
 1

Technical Report: Testing and operating the
QuaeroSys Piezostimulator

MRC Cognition and Brain Sciences Unit

June 2015

Gary Chandler (gary.chandler@mrc-cbu.cam.ac.uk)
David Hayes (david.hayes@mrc-cbu.cam.ac.uk)
Mark Townsend (mark.townsend@mrc-cbu.cam.ac.uk)
Andrew Thwaites (acgt2@cam.ac.uk)

Revisions:
June 2015: Original draft
September 2019: Correction to note that QuaeroSys are still trading.

Rights
Attribution 4.0 International (CC BY 4.0)
Licence URL: http://creativecommons.org/licenses/by/4.0/

Disclaimer

The tests described here are intended to check CBSU equipment, and are not
intended as a substitute for QuaeroSys users running tests on their own
equipment. The CBSU cannot take responsibility for any damage caused to
others’ equipment as a result of readers using this document.

 2

Table of Contents
Background 3
Operating 4

Overview 4
Setup 4
Running 5

Testing 7
Overview 7
Clock speed and the number of Braille-Devices 7
Check latency 8
Check EMEG compatibility 8
Problems when running with HPI coils and EEG cap 11
Testing of internal clock 11
Testing of height 12
Memory buffer limit 12

References 13
Appendix 13

Example sinusoid code 13

 3

Background

This document outlines the testing carried out on a QuaeroSys
piezostimulator for use with EMEG setup at the Medical Research Council’s
Cognition and Brain Sciences Unit in mid-2015. QuaeroSys trade from
Germany, and their website is www.quaerosys.com. Three of their
piezostimulators are known to have been purchased by UK Departments:
Cardiff, Birmingham and York. The following tests were carried out on the
Cardiff stimulator, with kind permission of Dr David McGonigle.

The stimulator consists of a box with USB ports, trigger ports, power socket,
control hardware, and braille-device ports (‘the controller’) and (up to 5) finger-
sized blocks, which hold the pins and piezo-rods that drive the movement of
the pins (‘the braille-devices’). We will refer to ‘piezostimulator’ or ‘stimulator’
to refer to all these devices as a group.

We used Matlab [1] with Psychtoolbox [2] to present the stimulus, calling
methods of QuaeroSys’ provided .dlls [3]. Fairly thorough documentation
can be found in the piezostimulators’ .pdf manual [4], although it contains no
example scripts for sinusoids.

Fig one. The inside of one of the braille-devices of
the stimulator, showing the piezoelectric-rods that
move the pins.

In general, we found the piezostimulator to be much more accurate than
expected. It has clear millisecond and height accuracy (see test sections) for
sinusoidal type movements. Each pin is controllable with a high degree of
accuracy, in a way that is fairly simple to code, provided one frames the
commands in a suitable wrapper script. The device also provides methods to
be able to tell if the device is dropping frames.

Although the device does work in MEG with little magnetic artifact (if shielded
properly, see ‘testing’ below), when used with MEG and EEG cap/HPI coils,
the MEG picks up too much noise. MEG alone, or EEG alone, is fine.

 4

Operating

Overview

We wished to pass any arbitrary sinusoidal wave (sampled at 1000Hz)
through the pins on the braille-devices. The manual only has explicit
information about how to code rectangular waves, but sinusoidal waves can
be coded using the updated-DAC-voltage method hinted at in the introductory
pages.

The stimulator devices, when running sinusoidal waves, are fairly quiet,
issuing only a slight hum. However, a square wave (the easiest movement to
code using the stimulators methods), results in very loud clicking and violent
movements of the whole device. This is not a design error, but the inevitable
result of the piezoelectric-rods trying to move the pins from 0mm to 1.5mm
under half-a-millisecond. It is the acceleration and deceleration of this action
that causes such behavior, and, if you do need a square wave for your
experiment, it worth asking if this superfast speed is necessary (there are
ways to slow the movement down to say, acceleration over two milliseconds,
which makes the sound/vibration a lot quieter, and is, for all intents and
purposes, an imperceptible difference to the participant).

Setup

The manual can be followed quite closely to initiate setup. However, there are
a couple of potential stumbling blocks for the new user. The first is that
modern stimulus computers are likely to be 64bit Windows, whereas the
provided .dll (stimlib0.dll) is 32bit Windows. This means that a) a 32bit version
of the presentation software (Matlab, Presentation, BrainStim etc) has to be
used to call the commands, and b) the stimlib0.dll should NOT be placed in
/system32/ as suggested in the manual – if it is, it will not be found
(Windows does not allow access to 32bit .dlls in /system32/). Instead, it
should be placed on the desktop, or similar, and then linked to as normal in
the presentation script (see appendix for example script.)

The final point to remember is that each stimulator has a license key
associated to it. The stimulus computer will not be able to communicate with
the controller unless this stimulator key is entered as part of the
initStimulator command (see example in appendix). If you are reading this
document, and you have a stimulator, please take a minute to write the
license key on the back of the controller for future users - the stimulator is
useless without it.

 5

Running

When you first turn on the controller, we have found that you need to run a
couple of test commands first, or you can’t run long sets of commands. Best
to try something like:

loadlibrary('C:\Users\at03\Desktop\StimLibV2-0.3.3-
Win\stimlib0.dll','C:\Users\at03\Documents\MATLAB\stimlibrel.h','alia
s','stimlib');
calllib('stimlib', 'initStimulator','M041F77IA1Y194777825MCH0BA3ABC')
calllib('stimlib', 'setDAC',0,0);
calllib('stimlib', 'setDAC',1,4000);
calllib('stimlib', 'setProperty','local_buffer_size',1000000);
%-----
calllib('stimlib', 'setPinBlock10',0,1,0,0,1,0,1,0,1,0,0,0);
calllib('stimlib', 'setPinBlock10',1,1,0,0,0,1,0,1,0,1,0,0);
calllib('stimlib', 'wait',1,2);
calllib('stimlib', 'setPinBlock10',0,1,0,0,1,0,1,0,1,0,0,0);
calllib('stimlib', 'setPinBlock10',1,1,0,0,0,1,0,1,0,1,0,0);
calllib('stimlib', 'startStimulation');
calllib('stimlib', 'closeStimulator');

Which moves the pins up and down once. You can then proceed as normal.

When we talk about ‘controller commands’ in this document, we refer to the
commands that start calllib('stimlib', ………….). It is these that are sent to
the controller. To make the text a bit easier to read we will abbreviate
commands like calllib('stimlib', 'closeStimulator') to
'closeStimulator'.

The wait command

The timing is controlled by the wait command, which links the timing to the
internal clock (see ‘tests’ section for tests on the accuracy of this clock). The
wait command needs a minimum of 1ms between each call, otherwise it
struggles (see ‘Clock speed and the number of Braille-Devices’ below to see
caveats to this). As the controller is clocked at 2Hz, 1ms equals 2 cycles, ie:

calllib('stimlib', 'wait',1,2); % equal to one millisecond.

Stimulating sinusoids

Rectangular waves are fairly straightforward, and discussed in the manual. An
example would be using the controller commands as follows:

loadlibrary('C:\Users\at03\Desktop\StimLibV2-0.3.3-
Win\stimlib0.dll','C:\Users\at03\Documents\MATLAB\stimlibrel.h','alia
s','stimlib');
calllib('stimlib', 'initStimulator',
'M041F77IA1Y194777825MCH0BA3ABC')

% ensure 2 DAC settings to the correct heights
calllib('stimlib', 'setDAC',0,0);
calllib('stimlib', 'setDAC',1,4000);

 6

calllib('stimlib', 'setProperty','local_buffer_size',1000000);

%-----

for t=1:15

 % set the middle six pins to 'DAC1'
 calllib('stimlib', 'setPinBlock10',0,1,0,0,1,0,1,0,1,0,0,0);
 calllib('stimlib', 'setPinBlock10',1,1,0,0,0,1,0,1,0,1,0,0);

 % wait 2000 cycles (one second)
 calllib('stimlib', 'wait',1,2000);

 % set the middle six pins to 'DAC0'
 calllib('stimlib', 'setPinBlock10',0,1,0,0,0,0,0,0,0,0,0,0);
 calllib('stimlib', 'setPinBlock10',1,1,0,0,0,0,0,0,0,0,0,0);

 % wait 2000 cycles (one second)
 calllib('stimlib', 'wait',1,2000);

end

% ---- start simulation
calllib('stimlib', 'startStimulation');
calllib('stimlib', 'closeStimulator');

This would create a list of controller commands that would make a square
wave for 30 seconds, changing height every second.

Creating a sinusoid follows the same principle, but is a little more difficult as
the manual references how to do it only obliquely. We want to use a for loop
to create each subsequent command, but for a 1000 Hz sampled signal, we
need 1000 commands every second. An example of how to do this is in our
appendix: we give examples of how to creating a sinusoid of any frequency,
and how to read in in a wave from an external .mat file.

One of the most important commands is the 'remote_buffer_underruns'
command, which should be called after the ’closestimulator’ command.

%report how error-prone the result was (should be '0')
remote_buffer_underruns = calllib('stimlib',
'getProperty','remote_buffer_underruns')

Equivalent to Psychtoolbox’s ‘frames lost’ function, it tells the user how many
commands the controller failed to send. This number should be zero – if not, it
means that the controller got some of the timings/heights wrong during your
experiment.

Triggers

 7

Triggers can be emitted from the control box at any particular point by using
the necessary controller commands. See the appendix example of create a
trigger every second during a 30 second sinusoid.

Controller commands can also wait for external triggers (for instance start
vibrating when a button box is pressed) but we have not investigated these.
Command

Testing

Overview

The stimulator was tested for the similarity of the intended pin movement (an
arbitrary continuous signal from Matlab) to the actual movement of the pins. In
the tests, the input was set as a signal of 30 second duration, sampled at
1000Hz. The stimulator can run at higher sample rates, but as the stimulator
controller is clocked at 2000Hz and struggles to present signals using the
voltage-altered-DAC method at this rate (see next entry), 1000Hz seemed like
a good upper case limit. As a result, the input was a 30,000 (ie. 30x1000)
array, with each element being a value between 0 and 4095 (the minimum
and maximum ‘extents’ of the pins). For most testing purposes the signal was
a 3hz sinusoid (or 25Hz), but it could have been anything. A number of things
were checked for the accuracy of this stimulus. Due to the abstract nature of
this particular stimulus, it is hoped that this will cover, or partially cover, most
test cases.

Example 5-second height ‘signal’ to be sent to the braille pins (pseudo-

sinusoidal contour with vibration overlaid), sample rate 1000Hz.

Clock speed and the number of Braille-Devices

The controller is clocked at 2000Hz. After testing, it was found that, when
using a single braille-device, 1000Hz is the maximum sample rate that should
be attempted – higher than this and the controller will struggle to run each
command at the correct time. Unfortunately, the higher the number of braille
devices, the lower this sample rate has to be, due to the increased processing
load on the controller. Testing reveals that, for each additional braille device,
an extra millisecond is needed to process the commands.

 8

Number of

braille devices
Minimum sample
rate period (ms)

Maximum
frequency (given
the Nyquist rate)

1 1 500Hz
2 2 250Hz
3 3 166Hz
4 4 125Hz

In reality, the maximum frequency attempted should be a little lower that that
advertised here to avoid undersampling.

This means you cannot run a sine wave at (for instance) 150Hz through four
braille-devices simultaneously.

Check latency

Unlike the visual or auditory setups, the latencies for the stimulator appear to
be almost instantaneous relative to its internal clock.

Check EMEG compatibility

The QuaeroSys website claims the devices themselves are MEG compatible.
We tested this in the CBUs MEG setup. We use a Neuromag Elekta MEG
machine, held in a shielded room. We placed the control box outside the
shielded room, threading the devices into the room to roughly hand-height for
the participant.

 9

We recorded an empty room recording with the devices running at 3Hz (top)
and without (bottom). First, there is very, very little noise due to the sinusoidal
running of the braille devices (but see later figure). Noise is clearly induced,
however, from some other source. This seems to be due to the
communication between the controller buffer and the stimulus computer,
through contamination via the controller back-plate. For instance, if
communication between the two is reduced (for instance by using a lower
sampling rate) the latter part of the experiment will be noise free. However,
this is not a suitable solution for most users, and attempts were made to
remove this artifact without reducing the sample rates of the sinusoids. Optical
USB filters (below) failed, but the addition of grounded Faraday shielding
around the wiring (eg. 'RS components', stock number 7720290, EMC mesh
cable wrap monel (50mm x 10m) MPN:KWM-1-5006) makes a clear
difference (middle Power Spectral Density diagram above), although they
can’t mask the noise completely (see minor spikes of 42Hz and multiples).

 10

Left: an attempt to reduce communication noise using an optical filter on the input
USB (no improvement); Right: threading Faraday shielding over the braille-device

wiring (large improvement).

Above: Final setup for Faraday shielding over the braille-device wires, using 3D

printed clamp on device end (please email mark.townsend@mrc-cbu.cam.ac.uk for
file), and shielding grounding wire at D-type connector end.

We then did one final test to check the pins themselves were not generating
magnetic noise, by sending 15Hz, 30Hz and 60Hz sine waves through all four
braille devices to see if these frequencies turn up in in the recorded signal.
These frequencies were observed - but so slightly that it only noticeable when
comparing with the empty room, and not always in both magnetometers and
gradiometers. For 15Hz it is not noticeable at all:

 11

Problems when running with HPI coils and EEG cap

Unfortunately, using EEG caps or HPI coils can amplify the reduced ‘buffer’
noise from the shielded braille device wires by acting as aerials. The resultant
MEG noise (EEG remains unaffected) can be reduced by moving the braille
devices away from the helmet, moving the EEG/HPI wires away from the
devices. We did get usable data out of these recordings, even with the noise,
but the resultant noise is comparable to the no-shielding-and-no-EEG-and-no-
HPI setup.

Testing of internal clock

The stimulator has an internal clock, running at 2000Hz (roughly every
0.5ms). All its commands are run relative to this, using the ‘wait()’ command.
We tested the accuracy of this internal clock by asking the stimulator to give
out a trigger every 1000ms:

Trigger EMEG Timestamp (seconds.ms)
1 26.865
2 27.865
3 28.865
4 29.865
5 30.865
6 31.865
7 32.864
8 33.864
9 34.864
10 35.864
11 36.864
12 37.864
13 38.863

 12

14 39.863
15 40.863
16 41.863
17 42.863
18 43.863
19 44.862
20 45.862
21 46.862
22 47.862
23 48.862
24 49.862
25 50.862
26 51.861
27 52.861
28 53.861
29 54.861
30 55.861

This clock, of course, is here being checked against the clock of the recording
computer – which might itself be wrong. Regardless of where the error is, the
important point is that they are subtly different; for our setup the controller is
slower, loosing a millisecond every 6000 or 7000 milliseconds. This means
that, if you are sending a movement commands to the pins over, say, 5
minutes, it would be a bad idea to have a single trigger as the first command,
and then to epoch your trials over the subsequent five minutes based on this
initial trigger, as the movement of the braille-pins at the four-minute mark
would be roughly 40ms out. Instead, it is best to insert short controller-internal
out-triggers into the braille-device control commands throughout the stimulus
run. This way, the ‘drift’ of the clock will never be far enough away from a
trigger to interfere with your experiment. See appendix for an example of how
to do this.

Testing of height

NOTE: The testing of heights using a setup of optical lasers was not carried
out.

The pins occasionally stick. However, this is not due to the rod positions. The
pins move upwards with the piezoelectric rods, but retract downward only by
their own weight. Unfortunately they are very light, which means that a small
amount of added friction (due to dust or some other source) can render them
remaining in the upright position. For most experiments, this is not a problem
– as the weight of the participant’s finger (or whatever) will be easily enough
to overcome this friction. We have not investigated ways to clean pins – but
alcohol cleaning of those pins that show sign of sticking may improve things.

Memory buffer limit

You will need to ensure that enough memory is set aside on the stimulus
computer to hold the commands that can’t be sent to the controller’s buffer to

 13

begin with (the controller (‘remote’) buffer is not very big). As commands are
run, these locally buffered commands will be fed through the USB to the
controller buffer. It is trial and error as to whether you have set enough buffer,
but the command cannot be sent if the buffer is not big enough, so just keep
raising the size:

calllib('stimlib', 'setProperty','local_buffer_size',1000000);

until it all fits.

References

[1] The MathWorks, Inc., Natick, Massachusetts, United States.
[2] Brainard, D. H. (1997) The Psychophysics Toolbox, Spatial Vision 10:433-
436; Pelli, D. G. (1997) The VideoToolbox software for visual psychophysics:
Transforming numbers into movies, Spatial Vision 10:437-442; Kleiner M,
Brainard D, Pelli D, 2007, “What’s new in Psychtoolbox-3?” Perception 36
ECVP Supplement.
[3] https://github.com/svengijsen/StimulGL/tree/master/Source/Plugins
/PiezoStimDevice/QuaeroSys
[4] Quarosys Medical Devices (2010)

Appendix

Example sinusoid code

This does not include a solution to initiate the controller with a couple of
commands before the buffer will work (see ‘running’ above).

% Do NOT ask for the stimlib0.dll in system32 as suggested in the
manual -
% it will not find it, unless you have done this:
% http://superuser.com/questions/510986/how-to-know-why-system-cant-
find-dll
loadlibrary('C:\Users\at03\Desktop\StimLibV2-0.3.3-
Win\stimlib0.dll','C:\Users\at03\Documents\MATLAB\stimlibrel.h','alia
s','stimlib');

% Initiate the Stimulator - check the flag is 'OK'
% [NOTE: you will have to change the 30-digit licence key to your
own, as
% each stimulator has a unique liscence]
calllib('stimlib', 'initStimulator',
'M041F77IA1Y194777825MCH0BA3ABC')

% ensure all 8 DAC settings to 0 - not necessary but we do it anyway
calllib('stimlib', 'setDAC',0,0);
calllib('stimlib', 'setDAC',1,0);
calllib('stimlib', 'setDAC',2,0);

 14

calllib('stimlib', 'setDAC',3,0);
calllib('stimlib', 'setDAC',4,0);
calllib('stimlib', 'setDAC',5,0);
calllib('stimlib', 'setDAC',6,0);
calllib('stimlib', 'setDAC',7,0);

calllib('stimlib', 'setProperty','local_buffer_size',1000000);

%-----
%You could import your own wave here (height needs to be between 1
and zero)...
%importedSignals = open('C:\Users\at03\Desktop\stimulisig.mat')

%leftindex=round(importedSignals.stimulisig.LHIndexFinger.*4000);
%rightindex=round(importedSignals.stimulisig.RHIndexFinger.*4000);
%duration = size(leftindex);

%-----
% Or create a sinusoid....
f=25; %in Hz - you only need to change this to get a different
sinisoid.
Fs=1000;
Ts=1/Fs;
secs = 30;
n=0:(secs*Fs);
x=sin(2*pi*f*n*Ts);
leftindex=round(((x+1)./2).*4000);
plot([0:Ts:1], leftindex(1:1001));
%-----

for t=1:30000 % for 30 seconds
 %-------examples:-----------
 %calllib('stimlib', 'setPinBlock10',slot,trigger,level 1 level 2
level 3 etc);
 %calllib('stimlib', 'wait',1,2);
 %---------------------------

 if (t==1 || t/1000 == floor(t/1000)) % this inserts a trigger
every second
 calllib('stimlib','triggerOut', 16, 1);
 end
 calllib('stimlib', 'wait',1,2); %2 = 1ms as it is clocked at 2KHz

 % set the voltage of 'DAC1' to produce the required height
 calllib('stimlib', 'setDAC',1,leftindex(t));

 % set the middle six pins to 'DAC1'
 calllib('stimlib', 'setPinBlock10',0,1,0,0,1,0,1,0,1,0,0,0);
 calllib('stimlib', 'setPinBlock10',1,1,0,0,0,1,0,1,0,1,0,0);

end

% check all fits in the local buffer
local_buffer_size = calllib('stimlib',
'getProperty','local_buffer_size')
local_buffer_status = calllib('stimlib',
'getProperty','local_buffer_status')

 15

% startSimulation
calllib('stimlib', 'startStimulation');
calllib('stimlib', 'closeStimulator'); % this is the close for INIT!
NOT START!

%report how error-prone the result was (should be '0')
remote_buffer_underruns = calllib('stimlib',
'getProperty','remote_buffer_underruns')

