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ABSTRACT  

The Predictive Interactive Multiple Memory Systems (PIMMS) framework has been used 

to explain how novelty, or more precisely “prediction error”, boosts memory encoding. 

In this thesis, I explored several other phenomena in the animal and human literature that 

PIMMS cannot yet explain but should. 

PIMMS predicts that unexpected information will be better encoded than expected 

information. However recent work has suggested that expected information can also be 

better remembered than less expected information. By using a range of expectancies for 

the location of objects with an immersive virtual reality (iVR) kitchen, I showed that 

memory is a “U-shaped” function of expectancy, with best memory for highly expected 

or highly unexpected locations relative to intermediate levels of expectancy. Using OSF-

registered Bayesian inference, this U-shape was consistent across four experiments. 

While the advantage for highly unexpected locations is consistent with PIMMS, the 

advantage for highly expected locations is not. Importantly, the advantage for expected 

locations was not simply due to a guessing bias when the location was forgotten, 

suggesting that the advantage arises during encoding rather than just at retrieval.  

This U-shape is consistent with another framework - the SLIMM framework - which 

proposes that different brain regions support the two ends of the U-shape, such that the 

advantage for unexpected information should be associated with recollection of 

contextual information via a medial temporal lobe system (like in PIMMS), while the 

advantage for expected information should be associated with a feeling of familiarity 

based on rapid cortical consolidation enabled by a medial prefrontal cortex system. 

However, when I asked participants to indicate recollection or familiarity at retrieval, 

both ends of the U-shape continuum were associated with higher recollection, while there 

was no detectable effect of expectancy on familiarity. I consider why this SLIMM 

prediction may therefore be incorrect. 

Another finding in the literature concerns the effect of novelty on unrelated information 

shortly preceding or succeeding the novel experience. PIMMS says nothing about this 

penumbra effect, which has been related to plasticity-related proteins triggered by the 

novel experience (so-called “behavioural tagging”). Since participants report that their 

first iVR experience is highly novel, I submitted a Registered Report to test whether iVR 

affected memory for unrelated words that were encountered prior to entering the iVR 
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room. In short, the finding was that there is no evidence that novelty improves memory 

performance for information learned before experiencing something novel. Possible 

reasons for the failure of finding an effect were discussed.  

A final limitation of PIMMS I considered was the effect of “boundaries” in continuous 

stimuli, which are known to affect memory for the temporal order of information. While 

boundaries might be generated by prediction errors, PIMMS is silent on how they affect 

temporal order memory. Using a movie featuring a series of rooms, I tested whether 

memory for the temporal order of objects encountered in those rooms is affected by 

doorways between rooms and/or by surprising/perceptual changes within a room. 

Unfortunately, I was unable to replicate a previous report where temporal order memory 

was worse for pairs of objects in different rooms (i.e., either side of a doorway) than 

objects in the same room, let alone either sides of a surprising/perceptual change within 

a room. 

Taken together, my findings and the literature demonstrate the multiple potential factors 

that determine how novelty affects memory encoding (and consolidation), which require 

a more comprehensive theoretical framework than currently available. 
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1 INTRODUCTION 

Events that are new, different or unusual often “stick in our minds”. For example, imagine 

you live and work in an urban area and you take the same route to work in your car every 

morning. One day you see a flock of sheep blocking the road on your commute. You will 

probably remember this event for a long time, while the other countless times you have 

driven down that road will be inaccessible. Numerous studies have confirmed this 

observation, namely that if we experience a novel event in a familiar context, we tend to 

store and remember this event more easily. However, if you happen to live in the 

countryside close to a sheep farm, your experience might be quite different: because you 

see sheep quite frequently, you might experience just another regular commute to work 

that is hardly memorable. Thus, the experience of novelty is not ‘absolute’ and cannot be 

defined independent of the observer; rather it is driven by what an individual expects to 

experience compared to what they actually encounter. This comparison between 

expectation and experience parallels the computation of a prediction error (PE) in many 

other theories of learning. According to such theories, we continuously generate 

expectations about our environment and update those predictions when they are wrong, 

i.e., when a PE occurs. While the role of PE in learning is well established in experiments 

on certain types of memory (e.g., in conditioning and associative learning; Rescorla & 

Wagner, 1972), its role in conscious and verbalisable memory (i.e. declarative memory; 

see below for explanation) is less so. The theoretical framework that is central to this 

thesis, which helps to shed some light on the complex relationship between novelty, PE 

and memory (encoding), is the ‘Predictive Interactive Multiple Memory Signals’ 
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(PIMMS) proposal of Henson & Gagnepain (2010). While this powerful framework helps 

us to understand – among other things – how novelty relates to declarative memory, it 

also has several limitations. The topic of my thesis thus is to highlight and examine 

empirically some of those shortcomings. First, I will briefly recap major theories of 

memory, in order to relate them to the scope of this thesis.  

1.1 (Very) Brief Review of Human Memory 

Human memory is widely believed to not be a unitary construct, but rather contains 

numerous distinctions. One of the most notable distinctions is between short-term 

memory (STM), which stores information temporarily for a matter of seconds, and long-

term memory (LTM), which is generally believed to be able to store some information 

indefinitely. This distinction goes back to at least Atkinson and Shiffrin (1968) and is still 

upheld today, even though some disagree (see Norris, 2017, for a review on this question). 

In my thesis, I focus on LTM, but there are potential interactions with STM (or “working 

memory”, WM) in the final empirical chapter on event segmentation.  

Another important distinction is between declarative memory (i.e., conscious, 

verbalisable memory) and non-declarative memory (e.g., procedural memory; Squire, 

2004). Central to this thesis, the former type has been subdivided into semantic memory 

(“general knowledge of the world”) and episodic memory (“remembering personally 

experienced past”; Tulving, 1995, p. 841), while others have proposed an additional 

“perceptual memory” system that underlies non-declarative phenomena such as 

perceptual priming (Schacter & Tulving, 1994).  In his seminal SPI model, Tulving 

(1995) explains encoding, storage and retrieval in perceptual, semantic and episodic 

memory systems as serial, parallel and independent (hence the name SPI): information 

is encoded serially, by passing from perceptual through semantic to episodic memory 

systems, which leaves multiple potential memory traces in each system in parallel, any of 

which can be retrieved independently (depending on the task). The PIMMS framework 

questioned this model however, accepting that experiences can leave memory traces in 

multiple levels throughout the brain, but claiming that interactions between these levels 

are important for both encoding and retrieval (an “interactive-parallel-interactive” model 

of encoding-storage-retrieval). These interactions take the specific form of (top-down) 

predictions and (bottom-up) PE across a hierarchical organisation of these levels (see 

later). Moreover, those levels are defined by the type of representations they process 

(rather than a specific memory function), which might be perceptual features (e.g. colours 
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and shapes), items (e.g., everyday objects defined by their perceptual features) and 

context (e.g., spatiotemporal environment in which objects are encountered). While there 

are no doubt many more such levels in reality, these three allow definition of episodic 

memory (that can lead to recollection) - as new associations between contexts and items 

- and semantic memory (that can lead to familiarity) - as (temporary changes) in existing 

associations between items and their features (Figure 1.1). PIMMS tentatively maps these 

three levels onto different brain regions, though these are only indirectly relevant to the 

present thesis.  

 

Figure 1.1: Schematic illustration of the PIMMS framework: Illustrated here is the 

PIMMS model that shows how different types of content (features, objects and 

contexts) are represented layers that roughly map onto SPI’s memory systems 

(perceptual, semantic and episodic). Dashed and solid lines represent feedback 

predictions and feedforward PE. Retrieval from the perceptual, semantic and 

episodic memory manifest in priming, familiarity and recollection respectively. The 

latter two are both contributing to recognition memory. Furthermore, on the left 

shown are brain regions that are postulated to mainly contributed to the respective 

layers. PRC = perirhinal cortex, ATL = anterior temporal lobe and OTC = occipital-

temporal cortex.  

Chapter 2 deals with PIMMS’s (in)ability to explain how well new associations between 

items and their (spatial) context are encoded as a function of the degree of PE. 

For Chapter 3, it is necessary to further introduce the process of consolidation, in addition 

to encoding and retrieval. Consolidation refers to the time period between encoding and 
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retrieval, during which a memory is not necessarily passively stored in some latent state, 

but is actively transformed from a temporary to a more permanent state, which may 

involve specialised brain mechanisms, e.g., during sleep. Indeed, consolidation likely 

involves multiple processes at different spatial and temporal scales (gene expression, 

synaptic remodelling, etc.), and an important distinction has been made between 

cellular/synaptic consolidation and system consolidation. The former describes 

physiological processes that change synaptic strengths by inducing structural changes in 

cells, which in principle might occur throughout the brain. This type of consolidation is 

less contentious than system consolidation (Dudai, 2004; Frankland & Bontempi, 2005), 

which refers to the time-dependent role of specific brain regions in memory, such as the 

medial temporal lobe (MTL) in episodic memory. The standard theory of system 

consolidation posits that new memory traces are initially dependent on the hippocampus 

until they are gradually transferred to the neocortex; a process that might take years to 

occur (Frankland & Bontempi, 2005). Note however that other theories, such as “multiple 

trace theory” (Nadel & Moscovitch, 1997), argue that detailed memories always depend 

on the hippocampus and each time a memory is encoded, another memory trace is created, 

explaining why memories can get stronger and more resistant to forgetting. A related 

theory is the “context binding theory” (Yonelinas et al., 2019), which argues the 

hippocampus binds item-related and context-related information, that retrieval of detailed 

item-context information is always hippocampus-dependent and that forgetting is simply 

the result of contextual interference. In any case, the majority of consolidation theories 

posit that there is a time window during which memories can be modulated after their 

initial encoding, such as the occurrence of a very novel/salient event. This is tested in 

Chapter 3, since PIMMS is largely silent on consolidation, and so needs elaboration. 

Finally, most memory experiments use discrete stimuli, whereas real experience is 

continuous. It has been suggested that memories are formed by segmenting that 

experience. PE is believed to play a crucial role as has been suggested in various empirical 

and computational work (e.g. Reynolds et al., 2007). While PIMMS formalises PE, it has 

not yet been extended to continuous stimuli, but treats an event as a stationary snapshot 

without any temporal dimension. Moreover, event segmentation affects memory in 

various ways, such as memory for temporal order, that are not specified by PIMMS.  This 

is tested in the final empirical  part (Chapter 4), where I attempted to replicate a study by 

Horner et al. (2016) that showed that moving through doors in a virtual environment 

affects memory for the order of objects encountered in those rooms.  
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1.2 Novelty/surprise and memory encoding in PIMMS  

Coming back to PIMMS, higher levels in a perceptual-mnemonic hierarchy are constantly 

predicting the activity in lower levels and the difference between the predicted and actual 

activity (at a single moment in time) – the PE – is fed back from lower to higher levels. 

For a given layer, the predictions from the level above serve as a prior probability 

distribution (in a Bayesian sense), whereas the activity profile (produced from the level 

below) is equivalent to the evidence or likelihood, while the PE is the divergence between 

these two distributions (the summed area of no overlap; see Figure 1.2)1. According to 

PIMMS, the size of the PE then determines how well a new event is encoded into 

memory. This PE acts “locally”, in the sense that it strengthens just the association 

between just the active (winning) representations in each connected  level (similar to the 

“delta” learning rule in Rescorla & Wagner, 1972), such as between a specific context 

and an (unexpected) object encountered in that context. 

One of the earliest reported examples of novelty/surprise in memory is the von Restorff 

effect (or isolation effect). In one of her seminal experiments, von Restorff (1933; for a 

translation see Hunt, 1995) presented four pairs of syllables along with one pair of 

symbols, numbers, letters or patches of colour. The atypical pairs were better recalled 

immediately afterwards.  While this seems consistent with PIMMS’s hypothesis that PE 

drives better memory encoding, the isolation effect can also arise for items early in the 

series, at a point where the typical list composition is not apparent, so no clear predictions 

should be possible (e.g. see von Restorff, 1933). Therefore, von Restorff herself actually 

dismissed encoding as the process underlying the memory benefit. Similarly, others 

argued that von Restorff’s effect can be explained with distinctiveness at retrieval 

(Dunlosky et al., 2000; Kelley & Nairne, 2001). Bruce and Gaines (1976) showed that 

 

 

 

1 More precisely, the PE that drives learning is the divergence between the prior and the posterior, on the 

assumption that the initial PE between the prior and the likelihood is what drives perception (activity 

changes), which seeks to minimise this PE over a few hundred milliseconds (producing the posterior 

distribution), leaving the residual PE that drives synaptic change instead (Henson & Gagnepain, 2010). For 

simplicity though, I assume here that the posterior is close to the likelihood, such that the qualitative 

implications are the same.  
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recall of physically distinct words was clustered, which might suggest that these items are 

stored together aiding their retrieval. Others posit there is a direct link between 

distinctiveness and the retrieval context which is to say that it provides an advantage in 

retrieving items from that specific context (McDaniel et al., 1995).  

In contrast, Geraci & Manzano (2010) argued that stimulus salience develops over the 

course of an episode that is the whole presentation of a list, which allows early list items 

to benefit from surprise. Furthermore, more recent work (Schmidt & Schmidt, 2017) has 

also demonstrated that unexpected events benefit from processes that operate not only 

during retrieval but also during encoding, depending on the context and task demands. 

So, while some aspects of the von Restorff effect might be due to non-PE related retrieval 

mechanisms, PE, which leads better encoding, undoubtably plays some role in this 

phenomenon. 

A related finding, which has been coined the classic ‘novelty effect’ in episodic memory, 

was popularised by Tulving and Kroll (1995), though first examined by Kinsbourne and 

George (1974). In this paradigm, participants are familiarised with a list of random words. 

In a second “critical” phase, they see a list of new words, intermixed with some of the 

familiarised words. Finally, they are presented with a third list of words, and asked to 

recognise any that came from the second, critical phase. A common finding in this 

paradigm is that the new words are better recognised than the familiar words, despite the 

fact that they were presented fewer times in total2. This led to the formulation of the 

novelty-encoding hypothesis, which postulates that novel information is preferentially 

encoded by brain regions like the hippocampus (Tulving et al., 1996), which supports 

episodic memory.  

However, the cause of this ‘classic’ novelty effect has been challenged by alternative 

explanations, other than a special role for novelty in encoding, such as distinctiveness or 

source confusion at retrieval (Åberg & Nilsson, 2001; Dobbins et al., 1998; Greene, 1999; 

Poppenk et al., 2010). In general, these authors attribute the difference in recognition to 

 

 

 

2 Note, it is critical that participants are asked to recognise items specifically from the critical phase; if 

participants are instructed to recognise items studied in either list, memory is better for items that were 

repeatedly presented (Kafkas & Montaldi, 2015a; Kim et al., 2012). 
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an impairment for familiar stimuli owing to contextual interference, e.g., “Did I see this 

stimulus in the familiarisation phase (first list) or study phase (second list)?”, rather than 

benefit for the non-familiarised (novel) stimuli, which produces increased false alarm 

rates and hence overall decreased old/new discrimination. However, other studies 

controlled for confounds like interference, and reinforced Tulving and Kroll’s (1995) 

conclusion that there is a benefit for this type of words. Åberg and Nilsson (2003), for 

instance, reported a novelty effect for high confidence responses that showed both 

increases in hit rates and decreases in false alarm rates for novel items, which suggests 

the effect cannot be explained fully by reduced retrieval accuracy for familiar items, but 

rather enhanced encoding of novel items. Similarly, Kormi-Nouri et al. (2005) presented 

distinct encoding tasks to minimize source confusion at retrieval, and still observed better 

memory for novel over familiar words, consistent with the general idea of the novelty-

encoding hypothesis.   

PIMMS’s perspective on this “classic” novelty effect is somewhat different. Its 

explanation of this effect relates to predictions made by the temporal context: When you 

encounter the list of random words in the familiarisation phase, you are unable to predict 

the next word. However, in the critical phase, you notice that some of the words are 

repeated from the familiarisation phase, so you might start to expect further repetitions. 

Indeed, if novel items become less expected, they will elicit a greater PE than the familiar 

words, and therefore become more strongly associated with the context of the critical 

study phase. Therefore, when finally asked to recognise words specifically from that 

phase, you are better able to do so. If this interpretation is correct, then the advantage of 

these “novel” words should depend on the strength of expectation for repeated words, 

which could be tested by manipulating the ratio of familiarised to new words in the critical 

phase. This prediction is consistent with Kafkas and Montaldi (2015), who showed that 

the novelty effect reverses when the previously presented words are rare, i.e., it is the 

unexpectedness rather than relative familiarity that determines memory. 

To understand further how PIMMS explains the relationship of novelty, surprise and 

memory, let us consider a level representing the current items perceived (e.g., objects), 

which may or may not be predicted from a higher level representing the context (e.g., 

environment). Take the example of sheep encountered in the urban environment: the 

context is predicting a typical urban configuration meaning seeing houses, road-signs, 

other cars, etc., whereas the sensory input is indicating the presence of sheep. This 

corresponds to an expectation that predicts only certain types of objects but the data 
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indicates the presence of an unexpected object (Figure 1.2). This results in high PE, which 

causes strong encoding of the event. I refer to such situations as “surprise”, in keeping 

with other related work (Reichardt et al., 2020). In fact, this surprise could occur at 

multiple levels of the processing hierarchy. When it occurs between contextual 

predictions about familiar items, I call it “context surprise”. However, our knowledge of 

familiar items (e.g., sheep) allows us to make predictions about the perceptual features 

(e.g., four legs, white wool, etc.) that comprise those items. When one or more features 

differ from those expected (e.g., a pink sheep), then PE occurs at this lower level of the 

hierarchy. I call this “item surprise” (Figure 1.2B). Both types of surprise are similar to 

Berlyne’s (1960) concept of relative novelty. This type of surprise (and not novelty per 

se) is what drives memory encoding and leads to strong memory, however as I will show 

later that surprise (i.e. unexpectedness) is not the only way through which events can be 

encoded well into memory.  



Chapter 1: Introduction 

Jörn Alexander Quent - November 2021   9 

 

Figure 1.2: Schematic illustration of expectation and data over items and the 

likelihood of each individual item in the PIMMS framework: Items are assumed to 

be clear and unambiguous therefore the data is one if the items is present in the 

scene and zero if not. The bars reflect activity in a layer of neurons, where the 

discrete items or features on the x-axes are sorted arbitrarily by category labels - 

zoomed in merely for illustration. The x-axes only represent a tiny portion of large 

space of items or features so that right to the farm animals could for instance be 

sport equipment. The yellow bars represent the prior expectation from the “higher” 

level, whereas the blue bars indicate whether the item is known and is present in the 

scene, input from the level below (ultimately the sensory input). The data takes the 

value of one if present unless the semantic systems lacks representation as is the case 

for item novelty. The PE, which drives learning, is the difference between 
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expectation and data, whose magnitude is illustrated at the bottom right of each 

panel by a blue bar next to the main graphics. Panel A: precise expectation for items 

in a certain context, where one item is completely unexpected (context surprise). 

Panel B: the same as Panel A, except it refers to features of an object in lower 

perceptual level (item surprise). Panel C: Flat expectations and precise data (context 

novelty). Panel D: precise expectations and flat data (item novelty). Panel E: precise 

expectations and precise data with the for the same items (leading to no PE or 

learning; no surprise or novelty). Panel F: flat expectations and flat data, a 

combination of context novelty and item novelty (or “complete novelty”), but one 

predicted to show no PE or learning. 

If you on the other hand consider a situation where you encounter an item you have never 

seen before, then the data is flat instead – i.e., you do not know how to interpret the 

sensory evidence. I call this “item novelty”. This would correspond to the urban 

commuter encountering the sheep, but in this case, having no prior knowledge of animals 

like sheep at all. 

In principle, where the expectation and the data overlap closely (Figure 1.2E), so that PE 

is low, there is no need to do any learning (i.e., no need to waste resources re-encoding 

what is already known). Interestingly, as I will show later, there are however situations 

where something is reasonably expected, yet it is still encoded well into memory. A low 

PE can also emerge from a flat expectations and flat data, as can be seen in Figure 1.2F. 

Importantly, this special case of “complete (or maximal) novelty” (e.g., encountering 

unknown objects in an unknown environment) is actually predicted to produce negligible, 

rather than “maximal”, learning. In contrast to surprise, novelty in the sense discussed 

above is not associated with a memory benefit, which is at odds – at least on the 

terminological level – with several prominent models and accounts of novelty and 

memory (e.g. Lisman & Grace, 2005).  

The key function of the contextual level is to optimise the predictability of an item 

occurring in a particular spatiotemporal context, i.e., store context-item associations. 

When we encounter a familiar item in a context that is different from what is expected, 

the ensuing PE induces learning of more accurate associations between episodic and 

semantic representations. This is the type of learning that enables memory of the 

spatiotemporal context in which an item occurred, or what has been called “recollection” 

(Mandler, 1980; Montaldi & Mayes, 2010; Yonelinas, 2002). This contextual level is 
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associated with the hippocampus and other brain structures in the MTL and beyond 

(Aggleton & Brown, 1999; Mayes et al., 2007; Moscovitch, 1995; Moscovitch et al., 

2016; Scoville & Milner, 1957; Squire, 1992).  

Note that PEs can, and normally do, arise automatically, based on prior knowledge 

triggered by perceptual inputs, i.e., predictions are rarely intentional (Foster & Keane, 

2015, 2019 for a different view). However, whereas Morris (2006) claimed that attended 

experiences are automatically recorded by the hippocampus, but normally fade and 

become lost, I claim that PE modulates the degree of encoding and therefore determines 

whether an experience will be available as a lasting memory. However, both views are 

not incompatible. As shown in Chapter 2, expected information per definition means low 

PE, yet there is ample evidence that schema-related information is encoded well, not 

despite of, but because of this information being expected. This may be possible because 

after automatic recording (Morris, 2006), prior knowledge helps to integrate expected 

information (see below for more discussion).  

The semantic level on the other hand stores information about familiar items, and predicts 

which features are expected on the basis of a given item being present. There is a 

bidirectional flow of information between all levels, so not only do currently active item 

representations make predictions about associated perceptual features, but currently 

active features also influence which item representations remain active (i.e., perception 

involves dynamic competition across all systems in order to minimise overall PE). The 

semantic level is associated with anterior temporal lobe regions, including perirhinal 

cortex, and it is the strengthening of item-feature associations that enables the feeling of 

“familiarity” (rather than recollection), which sometimes accompanies recognition 

memory (Mandler, 1980; Montaldi & Mayes, 2010; Yonelinas, 2002), though some found 

that the hippocampus is also important for familiarity (Song et al., 2011).  

Finally, while there are probably numerous levels of intermediate perceptual 

representations (as noted above), for example depending on the modality, for visual 

stimuli of the type used in this thesis, PIMMS associates posterior temporo-occipital 

regions associated with representing perceptual features, repeated processing of which 

can result in memory phenomena such as priming (Henson et al., 2003).  

While the above section has illustrated how PIMMS can be applied to the literature of 

novelty and surprise and their role in declarative memory (for more extended discussion, 

see Quent, Henson & Greve, 2021), the aim of this thesis is to highlight and examine a 
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number of shortcomings of PIMMS. The first shortcoming I address is that, while PIMMS 

explains how unexpected information is retained well, paradoxically the same seems to 

be true when information is highly expected, i.e., conforms to our prior knowledge or 

schema (e.g. Tse et al., 2007, 2011), addressed in the next section.  

1.3 Expected as well as unexpected information is remembered 

well 

Key to everyday functioning is the ability to predict aspects of our environment, and one 

source of such predictions are “schemas” (Bartlett, 1932). Schemas influence how we 

respond to and encode new experiences into memory (Bransford & Johnson, 1972), which 

in turn has the potential to update or form new schemas in the future to allow better 

predictions. Fernandez and Morris (2018) defined schemas as frameworks of knowledge 

(i.e. facts, skills but also attitudes) that are represented in a network of neurons that are 

connected and store memory traces. When these memory traces are activated, they alter 

responses to new information and therefore affect encoding, consolidation and retrieval. 

Clewett et al. (2019) simply views schemas as an “extracted rule based on knowledge”. 

Others highlight in addition that schemas help us to generalise beyond experiences (e.g. 

Cockcroft et al., 2021). For the current purpose, schemas are active abstracted knowledge 

about recurring situations, such as what to expect when walking into a kitchen (compared 

to a bathroom, or other type of room), which affects cognition in general and memory in 

particular.  

Numerous studies have shown that memory is better for information that fits with our 

prior knowledge, i.e., is expected from a schema (Alba & Hasher, 1983; J. R. Anderson, 

1981; Craik & Tulving, 1975). This so-called “congruency effect” has been obtained 

using a broad range of memoranda (e.g. Bein et al., 2015; Brod & Shing, 2019; van 

Buuren et al., 2014). At the same time, many other studies show the apparent opposite 

finding, of better memory for unexpected or surprising information, i.e. that is 

incongruent with a schema (e.g. Brod et al., 2018; Greve et al., 2017; von Restorff, 1933; 

Worthen & Hunt, 2006), as is predicted by PIMMS.  

This raises the question how information that is congruent or incongruent with a schema 

can both be remembered well. The neuroscientific model SLIMM (schema-linked 

interactions between medial prefrontal and medial temporal lobe; van Kesteren et al., 

2012) proposes that memory is a U-shaped function of schema-congruency, i.e., the 
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degree of expectancy of encountering a specific event, given a schema. More specifically, 

it is hypothesized that different brain systems support memory for the two ends of the U-

shape: one based in the MTL and one based in neocortex, for which the medial prefrontal 

cortex (mPFC) plays a key gate-keeper role.  

The MTL system (including the hippocampus) is assumed to encode highly unexpected 

(schema-incongruent) events, i.e., ones in which a schema’s predictions are violated, 

producing PE. This system is therefore consistent with the PIMMS framework, though 

one subtle difference is that, whereas in PIMMS, PE drives local learning between the 

predictor and predicted, PE in SLIMM is assumed to trigger encoding of an episodic 

snapshot that captures all information present, regardless of whether it is relevant to the 

schema, i.e., including incidental contextual information (“global PE”). The evolutionary 

rationale for this is that, if something happens that is not predicted by the current schema, 

one wants to capture other contextual information that might be relevant to explaining 

why the schema failed, which (if it recurs) could be used to update (or create a new) 

schema in future. For example, if one is surprised to find boiling water coming from a tap 

on a kitchen sink, one should remember details about that tap, and update one’s kitchen 

schema so that, when encountering such taps again, one knows that making tea can be 

done using boiling water from these taps (rather than from a kettle). 

The other neocortical system involves the medial prefrontal cortex (mPFC), which best 

encodes highly expected (schema-congruent) events. SLIMM assumes that, when high 

“resonance” occurs between a schema and the perceived environment, the mPFC inhibits 

the MTL system (preventing an episodic snapshot) and instead augments direct encoding 

of the event into neocortex (even if that encoding is transient). Importantly, only 

information that is relevant to the schema is encoded, such as the location of a kettle used 

to make tea in a new kitchen that one enters (given that making beverages is one function 

of a kitchen), whereas incidental information, such as the colour of the kettle, is lost. 

Evidence for these two systems comes from Tse and colleagues (Tse et al., 2007, 2011). 

These authors showed that schemas allowed animals that were trained to remember 

flavour-location pairings to quickly assimilate new information, which then became 

independent from the hippocampus faster than would be expected by the standard systems 

consolidation view. Importantly, this type of fast learning was accompanied by up-

regulation of immediate early genes in mPFC and pharmacological intervention targeting 

mPFC abolished fast acquisition and retrieval of flour-location pairings. This suggests 
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that the long route of system consolidation (from hippocampus to neocortex) can be 

bypassed via the mPFC if a schema exists. 

In humans, Greve et al. (2019) provided the first behavioural evidence for the U-shape 

predicted by SLIMM. The authors used a paradigm in which the schema was an abstract 

rule about the relative value of two types of objects, and episodic memory was tested for 

trials containing unique numbers of each object type. More specifically, these authors 

tested episodic memory under three levels of expectancy/congruency: a congruent 

condition in which a trial was as predicted by a rule, an “unrelated” condition where there 

was no rule (or only a weak rule), and an incongruent condition in which a trial broke a 

strong rule. Across four experiments, memory for unique trials was worse in the unrelated 

(middle) condition than in the two others, i.e., there was a U-shaped function across the 

three conditions. Furthermore, memory for the two extreme conditions (congruent and 

incongruent) appeared dissociable by other variables, as is predicted by SLIMM if they 

are supported by different memory systems with different characteristics. For example, 

memory for incidental information was only improved in the unrelated condition, as 

predicted by SLIMM when a PE triggers encoding of an episodic snapshot. 

Nonetheless, there are several limitations to the Greve et al. (2019) study. Firstly, with 

only three levels of schema-congruence, it is possible that memory was worse in one 

condition than the other two (particularly the middle one) because of differences between 

conditions other than expectancy (such as level of task engagement when there is no clear 

rule, which the authors tried to address by various manipulations, but these may not have 

been sufficient). A more elegant approach would be to manipulate expectancy in a 

continuous fashion (i.e., parametrically rather than categorically). Secondly, the 

“schema”, while an abstract rule, was arguably a trivial case of the much richer schemas 

that operate in everyday life. Thirdly, that schema had to be learned across several 

“training” trials, which made the experiment long, and may also have produced different 

levels of schema strength across participants (even if on average their behaviour showed 

good learning of the rule). Furthermore, while possibly adding a level of experimental 

control, any paradigm in which schemas are learned during the experiment would be 

difficult to apply to patients (such as those with MTL lesions), who may not be able to 

learn a new schema in the first place (i.e., any decrement in their memory for trials relative 

to controls could reflect poor schema learning rather than impaired episodic encoding). 

Many of these problems can be overcome by using pre-experimental schema, e.g., 

everyday schema that are learned over many years prior to participating in a laboratory 
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experiment (or prior to a brain lesion). Therefore, I developed a paradigm that uses pre-

experimental knowledge about kitchens (and what one expects to encounter in them).  

The details are described in Chapter 2, but in brief, the aim was to replicate a U-shaped 

function of memory for new information as a more continuous function of schema-

congruence (or what I will call “expectancy”), using a much more realistic, pre-

experimental schema. To this end, I used immersive virtual reality (iVR) to “place” 

participants in a life-like situation (a virtual kitchen), and tested their memory for the 

locations of objects to examine it as a function of how likely those objects were to appear 

in that location (i.e., based on their pre-existing schema for typical locations to find 

objects in a kitchen). So for example, a kettle might appear on the kitchen counter 

(expected), on a kitchen table (neither strongly expected nor unexpected) or on top of a 

trashcan (unexpected). I then tested participants’ memory using recall, where they had to 

place a given object at the location where they remembered it, and recognition, where 

they had to select which of the three images of an object in different locations 

corresponded to the location they remembered (i.e., three-alternative forced choice, 

3AFC). 

One possible explanation for the U-shape is that unexpected locations are surprising, 

attract attention and this improves memory encoding. Expected locations, however, are 

not necessarily encoded better, but simply benefit at retrieval owing to the tendency for 

participants to guess an expected location (based on their schema) when they cannot 

remember the specific location. To control for the latter guessing effect, I ensured that the 

two foils used in the 3AFC test showed locations for the target object that were 

approximately equally expected (based on normative ratings). If the U-shape remains in 

3AFC performance, then this suggests that the memory advantage for expected locations 

also occurs at encoding, supporting the idea of two separate memory systems. 

A second prediction of the SLIMM model follows from its assumption that the two 

memory systems operate according to different mechanisms, evolved for different goals. 

As noted above, it makes sense for the MTL system that underlies the memory advantage 

for surprising events (those that produce a high PE) to encode an episodic “snapshot” of 

such events, which includes surrounding contextual information that appears incidental 

to the prediction (schema). This is different to PIMMS, which assumes only associations 

relevant to the schema will be strengthened by PE, not incidental details. On the other 

hand, the mPFC system underlying memory for expected information is assumed to 

enable rapid integration of new information into an existing schema, during which 
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incidental (contextual) information is lost, because it is not part of that schema (van 

Kesteren et al., 2012). SLIMM therefore predicts that memory for expected information 

will be associated with a feeling of familiarity instead, in the absence of recollection of 

the original context. I therefore used a variant of the “remember/know” procedure 

(Tulving, 1985) to assess whether memory for unexpected locations was more likely to 

be associated with “remember” responses while memory for expected locations was more 

likely to be associated with “familiar” responses. 

In summary, Chapter 2 is centred on the question that PIMMS cannot predict this U-

shape, while SLIMM can. A second limitation of PIMMS addressed in this thesis relates 

to the fact that it is silent on neurobiology, and therefore cannot explain some phenomena 

related to PE and memory that appear to relate to the processes of cellular/synaptic 

consolidation.  

1.4 PIMMS is silent on neurobiology 

In Chapter 3, I turn to the question how experiencing something novel influences our 

memory for information that occurs in close temporal proximity to that experience? As 

noted above, it is well established in both human and non-human animals that novel 

stimuli that are surprising are remembered better than familiar stimuli (e.g., Ranganath & 

Rainer, 2003; Tulving & Kroll, 1995; van Kesteren et al., 2012). A neurobiological 

explanation for this is the increased neuromodulatory influences of acetylcholinergic and 

noradrenergic systems (Ranganath & Rainer, 2003) and/or of dopaminergic regions in the 

midbrain (Bunzeck & Düzel, 2006; Lisman et al., 2011; Lisman & Grace, 2005). 

According to one framework for example (Lisman et al., 2011; Lisman & Grace, 2005), 

novelty is detected in the hippocampus, which sends a signal to the ventral tegmental 

area, leading to release of dopamine in the hippocampus via dopaminergic back 

projections, which in turn lowers the threshold for learning (Schomaker, 2019). While 

novelty and surprise are not necessarily identical (Quent et al., 2021), these 

neurobiological explanations are not part of PIMMS.  

Interestingly, experiencing something novel can not only enhance memory for the novel 

information itself, but also affect memory for other, unrelated information that occurs in 

temporal proximity to the novel information (Fernández & Morris, 2018). This 

enhancement of memory for information occurring either before or after the novel 

experience has been shown in both non-humans (Ballarini et al., 2009; Moncada & Viola, 
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2007) and humans (Ballarini et al., 2013; Fenker et al., 2008; Ramirez Butavand et al., 

2020). Novelty-related memory enhancement has been found in a variety of paradigms: 

inhibitory avoidance (Moncada & Viola, 2007), spatial memory (Wang et al., 2010), 

spatial object recognition (Ballarini et al., 2009), contextual fear conditioning (Ballarini 

et al., 2009) conditioned taste aversion (Ballarini et al., 2009), story and picture recall 

(Ballarini et al., 2013) and word learning (Fenker et al., 2008; Schomaker et al., 2014). 

In possibly the most real-world application of this novelty effect in humans, Ballarini et 

al. (2013) showed that memory of primary school children was enhanced if they attended 

special science or music lessons that were designed to be novel. The enhancing effect was 

observed for the learning of other, unrelated verbal and pictorial information, provided 

the novel lesson took place within an hour before or after learning, consistent with a 

critical time window during which the novelty effect operates (see below).  

One neurobiological explanation for the effect of novelty on surrounding information is 

provided by “behavioural tagging theory” (BTT; Ballarini et al., 2009; Moncada & Viola, 

2007), which itself derives from the physiological mechanisms proposed by the synaptic 

“tag-and-capture” theory (Frey & Morris, 1997; Redondo & Morris, 2011). Briefly put, 

this theory postulates that two main steps are important to maintain late-long-term 

potentiation (late-LTP). First, a synapse is tagged because it has received input. In the 

second step, the tagged synapse needs to capture so-called plasticity-related products 

(PRP) in order to induce the lasting structural changes that give rise to late-LTP. 

Experimentally it can be shown that strong tetanisation of a synaptic input can produce 

both tagging and subsequent PRP capture. Weak tetanisation of a synaptic input, on the 

other hand, induces early-LTP, but this is not maintained unless the second stage of PRP 

capture occurs. One way to produce this PRP capture is to provide a second, strong 

tetanisation to a different synaptic input on the same population of neurons. In that case, 

both synaptic inputs benefit from the provision of PRPs and hence late-LTP is maintained. 

Something similar to strong tetanisation can potentially come from a different, but highly 

novel input, leading to a similar maintenance of late-LTP (Li et al., 2003; Straube, Korz, 

& Frey, 2003; Straube, Korz, Balschun, et al., 2003). Both the induction of LTP in the 

hippocampus and behavioural tagging are dopamine dependent (Li et al., 2003; Wang et 

al., 2010), consistent with the aforementioned idea that dopamine is crucial for novelty-

related memory enhancement (Lisman et al., 2011; Lisman & Grace, 2005).  

Within the “tag-and-capture” theory, the lifetime of a tag is limited to approximately 90 

minutes (Redondo & Morris, 2011), requiring the weakly-learned information and strong 
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tetanisation to co-occur within that time window. Likewise, behavioural tagging only 

occurs within a certain time window (Ballarini et al., 2009; Moncada & Viola, 2007). For 

instance, weak inhibitory avoidance training that normally only leads to spatial  STM can 

be strengthened to LTM if animals are allowed to explore a novel, open field within up 

to an hour of that training (Moncada & Viola, 2007). However, the timescale of the 

behavioural tagging window depends on the task characteristics and may even have a 

nonlinear expression, given that some animal studies have shown that novelty that is too 

close to the unrelated encoding event does not enhance memory (Moncada et al., 2015). 

Information about the temporal dependencies in humans is scarce however, and several 

studies have shown memory enhancement when a novel experience occurs within a few 

seconds of the learning experience (e.g. Bunzeck & Düzel, 2006; Schomaker et al., 2014). 

In addition to the time between the encoding of critical information and the novel 

experience, a second consideration is the time between the novel experience and the 

subsequent test of memory (retention interval). Most animal models assume that a period 

of consolidation is required, such that the effects of novelty only emerge after a delay. 

However, in humans, Bunzeck and Düzel (2006) showed that presenting familiar images 

at the same time as novel images led to an overall increase in memory performance for 

the familiar images in a subsequent recognition memory task, but only when recognition 

was tested immediately; not when tested the next day (see also Biel & Bunzeck, 2019, for 

a failure to find an effect of novelty the next day). The effect of retention interval and 

possible role of consolidation therefore remains unclear.  

According to BTT, there are at least two further boundary conditions for behavioural 

tagging. Firstly, as noted above, novelty does not enhance memories traces that are 

already strong, presumably because they already sufficiently captured PRPs (Moncada & 

Viola, 2007). This may explain why the effect of novel lessons on children in the above 

Ballarini et al. (2013) study was most pronounced for difficult information, which 

presumably would have only led to weak memories otherwise. It is also consistent with 

recent findings related to stress. Like novelty-related memory enhancement, stress-related 

memory enhancement have been linked to processes akin to those hypothesized in tag-

and-capture theory (Bergado et al., 2011; McIntyre et al., 2012; Richter-Levin & Akirav, 

2003). For example, spatial recognition memory in rats was promoted from STM to LTM 

by acute stress after weak but not after strong training (Lopes da Cunha et al., 2019), and 

stress-related increases of cortisol in humans only predicted memory for weakly-learned 

neutral words, but not for strongly-learned reward-predicting words (Quent, McCullough, 
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Sazma, Wolf, & Yonelinas, 2018; see Dunsmoor, Murty, Davachi, & Phelps, 2015, for 

similar effects using Pavlovian fear conditioning).  

However, the suggestion that novelty preferentially aids weak memories is less easy to 

reconcile with other human studies. For example, Fenker et al. (2008) used a paradigm 

similar to Bunzeck and Düzel (2006) to demonstrate that presenting novel images 

enhanced memory for unrelated words, but they only found this enhancement for words 

whose recognition was accompanied by a “Remember” judgment; the advantage was not 

seen for words whose recognition was accompanied by a “Know” judgment. Remember 

and Know judgments are associated with the theoretical concepts of recollection and 

familiarity, and while these concepts are not synonymous with memory strength 

(Yonelinas, 2002), few would contest that items judged familiar have, on average, weaker 

memory representations than those recollected. It is possible then that some words in 

Fenker et al.’s study were initially encoded weakly, but the novel experience boosted 

them sufficiently that they were later recollected. However, it also seems likely that some 

words could have be encoded so weakly that they would not be recognised at all (i.e., 

missed), had a novel experience not boosted them such that they at least seemed familiar. 

In this case, an effect of novelty would be expected on Know judgments as well as 

Remember judgments, and possibly more so, if Know judgments are a better indicator of 

items that were initially encoded weakly. 

One possible explanation for Fenker et al.’s finding that novelty improved recollection 

relates to a second boundary condition of BTT: that information must converge on the 

same neural population that is activated by the novel experience, in order for that 

information to benefit from the novelty-induced PRPs (Ballarini et al., 2009; Nomoto et 

al., 2016). For instance, open field exploration does not enhance conditioned taste 

aversion in rats, but a novel taste does (Ballarini et al., 2009). Here it is important to 

distinguish conceptually-unrelated (e.g. word learning and spatial navigation) and 

neuronally-unrelated. In its most basic form, BTT postulates that detection of novelty 

leads to a dopaminergic signal that boosts encoding in places that receive that signal. It is 

therefore conceivable that novelty is detected by one neural population within a brain 

region (e.g., the hippocampus), but a wide-spread signal is also received by other 

populations within that region, including the population that is encoding task-relevant 

information. Therefore, information that is conceptually-unrelated to the novel 

experience can still benefit providing the information is neuronally-related in the sense 

of receiving the same memory-boosting signal. Given the above evidence that 
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hippocampus is important for detecting novelty, and other evidence that the hippocampus 

is important for encoding the spatiotemporal and associative context that defines 

recollected memories, then it is possible that a novel experience only improves 

recollection of information (as in Fenker et al., 2008).  

A further consideration is the nature of the novel experience. Previous human studies 

have used novel images or films, and at least one of these (Biel & Bunzeck, 2019) recently 

failed to find an effect of novelty. This study compared the effects of watching novel 

versus familiar films, and the authors speculated that the lack of difference was because 

the films did not engender active engagement, at least to the level engendered by the 

exploration of a novel spatial environment that is used in many animal studies. 

Furthermore, if the hippocampus is key for the novelty effect, active navigation might be 

important for maximally engaging the hippocampus, given its role in navigation (Burgess 

et al., 2002; O’Keefe & Nadel, 1978). One way to expose humans to a novel environment, 

but within the controlled setting of a laboratory, is to use VR. Indeed, another human 

study used VR to compare novel versus familiar environments in their effects on words 

learned immediately after the experience (Schomaker et al., 2014). Exploring a novel 

environment, relative to a familiar one, enhanced free recall of the words, though not 

recognition memory for the words (though these authors did not distinguish recollection 

versus familiarity in their recognition task). Since recall requires recollection, these 

findings are consistent with Fenker et al. (2008), on the assumption that their recognition 

performance was dominated by familiarity.  

Given the importance of these findings for education and other real-world situations, in 

Chapter 3 I attempted to replicate the effects of a novel spatial navigation experience on 

memory for unrelated words, presented immediately prior to the novel VR experience, as 

a function of the encoding task (deep vs. shallow) and retrieval quality (recognition with 

remember vs. know judgments, plus recall), to test whether weakly learned information 

and recollection would be most affected by the novel experience.  

1.5 PIMMS fails to explain the effects of event boundaries  

A final limitation of PIMMS I consider is the effect of  “event boundaries”. While PIMMS 

describes dynamic interactions between representational layers, it treats the information 

that is encoded as discrete experiences, without any consideration of how we segment our 

continuous experience into such discrete chunks or “events”. Indeed, it has been proposed 
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that PEs, of the type considered by PIMMS, are the way that we segment experience, by 

creating “event boundaries” whenever something happens next that we do not predict, 

based on our current schema (Zacks et al., 2007). These boundaries may then be points 

in time at which we “bind” the information in STM/WM from the preceding event, in 

order to create a LTM trace (Ben-Yakov & Henson, 2018). 

While PEs are one possible trigger for event boundaries, according to the event 

segmentation theory (EST; Reynolds et al., 2007; Zacks et al., 2007), a recent review by 

Clewett and colleagues (2019) suggests that general shifts in space, goal or perception 

also lead to event boundaries. Moreover, these authors reviewed evidence that 

experiencing a boundary can impair memory for the temporal order of information, as 

well as increased estimates of temporal distances and overestimation of temporal 

durations. For example, many studies using simple sequences of pictures on different 

backgrounds report superior memory for the order of two pictures when they occur within 

same event (background) compared to when they straddle an event boundary (different 

backgrounds) (DuBrow & Davachi, 2013, 2016; Ezzyat & Davachi, 2014; Heusser et al., 

2018). At the same time, item recognition and item-context binding can be enhanced by 

boundaries (Heusser et al., 2018; Rouhani et al., 2020; Swallow et al., 2009). 

A more typical, everyday experience of event boundaries occurs when passing through 

doorways between rooms. For example, when you get up from the couch in the living 

room to go to the kitchen, you sometimes forget what you wanted to do as soon as you 

walk through the door. This effect is called the location updating or doorway effect, and 

has been extensively studied (Lawrence & Peterson, 2016; McFadyen et al., 2021; 

Pettijohn & Radvansky, 2018a, 2018b; Radvansky et al., 2010, 2011; Radvansky & 

Copeland, 2006; Seel et al., 2019). For example, Radvansky (2006) asked participants to 

navigate through a series of rooms that contained objects on top of tables. Participants 

picked up an object from one table and carried it to the next one, where they put the object 

down and picked up another one. Periodically, memory was probed for the objects that 

were either just put down or picked up, and memory was typically lower if the participants 

had just walked through a doorway. To account for the location updating effect, the EST 

has been further developed to the Event Horizon Model (EHM; see Radvansky et al., 

2011). This model posits that: 1) events are created by boundaries for which event models 

are generated, but people can only process one event model at a time; 2) the current event 

model foregrounds information pertaining to that model; 3) retrieval is facilitated for non-

competitive retrieval but impaired for competitive retrieval and 4) causal relations among 
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events are stored. The third property explains why walking through a door impairs item 

memory: walking through a door creates a new event model, but the most recent object  

is associated with the previous room (event model), and so memory is impaired as both 

event models compete for retrieval (though see Logie & Donaldson, 2021, for alternative 

accounts, as discussed further in Chapter 5). Horner et al (2016) found that doors between 

rooms (in virtual reality) also affect memory for the temporal order of objects encountered 

within versus between those rooms. 

However, it remains unclear what aspect of walking through a doorway renders it a 

boundary. It could be that there is something special about doors, but it could also be that 

context shifts that result from going from the living room to the kitchen are responsible. 

However even if the encoding context was reinstated (by returning to the room), the 

location updating effect can still be observed (Radvansky et al., 2011). On the other hand, 

walking through a door also typically leads to perceptual change (PC). For instance, you 

probably have different kinds of objects and furniture in the kitchen than you have in the 

living room, as a consequence you experience PC when you walk through that door. The 

obvious way to tease these apart is to have a PC in the absence of a door, and/or a door 

in the absence of a PC. Or perhaps neither PC or a door matter, and what really matters 

is a PE. Other possible reasons that I did not plan to examine with this paradigm but are 

potentially relevant are context and schema shifts. These were my general aims in Chapter 

4, i.e. to try to tease apart the effects of doors, PC and PE on the formation of event 

boundaries, as measured by their effects on memory for temporal order that objects were 

encountered within versus across rooms in a virtual environment, similar to Horner et al. 

(2016); though in the end, I could not replicate a basic effect on temporal order memory 

in my version of this paradigm, as discussed later in Chapter 4.  

1.6 A note on the statistics used in this thesis 

Before moving to the empirical parts of this thesis, it is important to consider the statistical 

approach I took. There is a recent and growing interest in using Bayesian inference, rather 

than the more typical frequentist approach (e.g., p-values), for scientific claims (Dienes, 

2016; Morey et al., 2016; Wagenmakers et al., 2011). One reason is to be able to quantify 

evidence against an effect, which can be expressed through the Bayes Factor (BF) for one 

hypothesis (e.g., the alternate hypothesis H1) relative to another (e.g., the null hypothesis 

H0): 
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p(𝐻1|data)

p(𝐻0|data)
=  

p(𝐻1)

p(𝐻0)
×

p(data|𝐻1)

p(data|𝐻0)
 

𝐵𝐹10 =
𝑝(𝑑𝑎𝑡𝑎|𝐻1)

𝑝(𝑑𝑎𝑡𝑎|𝐻0)
= 1/𝐵𝐹01 

In frequentist statistics, one cannot easily quantify evidence against H0, but rather only 

report the probability (p-value) of H0 producing the data (i.e., a statistic as high or higher), 

and so if this is not small enough (e.g. p > .05), one is left with absence of evidence rather 

than evidence of absence. 

Another reason for a Bayesian approach is to facilitate more efficient experimental 

designs, called “sequential designs” (Schönbrodt & Wagenmakers, 2018), where data can 

stop being collected as soon as a BF (either in favour of the null or in favour of the 

alternative) surpasses some criterion (see table below). This is more problematic for 

frequentist approaches (Dienes, 2016). I used sequential designs in Chapters 2 and 4. 

While the scientific field has settled on a conventional frequentist p-value (alpha) of .05 

for declaring something as “significant”, less consensus has been reached about what BF 

constitutes “strong evidence” for example. While some Bayesians would prefer not to 

categorise BFs with verbal labels, it is helpful to assign some verbal labels to ranges of 

BFs (Jeffreys, 1998; Kass & Raftery, 1995). For this thesis, I have adopted what is 

currently regarded as “publishable” evidence by various journals in our field, which 

typically either accept BF10 > 6 and BF10 < 1/6, or BF10 > 10 and BF10 < 1/10. I therefore 

adapted the  previous conventions (Jeffreys, 1998; Kass & Raftery, 1995) as shown in 

Table 1.1. 

 

Table 1.1: Convention how to label evidence in terms of BF. 

BF10 EVIDENCE 

> 100 Extreme evidence for H1 

30 – 100 Very strong evidence for H1 

10 – 30 Strong evidence for H1 

6 – 10 Moderate evidence for H1 

3 – 6 Anecdotal evidence for H1 
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3 – 1/3 Inconclusive evidence 

1/3 – 1/6 Anecdotal evidence for H0 

1/6 – 1/10 Moderate evidence for H0 

1/10 – 1/30 Strong evidence for H0 

1/30 – 1/100 Very strong evidence for H0 

< 1/100 Extreme evidence for H0 

 

Finally, there is always debate about the appropriate priors to use for Bayesian inference, 

since the evidence (BF) depends on the priors for each parameter in the statistical model. 

This is an advantage of pre-registering analyses, which protect one from being accused 

of altering one’s priors post hoc (after seeing the data), and most of the analyses in this 

thesis were (pre-)registered on the Open Science Framework (OSF, https://osf.io; with 

the exception of some of the initial, pilot experiments in Chapters 2 and 4, and when 

problems with original analyses, or useful additional analyses, became apparent between 

one experiment and the next, as in Chapter 2). Here I used standard recommendations for 

those priors, which depend on the type of statistical model used (e.g., T-tests, ANOVAs 

or logistic regression). These are “objective” priors that enable estimation of the 

probability that the data came from H0, versus probability that the data did not come from 

H0 (i.e., H1 = ~H0, rather than “subjective” priors for H1, namely that the data came from 

a different distribution with a specific effect size). For some of my experiments, I also 

simulated the Bayesian equivalent of “power”, i.e., the probability of obtaining a BF 

above a certain threshold as a function of the sample size and the effect size (by generating 

random data with an effect size of 0 for H0, or, say, a Cohen’s d of 0.5 for H1).  

1.7 Summary 

To sum up, I have outlined three prominent areas that are related to PE, novelty and 

memory, but which cannot currently be explained by PIMMS. First, PIMMS cannot 

explain why highly expected information is encoded well (Chapter 2); second, PIMMS  

cannot explain why memory for information surrounding a novel experience is often also 

remembered well (Chapter 3); and thirdly, PIMMS cannot explain how continuous 

stimuli are segmented by event boundaries and how those boundaries affect memory 

(Chapter 4). In brief, Chapter 2 confirmed a U-shaped function of memory against 

https://osf.io/
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expectancy, for which the advantage for expected events is not predicted by PIMMS, but 

is consistent with the related SLIMM model, while Chapters 3 and 4 found no evidence 

for (and sometimes evidence against) an effect of novelty on preceding information or an 

effect of doorways on temporal order memory, respectively. Chapter 5 discusses all these 

findings, in particular the extent to which the results in Chapters 3 and 4 reflect limitations 

of the paradigms used, versus remain fundamental problems for PIMMS. 
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2 THE EXPECTED CASE 

 

2.1 Introduction 

As explained in Chapter 1, PIMMS is unable to explain how expected information is 

remembered well because its lack of PE. So to show both expected (schema-congruent) 

as well as unexpected (schema-incongruent) information is encoded well, I used iVR to 

test people’s memory for the location of everyday objects within a virtual kitchen. The 

expectancy of each object-location was derived from normative ratings of 20 objects in 

each of 20 possible locations, from which pairings were selected to cover a range from 

highly expected (+100) to highly unexpected (-100; see below for more information). 

Participants spent only 45 seconds exploring the virtual kitchen and were instructed to 

count these 20 objects, before the objects were removed for a short delay, and participants 

were asked to place individual objects at their remembered location, followed by the final 

3AFC test outside iVR (using stills on a computer screen).  

This paradigm was inspired by a study (Lew & Howe, 2017) that used realistic photos of 

schema-evoking rooms (bathroom, kitchen, living room and office) to investigate how 

expectedness of locations for specific objects affected memory for those objects and for 

their locations. The photos showed room-congruent objects at expected and unexpected 

locations, as well as room-incongruent objects. At test, objects either stayed in same 

location or shifted to a different location. Recognition memory for objects was better for 

room-incongruent objects as well as room-congruent objects at unexpected locations, 

relative to room-congruent objects at expected locations. However, when memory was 

tested instead by recall of an object’s location, memory for objects at unexpected 

locations was impaired relative to room-congruent objects at expected locations. The 

authors explained their findings in terms of schemas acting differently on item and 

associative (location) memory, whereby an unexpected location attracts attention, but also 

activates schema-congruent bindings that interfere with memory (see also Bower et al., 

1979). 
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However, another possible explanation for Lew and Howe’s finding of impaired recall of 

the location of objects at unexpected locations is that, if participants forgot the location, 

then they guessed based on a schema. For example, if you forget where you saw the 

saucepan, then you can use prior knowledge to guess that it was on the stove. A similar 

guessing bias has been used to explain the advantage of schema-congruent information 

in source memory (Bayen et al., 2000; Kleider et al., 2008; though also see van der Linden 

et al., 2017). This guessing bias could have obscured any advantage in memory for the 

location of objects at unexpected locations. One way to address this bias (as used here) is 

to test memory with forced-choice tests, in which the target (saucepan on stove) and foil 

(saucepan in cupboard) are matched on their expectancy. Furthermore, Lew and Howe 

only had two levels of expectancy, so could not test for a U-shaped function of memory 

that the SLIMM model predicts (see Chapter 1). I therefore used a continuous 

(parametric) range of expectancies, based on the participants’ ratings. 

My two main predictions were: 1) recall and recognition for object-location would be a 

U-shaped function of expectancy of an object’s location, as tested by a quadratic 

component and interrupted linear regression, and 2) recollection, as estimated from 

remember/familiar judgments, would decline with expectancy, while familiarity would 

increase with expectancy. To allow for individual differences in schema, expectancy 

ratings were defined individually, based on a debriefing phase. 

I tested these two hypotheses across four experiments. The first experiment was an initial 

attempt to obtain a basic U-shape, while the next three iterations added a measure of 

recollection/familiarity to additionally test the second hypothesis. Apart from the first 

experiment, the experiments were preregistered, and I used Bayesian analysis to 

propagate evidence across experiments, i.e., using the posterior of one experiment as the 

prior for the next experiment. First, a small normative study was run to determine at which 

pre-defined locations to place the objects, in order to allow sampling from the whole range 

of expectancy (from very unexpected to very expected). 

2.2 Normative study 

In order to select where to place each object, and to get a range of expectancy values, six 

participants were shown screenshots of each object at each location and asked to rate how 

expected that object was in that location. They were then asked to also rate the general 

expectancy of each object in a kitchen. 
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Methods 

Participants 

Participants were members of the research group (five females and one male; age M = 

36.83 (SD = 2.14)).  

Materials 

 

Figure 2.1: All object locations in the kitchen: Pre-defined object locations are 

shown with microwave as the example object. 

The virtual kitchen was 5.15 by 4.40 virtual-metre (vm) kitchen, where 1 vm corresponds 

to approximately 1 metre in the real-world (material available at https://osf.io/4sw2t/ and 

https://github.com/JAQuent/schemaVR). 20 objects were placed at 20 locations within 

the kitchen, and then a still image captured of each object in each location (see Figure 

2.1). The objects (Table 2.1) consisted of 12 kitchen objects and 8 non-kitchen objects, 

inspired by Lew & Howe (2017). Within the kitchen, 20 places were defined as canonical 

object locations where all objects could be placed. Due to the different sizes, which 

ranged from a large microwave to a small kitchen knife, not every place in the kitchen 

was suitable to become an object location. While some of the pre-defined locations where 

selected with certain objects in mind (e.g. the stove top was chosen with the sauce pan in 

mind) to include very expected locations, some were chosen for the opposite reason (i.e. 

being very unexpected locations like in the corner of the floor). Generally, object 

https://osf.io/4sw2t/
https://github.com/JAQuent/schemaVR
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locations were spaced out, however – as in a normal kitchen – certain areas like the 

working surfaces of the kitchen contained a higher density of object locations.  

   

Table 2.1: List of kitchen objects and non-kitchen objects used: Table shows the 

object names and their numbers but not the locations. This can be seen in the 

Appendix 

 

 

Participants 

rated how 

likely each of 

the 20 objects 

was to be 

found in each 

of the 20 

locations (i.e., 

400 trials in 

total) from -

100 to +100 using a slider. Four additional objects (kitchen: peppers and a white pot; non-

kitchen: a dumbbell and wrench) were used to create eight object/location practice trials, 

which were shown first to give participants an idea about the task and calibrate their 

ratings. Results are shown in Figure 2.2. 

 

Kitchen Objects 

 

 

Non-Kitchen Objects 

1 

microwave 

5 

bowl of 

fruits 

9 

bread 

13 

towels 

17 

hat 

2 

kitchen roll 

6 

tea pot 

10 

glass jug 

14 

toy 

18 

helmet 

3 

saucepan 

7 

knife 

11 

mug 

15 

books 

19 

calendar 

4 

toaster  

8 

mixer 

12 

dishes 

16 

umbrella 

20 

fan 
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Figure 2.2: Mean normative rating of object-location for each object at each 

location: Individual ratings could vary from -100 to 100. The column titled ‘overall’ 

(right) shows average general expectancy rating for each object. 

 

These ratings were then ranked from 1 and 400 within each participant (since different 

participants used different ranges of values), and the ranks were averaged over 

participants. Then an algorithm was run with close to 10 million iterations in which each 

object was randomly assigned to the 20 locations along with two foil locations that were 

randomly chosen (the foil locations were used in the 3AFC test of memory, and should 

have expectancies close to that of the target location). When the solution was not valid 

(e.g. the same location used for foil 1 and foil 2), this step was repeated until a valid 

solution was returned. For each valid solution, the sum of squared differences between 

the ranks of the targets and the intended uniform spread (“SS of targets”) and the sum of 

squared differences between the ranks of the targets and both foils (“SS of foils”) were 

calculated. In a two-step process, the number of solutions was first reduced to only 

include the 0.0001th percentile of the “SS of foils” distribution, to prioritize adequate foils 

that are similar in expectancy to the target. Second, the remaining solutions were sorted 

by their “SS of targets” values and then checked for problems (e.g. some object not being 
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visible). The first valid set of 20 object-location pairs that was found by this algorithm is 

shown in the Appendix (see Table 7.2). 

2.3 Experiment 1 

Experiment 1 used the optimised set of 20 object-location pairs from the normative 

experiment to test for a basic U-shape for object-location memory as a function of 

expectancy of that location, and estimate its effect size. This was defined by the quadratic 

coefficient of a second-order polynomial expansion of individuals’ continuous 

expectancy ratings. 

Methods 

Participants 

All participants in the study were Cambridge community members from the volunteer 

panel of the MRC Cognition and Brain Science Unit or recruited through word-to-mouth 

from the wider Cambridge community, all of whom had reported normal or corrected-to-

normal visual acuity, provided informed consent and received monetary compensation 

for participation, as approved by a local ethics committee (CPREC 2020.018).  

Because Experiment 1 was the first experiment on this paradigm, no effect size was 

available to power the study, and so I decided to test 16 participants, as a number typical 

of laboratory memory experiments. These participants had a mean age of 26.38 (SD= 

3.52), with eight females and eight males. For one participant, information about whether 

the objects were seen or not at study was lost. However, recordings of their object 

placement was intact, so I kept this participant, given that it was rare for objects to be 

reported as not seen.  

Materials 

The first set of 20 object-location pairings that were optimised from the normative study 

(Set 1) were used. 

Procedure  

The basic paradigm for all four experiments is illustrated in Figure 2.3, and contains an 

encoding and recall phase performed in iVR, followed by a recognition and expectancy-

rating phase performed on a computer screen. During encoding, participants were asked 

to navigate freely through a virtual kitchen for 45 sec, with the instruction to count and 
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memorise the locations of all 20 objects that were scattered across the room. A small 

amount of exploration (i.e., movement and rotation) was required to detect all 20 objects. 

Following encoding and prior to recall, participants entered a blank environment for 

approximately 2.5 min to practice how to place objects (simple cubes) using the iVR hand 

controls; a skill that was needed in the subsequent recall phase. For recall, participants 

then re-entered the kitchen (now without the objects being present), were given one object 

and asked to place it at its previously seen location (once placed, the object disappeared, 

and the process was repeated for the remaining 19 objects). Participants were encouraged 

to guess if they were unsure, but could skip if they did not remember the object at all (a 

miss). Recall accuracy was defined as whether or not the correct location was the closest 

of the 20 object locations to the recalled location. 

 

 

Figure 2.3: Schematic overview of paradigm: This paradigm differed across the 

three experiments only in object-location pairings and precise memory tests. I) 

Encoding (in iVR): participants explored a virtual kitchen (45 sec) and were 

instructed to count and memorise 20 object locations. II) Recall (in iVR): all 20 

objects were removed, and participants were given one object at a time to be placed 

where previously encoded. III) 3AFC (outside iVR): each of the 20 objects was 

presented on a computer screen but in three alternative locations (where the two foil 

locations were approximately equally expected as the correct location). Experiments 

2 and 3 collected additional remember/familiar judgments. IV) Individual 

expectancy ratings (outside iVR), used in analysis of previous Recall and 3AFC data, 

were collected for all 20 objects for a) each of the 3AFC locations and b) their general 

expectancy in a kitchen context. 
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Recall was followed by a 3AFC recognition test, performed on a computer outside iVR. 

Each trial showed one studied object in three locations, one of which was correct. 

Importantly, the two foil locations were chosen to be approximately equally expected 

according to the normative ratings (see above), so using prior knowledge to guess the 

location would not help performance. Participants indicated which they thought was the 

studied location, followed by a rating of their confidence on a 3-point scale (1 = “did not 

see the object”, 2 = “guess the object was there”, 3 = “know the object was there”). In 

the final phase, participants provided expectancy ratings for how likely they thought it 

would be to find each of the 20 objects in each of the three locations tested in 3AFC, 

together with an additional rating of the general expectancy of an object appearing 

anywhere in a kitchen at all. Ratings were made using a sliding scale from unexpected (-

100) to expected (+100). These ratings were analogous to the normative ratings, but 

allowed for potential individual differences in expectancy. The range of expectancy 

ratings for each participant and object (by number) is apparent in Figure 2.4.  

Statistical analysis 

Statistical analysis was performed in R  (R Core Team, 2019) using Bayesian multi-level 

models with brms (Bürkner, 2017, version 2.12.0 2018) based on Stan (Carpenter et al., 

2017). All analyses scripts and data are available here: https://osf.io/4sw2t/ and 

https://github.com/JAQuent/schemaVR. 

Memory for individual trials was modelled as a function of a participant’s object-location 

expectancy rating. Memory was a binary outcome (correct/incorrect) and was fitted using 

logistic regression models with the Bernoulli linking function. A “full” model was fit 

first, with random slopes and intercepts for both objects and participants. Bayes Factors 

(BFs) using marginal likelihoods from bridge sampling  (Gronau et al., 2017) were then 

used to compare the full model with the model with random intercepts only, which was 

in turn compared to the model without random intercepts. 

https://osf.io/4sw2t/
https://github.com/JAQuent/schemaVR
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Figure 2.4: Illustration the spread of all object-location expectancy ratings: On the 

x-axis are the ratings collected from each participant (y-axis) tested across all three 

experiments (i.e. panel labelled 1, 2 and 3). Numbers represent the objects (see Table 

1) and are coloured orange if they are generally expected in the kitchen and purple 

if they are not. 

The individually-defined expectancy ratings (Figure 2.4) were scaled to have a standard 

deviation (SD) of 0.5, and the prior for each regression coefficient was based on a 

“Student t” distribution, with hyperparameters of df = 7, μ = 0, σ = 1, except for the 

intercept, which had hyperparameters of df = 7, μ = 0, σ = 10 (see 

https://jaquent.github.io/post/the-priors-that-i-use-for-logsitic-regression-now/ for 

justification; see also Table 7.1 ahead). These generic weakly informative priors are 

chosen to regularise unexpectedly large effects (Gelman et al., 2008). Eight Markov chain 

Monte Carlo (MCMC) chains were run, with 2000 warm-up and 16000 regular iterations 

https://jaquent.github.io/post/the-priors-that-i-use-for-logsitic-regression-now/
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and a total of 112,000 post-warmup samples for each main model. All models converged 

with an 𝑅̂ of 1. 

Evidence for or against my hypotheses were quantified with BFs for the linear and 

quadratic component of a second-order polynomial expansion of expectancy. A 

symmetrical U-shape would have a positive quadratic coefficient and a zero linear 

coefficient (see Experiment 3b for a more stringent test based on opposite signs of 

interrupted linear regression). The BF for each coefficient was estimated by the Savage-

Dickey ratio (Wagenmakers et al., 2010). The test for the quadratic term was order-

restricted (one-tailed) in line with my pre-registered hypothesis, all other tests were not 

order-restricted unless otherwise specified. For restricted tests, I compared the density of 

the truncated and renormalised prior distributions at zero with the logspline non-

parametric density estimate of the truncated and renormalised posterior distributions of 

my parameters at zero (based on the 112,000 post-warm-up samples). For unrestricted 

tests, BFs were just density ratios at zero: of prior/posterior (𝐵𝐹10) or posterior/prior 

(𝐵𝐹01) without truncation and renormalisation. The Savage-Dickey ratio function used 

can be found in this GitHub repository: https://github.com/JAQuent/assortedRFunction. 

In addition to BFs, I report 95 % credible intervals around my parameters, which can be 

interpreted as evidence against the null hypotheses if they do not include zero.  

Finally, when testing the means across trials, BFs were derived from Bayesian t-tests  

(Rouder et al., 2009)  with the package ‘Bayes factor’ (version 0.9.12-4.2), with the 

default scale parameter of √2/2.  

Results 

Objects that were reported as ‘not seen’ were excluded from further analysis. Across both 

the recall and 3AFC task, a mean of 2.84 (SD = 1.96) objects were excluded.  

For the recall data (Figure 2.5A), a model with random intercepts for participants and 

objects was used, since this was favoured relative to one that also included random slopes 

(BF = 1020) and relative to one that did not have random intercepts (BF = 1590). There 

was inconclusive evidence for a linear effect, 𝛽 = 0.096 (95 % CI [-0.663, 0.885]), BF10 

= 0.39, but more importantly, there was strong evidence for the predicted positive 

quadratic effect, 𝛽 = 1.888 (95 % CI [0.315, 3.641]), BF10 = 25.04.  

https://github.com/JAQuent/assortedRFunction
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Figure 2.5: Accuracy results: Recall (left panels) and recognition (right panels) 

performance plotted across expectancy ratings for all four Experiments 1, 2, 3a and 

3b (rows). The red line shows locally weighted smoothing (loess) of data to illustrate 

how well the fitted 2nd-order polynomial model using propagated evidence (white 

line) represents the data. The thin grey lines show 1,000 randomly selected fits from 

the posterior distributions, illustrating the uncertainty of the fit. Expectancy ratings 

originally ranged from -100 to +100, but were scaled to have SD = 0.5 in order to 

enable standard priors. 

It is possible that the two sides of the U-shape arise at different stages, e.g., an advantage 

in encoding unexpected locations and an advantage in retrieving expected locations. To 
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test the latter – i.e., whether expectancy influenced retrieval (e.g. guessing) – I compared 

the mean expectancy of incorrectly versus correctly recalled locations. Confirming 

expectations, the mean expectancy of incorrectly recalled locations was +40.7 (14.38), 

which was greater than zero, and greater than that for correctly recalled locations of +2.9 

(10.6), BF10 = 23900, d = 2.19, supporting a bias for participants to report expected 

locations when unsure.  

The 3AFC foils were designed to control for this potential bias towards recalling expected 

locations. Like for the recall data above, model comparison showed that the 3AFC data 

were better fit by a model with random intercepts but not random slopes, relative to the 

full model with random slopes (BF = 717) or the minimal model with no random 

intercepts or slopes (BF = 19.45). This model again showed inconclusive evidence for or 

against a linear effect, 𝛽 = 0.29 (95 % CI [-0.48, 1.12]), BF10 = 0.49. However, in this 

case, the evidence for a quadratic effect was also inconclusive, 𝛽 = 0.64 (95 % CI [-0.72, 

2.07]), BF10 = 1.61 (Figure 2.5B).  

In addition to 3AFC accuracy, high confidence (predicting 3 = “know the object was 

there” vs the other response options) was modelled with the same structure used above. 

Here, anecdotal evidence against a linear component, 𝛽  = -0.008 (95 % CI [-0.651, 

0.692]). BF10 = 0.331, and inconclusive evidence for a quadratic term, 𝛽 = 1.009 (95 % 

CI [-0.25, 2.378]). BF10 = 2.01, was found.  

Discussion 

Experiment 1 confirmed the predicted U-shape function for recall of object locations as 

a function of the expectancy of those locations. However, this U-shape was not replicated 

when using accuracy from a 3AFC recognition test in which the foils were matched for 

expectancy, suggesting that some aspects of the U-shape might arise during retrieval 

rather than encoding, such as the bias towards guessing expected locations that was also 

observed. Yet, when predicting high confidence responses in the 3AFC there was at least 

inconclusive evidence in the right direction that there might be a U-shape. Nonetheless, 

the evidence from the 3AFC data was moot, and more data might be required to provide 

more compelling evidence.  

Furthermore, a potential confound in Experiment 1 was that kitchen objects tended to be 

in highly congruent/incongruent locations, while non-kitchen objects primarily occupied 

by neutral locations. Even though random intercepts were allowed for each object, this 

meant that the U-shape might in part be explained by some theoretical difference between 
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kitchen vs non-kitchen objects, other than location expectancy and other individual 

differences between objects. I addressed this in the next experiment.  

2.4 Experiment 2 

Experiment 2 was powered to have a better chance of detecting the predicted U-shape in 

3AFC accuracy. The procedure was identical to Experiment 1, except that the specific 

object-locations studied were re-selected (from the normative ratings) to give a more even 

coverage across the range of expectancy values for both kitchen and non-kitchen objects. 

The only other important difference is that participants were also asked to indicate the 

quality of their memory responses by using ‘remember/familiar/guess’ judgements 

(Gardiner et al., 2002; Rajaram, 1993). This was to test the second hypothesis of SLIMM, 

that the two ends of the U-shape would be associated with different types of memory, 

specifically recollection for unexpected locations and familiarity for expected locations. 

While it is traditionally assumed that recollection tends to be associated with high 

confidence and familiarity is not synonymous with low confidence (in that people can be 

very confident because of a strong feeling of familiarity in the absence of recollection) 

based on the seminal findings of Gardiner & Java (1990). However it can be questioned 

if that still holds given recent carefully pre-registered failed replication attempts (Haaf et 

al., 2021). Despite these concerns I decided that estimating recollection and familiarity 

are worthwhile in this case. Beyond that a final caveat concerns the fact that typically 

recollection and familiarity are measured for item recognition (Yonelinas, 2002) but here 

it is done for an associative memory type (object-location). This experiment was pre-

registered on OSF (https://osf.io/s9er3).  

Methods 

Participants 

I collected data from 25 new participants. These had a mean age of 24.52 (SD = 2.83) 

years, with 18 females, 6 males and 1 non-binary. Sample size was determined based on 

frequentist power analysis to achieve 80 % power (https://osf.io/gr98d/) based on the 

quadratic effect size (𝛽 = 0.51 on unit scale) for 3AFC (https://osf.io/s9er3).  

Materials 

The only change from Experiment 1 was that objects were now reshuffled to other 

locations, so that kitchen and non-kitchen objects were more evenly distributed across 

https://osf.io/s9er3
https://osf.io/gr98d/
https://osf.io/s9er3
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(normative) expectancy ratings. To address the problem that ‘kitchen’ objects tended to 

be in extreme positions, only the “SS of targets” for kitchen objects was used; otherwise 

the algorithm remained unchanged. This ensured that kitchen objects now also occupied 

middle locations, while the spread of non-kitchen objects was still adequate. I will call 

this Set 2, as distinct from the Set 1 used in Experiment 1. 

Procedure 

The only procedural change was how participants categorised their memory responses for 

both recall and 3AFC (replacing the previous categories based on confidence only): If 

they did not remember seeing the object at all, they were told to indicate “no memory”. 

If they remembered the object itself, but had little idea where it was, they were to indicate 

“guess”. If they did not initially remember where it was, but once they had placed it (in 

recall) or compared the three choices (in 3AFC), that location just looked familiar, they 

were to indicate “familiar”. Finally, if they immediately remembered where the object 

was when they saw it (because, for instance, they remembered what they thought when 

they saw the object), then they were to indicate “remember”.  

Statistical analysis 

Parts of the statistical analysis were identical to Experiment 1, with BFs based on the 

same zero-centred priors. However, I also used the posterior distributions of Experiment 

1 as prior distributions by estimating the family-specific parameters of the Student’s t-

distribution for those distributions (see Table 7.1) using brms. For that, I used the 

marginal distribution, ignoring any correlation between parameters, and used the same 

factor to scale expectancy ratings as in Experiment 1, to ensure comparable expectancy 

ratings across experiments and hence correct priors (so the SD of these ratings in 

Experiment 2 was close to, but not identical to, 0.5). The BF from this second model 

allowed me to update the posterior belief in favour of my hypotheses (what I call “𝑃𝐵10”), 

given the data from both experiments (calculated by multiplying this BF with the BF from 

the previous experiment).  

Given the results of Experiment 1, random intercepts were modelled but not random 

slopes. Remember/familiar judgements were initially analysed in line with pre-registered 

analysis of the mean expectancy rating for remember and familiar judgments, but further 

simulation showed that this trial-averaged analysis is biased by boundary effects on 

expectancy values (see Appendix). Therefore, I analysed them using the same single-trial 

logistic regression model that I used for overall accuracy. To estimate the probability of 



Novelty, Prediction Error and Memory Encoding: Limitations of the PIMMS framework 

40  Jörn Alexander Quent - November 2021 

recollection, an outcome of 1 was used for “remember” judgments, and an outcome of 0 

otherwise. There is debate over the best way to estimate familiarity, i.e., whether 

familiarity and recollection are redundant, independent or exclusive (Knowlton & Squire, 

1995). To model redundancy, familiarity was estimated with an outcome of 1 for 

“remember” or “familiar” responses, and 0 otherwise; to model independence, an 

outcome of 1 was used for “familiar” responses, but only trials that were not given a 

“remember” response were included; to model exclusivity, familiarity was estimated as 

for independence, and recollection was estimated by an outcome of 1 for “remember” 

responses, but only trials that were not given a “familiar” response were included.  

Results 

An average of 2.68 (SD = 2.52) objects were reported as ‘not seen’ and therefore excluded 

from further analysis. The distribution of individual expectancy ratings for kitchen and 

non-kitchen objects was also more evenly spread across expectancy (Figure 2.4).  

For recall (Figure 2.5C), there was inconclusive evidence for a linear term, BF10 = 3.25, 

𝛽 = 0.407 (95 % CI [-0.074, 0.897]), PB10 = 0.91, and more importantly, continued very 

strong evidence for a positive quadratic term, BF10 = 2.5, 𝛽 = 1.538 (95 % CI [0.445, 

2.635]), PB10 = 65.35. Like Experiment 1, the average expectancy for incorrectly-placed 

objects was +34.49 (16.59) and so clearly higher than for correctly-placed, which was -

4.54 (14.58), BF10 = 174000, d = 1.51 

Focusing on the 3AFC therefore, there was a clear linear term, BF10 = 104.69, 𝛽 = 0.749 

(95 % CI [0.26, 1.252]), PB10 = 22.73, and more importantly, a clear quadratic term, BF10 

= 6.71, 𝛽  = 1.169 (95 % CI [0.18, 2.182]), PB10 = 13.72. The positive linear term 

produced an asymmetry in the U-shape towards expected locations (Figure 2.5D). 

Assuming that recollection and familiarity are independent, the estimate of recollection 

from 3AFC responses (Figure 2.6A) showed inconclusive evidence for a linear term, BF10 

= 0.46, 𝛽 = 0.292 (95 % CI [-0.212, 0.81]), but strong evidence for a quadratic term, BF10 

= 19.29, 𝛽 = 1.479 (95 % CI [0.394, 2.633]). By comparison, the estimate of familiarity 

(Figure 2.6B) showed anecdotal evidence against a linear term, BF10 = 0.31, 𝛽 = 0.099 

(95 % CI [-0.497, 0.705]), but inconclusive evidence for and against a quadratic term, 

BF10 = 0.60, 𝛽 = 0.102 (95 % CI [-1.119, 1.35]). For the recollection estimate under 

exclusivity, there was no linear effect, BF10 = 0.50, 𝛽 = 0.322 (95 % CI [-0.3, 0.971]), and 

anecdotal evidence for a quadratic effect, BF10 = 4.17, 𝛽 = 1.317 (95 % CI [0.005, 2.756]). 
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For familiarity scored under the redundancy assumption, there was anecdotal evidence 

against a linear effect, BF10 = 0.33, 𝛽 = 0.186 (95 % CI [-0.35, 0.743]), but inconclusive 

evidence for a quadratic effect, BF10 = 2.18, 𝛽 = 0.962 (95 % CI [-0.145, 2.141]).  

 

Figure 2.6: Recollection & familiarity results: 3AFC recognition performance based 

on recollection (under independent or redundant scoring, left panel) and familiarity 

(under independent or exclusive scoring, right panel) estimates across Experiment 

2, Experiment 3a and Experiment 3b (rows). The red line shows locally weighted 

smoothing (loess) of data to illustrate how well the average model (the white line) 

represents the data. The thin grey lines show 1,000 randomly selected fits from the 

posterior distributions, to illustrate the uncertainty of the average model. 
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Expectancy originally ranged from -100 to +100, but were scaled to have a SD = 0.5 

in order to enable standard priors. 

 

Discussion 

Experiment 2 replicated the U-shape in recall of Experiment 1, using a more even 

distribution of kitchen/non-kitchen objects across expectancy values, but now also found 

a U-shape in 3AFC, which rules out a contribution from guessing expected locations. This 

confirmed the first of my original hypotheses. However, the results provided strong 

evidence against my second hypothesis, that the advantage for unexpected locations 

would be accompanied by recollection, while that for expected locations would be 

accompanied by familiarity. Rather, I found that both ends of the U-shape were 

accompanied by recollection, whereas familiarity showed little variation as a function of 

expectancy, regardless how recollection and familiarity were scored.  

One limitation of Experiments 1-2 is that the same set of 20 object-location pairings were 

used for all participants (even if they were changed slightly across experiments), raising 

the possibility that the U-shape was a quirk of these particular pairings. Therefore, for 

Experiment 3a and 3b, I created five new sets of object-location pairings, counterbalanced 

across participants, to check whether the U-shape generalised. 

2.5 Experiment 3a 

Experiment 3a was run to check whether I could replicate the U-shape again, particularly 

in 3AFC, but this time across a large range of object-location pairings. For this, five 

distinct sets (i.e. unique object-location pairing pairings) were created and to which 

participants were randomly assigned. 

Methods 

Participants 

25 participants were recruited to take part in the study, but one was excluded from further 

processing due to experimenter error by which they rated different stimuli to those 

presented in the study. Hence a total of 24 participants (11 females and 13 males, mean 

age 25 years, SD = 3.71 years) were included in the analysis. This means that the data is 
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not completely counterbalanced across the 5 stimulus sets. This experiment was pre-

registered at (https://osf.io/kcr2q). 

Materials, Procedure & Statistic analysis 

Methods were identical to Experiment 2, except that five new sets of 20 object-location 

pairings were based on the normative data (Sets 3-7; see Appendix Table 7.2), each 

chosen to maximise the range of expectancy values (materials available here 

https://osf.io/4sw2t/ and https://github.com/JAQuent/schemaVR). 

Results  

An average of 2.12 (SD = 1.53) objects were reported as ‘not seen’ and excluded from 

further analysis.  

For recall (Figure 2.5E), the results showed anecdotal evidence against a linear term, BF10 

= 0.22, 𝛽 = 0.189 (95 % CI [-0.144, 0.522]), PB10 = 0.30, but very strong evidence for a 

quadratic term, BF10 = 1.33, 𝛽 = 1.15 (95 % CI [0.351, 1.945]), PB10 = 59.47. Like 

Experiment 1 and 2, the average expectancy for incorrectly-placed objects M = +37.39 

(SD = 15.69) was clearly higher than for correctly-placed objects M = +1.08 (SD = 14.18), 

BF10 = 663000, d = 1.7. 

For 3AFC (Figure 2.5F), there was very strong evidence for a linear term, BF10 = 0.88, 𝛽 

= 0.59 (95 % CI [0.233, 0.949]), PB10 = 41.82, but there also strong evidence for a 

quadratic term, BF10 = 2.32, 𝛽 = 1.137 (95 % CI [0.348, 1.928]), PB10 = 43.09. 

For recollection estimates from 3AFC under independence scoring (Figure 2.6C), there 

was moderate evidence against a linear term, BF10 = 0.26, 𝛽 = 0.026 (95 % CI [-0.311, 

0.36]), PB10 = 0.166, but more importantly, extreme evidence for a quadratic term, BF10 

= 5.74, 𝛽 = 1.475 (95 % CI [0.682, 2.27]), PB10 = 506.17. For familiarity (Figure 2.6D), 

there was anecdotal evidence against a linear, BF10 = 0.36, 𝛽 = -0.177 (95 % CI [-0.793, 

0.445]), PB10 = 0.22, as well as inconclusive evidence either way regarding the quadratic 

term, BF10 = 0.61, 𝛽 = 0.092 (95 % CI [-1.127, 1.335]), PB10 = 0.48.  

For recollection estimated under exclusivity, I found no linear effect, BF10 = 0.26, 𝛽 = 

0.027 (95 % CI [-0.393, 0.447]), PB10 = 0.205, and very strong evidence for a quadratic 

effect, BF10 = 5.74, 𝛽 = 1.442 (95 % CI [0.468, 2.428]), PB10 = 59.1. For familiarity 

scored under the redundancy assumption, there was no linear effect, BF10 = 0.34, 𝛽 = -

0.047 (95 % CI [-0.422, 0.327]), PB10 = 0.185, but moderate evidence for quadratic effect, 

https://osf.io/kcr2q
https://osf.io/4sw2t/
https://github.com/JAQuent/schemaVR
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BF10 = 1.55, 𝛽 = 1.009 (95 % CI [0.169, 1.854]), PB10 = 6.69, which can be traced back 

to the contribution of recollection.  

Discussion 

In general, Experiment 3a confirmed the U-shape function for both recall and recognition 

as a function of object-location expectancy, particularly when combined with 

Experiments 1 and 2, and confirmed that both ends of this U-shape were associated with 

recollection. However, the BF for a positive U-shape in 3AFC (regardless of 

recollection/familiarity) was not strong, BF10 = 2.32, which may reflect weaker effects 

for some of the new stimulus sets, and there was also continued evidence (when combined 

across all experiments) for an accompanying positive linear effect for 3AFC, which could 

swamp a true U-shape (see Figure 2.5F). Therefore I decided to collect more data with 

these stimulus sets, so as to allow a more stringent test of a U-shape: namely, interrupted 

regression that tests whether both ends of the U-shape are independently reliable (see 

later). These data were collected as part of the novelty experiment in Chapter 3. 

2.6 Experiment 3b 

Experiment 3b was identical to Experiment 3a, except that the participants had previously 

studied a list of unrelated words for the novelty experiment described in Chapter 3.  

Methods 

Participants 

 A total of 72 participants (50 females, 21 male and 1 non-binary, mean age 26.12 years, 

SD = 6.53 years) were tested, counterbalanced across the 5 stimulus sets. Note that the 

sets were not fully counterbalanced across participants (see later). Prior to this 

experiment, the participants had previously also made judgments about a list of 288 

words, as part of a separate Registered Report examining the effect of the subsequent iVR 

experience on incidental memory for those words (see Chapter 3). The words were not 

related to kitchens or the objects used in the iVR phase, and participants were told the 

words were not relevant to the iVR phase. This experiment was also pre-registered at OSF 

(https://osf.io/b9dqg).  

https://osf.io/b9dqg
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Results  

An average of 2.31 (SD = 1.65) objects were reported as ‘not seen’ and excluded from 

further analysis.  

For recall (Figure 2.5G), the results showed inconclusive evidence against a linear term, 

BF10 = 0.21, 𝛽 = -0.007 (95 % CI [-0.225, 0.208]), PB10 = 0.11, but extreme evidence for 

a quadratic term, BF10 = 8.27, 𝛽 = 0.991 (95 % CI [0.462, 1.522]), PB10 = 553.68. Like 

Experiment 1, 2 and 3a, the average expectancy for incorrectly-placed objects M = +23.44 

(SD = 22.33) was clearly higher than for correctly-placed objects M = -9.06 (SD = 25.32), 

BF10 = 1.46e+10, d = 1.09. 

For 3AFC (Figure 2.5H), there was inconclusive evidence for or against a linear term, 

BF10 = 0.24, 𝛽  = 0.177 (95 % CI [-0.067, 0.417]), PB10 = 0.42, but strong evidence 

remained for a quadratic term, BF10 = 0.8, 𝛽 = 0.8 (95 % CI [0.227, 1.37]), PB10 = 25.85. 

For recollection estimates from 3AFC under independent scoring (Figure 2.6E), there was 

extreme (additional) evidence for a linear term, BF10 = 1545.95, 𝛽 = -0.353 (95 % CI [-

0.568, -0.144]), which held even when combined with previous experiments, PB10 = 

23.12, but also, strong evidence for a quadratic term, BF10 = 0.8, 𝛽 = 0.949 (95 % CI 

[0.425, 1.473]), PB10 = 258.15. For familiarity under independent scoring (Figure 2.6F), 

there was anecdotal evidence against a linear, BF10 = 0.19, 𝛽 = -0.037 (95 % CI [-0.324, 

0.254]), PB10 = 0.20, an inconclusive evidence regarding the quadratic, BF10 = 0.51, 𝛽 = 

0.245 (95 % CI [-0.414, 0.906]), PB10 = 0.42, term. For recollection estimate under 

exclusivity, I found a strong linear effect, BF10 = 1550, 𝛽 = -0.361 (95 % CI [-0.641, -

0.085]), PB10 = 8.84, and moderate evidence for a quadratic effect, BF10 = 0.8, 𝛽 = 1.097 

(95 % CI [0.43, 1.762]), PB10 = 7.55. For familiarity scored under the redundancy 

assumption, there was inconclusive evidence regarding a linear effect, BF10 = 4.28, 𝛽 = -

0.25 (95 % CI [-0.497, -0.005]), PB10 = 1.52, but moderate evidence for quadratic effect, 

BF10 = 0.9, 𝛽 = 0.792 (95 % CI [0.214, 1.372]), PB10 = 3.68. 

The combined evidence across experiments (see PB) for a quadratic term in the absence 

of a linear effect is consistent with a U-shaped function. However, a stronger test is to 

check that both ends of a U-shape are reliable, by testing for opposite linear slopes; so-

called “interrupted regression” (e.g. Simonsohn, 2018). As pre-registered (see 

https://osf.io/b9dqg), I tested this by combining data across all experiments. To determine 

slopes of interrupted linear regressions, one must find a “breaking-point” (bp) somewhere 

https://osf.io/b9dqg
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along the continuum, at which the two slopes meet. This was done by fitting these two 

models: 

y ~ xlow + xhigh + high + set3 + (1 | participant number) + (1 | object number)  

where:  

 

For Slope 1: 

x = object/location expectancy that is transformed to  

xlow = x – bp if x <= bp and 0 otherwise,  

xhigh = x – bp if x > bp and 0 otherwise, and 

high = 1 if x > bp and 0 otherwise.  

 

For Slope 2:  

x = object/location expectancy that is transformed to 

xlow = x – bp if x < bp and 0 otherwise,  

xhigh = x – bp if x >= bp and 0 otherwise, and 

high = 1 if x >= bp and 0 otherwise. 

 

These models were applied to 10 equally-spaced breaking points within the middle 80% 

range of the expectancy ratings. Simulations showed that the false positive rate remained 

under 5% for testing these 10 breaking points for accepting a BF10 > 6 as evidence (see 

https://jaquent.github.io/post/finding-a-u-shape-with-bayesian-interrupted-regression/). 

For recall, the strongest effect was with a breakpoint of +0.06 (9.24 in original scale), 

where the estimated leftward slope (towards negative expectancy values) was 𝛽 = -0.78 

 

 

 

3 Note that I originally pre-registered to model experiment as well as set but this was mistake as Set 1 and 

Set 2 would be modelled twice. Now, set is modelled as a combination of set and experiment leading to a 

regressor that has 12 levels (Set 1, Set 2, Set 3 for Experiment 3a, …, Set 3 for Experiment 3b, …). 

https://jaquent.github.io/post/finding-a-u-shape-with-bayesian-interrupted-regression/
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(95 % CI [-1.30, -0.28]), BF10 = 54.89, and the rightward slope was 𝛽 = +0.69 (95 % CI 

[0.06, 1.34]), BF10 = 6.27. For 3AFC, the best breakpoint of -0.26 (-34.3 in original scale) 

had a leftward slope of 𝛽 = -0.84 (95 % CI [-1.77, 0.12]), BF10 = 3.93, and a rightward 

slope of 𝛽 = +0.50 (95 % CI [0.10, 0.92]), BF10 = 8.48. Note though that the leftward 

slope fell below the BF10 criterion that I set (BF10 > 6). For recollection estimates of 

3AFC, the best breakpoint of +0.22 (30 in original scale) had a leftward slope of 𝛽 = -

0.84 (95 % CI [-1.23, -0.45]), BF10 = 619.55, and rightward slope of 𝛽 = +1.22 (95 % CI 

[0.37, 2.10]), BF10 = 40.45. These results provide strong support for both sides of the U-

shape being reliable in recall and for recollection in particular. Full results, including for 

familiarity that did not show any indication of U-shape, can be found in Table 7.3 to Table 

7.6 in the Appendix. 

Effect of Stimulus Set 

Even though PB remained supportive for a U-shape in the critical 3AFC test, the BFs for 

Experiment 3a and 3b separately were weaker than in Experiment 2 (and to a lesser extent, 

than in Experiment 1). This raises the possibility that some sets of object-location pairings 

give stronger U-shapes than others. 

 

Figure 2.7: 3AFC accuracy as a function of set: Blue line represents the LOESS line 

to illustrate the ‘raw’ relationship between expectancy and 3AFC accuracy. The 

number in parenthesis represents the set number in the data.  

To test this, I combined data from all Experiments, treating Experiment 1 and Experiment 

2 as their own sets. Figure 2.7 suggests that there was variability between the sets with 

respect to whether they produce a U-shape. First I examined whether the distribution of 

expectancy values varied across the different sets. For this, I binned the expectancy values 
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into 8 bins and calculated the frequency of assignment for each bin. Then, I calculated 

the absolute difference for each bin from the average of all bins. This analysis revealed 

that set 4 (246), the set that seems to show an inverted U-shape, and set 5 (388), the set 

that eyeballing showed the strongest U-shape, have very similar values, suggesting that 

the stimulus sets do not differ much in their expectancy distribution. Second, I inspected 

each set with to check whether any particular idiosyncratic pairing of object/location (e.g. 

an unexpected or expected pairing that is difficult to see and therefore associated with 

low accuracy) might explain the differences; however I could find no obvious 

explanation.  

Finally, in order to formally investigate this question, I fitted three models using the 

pooled data from all experiments. The first model also allowed the factor “set” with seven 

levels as to interact with the linear and the quadratic component of expectancy; the second 

model included the factor set only as a fixed effect; the third model did not include the 

set factor at all. The function bayes_factor() was used to compare the different models, 

which all used zero-centred priors as previously described. These models were run with 

all measures (recall, 3AFC and recollection) that exhibited a U-shape in the previous 

iterations of the experiment. For those, the model including set was favoured over the 

model that also included interactions between set and expectancy (recall BF10 = 2290, 

3AFC BF10 = 15.2, recollection BF10 = 109). At the same time, the simplest model that 

did not include set at all was better still, for all measures (recall BF10 = 129, 3AFC BF10 

= 13.9, recollection BF10 = 229). Because there was no evidence that the stimulus set 

affected performance, particularly in interacting with expectancy (despite the numerical 

differences in Figure 2.6), I think I am justified in propagating evidence across 

experiments, as done in this chapter.  

Pooled vs Propagated Evidence 

To check that the propagation of Bayesian evidence was itself accurate, despite ignoring 

any posterior dependencies between parameter values, I checked that the BF from the 

pooled data was similar to the final PB after Experiment 3b. For recall, the pooled 

estimate of the linear effect (𝛽 = 0.07, 95 % CI [-0.13, 0.27]) had a BF10 = 0.12 which is 

comparable to PB10 = 0.35 reported for Experiment 3b above; while the pooled estimate 

of the quadratic effect (𝛽  = 0.957, 95 % CI [0.464, 1.452]) had a BF10 = 306, again 

comparable to the above PB10 = 554. For 3AFC, the pooled estimate of the linear effect 

(𝛽 = 0.182, 95 % CI [-0.035, 0.4]) had a BF10 = 0.415, comparable to the above PB10 = 

0.42, while the pooled estimate of the quadratic effect (𝛽 = 0.798, 95 % CI [0.278, 1.32]) 
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had a BF10 = 23.2, comparable to the above PB10 = 25.85. Finally, for recollection, the 

pooled estimate of the linear effect 𝛽 = -0.33, 95 % CI [-0.529, -0.132]) had a BF10 = 

18.4, comparable to the above PB10 = 23.1, while the pooled estimate of the quadratic 

effect (𝛽 = 0.95, 95 % CI [0.465, 1.439]) had a BF10 = 370, comparable to the above PB10 

= 258. Finally, I also confirmed that reversing the order of calculating PB, i.e. using 

posteriors from Experiment 3b as priors on Experiment 3a, etc, produced exactly the same 

final PB value, as expected. 

Discussion 

Experiment 3b generally confirmed the U-shape function for both recall and recognition 

as a function of object-location expectancy, particularly when combining evidence with 

Experiments 1, 2 and 3a, and confirmed that both ends of this U-shape were associated 

with recollection. This was apparent by strong evidence for a positive quadratic 

component, and in more strict interrupted regression analyses, which provided anecdotal 

to strong evidence that both sides of the U-shape showed a significant linear effect of 

opposite sign. The weakest evidence was a BF10 of 3.93 for the leftward slope for 3AFC, 

i.e., the unexpected side of the U-shape, which fell just below the criterion of at least BF 

= 5.66 that simulations4 showed controlled the false positive rate for the 10 break points 

tested. Nonetheless, the finding that there was evidence against a linear component to the 

overall fit (only evidence for a quadratic component) suggests that the dependency of 

3AFC on expectancy really is U-shaped. Interestingly, the overall fit for recollection did 

show evidence for a negative linear effect (in addition to a positive quadratic component), 

suggesting that, while the interrupted regression confirmed that both ends of the 

recollection dependency were reliable, there was an additional bias towards better 

recollection of unexpected locations. 

2.7 General Discussion 

I was able to confirm my first prediction that memory can be a U-shaped function of the 

expectancy of an occurrence, with better memory for highly expected or highly 

 

 

 

4 https://jaquent.github.io/post/finding-a-u-shape-with-bayesian-interrupted-regression/ 
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unexpected information. This prediction was derived from the SLIMM model that 

presumes that different brain systems underlie the two ends of the expectancy dimension, 

and reconciles many previous studies that have claimed superior memory for either 

expected (schema-congruent) information or unexpected (surprising) events: whether one 

finds one advantage or the other depends on the relative position of the two experimental 

conditions along the expectancy continuum. Only by exploring a continuous and extreme 

range of expectancy can one see the larger picture.  

The present finding replicates and extends the previous demonstration of a U-shape using 

three experimental conditions (Greve et al., 2019), and importantly demonstrates that the 

U-shape also occurs using rich, pre-experimental knowledge, rather than a simple rule 

learned during an experiment. Indeed, my use of iVR allowed me to test memory quickly 

(less than a minute of encoding) in a realistic situation, while simultaneously providing 

the precise experimental control needed to measure memory.  

The present results are at odds with another study that featured three ordinal conditions 

that differed in expectancy (van der Linden et al., 2017). In that study, participants viewed 

sequences containing four object images, where all four belonged to the same theme (i.e. 

expected condition), or did not follow a particular theme (i.e. baseline condition), or the 

first three objects followed a theme but the fourth object violated it (i.e. unexpected 

condition). No differences between conditions were found in an immediate item 

recognition task, but after 24 hours, recognition performance for the fourth object in the 

expected condition was better than in the other two conditions. Interestingly, this result is 

unlikely to be due to schema-congruent guessing, because lures that were from the same 

theme as the schema-congruent targets were not falsely recognised more often than lures 

that were not related to any theme that was used.  

This lack of any advantage for van der Linden et al.’s unexpected condition relative to 

their baseline condition is difficult to reconcile with my findings and with SLIMM. One 

possible reason could be that their unexpected condition was simply not potent enough. 

Another possibility relates to their recognition task, which might have been based more 

on familiarity than recollection (particularly perceptual familiarity, since perceptually-

similar lures did show increased false alarms). The “local PE” of PIMMS predicts that 

PE increases associations between the predictor (preceding three objects) and the 

(un)predicted object, but not necessarily memory for the object itself (so would predict 

an advantage in unexpected condition relative to baseline if associative memory were 

tested instead, e.g., “what stimulus came after this one?”). Any transient changes between 
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PIMMS’s item and feature levels (which underlie familiarity) would not necessarily differ 

across conditions. The “global PE” of SLIMM, on the other hand, would predict that the 

surprising object in the unexpected condition triggers an episodic snapshot, which should 

improve recollection of that object (by associating it with co-occurring context), but it is 

still possible that recognition was dominated by familiarity, so such improved recollection 

played little role. This “item recognition” contrasts with my 3AFC task, which explicitly 

tested the association between an object and its location in the kitchen (see Chapter 5 for 

further discussion).  

My results may reconcile those from previous studies that have examined memory for 

objects within familiar types of rooms. In their seminal work, Brewer and Treyens (1981) 

reported that memory was positively correlated with schema expectancy. However, the 

opposite effect, where atypical objects in a room were remembered better, has also been 

reported (Lampinen et al., 2000, 2001; Pezdek et al., 1989; Prull, 2015). The discrepancy 

between these studies most likely reflects two factors: 1) with only restricted range of 

expectancy, the relative level of memory depends on the position of those points on the 

U-shaped continuum (as noted above), and 2) the precise type of memory assessed. Both 

of these issues apply, for example, to the study of Lew and Howe (2017), which is most 

similar to the present study, except that it used realistic photos of familiar room-types5. 

Like here, the photos showed room-congruent objects at expected and unexpected 

locations, as well as room-incongruent objects. At test, objects either stayed in same 

location or shifted to a different location. Recognition of objects was better for room-

incongruent objects as well as room-congruent objects at unexpected locations, relative 

to room-congruent objects at expected locations. However, as noted above, their 

 

 

 

5 The only previous study to investigate memory for objects using iVR, of which I am aware, was by 

Draschkow & Võ (2017). These authors examined how room schemas influence interactions with, and 

memory for, objects. Participants were asked to either arrange objects in a virtual room in a manner that 

was consistent or inconsistent with their expected arrangement. Participants spent more time handling and 

searching for inconsistently arranged objects, and consistently arranged objects were recalled more 

accurately than inconsistently arranged objects (possibly reflecting the guessing bias described above). 

While this study is a clever illustration of the use of iVR to study the effects of schema, it did not explicitly 

examine the continuous relationship between expectancy and memory. 
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recognition test was likely also influenced by memory for the object themselves, whether 

or not their location was switched (whereas here, I ignored the rare trials when an object 

was not recognised at all, and my “recognition” refers to recognition of the object’s 

location). Indeed, when Lew and Howe (2017) tested memory by recall instead, memory 

for room-congruent objects at unexpected locations was impaired relative to room-

congruent objects at expected locations. The authors explained this in terms of schemas 

acting differently on item and associative (location) memory, whereby an unexpected 

location attracts attention, but also activates schema-congruent bindings that interfere 

with memory (see also Bower et al., 1979). However, an alternative explanation for their 

dissociation between recognition and recall is that their recall test, but not recognition 

test, was influenced by guessing of room-congruent locations when memory failed 

(Bayen et al., 2000; Kleider et al., 2008; Konopka & Benjamin, 2009; Kuhlmann et al., 

2012). This is indeed what I found when examining errors in my recall test. By controlling 

for this guessing bias in my 3AFC, through matching the expectancy of the foils, I was 

able to reveal an additional advantage of memory for unexpected locations. Thus, it 

appears critical to not only explore a range of expectancy values, but also control for other 

ways in which schema can influence memory performance, such as at retrieval as well as 

encoding. 

With regard to the second prediction derived from SLIMM, namely that one side of the 

U-shape (high unexpectancy) would be associated with recollection of contextual details, 

while the other side (high expectancy) would be associated only with a feeling of 

familiarity (see also Kafkas & Montaldi, 2018), my evidence does not support this 

prediction. Indeed, my Bayesian analysis provided evidence against any substantial effect 

of expectancy for familiarity, and evidence instead for a U-shaped function of 

recollection. One possibility is that the SLIMM conception of the relationship between 

expectancy/schema-congruency and recollection versus familiarity is incorrect. Another 

possibility is that my assessment of memory for the location of objects (rather than the 

objects themselves; see above) inherently requires the same associative mechanisms that 

support recollection (and which are assumed to be supported by the hippocampus/MTL 

system). One way to test the latter would be to examine memory for the objects 

themselves (such as their perceptual details), rather than their location, and see if such 

“item memory” is associated with recollection when the object was highly unexpected, 

but familiarity when the object was highly expected. However, an additional possibility 

is that the U-shape arose because I tried to measure recollection and familiarity for a 



Chapter 2: The expected case 

Jörn Alexander Quent - November 2021   53 

relatively unorthodox scenario (object-location memory) and that participants merely 

conflated recollection with high confidence responses.  

My study raises interesting future questions, though also possible limitations. One 

interesting question is whether the U-shape applies to all types of expectancy, or only 

predictions deriving from pre-existing knowledge, i.e. schema. For example, would the 

same U-shape emerge for events that are expected or unexpected given an episodic 

context, such as a temporal sequence of items that enable a prediction for the next item 

(e.g. Kumaran & Maguire, 2006, 2007, 2009). In this context, it is important to 

differentiate the two dimensions of novelty (never seen – completely familiar) and of 

expectedness (unexpected – expected). These dimensions intersect in a non-orthogonal 

pattern, which implies that they are also not parallel or identical. For instance, given a 

certain context a familiar object can be unexpected and furthermore something can be 

rare but still experienced before hence generally familiar. Based on this distinction,  I 

expect a U-shape only for the dimension of expectedness and even then merely if 

schematic knowledge is strong enough so it can help encoding. Based on this, I 

hypothesise one could observe a U-shape for a match vs. non-match paradigm with three 

conditions (order violation, random sequence and no order violation) provided that the 

sequences are studied well. This idea is lines well with the finding that the hippocampus 

is especially sensitive to mismatch (e.g. Kumaran & Maguire, 2006, 2007, 2009). 

However, while others have shown a U-shape for verbal rules (Greve et al., 2019), the 

same may not apply to other stimuli and other types of memory test. A second limitation 

of the present study is that I only tested immediate memory, and it is possible that the U-

shape changes as the retention interval increases, e.g., following consolidation processes 

that might occur overnight. Either way, my results demonstrate the important role of prior 

knowledge in shaping the encoding of new memories, and unify two factors (schema-

congruency versus surprise) that have previously tended to be studied separately. 
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3 EFFECT OF NOVELTY 

3.1 Introduction 

In Chapter 1, I discussed how BTT describes the phenomenon that experiencing 

something novel can boost memory for surrounding information, and how this 

phenomenon is not explained by PIMMS. One of the BTT’s claims, derived mainly from 

animal data, is that only initially weak memories benefit from this “novelty boost”. 

Furthermore, another hypothesis is that, at least for spatial novelty, hippocampus-

dependent memory should benefit the most, which might translate to enhanced 

recollection, though could in principle also lead to increased familiarity if we assume that 

familiarity typically represents weaker memory. In this chapter, I test hypotheses in 

humans.  

To do this, I attempted to demonstrate a retroactive effect of a novel spatial navigation 

experience on memory for unrelated words, as a function of the encoding task (deep vs. 

shallow) and retrieval quality (recognition with remember vs. know judgments, plus 

recall). For that, one half of the words were encoded deeply using an animate/inanimate 

task (like in Fenker et al., 2008), while the other half were encoded shallowly using an 

orthographic task, which results in worse memory, i.e. weaker encoding (Craik & 

Lockhart, 1972; Otten et al., 2001; Yonelinas, 2002). Encoding was incidental, i.e. I did 

not tell participants that their memory for the words would be tested later. Like 

Schomaker et al (2014), I also used VR, but in particular an immersive VR system in 

which participants can physically walk around a virtual room (rather than navigating with 

a controller, as in Schomaker et al., 2014). Due to the current rarity of immersive VR 

systems (compared to video games or even passive VR), I expect this to be a highly novel 

experience (and I excluded people who have experienced immersive VR before). Indeed, 

in my prior work with immersive VR (see Chapter 2), most participants were amazed by 

their experience. Immersive VR also renders the novel experience more similar to the 

open-field, spatial exploration used to induce novelty in non-human animals. To isolate 

the novelty of the experience from the sensory, motor and executive demands of the VR 

task, the control group had experienced the same VR task the day before, so it was no 
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longer novel. In summary, according to BTT, I expected to find: 1) a basic novelty effect 

(better memory for the preceding words in the novel group vs control group), 2) a greater 

novelty effect for shallowly than deeply encoded words, and 3) a novelty effect that is 

either larger or smaller for recollected words (Remember judgments) relative to words 

judged as familiar (Know judgments), depending on whether any boost is restricted to 

hippocampal-dependent memory, or whether any boost is restricted to weaker forms of 

memory. 

3.2 Methods 

Participants 

All participants were recruited from MRC Cognition and Brain Sciences’ SONA system, 

in-house participant panel or word-to-mouth. This study was approved by the Cambridge 

Psychology Research Ethics committee (PRE.2018.107). Data collection was stopped 

after data from 72 participants led to BF10 > 6 or < 1/6 for one of my planned comparisons 

(see Results), as registered. Participants were paid £6/h and received up to £3 for travel 

compensation per visit. Full payment was only made after successful completion of Day 

3. Note these were the same participants used in Experiment 3b of Chapter 2. 

Data collection had to be paused due to the COVID-19 pandemic. Approximately half of 

the participants completed the task before the pandemic and the rest after. The group ratio 

(novelty vs. control) at the beginning of the pandemic was circa 2.2 to 1 (and therefore 

reversed for participants tested after the COVID lock-down).   

82 participants were tested in total. Ten were excluded for the following reasons: three 

participants did not complete the recognition task the next day, two had technical failures, 

two datasets were invalid due to experimenter error, one felt unwell after Day 1, one had 

prior VR experience (a registered exclusion criterion) and one participant’s Pr was at 
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chance level, as defined by the bootstrapping procedure.6 A further four participants were 

included, except for tests for which they had missing data: one had missing recall data 

and the other missed the VR questionnaire. Furthermore, two participants did not use the 

correct keys so their data had to be excluded from the analysis of the encoding task. 

The final sample size of 72 participants contained 53 females, 18 males, 1 non-binary, 

with mean age M = 26.3 years (SD = 6.25 years). Participants in the Novelty group 

completed the online recognition task M = 25.5 hours (SD = 2.38 hours) after encoding, 

while the Control group completed the task after M = 25.1 hours (SD = 2.17 hours). 

Procedure 

In terms of which stimuli (see below) and the procedure I closely followed a previous 

paper by Otten et al. (2001), ensuring that memory performance was in the correct 

ballpark. The experiment ran over 3 days (see Figure 3.1), with Days 1-2 in the laboratory 

and Day 3 at home. On the critical Day 2, the experimental procedure can be divided into 

three phases: study, iVR and test phase. In the study phase, participants incidentally 

encoded words. The words were presented in four blocks, with one of the two study tasks 

(see below) in each block (counterbalanced across participants as ABBA or BAAB). Then 

they performed the iVR task (details below). The only difference between the Novelty 

and the Control group is that the Control group had already completed the iVR task the 

day before, but both completed a memory task in iVR. Finally, they freely recalled as 

many of the words as possible and completed a short questionnaire about the iVR 

experience. On the final Day 3, participants performed a recognition task with 

remember/know/new judgments to distinguish studied versus new (unstudied) words. I 

decided to test recall only on Day 2 and recognition memory only on Day 3 to minimise 

retrieval-induced enhancement or forgetting (M. C. Anderson et al., 1994).  

 

 

 

6 Note that I originally planned to remove participants with boot-strapped chance performance on the MPT 

parameters r and f. However some participants did not use both response options often enough to establish 

chance levels, so for the purpose of participant exclusion, I switched to the simpler Pr measure, collapsed 

across response options.  
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Figure 3.1: Task design: Panel A Illustration of experimental design: On day 1, the 

Control group was familiarised with the immersive virtual reality (iVR) task (see 

Panel B). Day 2 is the same for both the Novelty and the Control group. It started 

with the deep/shallow encoding task (see Panel C), immediately followed by the iVR 

task. This task was novel to the Novelty group but familiar to the Control group. 

The iVR task was followed by immediate recall for 5 min and the “Igroup” presence 

questionnaire (Schubert, Friedmann, & Regenbrecht, 2001). On day 3, participants 

were asked to complete the memory task online during which they completed a 

remember/know/new recognition task (see Panel D). Panel B Screenshot of virtual 

kitchen of the iVR task with objects present as seen by the participants. Panel C 

Illustration of encoding task. A trial of the encoding task started with the 

presentation of a fixation cross (500 msec) followed by the presentation of a word 

(300 msec) along with reminder of current task: either deep (inanimate/animate) or 

(non-alphabetical/alphabetical). Participants had 4.5 sec to respond. This task had 

4 blocks following an ABBA design, with A/B referring to the task. The task and 

stimuli were taken from Otten et al. (2001). Panel D Illustration of recognition 

memory task. A trial of recognition task started with a fixation cross (500 msec) 

followed by the presentation of the word (1000 msec) alongside a task reminder 

(remember/familiar/new) that stayed on screen until a response of given. 

During the study phase, a trial started with a fixation cross displayed for 500 msec 

followed by the presentation of a word for 300 msec alongside a reminder of the current 

task (alphabetical vs animate). The tasks were based on Otten et al. (2001): In the 

alphabetical (shallow) tasks, participants decided whether or not the first and the last letter 

of a word are in alphabetical order, while in the animate (deep) task, they decided whether 
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or not the presented word refers to an animate object. Participants were instructed to use 

one finger from each hand to press one key for non-alphabetical/inanimate words and 

another for alphabetical/animate words. The reminder remained on the screen for 4.5 sec 

comparable to Otten et al, after which the next trial started. A failure to respond in that 

time frame led the trial being scored as no response. The encoding task was divided into 

four blocks of 72 words, with each block having one of the two tasks. The order of words 

within a block was randomised once and then was the same for every participant. 

Participants were not be told that their memory for the words were later be tested; rather, 

they were told that their ratings of the words would simply help prepare the stimuli for 

another experiment on different participants.  

After the study phase, participants of both groups (Novelty and Control group) 

immediately spent approximately 25 minutes in the iVR task from Chapter 2 Experiment 

3b. Assignment of participants to groups alternated according to availability. The iVR 

task consisted of an encoding phase, in which participants have 45 sec to explore a virtual 

kitchen and memorise the locations of 20 everyday items (e.g. microwave, helmet etc.; 

see Figure 3.1B). After this, participants were taught how to pick up objects in this VE 

and then asked to pick up and place each of the twenty objects that they had seen earlier 

at the locations that they had to remember. After completing this, participants removed 

the VR headset and completed a 3AFC recognition memory task, in which participants 

had to choose the correct object location out of three alternatives, and a rating task, in 

which participants rated how expected the locations and objects were. More information 

on the nature of the iVR task can be found in Open Science Framework pre-registration 

form: https://osf.io/4sw2t/. The visuospatial nature of the iVR task (i.e. remembering 

object locations) was sufficiently different from memorising single words that we did not 

expect interference between the tasks (Wixted, 2004).  

After the iVR task, participants were asked to recall as many words as they can 

(immediate recall) for 5 minutes. Participants were asked to write down the words that 

they remember on a piece of paper. After this, participants completed the Igroup Presence 

Questionnaire (IPQ; Schubert et al., 2001) to assess involvement, presence and realism 

of the iVR experience (http://www.igroup.org/pq/ipq/items.php). In a computerised 

adaptation of this questionnaire, participants gave their ratings on a slider scale using the 

original questions and anchors.  

The next day, participants were asked to complete a recognition memory task similar to 

the one used by Fenker et al. (2008), in which the participants were presented with the 

https://osf.io/4sw2t/
http://www.igroup.org/pq/ipq/items.php
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words they studied previously, intermixed randomly with 144 non-studied words. A trial 

in this task started with a fixation cross displayed for 500 msec followed by the 

presentation of the word for 1000 msec. Participants were instructed to press the ‘n’ key 

if they think the word was new, the ‘f’ key if the word was familiar and the ‘r’ key if they 

remembered the word. Note that I preferred to use the word “familiar” when instructing 

participants because they typically found it easier to understand than the word “know”. 

The exact instructions were based on those used by Bastin et al. (2010), though 

conceptually my results were comparable to previous studies using Tulving’s original 

“know” instruction, which is why I continued to use the words Remember and Know in 

analyses below. At the end of the online session, participants were completely debriefed 

and compensated. 

Stimuli 

The same number of words (144 per task, i.e. 288 total) were used in the study phase as 

in Otten et al (2001), though only half of the number of unstudied words (144) were used 

in the test phase, since unstudied words were not of primary interest here. Thus a subset 

of 432 words from Otten et al (2001), balanced according to study response category 

(animate/inanimate and alphabetical/non-alphabetical), had been split into 3 sets of 144 

words and the assignment of words to the two study conditions and the unstudied 

condition were counterbalanced across participants (6 different combinations in total). 

The lists had been selected so as not to differ in terms of the characteristics available in 

the MRC Psycholinguistic Database (see here for selection and list creation process; for 

words see Wilson, 1988).  

For the iVR task, the following stimuli will be used: the virtual kitchen has been created 

using SketchUp (https://www.sketchup.com/), unity3d (https://unity3d.com/) and freely 

available 3D models downloaded from https://archive3d.net. In addition to typical kitchen 

furniture such chairs and a table, this kitchen contains 20 everyday objects such a hat, a 

calendar and a toy (for an illustration of the virtual environment see Figure 3.1B).  

Equipment 

At the beginning, the VE was presented with an HTC VIVE VR system and run on MSI 

VR ONE 7RE-057UK computer with Intel Core i7-7820HK, 16GB RAM and GeForce 

GTX 1070, which can be worn as backpack allowing free movement. Due to equipment 

failure I had to replace the VR computer and started to use a Dell Desktop PC (Precision 

https://github.com/JAQuent/noveltyVR/blob/master/preparation/selectingCheckingWords.md
https://www.sketchup.com/
https://unity3d.com/
https://archive3d.net/
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5820 Tower X-Series) with Intel Core i9-10900 and GeForce RTX 2080 midway through 

data collection. To allow free movement, I used the VIVE Wireless Adapter.  

Other laboratory tasks were completed on a Dell Latitude E6530 laptop. For these tasks, 

stimuli were presented with Matlab (https://www.mathworks.com) using the 

Psychophysics Toolbox extensions (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). The 

online tasks were run on a JATOS (Lange et al., 2015) server hosted on the MRC-CBU 

servers, which were compliant with data protection and security policies. That task was 

programmed in Javascript with jsPsych (de Leeuw, 2015).  

Statistical design and hypotheses 

To address the hypotheses outlined in the Introduction, I ran Bayesian t-tests (Morey & 

Rouder, 2018) using the package BayesFactor (version 0.9.12-4.2) for both recall and 

recognition tasks, with factors novelty (Novelty vs Control group, between-participants), 

encoding task (shallow vs deep, within-participant) and, for the recognition task, memory 

quality (probability of recollection vs familiarity, within-participants). The hypotheses 

were tested using BFs, for the alternative versus the point-null hypothesis, calculated for 

t-tests using the default scale parameter of √2/2. I used between-participant t-tests to test 

for the presence of main effects and interactions, given my directional predictions (note 

that, in factorial designs, within-participant factors with only two levels can be reduced 

to difference scores, enabling all interactions in the present design to be reduced to t-tests 

between the two groups on these difference scores; likewise, main effects can be reduced 

to t-tests between the two levels of one factor by aggregating across the other factors). 

Using t-tests for planned comparisons, instead of more the traditional ANOVA approach, 

enables me to accurately express my statistical hypotheses that are directed in some cases. 

Specifically, I predicted a main effect of novelty in recall (Hypothesis 1.1) and 

recognition memory (Hypothesis 1.2), with better memory in the Novelty group; an 

interaction between novelty and encoding task in recall (Hypothesis 2.1) and recognition 

(Hypothesis 2.2), with a larger novelty effect predicted for words that are shallowly 

encoded; an interaction between novelty and memory quality in recognition memory (3), 

with different probabilities of recollection and familiarity in the novelty versus control 

group; and the three-way interaction between novelty, encoding task and memory quality 

in recognition memory (4), with different probabilities of recollection and familiarity 

restricted to the shallowly encoded words in the novelty group. Note that the first two 

planned comparisons are one-tailed, while the last two are two-tailed. The directional 

https://www.mathworks.com/
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predictions are explained in the Introduction, and I argue that directional hypotheses were 

justified because, according to BTT, null effects would be equivalent to negative effects 

and would lead to the same conclusions. In other words, that novelty could impair 

memory is not interesting theoretically to me other than that it will provide evidence 

against the BTT. This is not necessarily true for the two last comparisons because, as 

explained in the Introduction, different boundary conditions of BTT predict that novelty 

either boosts familiarity or boosts recollection. 

For the recall data, the dependent variable was the number of studied words recalled. For 

the recognition memory data, I used a multinomial processing tree (MPT) model that is 

analogous to the “Source-Item” model in Cooper, Greve and Henson (2017), which 

assumes two underlying processes contributing to memory: the probability of recollection 

(r) and the probability of familiarity (f) (see Figure 3.2). In this model, recollection and 

familiarity are discrete states and recollection is always accompanied by familiarity. 

Additional parameters that are estimated but not subject to statistical test in my model are 

gr and gk, which are the probabilities that a guessing response leads to a Remember and 

Know response, respectively. Estimating these parameters effectively adjusts the 

estimates of recollection and familiarity by their false alarm rates. The MPT will be fit 

using the “MPTinR” package (version 1.11.0; Singmann & Kellen, 2013). For statistical 

analysis of the resulting parameters, probabilities were submitted to an arcsine 

transformation so that their values approximately follow a normal distribution and are not 

bound between 0 and 1. Note that I neglected to mention in my registration of this 

experiment the following: For comparisons that do not distinguish between recollection 

and familiarity I used Pr (hit – false alarm rate) instead of averaging recollection and 

familiarity. 

In terms of choosing participant numbers, I ran a “fixed N” Bayesian analysis 

(Schönbrodt & Wagenmakers, 2018) for the hypotheses above. I based my sample size 

estimation on simulating a general linear model (GLM) with effect sizes similar to those 

reported in previous studies for a main effect of novelty. Based on the reported statistics, 

I calculated Cohen’s d for four effects that in the literature. For Fenker et al. (2008) the 

effect size is d = 0.588 for immediate remember, d = 0.943 immediate recall and d = 0.894 

for delayed remember. For Schomaker et al. (2014), the effect size for immediate recall 

is d = 0.873. My simulations based on the median (d = 0.884) showed that 36 participants 

per group is sufficient to provide compelling evidence (BF10 > 6) for one-tailed 

comparisons (1 and 2) with a probability of approximately 91%, and for two-tailed 
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comparisons (3 and 4) with a probability of approximately 83%. At the same time, I would 

be able to provide compelling evidence (BF10 < 1/6) for the null hypothesis for the 

absence of an effect in 30% of the cases for one-tailed comparisons, while the probability 

of obtaining compelling misleading evidence would be extremely low for all comparisons 

ranging between 0 and 0.09% (see here for whole design analysis).  

 

3.3 Results 

Note in the text I report accuracy rates and probability estimates, while the statistical tests 

and effect size estimates are based on arcsine transformed values, where necessary. 

Encoding task 

There was no compelling evidence that accuracy in the animacy condition, M = 0.884 

(SD = 0.0864), was different from accuracy in the alphabetical condition, M = 0.897 (SD 

= 0.101), 𝐵𝐹01 = 2.51, d = 0.183. 

Figure 3.2: Illustration of multinomial processing tree (MPT): The model illustrated 

assumes two underlying processes contributing to memory. The tree at the top captures 

responses to studied words, while the tree at the bottom captures responses to new 

(unstudied) words. Possible responses in the remember/know/new task are R, K and N, 

respectively. In response to studied words, R and K are categorised as hits, while N 

responses are misses. In response to new words, R and K are categorised as false alarms 

(FA) and N as correct rejections (CR). Estimated MPT parameters are: r = probability of 

recollection, f = probability of familiarity, gr = probability of a guessing responses that 

leads to an R response, gk = probability of a guessing responses that leads to a K response. 

https://github.com/JAQuent/noveltyVR/blob/master/preparation/powerAnalysis.md
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However, as expected, responses were faster in the animacy condition, M = 1000 msec 

(SD = 227 msec), compared to the alphabetical condition, M = 1540 msec (SD = 351 

msec), 𝐵𝐹10 = 2.51e+21, d = 1.88 (therefore any better retrieval in the animacy condition 

is unlikely to simply reflect a longer time spent studying).  

Memory tasks 

Despite not explicitly registering in Stage 1, I first report the “levels of processing” effect 

in order to confirm that this manipulation had the desired effect of producing greater 

memory for deeply- than shallowly-encoded words. For the immediate recall, participants 

recalled more words in the animacy condition, M = 15.4 (SD = 6.38), than in the 

alphabetical condition, M = 2.77 (SD = 2.85), 𝐵𝐹10 = 8.05e+27, d = 1.91. Thus my level 

of processing manipulation had the intended effect. Full results for recall and recognition 

task can be found in Figure 3.3.  
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Figure 3.3: Main results for recall and recognition: Panel A Number of words 

recalled as a function of the encoding task alphabetical/non-alphabetical and 

animate/inanimate for the Novelty group (brown) and the Control group (blue). 

Panel B Arcsine transformed probability estimates from the MTP analysis of the 

recognition task. Estimates for familiarity (left) and recollection (right) are 

displayed as function of encoding task for the Novelty and the Control group. 

Boxplots with triangles illustrating the mean.  

For registered Hypothesis 1.1 (Figure 3.4A), the immediate recall tests provided evidence 

that participants in the Novelty group, M = 16.8 (SD = 7.02) did not recall more words 

than participants in the Control group, M = 19.4 (SD = 7.59), i.e., moderate evidence for 

the null hypothesis, 𝐵𝐹01 = 9.2, d = 0.35. Based on this I stopped data collection. In a 

two-tailed version of this test (not registered), evidence that the Control group actually 



Chapter 3: Effect of novelty 

Jörn Alexander Quent - November 2021   65 

recalled more words than the Novelty group was inconclusive, 𝐵𝐹10 = 0.618, despite the 

difference in means.  

For Hypothesis 1.2 (Figure 3.4B), an overall measure of Pr for the delayed recognition 

memory test provided moderate evidence that the Novelty group, M = 0.196 (SD = 0.091), 

did not have better memory than the Control group, M = 0.22 (SD = 0.106), 𝐵𝐹01 = 7.46, 

d = 0.25. 

 

 

Figure 3.4: Group difference plots: Boxplots for each hypothesis showing the values 

or difference scores that are compared with the Bayesian t-tests with triangles 

illustrating the mean. The novelty group is displayed in brown and the control group 

in blue. The y-axes for Panel E and F are short for transformed estimated 

probability.  
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For Hypothesis 2, I found inconclusive evidence that the levels of processing effect for 

immediate recall differed between the Novelty group, M = 11.4 (SD = 7.71), and Control 

group, M = 13.7 (SD = 5.1), 𝐵𝐹10 = 1.17, d = 0.356 (Hypothesis 2.1; Figure 3.4C), as that 

it differed for delayed recognition between the Novelty group, M = 0.162 (SD = 0.108), 

and the Control group, M = 0.205 (SD = 0.125), 𝐵𝐹10 = 1.29, d = 0.371 (Hypothesis 2.2; 

Figure 3.4D). 

For Hypothesis 3 (Figure 3.4E), I found inconclusive evidence (two-tailed) of a difference 

in recollection versus familiarity during delayed recognition (i.e., difference in the “r” 

and “f” parameters from the MPT, collapsed across two encoding conditions) between 

the Novelty group, M = -0.0509 (SD = 0.152), and Control group, M = -0.024 (SD = 

0.164), 𝐵𝐹10 = 0.385, d = 0.244. 

To test for the interaction of Hypothesis 4 (Figure 3.4F), I first calculated the difference 

between the two encoding conditions (deep versus shallow) for each MPT parameter (r 

versus f), then subtracted these difference scores and compared them across groups. 

Again, there was inconclusive evidence for any difference between the Novelty group, M 

= -0.0162 (SD = 0.195), and the Control group, M = -0.0715 (SD = 0.186), 𝐵𝐹10 = 0.486, 

d = 0.3. Table 3.1 shows a summary of BF for each Hypothesis. 

 

Table 3.1: A summary of the results of the six registered hypotheses. 

Hypothesis Description BF10 BF01 

1.1 Main effect of novelty in immediate recall 0.109 9.200 

1.2 Main effect of novelty in delayed recognition  0.134 7.460 

2.1 Interaction between novelty and encoding task in recall 1.170 0.855 

2.2 Interaction between novelty and encoding task in 

recognition 

1.290 0.774 

3 Interaction between novelty and memory quality in 

recognition  

0.385 2.600 

4 Three-way interaction between novelty, encoding task 

and memory quality in recognition  

0.486 2.060 
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Post VR questionnaire 

As an additional non-registered analysis, I examined the data from the post VR 

questionnaire that I collected. For this, the data was rescaled to vary from 0 to 6, as in the 

original scale (Schubert et al., 2001), with inverse items reversed7. The IPQ score was 

then calculated by summing across all items (similar to Schomaker et al., 2014, as 

confirmed by personal communication). This analysis showed that the Novelty group, M 

= 51.8 (SD = 10.9), did not differ from the Control group, M = 52 (SD = 10.1), d = 0.0238, 

BF10 = 0.246 (Figure 3.5A). In addition, I asked participants to rate the statements: “This 

experience was novel”, “This experience was exciting” and “This experience was 

uncomfortable”. However group differences did not arise for any of these statements: 

most surprisingly for Statement 1, concerning subjective rating of novelty, there was 

anecdotal evidence against the Novelty group, M = 5.28 (SD = 0.957), finding the iVR 

experience more novel than the Control group, M = 5.18 (SD = 1.34), d = 0.049, BF10 = 

0.249 (Figure 3.5B). Note to deal with the negative skew for Statement 1, data were scaled 

to be from 0 to 1 and then transformed with arcsine transformation for the analysis only.  

 

 

 

 

7 http://www.igroup.org/pq/ipq/data.php 
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3.4 Discussion 

This study found no evidence that a novel experience can retroactively enhance memory 

for material that had been learned prior to that experience. For the novel experience, I 

used people’s first experience of an iVR environment (compared to other people’s second 

experience); for the material to be remembered, I used a list of unrelated words, which 

were studied under incidental tasks of either animate/inanimate judgment (deep encoding) 

or alphabetical judgment (shallow encoding). BFs showed moderate evidence that 

memory was not enhanced for same-day recall of the words (immediately after the iVR 

experience), and moderate evidence for no effect on recognition memory tested the next 

day. I also found no evidence (either way) for my additional hypotheses that any novelty-

Figure 3.5: Boxplots for questionnaire data, with triangles showing the 

mean. The novelty group is displayed in brown and the control group 

in blue.  
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related boost would be greater for shallowly- than deeply-encoded words, and would 

differ for words later recollected versus familiar in the delayed recognition test.  

The lack of any effects is surprising because previous studies did find that experiencing 

a novel VE versus a familiar one can boost memory for words learned after the VE 

experience (Schomaker et al., 2014, 2021). One reason could be that this type of novelty 

only has proactive effects on memory for this type of material, and no retroactive effects. 

However, this is contrary to animal studies that tend to find both proactive and retroactive 

effects (but with different memory tasks; see Section 3.1 of Chapter 1) and the BTT 

derived from these animal data. 

Another possibility is that my comparison of first versus second experience of iVR did 

not differ sufficiently in terms of novelty. This might explain why there was no evidence 

for a difference between my two groups in their mean rating of novelty (or any other 

aspect of their experience) in my post-experiment questionnaire, though the lack of 

difference in subjective ratings of novelty could be obscured by a ceiling effect. I chose 

this comparison of first versus second experience of a VE because it was tightly 

controlled, compared for example to comparing an iVR experience to a more familiar, 

non-iVR experience, which could differ in ways other than novelty, and because a similar 

comparison was used by Schomaker et al. (2014; 2021). In fact, Schomaker et al. 

compared a novel VE with a familiar VE, for participants who were generally familiar 

with the technology, which if anything would seem a less extreme contrast in novelty 

than my comparison of participants’ first ever experience of iVR: i.e. my groups differed 

in their familiarity for both the VE (my virtual kitchen) and the iVR technology (since I 

excluded participants with previous iVR experience).  The claim that my comparison was 

not novel enough also seems to conflict with previous human studies that have simply 

used familiar versus novel static images on a computer screen (e.g., Fenker et al., 2008).  

The lack of a difference between groups in the score given on my post-experiment novelty 

question could also have other reasons. Foremost, participants in the two groups may 

have used different references for their novelty rating (despite experiencing different 

levels of absolute novelty), e.g., participants in the Control group might have rated the 

novelty of their second iVR experience relative to other experiences that day (Day 2), 

rather than explicitly refer back to their first iVR experience on the previous day (Day 1); 

or they may have misunderstood the question, and rated their novelty for the overall 

experiment over the two days. It is also worth noting that most previous studies did not 

report subjective experiences of novelty for their manipulations. Schomaker et al (2014) 
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used the Igroup IPQ questionnaire (Schubert et al., 2001), which is commonly used to 

measure presence, involvement and realism in VR experiments but not novelty per se. 

While presence ratings were higher in Schomaker et al (2014) after being in a novel versus 

a familiar VE, no difference as a function of novelty was found in Schomaker et al. (2021) 

like here.  

Another possible reason for the lack of a novelty-boost on memory is that the boost was 

masked by the fact that there were differences between the Novelty and the Control group 

in terms of the difficulty of the task both groups completed between word learning and 

the memory test (i.e., count the number of objects in the kitchen, and then replace objects 

at their previous location, as part of the experiment in Chapter 2). It has been claimed that 

demanding activities can impair consolidation of memories (Dewar et al., 2007; Wixted, 

2004). Indeed, my task was likely to be easier the second time it was performed (in the 

Control group), which might have resulted in less impairment of consolidation than in the 

Novelty group, counter-acting any advantage of novelty. While this is possible, I note that 

in most situations, including in real-life, novelty is generally associated with greater 

cognitive demands (to process the novelty), so this potential confound would appear to 

apply previous demonstrations too (such as novel lessons in children’s schooling, 

Ballarini et al., 2013; Ramirez Butavand et al., 2020).  

While I could not provide evidence for behavioural tagging with my experiment, there is 

still considerable evidence that, in some situations, effects of a novel or surprising 

experience can affect memory for unrelated preceding or succeeding information, 

highlighting an important limitation of PIMMS. Memory encoding is therefore not just 

driven by PE, but also by processes that happen around it, and to understand this, 

neurobiological and computational accounts must be fused (see Chapter 5).  
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4 SETTING BOUNDARIES 

4.1 Introduction 

Besides boosting memory, surprise also plays an important role in parsing and 

segmenting our continuous experience. As discussed in Chapter 1, theories like EST or 

EHM explain how boundaries triggered by experiencing shifts that typically lead to PE 

affect memory performance in several different ways. In this chapter, I focus on the 

effects of spatial boundaries (i.e. doors) on temporal order memory.  

There is a range of studies that show that memory for the temporal order of two items is 

better when those items belong to the same event (DuBrow & Davachi, 2013, 2016; 

Ezzyat & Davachi, 2014; Heusser et al., 2018; Horner et al., 2016). For instance, DuBrow 

and Davachi (2013, Experiment 1) presented a sequence of faces or objects, with the 

category changing every few trials, allowing the authors to examine the effect of the 

changing category on temporal order memory. Associative processing was emphasised 

by instructing participants to create associations between images either through narrative 

construction or vivid mental imagery. The main way temporal order memory was 

assessed was to present pairs of items from the same category that either contained or did 

not contain a boundary between them, and asking which of the two was more recent. The 

main result was that temporal order memory was better when no switch (i.e. boundary) 

occurred.  

As already mentioned in Chapter 1, a special type of boundary is walking through a 

doorway. Horner et al. (2016) developed a spatial paradigm conceptually similar to the 

one used in DuBrow and Davachi (2013), except that participants navigated through a 

series of rooms, each of which contained two tables. Placed on those tables was an image 

of an object for which participants had to decide whether it was natural or man-made. 

This paradigm allowed the authors to investigate how temporal order memory is affected 

as a function of whether two objects appeared in the same room (within boundaries) or in 

two adjacent rooms (across boundaries). Temporal order memory was tested in slightly 

different way than is typically done (see e.g. DuBrow and Davachi, 2013), by presenting 



Novelty, Prediction Error and Memory Encoding: Limitations of the PIMMS framework 

72  Jörn Alexander Quent - November 2021 

a cue object and asking either “Which object came next?” or “Which object came 

before?”. Here, Horner et al. offered their participants three alternatives (i.e. a 3AFC task) 

with one correct and two incorrect response options (one seen earlier in the sequence and 

the other one seen later in the sequence). Across three experiments, temporal order 

memory was found to be better for objects within the same room vs. across two rooms. 

In order to compare the results from my experiments, I downloaded Horner’s et al.’s data 

and plotted them in Figure 4.3. The authors also tested item memory, whether the first of 

the second object of the room would be remembered differently and what they coined 

context memory (i.e. the exact room in which an object was presented). Item memory, 

though above chance, did not vary as a function of whether the object was presented first 

or second in a room, while context memory was consistently not above chance. 

Thus it appears that walking into a new room can act like a boundary in its effect on 

temporal order memory. However, it remains unclear what aspect of walking through a 

doorway is driving this and other related memory effects (e.g. the location updating effect 

of Radvansky & Copeland, 2006, described in Chapter 1). One possibility could be that 

doors are special and always serve as boundaries regardless of any other factor. However, 

walking between rooms also often results in a large perceptual change (PC). For instance, 

real world rooms typically differ in terms of their layout and what you find in them (e.g. 

a bathroom versus a living room). On the other hand, EST posits that the PE is central for 

setting boundaries (e.g. a PC may not be important if it is fully expected when walking 

between rooms). The original aim of the work in this chapter was therefore to examine 

whether PC and/or PE are responsible for the boundary effect of walking through a 

doorway in a virtual environment.  

To study effect of PC and PE, I created a (non-immersive) VR paradigm that closely 

matches the experiments described in Horner et al. (2016). To expand this paradigm, I 

designed a special “M-room” (Figure 4.1B), as distinct from the “open” or “O-rooms” 

like those used by Horner et al. (2016; a video showing the difference between O-rooms 

and M-rooms can be found here https://vimeo.com/532276947). Participants watched a 

video from the perspective of someone traversing these rooms in a fixed route 

(participants did not themselves navigate; see below). When traversing an M-room, the 

viewer can only see one half of the room until they reach the middle section, at which 

point their perspective is rotated and they see the other half of the room. The middle 

section of the M-room was kept neutral white. Approaching this neutral area is depicted 

in the first two images of Figure 4.1 Panel C. The fact that the viewer does not see the 

https://vimeo.com/532276947


Chapter 4: Setting boundaries 

Jörn Alexander Quent - November 2021   73 

whole room when they enter allows certain features of the second room half (e.g. wall 

colour or floor pattern) to be changed, i.e. to manipulate PC, in the absence of a door 

between the two parts of the room. PC, or the absence of PC, could then be cued, thereby 

manipulating PE by building up and confirming/violating the expectation of PC. For 

instance, a cue could indicate that the wall colour of the second room will change to green, 

while it actually would stay the same colour as the first half. This example would be a 

case where there is no PC but PE, but of course other combinations are possible. Memory 

for objects that straddled this PC/PE in an M-room could be compared with that in  the 

more standard “across room” condition (as well as memory in a “within room” condition, 

in which neither PC nor PE are present). If introducing PC and/or PE rendered 

performance similar to the “across room” condition, I could infer that the specific 

combinations of factors is driving the standard effect of walking through a doorway.  

 

Figure 4.1: Illustration of room layout: Panel A shows the layout of the standard O-

room. Panel B shows the layout of the M-room with arrows that illustrate the 

navigation path. The numbered triangles approximate the camera position and 

orientation of the screenshots shown below. Panel C shows a series of screenshots 

that illustrate the camera view while navigating through an M-room. Note that in 

Panel C, no PC is introduced as both halves of the room have the same wall colour. 

For further illustration, see the video (https://vimeo.com/532276947), which 

illustrates the difference between watching navigation through an M vs. O-room.  

https://vimeo.com/532276947
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As a first step in this project, a pilot study was conducted to verify that crossing to the 

second half of the M-room in the absence of PC or PE does not constitute a boundary in 

itself. To this end, I tested whether the superior temporal order memory (i.e. which object 

appeared before/after a cue object, as in Horner et al. 2016; see below) for objects within 

the same room than in different rooms, is similar in M-rooms and O-rooms.  

Unfortunately, this basic effect of superior temporal order memory for objects within 

versus across rooms could not be replicated in either room type. Therefore, the planned 

manipulation of PE versus PC was not performed, and the three experiments that follow 

only demonstrate an inability to replicate the basic room-boundary effect (i.e. within > 

across), even after addressing several potential confounds. Remaining differences 

between the present experiments and those of Horner et al. (2016) are discussed, as 

fruitful avenues for future experiments.  

4.2 Experiment 1 

Method 

Procedure 

While in Horner et al. (2016) participants navigated through the VE themselves, 

participants in this series of experiments watched a video from a first-person perspective 

of someone walking through the rooms. This decision was made to ease online data 

collection (which was enforced in part by the pandemic that occurred during the third and 

fourth years of this PhD). While watching the video, participants in this task were required 

to judge whether an object was smaller or bigger than a reference (a shoebox like in 

DuBrow & Davachi, 2013) as soon as the object appeared. In this and all subsequent 

experiments, the object was visible for 3 sec. After the 3 sec, the object disappeared and 

the cardboard box re-appeared controlling the time during which the object was visible 

for the participant. Participants were instructed to press S on their keyboard if the object 

is smaller and L if the object is larger than the reference object. Key presses were recorded 

but not further analysed.  

After watching the video, participants immediately completed some memory tasks. The 

first memory task was temporal order memory, assessed by a 3AFC task. In this  task, a 

cue object was presented along with the question “What came before this object?”, or 

“What came after this object?”, depending on the counterbalance condition. Beneath the 
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cue object, three objects were presented: one correct (i.e. the target) and two foils. This 

was followed by two further memory tests in which participants were first asked to choose 

in which type of room the cue object was seen in (in-house piloting showed that people 

could not remember the exact room – in terms of wall colour and floor texture – hence 

only the type of room was tested similarly to the Horner study) and then asked on which 

of the two tables the cue object was presented (i.e. 2AFC task in both cases). In contrast 

to Horner et al., (2016), I did not use a context memory task (apart from pre-pilot where 

memory performance was not above chance either) and I also decided against 

implementing an item memory task as finding suitable 3D objects is cumbersome and no 

interesting results with this test were reported in Horner et al. (2016). Finally there was a 

short debrief questionnaire, which was mostly used to screen for technical difficulty and 

participant feedback.  

All tasks in this chapter were run online on a JATOS (Lange et al., 2015) server hosted 

on the MRC-CBU servers, which were compliant with data protection and security 

policies. That task was programmed in Javascript with jsPsych (de Leeuw, 2015). 

Virtual environment and objects 

The basic layout of both rooms (Figure 4.1) were created with SketchUp 

(https://www.sketchup.com). These were then imported into the video game development 

platform unity3d (https://unity.com/), which was used for creating the VE including the 

necessary programming, lighting and camera settings. In contrast to Horner et al., the 

layouts of all O and M-rooms were always identical including the positions of the tables, 

differing only in wall colour and floor material (wood or carpet textures). Like the order 

of the objects, the wall colours and floor materials were constant across the videos of the 

same counterbalance condition (see below). The number of wall colours (blue, brown, 

green, grey, orange, pink, purple, red, turquoise and yellow) and floor materials (5 

different carpets and 5 different wood floors) allowed me to construct 45 unique rooms. 

Both types of rooms contained three tables; however only two were used in the 

experiments discussed here (the remaining table was for a possible future version). 

88 everyday objects were downloaded (e.g. guitar, toys, household items etc.) from 

archive3d (https://archive3d.net/) and edited either in blender (https://www.blender.org/) 

or in unity3d itself. I tried to find as many 3D versions of objects as possible that were 

also used in Horner et al. (2016). The objects were presented at realistic scales (i.e., an 

https://www.sketchup.com/
https://unity.com/
https://archive3d.net/
https://www.blender.org/
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object that is small in reality was also small in the virtual environment) to avoid any PE 

stemming from unrealistic object sizes.  

Videos were simply created by capturing the screen while I navigated through the series 

of room using keyboard and mouse controls. Different conditions entailed different 

videos. Great care was taken to minimise any difference between the videos, though it is 

possible that some differences existed.  

Counterbalancing 

In Experiment 1, M and O-rooms alternated so that each participant saw the both types 

of rooms. Four videos were created where the order of the objects presented was the same, 

but two factors were counter-balanced: a) whether the first association between objects 

was across vs. within rooms and, b) whether the first room the participants encountered 

was an O or an M-room. Thus, two videos (Video 1 and 2) were created where two objects 

were presented in the first room (so the first object-object association was within-room), 

while in the other two (Video 3 and 4), the first room only showed one object (so the first 

object-object association was across-rooms). To control any influence of which room type 

(O or M), the first room in Video 1 and 3 was an M-room, while the first room in Video 

2 and 4 was an O-room. An additional between-subject condition was the direction of the 

temporal order question (before vs. after), producing a total of eight counter-balance 

conditions (which were not analysed).  

Foil selection and trial design 

In order to implement tighter control of the foils’ temporal position than it was done in 

Horner et al. (2016), where the foils were selected randomly (e.g., some could have come 

from the start or end of the experiment), foil 1 was the object that was presented four 

positions before the target object and foil 2 was the object that was presented four 

positions after the target (see Figure 4.2). The foils were therefore presented in the same 

room type and on the same table as the target object. 
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Figure 4.2: Illustration of foils selection in Experiment 1a and 1b: The cue object 

(blue star) is followed by the probe (yellow star). Foil 1 (red star) and foil 2 (green 

star) are found three/four positions away from the probe but are in the same room 

type and on the same table as the probe. Illustrated here is the forward question.  

Each object only served as cue once. Due to the availability of suitable foils, the number 

of associations tested was lower than the total number of objects presented in the videos. 

For across-room associations there were 49 trials. Dependent on the counterbalance 

condition, there were either 19 trials for within-M-room associations and 20 trials for 

within-O-room associations, or the other way around.  

Experiment 1a  

Sample 

In this first “pilot” experiment, 10 participants (6 female and 4 male) were tested through 

Prolific (even though not fully counterbalanced), with mean age M = 33.3 (SD = 9.24) 

years. In this and all other experiments, participants using mobile devices were not able 

to participate to make sure that they used a laptop or desktop PC.  
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Statistical analysis 

Bayesian t-tests were used to compare mean differences. To this end, ttestBF() from the 

BayesFactor package (Morey & Rouder, 2018; version 0.9.12-4.2) was used8. In addition, 

Bayesian ANOVAs were calculate with anovaBF(). The parameter rscale was set to the 

default value of √2/2 or t-tests and 1/2 for ANOVAs. Based on previous work (e.g. 

Horner et al., 2016), it was expected that performance in the “within” boundary condition 

would be better than in the “across” boundary condition (i.e. higher proportion of correct 

responses). Therefore, directed (i.e. one-sided) tests were used where applicable (for 

instance tests against chance were one-sided). Proportion correct data were arcsine-

transformed to create more normally-distributed data for analysis but original values are 

reported in the text.  

Note that, because of the alternation of the two types of room, the preceding room in the 

“across” room condition was always of the opposite type to the room containing the cue 

object. Nonetheless, a trial could be classified as an O-room or M-room depending on 

which room the cue object was in. The data were therefore analysed as a 2 x 2 factorial 

design with: “room-type” (O or M) and “boundary” (i.e., within same room vs between 

previous/subsequent room of opposite type). 

Data and code for all three experiments can be found in this GitHub repository 

https://github.com/JAQuent/boundaryVR.  

  

Results 

The results for the test of temporal order memory for each condition are shown in Figure 

4.3D. The 2 x 2 repeated-measure ANOVA showed anecdotal evidence against a main 

 

 

 

8 One might ask why I did not use a similar sequential analysis as I did in Chapter 2 and propagated the 

evidence. With brms, propagation of evidence is only suitable if I had used the same model for essentially 

the same task as was the case in Chapter 2. Even within Experiment 1, where the task structure is very 

similar, it can be argued that with chance performance in Experiment 1a & 1b it is problematic to combine 

these experiments with Experiment 1c that is the only experiment where performance is above chance. 

Furthermore, Experiment 2 & 3 do not share the same main model and also include important differences 

in design (blocked question type vs. two study-test cycles). For these reasons, propagation of evidence is 

not suitable way to analyse data here.  

https://github.com/JAQuent/boundaryVR
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effect of boundary, BF01 = 3.14. There was inconclusive evidence for a main effect of 

room-type of cue, BF01 = 2.26, as well as for the interaction, BF01 = 1.49. For 

completeness, simple effects showed anecdotal evidence against a boundary effect for 

either M-rooms, BF01 = 3.11, d = -0.0179, and inconclusive evidence for O-rooms, BF01 

= 2.7, d = 0.0757. 

 

 

Figure 4.3: Data from Horner et al. (2016) and from Experiment 1a, 1b and 1c: Top 

row: The data is from Horner et al. (2016) plotted for comparison. Data were 

aggregated across the different question types where applicable. For Experiment 2 

& 3, the data are from the original analysis, not the control analysis  that tried to 

address difference in navigation time (see Horner et al., 2016 for details). Note that 

Horner et al. (2016) Experiment 1 was most similar to Experiment 1c, while 

Experiment 3 here was most similar to Experiment 3 in their paper. The colours 

green and yellow were chosen because the rooms in Horner et al. (2016) most closely 

matched O-rooms. Triangles represent condition mean. The data were accessed 

from      

https://figshare.com/articles/dataset/Excel_file_for_behavioural_data_presented_i

n_paper/1609803/3. Bottom row: Main results for Exp 1a, 1b and 1c. Standard 

https://figshare.com/articles/dataset/Excel_file_for_behavioural_data_presented_in_paper/1609803/3
https://figshare.com/articles/dataset/Excel_file_for_behavioural_data_presented_in_paper/1609803/3
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coloured boxplots with triangles illustrating respective condition mean for the 

interaction of room type (M-room vs. O-room) and boundary (across vs. within). 

Horizontal line indicating chance performance (1/3) for 3AFC accuracy.  

However, the lack of condition differences could be because overall performance was at 

floor. Indeed, there was moderate evidence that temporal order memory was not above 

chance (i.e., averaged across within and across conditions, BF01 = 6.75, M = 0.304 (SD = 

0.0628)).  

For the tests of source memory (Figure 4.4A), there was anecdotal evidence that 

participants could not remember in the room-type in which an object was presented, BF01 

= 5.07, M = 0.482 (SD = 0.0755). There was inconclusive evidence about whether or not 

they could remember the table on which an object was presented, BF10 = 1.29, M = 0.536 

(SD = 0.0769).  

 

 

Figure 4.4: Performance in the room & table task for Experiment 1a, 1b and 1c: 

Standard boxplots with triangles illustrating task mean. Horizontal line indicating 

chance performance (0.5) for 2AFC accuracy.  

Discussion 

Contrary to expectations, there was no boundary effect (better temporal order memory 

for within versus between rooms) for either room type: the original O-rooms like those 

used by Horner et al (2016), nor the new “M-rooms” (despite no PC between the two 

tables). This may be because temporal order memory was not above chance. One reason 

for this could be that the task instructions were ambiguous, in that the question “What 

came before this object?” could be interpreted in a way that participants thought that 
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either of the two objects that appeared before the cue object (i.e. the target as well as the 

earlier foil) would be a valid answer. Therefore, in Experiment 1b, the instruction was 

changed.  

Experiment 1b 

Experiment 1b was identical to 1a apart from the temporal order task instructions: 

Participants were now asked “In the video you just watched, which one of the three 

objects at the bottom of the screen appeared immediately after this object?” in order to 

make sure that there was no misunderstanding about which was the correct object (and 

also only the “after” direction of the temporal order question was tested).  

Sample 

In total, 12 participants, recruited through Prolific (five female and seven male), 

completed this version of the experiment, with mean age of M = 32.8 (SD = 11.0) years.  

Results 

The 2 x 2 ANOVA on temporal order showed anecdotal evidence against a main effect 

of boundary, BF01 = 3.11, inconclusive evidence against a main effect of room type, BF01 

= 1.27, and anecdotal evidence against an interaction, BF01 = 3.06 (see Figure 4.3E). No 

boundary effect was found for M-rooms for accuracy, across, BF01 = 1.59, d = 0.256, and 

for O-rooms for accuracy, BF01 = 2.52, d = 0.117. However, there was also inconclusive 

evidence that overall performance was above chance, BF01 = 2.23, M = 0.351 (SD = 

0.104). 

For source memory (Figure 4.4B), there was inconclusive evidence that memory for the 

room-type of the cue object was above chance, BF01 = 2.33, M = 0.509 (SD = 0.06), but 

(unlike Experiment 1a), there was now moderate evidence that participants could 

remember on which table type a cue object was presented, BF10 = 7.16, M = 0.589 (SD = 

0.11).  

Discussion 

Temporal order memory was still not above chance, suggesting that the previous 

instructions were not a problem. However, this chance-level performance might also be 

why there was no evidence for a boundary effect on memory. Once possible reason for 

such poor performance could be that the foils were very close (in time) to the target, 

whereas the random selection of foils in Horner et al. (2016) would tend to include foils 
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that were much further away in time, rendering the task easier (other possible differences 

between the studies are considered in the Discussion). 

Experiment 1c 

Experiment 1c used the same (random) foil selection procedure as Horner et al (2016), 

with the hope that this would improve memory performance. The foils here are selected 

randomly apart from three rules: First, foils could not be in the same room with target. 

Second, foils could not be from adjacent rooms. Third, foils could be repeatedly sampled. 

As a result, dependent on the counterbalance condition, the average distance between the 

Target and Foil 1 was either -24.2 or -21.4 intervening objects, and the average distance 

between the Target and Foil 2 was either 21.3 or 25.2 (c.f. the distance of 4 used in 

Experiments 1a-1b).  

Sample 

Due to technical problems, some Prolific submissions were not usable. Unfortunately, the 

data containing the Prolific IDs were deleted so that it not possible to retrieve the 

demographical data for the final sample of 13 participants. However, these came from a 

population of 31 (10 female and 21 male), with mean age of M = 30.6 (SD = 7.97) years, 

who clicked on the task. Of those, majority of those immediately aborted the task for 

unknown reasons.  

Results 

This time, there was strong evidence that overall temporal order memory was above 

chance, BF10 = 24.5, M = 0.41 (SD = 0.0778); see Figure 4.3F. However, the 2 x 2 

ANOVA still showed inconclusive evidence for a main effect of boundary, BF01 = 0.5619. 

 

 

 

9 Based on the knowledge of classical statistics, one might expect the BF for the main effect in the ANOVA 

(BF10 = 1.78) should be similar to the BF that was calculated for the t-test where the data were collapsed 

across room type (BF10 = 6.77). However, models in the BayesFactor package are linked through the 

estimated value of the error variance (personal communication with Richard Morey; also see Rouder et al., 

2012). This means that the factors are not independent in the same way that is the case in a classical 

ANOVA. I therefore also reported the t-test as only this fully ignores the effect of room type.   
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There was anecdotal evidence against a main effect of room type, BF01 = 3.94, and no 

evidence for an interaction, BF01 = 1.47. 

Interestingly, the difference between condition (across vs. within) collapsed across room 

type was large, across: M = 0.369 (SD = 0.0962), within: M = 0.452 (SD = 0.0847), BF10 

= 6.77, d = 0.876. However, despite the lack of evidence for an interaction, a boundary 

effect was found for M-rooms [across: M = 0.369 (SD = 0.0962), within: M = 0.501 (SD 

= 0.132), BF10 = 7.69, d = 0.774], even if none was found for O-rooms, across [M = 0.369 

(SD = 0.0962), within: M = 0.404 (SD = 0.119), BF01 = 0.754, d = 0.43].  

In terms of source memory (Figure 4.4C), there was inconclusive evidence of above-

chance performance for remembering in which room type a cue object was presented, 

BF01 = 2.15, M = 0.51 (SD = 0.0583), but there was strong evidence (similar to 

Experiment 1b) that participants could remember on which table type a cue object was 

presented, BF10 = 19.3, M = 0.621 (SD = 0.128).  

Discussion 

Relaxing the selection of foils did have the intended effect of improving overall memory 

performance for temporal order. Surprisingly however, a boundary effect was only found 

for M-rooms; not O-rooms. Above-chance memory performance for the temporal order 

(and the table question) suggests the lack of a boundary effect does not simply owe to 

reduced participant engagement, though it is possible that higher overall levels of 

performance (more comparable to Horner et al, 2016) are needed to detect a boundary 

effect. 

The result is disappointing because the purpose of Experiment 1 was to ascertain that 

walking through the middle of an M-room does not have the same boundary effect that 

was reported in Horner et al. (2016) for walking through doors with ‘normal’ (O) rooms 

(despite the fact that the boundary effect was numerically larger in the M-room). One 

possibility is that there is some type of interference caused by alternating between the two 

types of room, so in Experiment 2, room-type was manipulated between participants 

rather than alternating. 

4.3 Experiment 2 

Relative to Experiment 1, the most important change was that room-type was now a 

between-participant factor rather than alternating within the same video. Furthermore, 
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participants were asked both directions of temporal order (before vs. after) in blocks 

instead of just one (before). 

Within each room-type, the first inter-item connection (within vs. across) and the 

direction of temporal order memory tested first (before vs. after) were counterbalanced 

across every fourth participant. To prevent the experiment from getting too long, the 

previous room-type and table-type questions were dropped, because there was sufficient 

evidence from Experiments 1a-1c that participants could only remember the table on 

which an object was placed. Memory for the table was even present when temporal order 

memory was barely above chance indicating that participants tried to perform well even 

in Experiment 1a & 1b.  

Small changes were made to the lighting in the rooms, to render them more realistic. 

Furthermore, camera movement was now scripted instead of generated by recording the 

screen while I navigated through the rooms. This eliminated any remaining between-

video differences. As a consequence, the time it took to move between the object-viewing 

positions within a room versus between rooms was further minimised (approximately 7.8 

vs 7.9 sec respectively). Other changes were that some objects were edited (colour and 

size) and some were entirely swapped because the debriefing questionnaire indicated that 

those were difficult to recognise.  

Other procedural details including the foil selection were the same as in Experiment 1c. 

Due the availability of foils, the number of trials per counterbalance condition was either 

80 and 82 for each question type (i.e. 160 and 164 in total).  

Sequential data collection 

While Experiments 1a-1c were pilots, Experiment 2 aimed to be properly powered. Since 

Experiment 1c showed a boundary effect for M-rooms but not for O-rooms, finding a 

boundary effect for O-rooms was the focus for Experiment 2. Data were collected 

sequentially for Experiment 2 for efficiency reasons. The data collection plan10 follows: 

 

 

 

10 The plan was not formally pre-registered but agreed upon among the collaborators. 
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At first, 12 participants were run for the O-room, after which the evidence was checked 

for whether there was a difference between across and within room associations. The 

sample size was then increased by increments of 4 until either a 𝐵𝐹10 of 6 or 1/6 was 

reached, or the maximum sample size of 36 was reached, based on the remaining balance 

on the Prolific account at that time (£431.66). If evidence was found for a boundary effect 

for O-rooms, the procedure would be repeated for M-rooms (starting at twelve and 

incrementing by four) with the same stopping rule (i.e., subject to remaining Prolific 

balance).  

The test determining the termination of the sequential design was a paired t-test between 

within and across room associations for each room-type. This analysis was collapsed 

across question-type, but restricted to the first block because of the possibility that the 

second block would not yield an effect due to interference from the first block. 

In order to assess whether this data collection plan had enough chance to provide 

conclusive (moderate) evidence (𝐵𝐹10 > 6 | < 1/6), a simplified simulation was ran with 

directional Bayesian t-tests with minimum sample size of 12 and maximum of 36 with 

effect sizes d = 0, 0.44 and 0.78 that correspond to a null effect, the effect size for O-

rooms and the effect size for M-rooms, respectively, that were observed in Experiment 

1c (see Figure 4.5). 
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Figure 4.5: Results of design analysis for a Bayesian sequential design: Panel A, B 

and C show the results of the design analysis for true effect sizes of d = 0.00, d = 0.44 

and d = 0.78 respectively. D shows the rainbow colour legend for BF10. Each line in 

the centre graphic illustrates one simulation of a sequential data collection run. The 

colouring is determined by the BF10 at the end of a simulation when the algorithm 

terminated either by reaching an evidence criterium (BF10 > 6 or BF10 < 1/6) or the 

maximal sample size (N = 36). Histograms at the top and the bottom show the 

frequency with which simulation end at a particular sample size. Colouring again 

indicate the strength of the evidence. The right hand side histograms illustrate how 

many simulation ended by reaching the maximal N.  
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Table 4.1: Summary of design analysis simulation. 

 

Effect size Median sample size Evidence rate Misleading evidence rate 

d = 0.00 28 0.5833 0.0301 

d = 0.44 28 0.6321 0.0217 

d = 0.78 12 0.9863 0.0002 

 

Thus the probability of exceeding a BF01 of 6 when there is no effect, or exceeding a BF10 

of 6 when the effect size matches that for the O-rooms in Experiment 1c, is around 60% 

in both cases (with a probability of misleading evidence of 3% or less; see Table 4.1). 

Sample 

In total, 16 participants (7 female and 9 male), recruited through Prolific, completed this 

version of the experiment, before the the priori BF criteria was exceeded. Their mean age 

was M = 27.9 (SD = 10.1) years.  

Results 

Data collection terminated at N = 16, all of whom completed the O-room condition, at 

which the BF for the null exceeded the criterion that there is no boundary effect for the 

first block for accuracy with O-rooms, BF01 = 7.06, d = -0.252 (see Figure 4.6A). This 

result also held true when collapsing across both blocks [across: M = 0.398 (SD = 0.0744), 

within: M = 0.372 (SD = 0.0834), BF01 = 7.81, d = -0.308]. Overall, memory performance 

was low, but above chance, BF10 = 14.68, M = 0.385 (SD = 0.0667). 
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Figure 4.6: Main results for Experiment 2 & 3, where only O-rooms were used: 

Standard boxplots with triangles illustrating condition means. Note that for panel 

A, only data from the first block were included. Dots connected by a line belong to 

the same participant.  

 

The ANOVA with boundary-type, question-type and block did not produce strong 

evidence for main effects or interactions (all BF01 < 4.5 and > 0.593), apart for the main 

effect of question type, BF10 = 9.23, with performance for the “after” question, M = 0.416 

(SD = 0.0785), being higher than for the “before” question, M = 0.355 (SD = 0.0846).  

Discussion 

While Experiment 1c provided no clear evidence for or against a boundary effect in O-

rooms, Experiment 2 found moderate evidence against such an effect. Overall, temporal 

order memory was above chance, though it was still low. In a final attempt, Experiment 

3 tried to increase overall performance. Interestingly, like reported by Horner et al. (2016) 

performance was better in forward direction (i.e. for the “after” question) showing that 

are not just non-replicable effects.   

4.4 Experiment 3 

Experiment 3 also only tested O-rooms. Mean memory performance for these rooms in 

Experiment 2 was 0. 385 (chance = 0.333), whereas in Horner et al (2016), it was slightly 

higher, on average 0.44 across experiments. The main aim for Experiment 3 was therefore 

to further improve overall memory performance. 
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Three major changes were made to address this: a) memory encoding in Experiment 3 

was made intentional rather than incidental (participants were told at the outset that “after 

watching the video we will also test your memory performance. So, please try to 

remember the objects that you see and their order”), b) there were two study-test cycles 

(like in Horner et al., 2016, Experiment 2 & 3), so that only 44 objects at a time were 

encoded before memory was tested, and c) the rooms were made even more distinct. 

Regarding the latter case, only five different wall colours and five different floor textures 

were used in Experiments 1 and 2, which means a room was only unique by the virtue of 

combining wall colours and floor textures. To increase room distinctiveness in 

Experiment 3, each floor featured a unique texture that was selected to stand out 

(e.g. brightly coloured tiles, noticeable carpet patterns, etc.). 

The other procedural details including the foil selection were the same as in Experiment 

1c. Due to the availability of foils the number of trials per condition (e.g. within vs. 

across) was either 36 or 38 per cycle. Furthermore, I again decided to only test one 

question type (the after question) to reduce the number of counter balance conditions and 

this factor did not interact with any effect in my experiments so far and it also did not 

interact with the boundary effect in Horner et al. (2016).  

Sample 

One participant was excluded because they did not complete the whole task. In total, 49 

participants (19 female and 30 male), recruited through Prolific, completed this version 

of the experiment, with mean age of M = 29.2 (SD = 11.8) years. The sample size was 

determined by the amount of money left for this project. Since the sample size is larger 

than what was simulated in the design analysis for Experiment 2 (see Table 4.1), power 

to provide strong evidence was improved relative to that experiment.  

Results 

Average transformed (overall) accuracy was treated as an outlier if it was above/below 

two Median Absolute Deviations (i.e. MAD) around the median (see Leys et al., 2013). 

This led to the exclusion of 3 participants who were above this cut-off. Note this exclusion 

was not done in the previous experiments because their sample sizes were too small for 

accurate estimation of spread across participants, but this might also contribute to higher 

mean performance. For analysis, data from both study-test cycles were collapsed.  
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Mean accuracy did increase relative to Experiment 2, up to 0.49 (0.26), which was clearly 

above chance BF10 > 1x108. However, there was again anecdotal evidence against a 

boundary effect, BF01 = 5.44, d = 0.0255 (see Figure 4.6B). 

Discussion 

By increasing distinctiveness of the rooms, reducing the memory load via two study-test 

cycles and instructing participants to remember the objects and their order, Experiment 3 

succeeded in improving temporal order memory (such that it was now higher than the 

average in the Horner et al., 2016, experiments). Nonetheless, there was still evidence 

against a boundary effect on temporal order memory across O-rooms. There was 

insufficient time to perform further experiments to narrow down other possible 

differences with the original study of Horner et al. (2016), but some possible reasons are 

considered below. 

4.5 General discussion 

Across five experiments, there was either no evidence for, or evidence against, a boundary 

effect for O-rooms similar to those used by Horner et al. (2016). In Experiments 1a-1b, 

where foils for the temporal order judgment were constrained to be close in time to the 

target, overall performance was not even above chance, which prevents clear 

interpretation. However, when the foils were randomised (as in the Horner et al., 2016, 

paper), and overall performance was above chance, there was either no evidence 

(Experiment 1c) or anecdotal to moderate evidence against (Experiment 2 and 3), a 

boundary effect with O-rooms. 

Surprisingly, there was evidence for a boundary effect in M-rooms in Experiment 1c, but 

since the effect in M-rooms was predicted to be smaller, if anything, than in O-rooms, 

this finding was not pursued further. 

Potential reasons for the null effect 

There are two major differences remaining between the experiments reported in this 

chapter and the experiments reported in Horner et al. (2016). First, in the Horner et 

al. (2016) study, navigation was active, whereas here participants merely watched a video 

of someone else navigating the rooms. Second, the position of the tables and the doors in 

Horner et al. (2016) varied (such that the rooms formed a closed circle), whereas here the 

spatial layout of each room was identical (apart from being an O or M-room), which 
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meant that they formed a linear route overall. One possibility is that doors function as a 

boundary (for temporal order memory at least) only when someone is actively navigating, 

and possibly trying to remember an overall layout. Another possibility is that the different 

layouts of rooms used by Horner et al (2016) made them more distinctive.  

Following the results of a recent study (Logie & Donaldson, 2021), the idea that the lack 

of active navigation is the main culprit for the null finding is unlikely, because these 

authors reported boundary effects for passive movement. In their study, they found that 

introducing boundaries increased the total number of words learned in a VE, consistent 

with EST. However, they also found that spatial boundaries were not even necessary, 

since temporal gaps sufficed to get the memory boost.  

In a number of studies on the related location updating effect, it has been shown that when 

people walk through a door, they forget information (Lawrence & Peterson, 2016; 

McFadyen et al., 2021; Pettijohn & Radvansky, 2018a, 2018b; Radvansky et al., 2010, 

2011; Radvansky & Copeland, 2006; Seel et al., 2019; though note that McFadyen et al., 

2021, failed to replicate this effect). With such a paradigm, Pettijohn & Radvansky 

(2018a) provided direct evidence that boundaries effects are smaller for passive 

navigation but still detectable. Yet, McFadyen et al. (2021) also found a boundary effect 

(in terms of a location updating effect), but only for passive movement and when working 

memory load was high. Furthermore, passive versus active navigation can also be 

interpreted as different levels of “immersion” in a VE. Immersion was manipulated by 

Radvansky and colleagues when studying that effect (Radvansky et al., 2011). These 

researchers typically use a large screen (e.g. Radvansky & Copeland, 2006) that affords 

a high level of immersion, but the effect also held when a standard screen was used 

(Radvansky et al., 2011). Another study showed that even only mentally walking through 

a doorway produced a boundary effect (Lawrence & Peterson, 2016). All of this strongly 

suggests that the lack of active navigation, while it may reduce the effect, is not the 

primary reason why the present experiments failed to find a boundary effect.  

This leaves the possibility that the experiments described here failed to find an effect 

because they used a linear environment, where each room followed a single, straight path. 

In contrast, each study that found boundary effects of any kind (deleterious or beneficial, 

e.g., for item memory and for temporal order memory respectively) used non-linear 

environments (Horner et al., 2016; Lawrence & Peterson, 2016; Logie & Donaldson, 

2021; Pettijohn & Radvansky, 2018a, 2018b; Radvansky et al., 2010, 2011; Radvansky 

& Copeland, 2006; Seel et al., 2019). A notable case here is the study from McFadyen 



Novelty, Prediction Error and Memory Encoding: Limitations of the PIMMS framework 

92  Jörn Alexander Quent - November 2021 

and colleagues (2021), where the VE was highly immersive and non-linear, but each 

hexagonal room was otherwise identical (same layout and colouring etc.), which largely 

failed to replicate the location updating effect and when they did, it manifested in 

increased false alarms rate instead of the expected reduction in hit rates. All in all, it seems 

that having a complex environment with distinct rooms is a necessary condition to find 

robust boundary effects. Complex environments and distinct rooms might entail 

difference orientation responses (e.g. where is the next door) when entering a room and 

might also be more conducive to forming rooms schemas, which might affect the size of 

the boundary effect. 

Another less interesting, procedural difference was the present use of online testing rather 

than in-person testing of Horner et al (2016). However, this seems unlikely to be 

important, given that memory performance was comparable to Horner et al (2016), and 

indeed better, in the present Experiment 3.  

Despite the fact that the usefulness of item-item associations in sequential reproduction 

has been questioned (see Henson et al., 1996), when DuBrow & Davachi (2013, 

Experiment 2) de-emphasised associative processing between successive items, they 

found that they were unable to reproduce their boundary effect on temporal order memory 

(based on a 2AFC recency judgement). While a lack of item-item associations might 

account for the inability to find a boundary effect in Experiments 1 & 2, it seems less 

likely for Experiment 3, where participants where explicitly instructed to remember the 

objects they see and their order.  

In summary, the original aim elucidating which factors (PC or PE) contribute to the effect 

of spatial boundaries failed because I was unable to replicate the original finding on which 

this paradigm was based and which was supposed to serve a control condition. I therefore 

never got to use M-rooms to manipulate different types of predictions and their effects on 

temporal order memory.  

More generally, recent work suggests there might not be anything special about doors 

(Logie & Donaldson, 2021; McFadyen et al., 2021). If walking through a doorway is 

sufficient to produce boundaries effects, then these should have also manifested in my 

experiments; however it seems that this is not the case, so other factors must contribute. 

It is important to keep in mind that there was always a sizeable PC when walking into the 
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next room, and also at least some degree of PE11 in all experiments discussed in this 

chapter. Despite the presence of PC, as well as at least some PE, there was no boundary 

effect for O-rooms. It could therefore be that a boundary effect only arises when PE is 

stronger as it is possibly the case when the room layout changes, which naturally requires 

different orientation responses compared to when the table is always in the same space. 

 

 

 

11 As participants did know what the next room would look like, there was always some PE. In Experiments 

1 and 2, the number of wall colours and floor textures was only five, so participants might have formed 

corresponding expectations, but in Experiment 3 each rooms was unique, in terms of the floor textures  and 

wall colours.  
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5 DISCUSSION 

PIMMS is a powerful framework to explain how PE drives memory encoding. It describes 

the interaction of perceptual, semantic and episodic memory systems and was originally 

crafted to explain how recollection and familiarity arise based on a predictive perspective 

on the brain. Its focus on the role of PE in memory encoding makes the model perfect to 

be applied to the literature of novelty and surprise, which is extensive but somewhat 

incoherent (Quent et al., 2021). When doing so, it helps to debunk the idea that novelty 

per se is associated with memory improvement, and provides strong grounds to 

distinguish the two concepts of novelty and surprise.  

Despite the success of PIMMS, there are several phenomena surrounding novelty, PE and 

memory encoding that are not explained by PIMMS, even though they are of high 

theoretical relevance. In my thesis, I addressed three such phenomena: 1) how memory 

encoding can be improved when information is congruent with prior knowledge (i.e., with 

little PE), forming a U-shaped function of expectancy; 2) how PIMMS is silent on 

neurobiology and therefore cannot explain phenomena like behavioural tagging that are 

believed to improve memory; and 3) how PIMMS - though it focusses on PE - is 

insufficient to explain how our continuous experience is segmented into episodes by event 

boundaries, which have important consequences for memory performance.  

5.1 U-shape between expectancy and object-location memory 

As predicted by SLIMM – a more specific neuroanatomical model developed partly in 

response to the short-comings of PIMMS – I found that there is indeed a U-shaped 

relationship between memory and expectancy, at least in the case of memory for locations 

of objects in a virtual kitchen as a function of the expectancy of those locations. This U-

shape emerged in the recall task, as well as to some extent in the 3AFC recognition task. 

Even though the evidence from the recognition task was weaker, and did not hold for the 

interrupted regression analysis, the consistent quadratic component in the recognition task 

is important because the foils controlled for the guessing bias that was found when 

participants recalled objects at expected locations. Furthermore, recollection in the 
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recognition task (as estimated for example by the proportion of remember judgments) 

clearly showed a U-shape in all analyses, including the interrupted regression. 

The U-shape for recollection was not only unpredicted according to the PIMMS 

framework, but also according to the more specific SLIMM model. SLIMM predicts that 

recollection and familiarity would play different roles for memory performance at both 

ends of the continuum, with recollection associated with memory for unexpected 

information, but familiarity associated with memory for expected information. While one 

possibility is that SLIMM is wrong, and memory for expected information is also 

associated with recollection, another possibility is that the spatial/associative nature of 

the memory probed in the experiments of Chapter 2 invariably engages recollective 

mechanisms, since recollection and spatial memory are closely related, and both rely on 

the hippocampus (see e.g. Burgess et al., 2002).  

However, other studies have shown that memory for non-spatial information can be 

associated with recollection even when congruent with expectations. For instance, Amer 

et al. (2018, 2019) presented participants with realistic and unrealistic prices of objects, 

and found that those prices that were congruent with the participants’ prior knowledge 

were associated with high confidence memory responses, which suggests that recollection 

might be involved (though see discussion in Chapter 2 about the relationship between 

confidence and recollection, since it is also possible that schema-congruent items are 

recognised with high confidence without recollection).  

Another issue that is likely to be relevant is the nature of the information recollected. 

Recollection normally refers to incidental contextual information, such as remembering 

when/where information was encountered, or what one happened to be thinking about at 

that time. It may be useful to distinguish between information that is schema-relevant 

versus schema-irrelevant (which may relate to the distinction between “intrinsic” and 

“extrinsic” context, Godden & Baddeley, 1980). Recent evidence from a VR version of 

this paradigm supports this claim by showing that the context-dependent memory effect 

was only observed for words that were related to an active schema (Shin et al., 2021). 

According to SLIMM, it is schema-irrelevant information that is not encoded for expected 

events, i.e., schema-relevant information is still encoded (while for unexpected events, all 

such concurrent information is encoded in an “episodic snapshot”; van Kesteren et al, 

2012). Thus if participants base their “remember” response on schema-relevant 

information, then such responses would be predicted to increase for expected as well as 

unexpected information. 
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The question then becomes whether the location of objects in the virtual kitchen in the 

experiments of Chapter 2, or the price of objects in the Amer et al. (2018, 2019) studies, 

are examples of schema-relevant information. For example, one could argue that the 

typical location of a kettle (in a kitchen, on a sideboard) is part of our schema for kitchens 

and kettles, in which case SLIMM predicts that location would be retrieved, and hence 

could be used to justify a “remember” response. Indeed, participants were told that 

memory for object location would be tested later. By contrast, the (relative) time at which 

a kettle was encountered while exploring a kitchen, or perhaps the colour of the kettle, 

may be irrelevant to the schema, in which case SLIMM predicts they would not to be 

encoded, provided the kettle appears where expected (whereas such details would be 

encoded as part of the episodic snapshot if the kettle were at a surprising location). 

Likewise, the typical price of objects could be considered as intrinsic to the knowledge 

(schema) for those objects, and hence explain why they were recognised with high 

confidence (and possibly frequent recollection) in Amer et al.’s studies. If this is true, 

then by re-defining (to participants) the nature of retrieved information that should be 

used for a remember response, or by testing source memory for incidental perceptual 

details like the colour of an object (if irrelevant to the schema for that object), might reveal 

a different pattern, with only an increase towards unexpected locations (no U-shape). This 

could be tested in future experiments.  

Having said this, there are other studies that suggest that the improved memory for 

expected information is accompanied by recollection even for incidental (schema-

irrelevant) details. Using congruent and incongruent (or unrelated) noun-adjective 

pairings for example, such as “yellow banana” versus “yellow strawberry” (Bein et al., 

2015; Reggev et al., 2018), Bein and colleagues (2015) reported a congruency advantage 

that was associated with increased number of remember but not of know judgements for 

target words (e.g. banana). Explaining this finding requires understanding exactly what 

type of information participants used as the basis of their remember judgments: if it were 

incidental information, then this would indeed be inconsistent with SLIMM.  

Evidence for the U-shape was weakest for accuracy in the 3AFC recognition task, so 

future work should be conducted to provide stronger evidence in this regard. A simple 

way to do this could be to present videos to participants, instead of presenting the 

environment in iVR, and collect data online for the recognition task only. This is easily 

achieved with the VR technology because the exact position and orientation of the head-

mounted display (HMD) can be tracked in the physical world and saved. The tracked 
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positions of an HMD can be then used to create videos where a real person explores the 

room freely and in a realistic fashion. This ensures that a) every participant experiences 

the room in the same way visually but also b) that objects and locations can be easily 

shuffled so that many more sets can be tested than would be practical with in-person iVR 

testing. In fact, this would also address another problem, which is because participants 

explored the kitchen freely, they sometimes missed objects because they simply did not 

explore specific parts of the room. Generalising the results across a larger set of object-

locations is especially important given the suggestion in Chapter 2 that the results might 

depend on stimulus set. Relatedly, it would also of course be interesting to generalise the 

results to other room types (e.g. a bathroom or a living room).  

The observed U-shape should also be studied as a function of various other factors like 

retention interval (e.g. one could test memory the next day, to see if consolidation 

processes moderate the effect), or participant age (e.g., if the mPFC vs MTL systems of 

SLIMM develop in children, or deteriorate in old age, at differential rates). For instance, 

it might be expected that the relative advantage for expected versus unexpected 

information might increase after a delay, as memory becomes more gist-like (or episodic 

details are forgotten), which has been repeatedly claimed (Sekeres et al., 2018; Winocur 

& Moscovitch, 2011). Similarly, slower maturation in children, or faster deterioration in 

old age, of the MTL system might similarly attenuate the advantage for unexpected 

information (e.g. Raz, 2005). Furthermore, increasing world knowledge as people get 

older might actually accentuate the U-shape, i.e., result in greater advantages for both 

expected and unexpected information, as the predictions from schema get stronger.  

Other potential uses of the iVR paradigm: effects of stress  

Another interesting future avenue could be to investigate how stress (either induced or 

via direct administration of stress hormones) affects the U-shaped relationship of 

expectancy. An important prediction of SLIMM is that different brain regions (MTL and 

mPFC) play differential roles in supporting the schema-incongruent vs schema-congruent 

advantage for memory. Manipulating stress levels might help to provide more direct 

evidence for the role of the hippocampus in the incongruent advantage.  

As a brief background, there are two receptor types that bind the stress hormones cortisol 

(humans) and corticosterone (rodents): mineralocorticoids (MR; Type I) and 

glucocorticoids (GR; Type II; Reul & de Kloet, 1985). Both receptors types can be found 

in the hippocampus. So unsurprisingly, there is consistent evidence that the hippocampus 



Novelty, Prediction Error and Memory Encoding: Limitations of the PIMMS framework 

98  Jörn Alexander Quent - November 2021 

is strongly affected by stress (Patel et al., 2000; Sánchez et al., 2000). Studies of the 

temporal dynamics suggest that the hippocampus’ reaction to stress first comprises 

excitation and then inhibition (Diamond et al., 2007). This pattern was confirmed by an 

fMRI study that examined the time-course of the BOLD response after hydrocortisone 

injection: hippocampal variance first increased (peaking at 5-10 min) and then decreased, 

with a peak 30-35 min post injection (Lovallo et al., 2010), which offers intriguing time-

windows during which the iVR paradigm could be completed.  

With the close relationship of stress and hippocampus in mind, it is also not surprising 

that an abundance of research has shown that stress is a potent modulator of (episodic) 

memory (Schwabe et al., 2012; Shields et al., 2017; Wolf, 2008, 2009). On the 

behavioural level, whether stress enhances or impairs memory depends on the timing 

relative to the stage of memory formation according to the “integrated” model (Schwabe 

et al., 2012; Vogel & Schwabe, 2016): stress impairs if experienced long before encoding, 

but enhances if only experienced shortly before it. On the other hand, stress before 

retrieval has a detrimental effect. These predictions were confirmed by a meta-analysis 

(Shields et al., 2017).  

To my knowledge, only two studies specifically looked at the effect of stress on schema-

related memory. The first study showed that stress and hydrocortisone can disrupt the 

benefit of prior knowledge (Kluen et al., 2017). In this study, participants learned the 

ordinal relationship of a number of galaxies on the first day and then learned two new 

hierarchies on the second day. One half of one hierarchy consisted of galaxies whose 

ordinal relationship were learned on Day 1. Hence if participants used the knowledge they 

acquired, it should give them a performance advantage. Psychosocial stress immediately 

and 25 minutes before the task on the second day, as well as hydrocortisone 45 minutes 

before the task, impaired participants’ ability to use that knowledge. Interestingly, explicit 

hierarchy recall was not impaired in participants who received hydrocortisone, which 

might suggest that the results are not due to a simple retrieval deficit.  

In the second study (Vogel et al., 2018), participants underwent a psychosocial stress test 

45 minutes before encoding schema-related and schema-unrelated words in a scanner. 

Three to five days later, participants’ memory was tested. While stress did not affect 

memory directly, participants showed better memory for schema-related words. While 

participants in the non-stressed control group showed increased activation in the mPFC 

and reduced activation in the hippocampus, participants in the stress group showed 

increased hippocampal activity during schema-related processing. This increased 
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hippocampal activity was positively related to the magnitude of the cortisol response and 

interestingly to the number of schema-related false alarms 

Both studies did not directly address the question of whether stress impacts processing of 

incongruent information more than the processing of congruent information. This 

requires at least three ordered schema-related conditions (incongruent, neutral and 

congruent) or a more continuous paradigm like that in Chapter 2. To demonstrate that the 

hippocampus is especially important for the incongruency benefit, one could administer 

hydrocortisone to participants / subject them to stress before they complete the iVR 

experiment. The timing should be arranged so that the iVR task is completed during the 

refractory period  (see Lovallo, Robinson, Glahn, & Fox, 2010), during which 

hippocampal learning is impaired, which in turn should lead to a reduced advantage for 

objects at unexpected locations. This is just one example of how the iVR paradigm I 

developed in Chapter 2 has potential for further research.  

5.2 Experiencing iVR for the first time does not improve memory 

As discussed earlier, besides not predicting a memory advantage for expected 

information, PIMMS is also silent on neurobiology. Due to this silence, PIMMS cannot 

address important aspects of how novelty and surprise relate to memory consolidation. 

One such important phenomenon is behavioural tagging, which explains how 

experiencing something novel (or significant) can boost memory for events experienced 

in close temporal proximity, due to neurochemical changes at synapses that happen 

around that time. The idea of behavioural tagging developed from the general idea of tag-

and-capture (Frey & Morris, 1997; Redondo & Morris, 2011). Evidence for this 

phenomenon comes from non-humans (Ballarini et al., 2009; Moncada & Viola, 2007) 

and humans (Ballarini et al., 2013; Fenker et al., 2008; Ramirez Butavand et al., 2020).  

In Chapter 3, I predicted that the novelty of one’s first experience of iVR (while 

performing the same tasks as in Chapter 2) would enhance memory for preceding, 

unrelated information. Contrary to my expectations, I found evidence in favour of the null 

hypothesis (i.e. iVR did not improve memory for preceding words). While I did not 

necessarily expect an effect on immediate recall, given that behavioural tagging presumes 

that a period of consolidation is needed (see for instance Roig et al., 2016), there was 

evidence against any effect for delayed recognition as well as immediate recall. This was 

at odds with previous VR studies, as reprised below. The main aims of this study were to 
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examine whether novelty would differentially affect weakly or deeply encoded 

information, and whether it would affect recollection and familiarity in different ways. 

The corresponding BFs for these hypotheses were not conclusive. At least two possible 

reasons for the lack of evidence for any effects of novelty (as discussed in Chapter 3) 

were that: a) the novelty manipulation might not have been strong enough (though this 

seems unlikely given that other reports found this effect with merely presenting unseen 

images); and b) the Control and the Novelty group differed not only in terms of 

experiencing something the first or the second time, but also in terms of the difficulty of 

the task that needed to be completed during that experience. Completing a difficult task 

after learning has been shown to negatively affect memory performance (Dewar et al., 

2007; Wixted, 2004). While counting the objects within the virtual kitchen may not be a 

difficult task, the recall and recognition tasks were reasonably demanding, so could have 

disrupted consolidation and reduced any effects of novelty on that consolidation. 

Nonetheless, it is interesting to note that novelty is often associated with increased 

cognitive demands / exploration, suggesting that it would be important for future 

experiments to factorially cross novelty with task difficulty (see Chapter 3). 

In general, evidence for behavioural tagging in humans is still scarce, with several other 

recent null findings (Biel et al., 2020; Biel & Bunzeck, 2019). Nonetheless, there is also 

recent study that did find evidence for behavioural tagging in high-school students (e.g. 

Ramirez Butavand et al., 2020), plus a further study that used familiar and novel 

Minecraft environments and found a retroactive effect, but only for ADHD patients and 

not for typically developing children/adolescents (Baumann et al., 2020). Another study 

failed to find an effect of surprising actions within video clips on memory for other actions 

that happened before (Ben-Yakov et al., 2020). While the evidence in animal studies is 

more consistent, it is worth noting that the proactive effect of VR on human memory 

reported by Schomaker and colleagues (2014, 2021) is unlikely to represent the 

behavioural tagging-like processes seen in animal experiments, because the latter is 

assumed to take time to influence memory consolidation, whereas Schomaker and 

colleagues tested memory immediately after the VR experience. 

Despite the heterogeneous state of the literature on retroactive/proactive effects of novelty 

on memory, the idea of behavioural tagging remains strong, and extends to manipulations 

other than novelty, such as manipulations of post-encoding stress (Lopes da Cunha et al., 

2018; Quent et al., 2018; Ritchey et al., 2017), fear conditioning (Dunsmoor et al., 2015; 

Hennings et al., 2021), physical exercise (Roig et al., 2013, 2016), post-encoding arousal 
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(e.g. Nielson & Arentsen, 2012) and reward (e.g. Patil et al., 2017). While there are 

several indirect demonstrations that (behavioural) tagging affects weakly-encoded 

information (Baumann et al., 2020; Lopes da Cunha et al., 2018; Quent et al., 2018)12, 

further systematic work is needed to provide direct evidence for the secondary hypotheses 

tested in Chapter 3, i.e., that tagging should benefit weak memories more than strong 

ones, and differentially affect the subsequent experience of recollection versus 

familiarity.  

In summary, as noted above, one fruitful avenue for future work would be to manipulate 

novelty in ways that are not confounded by cognitive demand (see discussion in Chapter 

3). However, the behavioural-tagging hypotheses can also be tested by using other 

manipulations like stress, arousal, physical exercise, that may be easier to de-confound 

from cognitive demand, and combined with the weak/strong encoding task that I used in 

Chapter 3. It is also important to pre-register and report such future experiments (e.g. as 

my Registered Report version of Chapter 3), just in case the positive effects in the 

literature are false positives, and many other negative results are simply not reported (and 

to get a more accurate indication of the size of any effect, e.g., for meta-analyses).  

5.3 No effect of (room) boundaries on temporal order memory 

In Chapter 4, I described a paradigm that was originally designed to study what aspects 

of walking through a doorway (perceptual change, PC, and/or prediction error, PE) leads 

to previously reported effects of boundaries (like doorways) effects on memory. 

Unfortunately, this failed because I was unable to replicate the findings of a very similar 

study (Horner et al., 2016). Chapter 4 discusses several reasons that might have led to this 

failure to replicate. One likely culprit is that the environment that I created was merely a 

chain of rooms that were arranged on a straight line, while Horner et al. used a more 

complex arrangement of rooms (i.e., more complex layout of the whole environment).  

 

 

 

12 Note that the work from Lopes da Cunha et al. (2018) and from Baumann et al. (2020) involved groups 

of people for which weaker encoding can be assumed (ADHD patients or student group with lower memory 

in matched control group) but was not manipulated, hence this was classified as indirect evidence.  
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While a large number of studies have shown boundary effects (not only on temporal order 

memory, but also other types of memory) after walking through a doorway  (Horner et 

al., 2016; Lawrence & Peterson, 2016; Logie & Donaldson, 2021; Pettijohn & 

Radvansky, 2018a, 2018b; Radvansky et al., 2010, 2011; Radvansky & Copeland, 2006; 

Seel et al., 2019), there are also some recent suggestions that doors might not be special 

after all. For instance, Logie and Donaldson (2021) reported that temporal gaps showed 

a comparable boundary effect to walking through doors. Furthermore, a study on the 

location updating effect revealed that simply using identical rooms - instead of rooms that 

varied for example with respect to wall colours, as it is typically done - caused the 

boundary effect on item memory to vanish (McFadyen et al., 2021). It is conceivable 

rooms that are more unpredictable in terms of the layout and the interior design demand 

stronger orienting responses. Imagine you enter a room where you first have look for the 

exit versus a room that has the exact same layout and/or design as the ten previous rooms. 

It is possible that boundary effects only arise in the scenario where there is some level of 

significant unpredictability. When taken together with my results, these data suggest that 

a door per se is not the cause of boundary effects, and it is more likely that other factors 

like PC and/or PE drive these effects. Ironically, this is exactly what was planned for my 

series of experiments, but which failed because I could not find a basic effect in the 

standard condition (i.e. walking through the doorway).  

For future work, even though passive navigation is most likely not the main culprit for 

the null finding, the ease with which the experiment from Chapter 4 can be changed from 

passive to active navigation with the available code potentially warrants another attempt. 

While most studies still found a boundary effect with passive navigation, some also report 

a reduction of the effect (though see McFadyen et al., 2021). Thus counteracting this 

reduction might be sufficient to find a boundary effect for the paradigm in Chapter 4.  

Another possibility is to change the layout of the rooms. Originally, the O and M-rooms 

in Chapter 4 were created because they can be easily be placed one after the other on a 

straight line, as this made scaling the environment (i.e. adding more rooms) easier.  

Furthermore, M-rooms were designed so that if a person is anywhere within one half of 

the room, they cannot see into the other half. This was done to ensure that I could change 

the wall colour in the other half of the room without that being visible before the 

participant entered that part of the room. Nevertheless, it is possible to move the doors 

(and possibly the tables) and create a more complex environment that comes with a 

certain level of unpredictability concerning the layout of the encountered rooms. By 
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simply changing the locations of the doors and tables within both room types, it is possible 

to construct a series of rooms that is not simply a linear track. This might be more 

conducive to finding the boundary effects that Horner et al. (2016) reported.  

Even if doorways do not always serve as boundaries, the effect of boundaries on cognition 

and the brain in general are manifold (for recent reviews see Clewett et al., 2019; 

Richmond & Zacks, 2017). A myriad of studies also highlighted that other types of 

boundaries affect memory (DuBrow & Davachi, 2013, 2016; Ezzyat & Davachi, 2014; 

Heusser et al., 2018; Rouhani et al., 2020; Swallow et al., 2009). Despite the replication 

failure in Chapter 4, these effects are not fully explained by PIMMS: while PEs may cause 

event boundaries (Zacks et al., 2007), how that PE affects memory for surrounding 

information (e.g., the relative order of items that straddle versus do not straddle that PE) 

is not currently specified by PIMMS. It may be fruitful therefore to combine PIMMS with 

other event-based frameworks like EST (Reynolds et al., 2007; Zacks et al., 2007), EHM 

(Radvansky et al., 2011) - see Chapter 1 – as well as the more general Temporal Context 

Model (TCM; Norman et al., 2008; Polyn et al., 2009). Indeed, it is important for any 

general theory of memory to be able to incorporate working memory, as well as long-

term memory, as well as explain effects that are commonly attributed to a dynamic 

temporal context (e.g. see Clewett et al., 2019), including the role of consolidation 

(Yonelinas, 2019), as elaborated below.  

5.4 Further gaps in PIMMS 

Beyond the limitations that I addressed in Chapter 2 to 4, there are several other gaps that 

a comprehensive framework of (declarative) memory needs to address. I finish with 

mentioning a few of these, that are most relevant to the work in this thesis. The first of 

these, related to Chapter 2, is that, while PIMMS does consider how prior (semantic) 

knowledge interacts with the perceptual and with episodic memory system, it does not 

describe how semantic knowledge is acquired in the first place. Even if there is no 

inherent novelty benefit (see Quent et al., 2021 or Chapter 1), we are still able to learn 

truly novel information. For this, McClelland and colleagues suggested the 

“complementary learning systems” model (Kumaran et al., 2016; McClelland et al., 

1995), which provides an algorithmic model how new information is slowly acquired by 

the cortex. In that framework, acquisition of truly novel knowledge is accomplished with 

help of a fast learner that is based in the hippocampus (similar to the episodic memory 

system) and a slow learner that is based in the neocortex (similar to the semantic memory 
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system). New semantic knowledge has to be acquired by prolonged interleaved learning, 

which abstracts statistical regularities from individual episodes, for which hippocampal 

replay is supposed to play a crucial role. This kind of mechanism is lacking in PIMMS. 

PIMMS is also simplistic in terms of the brain regions that are considered. A 

comprehensive model would not only include the mPFC, as suggested by SLIMM, but 

several other regions. The locus coeruleus (LC), the substantia nigra, striatum and ventral 

tegmental area (SN/VTA) all appear to be important for novelty and memory formation 

(Clos et al., 2019; Duszkiewicz et al., 2019; Fenker et al., 2008; Guitart-Masip et al., 

2010; Hollerman & Schultz, 1998; Kamiński et al., 2018; Mikell et al., 2014; Murty et 

al., 2016; Schott et al., 2004; Wittmann et al., 2007). In relation to Chapters 2 and 3, one 

study showed, for example, that context surprise can induce early phasic responses in the 

VTA, while a second peak in the VTA could reflect a feedback signal to the hippocampus 

(Mikell et al., 2014). It has been further proposed that a functional loop exists between 

these midbrain regions and the hippocampus, via the ventral striatum (nucleus 

accumbens; Kamiński et al., 2018; Lisman & Grace, 2005 see below). These kind of 

interactions are neglected by PIMMS.  

Other studies have highlighted further brain regions, including the bilateral ventral 

striatum and bilateral putamen/insula, that track signed, reward PE (Pine et al., 2018), and 

the importance of areas like the SN/VTA for reward PE has been known for over two 

decades (Hollerman & Schultz, 1998; Schultz & Dickinson, 2000). It seems like the same 

populations of dopamine neurons that respond to reward PE may also be sensitive to 

context surprise (in the absence of an explicit reward; see Hollerman & Schulz, 1998). 

Reward anticipation (e.g. Wittmann et al., 2007) and reward PE (Ergo et al., 2020) are 

also known to affect declarative memory, yet PIMMS completely ignores reward as a 

dimension. Interestingly, the same set of regions is also believed to play a crucial role in 

event segmentation and error detection (Zacks et al., 2007). It would therefore be 

interesting to see how PIMMS can be extended when considering these phenomena and 

brain regions.  

Lastly, it has to be acknowledged that PIMMS is only a framework. However, some of 

its theoretical insights can inform a general theory of memory that not only addresses how 

the perceptual, semantic and episodic memory systems interact, but also how they relate 

to working memory. Such a theory also needs to understand perception and memory as 

ongoing processes, and not simply as snapshots. Finally, formal computational 
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implementations, informed by neurobiology, are needed to make testable, quantitative 

predictions.  

5.5 Conclusion 

The interactions between novelty, PE and memory encoding are complex. There is no 

doubt that prior knowledge has a profound influence on how we perceive the world and 

how we remember new events. However, to capture the details of this complexity, 

PIMMS needs to be developed further, to cover, for example, how new schemas are 

learned (to make predictions), how novelty and surprise can also affect neurobiological 

processes like consolidation, and how continuous stimuli are segmented for encoding into 

memory. Nonetheless, PIMMS has proved a helpful framework for thinking about some 

of these concepts, and designing experiments to demonstrate its short-comings, which is 

how science proceeds. 
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APPENDIX FOR CHAPTER 2  

Table 7.1: List of priors for models reported in this chapter. 

 Experiment Exp. 1 

 

Exp. 2  

 

Exp. 3a 

 

Exp. 3b 

Measure Predictor df µ σ df µ σ df µ σ df µ σ 

Recall 

Intercept 7 0 10 20.11 -0.95 0.42 68.3 -1.25 0.35 61.27 -0.67 0.26 

Linear 7 0 1 68.18 0.1 0.39 114.77 0.41 0.25 104.22 0.19 0.17 

Quadratic 7 0 1 63.49 1.88 0.84 118.29 1.54 0.55 132.09 1.15 0.4 

3AFC 

Intercept 7 0 10 16.92 0.91 0.37 46.04 0.68 0.27 52.23 0.72 0.2 

Linear 7 0 1 72.54 0.29 0.4 114.87 0.75 0.25 116.12 0.59 0.18 

Quadratic 7 0 1 36.25 0.63 0.69 69.6 1.17 0.5 101.84 1.14 0.4 

Recollection  

(independence/ 

redundancy) 

Intercept 7 0 10 24.06 -0.48 0.29 63.4 -0.5 0.21 

Linear 7 0 1 104.49 0.29 0.26 126.96 0.03 0.17 

Quadratic 7 0 1 104.51 1.48 0.57 142.09 1.47 0.4 

Recollection  

(exclusivity) 

Intercept 7 0 10 23.45 0.37 0.37 53.29 0.35 0.25 

Linear 7 0 1 115.15 0.32 0.32 112.25 0.03 0.21 

Quadratic 7 0 1 55.59 1.32 0.69 113.73 1.44 0.49 

Familiarity (independence, 

exclusivity) 

Intercept 7 0 10 23.32 -0.01 0.23 39.65 -0.01 0.19 

Linear 7 0 1 87.19 0.1 0.3 82.92 -0.04 0.22 

Quadratic 7 0 1 49.03 0.1 0.61 67.99 0.11 0.48 

Familiarity  

(redundancy) 

Intercept 7 0 10 26.43 0.96 0.26 43.73 0.93 0.19 

Linear 7 0 1 111.07 0.19 0.28 84.5 -0.05 0.19 

Quadratic 7 0 1 76.77 0.96 0.58 116.98 1.01 0.43 
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 Table 7.2: List of object locations 

Object Locations 

# Name 
Set 1 Set 2 Set 3 

(111) 

Set 4 

(246) 

Set 5 

(388) 

Set 6 

(498) 

Set 7 

(848) 

1 microwave 14 19 13 13 11 10 19 

2 kitchen roll 8 17 11 16 4 19 2 

3 saucepan 3 2 15 18 15 12 13 

4 toaster 12 4 20 1 8 1 9 

5 bowl of fruits 13 11 6 16 18 16 1 

6 tea pot 18 5 5 7 2 15 4 

7 knife 20 13 10 14 6 13 14 

8 mixer 9 18 12 3 14 14 17 

9 bread 4 15 19 11 16 4 16 

10 glass jug 15 7 8 4 7 8 6 

11 mug 17 3 3 19 20 3 11 

12 dishes 6 10 9 12 10 20 10 

13 towels 7 14 17 10 5 18 5 

14 toy 11 12 2 6 1 9 15 

15 books 2 1 4 8 19 7 7 

16 umbrella 1 8 18 17 12 5 8 

17 hat 16 6 1 2 17 11 20 

18 helmet 5 9 16 20 3 6 12 

19 calendar 10 20 14 5 13 17 3 

20 fan 19 16 7 9 9 2 18 
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7.1 Original analysis of remember/know data 

Remember/familiar judgements were initially analysed in line with pre-registered analysis of 

the mean expectancy rating for remember and familiar judgments, but further simulation 

showed that this trial-averaged analysis is biased by boundary effects on expectancy values 

(see https://jaquent.github.io/post/a-u-shape-that-appears-as-a-linear-correlation-when-

averaged/). The correlation between expectancy and the average number of remember response 

per object was, r = -0.41, t(18) = -1.9204, p = .070, while the correlation between expectancy 

and the average number of familiar response was, r = 0.40, t(18) = 1.8752, p = .08.  
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Figure 7.1: Accuracy results (non-propagated): Recall (left panels) and recognition (right 

panels) performance plotted across expectancy ratings for all four Experiments 1, 2, 3a 

and 3b (rows). The red line shows locally weighted smoothing (loess) of data to illustrate 

how well the fitted 2nd-order polynomial model using non-propagated evidence (white 

line) represents the data. The thin grey lines show 1,000 randomly selected fits from the 

posterior distributions, illustrating the uncertainty of the fit. Expectancy ratings 

originally ranged from -100 to +100, but were scaled to have SD = 0.5 in order to enable 

standard priors. 
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Figure 7.2: Recollection & familiarity results (non-propagated): 3AFC recognition 

performance based on recollection (under independent or redundant scoring, left panel) 

and familiarity (under independent or exclusive scoring, right panel) estimates across 

Experiment 2, Experiment 3a and Experiment 3b (rows). The red line shows locally 

weighted smoothing (loess) of data to illustrate how well the average model (the white 

line) represents the data. The thin grey lines show 1,000 randomly selected fits from the 

posterior distributions, to illustrate the uncertainty of the average model. Expectancy 

originally ranged from -100 to +100, but were scaled to have a SD = 0.5 in order to enable 

standard priors. 
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Table 7.3: Interrupted regression results for recall: A U-shape was found for breaking point 6  for recall as the CI and the BFs (order 

restricted) indicated that both slopes are opposites signs and different from zero. 

Breaking 

point # 

Breaking 

point 

position 

β1 2.5% 97.5% BF10 
BF10 

(OR) 
β2 2.5% 97.5% BF10 

BF10 

(OR) 

1 -0.73 -0.01 -2.36 2.29 0.99 0.98 0.07 -0.15 0.29 0.13 0.19 

2 -0.58 0.27 -1.63 2.3 0.93 0.74 0.26 -0.01 0.54 0.8 1.54 

3 -0.42 -0.01 -1.3 1.28 0.63 0.64 0.52 0.19 0.86 17.1 34.16 

4 -0.26 -0.85 -1.8 0.08 2.41 4.64 0.53 0.15 0.92 7.06 14.06 

5 -0.1 -0.61 -1.23 0.01 2.08 4.05 0.72 0.23 1.22 13.59 27.11 

6 0.06 -0.78 -1.3 -0.28 27.46 54.89 0.69 0.06 1.34 3.18 6.27 

7 0.22 -0.38 -0.78 0.01 1.16 2.25 1.35 0.46 2.27 35.93 71.75 

8 0.38 -0.35 -0.67 -0.03 1.71 3.37 1.78 0.36 3.27 16.2 32.2 

9 0.54 -0.31 -0.58 -0.04 1.67 3.3 1.15 -0.72 3.45 1.65 2.89 

10 0.69 -0.19 -0.41 0.03 0.44 0.84 0.02 -2.31 2.35 1.05 1.05 
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Table 7.4: Interrupted regression results for 3AFC: No U-shape was detected for 3AFC as the CI and the BFs (order restricted) 

indicated that there is enough evidence that both slopes are opposites signs and different from zero.  

Breaking 

point # 

Breaking 

point 

position 

β1 2.5% 97.5% BF10 
BF10 

(OR) 
β2 2.5% 97.5% BF10 

BF10 

(OR) 

1 -0.73 0.01 -2.31 2.3 1.05 1.04 0.27 0.03 0.51 1.42 2.81 

2 -0.58 -0.63 -2.92 1.34 1.05 1.52 0.4 0.12 0.68 5.88 11.73 

3 -0.42 -0.54 -1.91 0.8 0.86 1.34 0.55 0.21 0.89 29.23 58.41 

4 -0.26 -0.84 -1.77 0.12 2.06 3.93 0.5 0.1 0.92 4.28 8.48 

5 -0.1 -0.51 -1.16 0.14 1.08 2.02 0.55 0.03 1.08 2.38 4.66 

6 0.06 -0.31 -0.82 0.21 0.49 0.87 0.75 0.11 1.42 4.36 8.63 

7 0.22 -0.01 -0.42 0.41 0.2 0.21 1.64 0.69 2.61 116.52 232.88 

8 0.38 -0.13 -0.46 0.21 0.22 0.33 2.24 0.71 3.95 44.31 88.42 

9 0.53 -0.19 -0.47 0.09 0.31 0.56 1.1 -0.78 3.57 1.5 2.57 

10 0.69 -0.09 -0.33 0.14 0.16 0.24 0.06 -2.28 2.5 0.99 1.04 
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Table 7.5: Interrupted regression for recollection: A U-shape was found for breaking points 6 - 9 in recollection as the CI and the BFs  

(order restricted) indicated that both slopes are opposites signs and different from zero. 

Breaking 

point # 

Breaking 

point 

position 

β1 2.5% 97.5% BF10 
BF10 

(OR) 
β2 2.5% 97.5% BF10 BF10(OR) 

1 -0.73 0.01 -2.3 2.38 1 0.99 -0.35 -0.54 -0.15 20.37 0.01 

2 -0.57 0.01 -1.8 1.88 0.87 0.86 -0.15 -0.42 0.11 0.24 0.06 

3 -0.42 -0.09 -1.41 1.19 0.64 0.71 0.08 -0.23 0.39 0.17 0.24 

4 -0.26 -0.77 -1.7 0.17 1.75 3.33 0.13 -0.24 0.49 0.23 0.35 

5 -0.1 -0.72 -1.35 -0.11 4.25 8.4 0.48 0 0.95 1.67 3.26 

6 0.06 -0.85 -1.36 -0.35 46.02 91.97 0.84 0.21 1.48 12.25 24.42 

7 0.22 -0.84 -1.23 -0.45 309.78 619.55 1.22 0.37 2.1 20.27 40.45 

8 0.38 -0.82 -1.15 -0.5 4342.91 8685.82 1.67 0.33 3.15 12.91 25.63 

9 0.53 -0.72 -0.99 -0.45 3570.19 7140.37 1.98 -0.13 4.77 4.39 8.45 

10 0.69 -0.62 -0.84 -0.39 3407.16 6814.31 0.14 -2.22 2.6 0.97 1.07 
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Table 7.6: Interrupted regression results for familiarity: No U-shape was detected for familiarity scored following independence 

assumptions as the CI and the BFs  (order restricted) indicated that both slopes are not opposites signs and different from zero. 

Breaking 

point # 

Breaking 

point 

position 

β1 2.5% 97.5% BF10 
BF10 

(OR) 
β2 2.5% 97.5% BF10 

BF10 

(OR) 

1 -0.73 0.01 -2.45 2.43 1 0.98 -0.18 -0.42 0.08 0.31 0.05 

2 -0.57 0.07 -2.04 2.09 0.92 0.86 -0.05 -0.39 0.28 0.17 0.13 

3 -0.42 0.21 -1.28 1.75 0.76 0.59 0.13 -0.26 0.5 0.23 0.34 

4 -0.26 -0.34 -1.45 0.74 0.61 0.9 0.24 -0.22 0.72 0.38 0.64 

5 -0.1 -0.76 -1.56 0.03 2.38 4.62 0.2 -0.36 0.79 0.35 0.53 

6 0.06 -0.56 -1.16 0.03 1.72 3.34 0.46 -0.27 1.21 0.76 1.35 

7 0.22 -0.45 -0.93 0.02 1.37 2.65 0.94 -0.06 1.98 2.86 5.53 

8 0.38 -0.61 -1.01 -0.22 16.76 33.48 0 -1.4 1.39 0.68 0.67 

9 0.53 -0.37 -0.69 -0.05 1.95 3.84 0.08 -1.77 2.04 0.89 0.94 

10 0.69 -0.27 -0.54 0.02 0.82 1.6 0.08 -2.3 2.52 1.04 1.09 
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