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ABSTRACT
High resolution cryoEM of mammalian mitoribosomes revealed the unexpected presence of
mitochondrially encoded tRNA as a structural component of mitochondrial large ribosomal subunit (mt-
LSU). Our previously published data identified that only mitochondrial (mt-) tRNAPhe and mt-tRNAVal can
be incorporated into mammalian mt-LSU and within an organism there is no evidence of tissue specific
variation. When mt-tRNAVal is limiting, human mitoribosomes can integrate mt-tRNAPhe instead to
generate a translationally competent monosome. Here we discuss the possible reasons for and
consequences of the observed plasticity of the structural mt-tRNA integration. We also indicate potential
direction for further research that could help our understanding of the mechanistic and evolutionary
aspects of this unprecedented system.
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Protein synthesis is a fundamental cellular process, and its reg-
ulation exerts exquisite control over post-transcriptional gene
expression. Many aspects of this process and its machinery are
conserved from bacteria to higher eukaryotes. The essential
components being a mRNA template to translate, and a ribo-
some to perform this function. The main phases of protein syn-
thesis are initiation, elongation, and termination, followed by
ribosome recycling.1,2 Although many elements display a level
of conservation, closer inspection reveals distinct differences
between systems, particularly with respect to mitochondria. For
example, the mRNA template in many systems has a non-
coded 30-extension, namely the poly(A) tail. In bacteria, this
targets the transcript for degradation, while for transcripts in
the eukaryotic cytosol, this tail is generally coated in poly(A)-
binding proteins that protect and enhance RNA stability.3,4

Poly(A) tails are also present on mitochondrially-encoded tran-
scripts in plant organelles, where the presence of a poly(A) tail
follows the bacterial paradigm.5,6 Such tails are also present on
mitochondrially-encoded transcripts in trypanosomes, where
tails can be present as short oligo(A) extensions or longer
forms. The length is dependent on the editing status, which in
turn dictates degradation or stability.7 Yeast mitochondria
eschew this form of regulation and have no poly(A) tail.8 The
function of the poly(A) tail in mammalian mitochondria, there-
fore, remains an enigma, with no obvious universal function.
The one role that is clear is that they are needed to complete
the UAA at the end of 7 out of 13 open reading frames, thereby
generating complete stop codons. Research from several groups
using different approaches has shown that the poly(A) tail is

important and has variable functions, including increasing or
decreasing the stability of specific transcripts.9-14

Other features of the mRNA template also differ between
systems, but the greatest differences have been described for
the translation machinery – namely, the ribosome. The basic
composition of this complex apparatus is two multi-protein
subunits of different sizes, with rRNA components in both the
small (SSU) and large (LSU) subunits. This template is true for
the majority of ribosomes, including mitoribosomes. Every rule
has an exception, and the mammalian mitoribosome seems to
be proving the exception in more ways than one. Early on it
was discovered to have novel protein components, as well as a
truncated RNA species.15-17 For both the mitochondrial (mt-)
SSU and mt-LSU almost 50% of the polypeptides were shown
to be mitochondrially specific and lack bacterial orthologues.
Furthermore, many of the proteins with bacterial orthologues
have N and/or C-terminal extensions that are mitochondrially
specific. The rRNA species within mammalian mitoribosomes
were believed to be restricted to one per subunit. In each case,
the elimination of specific regions, while retaining crucial func-
tional domains, has rendered rRNAs shorter than their bacte-
rial/eukaryotic cytosolic counterparts. The combination of
more proteins and shorter rRNAs has generated a mitoribo-
some with a protein to RNA ratio of 70:30, which is essentially
reversed compared with other ribosomes that have 70% rRNA
and only 30% protein. Although, the rRNA species within
mammalian mitoribosomes were generally believed to be
restricted to one per subunit, published data exist on mitochon-
drial matrix localization of cytosolic 5S rRNA (5S rRNA), with
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a pool of 5S rRNA being proposed to be associated with the
mitochondrial ribosomes.18

Significant advances in cryoEM technology have brought
about a revolution in structural biology, generating high resolu-
tion data of large complexes. This has revealed yet more idio-
syncrasies of the mammalian mitoribosome.19,20 The long-held
belief that only two mitochondrially-encoded RNA species
were present was shattered as a third RNA species originated
from the mitochondrial genome was identified.21,22 This find-
ing concurrently resolved the debate of whether cytosolic 5S
rRNA could be imported and integrated into the mt-LSU. This
unexpected RNA species was found to occupy the position in
which the 5S RNA would be found in the bacterial LSU. The
reason for substitution of 5S rRNA for a mitochondrially-
encoded tRNA in the mt-LSU is unclear, but could stem from
the inability of the mammalian organelle to efficiently import
RNA from the cytoplasm (see discussion in23). CryoEM and
sequencing data pertaining to the human mitoribosome was
generated by Ramakrishnan and colleagues, confirming the
RNA species to be mt-tRNAVal22 Data from porcine mitoribo-
somes generated by Ban and coworkers conflicted with this,
describing mt-tRNAPhe to be the newly identified component.21

Thus, the question arose as to whether different mammals
incorporate different mt-tRNAs, or whether the selection is
restricted to only mt-tRNAPhe or mt-tRNAVal?

Our collaborative endeavors have explored this question by
analyzing mitochondrial lysates from human cells and using
isokinetic sucrose gradients to investigate the RNA species
associated with the mt-LSU. They confirmed that human
mitoribosomes integrate mt-tRNAVal, while porcine particles
favor mt-tRNAPhe, with no evidence of integration of other mt-
tRNAs. By analyzing mitochondria from other mammals,
including cows, rats and macaques, we confirmed that only mt-
tRNAPhe or mt-tRNAVal are selected. Initial data was collected
from a single tissue from each organism, therefore, it was possi-
ble that the selection of mt-tRNAPhe or mt-tRNAVal was a con-
sequence of tissue-specific variation. To address this question, a
selection of different tissues from several mammals was ana-
lyzed in a similar fashion. This confirmed that the mt-tRNA
selected to be integrated into the mt-LSU within a species was
the same, regardless of tissue.24 So, what drives mt-tRNA
selection? Porcine data, in particular, suggested a favoring of
mt-tRNAPhe but not a complete exclusion of mt-tRNAVal. Does
this suggest that these 2 tRNA species are interchangeable?

A long-standing impediment to investigating mammalian
mitochondrial gene expression is the refractory nature of the
organelle to genetic transformation.25 To date, the introduction
of genetic reporters of any kind has not been documented in a
reproducible and efficient manner - limiting possible approaches
to address such questions. Such research has had to rely, there-
fore, on naturally-occurring mutations identified in patients pre-
senting with mitochondrial disease. One such mutation has been
described within the gene encoding mt-tRNAVal. Early investiga-
tions determined that the mutation destabilised mt-tRNAVal,
thereby reducing steady-state levels in tissues and to a lesser
extent in cell lines.26 Clonal cybrid cell lines were derived that
harboured all mutant copies of the mitochondrial genome
(homoplasmy) and recapitulated the reduced levels of mt-
tRNAVal and demonstrated mildly reduced intra-mitochondrial

translation by both metabolic labeling of de novo synthesis and
by steady-state levels of mitochondrially encoded COXII pro-
tein.27,28 In light of the cryo-EM-defined structural integration of
mt-tRNAVal, this cell line was re-investigated. Remarkably, suffi-
cient plasticity had been retained to allow incorporation of mt-
tRNAPhe into the mt-LSU. Perhaps more surprisingly, even when
steady-state levels of mt-tRNAVal were elevated (through overex-
pression of the cognate valyl tRNA synthetase), mt-tRNAPhe

remained as the structural component integrated into the mt-
LSU. This strongly suggested that the difference in structure of
the mt-tRNAVal caused by the mutation was sufficient for it to be
recognized as aberrant and rejected by the large subunit, while
discerning that the structure of mt-tRNAPhe was acceptable.24

Although these observations further our understanding of
the mammalian translation machinery, they also evoke more
questions. Why are only mt-tRNAPhe and mt-tRNAVal used?
One possibility is that the tertiary structure of these 2 RNA spe-
cies permits their integration, and that bulkier mt-tRNAs - or
those lacking the D-arm - do not provide an appropriate scaf-
fold for large subunit formation.29 Our current databases do not
have sufficient information on mammalian mt-tRNAs to model
whether the structural features render only mt-tRNAPhe or mt-
tRNAVal compatible, and why the shape of the mutant mt-
tRNAVal makes it less favored than the wild type mt-tRNAPhe.
If it is a structural rationale that excludes the integration of all
candidates except mt-tRNAPhe and mt-tRNAVal, it would
strengthen the case for selection of one or other of these two
mt-tRNAs being a consequence of their position in the mito-
chondrial genome. For ribosomes that incorporate a 5S rRNA
species, the gene is frequently found in the same transcription
unit as the major rRNA species. This arrangement is somewhat
recapitulated in the mammalian mitochondrial genome, where
the polycistronic transcript generated from the heavy strand
promoter begins with mt-tRNAPhe, and sandwiches mt-tRNAVal

between the 12S and 16S rRNAs.30 There are reports that tran-
scription can terminate a few nucleotides beyond the 16S gene,
extending into mt-tRNALeu, while other transcription events
continue through to generate longer polycistronic transcripts
encompassing almost the entire heavy strand sequence.31

Whether or not the shorter rRNA-containing polycistron is
generated at a higher frequency does not alter the co-localiza-
tion of these two mt-tRNA species. Such genomic organization
would mean that processing of the polycistron would release
both mt-rRNAs and these two mt-tRNAs in spatial proximity,
making them immediately accessible for co-integration with
rRNA into the large subunit. This gene arrangement is highly
conserved in mammals, but not in all Metazoa (Fig. 1). Many
invertebrates have widely separated mt-rRNA genes that lack
both non-coding and/or potential promoter sequences immedi-
ately upstream of these genes. This raises the question of how
their mitoribosome assembly is spatially organized and which,
if any, mt-tRNA is incorporated into the LSU. Should a high
resolution structure of such mitoribosomes become available, it
will undoubtedly begin to answer some of the questions.

If, at least in mammals, it is the proximity of the mt-tRNAPhe

and mt-tRNAVal to the rRNA genes that gives the temporal as
well as spatial availability during mitoribosome biogenesis, then
how does the process discriminate between mt-tRNAPhe and
mt-tRNAVal, as is clearly the case between bovine and human,
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for example. Do different mammals post-transcriptionally modify
these 2 mt-tRNAs differently to direct selectivity? Could any such
modification impart a change in charge, or in conformation of
the mt-tRNA that makes their incorporation more or less likely?
These are certainly avenues that are waiting to be explored. It
may be that a proportion of mt-tRNA escapes modification as it
is incorporated into the large subunit, or perhaps mt-tRNAs are
integrated into the nascent large subunit before processing occurs.
In the eukaryotic cytosol, newly-synthesized 5S rRNA is com-
plexed with the ribosomal protein L5 (uL18) and other RNA-
binding proteins for its incorporation into the ribosome.32,33 Sim-
ilarly, uL18 is essential for 5S incorporation into bacterial LSU.34

Do similar tRNA-protein complexes exist in mitochondria? Were
this to be the case, the proteins involved in this interaction could
dictate selectivity of the incorporated tRNA species. As no uL18
homolog exists in mammalian mitochondria, other factors,
potentially certain mitochondria-specific proteins, might be
involved. A better understanding of the timing of the events tak-
ing place in the RNA granules, where the mitoribosome biogene-
sis initiates may shed light on this complex process.
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