}$, $\pi_{j/x}$ cross exactly once beyond the initial point (x = 0).

⁷⁹ S1-1.7 Variances and initial slopes of the relative distribution pro ⁸⁰ files

Theorem. In the general metacommunity model S1-1, for any pair of species i, j, the inequality $Var(\pi_{i/x}) < Var(\pi_{j/x})$ is equivalent to $\pi'_{i/0} > \pi'_{j/0}$, meaning that the variance of the profile is entirely determined by the initial slope of the profile.

⁸⁴ *Proof.* The inequality $Var(\pi_{i/x}) < Var(\pi_{j/x})$ is equivalent to

$$\int_0^X \pi_{i/x}^2 p_{\bullet,x} \mathrm{d}x < \int_0^X \pi_{j/x}^2 p_{\bullet,x} \mathrm{d}x$$

⁸⁵ This inequality can equivalently be expressed as:

$$\int_0^X (\pi_{i/x}^2 - \pi_{j/x}^2) p_{\bullet,x} dx = \int_0^X (\pi_{i/x} + \pi_{j|x}) (\pi_{i/x} - \pi_{j/x}) p_{\bullet,x} dx = \int_0^X (\pi_{i/x} + \pi_{j/x}) \delta_x p_{\bullet,x} dx < 0.$$

⁸⁶ Since $(\pi_{i/x} + \pi_{j/x})$ is increasing w.r.t. x, $E(\delta_x) = 0$, and using the preceding lemma,

it is necessary and sufficient that δ_{χ} is positive on the interval (0, x^*) for the above

inequality to be satisfied. This condition is satisfied if and only if $\delta'_0 = A_i R_i - A_j R_j > 0$. Therefore, the above inequality is equivalent to $A_i R_i > A_j R_j$. For k = i, j,

$$A_k R_k = c_k + \frac{m_k}{p_{k,\bullet}} = \pi'_{k/0},$$

where the prime denotes differentiation w.r.t. x. Hence the equivalence:

$$\operatorname{Var}(\pi_{i/x}) < \operatorname{Var}(\pi_{j/x}) \Longleftrightarrow \pi'_{i/0} > \pi'_{j/0}$$
,

91

Note: this equivalence between initial slope and variance holds for any species, ⁹³ but does not hold for the average profile of several species. Therefore the initial ⁹⁴ slope of the average relative distribution profile cannot be taken as a proxy for ⁹⁵ $Var(\hat{\pi})$. It is therefore not a good proxy of average fastness.

S1-2 Link with classical metapopulation models

The model (Eq. S1-1) generalizes the classical mainland-island and Levins metapopulation models, which are characterized by $\mu(x) = \mu$ (a constant) for all x, and $X \rightarrow +\infty$. To show the connection, we integrate both sides of Eq. S1-1 over x on $[0, +\infty)$. The l.h.s. simplifies to

$$\left(\lim_{x\to+\infty}p_{i,x,t}-p_{i,0,t}\right)+\frac{\mathrm{d}p_{i,\bullet,t}}{\mathrm{d}t}=\frac{\mathrm{d}p_{i,\bullet,t}}{\mathrm{d}t},$$

97 which yields

$$\frac{dp_{i,\bullet,t}}{dt} = (c_i p_{i,\bullet,t} + m_i) (1 - p_{i,\bullet,t}) - (\mu + e_i) p_{i,\bullet,t}.$$
(S1-9)

⁹⁸ We recognize a classical metapopulation model. The special cases $c_i = 0$ and $m_i = 0$ ⁹⁹ correspond to the mainland-island and Levins models, respectively.

S1-2.1 Steady-state occupancy in classical models

¹⁰¹ At steady-state, Eq. S1-9 becomes:

$$0 = (c_i p_{i,\bullet} + m_i) (1 - p_{i,\bullet}) - (\mu + e_i) p_{i,\bullet}.$$
 (S1-10)

¹⁰² Solving for $p_{i,\bullet}$ in Eq. S1-10 yields two real roots. One can easily check that only the ¹⁰³ largest root is positive. The biologically relevant equilibrium is therefore

$$p_{i,\bullet} = \frac{c_i - (e_i + \mu + m_i) + \sqrt{m_i^2 + 2(e_i + c_i + \mu)m_i + (e_i - c_i + \mu)^2}}{2c_i}, \quad (S1-11)$$

which requires $c_i > 0$.

Mainland-island model. Assuming $c_i = 0$, solving for $p_{i,\bullet}$ in Eq. S1-10 yields

$$p_{i,\bullet} = \frac{m_i}{m_i + e_i + \mu} \,. \tag{S1-12}$$

Levins model. Assuming $m_i = 0$, Eq. S1-11 simplifies to

$$p_{i,\bullet} = 1 - \frac{e_i + \mu}{c_i}$$
, (S1-13)

¹⁰⁷ provided $c_i > e_i + \mu$. Otherwise $p_{i,\bullet} = 0$.

¹⁰⁸ S1-2.2 Expressions of the variance/covariance of relative profiles

The overall fractions of patches occupied by species *i* only, species *j* only, and both species *i* and species *j*, are $q_{i,t,\bullet}$, $q_{j,t,\bullet}$, and $q_{\{i,j\},t,\bullet}$, respectively. The fractions of patches occupied by species *i* and species *j* are $p_{i,t,\bullet} = q_{i,t,\bullet} + q_{\{i,j\},t,\bullet}$ and $p_{j,t,\bullet} =$ $q_{j,t,\bullet} + q_{\{i,j\},t,\bullet}$, respectively. Integrating both sides of Eq. S1-14 w.r.t. *x*,

$$\frac{dq_{i,t,\bullet}}{dt} = F_{i,t}(1 - q_{i,t,\bullet} - q_{j,t,\bullet} - q_{\{i,j\},t,\bullet}) - e_i q_{i,t,\bullet} - \mu q_{i,t,\bullet} + e_j q_{\{i,j\},t,\bullet} - F_{j,t} q_{i,t,\bullet},
\frac{dq_{j,t,\bullet}}{dt} = F_{j,t}(1 - q_{i,t,\bullet} - q_{j,t,\bullet} - q_{\{i,j\},t,\bullet}) - e_j q_{j,t,\bullet} - \mu q_{j,t,\bullet} + e_i q_{\{i,j\},t,\bullet} - F_{i,t} q_{j,t,\bullet},
\frac{dq_{\{i,j\},t,\bullet}}{dt} = F_{j,t} q_{i,t,\bullet} + F_{i,t} q_{j,t,\bullet} - (e_i + e_j + \mu) q_{\{i,j\},t,\bullet}.$$

¹¹³ The above system of equations can equivalently be expressed as:

$$\frac{dp_{i,t,\bullet}}{dt} = F_{i,t}(1 - p_{i,t,\bullet}) - (e_i + \mu)p_{i,t,\bullet},
\frac{dp_{j,t,\bullet}}{dt} = F_{j,t}(1 - p_{j,t,\bullet}) - (e_j + \mu)p_{j,t,\bullet},
\frac{dq_{\{i,j\},\bullet}}{dt} = F_{j,t}(p_{i,t,\bullet} - q_{\{i,j\},t,\bullet}) + F_{j,t}(p_{j,t,\bullet} - q_{\{i,j\},t,\bullet}) - (e_i + e_j + \mu)q_{\{i,j\},\bullet}.$$

114 At steady-state, we can drop the *t* subscripts: for k = i, j,

$$p_{k,\bullet} = \frac{F_k}{F_k + e_k + \mu}, \text{ and } q_{\{i,j\},\bullet} = \frac{F_j p_{i,\bullet} + F_i p_{j,\bullet}}{F_j + F_i + e_i + e_j + \mu} = p_{i,\bullet} p_{j,\bullet} \frac{\frac{F_j}{p_{j,\bullet}} + \frac{F_i}{p_{i,\bullet}}}{F_i + F_j + e_i + e_j + \mu}$$

¹¹⁵ Combining both equations,

$$q_{\{i,j\},\bullet} = p_{i,\bullet}p_{j,\bullet}\frac{F_i + F_j + e_i + e_j + 2\mu}{F_i + F_j + e_i + e_j + \mu} = p_{i,\bullet}p_{j,\bullet}\left(1 + \frac{\mu}{F_i + F_j + e_i + e_j + \mu}\right).$$

¹¹⁶ Therefore (see Eq. 5 in the main text),

$$\operatorname{Cov}(\pi_{i/x}, \pi_{j/x}) = \frac{\mu}{F_i + F_j + e_i + e_j + \mu}.$$

¹¹⁷ Using the fact that the force of colonization/immigration of species *i* (Eq. S1-15) is ¹¹⁸ $F_i = c_i(q_{i,\bullet} + q_{\{i,j\},\bullet}) + m_i = c_i p_{i,\bullet} + m_i,$

$$\operatorname{Cov}(\pi_{i/x}, \pi_{j/x}) = \frac{\mu}{c_i p_{i,\bullet} + m_i + c_j p_{j,\bullet} + m_j + e_i + e_j + \mu}.$$

Last, using the expression of $p_{i,\bullet}$ from Eq. S1-11, we obtain:

$$Cov(\pi_{i/x}, \pi_{j/x}) = \frac{2\mu}{\sum_{k \in \{i,j\}} \left(m_k + e_k + c_k + \sqrt{m_k^2 + 2(e_k + c_k + \mu)m_k + (e_k - c_k + \mu)^2} \right)}$$

¹²⁰ As a special case, for any species *i*:

$$\operatorname{Var}(\pi_{i,x}) = \operatorname{Cov}(\pi_{i/x}, \pi_{i/x}) = \frac{\mu}{m_i + e_i + c_i + \sqrt{m_i^2 + 2(e_i + c_i + \mu)m_i + (e_i - c_i + \mu)^2}}$$

Mainland-island model. Assuming $c_i = 0$ and rearranging yields:

$$Cov(\pi_{i/x}, \pi_{j/x}) = \frac{\mu}{m_i + m_j + e_i + e_j + \mu}$$
, and $Var(\pi_{i/x}) = \frac{\mu}{2(e_i + m_i) + \mu}$

Levins model. Assuming $m_i = 0$, using and rearranging yields:

$$Cov(\pi_{i/x}, \pi_{j/x}) = \frac{\mu}{c_i + c_j - \mu}$$
, and $Var(\pi_{i/x}) = \frac{\mu}{2c_i - \mu}$.

123 S1-2.3 Parameter conditions to have identical relative profiles

We define as similar species that have the same relative distribution profile: for any pair of similar species $i, j, \pi_{i/x} = \pi_{j/x}$ for all x. The latter equality is equivalent to $p_{i|x} = \kappa p_{j|x}$, which is again equivalent to $p_{i,x} = \kappa p_{j,x}$, with $\kappa = p_{i,\bullet}/p_{j,\bullet}$.

¹²⁷ Using Eq. S1-4, this means that the following pair of equations must be satisfied:

$$c_i p_{i,\bullet} + m_i + e_i = c_j p_{j,\bullet} + m_j + e_j,$$

$$c_i p_{i,\bullet} + m_i = \kappa (c_j p_{j,\bullet} + m_j).$$

Mainland-island model. Assuming $c_i = 0$, using Eq. S1-12, and rearranging yields:

$$m_i = \kappa m_j,$$

$$e_i = (1 - \kappa)m_j + e_j.$$

In the mainland-island model, similar species may differ in both extinction and
 immigration rates, provided they respect the above relationships.

Levins model. Assuming $m_i = 0$, using Eq. S1-13, and rearranging yields:

$$c_i = c_j,$$

$$e_i = (1-\kappa)(c_j - \mu) + \kappa e_j.$$

In the Levins model, similar species must have equal colonization rates, but their
 extinction rates may differ provided they respect the above relationship.

135 S1-3 Independence of co-occurrences within age classes

In this section, we keep track of co-occurrences between two non-interacting species. We will show that the probability that a patch of age *x* is occupied by both species is equal to the product of the probabilities that a patch of age *x* is occupied by each species irrespective of the other species. The demonstration is inspired from and extends earlier studies in epidemiology (Kucharski and Gog, 2012; Hamelin et al., 2019).

We consider the following model, which looks into the general metacommunity model S1-1 into more detail for any pair of species in the set of *s* species considered. These species are indexed by i = 1, 2 without loss of generality. Let $q_{\emptyset,t,x}$, $q_{i,t,x}$, and $q_{\{1,2\},t,x}$ be the fractions of patches unoccupied, occupied by a single species (i = 1, 2), and occupied by both species, respectively. For x > 0,

$$\frac{\partial q_{\emptyset,t,x}}{\partial t} + \frac{\partial q_{\emptyset,t,x}}{\partial x} = -(F_{1,t} + F_{2,t} + \mu_x)q_{\emptyset,t,x} + e_1q_{1,t,x} + e_2q_{2,t,x}, \frac{\partial q_{1,t,x}}{\partial t} + \frac{\partial q_{1,t,x}}{\partial x} = F_{1,t}q_{\emptyset,t,x} - (F_{2,t} + \mu_x + e_1)q_{1,t,x} + e_2q_{\{1,2\},t,x},$$
(S1-14)

$$\frac{\partial q_{2,t,x}}{\partial t} + \frac{\partial q_{2,t,x}}{\partial x} = F_{2,t}q_{\emptyset,t,x} - (F_{1,t} + \mu_x + e_2)q_{2,t,x} + e_1q_{\{1,2\},t,x},$$

$$\frac{\partial q_{\{1,2\},t,x}}{\partial t} + \frac{\partial q_{\{1,2\},t,x}}{\partial x} = F_{2,t}q_{1,t,x} + F_{1,x}q_{2,t,x} - (\mu_x + e_1 + e_2)q_{\{1,2\},t,x},$$

147 and, for x = 0:

$$q_{\emptyset,t,0} = \int_0^X \mu_x (q_{\emptyset,t,x} + q_{1,t,x} + q_{2,t,x} + q_{\{1,2\},t,x}) dx + q_{\emptyset,t,x} + q_{1,t,x} + q_{2,t,x} + q_{\{1,2\},t,x},$$

$$q_{1,t,0} = 0, \quad q_{2,t,0} = 0, \quad q_{\{1,2\},t,0} = 0.$$

The force of colonization/immigration of species $i = 1, 2, F_{i,t}$, can for instance take the form:

$$F_{i,t} = c_i \int_0^X (q_{1,t,x} + q_{\{1,2\},t,x}) dx + m_i$$

We set $p_{\bullet,t,x} = q_{\emptyset,t,x} + q_{1,t,x} + q_{2,t,x} + q_{\{1,2\},t,x}$. We have, for x > 0,

$$\frac{\partial p_{\bullet,t,x}}{\partial t} + \frac{\partial p_{\bullet,t,x}}{\partial x} = -\mu_x p_{\bullet,t,x},$$

and, for x = 0,

$$p_{\bullet,t,0} = \int_0^X \mu_x p_{\bullet,t,x} \mathrm{d}x + p_{\bullet,t,X} \, .$$

Steady-state analysis. At steady state, the state variables do not depend on time t, and the model simplifies to (keeping the same notations for convenience):

$$\begin{aligned} \frac{\mathrm{d}q_{\emptyset,x}}{\mathrm{d}x} &= -(F_1 + F_2 + \mu_x)q_{\emptyset,x} + e_1q_{1,x} + e_2q_{2,x}, \\ \frac{\mathrm{d}q_{1,x}}{\mathrm{d}x} &= F_1q_{\emptyset,x} - (F_2 + \mu_x + e_1)q_{1,x} + e_2q_{\{1,2\},x}, \\ \frac{\mathrm{d}q_{2,x}}{\mathrm{d}x} &= F_2q_{\emptyset,x} - (F_1 + \mu_x + e_2)q_{2,x} + e_1q_{\{1,2\},x}, \\ \frac{\mathrm{d}q_{\{1,2\},x}}{\mathrm{d}x} &= F_2q_{1,x} + F_1q_{2,x} - (\mu_x + e_1 + e_2)q_{\{1,2\}}, \end{aligned}$$

¹⁵³ with initial conditions:

$$\begin{aligned} q_{\emptyset,0} &= \int_0^X \mu_x (q_{\emptyset,x} + q_{1,x} + q_{2,x} + q_{\{1,2\},x}) \mathrm{d}x + q_{\emptyset,X} + q_{1,X} + q_{2,X} + q_{\{1,2\},X}, \\ q_{1,0} &= 0, \quad q_{2,0} = 0, \quad q_{\{1,2\},0} = 0. \end{aligned}$$

The force of colonization/immigration of species $i = 1, 2, F_i$, can for instance take the form:

$$F_i = c_i \int_0^X (q_{1,x} + q_{\{1,2\},x}) dx + m_i.$$
 (S1-15)

We set $p_{\bullet,x} = q_{\emptyset,x} + q_{1,x} + q_{2,x} + q_{\{1,2\},x}$. The distribution $p_{\bullet,x}$ has been expressed in Eq. S1-3.

¹⁵⁸ Next we define the probabilities for a patch to be unoccupied, occupied by a ¹⁵⁹ single species (i = 1, 2), and occupied by both species, given patch age x:

$$q_{\emptyset|x} = \frac{q_{\emptyset,x}}{p_{\bullet,x}}\,,\quad q_{1|x} = \frac{q_{1,x}}{p_{\bullet,x}}\,,\quad q_{2|x} = \frac{q_{2,x}}{p_{\bullet,x}}\,,\quad q_{\{1,2\}|x} = \frac{q_{\{1,2\},x}}{p_{\bullet,x}}\,.$$

¹⁶⁰ Note that $q_{\emptyset|x} + q_{1|x} + q_{2|x} + q_{\{1,2\}|x} = 1$. Using the fact that

$$q'_{\emptyset|x} = \left(\frac{q_{\emptyset,x}}{p_{\bullet,x}}\right)' = \frac{q'_{\emptyset,x}}{p_{\bullet,x}} - q_{\emptyset|x}\frac{p'_{\bullet,x}}{p_{\bullet,x}} = \frac{q'_{\emptyset,x}}{p_{\bullet,x}} + \mu_x q_{\emptyset|x},$$

¹⁶¹ and similarly for other conditional probabilities, we obtain:

$$\begin{aligned} \frac{\mathrm{d}q_{\varnothing|x}}{\mathrm{d}x} &= -(F_1 + F_2)q_{\varnothing|x} + e_1q_{1|x} + e_2q_{2|x}, \\ \frac{\mathrm{d}q_{1|x}}{\mathrm{d}x} &= F_1q_{\varnothing|x} - (F_2 + e_1)q_{1|x} + e_2q_{\{1,2\}|x}, \\ \frac{\mathrm{d}q_{2|x}}{\mathrm{d}x} &= F_2q_{\varnothing|x} - (F_1 + e_2)q_{2|x} + e_1q_{\{1,2\}|x}, \\ \frac{\mathrm{d}q_{\{1,2\}|x}}{\mathrm{d}x} &= F_2q_{1|x} + F_1q_{2|x} - (e_1 + e_2)q_{\{1,2\}|x}, \end{aligned}$$

¹⁶² with initial conditions

$$\begin{array}{rcl} q_{\varnothing|0} & = & \displaystyle \frac{q_{\varnothing,0}}{p_{\bullet,0}} = 1 \,, \\ q_{1|0} & = & 0 \,, \quad q_{2|0} = 0 \,, \quad q_{\{1,2\}|0} = 0 \,. \end{array}$$

163 Let

$$p_{1|x} = q_{1|x} + q_{\{1,2\}|x}$$
, $p_{2|x} = q_{2|x} + q_{\{1,2\}|x}$, $\Delta_x = q_{\{1,2\}|x} - p_{1|x}p_{2|x}$.

164 We have

$$\frac{dp_{1|x}}{dx} = F_1(q_{\emptyset|x} + q_{2|x}) - e_1(q_{1|x} + q_{1,2|x}),$$

= $F_1(1 - p_{1|x}) - e_1p_{1|x},$

and similarly for the derivative of $p_{2|x}$ w.r.t. x. Thus

$$\frac{d(p_{1|x}p_{2|x})}{dx} = F_1(1-p_{1|x})p_{2|x} + F_2(1-p_{2|x})p_{1|x} - (e_1+e_2)p_{1|x}p_{2|x}$$

166 Using

$$\frac{\mathrm{d}q_{\{1,2\}|x}}{\mathrm{d}x} = F_1(p_{2|x} - q_{\{1,2\}|x}) + F_2(p_{1|x} - q_{\{1,2\}|x}) - (e_1 + e_2)q_{\{1,2\}|x},$$

$$\frac{\mathrm{d}(p_{1|x}p_{2|x})}{\mathrm{d}x} = F_1(p_{2|x} - p_{1|x}p_{2|x}) + F_2(p_{1|x} - p_{1|x}p_{2|x}) - (e_1 + e_2)p_{1|x}p_{2|x},$$

¹⁶⁷ we end up with:

$$\frac{d\Delta_x}{dx} = -(F_1 + F_2 + e_1 + e_2)\Delta_x, \quad \Delta_0 = 0.$$

Therefore, $\Delta_x = 0$ for all x. Hence, for all $x \ge 0$,

$$q_{\{1,2\}|x} = p_{1|x}p_{2|x}.$$

¹⁶⁹ As a consequence,

$$q_{1,2,\bullet} = \int_0^X q_{\{1,2\}|x} p_{\bullet,x} dx = \int_0^X p_{1|x} p_{2|x} p_{\bullet,x} dx.$$

170 S1-4 The case of immune species

In this section, we consider species that are immune to disturbance events (hereafter
 immune species) separately from vulnerable (non-immune) species.

For immune species, the boundary conditions of the general model S1-1 have to be updated in the following way: for all immune species indexed by i, and for all $t \ge 0$,

$$p_{i,0,t} = \int_0^X \mu_x p_{i,x,t} dx + p_{i,X,t}$$

Since species have nonzero individual extinction rates (for all i, $e_i > 0$), we have $\lim_{X\to+\infty} p_{i,X,t} = 0$.

175 The patches that have age zero at time *t* are those that are disturbed at time *t*:

$$p_{\bullet,0,t} = \int_0^X \mu_X p_{\bullet,X,t} \mathrm{d}x + p_{\bullet,X,t} \, .$$

Integrating both sides of Eq. S1-1 w.r.t. x,

$$(p_{i,X,t} - p_{i,0,t}) + \frac{dp_{i,\bullet,t}}{dt} = -\int_0^X \mu_x p_{i,X,t} dx - e_i p_{i,\bullet,t} + (c_i p_{i,\bullet,t} + m_i)(1 - p_{i,\bullet,t}),$$

which yields

$$\frac{\mathrm{d}p_{i,\bullet,t}}{\mathrm{d}t} = (c_i p_{i,\bullet,t} + m_i) (1 - p_{i,\bullet,t}) - e_i p_{i,\bullet,t}$$

177 At steady-state, we omit the *t* subscripts:

$$0 = (c_i p_{i,\bullet} + m_i) (1 - p_{i,\bullet}) - e_i p_{i,\bullet}.$$
(S1-16)

178 We also have

$$p_{i,0} = \int_0^X \mu_X p_{i,X} dx + p_{i,X}.$$
 (S1-17)

179 and

$$p_{\bullet,0} = \int_0^X \mu_x p_{\bullet,x} \mathrm{d}x + p_{\bullet,X}$$

Let us check that $\check{p}_{i,x} = p_{i,\bullet}p_{\bullet,x}$ is solution of Eq. S1-1 at steady-state (i.e. Eq. s1-2) with initial condition S1-17. At x = 0,

$$\check{p}_{i,0} = p_{i,\bullet}p_{\bullet,0} = \int_0^X \mu_X p_{i,\bullet}p_{\bullet,X} dx + p_{i,\bullet}p_{\bullet,X} = \int_0^X \mu_X \check{p}_{i,X} dx + \check{p}_{i,X},$$

¹⁸² which is consistent with Eq. S1-17. We also have

$$\frac{\mathrm{d}\check{p}_{i,x}}{\mathrm{d}x} = -\mu_x p_{i,\bullet} p_{\bullet,x} = -\mu_x \check{p}_{i,x} \,.$$

183 Since

$$-e_{i}\check{p}_{i,x} + (c_{i}p_{i,\bullet} + m_{i})(p_{\bullet,x} - \check{p}_{i,x}) = p_{\bullet,x}(-e_{i}p_{i,\bullet} + (c_{i}p_{i,\bullet} + m_{i})(1 - p_{i,\bullet})) = 0,$$

184 (see Eq. S1-16), one can equally write

$$\frac{\mathrm{d}\check{p}_{i,x}}{\mathrm{d}x} = -\mu_x\check{p}_{i,x} - e_i\check{p}_{i,x} + (c_ip_{i,\bullet} + m_i)(p_{\bullet,x} - \check{p}_{i,x}),$$

¹⁸⁵ which is consistent with Eq. S1-2.

Therefore, $p_{i,x} = p_{i,\bullet}p_{\bullet,x}$, meaning that patch age and occupancy are independent random variables for immune species.

As a consequence, $p_{i|x} = p_{i,x}/p_{\bullet,x} = p_{i,\bullet}$, hence $\pi_{i/x} = p_{i|x}/p_{i,\bullet} = 1$ for all x. In other words, immune species have the same relative distribution profile as infinitely fast non-immune species. The predictions made for very fast non-immune species hold for immune species as well. Pairing an immune species with any other type of species is expected to generate spurious competition.

References

- Hamelin, F. M., Allen, L. J., Bokil, V. A., Gross, L. J., Hilker, F. M., Jeger, M. J., Manore,
- C. A., Power, A. G., Rúa, M. A., and Cunniffe, N. J. (2019). Coinfections by noninter-
- acting pathogens are not independent and require new tests of interaction. *PLoS*
- ¹⁹⁷ *Biology*, 17(12):e3000551.
- ¹⁹⁸ Kucharski, A. J. and Gog, J. R. (2012). Age profile of immunity to influenza: effect of ¹⁹⁹ original antigenic sin. *Theoretical Population Biology*, 81(2):102–112.