
rh D Jl-°l +If.

Quantitative Functional Complexity
Analysis of Commercial Software ·

Systems

Stephen G. MacDonell

Clare College, Cambridge

A dissertation submitted to
the University of Cambridge

for the degree of
Doctor of Philosophy

Department of Engineering, University of Cambridge

October 1992

11

Quantitative Functional Complexity Analysis
of Commercial Software Systems

Stephen G. MacDonell

Clare College, Cambridge

Abstract

This dissertation describes the development and validation of a software complexity
analysis strategy based on the functional requirements of commercial systems that
are to be developed using automated tools and techniques.

Software complexity has long been acknowledged as having a significant impact
on software product quality, in terms of the number of post-delivery errors, and on
the development process , in terms of personnel effort requirements. Such has been
the extent of this impact that more than ninety distinct techniques for complexity
assessment have been proposed. Changes in development technology, however, mean
that many are now obsolete; furthermore, problems of late derivation, subjectivity,
environment and personnel dependence and a lack of validation have impeded the
widespread acceptance of most techniques.

The increasing use of automated assistance in software development, however,
has provided an opportunity for significant advances to be made in commercial soft
ware complexity assessment. Computer-aided software engineering (CASE) tools
and application generators are now mature enough to enable extensive system gen
eration to be performed-direct transformation from specifications to final systems
is therefore possible. This process significantly reduces the influence of personnel
a:rid environmental factors on development, thus enabling more objective assessment
to be undertaken. A specification-based complexity analysis strategy has therefore
been developed and validated in this study. The effectiveness of the approach in the
discrimination and estimation of development effort and post-delivery error occur
rence has been tested using data taken from sixteen commercial projects developed
by ten different ? rganisations. The results of the analysis confirm the assertion that
functional complexity indicators are related to both system effort requirements and
the likelihood of post-delivery system errors. It is therefore recommended that the
results should be acted upon by project managers, and that the analysis scheme
should be tested with data from other projects to frirther enhance the assistance
that it provides.

lll

Preface

The work described in this dissertation was conducted at the Engineering Depart
ment and the Computer Laboratory of Cambridge University between October 1990
and October 1992. The analysis, results and discussions in this dissertation are the
work of the author and include nothing which is the outcome of work done in collab
oration. No part of this dissertation has been previously submitted to this or any
other university for any degree. This · dissertation contains approximately 50 OOO
words.

Many people deserve a vote of thanks for their assistance and encouragement
over the duration of this project. Special mention must go to my supervisor, Dr
Steve Young, whose patience, endurance and willingness to let me work with a free
hand enabled this study to reach a successful conclusion under somewhat trying
circumstances. The crucial assistance provided by William Mackaness and Steve
King during the development of this dissertation has also been greatly appreciated.

The involvement of commercial software development sites was clearly an es
sential component of this study. I would therefore like to express my gratitude to
those organisations that were bold enough to allow me access to their development
records, and more specifically to those individuals responsible-Dave Rourke; Kate
Head, Ben Stevens and Richard Neville; .Deborah Kingsbury; Bob Austin and Si
mon Shiu; Margaret Belson and Steve Devonald; Keir McClelland; Nigel Gale; Steve
King; Pete Brady; Lesley Butler, Paul Brombley and Ian Ashley. This study could
not have proceeded without their help.

This study would also have been impossible but for the generous financial assis
tance of a number of organisations. I would therefore like to acknowledge the contri

. butions of the Cambridge Commonwealth Trust, the New Zealand Vice-Chancellors
Committee, British Telecom plc, Clare College, Cambridge and the Cambridge Uni
versity Engineering Department.

Finally I would like to thank my family and friends . The self-imposed desire
to live up to the hopes and expectations of others is a powerful incentive. This
dissertation is therefore dedicated to my parents and to Sue, for their unceasing
encouragement and their constant belief in my ability.

Contents

1 Introduction 10
1.1 Introduction 10
1.2 Software Development and Complexity 11

1.2.1 Software Complexity 12
1.2.2 Traditional Approaches to Complexity Measurement 14

1.3 Research Objectives . 18

2 Commercial Software Specification 20
2.1 Introduction 20
2.2 Support for Focus on Specifications 20
2.3 Software Specification Techniques . 21

2.3.1 · Entity Relationship Diagrams 22
2.3.2 Data Flow Diagrams 25
2.3.3 Data Analysis and Data Flow Modelling Combined 27
2.3.4 Further Specification Perspectives . 29

2.4 Development Automation 30
2.4.1 CASE 31
2.4.2 Application Generators/ 4GLs . . . 32

2.5 Data Specification, CASE and 4GLs - An Integrated Approach 33

3 Specification-Based Functional Complexity Analysis 36
3.1 Introduction . 36
3.2 Software Understandability. 36
3.3 Functional Complexity versus Implementation Complexity 38
3.4 Specification Analysis Research 40

3.4.1 Current Specification Analysis Approaches 42
3.5 Opportunities for Improvement 51

4 · Proposed Analysis Scheme 53
4.1 Introduction 53
4.2 Scheme Development . . . 53
4.3 Rationale and Expectations 60

4.3.1 General Approach. . 60
4.3.2 Transaction Measures . 63
4.3.3 Functional Model Measures 65

4.4

4.3.4 User Interface Measures
4.3.5 Process Model Measures
4.3.6 Data Model Measures
Proposal Summary

V

5 Theoretical Validity and Empirical Procedures
5.1 Introduction .
5.2 Theoretical Validation

5.2.1 Theoretical Validity of Software Measurement
5.2.2 Validity of the Current Study

5.3 Empirical Validation ...
5.3.1 Evaluation Criteria
5.3.2 Systems Analysed
5.3.3 Statistical Analysis Techniques

6 Empirical Analysis Report
6.1 Introduction
6.2 Description of Samples .

6.2.1 Data Availability
6.3 Analysis Results

6.3.1 Sample One: Macroanalysis-Effort .
6.3.2 · Sample Two: Macroanalysis-Errors
6.3.3 Sample Three: Microanalysis-Effort
6.3.4 Sample Four: Microanalysis-Errors

6.4 Discussion of Results
6.4.1 Sample One: Macroanalysis-Effort .
6.4.2 Sample Two: Macroanalysis-Errors
6.4.3 Sample Three: Microanalysis-Effort
6.4.4 Sample Four: Microanalysis-Errors

6.5 Evaluation Summary and Recommendations

7 Conclusions and Recommendations
7 .1 Summary and Conclusions . . .
7 .2 Recommendations for Research

References

Appendices
A.l Development Site Response Results
A.2 Examples of Data and Statistical Analysis Output Listings

67
69
72
75

77
77
77
77
79
81
81
83
84

90
90
90
91
92
92

. 100

. 103

. 105

. 108

. 108

. 109

. 110

. 111

. 112

114
. 114
. 116

119

140
. 140
. 143

Vl

List of Figures

1.1 Complexity and software production

2.1 ER modelling notations
2.2 DFD modelling notations
2.3 DFD example under the Gane and Sarson notation
2.4 Process and data analysis in software development .
2.5 Five perspectives of a system specification

3.1 Transformation from data and process models to 4GL code

4.1 Goal/Question/Measure paradigm
4.2 Classification paradigm
4.3 . University department system data model example
4.4 Process model primitive example
4.5 Data model primitive example
4.6 Functional decomposition hierarchy example
4. 7 Screen example .

5.1 Boxplot diagram

14

23
25
26
28
30

37

55
57
59
59
59
67
69

87

Vll

List of Tables

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

6.1
6.2

. 6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19

Student entity-set

Previous failings and current solutions
Primitive function level transaction measures .
System level transaction measures
Example transaction measures
Primitive function level functional model measures
System level functional model measures
Primitive function level user interface measures
System level user interface measures
Primitive function level process model measures
System level process model measures
Example process model primitive measures ..
Primitive function level data model measures .
System level data model measures ...
Example data model primitive measures

Analysis samples
Significant correlations-macroanalysis indicators and effort
Macroanalysis-e:ff ort indicators chosen for further analysis
Independent macroanalysis-effort indicators
Macroanalysis-effort variable summary
Macroanalysis-e:ffort normality tests
Macroanalysis-effort classification method selections .
Macroanalysis-effort classification results .
Macroahalysis- effort estimation tests
Macroanalysis-e:ff ort regression test results . .
System effort estimation residual and error results
Significant correlations-macroanalysis indicators and errors
Macroanalysis-errors indicators chosen for further analysis
Macroanalysis-errors variable summary .
Macroanalysis-errors normality tests . .
Macroanalysis-errors classification results .
Macroanalysis-errors regression test results
System error estimation residual and error results
Significant correlations-microanalysis indicators and effort .

23

54
64
64
64
65
65
67
68
70
71
72
73
74
75

90
93
93
94
94
95
95
96
97
97
98

100
101
101
101
101
102
102
103

Vlll

6.20 Microanalysis-effort variable summary . 103
6.21 Microanalysis-effort normality tests . . . 104
6.22 Microanalysis- effort classification results 104
6.23 Microanalysis-effort regression test results 104
6.24 Primitive function effort estimation residual and error results . 105
6.25 Significant correlations-microanalysis indicators and errors 106 ·
6.26 Microanalysis-errors variable summary . 106
6.27 Microanalysis-errors normality tests 106
6 .28 Microanalysis-errors classification results . 106
6.29 Microanalysis-errors regression test results 107
6.30 Primitive function error estimation residual and error results 107

IX

List of Abbreviations

3GL
4GL
CAPO
CASE
CDM
CRUD
DBMS
DEO
DFD
ER
ERD
FDH
FP
FPA
GQM
IE
LMS
LOC
LS
MGM
MIS
RE
RLS
RSL
SARA
STES

Third generation language
Fourth generation language
Computer-aided process organization
Computer aided software engineering
Control and definition modularization
Create/read/update/ delete
Data base management system
Data elements flowing out of a system
Data flow diagram
Entity relationship
Entity relationship diagram
Functional decomposition hierarchy
Functional primitive
Function point analysis
Goal/ question/measure
Information engineering
Least-median-squares
Lines of code
Least (-mean)-squares
Metrics guided methodology
Management information system
Inter-object relationships
Reweighted-least-squares
Requirements specification language
System architect apprentice
Specification-transformation expert system

10

Chapter 1

Introduction

1.1 Introduction

Although still without standard definition, software complexity may be considered,
for the purposes of this study at least, to be a determinant of the difficulty encoun
tered by personnel in the development and maintenance of software systems. As
a characteristic of the software development process, complexity has long been ac
knowledged as having a significant impact on several important product attributes,
including quality, reliability and maintainability (Curtis [59]; Shepperd [222]; Hall
and Preiser [106]) . Complexity has also been recognised as an influential factor
concerning the effective management of development projects (Colligan and Nevill
[52]). This degree of importance has led to the development of more than ninety
techniques, or metrics , for the assessment of complexity (Munson and Khoshgoftaar
[181]). However, the effective application of a large number of these methods has
been imp eded by several problems-many are only useful at a very late stage in
the development process , some appear to be more dependent on the development
methods used and on the individual style and ability of programmers than on the
actual complexity of the software, and several are less than comprehensive in their
assessment (Sorensen [228]; Magel [1 69]; Case [40]; Samson et al. [217]). Moreover,
a large number of these techniques have been proposed with little industry-based
empirical justification (Bush and Fenton [37]; Myers [183]) , leading to widespread
scepticism of m~trics within the development industry (Kearney et al. [1 36]; Ince
and Shepperd [125]).

The increasing use of automated software development environments in the com
mercial software domain, however, has reduced the influence of implementation
methods and programmer abilities on development task difficulty (Tate and Verner
[242]) . It is therefore suggested that in an automated development environment
complexity analysis may be performed solely on functional specification products
rather than on the traditional products of the lower-level design and construction
phases. The overall intention of this research , then; is the development and vali
dation of a specification-based functional complexi ty analysis scheme applicable to
interactive commercial systems. Since a specification maybe viewed from a number
of perspectives the analysis approach suggested here attempts to consider aspects

11

of each representation, thus making the assessment more comprehensive than in
many previous methods. Validation will be based on data collected from several
industry sources with experience of development automation, from both the pub
lic and private sectors. Thus the term 'commercial system' is considered here to
include administrative and transaction-oriented systems from both the government
and business domains. It is envisaged that the results obtained from a statistical
examination of the analysis scheme data and the associated project management
records will provide evidence .of relationships between functional complexity levels
and project development tasks.

The remainder of this chapter describes the background to this research in terms
of software development approaches, in order to provide a basis for the subsequently
proposed objectives. It also considers software complexity as a general concept and
discusses the impact that complexity is thought to have on current development pro
cesses. General approaches to complexity measurement are then examined so that
an appropriate foundation for new assessment methods can be determined. Chap
ter 2 describes specification techniques that are widely used in the determination
of commercial system requirements. These techniques provide the representations
upon which the proposed analysis scheme is based. Advances in software develop
ment automation, which have had a significant impact on development difficulty, are
also investigated. The third chapter then examines in greater detail current com
plexity analysis methods that are based on functional requirement specifications as
represented in the notations described in Chapter 2. In light of the problems identi:..
fied in this discussion the new complexity analysis scheme is proposed in Chapter 4.
Chapter 5 considers the theoretical validity of the proposed approach and introduces
the procedures that are to be used in the empirical evaluation of the proposal. Chap
ter 6 presents the results and discusses the findings of the statistical examination.
The final chapter then summarises the study and considers the overall conclusions
that can be drawn from the results. Recommendations for future research are then
made.

1.2 Software Development and Complexity

As prescriptive methods for the development of software have evolved over the brief
history of computing, a number of techniques to make that development simpler,
more efficient and more effective have been suggested. Initially, the focus of these
suggestions was on improving system coding, as this was where the majority of
defects were introduced and where resource use was greatest . Approaches following
structured programming were therefore encouraged, to increase quality in the first
instance, maintainability in the second, and productivity as a whole. As the focus
shifted to one of software design improvement , new techniques emerged to assist
this activity (Beane et al. [15) ; Card et al. [39]). Assessments of module interaction
and self-cont ainment were suggest ed so as t o provide an insight into t he level of
strength in software design structures (Myers [i82] ; Troy and Zweben [246) ; Ince
[124)) . A high degree of strength , in terms of these often heuristic design attributes,

12

was perceived as having a positive impact on the ease with which a system could be
constructed and maintained.

More recently, increasing emphasis ha~ been placed on the requirements analysis
phase of development. Getting the requirements correct is seen as one of the most
important aspects of development, as the implementation of a wrong system, no mat
ter how quickly, still produces a wrong system (Boehm et al. [26] ; Harwood [116];
Bobbie (24]). Hence the system prototyping approach has emerged, enabling the
rapid generation of rriock-up systems that can be used to determine user-perceived
problems at an earlier stage than before. The use of computer aided software engi
neering (CASE) techniques has further enhanced this effort, with several early phase,
or front-end tools providing checking facilities for completeness and consistency in a
specification. This capability, coupled with automatic code generation, has in many
cases resulted in more rapid development of systems that provide functionality closer
to that which is expected by the user (Williamson [261]; Rinaldi [203]).

As stated above, the progression from one development approach to the next
was fuelled by the dual requirements for greater development productivity and for
systems of higher quality. Software complexity was therefore soon recognised as an
influential determinant of both productivity and quality. Thus as these development
approaches evolved, various methods for measuring or assessing the complexity of
software were also developed.

1.2.1 Software Complexity

Complexity, according to Chen [42], is the least known factor in programming; it
is not easily measured and is often ignored in system planning. This is despite the
fact that complexity is acknowledged as an essential aspect of all software (Brooks
[32]). It is clearly possible to build systems with differing degrees of complexity to
perform the same function. Every functional requirement, however, has an optimal
solution that has an associated level of inherent complexity (Bersoff et al. [19]). It
is this functional complexity that is the focus of this study. Firstly, however, it is
important to examine software complexity as a general concept so that a sound basis
for assessment can be developed.

Rather than provide a definition for software complexity, Waguespack and Bad-
lani [256] (p 52) classify it as a discipline:

Software complexity is an area of software engineering concerned with the
identification, classification and measurement of features of software that
effect the cost of developing and sustaining computer programs . As a
humanendeavor, programming is subject to behavioral and psychological
factors that eventually lead to the study of the human thought processes.

The incorporation of psychology in this classification is important in distinguishing
this area of interest from that of computational complexity. Psychological or con
ceptual complexity genera_lly 1:efei-s to the features of software that have an impact
on the ease of development, us~ and understanding of software from the human
perspective. Computational complexity, on the other hand, is concerned with the

13

quantitative assessment of problem solutions from a machine perspective, for ex
ample, algorithmic efficiency (Curtis et al. [61]; Curtis [59]; Ejiogu [75]). It should
therefore be noted that computational complexity is outside the scope of the current
study.

Due to its abstract and multi-dimensional nature (Bowman and Newman [30]) ,
complexity has proved to be difficult to define in a precise and objective manner;
in spite of this it has generally been accepted that software complexity is a ma-

. jor determinant of several other software product attributes, including quality and
maintainability (Bishop and Lehman [21]; Curtis [59] ; Yau and Collofello [267]). In
tuitive relationships such as these have prompted the large number of investigations
into various methods of complexity assessment. Complexity has also been recog
nised as having a significant effect on project management decisions, such as the
allocation of implementation and testing resources, or in the assignment of priori
ties for system maintenance (Fetzer [83]; Munson and Khoshgoftaar [181] ; Ivan et
al. [126]) . This is in response to the general expectation that a more complex piece
of software will take longer to develop, will contain more errors and will be more
difficult to maintain and enhance (Gremillion [103] ; Henry and Lewis [119]; Brooks
[32]) . This understanding has long been acknowledged (Weissman [259] , p 25):

It was realized [Naur and Randell 1968, Buxton and Randell 1969] that
complexity of programs must be drastically reduced to aid in their un
derstanding and maintenance.

Ultimately, it is the overall development and maintenance costs that are affected
by a product's complexity (DeMarco [68] ; Paulson and Wand [1 96]). The cost model
employed by Boehm and Papaccio [27] suggests that savings can be substantially
increased if complexity is effectively controlled. This in turn can contribute to
greater user satisfaction as well as to continued producer profitability (Bhide [20]) .
Figure 1.1 illustrates the overall influence that complexity is thought to impose on
the software development and maintenance process. Investigations into software
complexity assessment have therefore become more widespread in recent years as
the software development community has come to acknowledge the degree of influ
ence that complexity has on development tasks and on overall project management.
Some of the more traditional methods of complexity assessment are therefore now
addressed.

1.2.2

14

Software Development: Software Maintenance:

a. high reliability
b.· high productivity
c. low failure risk

l
i. reliable system
ii. rapid delivery

Desired product attributes:

Lead to:

i
Contribute to:

1
V. high User satisfaction

d. less frequent repair
e. easier repair and

enhancement

l
iii. planned enhancement/

upgrade programme
iv. higher development

productivity

v1. quality software products
vu. lower costs.

- Attributes a. to e. are believed to be influenced by complexity levels.
- Attributes i. to vii . are therefore indirectly influenced by complexity.

Figure 1.1: Complexity and software production

Traditional Approaches to Complexity Measurement
Over the last fifteen years, there has been an increasing amount of research into
the use of quantitative software measurement in the assessment of development ap
proaches. Software measurement generally involves the extraction of counts of vari
ous product and process attributes, based on the assumption that these counts may
be useful in determining or estimating other developrr:ient attributes. Thus the aim
of many proposed complexity measurement techniques has been to provide product
based predictions of attributes such as development time or post-implementation
error frequency.

The ultimate aim of any measurement procedure is to enable those responsible
to effectively control aspects of their operating environment. Most previously pro
posed software complexity measures evaluate the degree to which a given feature
exists within a system (Harrison [113]) with a view towards the prediction of, say,
project effort or cost (Cherniavsky and Smith [47]) . This approach is based on an

F

1.2.2

14

Software Development: Software Maintenance:

a. high reliability
b.· high productivity
c. low failure risk

l
i. reliable system
ii. rapid delivery

Desired product attributes:

Lead to:

i
Contribute to:

j
V. high user satisfaction

d. less frequent repair
e. easier repair and

enhancement

l
iii. planned enhancement/

upgrade programme
iv. higher development

productivity

v1. quality software products
vu. lower costs.

- Attributes a. to e. are believed to be influenced by complexity levels.
- Attributes i. to vii. are therefore indirectly influenced by complexity.

Figure 1.1: Complexity and software production

Traditional Approaches to Complexity Measurement
Over the last fifteen years, there has been an increasing amount of research into
the use of quantitative software measurement in the assessment of development ap
proaches. S0ftwc1,re measurement generally involves the extraction of counts of vari
ous product and process attributes, based on the assumption that these counts may
be useful in determining or estimating other development attributes. Thus the aim
of many proposed complexity measurement techniques_ has been to provide product
based predictions of attributes such as development time or post-implementation
error frequency.

The ultimate aim of any measurement procedure is to enable those responsible
to effectively control aspects of their operating environment. Most previously pro
posed software complexity measures evaluate the degree to which a given feature
exists within a system (Harrison [113]) with a view towards the prediction of, say,
project effort or cost (Cherniavsky and Smith [4 7]). This approach is based on an

assumption that the frequency of the counted feature has some impact on the pre
dicted attribute. This type of estimation is generally an ongoing, iterative process
that is achieved in the following manner:

1. development of a predictive model based on existing data and/or intuitive
considerations;

2. prediction of results based on the model;

3. collection of actual results;

4. comparison of actual and predicted results;

5. refinement of the model to accommodate the new results.

Although this type of procedure has traditionally been difficult to apply in the soft
ware development domain (Kitchenham and Walker [154)) , the impact of increasing
automation will reduce the influence of the many environmental, organisational and
personnel factors that have caused extensive deviations in the past. More effective
estimation should therefore be possible.

Unambiguous operational definitions of attributes such as complexity and quality
remain obscure (Evangelist [76) ; Bishop and Lehman [21)). Yet such has been the
perceived importance of software complexity, coupled with changes in development
methods, that well over ninety distinct techniques have so far been proposed for
measuring this characteristic (Munson and Khoshgoftaar [181)). Generally each
measure falls into one of the following five categories:

• lexical measures - derived through the counting of program code elements, for
example, statements or operators

• topological measures - derived in terms of control-flow, data flow and nesting
structure in programs

• structural measures - founded in the structural design of modular software to
consider procedure interconnection and cohesion

• hybrid measures - measures that incorporate features from two or more of the
previous classes

• functional measures - measures that may be derived from representations of
a system's functional requirement.

Thus the earliest methods of complexity quantification were lexical, derived simply
from the size of the programs being analysed. With the onset of structured program
ming, topological measures emerged, purporting to measure complexity in terms of
control and data flow and nesting levels within the code. As the focus shifted to

· · · design, so the development of structural metrics began. Measures were generally
based on the degree of module connection through control and data passing and
hier<;1,rchical module calls . More recently, functional metrics have been proposed,

16

providing an indication of complexity based on some aspect of a system's functional
representation. This is a traditional classification, in that measures are classed ac
cording to the way in which they are deriv.ed. More recently, however,,it has become
common to categorise measures based on the software product to which they are ap
plied, or to combine measures of the same attribute together irrespective of the way
in which the measures are derived. Factor analysis has also been performed on a set
of more than thirty measures in an attempt to determine the essential dimensions
of complexity (Munson and Khoshgoftaar [180] ; [181]) .

One of the most significant problems affecting accurate complexity measurement
has been a lack of underlying theory relating to the understanding and programming
processes. Evangelist [77] asserts that many proposed measures of complexity have
been advocated and used with little theoretical foundation, most having no model on
which to base their assumptions regarding human comprehension. This viewpoint
appears to be widely supported-Davis [64] , Kearney et al. [136] and Longworth et
al. [165] all make similar observations. This situation makes the complete validation
of techniques that are said to assess 'understandability' extremely unlikely.

A second obstacle to the more extensive acceptance of previously proposed com
plexity measures is the absence of metric validation over a wide range of languages
and applications. Evaluation of most measures has been performed with software
written in languages such as Fortran, Algol and PL/1 (Blaine and Kemmerer [23];
Han et al. [110] ; Spratt and McQuilken [230]). Furthermore, despite the fact that
many business applications are written in COBOL, and many scientific programs
in C and C++, there has been comparatively little work performed on applications
developed using these languages (Spratt and McQuilken [230]; Cote et al. [55]). This
has resulted in a situation where metrics have been shown to be quite effective for
a given language or type of application, but were then found to be completely in
appropriate for a different problem area or implementation method (Rodriguez and
Tsai [205]). General acceptance of these measures has th~refore not occurred.

Many of the measures have also seen widespread criticism because of their single
aspect concentration. Although complexity appears to be a multi-faceted property
that is influenced by a number of factors (Bowman and Newman [30]), most mea
sures are based on only one aspect of a single software product (Magel [169]; Taka
hashi and Kamayachi [237]; Rodriguez and Tsai [206]). Sorensen [228] and Berns
[18] suggest that this approach is too simplistic if objective and comprehensive in
dications are to be obtained. Yet Shen et al. [220] remark that the inclusion of a
greater number of factors is unlikely to provide a better estimation method. The
diverse combination of contributing factors has therefore impeded the development
of broadly applicable operational measures (Vessey and Weber [256]) . Jayaprakash
et al. [1 31] suggest that researchers are still unsure as to how all the components
of complexity can be assessed by one metric in a fair and balanced manner. So
despite significant deficiencies in several well known metrics , many are still receiv
ing extensive attention and consideration. Moreover, very little new work is being
undertaken, in spite of the fact that many measures " . .. provide only a crude index
of software complexity." (Kearney et al. [136], p 1050) . Weyuker [260] stresses that
the selection of appropriate metrics is made all the more difficult because it is not

17

always evident what a metric is actually measuring (also see Hollmann and Zuse [28]
and Fenton and Kaposi (80] for further discussion of this issue). Often it is claimed
that a measure may quantify characteristics such as implementation difficulty or
the likelihood of maintenance, but these are themselves vague, non-operational fea
tures. The overall result is an absence of co-ordinated metric collection programmes
in most software development organisations (Forte and Norman [89]).

All five measurement categories identified at the beginning of this section con
tain techniques that are undoubtedly related to at least some aspect of software
complexity. The lexical metrics, such as those developed by Halstead [107], reflect
the contribution of program size to the difficulty of software development and use.
The topological measures are based on well-founded assumptions regarding the use
of programs constructed under different procedural and data-flow strategies; see, for
example, McCabe [175], Davis and LeBlanc [65] and Nejmeh [189]. Structural mea
sures, such as those developed by Henry and Kafura [118] and Chapin [41] , attempt
to assess the effect of various design techniques on how difficult a system will be
to develop and maintain. It is generally accepted that designs that employ a large
degree of module connection and data passing are more difficult to implement and
enhance than systems containing fewer connections . The hybrid measures, since
they incorporate aspects of other measures, therefore incorporate the assumptions
of the categories from which their components are derived. Metrics of this type
are described by Harrison and Cook [114] and Li and Cheung [1 60]. Finally, the
functional class of metrics is based on the assumption that a rigorously developed
functional representation of a system will be directly related to the system that is
finally implemented to provide that function (DeMarco [68]).

Within the commercial environment, however, it is unlikely that measures from
all five categories will see continued use, particularly for project estimation tasks.
Both the lexical and topological categories contain measures that are of little value
in terms of early, useful feedback and subsequent estimation capabilities, due to
their late stage of derivation. Furthermore, many suffer from counting method in
consistencies, they generally consider only one low-level aspect of overall complexity
and they are inherently implementation dependent (Lennselius [158]; Bhide [20]).
The majority of the hybrid class metrics are also affected by these drawbacks as
many are derived from the lexical and topological classes. Extensive use of these
methods in the new commercial software domain is therefore unlikely. This is not
to say that measures from these classes will not be useful within other domains
or when applied in a maintenance environment-topological metrics, for . example,
may be effective when applied to the formal specifica~ions of scientific systems; or
some of these measures could be useful in reverse engineering projects. This study,
however, is only concerned with new commercial system development, and it is in
this environment that these criticisms are said to apply.

The development and use of structural design metrics is a significant advance
ment on the previous techniques. The basis of these structural methods in generally
accepted development principles, and the possibility of earlier determination, make
the metrics from this class far more deserving of attention. Yet uptake of these
methods by industry has been minimal, for a number of reasons- an absence of

18

automatic extraction capabilities has led to counting difficulties, as has the basis
of techniques in varying design notations (Oman and Cook (194)). What is more,
the apparent progress made towards having metrics that are derivable early in the
development process and that are also implementation-independent has not been
as significant as it at first appeared (Shepperd (222]). The utilisation of functional
metrics is still in the formative stages, despite the widespread recognition of the need
for early phase measurement. Subjectivity and environment dependence in particu
lar are significant problems that have been associated with some of these methods
including the technique developed by Albrecht [2], and the simplistic approach to
complexity quantification that some have adopted also seems inadequate. This class
of measures is discussed more fully in Chapter 3.

In spite of these problems, it is clear that the functional metric approach is
the most promising for future complexity analysis. The increasing use of applica
tion generators and CASE tools now presents an opportunity for the development
of analysis techniques that can overcome at least some of the problems associated
with the other metric classes. Due to the degree of automation that these tools
provide, the transformation from a system's functional requirement to an imple
mentation is made much more straightforward (Symons [236]; Verner et al. [254]) ,
thus reducing the impact of development personnel and implementation methods;
the multi-dimensional nature of specifications enables the assessment of complexity
from a number of perspectives, leading to a more comprehensive consideration; and
requirement representations are among the first tangible products of the software de
velopment process, so measures taken from them are likely to be among the earliest
available. Measures from functional representations have the potential to be useful
in comparing the complexity of both complete systems and individual functions , and
in assessing the impact that these levels of complexity have on the outcome of the
development process. The increasing use of CASE tools in the development of com
mercial software should therefore enable automatic , implementation-independent
assessment of functional complexity to be performed as an integral part of the soft
ware development and maintenance activities. This assertion may be more formally
expressed in the following research objectives.

1.3 Research Objectives

Complexity influences both the software product, in terms of error-proneness , and
the software development process, in terms of development effort. If relatively precise
relationships can be established between early indicators of complexity and project
management data, managers can then obtain a valuable insight into the likely out
come of a project in terms of effort expended and errors incurred . The overall aim
of this study, then, is to develop and validate an appropriate specification-based
funct ional complexity analysis scheme in order to determine relationships of inter
est to project managers. More specifically the study aims to achieve the following
objectives:

• the determination of problems associated with previously proposed functional
complexity assessment techniques

• the development of an analysis scheme that overcomes the failings of previous
methods

• the determination of relationships between functional complexity indicators
and project management data (relating to development effort and error occur
rence)

• the early determination of relative functional complexity indicators (in terms
of development effort and error occurrence) at both the system and individual
function level

• the classification of systems and individual functions according to their likely
project management consequences (in terms of development effort and error
occurrence) based on functional complexity indicators

• the development of equations for the estimation of project management data
(relating to development effort and error occurrence) based on functional com
plexity indicators.

The review of specification techniques in Chapter 2, along with the consideration of
issues relating to functional analysis in Chapter 3, provides the basis for the analysis
scheme as proposed in Chapter 4. This will represent the achievement of the first
two objectives. The empirical validation of the proposed complexity analysis scheme,
which appears in Chapter 6, will describe the achievement , in operational terms, of
the remaining four objectives.

20

Chapter 2

Commercial Software
Specification

2.1 Introduction

Software development in the commercial environment makes extensive use of mod
elling techniques, particularly in the early phases of the development process. At
the specification stage this enables both users and developers to obtain abstract
and concise representations of the requirements that a system is to fulfill. It is sug
gested here that representations such as these will be useful in providing relative
indications of functional complexity, particularly within an automated development
environment. This chapter therefore begins with an examination of literary support
for the use of software specifications as the basis for the proposed analysis scheme.
This is followed by a discussion of widely used specification techniques in commercial
software development. The impact and role of development automation, in terms of
computer aided software engineering (CASE) tools and fourth generation languages
(4GLs), are also examined in relation to the specification techniques.

2.2 Support for Focus on Specifications

The conclusions ·made in the previous chapter regarding functional complexity as
sessment methods suggest the continued development of similar early-phase tech
niques. Shepperd [222] suggests that the current level of understanding relating
to early phase complexity metrics is so limited that their use is almost exclusively
restricted to a subjective form of quality assurance. With the increasing develop
ment of automatic analysis and design tools, however, this situation should begin
to change (Cote et al. [55]) to reflect the growing need for pre~coding assessment
(Lanphar [156]). It has long been acknowledged that indications of final product
characteristics are needed well before the construction stage (Curtis [60]; Ottenstein
[195]; Gaffney et al. [92]) . The late availability and limited applicability of code
based metrics means that there is now little to support their use. This suggests . that
attention would be better directed towards design and specification measures (Ince

21

and Shepperd [125]; Fenton and Melton [81]).
The increased potential for feedback relating to the progress of development and

to the error-proneness of emerging products is the main motivation behind the use
of early-phase measures (Porter and Selby [197]; Compton and Withrow [53]). A
large proportion of development effort is often spent on rework, due to functional
difficulties that should be identified in the conceptual specifications (Brooks [32]) but
only become apparent in the later development phases. As maintenance costs are
far less significant iri. these early stages, there is clearly an economic requirement for
the early detection of specification problems (Boehm and Papaccio [27]; Dunsmore
[72]; Rodriguez and Tsai [207]). Indirect cost savings can also be made, given the
more efficient allocation of resources that may be performed based on early metric
analysis (Han et al. [110]) .

DeMarco ([68]; [69]) suggests that the attributes of an implemented system are
directly related to the characteristics of that system's input model. Given the highly
structured and semi-formal nature of several widely used specification models, it is
suggested that useful and consistent quantitative information relating to the system
function may be derived from these representations. Currently, very little is known
about analysing the complexity of requirements specifications. Nejmeh [189] sug
gests that this is due in part to the only recent emergence of formalised notations for
specification and design tasks. As the acceptance of these notations becomes more
widespread, however, assessment based on these formalised techniques will be more
frequently used to improve the quality of emerging products (Fenton and Kaposi
[80]).

The utilisation of graphic system models, such as those used in many specifica
tion techniques , also provides concise yet comprehensive representations of reality;
this enables inexpensive analysis of essential system aspects to be performed, with
out having to cope with excessive internal detail. A graphic model also provides
several other benefits-a common view is created for all involved in the develop
ment process , it is generally more easily refined, and it can provide the basis for
quantitative indications of the scope and complexity of the project at hand (De
Marco [68] ; Ramamoorthy et al. [200]) . Goering [99] remarks that CASE is still in
its infancy, but that analysis and design tools of the type described above are already
available, providing the facility for automated development of high level graphical
representations of systems ' processing and dat a requirements (Grady [101]) . With
the further development of integrated CASE environments, the automatic extraction
and application of metrics derived from specification representations is a possibility
that should be fully explored.

2.3 Soft ware Sp ecification Techniques

Two of the most widely used modelling notations for the specification of commer
cial software requirements are the enti ty relationship diav am arid the data flow
diagram. These representation methods are also semi-formal and they have been
incorporated into a number of automated development tools. They would therefore

22

appear to be ideal as appropriate representations for early-phase complexity analy
sis. The purpose of the following three sections, then, is to provide an introduction
to the terminology, concepts and use of entity relationship and data flow diagrams
in the development of software systems. They are not, nor are they intended to be,
exhaustive reviews of the techniques themselves. This examination is then followed
by a short discussion of several other common requirements specification methods.
Although not as widely used as entity-relationship and data flow diagrams, they still
provide structured descriptions of requirements and should therefore be considered
as candidates for functional complexity analysis.

2.3 .1 Entity Relationship Diagrams (ERDs)
Data analysis and data modelling are almost always among the first tasks per
formed in commercial software development. Particularly in the commercial systems
domain, data modelling is often considered to be more important than process anal
ysis because processes within a business enterprise may vary over time, whereas the
central data upon which those processes operate tend to remain relatively constant
(Bowker [29]; Eglington [73]).

The entity relationship (ER) modelling technique was initially proposed by Chen
[45] as a method that would enable developers and users of information systems to
attain a unified view of their data. Many extensions to the original model have been
subsequently proposed (for example, see Chen [46], Spaccapietra [229] or March
[171]) , although the principal theory remains intact. The ER model has two main
functions-it should provide a rigorous basis for database development and it should
also serve as an accurate and understandable communication tool for analysts and
users (Firns [86]; McFadden and Hoffer [176]). Two forms of entity relationship
modelling are considered here:

• the Chen method [45], which uses explicit relationships

• the Finkelstein approach ([84]; [85]), which adopts an implicit relationship
view.

As the function that these techniques perform is the same, many of the concepts are
overlapping.

An object or entity is a real-world phenomenon about which an organisation
would like to store information. For example, it may be a customer, a student, a
room, or an event. An entity-set, or object set , is a collection of similar entities.
The properties of entities in which an organisation is interested are called attributes.
Any entity-set can be described by way of a table. For example, Table 2.1 is a
representation of the STUDENT entity-set. Each row of the table corresponds . to
an individual entity (a student) and each column corresponds to an attribute of
the entity-set. Thus the attributes of the STUDENT entity-set in this example are
STUDENT-NO , STUDENT-SNAME and STUDENT-INff;

23

II STUDENT-NO I STUDENT-SNAME I STUDENT-INIT II
850144 Matthews ST
863289 Smith MF

Table 2.1: Student entity-set

Clearly the data objects in an organ1s~tion will be related to one another-for
example, a student studies a number of papers. The purpose of ER modelling, then,
is to provide a concise representation of the relationships between the entities that
exist in an organisation. Each relationship has two distinct properties: participation
and cardinality. The participation of objects in a relationship may be optional (0)
or mandatory (M). For example, a particular course of study must be associated
with a specific student, whereas a specific paper may or may not be part of a certain
student's course. Cardinality specifies the number of relationships in which an entity
may participate. Generally, cardinality may be one to one (1:1), one to many (l:n)
or many to many (n: m). As an example, a single co-ordinator may be in charge of
a number of papers (l:n), but certain papers will have only one co-ordinator (n:1).
Similarly, a number of students may take any combination of a selection of papers
(n:m). Figure 2.1 provides a simple illustration of the two modelling techniques,
including participation and cardinality considerations.

Student Student

M m

Course

0 n

Paper

0 n
Paper

M 1

Co-ordinator Co-ordinator

Figure 2.1: ER modelling notations

24

The left-hand diagram in Figure 2.1 has been drawn using an extended version
of the Chen approach [45]. The rectangles denote entity-sets, the diamonds relation
ship sets. Cardinality is represented on the right side of the connectors (l:n, n:m)
and participation on the left. The right-hand diagram is the same data model under
the Finkelstein notation. Symbols, rather than letters and numbers, are used to
represent the cardinality and participation of the relationships. Cardinality is illus
trated by the use of single and diverging connector ends known as 'crow's feet', with
the diverging connection representing a 'many' relationship. The bars and circles
are used to reflect the degree of participation, with the bar denoting mandatory par
ticipation and the circle, optional. In corresponding relational data structures, each
entity-set will be a table and each relationship will be a foreign key in the 'many'
component (Date [63]) under the Finkelstein approach. Under Chen's method, some
relationships will be represented by tables and others by foreign keys. In database
management system (DBMS) implementation, indices may be used to represent the
relationships. (Throughout the rest of this study the terms 'entity' and 'relation
ship' are used for convenience to represent entity-sets/object sets and relationship
sets respectively.)

Since its development during the 1970s, support among both practitioners and
academics for the use of ER modelling has become widespread (Choong and Church
er [49] ; Firns [87]) . It is currently the most widely accepted technique for logical
data representation in transaction-based systems (Choong and Churcher [49]; Kilov
[145]; Crozier et al. [58]) and it is still growing in popularity (McFadden and Hoffer
[176]). This is due to a number of factors, relating to the simple yet powerful
system representation that the method provides (Ferg [82]; Modell [179]). Bushell
[38] asserts that a major strength of the data model is its early determination of
the files that will be needed in a system. The models are developed independently
of the physical structure in which the data are to be stored (McFadden and Hoffer
[176]; Firns [87]); the relational model, however, has bei::ome increasingly popular
as the chosen implementation structure (Choong and Churcher [49]). According to
Firns [87] and Lloyd-Williams and Beynon-Davies [163], most commercially available
DBMS are based on the relational model. Furthermore, relational databases can
be derived directly from rigorously developed ER diagrams (Dawson and Purgailis
Parker [66]; Firns [87]).

Extensive use of the ER model in determining data requirements is likely to
continue in the foreseeable future, especially when it is considered that a large
number of automated development environments have adopted the ER modelling
convention as the basis for their data repositories (McFadden and Hoffer [176]) .
For example, ERMA, Teamwork, IEW / ADW, ProKit Workbench, Data Modeller,
Software through Pictures, Excelerator, Blue/60, ER-Designer and IRMA all use
the ER model in the derivation of data specifications for software systems. Thus
the suggestion that the ER model is an appropriate early system representation that
could be used as a basis for complexity analysis seems justified.

2.3.2 Data Flow Diagrams (DFDs)
The structured analysis methodology proposed by DeMarco [67) includes a procedure that enables the iterative identification of the activities to be performed by a system, the external entities that interact with that system, the logical data stores in that system and the various data flows between all of these components. One of the most widely used top-down approaches for the depiction of a system in these terms is the data flow diagram (DFD) (Shoval and Even-Chaime [226] ; Roman [209]). There are two main notations for hierarchically depicting the flow of data through a system. These are the Yourdon/DeMarco notation (DeMarco [67)) and the Gane and Sarson notation [93] (see Figure 2.2). Figure 2.3 is a small example of a DFD developed under the Gane and Sarson approach, depicting the fictitious costing and accounting processes of a small manufacturing company.

4.1

Revise
Balance

Order

Customer

Invoice

Process

Data Flow

Source/Sink or
External Entity

Data Store

-

4.1

Revise
Balance

Order

Customer

I Dl I Invoice

Figure 2.2: DFD modelling notations

I

Each element in a DFD is labelled for identificat ion purposes-some are also numbered . depending on the notation method adopted. Processes depict a system activity performed on one or more inputs to produce one or more outputs. All of these inputs and outputs are represented as flows of data elements. The int eracting external ent ities either supply data for use in the system or consume data produced

by it. The data stores represent repositories that may be written to or retrieved
from by the processes.

I

Pattern Shop Product

Details ~ .

1.3.1

Account Settle
History Latest

Accounts

I Dl I Account History Ace ount ·

Update

D3 Customers

1.3.2

Costing
Requirement

Determine
Costing
Estimate

Latest
Expenses

D2 Current Accounts

Figure 2.3: DFD example under the Gane and Sarson notation

Any transaction-based system may be represented by a network of hierarchi
cal DFDs, based on the top-down decomposition of system processes. Usually an
overview or context diagram is developed first, depicting the system in terms of its
external environment-this should be similar to a high-level functional decompo
sition. Further partitioning normally includes the development of one second-level
diagram and then any number of lower level diagrams, until an· processes are ele
mentary (DeMar_co [68]) . Hence in large systems, a single function can be exploded
many times over until an adequate amount of detail is described and analysts are
able to understand the processes fully (Senn [218]). This is normally achieved when
the processes are at a level where they describe detailed computation (Keuffel [143];
Hawryszkiewycz [117]) . Senn [218] therefore suggests' that processes for exception
and error handling should only be shown below the second or third level diagrams.
Labelling of lower level processes follows a convention of decimal place addition.
For example, if a second level process that is labelled as process 2 is exploded to
three more processes at level three, these processes would be labelled 2.1, 2.2 and
2.3 respectively. Similarly if process 2.3 was exploded to two lower-level activities,
these would be denoted as 2.3.1 and 2.3.2.

As the DFDs provide a logical or functional model of the system, procedural con-

27

trol is not depicted (Senn (218); Eisenbach et al. [74]) . Similarly, timing is irrelevant
at this level; clearly processes may occur in different sequences at different times in
an organisation's operations (Keuffel (142)) . There is also normally no consideration
of physical equipment or procedures. Although DFDs were first described in the
1970s they are still used extensively in commercial and scientific software develop-

. ment, as part of the structured analysis methodology. This methodology is well
known and widely employed (Shoval and Even-Chaime [226]; Karimi and Konsynski
[135)), with the use of DFDs being central to this technique (Hawryszkiewycz [117) ;
McFadden and Hoffer [176); Hsu [122); Tse and Pong (249)).

Apart from supporting the popular hierarchical problem-solving process, DFD
exploding also improves the readability of a representation. "One ought to be able to
look at a DFD and, from it, understand what the system is doing." (Hawryszkiewycz
[117), p 82). Rigorous decomposition of the diagrams is also consistent with the
subsequent use of modularity and structured programming in achieving easily com
prehensible, cohesive and maintainable code (Hawryszkiewycz [117); Tse and Pong
[249)). As well as serving as an effective communication tool, DFDs are a significant
aid in the development of processing logic (Godwin et al. [98) ; Benwell et al. [17]) .
Direct transformation from DFDs to module structures has been examined by Tsai
and Ridge [247) and Karimi and Konsynski [135) and the direct execution of DFD
representations has also seen some discussion (Tate and Docker [241]; Eisenbach et
al. [74); Keuffel [144]).

Given the increasing use of automated assistance in software development, fa
cilities for direct system generation from abstractions such as DFDs should become
more widespread. There are already a large number of commercially available tools
that employ data flow techniques (for example, Aut2, Prosa, Teamwork, Excelerator,
ProKit Workbench, IEW / ADW). Most include features that assist in the develop
ment of robust specifications; for example, the enforcement of consistent element
definitions, the detection of duplicate names, process balancing and co-ordination
with the data repository. Processing requirements as depicted in DFDs may con
tribute to the overall functional complexity of a complete specification. Thus any
assessment of complexity should consider aspects of the process model.

2.3.3 Data Analysis and Data Flow Modelling Combined
Specifications include both data and processing requirements, so both should be
considered in an assessment of complexity if this assessment is to be comprehensive.
However the two discussions above are generally exclusive; that is, the methods for
data and process modelling are quite distinct and interaction would appear to be
minimal. Teorey et al. [245] suggest that the requirements analysis procedure should
determine or describe:

1. the enterprise's data requirements;

2. the information needed to model these requirements;

3. the transactions that are to be performed on the data.

28

Many individual specification techniques address either database requirements, as in
numbers one and two above, or processing requirements, number three, but not both
(Keuffel [139]; Freeman [91]). Whereas this has in the past been considered to be
a significant problem, recent integration of the distinct techniques using automated
assistance has proved to be a successful approach. Thus the procedure of detailed
requirements analysis, in the commercial domain at least, frequently consists of two
areas-data analysis and processing analysis (Rosenquist [210] ; Gray et al. [102]) .
This approach is illustrated by Benwell et al. [17] in Figure 2.4, with the implication
that both data flow and data structure models be used during the analysis activity.

Data Flow ·
Model (DFD)

REALITY

Function and
Process Model

Data Structure
Model (ERD)

Algorithms Database Schema

~ /
Prototype

i
INFORMATION

SYSTEM

Figure 2.4: Process and data analysis in software development

A number of methodologies and authors promote the use of one technique ahead
of the other. For example, Jackson [129) and McFadden and Hoffer [176) suggest
that the development of process models is useful in supplementing data analysis
procedures. On the other hand, Zahniser [268] and Senn [218] assert that processing
analysis is enhanced by data requirements determination. Mantha [170] and Mac
donald [167] suggest , in fact , that any development must use both data flow and
data structure models , as an understanding of only one dimension will not result in
a good final system. The question therefore arises as to which should be performed

28

Many individual specification techniques address either database requirements, as in
numbers one and two above, or processing requirements, number three, but not both
(Keuffel [139]; Freeman [91]). Whereas this has in the past been considered to be
a significant problem, recent integration of the distinct techniques using automated
assistance has proved to be a successful approach. Thus the procedure of detailed
requirements analysis, in the commercial domain at least, frequently consists of two
areas-data analysis and processing analysis (Rosenquist [210] ; Gray et al. [102]).
This approach is illustrated by Benwell et al. [17] in Figure 2.4, with the implication
that both data flow and data structure models be used during the analysis activity.

Data Flow ·
Model (DFD)

REALITY

Function and
Process Model

Data Structure
Model (ERD)

Algorithms Database Schema

~ /
Prototype

i
INFORMATION

SYSTEM

Figure 2.4: Process and data analysis in software development

A number of methodologies and authors promote the use of one technique ahead
of the other. For example, Jackson [129] and McFadden and Hoffer [176] suggest
that the development of process models is useful in supplementing data analysis
procedures. On the other hand, Zahniser [268] and Senn [218] assert that processing
analysis is enhanced by data requirements determination. Mantha [170] and Mac
donald [167] suggest, in fact, that any development must use both data flow and
data structure models, as an understanding of only one dimension will not result in
a good final system. The question therefore arises as to which should be performed

29

as a first step. Bushell [38) and Hawryszkiewycz [117), however, both suggest that
it simply does not matter. Achieving the overall specification is an iterative process
that often takes the analyst from one technique to the other until all the details of
both data and process requirements have been determined. Moreover, recent discus
sions have promoted the concept of relating entities to data stores so that data and
process representations can be more closely linked (Harel [111); Lee and Tan [157)).
This integration will further enhance the consideration of both representations in
the assessment of functional complexity.

2.3.4 Further Specification Perspectives

Although the data modelling and process modelling specification methods are the
most widespread in the commercial systems domain, they are not totally exclu
sive (Tate and Verner [243)). Three further secondary specification representations
are also commonly used in the description of requirements. These are the transac
tion and user interface representations and the functional decomposition hierarchy
(FDH).

Transaction representation - this specification approach is popular within the
database systems community. Each elementary function in a system may be
considered in terms of the individual operations that it performs on single

· entities. For example, a process to update a customer's address may read
the customer and account entities, then update the customer entity. Given
adequate decomposition, low level functions or processes may be specified in
this manner, providing assistance for the subsequent development of processing
logic. Thus it may be considered to be a representation that combines both
data and process requirements. It may therefore provide the basis for more
comprehensive complexity indicators.

User interface representation - a perspective that is particularly applicable to
development projects in which prototyping methods and 4GLs are used , given
that the development of an acceptable interface can be a significant chunk of
the overall effort expended in this type of environment. This representation
essentially provides models of the screen and report formats that are to be
subsequently implemented in the system. As interactive systems , by their
very nature, use screen displays, and many transaction processing systems
produce reports, a consideration of the complexity of this representation is
essential if an overall assessment of complexity iq to be obtained.

Functional decomposition hierarchy - often produced as a levelled description
of the functions to be provided by a system, this representation normally
illustrates the module calling structure that will eventually be generated or
constructed. The number and interaction of the modules are likely to have an
impact on system complexity so this representation should also be considered
in any functional assessment scheme.

30

Thus all five specification perspectives, as depicted in Figure 2.5, are quantifiable in
terms of the contribution that each may make to the overall complexity of a complete
specification. Consideration of each should help to ensure that the assessment of
complexity is as comprehensive as possible.

Data model - ERD

Primitive Function
No. 12:

Entity operations:

Read Read
Update

Transaction
Representation

Primary perspectives

Secondary perspectives

User Interface
Representation

Process model - DFD

Functional
model- FDH

Figure 2.5: Five perspectives of a system specification

2.4 Development Automation

Up until less than ten years ago software development was a largely manual activ
ity. This created a situation where both the software product and the progress of
software development were significantly influenced by the people .involved in a given
project. Thus estimation of project management outcomes using program-based
complexity indicators was fraught with difficulties, as the impact of personnel abil
ity was so great. Recent advances in technology, however, have greatly extended
the degree of automation that may be applied to software development tasks . It is

31

therefore suggested that this will greatly reduce the effect of specific personnel on
the outcome of a project. More effective estimation should therefore be possible. In
terms of early-phase automation, CASE tools are becoming increasingly accepted
in mainstream data processing environments (Chen and Norman [43] ; Brown and
McDermid [33]).

2.4.1 CASE

CASE represents a comprehensive philosophy for modelling businesses, their activ
ities, and information systems development within this environment (Gibson and
Senn [96]) . It is often defined as the application of automated technologies to tradi
tionally manual software engineering and development processes. The objectives of
CASE use include the improvement of development productivity and product quality
and the achievement of greater control over the software development process (Case
[40]; Factor and Smith [78]). The term 'CASE' itself, however, has been used more
widely as a descriptive term for the vast assortment of automated development tools
that have become available over the last nine years (Burkhard and Jenster [36]).

Acceptance of CASE technology has been gradual over this period, but it is
now seen as an integral component of software development in the commercial sys
tems domain (Vargo and Kong [251]; Keuffel [138]). Jones [133] suggests that the
fundamental concept of the CASE approach to development is one of economics
traditional development, without automation, is simply too labour-intensive to be
viable (Tate et al. [244]). This is particularly the case in the business sector. Thus
the majority of CASE tools have been produced for use in this application area
(Chen et al. [44]). As a generic term, the functionality of products described under
the CASE banner varies widely, ranging from simple diagramming tools to inte
grated systems that enable an analyst to produce detailed requirement models and
automatically generated systems (Williamson [261] ; Haddley and Sommerville [105] ;
Firns [87}). It has been suggested that in time CASE tool sets will largely displace
programming in the construction phase (CIS [50]). Burkhard and Jenster [36] assert,
however, that CASE will only be successful if it can be applied to all development
phases , as single-phase concentration will not have a significant impact on overall

· quality outcomes.
One of the m9st notable benefits of CASE use is the resulting improvement in

development productivity. This is most often the reason that organisations cite for
the adoption of CASE technology (Bishop and Lehman [21]; Horch [121]) , and has
been shown to be the outcome in a number of cases {Buckler [35]; Burkhard and
Jenster [36]; Statland [232] ; Snyders [227]). Another of the promised benefits that
CASE provides is an increase in the quality and accuracy of the software product
(Rummens and Sucher [214] ; Belson and Devonald [16]) . Improved quality is nor
mally assessed in terms of reduced error occurrence and change requirements in the
delivered product. Thus the real benefits of CASE use are the early det.ection of
errors or functional inconsistencies (Glass [97]) , and the ease with which these prob- .
lems can be resolved in an automated environment (Rinaldi [203] ; Williamson [261] ;
CIS [50]). This is most often achieved in CASE tools through the use ofautoma.tic

32

specification and design consistency checks (Forte and Norman [89] ; King [148) . The
dual goals of productivity and quality improvement would seem to suggest that the
future widespread use of CASE technology is assured:

While CASE is not a panacea for developers' problems, it does appear
that its clear focus on quality and productivity will make it the next gen
eration environment for building and maintaining bespoke applications
(King [146] , p 37).

This supports the continuing use of CASE and other automated tools in software
development, an issue central to this study, in that automation must be extensive if
functional complexity analysis and subsequent estimation are to be effective.

2.4.2 Application Generators/4GLs

Whereas CASE tools have generally been developed for use in the early phases
of development , the focus of 4GLs has been on the simplification of coding and
testing (Norman and Chen [191]). Automation of these activities is also crucial
to the development of an appropriate functional complexity analysis scheme, in
that generally applicable relationships can only be established when automation
is evident throughout the life cycle. Just as the term CASE covers a wide array
of tools and techniques, so the term '4GL' encompasses many differing products.
Also known as application generators , these database oriented product-sets normally
contain some or all of the following components (Gavurin [94]) :

• data entry /update screens with validation

• prototyping facilities

• non-procedural query languages

• screen painters

• report generators

• a centralised data repository

• intelligent defaulting

• code generation facilities.

4GLs evolved because of the need for increased productivity and quality in com
mercial software development. They offer environments where DBMS support is
provided to maintain data independently of applications (Firns [87]). The lan
guages generally enable developers to focus on t he problem to be solved rather than
on how they should solve it (Clarke [51]). Thus developers a:r~ relieved of lengthy
implementation details (Chen et al. [44]; King [146]) and may theref~re concentrate
on ensuring correct system functionality.

33

One of the most widely promoted features of 4GLs is the non-procedural nature
of query and report requests. For example, suppose a company report is required
listing the last names of all employees on file with their unique employee number,
and the date on which they started work, in alphabetical order of employees' last
names. Using Cognos Inc.'s PowerHouse product, this could be achieved with the
following (MacDonell [168]):

ACCESS EMPLOYEES
SORT ON LASTNAME
REPORT LASTNAME, EMPLOYEE-NO, START-DATE.

Thus the primary strength of these products is often seen to be the relatively small
working set of commands that is needed to perform often complex data manipu
lation. 4GLs are therefore able to provide an environment for the development of
systems to an operational level of user acceptance in a timely and cost-effective
fashion (Sallis [215]; Alavi and Wetherbe [l]) . The system prototyping approach,
enabling the rapid development of mock-up systems, almost always depends on the
use of a 4GL (Keuffel [144]). This procedure allows for a greater degree of communi
cation between users and designers concerning the functionality of systems (Mason
and Carey [174]; Jarke [130]) , leading to decreased maintenance requirements as
fewer errors and omissions are made during the early phases of development (N ecco
et al. [188]; Sumner [234]).

Due to the use of English-like structures 4GLs may also be used by personnel
other than those formally trained in systems development (Senn [219]; Lin [161];
NCC [187]), often enabling a quicker response to application requirements (Lloyd 's
[162]). Harel and McLean [112] found evidence for the hypothesis that , based on a
subjective assessment of task complexity, programmers of any skill level were more
productive with a 4GL than with a 3GL, no matter what the complexity of the
task. It should therefore be clear that in the development of commercial appli
cations the need to program complex software can now be largely avoided, as the
design and construction of the logic can be carried out relatively easily through the
use of appropriate database techniques implemented in English-like 4GLs (Martin
and McClure [173]). Data entry programs in particular can be generated almost
automatically ba_sed on centrally stored data definitions . Similarly, simple or stan
dard output formats can also be directly generated. Thus programmer-independent
development from specifications is possible, further enhancing the opportunities for
effective functional complexity analysis .

2.5 Data Specification, CASE and 4GLs - An
Integrated Approach

Although there are certainly a number of development methodologies that do not
use the above tools ci;nd techniques it would still seem reasonable to suggest that
automated structured specification and development methods will continue to be
used within the business community for the foreseeable future. This is due to a

34

number of reasons, including vendor commitment to automation, user investment in
tools and methods and, to a lesser extent, tradition. This will lead to more extensive
tool and method integration, resulting in the provision of a single development and
maintenance environment (Jones [132]; CIS [50]; Stamps [231]). It is therefore en
visaged that the proposed complexity analysis strategy, which assumes the existence
of such an environment, will not become obsolete in the near future.

The integration of structured specification' methods within CASE tools is very
much part of today's technology. Necco et al. [188] conclude that structured anal
ysis techniques will be used increasingly, due in part to the more practical and
economic environment that CASE provides for them (Chikofsky and Rubenstein
[48]) . The data flow and data analysis methodologies appear to be particularly well
supported in current CASE products (Gray et al. [102]; Robinson [204]), in response
to perceived analyst requirements. One empirical survey of forty-six management

. information system (MIS) professionals highlighted a large degree of interest in as
. sistance for the development of DFDs, code generation, specification definition and
data modelling (Burkhard and Jenster [36]). Another study used multi-dimensional
scaling and cluster analysis techniques to investigate the perceptions of ninety-one
software engineers relating to the impact of seventeen tools and techniques on pro
ductivity. By performing 136 pair comparisons, automated DFD assistance was
chosen as the most effective tool for increasing productivity over manual methods.
The use of data dictionaries was the next most frequently chosen aid. ER or data
modelling was ranked eighth, ahead of lower level support tools such as structure
chart and structure diagram editors and record layout generation facilities (Norman
and Nunamaker [192]). In another examination of twelve CASE tools, Vessey et al.
[255] found that all of the products investigated included DFD assistants and eight
of the twelve included ER modelling facilities.

The apparent popularity of DFD generation assistance is not unexpected. DFD
production is an integral and often first step of most structured development meth
ods in the commercial environment, yet without automated assistance it has been a
time-intensive manual activity. This has now been largely overcome with the avail
ability of automated tools (Case [40]; Burkhard and Jenster [36] ; Chikofsky and
Rubenstein [48]). In terms of data modelling assistance, the basis for the central
data dictionary in CASE tools is frequently the ER model (Choong and Churcher
[49]; Keuffel [1 38]). Turnbull [250] therefore suggests that systems developed from
ER model foundations will be at the heart of future projects. The interface between
a 4GL and an underlying DBMS is usually provided by a data dictionary, the basic
inputs for which may be specified by ER models-ER modelling is therefore cen
tral to the development of systems using 4GLs (Firns [87]). Moreover, Sallis [21 6]
states that many CASE tools already have an interface to the functionality of 4GLs ,
through the . use of centralised data dictionaries. Existing application generators
have therefore been extended to include graphic CASE assistance in earlier devel
opment phases (Clarke [51]). Thus 4GLs are now often referred to as lower CASE
products (King [14 7]).

Given that this comprehensive environment is, or will be, widely used in the
commercial domain , new complexity analysis schemes should intuitively be based

35

on aspects of the products and processes that are part of this environment. Data
structure and data flow representations, widely used in the business systems domain,
therefore provide the basis for many of the analysis scheme measures proposed in
Chapter 4. The increasing use of automated tools in the commercial development
domain would also suggest that any assessment scheme should be applicable to such
an environment- the proposal therefore assumes that automated assistance in de
velopment is extensive. Automation also has a number of implications regarding
software understanding, examined in the next chapter. Finally, to ensure applica
bility of results, the systems used in validation should also be representative of this
setting; that is, they should be specified and developed using structured data repre
sentation techniques in an extensively automated environment. Hence the systems
used in the validation phase of the current study, described in Chapter 5, match this
classification.

36

Chapter 3

Specification-Based Functional
Complexity Analysis

3.1 Introduction

Complexity has often been considered to be synonymous with, or at least related
to, understandability; that is, software that is more complex will generally be more
difficult to understand. Objectively assessing ease of understanding, however, is
extremely difficult and can be easily confounded by external factors. In spite of
this, a number of complexity analysis techniques have purported to measure the
understandability of implementations. This chapter therefore considers the role of
software understandability in an automated environment. Implementation methods ,
also considered to be significant contributors to complexity, are of less influence in
an automated environment. The applicability of traditional implementation-based
measures in assessing functional complexity is therefore also discussed. Current
specification analysis methods are then critically reviewed in order to provide a basis
for improvements that may be incorporated into the assessment scheme proposed in
this study.

3.2 Software Understandability

Several complexity assessment methods have concentrated on measuring the diffi
culty encountered by developers in understanding software implementations. The
increasing use of CASE techniques and 4GLs in business software development,
however, makes the transformation from specification to final system much less de
pendent on implementation methods or on the styles and abilities of individual
programmers (Tate and Verner [242]; see Figure 3.1 for an illustration of the trans
formation process (McFadden and Hoffer [176]). Relative levels of implementation
understandability are therefore of less importance when it comes to assessing the
ease with which software developed under an automated environment can be con
structed and maintained.

DATA MODEL: PROCESS MODEL:

Student S-No,S-Sname,S-Init

Dl Co-ordinator D2 Student

Course S-No,P-No,Grade 3.4.2.2 Student data

Create -
Co-ord data Class Paper data

List
I

Paper P-No,P-Name, C-Name
1 Lecturer Class List

D3 Paper

Course
data

-
Co-ordinator C-Name,C-Room I D41Course

~~
---------- t------------------1-------------------t-------------------

DATABASE TABLES:

Student:

S-No S-Sname S-Init

850144 Matthews ST

863289 Smith MF

etc.

PROCESS SPECIFICATION:
1. Establish table links

I
2. Choose PAPER
3. Read CO-ORDINATOR for that PAPER

t 4. Print report header
, 5. Read next COURSE for that PAPER

I
I

6. Read the STUDENT record for that COURSE
7. Print report detail line
8. Repeat steps 5-7 for each COURSE.

---------------------..-------~--------~---------------------------+
4GL CODE:

ACCESS ·CO-ORD LINK TO PAPER LINK TO COURSE LINK TO STUDENT
SELECT IF P-NO OF PAPER= "IS301"
SORT ON S-SNAME OF STUDENT
HEADING ATC-NAME OF CO-ORD "Paper Num:" P-NO OF PAPER &
SKIP "Paper Name:" P-NAME OF PAPER SKIP "Co-ordinator:" C-NAME &
OF CO-ORD SKIP 2 "Student Name: Grade:"
REPORT S-SNAME OF STUDENT S-INIT OF STUDENT GRADE OF COURSE

Figure 3.1 : Transformation from data and process models 'to 4GL code

A number of specific complexity measurement techniques have been said to quan
tify the understandability of software systems with the objective of relating under- •.
standability to effort requirements or to the likelihood of errors (Evangelist [76];
Bastani [12]; Harrison and Magel [115] ; Chapin [41]) . This claim is generally unjus-

38

tified, as understandability is by its very nature dependent on the individual who is
attempting to understand the software-it is clearly more probable that a student
programmer would have significantly more difficulty comprehending a system than
would an experienced developer. Understandability is therefore relative and can
not be effectively measured without including some consideration of the individual
programmer involved. The assessment of programmer ability has its own problems,
however-who is to say that two programmers who have worked with the same lan
guage in the same environment for the same length of time will have the same ability
to comprehend software? Generalisation of results derived from individuals over the
development population is therefore often difficult, if not impossible. This is not a
totally fruitless situation, however. The fact is that development managers are not
interested in the level of understandability per se; rather they are concerned with
the impact that complexity has on other process and product attributes.

As previously discussed, it has been widely suggested and generally accepted
that a more complex system will indeed be more difficult to understand (Harrison
and Cook [114] ; Lew et al. [159]; Rodriguez and Tsai [207]) , and it is therefore
in this area where much of the previous complexity assessment work has been fo
cused. Operational measures provided to reflect this difficulty of understanding have
been based on a diverse selection of factors, for example, the number of errors that
are found during development, development effort, or the number of post-delivery
modifications required. It is, however, exactly these factors in which the project
manager's interest lies. The fact that system 1 may be one-third as difficult for
programmer z to understand as system 2 is of little practical use to the manager.
What he or she wants to know is how the fundamental complexity will affect, say,
the overall development time estimates, or the current predictions for testing re
quirements. Furthermore, quantifying levels of system understandability has also
become less important with the use of integrated CASE tools and 4GLs (Nelson
[190]), particularly in the development of new transaction processing and data re
trieval systems. Once a specification has been completed, direct system generation
reduces the need for interpretation from the specification to the coded product (Kerr
[137]; Lin [161]; Crozier et al. [58]). It is therefore suggested that an analysis of func
tional complexity based on software specifications can be performed without regard
for 'understandability' , to provide direct and independent estimates of system de
velopment attributes.

3.3 Functional Complexity versus Implementa
tion Complexity

Just as all systems written or developed under a particular language or method are
directly affected in terms of complexity by that method, so too are they directly
affected by the function that they are to perform. That is to say, a piece of software
to perform a given function will have an inherent degree of complexity, regardless
of the chosen method of implementation. Under a largely automated environment,
then, functional complexity is likely to be much more significant than implemen-

39

tatiori. complexity. Most previously proposed complexity measurement approaches,
however, are based solely on implementation complexity, as discussed below.

• Lines of code-type measures are clearly from the implementation-based cat
egory; they make no consideration of what it is that the lines do, only how
many there are. Hence, two distinctly different systems, in terms of what they
do, can have the same level of 'complexity' under these counting schemes.
Furthermore, lines of code are now a far less visible software product due to
the use of automated development environments.

• Software science metrics (Halstead [107]). Although Halstead attempted to
incorporate psychological aspects into his measurement family, all of the in
dividual measures are based, in part at least, on the frequency of operators
and/or operands. These counts are again directly dependent on the method
of implementation. The only possible exceptions are the potential volume and
derived measures (program level and others). The accuracy and derivability
of potential volume has, however, been questioned (Naib [185] ; Hamer and
Frewin [108]), placing some doubt over the applicability of these measures.
Furthermore, the underlying psychological models employed by Halstead have
also been widely criticised (Coulter [56]) .

• Cyclomatic complexity (McCabe [175]) , said to be typical of topological mea
sures, is also implementation-based. By its very nature, code topology is a
direct result of the methods used in software construction, and may be dis
tinctly different for the same functional system implemented in various ways.
The metrics are also inherently inapplicable to most 4GL-type code as control
flow is no longer explicit.

• Structural design metrics are clearly derived from a higher level of develop
ment. Many, however, appear to be based on the low-level (close to physical)
design of a system and therefore consider control and data flow between phys
ical modules. This may be problematic, in that the design phase is often
performed with a particular implementation method or physical structure in
mind. So once again the measure of complexity is founded in the physical
rather than the functional, although not to the same extent as in the previous
techniques. ·

• Functional metrics currently cited and in use are following a promising line
but often treat complexity in a superficial way, as part of the means to what
are considered to be greater ends, that is , size and productivity estimation.

All this is not to say, however, that implementation complexity should always
be disregarded. For example, depending on the way in which maintenance is per
formed, the method of implementation may have a significant impact on the ease
with which software can be changed. Maintenance has traditionally been carried out
based on existing code. It is well recognised, however, that code tends to become
more complex as it is changed. Programmers therefore become less successful in de
termining the underlying logic from the code, and so the effectiveness of maintenance

40

decreases over time. In this environment traditional metrics may be used effectively
to assess the current code complexity. With the use of comprehensive automated
assistance, however, maintenance should begin to follow a cycle similar to that of
new development (CIS [50]). That is , changes should be made to the relevant parts
of the original specification model (Choong and Churcher [49]; Harel [111] ; Baxter
[14]) , with the corresponding parts of the final system then being regenerated by the
tool based on the revised specification. Naulls [186] remarks that vendors of code
generators already advise that changes should not be made to their code unless
absolutely necessary. It is recommended that new code be regenerated from new
input models (Chen and Norman [43]). Therefore the functional complexity of exist
ing specification structures may also become more important for maintenance tasks
(Maria [172]) . Thus for both systems development and systems maintenance activi
ties, particularly within the MIS domain, it is suggested that functional complexity
analysis, as determined from a system's specification, is now of prime importance.

3.4 Specification Analysis Research

With the widespread use of structured specification methods and the increasing im
pact of development automation, opportunities for direct and objective specification
based complexity assessment are becoming increasingly viable. As yet, however,
specification-based assessment methods are not widely used. As discussed in the
previous chapter, a number of specification methodologies promote the determina
tion of logical or conceptual data structures as one of the first steps to be performed
in the development process. Hence, there has recently been increased support for
the quantitative analysis of this system abstraction. Davis and LeBlanc [65] sug
gest that measures based upon a system's data structure could be used to evaluate
the requirements and the design, through mappings to data dictionaries and data
:flow diagrams. Processing requirements of the system can also be determined, given
the assumption that a well structured function should correspond to the underlying
logical data structure (Jackson [128]). Once the data has been specified, then, the
properties of the data structures can play an increasingly important role " ... since
they are the foundation of the final implementation." (Tsai et al. [248], p 240).

The attention of complexity researchers has only recently been turned to data
oriented analysis. Demurjian and Hsiao [70] and Shoval and Even-Chaime [226]
provide discussions on comparing the complexity of various data modelling rep
resentations, that is, relational, network, :flow-based, data-based, etc., but offer no
methods for evaluating actual specifications developed ~n a given model. Blaha et al.
[22] suggest that the relative merits of a specification's data model can be measured
by:

1. performance - this relates to speed of access to data elements;

2. integrity - relatiiig to the likelihood of data accuracy;

3. understandability - relating to the coherence of the model to users, other
designers and the original designers after a period of time;

41

4. extensibility - relating to the ease of extension to incorporate new applications
without disruption.

Webster [258] suggests a similar set of criteria, including conciseness, clarity and
naturalness, for comparing the conceptual complexities of information representation
techniques. Although these are all certainly attributes of interest, no quantitative
assessment methods have been provided.

Batini et al. {13] remark that, to their knowledge, there are no quantitative and
objective measures of conceptual understandability that can be applied to data mod
els . They go on to suggest the consideration of aesthetic aspects, such as the shape
of a diagram or the number of line crossings, as a possible assessment method. For
further discussion on the comparative complexities of diagram layouts, see Prot
sko et al. [199] or Tan et al. [238]. In a discussion of work-product measurement,
Grady [101] suggests the use of writing analysis techniques for text assessment and
DeMarco's Bang [68] for DFDs , but no mention is made of any data modelling
work-product at the specification stage. A data dictionary is introduced as a work
product of the design phase but no complexity analysis method is provided with it.
Grady [101] remarks that very little metrics research has been centred on the data
aspect of systems.

Yet the data structure of a system is said to be a critical factor in influencing
final product complexity (Tsai et al. [248]) . It would therefore seem to be beneficial
to derive quantitative specification measures based at least in part on some represen
tation of the data structure. Measures taken from this product would be available
almost from the beginning of development and the functionality and structure of
the subsequent programs should follow very closely the structure of the data that
they manipulate-" ... Thus, the more complex the data structure is, the more com
plex the program will be, the more difficult it will be to maintain that program."
(Tsai et al. [248], p 241; Harel [111]) . Low-level data structure measurement , that
is , comparative complexity assessment of pointers, linked lists and arrays, has been
investigated by Tsai et al. [248] and Iyengar et al. [127]. Higher-level dynamic and
static analysis of database schemas has also been described by Gerritsen et al. [95].
Techniques for conceptual data structure assessment, however, have undergone very
limited discussion.

High-level process determination is also one of the first tasks to be performed in
development projects. As this procedure has been an integral component of many
methodologies for a number of years, one might have expected that structural assess
ment methods for process representations would have ,been well developed by now.
However, due to the absence of automated assistance, measurement until recently
has only been carried out on lower-level descriptions, for example, structure charts
or module calling trees. The use of CASE technology, however, now provides capa
bilities for the simple assessment of data flow representations, and also ensures that
this high-level abstraction is directly related to the final system through faci lities for
direct system transformcttion. As these have been relatively recent advances, work
on data flow complexity analysis is not yet widespread.

42

3.4.1 Current Specification Analysis Approaches
DeMarco [68) suggests that development effort is a function of a system's information
content. He further asserts that the information content of a final coded system is a
well-behaved function of the information content of that system's specification. Un
fortunately the lack of uniformity among specification structures, he continues, pre
vents direct information theory evaluation of the traditional documents-however,
he does suggest that the use of standard specification models could provide a consis
tent framework for structural comparison. In essence, this provides the basis for the
development and use of functional measures. A number of existing techniques are
now discussed in order to determine the desirable characteristics of new assessment
schemes. Although several of these existing measurement methods have size or pro
ductivity estimation as their goal, they all attempt to consider system complexity
in some way. It should be kept in mind, however, that the somewhat superficial
treatment that complexity is given under some techniques may not take away from
the overall credibility of the methods in achieving their intended purpose. Moreover,
the final goals of these approaches are not far removed from the goals of complexity
assessment, particularly in terms of effort estimation.

Function Point Analysis (FP A)

Function point analysis (Albrecht [2]) is the most widely investigated of the function
based approaches. Quantification of complexity under this technique is performed
as a sub-task of the complete model, the overall original purpose being the deter
mination and prediction of development productivity. Each system is considered in
terms of the number of inputs, outputs, inquiries, files and external system inter
faces that it contains. The system total for each of these attributes is multiplied by
a weighting factor appropriate to its complexity in the system (simple, average or
complex), based on the number of data elements and/or file types referenced. The
combined total of all of these products is then adjusted for application and environ
ment complexity-this can cause an increase or decrease of up to 35% in the raw
function point total. Calculation of the adjustment factor is carried out by consid
ering the need for certain features in the system, for example, distributed processing
and ease of installation. Each of the fourteen factors is assigned a degree of influence
of between zero {no influence) and five (strong influence), and these are summed to
give a total degree of influence, denoted N. One of the fourteen factors is allocated
for the consideration of complex processing. A technical adjustment factor is then
calculated as (0 .65 + O.Ol(N)). This adjustment factor is subsequently multiplied by
the raw function point total to determine the final function point value delivered by
the system. According to Grupe and Clevenger [104] the underlying assumption of
FPA is that higher numbers of function points reflect more complex systems; these
systems will consequently take longer to develop than simpler counterparts .

Complexity is therefore considered in two ways during the analysis. It is ques
tionable, however, whether this consideration is completely adequate. Albrecht ac
knowledges that the complexity weights applied to the raw function point counts
were " . . . determined by debate and trial." (Albrecht and Gaffney [4], p 639). The

42

3.4.1 Current Specification Analysis Approaches
DeMarco [68) suggests that development effort is a function of a system's information
content. He further asserts that the information content of a final coded system is a
well-behaved function of the information content of that system's specification. Un
fortunately the lack of uniformity among specification structures, he continues, pre
vents direct information theory evaluation of the traditional documents-however,
he does suggest that the use of standard specification models could provide a consis
tent framework for structural comparison. In essence, this provides the basis for the
development and use of functional measures. A number of existing techniques are
now discussed in order to determine the desirable characteristics of new assessment
schemes. Although several of these existing measurement methods have size or pro
ductivity estimation as their goal, they all attempt to consider system complexity
in some way. It should be kept in mind, however, that the somewhat superficial
treatment that complexity is given under some techniques may not take away from
the overall credibility of the methods in achieving their intended purpose. Moreover,
the final goals of these approaches are not far removed from the goals of complexity
assessment, particularly in terms of effort estimation.

Function Point Analysis (FPA)

Function point analysis (Albrecht [2)) is the most widely investigated of the function
based approaches~ Quantification of complexity under this technique is performed
as a sub-task of the complete model, the overall original purpose being the deter
mination and prediction of development productivity. Each system is considered in
terms of the number of inputs, outputs, inquiries , files and external system inter
faces that it contains. The system total for each of these attributes is multiplied by
a weighting factor appropriate to its complexity in the system (simple, average or
complex), based on the number of data elements and/or file types referenced. The
combined total of all of these products is then adjusted for application and environ
ment complexity-this can cause an increase or decrease of up to 35% in the raw
function point total. Calculation of the adjustment factor is carried out by consid
ering the need for certain features in the system, for example, distributed processing
and ease of installation. Each of the fourteen factors is assigned a degree of influence
of between zero (no influence) and five (strong influence), and these are summed to
give a total degre·e of influence, denoted N. One of the fourteen factors is allocated
for the consideration of complex processing. A technical adjustment factor is then
calculated as (0.65 + O.Ol(N)). This adjustment factor is subsequently multiplied by
the raw function point total to determine the final function point value delivered by
the system. According to Grupe and Clevenger [104] the underlying assumption of
FPA is that higher numbers of function points reflect more complex systems; these
systems will consequently take longer to develop than simpler counterparts.

Complexity is therefore considered in two ways during the analysis. It is ques
tionable, however, whether this consideration is completely adequate. Albrecht ac
knowledges that the complexity weights applied to the raw function point counts
were " ... determined by debate and trial." (Albrecht and Gaffney [4], p 639). The

'I

I

43

absence of empirical foundation for these weights has since received criticism from
several quarters (Roland [208]; Shepperd [222]; Arthur [6]). Moreover, with respect
to the raw counts , the categorisation of the system components as simple, average
or complex, although clearly straightforward, seems to be rather simplistic in terms
of a comprehensive assessment of complexity-Symons [235] provides the example
that a component consisting of over 100 data elements is assigned at most twice the .
points of a component that contains just ~me data element . It is also suggested that
the weightings are unlikely to be valid in all development situations.

There are similar problems with the technical complexity adjustment process. It
would seem unlikely that the consideration of the same fourteen factors would be
sufficient to cope with all types of applications. Also, adjustments to the raw counts
can only be affected by a factor within the zero to five range which, although simple,
is unlikely to be appropriate in all cases . Consideration of processing complexity in
only one of the fourteen factors is not only inadequate, it may also not be practically
applicable at the software specification stage. It is recommended that the value of
the adjustment factor for complex processing should be based on a number of factors ,
including the need for sensitive control/ security processing and extensive logical or
mathematical processing (Rudolph [213]; Albrecht and Gaffney [4]; Gordon Group
[100]). It would seem unlikely, however, that information of this kind would be
available at the conceptual modelling stage. This reinforces another drawback of the
method, in that it is not based on modern structured analysis and data modelling
techniques (Tate and Verner [243]).

Overall, then, the technique tends to underestimate systems that are procedu
rally complex and that have large numbers of data elements per component (Symons
[235]; Verner and Tate [253]). Shepperd [222] and Ratcliff and Rollo [202] also re
mark that the identification of the basic components from the specification can be
difficult and rather subjective-different analysers may therefore use different logic
to determine the number and complexity of the functions provided by the system
(Rudolph [212] ; Conte et al. [54]) . This subjective element can dominate the fi
nal results , reducing the utility of a seemingly quantitative process (Symons [235];
Wrigley and Dexter [265]).

MARK IIFPA

Symons ([235]; [236]) has developed a specification-based sizing and effort estima
tion technique based on a revised version of the function point analysis method.
He identified several failings with Albrecht 's original technique, as outlined in the
previous section, pertaining particularly to the classification and weighting strate:
gies used in the original theory. Symons [235] further suggested that these problems
were compounded by technology-driven changes, so t hat, for example, the original
concept of a logical file was no longer appropriate in the database environment that
now dominates business systems. Symons [235] t herefore adopted the entity type as
the basic data equivalent for transaction-centred systems. . . · ·

The MARK II method involves the identification of all the inputs , outputs and
processes associat ed with each externally triggered logical transaction performed

44

by a system. To assess the size contribution of the input and output components,
Symons' method [235] counts the number of data elements that are used in and
produced by the transaction. This is founded on the assumption that the effort for
formatting and validating an input or an output is proportional to the number of
data elements in each. Symons [235] suggests that this provides greater objectivity in
the counting procedure when compared to Albrecht's somewhat subjective approach.

Identification and evaluation of the process component is more difficult, in terms
of developing an appropriate size parameter for this aspect of a transaction. The
method suggested by Symons [235] relies on previous work on internal structure
measurement based on code branching and looping (McCabe [175]). It is suggested
that the data structure employed by a system may provide a basis for the assessment
of processing complexity. At the specification stage, this is represented by the access
path of a transaction through the system entity model. Symons [235] states that
since each step in the path correlates to a branch or a loop, the processing complexity
will be directly related to the number of entities referenced by the transaction.
Although this argument was originally considered to be rather tentative, providing
only a crude measure of processing complexity, it has remained intact and has been
reinforced in Symons' more recent work (236].

The formula for the raw size factor in unadjusted function points is therefore
calculated by multiplying locally calibrated weighting factors with the basic counts
of input and output data elements and the number of entity references in the sys
tem, and then summing together the three weighted totals for all of the system's
transactions. An industry standard set of weightings is available as a starting point.
The technical complexity adjustment procedure is very similar to that of the original
theory except that the fourteen Albrecht factors [2] are augmented by five or more
new characteristics.

Using counts of data elements for the input and output components is a positive
and more contemporary approach, as is the adoption of entity-based assessment.
Under this method, however, there is no consideration of the entity link types tra
versed (1:1, 1:n and n:m), despite the fact that, as Symons (235] acknowledges, they
produce different processing requirements. The technique also counts a maximum
of one reference to each entity per transaction, in spite of the fact that a transaction
may refer to a given entity more than once. Mark II also fails to consider the types
of operation that are performed in each transaction (that is , create, read, update
or delete), even though others (British Gas (31]; Gray et al. [102]) suggest that the
operations are of differing complexities. As justification, Symons [236] suggests that
operation types should not be counted as they might depend on the logical database
design, the file structure or the database tools used, that is , physical considerations.
This, he suggests, is contrary to gaining a measure of the logical representation.

The use of McCabe's work as a basis for process complexity in terms of logical
structure is certainly valid to an ext ent; however, evidence has also shown that
McCabe's measure is not comprehensive enough to reflect overall complexity and
that other contributors are assessed inadequately using this approach (Shepperd
[221]). Therefore this basis should be further investigated. In calculating the input
and output components , no distinction is made between data elements that are read

45

from/written to the database and those that are provided by/ for the user, even
though the processing and validation requirements for each of these situations may
be quite different.

In order to perform estimation for future project requirements, historical effort
data from past development projects must .be allocated by staff after the fact to the
input/ output/ process components and to each of the nineteen adjustment factors.
Also acknowledged as crude in 1988, this method has appeared to provide reason
able results in validation studies. It is somewhat subjective, however, and may be
jeopardised by leading questions from the assessor. Moreover, collection of the data
required for the nineteen adjustment factors would be difficult to automate (King
[148]) . Finally, Albrecht [3] states that the use of local weights in the initial func
tional assessment makes the method invalid as a purely functional approach. This
seems reasonable, in that he asserts that the functional measure should be derived
first and then adjusted or weighted accordingly.

Bang Metrics

Bang (DeMarco [68]) is offered as an implementation-independent , quickly derived
approach for effort prediction that can lead to the development of size, cost and
productivity estimates. The Bang system of measures is based on a three-view
perspective of system specifications, ignoring all details of the method to be used in
system implementation. The three views consist of a functional model, a retained
data model and a state transition model. This complete representation enables the
use of quantitative analysis to provide a measure of the function to be delivered by
the system as perceived by the user. DeMarco [68] does state that most systems can
be adequately specified using just two of the three views-particularly for business
software this would normally consist of the data and functional models.

There are three main basic attributes that can be used as the principal indicators
of Bang. They are the count of functional primitives or elementary processes (FP),
the count of inter-object relationships (RE) and the count of data elements flowing
out of the system (DEO). The ratio RE/FP is said to be a reasonable measure of
data strength. If the ratio is less than O. 7, this implies a function-strong system
that is, a system that can be thought of almost completely in terms of operations,
for example, robotic systems; if RE/ FP is greater than 1.5 , this implies a data
strong system, or one that should be thought of in terms of the data it acts upon.
The middle range -identifies hybrid systems. The DEO / FP ratio is indicative of t he
system's focus on either data movement or data computation. Commercial systems
tend to have high levels of DEO/FP, scientific systems , low.

For function-strong systems it is suggested that the' size or information content
of a process can be approximated as a function of t he number of tokens, or data
elements, involved in the process. Variat ions in process complexity can then be ac
counted for through the assignment of weighting correction factors, based on sixteen

. _ functiqual classes, to the basic FP total. These weighted figures are then summed
over all elementary processes to provide a final value of function Bang. The count of

· objects , or entities, in the database is the base metric for data-strong systems, with

I

11

46

some correction for the amount of connectedness among the objects. Data Bang is
the overall result obtained by this procedure. Hybrid systems require separate com
putation of both function and data Bang so that the two figures can be used in the
prediction of different activities. DeMarco [68) states that combining the two totals
would be difficult, as it would be almost certain that one should be weighted more
heavily than the other but that the magnitudes of these weightings would depend
specifically on the system in question.

Consideration of complexity is therefore achieved in Bang through the use of
weightings that are dependent on the flows of data elements or on the amount of
entity connectedness. Although DeMarco [68) provides a beginning set of correction
factors, these weightings must then be determined through trial and error and with
extensive in-house calibration. The amount of work required by a department to
determine the appropriate weightings has inhibited the wider use of Bang (Verner
and Tate [252)). Furthermore, results for database-oriented systems, most common
in the business domain, are sparse, despite the fact that the technique is now ten
years old (Tate and Verner [243)) .

Bang can be applied at the conceptual modelling phase and does consider the
number of data elements processed. However, it fails to distinguish between input
and output data elements, even though the effort required to develop their respec
tive processing components is different (Symons [236)). Data Bang also considers
the number of.entity relationships, but no assessment of the relationship types is
performed.

Bang Metric Analysis

This is an adaptation of the original Bang method that considers both processing
and data requirements in transaction-based systems (British Gas [31]). It is also
primarily a project sizing technique. Each functional primitive or elementary process
is assigned a level of complexity according to the number of create, read, update
and delete operations that it performs, with each of these operations carrying a
weighting factor. This forms the basis for the calculation of a process' function
Bang. The formulation of data Bang is the same as in DeMarco's theory [68], that
is, complexity is dependent on the number of entity relationships. Total Bang is the
sum of both function and data Bang for each elementary process.

In terms of data-oriented transaction systems this is a much more useful ap
proach, in that database operations are considered instead of DeMarco's sixteen
weighted functional classes [68) . The weightings used for the operations were intu
itively proposed, but have proved to be useful in validation. Regression techniques
have been used to determine the appropriate coefficients for function and data Bang
in the prediction of overall development effort. This method, however , still suffers
from the same drawbacks as DeMarco's original proposal [68), that is, a failure to
distinguish between input and output data elements and non-assessment of relation
ship types.

47

Data Definitions

This is another approach that has been derived from DeMarco's Bang technique
[68] (Fisher and Betteridge [88]) . Not only are the number of functional primitives
considered, but also such factors as the number of data definitions, database ac
cesses, data flow lines and man/machine boundary crossings. The aim of the study
was to investigate the effectiveness of these factors in the prediction of resource re
quirements. After an analysis of the relationships between these factors and effort
data from one project, it was found that only the counts of data definitions and
functional primitives were of significant influence. It was therefore decided to base
the prediction on data definitions alone, as the number of functional primitives was
deemed to be too dependent on individual decomposition strategies.

This approach also considers data and process at the same time, at a low level
of analysis. However, the data consideration is superficial; it is not taken from the
data structure itself but from the DFD process-based data dictionary. Thus no
consideration of links between data elements or entities is performed.

Usability Measures

Wilson [262] has described a method for determining the usability of systems, in
order to enable the comparison of designs that conform to the same requirements .

. The approach is based on cognitive issues not generally covered in quantitative
assessment. The procedure considers the number of user-visible concepts, terms
and inter-relationships in a system, prior to implementation. This practice is said
to actually measure the complexity of application problems, system designs and
system-supported solutions, based on the semantic analysis of a design model similar
to the ER representation. Under this model there are five mutually exclusive concept
types:

1. entity - something that (usually) persists in time as (some of) its attributes
and relationships change;

2. event - an occurrence of a change in the attributes and/or relationships of one
or more things;

3. relationship - a directed association or connection between something and
(usually) s~mething else;

4. attribute - an aspect of something that can be qualitatively or quantitatively
assessed;

5. value - an assessment of an attribute of something.

Different system design approaches, that is, using different m.ethodologies, can
be assessed for complexity using various factors, such as the number of entity types,
the number of event types, the number of value types, the number of new terms and
the average number of attributes per subject. Generally, the design method with
the lowest total number of concepts and terms is the least complex and therefore

48

the most usable. Wilson suggests that the average values of the features mentioned
should conform as a general rule to Miller's 7±2 constraint [178] , which is believed
to be related to understandability.

The complexity of solutions proposed for a system requirement can be measured
using the following factors: number of entity types, number of entity attributes or
relationships, number of event types, number of event attributes or relationships and
the number of value types-these figures give the total concepts-and the average
number of attributes/relationships per subject, the average number of events per
subject, number of non 1 to 1 problem-solution choices (the number of times the user
is faced with alternative ways to map problem concepts to solution concepts) and
the number of non 1 to 1 problem-solution relationships (where a problem requires
none or more than one solutions)-these values give the total number of problem
solution relationships. The solution with the fewest concepts is generally the one
that supports the entities and operations with the best match to the problem and is .
therefore the easiest to implement. Again, Miller's constraint [178) is recommended
for evaluation of the average figures.

Although a novel approach, this method has seen no further investigation. The
focus on understandability reduces the usefulness of this technique as a general,
objective procedure. The only consideration of processing in this scheme is the
counting of entity event types and only the number of relationships is considered,
not the type.

Information Engineering Metrics

Data representing independent complexity variables thought to influence develop
ment phase effort was collected from a number of information engineering develop
ment projects (IE [123]). In producing an information strategy plan for an organi
sation it was found that the number of entity types had a large impact on project
effort, based on twenty-eight projects from seventeen domains. Other important
complexity variables were the number of lowest-level functions, the number of pro
posed data stores and several other factors relating to the structure and personnel
of the organisation concerned. For business area analyses, the number of elementary
processes to be implemented in a system was found to be highly influential, based
on data derived from twenty projects over ten application domains. Other factors
included the number of users interviewed, the number of relationships, the number
of attributes and the number of action diagrams.

This approach is similar to the Fisher and Betteridge [88] study cited above, in
that it is a practical, empirical evaluation of intuitive relationships with minimal
background theory. The results obtained may be useful in the information engineer
ing (IE) environment, but because the formulre derived are totally oriented towards
steps of the IE methodology, their general application may be less effective. Fur
thermore, the effort data was used after the fact for metric analysis . That is , it
was not collected specifically for assessment purposes . Therefore much qf the data
was based on personal notes, personal memory, accounting data and best guesses.
Finally, several variables relate to the development and organisational environment,

49

reducing the functional basis of the method. This may have been due to the fact
that only some of the projects made use of CASE or similar tools.

Entity Metrics

Gray et al. (102] describe a set of techniques for the assessment of the complexity
of various tasks relating to the development of data-oriented systems. They firstly
propose an ER metric for determining the effort required to implement a database
design. There are said to be four factors that influence the complexity of a database
design: the number of entities in the design, the number of relationships for each
entity, the number of attributes for each entity and the distribution of relationships
and attributes. The overall complexity of a complete ER diagram is shown as the
sum of the complexities of the entities that comprise it. Individual entity complexity
is calculated using the values of the number of relationships, functionally dependent
attributes and non-functionally dependent attributes for each entity. Weightings
for these factors are also used in the formula-it is suggested that these weightings
can be used to reflect the impact of characteristics from the local development
environment. The calculation also considers the 'functional complexity' of each
entity, but this is assumed to have the constant value of one for every entity. A
second metric proposed is the Area metric. This measure is derived from a Kiviat
diagram representation of the same information used for the ER metric formulation.

The third measure is an enhancement of Shepperd's structural IF4 metric [223]
which was itself derived from Henry and Kafura's Information Flow metric (118].
The original IF4 measure makes no consideration for the use of a database-therefore
an extension is suggested. Each entity in a database is regarded as a type of module
that can receive information, through create and update transactions, and can also
provide information, through read and delete operations. A delete operation is said
to be an information extraction because the entity will contain less information after
the transaction is completed. Thus the enhanced IF4 metric (IF4+) is said to enable
the assessment of both processing and data in a single metric approach.

Finally a measure of database operation complexity is proposed. This treats
each operation (create, read, update and delete) as a virtual entity, being composed
of the parts of the entities accessed by the operation. The ER and Area metrics
as proposed can then be used, with the number of entities replacing the number
of relationships in the original formula, to assess the overall complexity of each
operation. Overail this would seem to be a very positive approach, particularly
given that its focus is on data rather than on processing. Functions pertinent to the
data are also considered, however, so processing is not completely ignored.

The decision to assign a delete operation as a provision of data is interesting.
Although it is certainly true that the entity will contain fewer elements after the
operation, it can equally be said that the operation itself is one that writes a blank
record, therefore suggesting that it should be classified as a 'receive' by the entity.
Placing this issue aside, the new I.F4+ metric could be useful as a more comprehen
sive structural complexity measure. It is not strictly a functional measure, however,
because the processing asse,ssment is based on design-phase module structure charts.

I

,I

I 1

'I'

I

50

The final measurement approach, considering database operation complexity, is
also a valid and worthwhile proposal. Again, it would seem to be more comprehen
sive than many other techniques in that it attempts to consider processing and data
in one metric. However, there is no indication as to whether one type of operation
will be inherently more complex than another, without consideration of the data
that it manipulates. Furthermore, the number and type of relationships between
the entities are not considered, and there is no explicit guidance provided as to how
entity look-ups or relationship exclusivity should be treated in the assessment.

CAPO , CDM, SARA and STES Heuristics

Karimi and Konsynski [135] propose the use of a computer-aided tool to provide
intelligent assistance in the development of code modules, based on the interaction
of DFD processes. Computer-aided process organization, or CAPO, is said to be
useful in the production of programs with highly cohesive modules with minimal
coupling, low reference distribution and minimal transport volume. Yadav [267]
suggests a similar approach in an attempt to assist software understanding and
to contain ripple effect errors . The Control and Definition Modularization (CDM)
method applies the theories of abstract data types and object oriented programming
to traditional development with DFDs in order to produce more easily maintained
module structures. Automated support has been provided to assist designers in this
technique. Lor and Berry [166] describe a system architect apprentice (SARA) that
uses DFDs and verification diagrams to produce system designs from semi-formal
requirement representations. Tsai and Ridge [24 7] discuss the use of an expert
system tool, the Specification-Transformation Expert System (STES), that assesses
DFDs in terms of heuristics such as coupling, cohesion, fan-in and fan-out in order
to produce a structural design of high quality. The values for the measures are
determined by a combination of automatic and user-supplied data derivation, and
are provided as feedback to encourage the analyst to iteratively refine the diagrams
until 'suitable' measures are achieved-suitable measures are not defined, however.

Due to their sole basis in DFDs t he underlying data structure is not considered
by these approaches. More importantly for this discussion, the measures derived are
oriented towards the quality of the subsequent design, rather than to the functional
specification. Consideration of control, logic and timing dependencies, in CAPO
at least , also means that some non-functional assessment is required, and t he need
for user input by some of t he techniques may introduce an undesirable degree of
subjectivity to the methods.

MGM

The Metrics Guided Methodology (MGM) was proposed by Ramamoorthy et al.
[201] as a reflection of the need for metrics from all development phases. Discussion
of the specification st age is based on the use of requirements specification languages

. (1\SLs) . It is suggested that a spectrum of measures is needed to assess the different
asp~cts of a specification, as it is normally not possible to specify requirements fully
from just one perspective. Normally, then, both processing and data requirements

51

are developed. A set of metrics that considers the control-flow and entity models
of an RSL specification is therefore described. Measures include the number of
paths, nesting levels, ANDs and ORs, statements, data types and files.

Although this approach does consider the function of a system, the measurements
used are more lexical or topological, due to .the language-based form of RSLs. This
also means that the technique is not applicable to conceptual data or structured
analysis models.

CASE Size Metrics

Tate and Verner ([242]; [243]) and Tate [240] assert that the automatic measurement
of size as a function of data dictionary entries should be possible in a CASE envi
ronment. Furthermore, they state that the widespread use of graphics within CASE
tools and the relative absence of lines of code means that more appropriate size
measures should be chosen. They therefore suggest that measures of specification
size applicable to transaction-oriented database systems may include those based on
the data model, the data flow model and the user interface. Examples of specific
measures suggested include counts of entities and attributes, data flows, processes
and data stores. Complexity measurement, on the other hand, is described by Tate
and Verner [242] as a relatively well-defined area of conventional development that
should follow similar principles within CASE, except that it may be based on data
structure and data flow models. At the risk of oversimplification, they suggest that
complexity is a measure of component interconnectivity within a software product ,
an aspect that should be automatically computable within a CASE environment
and that should present no particular problems.

Complexity in this study, however, is considered to be more than just connec
tivity. In fact, Tate and Verner's discussion of specification size [242] remains par
ticularly appropriate here as size is certainly thought to have an impact on overall
complexity. Therefore the measures suggested above are still relevant to this work.
Their study is, however, a preliminary examination of possible metrics and conse
quently no evidence supporting or refuting their suggestions is provided.

3.5 Opportunities for Improvement

All of the approaches discussed above have some useful features and a few in par
ticular would appear to be promising avenues for further research. Many problems ,
however, have also been identified. In particular, some of the approaches have been
criticised for their lack of objectivity, in that much of .the assessment can be di
rectly dependent on decisions made by individual evaluators. This is in spite of the
fact that automatic measurement extraction would now seem to be a prerequisite
for any successful approach (Norman and Chen [1 91]). Some of the methods are
not completely applicable at the conceptual modelling phase and some are also not
comprehensive in their assessment. Most of the methods still suffer from a lack of
significant validation and are therefore likely to remain underutilised in industry. Of
those that have been tested, several have used correlation and regression analysis to

52

determine the desired relationships-these statistical methods, however, may have
been inappropriate for the underlying data. Section 5.3.3 in Chapter 5 contains
further discussion of this issue.

Another drawback of some of the techniques relates to the effect of environment
dependence on the results obtained-a number of techniques stress that a signifi
cant amount of calibration is required, based on large pools of local historical data,
if appropriate predictive information is to be derived. Moreover, much of the in
formation obtained is only applicable at a system-wide level; that is, only a few
of the techniques provide any guidance as to which parts of a system are likely to
cause problems during subsequent development and enhancement. Finally, only a
few of the measures have been proposed specifically for the purpose of complexity
quantification. Consequently this characteristic may not have received the attention
that it deserves, given its impact on the development process.

Clearly, then, there are a number of areas in which improvements to the assess
ment function could be made. Of particular importance are the issues of subjectiv
ity, environment dependence, automatic collection and validation. All of these issues
need to be addressed if any new method is to be accepted by the development indus
try. Any degree of subjectivity places too much emphasis on the working methods of
particular individual assessors-if counting methods can be interpreted differently
by individuals then the measures obtained from the same system by different people
are likely to vary. Consequently any recommendations based on those measures will
also vary. Any new method must therefore be totally objective to ensure consistent
results and conclusions.

Similarly, independence from the influences of personnel, organisational aspects
and the operating environment is also desirable if comparable and consistent results
are to be obtained over time. Given the level of influence that automation has
on the development process the impact of at least some of these characteristics is
being significantly reduced. Proposed analysis approaches should therefore reflect
this situation. As well as reducing the influence of subjectivity on the assessment
procedure, automated data collection also lessens the work effort imposed on de
velopers and assessors. Furthermore, automatic collection also reduces the risk of
errors being introduced into the extracted data. Finally any new analysis procedure
needs to be validated with real-world systems to illustrate that it is indeed effective
in the relevant development domain. All of these issues are now addressed in the
proposed analysis scheme, as discussed in the next chapter.

53

Chapter 4

Proposed Analysis Scheme

4.1 Introduction

The conclusions made in the previous chapter provide the basis for the development
of a new complexity analysis scheme. A number of failings associated with previously
suggested methods were described; the analysis scheme proposed here is a direct
attempt to overcome several of these problems, as described in Table 4.1. In order
to impose some degree of rigour onto the development of the scheme two semi-formal
paradigms have been used; these are described in the following section, along with a
discussion of the two-level assessment approach. This is followed by an examination
ofthe various measures and of the reasons and assumptions upon which the selection
of measures was based. A short summary of the proposal then concludes the chapter.

4.2 Scheme Development

Several proposed complexity measurement approaches have been extensively crit
icised for being inapplicable until late in the development process (Samson et al.
[217] ; Londeix [164]) . Given that the correspondence between specifications and
final systems is very close in 4GL- and CASE-developed software (Harel [111]; see
Figure 3.1), functional complexity indicators should prove to be useful in the early
discrimination of specification structures and in assessing the impact that these
structures have on other process and product attributes. Moreover, concentration
on complexity, rather than just size, enables the consideration of more than just one
dimension of software. In order to determine the specific measures that might be use
ful in assessing the complexity of specifications, the Goal/Question/Metric (GQM)
paradigm, as developed by Basili and others (Basili and Rombach [10]; Basili and
Weiss [11]) and enhanced by Shepperd [223], and Bush and Fenton's Classification
Scheme [37] have been adapted and used in this study. These approaches encourage
the structured selection of appropriate measures , using a process of decomposition
and partitioning from high-level goals, until the data elements required to achieve
the goals have been specified. The application of the two procedures to the goals
of this study is shown in Figures 4.1 and 4.2. Due to the rather cluttered nature of

54

Figure 4.1, further explanation of the figure's structure and of the metrics chosen is
provided here and in the following section.

II Problem J Solution II
Subjectivity The scheme is totally based on the functional specification

of system requirements; ~onsequently, all of the measures are
directly quantifiable in an unambiguous, assessor-independent
manner.

Manual As all of the measures are derived from requirements
Collection models that are widely used in automated development

tools, collection of the measures can be easily incorporated
into these tools so that collection errors can be avoided.

Late The requirements specification is one of the earliest
Derivation available products of the development process, enabling

rapid measurement determination.
Narrow Focus Since a specification can be considered from a number of

perspectives, for example, data, process and/ or user interface,
measures applicable to each perspective have been included
in the scheme.

Environment Given that automation plays a significant part in the
Dependence development of systems when CASE tools and 4GLs

are fully utilised, it is asserted that t he development
environment will have far less impact on the data obtained
from different sites; therefore results from different
environments may be more easily compared.

Need for As a result of the last point it is also suggested that a
Calibration lesser degree of calibration will be needed, enabling

more rapid uptake of the analysis recommendations by
organisations that do not have pools of recent project data.

System-wide The scheme is two-tiered so that results are available
Results at both the elementary function and system level; this

provides a greater degree of accuracy and flexibi lity to
the project manager.

Various Goals This scheme is specifically intended to be a complexity
· analysis technique and is therefore centred on assessing
those features that are thought to contribute to complexity.

Lack of The scheme is to be validated with actual systems
Validation developed within the commercial software industry at

more than ten different sites.
Poor The underlying data distributions that are derived from the
Statistical analysis procedure will be thoroughly examined so that
Analysis appropriate statistical techniques can be determined; this ·

will reduce the risks of result misinterpretation.

Table 4.1: Previous failings and current solutions

I

~
(IQ

i:::: .,
et>
.i:,..

f-'

0
0
I\)

~
!)
i::::
et)
rn
~
0
::l

~
et>
pi
rn
i:::: .,
et)

'O
I\) ..,
I\)
Q...

(IQ

s

GO AL GOAL• Develop and validate
measures to enab]e project personnel

to discriminate between specification
structures in order to minimise:
(i) development effort

(ii) post-delivery errors. - -- - -- - -- --- - ----------- - - - --- . . ~ __,··- ---- -- ~- --- --------- - ---- - --- - -----------------------
SUBGOAL

SG I - As p~r GOAL for interactive system.~ .. . SG2 ·Asper GOAL for real-time systems. 2
- - - - - - - - - - - - - - - - - - - .· . - - - - - - - - - - - - . - -....,.,... _ . . -DOMAIN

D I ·As per SG! for business and administration systems . D2 • As per SG 1 for scientific systems. 3 f- - - - - - - - - - - - - - .. . - - - - - - . - ... -SUBDOMAIN

SDI · As per DI for software developed SD2 ·Asper DI for software developed
using CASE and/or 4GL tools. · · ,vith other technologies.

QU ESTION

Q 1- Are connectivity factors influenti al
in determining development effort or

Q2 - Are size factors influential in
determining development effort or

.,,. __ _ _

Q3 • Are external dependence factors
influential in determining development

Q4 - Are functional hierarchy factors

influentia] in determining deyelopment

4

post-delivery errors? _ _ post-de1ivery errors? . . _ _ effort or post-delivery errors? effort or post-delivery errors? 5 1- -- - - -- - - -- :·- ---- ·-~ ~:- -,~:~ ·· ···-. · ----· · ·-.. _--·- .. ____ __ --· --- --- .. . ------------ -. . __ ------ - -- ·. -. -------------
SUBQUESTIO N

SQ!· Is data

model s ize

influential?

.. -

SQ2. ls

data model

SQ3 • Is process

model size

SQ4 • Is process

model

SQ5 • ls function

model size

SQ6 • Is user

interface size

SQ7 • Is

transaction

SQ8 • Is

process model
intcrcoflnection influential? interconnection influential? influential? model size containment
influential? influential? influential? influential?

SQ9 • Is function

model depth

influential?
6

CH AJ.l~CTERIS~!C MEAS UR~. .· . • :..._ :.c. · .. - -
No. entities? No . attributes? No. link No . No. processes? No. data No. data No . flows? No. parents? No. sub- No. reports No. transaction No. external No. levels? , _ , types? levels? stores? elements? functi,oJJ:!!~ . . and screens? types? , _ .. _inte!actions? 7
MEA~URE (Primitiv: ~u~~ti~~ lev:1) -~ ·_ .. _· _· _· _- . . . , ',: ·, ·_ ·_ ·_ ·. :- .. ·. ·--- -· : · _" /_· .-: - . . , : ~ -

EDM EPD
ECD EP EC

EA ELDMA

AU AC
AM

MEASURE (System level)
TESDM TDEPD TAU
TDECD TEA
TELTDMA
TEP TEC

TAC
TAM

OOLOML
MMLOL

MLIDM
MEL

SDM PD

TOOLS TOMLS TSDM TSPD TPP
TMMLS TOLS
TMLSTMELS
TIDM

DSP DEP
DSC DEC

ljM

TDSSP TDEP
TDSSC TDEC

TEM

FIFO
PDS CDS

DSAPMA
IPM PP!

TFITFO
TPDS TCDS
TDSA TPMA

TIPM TPPI

.. , . .
SPM NP

TSPM

REPSCR
DERDED

CRRE
UPDE

TFUNC TDREP TDSCR TCR TRE
DEFUNC TDER TDED TUP TDE

TREPC

TSCRC

EEP PEE
EECCEE

C

TSEEPTPEE
. TSEECTCEE

TC

TD
Ll
Ln

MDL

FLEV

8

CJ't
CJl

56

The overall goal of this study is to develop and validate measures that enable
development personnel to discriminate between specification structures at both the
system and primitive function level in order to determine development effort and
post-delivery error occurrence. This is the goal as specified on Figure 4.1 at level
one, the level being indicated by the numbers down the right-hand side of the figure.
The subgoals, domains and subdomains of the paradigm represent a refinement of
the area to which the study, and therefore any result , applies . It can therefore
be seen from the information depicted at levels two, three and four of the figure
that this study is applicable to interactive business and administration systems
developed with CASE tools and/or 4GLs . Questions about the influence of possible
determinants of effort and errors are then added to the hierarchy at the next level,
level five. These are subsequently broken down into subquestions at level six so
that the questions may be applied to distinct parts of specifications for the type of
system described above. .

General characteristic measures are then derived at level seven, followed by the
list of specific measures that are to be recorded in this study. Abbreviated forms
of the measures are used at level eight on the figure in an attempt to aid in its
clarity. The complete lists of measures along with their formal definitions appear in
the next section in Tables 4.2 to 4.13. Again to reduce cluttering only the specifi
cation measures are given on the figure and in the tables-the project management
measures that are to be used to assess the analysis scheme are instead described in
Figure 4.2. The final selection of measures , as depicted at level eight in Figure 4.1,
has been broken up into two sections, primitive function measures and system mea
sures. Separate diagrams could have been used to illustrate the development of the
two sets of measures; however as this would have necessitated repeating seven of
the eight diagram levels it was thought that one diagram would be sufficient. This
two-tier assessment approach reflects the need for both system-level (macroanaly
sis) and primitive function-level (microanalysis) analysis of complexity for resource
allocation and progress tracking.

The classification illustrated in Figure 4.2 provides essentially the same outcome
as Figure 4.1, but it also includes more explicit details of the particular assessment
and estimation goals of the current study. Bush and Fenton [37] suggest that en
tities in the software engineering domain may be classified as processes, products
or resources . In t~is study resource information, such as hardware usage, is of no
direct interest. Thus only the product and process classes are considered here. The
partitioning of the classes continues until mutually exclusive and exhaustive classes
of measures have been determined. Thus in Figure 4 .2 the effort and number of oc
currences (No. Occ.) information for the process class is· eventually partitioned into
specific indicators of effort for the development phases and into error indicators for
the acceptance t esting phase. Similarly for the product class, product complexity
of a functional specification is partitioned into four components-size, connectivity,
external dependence and hierarchy-and these components are in turn decomposed
until the number of occurrences of mutually exclusive product classes are specified.

~
(7Q

i:: .,
Cl)

~

~

0
P>
[f.)
[f.)
::n
~
P>
c:+
0
::s

't:i
P> .,
P>
Q..

(7Q

s

I

I
Analysis

I Effort I

J
Entities

Entities within the Software Engineering Domain

Processes, Products,
Resources

~ --------Processes

Effort, No. Occurrences

I
Product-reJated

Processes

- No consideration of resources

in this study.

- Application area is business and

administration systems developed

in a CASE/4GL environment.
- Goal pairs:

product-comp1exity, assessment;

process-effort, assessment:

process-No. Occ., assessment:

process-effort, estimation;

Effort, No. Occurrences I process-No. Occ .• estimation.

~ j \
Design Construction Unit System Acceptance

Test Test Test

I Effort I I Effort I I Effort I I Effort 11 No. 0cc. I

Products

Complexity

\
Software

Products

Size, External Dependence,

Connectivity, Hierarchy

t
Functional Specification

Size , External Dependence,

Connectivity, Hierarchy

I \ /I {
Errors Amendments Data Process Transaction

No . 0cc . IB

l l
Model Model Model

Size
Size ~ Interconnection Interconnection

Containment

Attributes Links Flows Levels Processes Data Data External Transaction Reports Screens

Stores Elements Interactions Types

~ I No. 0cc. 11 No. 0cc. 11 No. 0cc. 11 No. 0cc. 11 No. 0cc. 11 No. 0cc. 11 No. 0cc. I I No. 0cc. I I No. 0cc. I I No. 0cc. 11 No. 0cc.

~~
User Functional

Interface Model

~ ~ th

Sub- Leve1s Parents

Functions

11 No. 0cc. 11 No. 0cc. 11 No. 0cc. I

O'I
....::J

58

The two figures, 4.1 and 4.2, therefore illustrate all of the data elements to be
collected for the validation of the scheme. The Goal/ Question/ Measure figure lists
all of the functional product measures required to achieve the goals of the exper
iment, but for reasons of clarity it does not include the project management data
required. Conversely the classification figure breaks the project management data
down into simple data elements, but again for reasons of clarity it only specifies the
characteristic product measures, which correspond to those at level 7 of Figure 4.1,
rather than the lower-level measures. Both figures, however, provide the basis for
the data collected in this study- the measures are therefore fully defined in the next
section and in the following chapter.

In some cases one of the two function-oriented specification methods considered
in the scheme, that is, data flow diagrams and functional decomposition hierarchies,
may not be used in a given development project. Data collection will therefore follow
one of these three procedures:

1. if both DFDs and FDHs are used then each elementary DFD process should
map to a corresponding low-level FDH module-in this case, all five sets of
measures should be taken; that is, process model and functional model mea
sures, in association with the transaction, user interface and data model mea
sures;

2. if only the DFD is broken down to an elementary level then process model
measures only should be recorded, in association with the transaction, user
interface and data model measures;

3. if only the FDH is broken down to an elementary level then functional model
measures only should be recorded, in association with the transaction, user
interface and data model measures.

Thus for the purposes of this study a primitive function consists of:

• a single function at the lowest level of a hierarchically decomposed functional
model (referred to from now on as a functional model primitive) AND /OR

• a single process (and all connected elements) at the lowest level of a hierarchi
cally decomposed process model (referred to from now on as a process model
primitive) AND

• the section of the data model upon which the function and/or process acts
(referred to from now on as a data model primitiv~).

This approach may be illustrated by a small example taken from the specification
of a university department's administration system. In this case, only DFDs have
been used to depict the process requirements of the system. At the elementary level
there is a process that specifies the production of a class list. Given that Figure 4.3
depicts the underlying data modelfor the whole system, Figures 4.4 and 4.5 show
the relevant process and data model primitives that comprise the single primitive
function.

59

Student Course

College

Paper

Readings

Text

Employment
History

Figure 4.3: University department system data model example

11 Student

D 1 Co-ordinator

Co-ord data

3.4.2.2

Create
Class
List

D2 Student

Student data

Pa er data

Class List
D3 Paper

Lecturer
Course
data

'----1 D4 Course

_Figure 4.4: Process model primitive example

11 O<{ Course P ,......,..._ I ---+-<I ._____I Pa_per ___,jx) 1 lcn-mdin,tm 11

Figure 4.5: Data model primitive example

\

60

4.3 Rationale and Expectations

Although a foundation for the measures has been established, through the inves
tigation of commercial software specification methods and by utilising the GQM
paradigm and Bush and Fenton's classification scheme [37), the reasons for the
inclusion of some of the measures may be unclear. The next six sub-sections
(4.3.1 to 4.3.6) therefore describe the rationale behind the measurement selection
procedure by considering the expected impact of specification characteristics on the
software development process. Justification of the general approach is followed by a
discussion of the measures derived from each of the five specification perspectives.
Small examples are used to illustrate the determination of values for each set of
measures.

4.3.1 General Approach

DeMarco [68) suggests that the effort required to implement a system increases
monotonically with increasing specification size, assuming that there is no redun
dancy in the specification. As CASE helps to ensure that redundancy is kept to
a minimum, size measures derived from specification models should prove to be
useful in effort determination. DeMarco [68] also claims that the size of a specifi
cation model approaches invariance with resped to the decisions of the individual
modeller. This would suggest that, for a given system requirement, roughly the
same functional measurement values will be obtained irrespective of the modeller,
particularly when CASE technology is employed (Robinson [204); Tate and Verner
[242)). This does not imply that the same specification will be produced, but only
that the scope and size of the specifications will be similar. However this in itself
is an aid to achieving more consistent assessment and analysis. Moreover, differ
ent specifications will provide different measures that will in turn result in different
effort estimates. Thus the basis of the complexity analysis scheme in specification
representations would still appear to be sound.

A similar comment to that of DeMarco's above is made by Rudolph [213) in a
discussion on functional size assessment-the remark is equally applicable to any
type of functional analysis, however. Rudolph suggests that by its very nature func
tional assessment should not in the first instance reflect 'external' factors such as
programmer and o_rganisational experience or the effects of various implementation
approaches. Rather, the absolute value of the measured attribute should be estab
lished first, and then adjusted if required. This is the 'fault' cited by Albrecht [3]
concerning Symons' Mark II FP A method [236]. Furthermore, Kitchenham [151]
provides empirical evidence for the assertion that programmer ability, team size and
personnel experience indicators have no influence on effort requirements in a single
environment. Although the systems that are to be used for validation in this study
have b.een collected from a number of sites it may be reasonable to assume that
they win comprise a similar environment, in that the systems are all of one type
transaction processing and reporting-and they were all developed using automated
tools . Moreover, Chen and Norman [43] suggest that the use of a graphic interface

11

61

in many of the tools enables easier learning and use, lessening the impact of tool
experience on effort requirements. All of these factors lend support to the approach
adopted in this study, that is, the assessment of functional complexity with no initial
adjustment for other factors .

Further support for the purely functional approach is indirectly provided by the
advantage of application portability that many CASE tools now provide (Banker
and Kauffman [9]) . Tate and Verner [243] suggest that as projects move through
the phases of development more specific methods and techniques are employed.
They go on to suggest that this leads to increasing dependence of software products
on the target technology, even in a CASE environment. The implication is that the
development and implementation methods chosen have an increasing impact on a
system's size and that this will have a corresponding impact on development effort.
However several CASE tools enable development to be performed irrespective of the
eventual implementation platform, as the tools include facilities for implementation
on a number of different platforms (Brown et al. [34]; King and Warren [1 49]; Banker
and Kauffman [9]). Thus functional measures should provide a sound basis for the
determination and classification of effort requirements in an automated environment
up until the implementation phase of development.

In the past, adjustment of functional measures has generally been performed
to enable the consideration of special system requirements. It has recently been
suggested, however, that systems developed with 4GLs and CASE tools will not re
quire adjustment as the 'special' requirements will be developed as standard (Symons
[235]; Symons [236]; Tate and Verner [242]; Chen and Norman [43]) :

In the longer term, the ultimate computer-aided systems engineering
(CASE) tool will provide all these technical features automatically; we
shall only have to think about the information-processing requirements of
the problem. In this ultimate situation, the coefficient [of the adjustment
factor J will fall to zero, and there will be no further need for a Technical
Complexity Adjustment (Symons [236], p 29).

Although it is questionable as to whether we have reached the age of the 'ultimate'
CASE t ool, this assumption is the basis for the proposals being tested here. That
is, that useful assessment can be performed based solely on systems' functional re
quirements . As 4GLs and CASE tools tend to specify functional transactions rather
than procedural components, Verner et al. [254] suggest that a specification pro
duced with these tools will be a closer representation of the pure inherent function
required. Moreover , since development using these tools is often based around a
cent ral repository, the likelihood of duplicated and inconsistent work among devel
opment teams should be reduced, providing a basis for more consistent and accurate
assessment of functional characteristics. It is certainly possible that measures from a
specification will be related to the functional value of the system, based on the asser
t ion that transactions comprised of larger and more complex specifications provide

. more function to the user (Verner et al. [254]) . Appropriate measures of functional
·• size and complexity are therefore required. Those proposed here are a first response
to this need.

62

A major criticism of many existing measurement methods is their assessment
of only one aspect of complexity, for example, control-flow, size or data flow (Case
(40]; Weyuker (260]; Longworth et al. [165] ; Jayaprakash et al. [131]) . The proposed
analysis scheme of this study should at least partially overcome this problem, in that
size, interconnection, data flow, data structu,re, process coupling and overall function
are all assessed in some way. The comprehensive approach that has been adopted in
this proposal is supported by Tate and Verner [242] and Wrigley and Dexter [265];
they suggest that appropriate specification measures should come from data struc
ture and data flow models and from aspects of the proposed user interface. Each
of these representations has been considered in the overall analysis scheme. The
general expectation underlying this approach is that systems or primitive functions
that return high values for the transaction, functional model, user interface, process
model and/or data model measures will be more time-consuming and error-prone
to develop than systems/primitive functions that result in low measures. Due to its
more comprehensive approach, the scheme also includes measures that are applicable
to software specification products not normally considered. Grady's examination of
software development work-product analysis states that the design stage " .. .includes
work products for prototypes and data dictionaries because they are widely used to
day, although they represent two cases where metrics research has been very limited
(and so no metrics are shown)" (Grady [101] , p 30). In the proposed scheme the
data dictionary may be partially assessed by the data model and process model
measures , and the prototype by the user interface and functional model measures
(Clarke [51]) .

The two-level approach to assessment is another important aspect of the overall
analysis scheme. Although system-wide measures and indicators are useful , it has
been acknowledged that lower-level analysis is necessary for effective project man
agement . Verner et al. [254] and Stevens [233] remark that elementary function
based assessment is required so that resource allocation in subsequent development
phases can be carried out more effectively. Moreover, in terms of accuracy, lower
level assessment receives further support-Stevens [233] and IE [123] suggest that
a more detailed functional breakdown will provide more accurate measures , due to
the reduced variance achieved.

Furthermore, the measures in this proposal are automatically derivable at a very
early stage in the development process , increasing the scope for objective and effec
tive estimation and discrimination. According t o Grady [101] and Gray et al. [102],
one of the mos t promising aspects of CASE is the facility for automatic, 'on-line ' de
livery of metrics t o the project manager. The notion of automatic metric collection
and analysis has widespread support and would appear tq be essential in an unobtru
sive form if metric analysis is to become a useful , integral part of the development
process (Henry and Lewis [11 9]; Norman and Chen [1 91]) . Automatic collection
would also enable more effective progress reports to be produced-as long as subse
quent functional changes to a system were incorporated into the curi'ent specificat ion
models, revised measures and/ or estimates could be automatically generated for t he
project manager during all subsequent st ages of development .

T hus specification-based funct ional complexity analysis as a general approach

63

would appear to have extensive support in recent literature. The purpose of the fol
lowing five sections, however, is to fill out the details of the specific scheme adopted
in this study. A number of commercial software specification techniques were de
scribed in Chapter 2-methods for the assessment of functional representations de
veloped using these techniques are therefore now provided. Each of the sections
describes the basis for assessment and the actual measures chosen in the current
scheme. Measures preceded by an asterisk (*) in Tables 4.2 to 4.13 are composite
measures; that is, they are merely calculated from the values of other measures.
The use of composite measures as overall indicators of specification perspective size
is supported by Tate and Verner [243) . This approach is therefore extended in this
study to consider aspects other than size, for example, interconnection.

In cases where a non-composite system level measure is simply the sum of the
values obtained for the same primitive function level measure over all primitive
functions in the system it is denoted by placing a 'T' in front of the primitive
function measure. Thus the 'TCR' measure in Table 4.3 is the sum of the values of
the 'CR' measure that are obtained for all primitive functions in the system. For
example, if a system was made up of four primitive functions and the values of the
CR measure for those primitive functions were two, one, three and zero respectively,
then the value of the TCR measure for that system would be the sum of these four
figures, that is, six. (A small example such as this is provided in each of the following
five sections to illustrate the derivation procedures for measurement values.)

4.3.2 Transaction Measures

Transaction details are commonly specified for database manipulation systems in
the commercial environment. Low level transactions in these systems always per
form at least one of the following operations: create a record (C), read a record or
part of a record (including look-up validation) (R) , update a record or part of a
record (U) or delete a record (D) (CRUD). Although generally recognised as a data
structure-based specification method, due to its basis in entity models , Kerr [137)
in fact describes process modelling solely in these terms, in that for each entity in a
data model at least three functional modules will be developed, with each module
containing the create, update or delete rules for controlling the manipulation of the
data. Gray et al. [102) remark that single create, update and delete operations work
on only one entity each, but that a read may access several entities in one oper
ation. They therefore suggest that the read operation may be different from the
others in terms of complexity. Worsley [264] also found that in a study of enhance
ment effort for a medium-sized 4GL system, estimates tor tasks that required new
create transactions were poor, and that the actual re-testing effort required for these
enhancements was also generally greater than predicted. Furthermore, the four op
erations are also weighted differently under a project sizing methodology developed
by British Gas [31].

64

!I Microanalysis transaction measures 11
CR Number of create transactions performed by the primitive function
RE Number of read transactions performed by the primitive function
UP Number of update transactions performed by the primitive function
DE Number of delete transactions performed by the primitive function

Table 4.2: Primitive function level transaction measures

II Macroanalysis transaction measures II
TCR Total number of create transactions performed by the system
TRE Total number of read transactions performed by the system
TUP Total number of update transactions performed by the system
TDE Total number of delete transactions performed by the system

Table 4.3: System level transaction measures

Four size measures relating to the transaction representation of a specification
are therefore included in the analysis scheme, at each of the primitive function
and system levels. These are the (T)CR, (T)RE, (T)UP and (T)DE measures, as
defined in Tables 4.2 and 4.3. Note that it is the number of operations, not the
number of entities operated upon, that is counted in the scheme; the number of
entities referenced is assessed in the data model measures. Thus if a single primitive
function reads and updates a single entity, both the RE and UP measures for that
primitive function should be incremented.

The transaction measures may be illustrated by the following example. A system
comprises three primitive functions, Fl, F2 and F3. Function Fl reads data from
two entities for subsequent processing by another primitive function; F2 reads data
from one entity, displays it on the screen and then updates that entity after input
from the user; F3 deletes records from two entities. The transaction measures for
these primitive functions therefore take the values shown in Table 4.4. The system
level transaction measures are then easily determined from the primitive function
values, using the method described at the end of the previous section. Thus for
this same example TCR equals zero, TRE equals three , TUP equals one and TDE
equals two.

II Measure I Fl I F2 I F3 II ,
CR 0 0 0
RE 2 1 0
UP 0 1 0
DE 0 0 2

Table 4.4: Example transaction measures

65

4.3.3 Functional Model Measures

Paulson and Wand [196] suggest that functional decompositions are central to most
development approaches. In cases where the functional model is broken down to a
level at which elementary modules are depicted, this representation can provide a
quantitative insight into several aspects of the specified system. Primarily, system
size, in terms of the number and distribution of modules, is shown. However the
calling structure is also portrayed, through the use of linkages between levels of the
hierarchy. Measures of both system size and system depth are therefore available
from this represent ation. These measures are defined in Tables 4.5 and 4.6.

Microanalysis functional model measures II
MDL Maximum decomposition level of the function
NP Number of parent functions

Table 4.5: Primitive function level functional model measures

II Macroanalysis functional model measures II
DEFUNC Number of distinct elementary functions in the decomposition
FLEV Maximum number of function decomposition levels
11 Number of functions at level 1
12 Number of functions at level 2

Ln Number of functions at level n
*TFUNC Total Functions (L l + L2 + ... + Ln)
*TD Total Decomposition ((Ll x 1) + (L2 x 2) + ... + (Ln x n))

Table 4.6: System level functional model measures

Only two functional model measures are included in the analysis scheme at the
primitive function level. The first measure, MDL, is an indication of the level of
system depth at which the function is to be implemented. Modules in a hierar
chy, and the data elements that they manipulate , are likely to be affected by the
processing performed above and below them. Those at higher levels, for example,
may be more vulnerable to functional errors, due to the fact that they must control
and co-ordinate the processing of often large numbers of modules at lower levels
of t11e hierarchy. Greater caution in development and more extensive testing may
therefore be necessary for higher level modules-it is suggested here that t he MDL
measure may to some degree reflect these requirements. The second measure, NP,
quantifies the number of parents that call a single function. By examining the use of
common function calls it may be found, for example, that a function that is called
or controlled by more than one parent is more difficult to develop thari a module
with only one parent, given that the plural-parent module may need to cope with
different data under different calling conditions . ·

66

A completely different set of measures than that used for primitive function level
assessment are included in the analysis scheme at the system level. They are mainly
indicators of system size, but there is also some consideration of the impact of the
decomposition structure on overall complexity. DEFUNC is the count of all the .
distinct elementary system functions, that is, those functions in the hierarchy that
call no other functions. Note that each distinct function is only counted once, even
though it may be called in several instances. This is to reflect the fact that the
function will only be developed once, even if it may be used more than once. The
FLEV measure is similar in principle to the primitive function level MDL measure.
If a particular system hierarchy is decomposed down to a maximum of six levels, that
is, one or more elementary functions must be traced back through at most six calling
modules to reach the highest-level system description, then FLEV will equal six for
that system. Comparative indications of system depth may contribute in a relative
manner to overall system complexity. The 11 to Ln measures are derived only for the
determination of the TFUNC and TD measures of decomposition. Note that level 1
is one below that at which the highest-level system description is depicted. The TD
measure uses relative weightings to provide an overall assessment of the complete
decomposition structure. This is in an attempt to assess the relative contributions
of both hierarchy depth and breadth to total system complexity.

The hierarchy depicted in Figure 4.6 provides a basis for illustrating the deriva
tion of the measures just described. If we choose function 'Store Item' for micro
analysis assessment the MDL measure would take a value of two; this is because
function 'Store Item' occurs at level 2 in the hierarchy. The NP measure for this
same function would equal one as it has just the one parent function , that is, func
tion 'Receive and Store Item' . If, on the other hand, we were to choose function
'Read Item and Required' for assessment, MDL would be assigned the value of five,
as this is the highest value level at which it appears. Furthermore NP would equal
two for this function, as it is called by both function 'Read Updated Items' and
function 'Calculate Deficit'. Any repeat of a function such as in this case is denoted
on the diagram by an asterisk (*) after the function name.

Concentration on the complete hierarchy also enables the derivation of the macro
analysis functional model measures. The DEFUNC measure is defined as the number
of distinct elementary functions in the decomposition. For this example the distinct
elementary functions, that is, those that do not call any other functions , are functions
'Receive Item', 'Store Item', 'Read Item and Required', 'Request Missing Items' and
'Report Requirements'. Hence DEFUNC for this example equals five. The 11 to
Ln measures are as follows: 11 equals two (functions 'Receive and Store Item' and
'Determine Requirements'), 12 equals four (functions 'Receive Item', 'Store Item',
'Identify Missing Items' and 'Request Missing Items'), 13 equals three (functions
'Read Updated Items', 'Request Missing Items' and 'Report Requirements'), 14
equals two (functions 'Read Item and Required' and 'Calculate Deficit') and 15
equals one (function 'Read Item and Required') . The FLEV measure is equal to n
in the Ln measure, that is, FLEV equals five for this example. The TFUNC and

67

TD measures are then directly computable from the previously derived measurement
values.

Receive Item

Inventory
System

Receive and D etermine
Sto re Ite.m Requirement.s

Store Item

Read Item
and Required

Missing Items

Read Item
and Re uired*

Request
Missing Items*

Report
Requirements

Figure 4.6: Functional decomposition hierarchy example

4.3.4 User Interface Measures

LO

Ll

L2

L3

L4

L5

Particularly for software development in a 4GL environment the number of screens,
reports and data elements produced for the user is expected to have a significant
impact on development effort, as the creation of acceptable prototype screen and
report formats is often a major part of 4GL system production (Boehm et al. [26]; Lin
[161]) . Worsley [264], for example, found that the time taken for report development
with a 4GL was longer for reports that included complex layouts and that accessed
large numbers of tables .

II Microanalysis user interface measures II
REP Number of reports produced by the primitive function
DER Number of distinct data elements reported by ~he primitive function
SCR Number of screens displayed by the primitive function
DED Number of distinct data elements displayed by the primitive function

Table 4.7: Primitive function level user interface measures

68

II Macroanalysis user interface measures II
TDREP Total number of distinct reports produced by the system
TREPC Total number of report calls performed by the system
TDER Total number of distinct data elements reported by the system
TDSCR Total number of distinct screens displayed by the system
TSCRC Total number of screen calls performed by the system
TDED Total number of distinct data elements displayed by the system

Table 4.8: System level user interface measures

The primitive function level user interface measures are therefore included to
reflect findings such as this- the layout of both reports and screens is considered
here to be related to the number of data elements that are produced on each. It is
also assumed that a primitive function that uses more screens and produces more
reports will be more complex than one that uses fewer of these representations. The
REP and SCR measures, as defined in Table 4.7, therefore consider the number of
complete reports and screens that are referred to by a primitive function, and the
DER and DED measures consider the number of distinct elements used on those
reports and screens. A distinct element is an actual data element, not a label, header
or footer, that should be counted only once for each report or screen on which it
appears, no matter how many times that element may be used on a single report or
screen. The system level measures for this representation, which appear in Table 4.8,
are similar to but not the same as the primitive level measures just described. The
TDREP and TDSCR measures are simply the total number of distinct, that is,
different, reports and screens that are employed by a system. TDER and TDED
are directly comparable to the DER and DED measures discussed above; thus they
are simply the sums of the DER and DED values for all primitive functions. The
two other indicators, TREPC and TSCRC, equate to the total number of times that
reports and screens are used in the system.

The sample screen shown in Figure 4.7 may be associated with a given primitive
function. If this is the only screen used by the primitive function, and no reports are
produced by the function, then the microanalysis measures would take the following
values: REP and DER would both equal zero, SCR would equal one and DED would
equal thirteen. The thirteen elements displayed are Order No., Date, Date Filled,
Cust. Ref., Back-0(Component, Required, Available, Back-0, Comp. Cost, Line
Cost , Sub-Total and Total.

69

Order Information
Order No. 7229 Date 14/ 03/ 91

Date Filled

Cust. Ref. BRT902

Back-0? Yes

Order Details
Component Required Available Back-0 Comp. Cost Line Cost

B65n 6 6 0.95 5.70
R03 14 12 2 1.26 15.12
C119 2 2 4.00 8 .00
C119b 2 2 1.85 3.70

Sub-Total 32.52

Total 32.52

Figure 4.7: Screen example

4.3.5 Process Model Measures

Keuffel [143] states that the underlying objective of the use of DFDs is to partition
systems in order to reduce complexity. Therefore an assessment of DFD representa
tions should provide useful indications of relative complexity levels . Generally the
measures of this model from both analysis levels reflect the assumption that a large
process model, in terms of decomposition levels, processes, related data stores and
individual data element usage, will result in a proportionally large coded function .
Thus the measures from Tables 4.9 and 4.10 that relate to the numbers oflevels, pro
cesses, stores and elements, that is, TPP, PD, TSPD , DSP, DSC, TDSSP, TDSSC,
(T)DEP and (T)DEC, are all indications of process model size. The TPP measure is
clearly only applicable to the system-level analysis procedure, given that the micro
analysis technique considers only one primitive process at a time. Therefore TPP is
simply the total number of primitive (lowest-level) processes in the system. In this
respect it is very similar to the DEFUNC functional model measure. In the same
way, the process model PD and TSPD measures are similar to the functional model
MDL and FLEV measures. They are included to assess the depth of processing that
is to be implemented in the final system.

70

II Microanalysis process model measures II
FI Number of flows into the process
FO Number of flows out of the process
DSP Number of distinct data stores providing data
PDS Number of provisions from data stores
DSC Number of distinct data stores consuming data
CDS Number of consumptions by data stores
DEP Number of non-file data elements produced by the process
DEC Number of non-file data elements consumed by the process
PPI Number of process-to-process flows into the process
PD Process depth (Number of parent processes up to level 1)
EEP Number of distinct external entities providing data
PEE Number of provisions from external entities
EEC Number of distinct external entities consuming data
CEE Number of consumptions by external entities
*PMA Process Model Access (Fr+ Fo)
*IPM Interconnection (Process Model) (FI x FO)2
*DSA Data Store Access (PDs+ cns)
*EM Element Manipulation (DEP+ DEC)
*C Containment (PEE+CEE)
*SPM Size (Process Model) (PMA+ DsP+ Dsc+EEP+EEc)

Table 4.9: Primitive function level process model measures

It is acknowledged that the data store measures DSP, DSC, TDSSP and TDSSC
may or may not be of significance, as the number of stores may be determined by
an arbitrary decision of the analyst. One analyst may prefer to have a distinct
data store for each entity, whereas another may group entity~views into data stores
simply for representational convenience. For purposes of completeness, however,
these measures will still be taken for each system. The use of the words 'non
file ' in the (T)DEP and (T)DEC definitions reflects the fact that all file-related
elements are assessed in the evaluation of the data model with the (T)AU and (T)AC
measures. There could be considerable overlap in these two pairs of measures; the
'non-file ' condition, however, enables the sole consideration of data elements other
than those stored by the system that are (i) input by the user or by other external
systems/processes and (ii) produced on the screen and in report formats.

Process model interconnection should reflect the degree of coupling that will be
implemented in the final system (Tsai and Ridge [24 7]). Interconnection at this
level may be related to Henry and Kafura's design phase Information Flow measure
[118] , in that the faffin and fan-out measures may be approximated by the flows-in
and flows-out measures of this proposal. Since it is generally accepted that DFD
process interconnection should be minimised to lessen complexity (DeMarco [68];
Hawryszkiewycz [117] ; Tan et al. [238]) , lower values of interconnection measures
such as (T)FI and (T)FO should have a positive impact on the ease of development.

i
I

I I
I

I i

I I

I I

71

II Macroanalysis process model measures II
TPP Total number of primitive processes
TFI Total number of flows into primitive system processes
TFO Total number of flows out of primitive system processes
TDSSP Total number of distinct system data stores providing data
TPDS Total number of provisions from data stores
TDSSC Total number of distinct system data stores consuming data
TCDS Total number of consumptions by data stores
TDEP Total number of non-file data elements produced by the system
TDEC Total number of non-file data elements consumed by the system
TPPI Total number of process-to-process flows into system processes
TSPD Total system process depth (Number of process levels)
TSEEP Total number of distinct system external entities providing data
TPEE Total number of provisions from external entities
TSEEC Total number of distinct system external entities consuming data
TCEE Total number of consumptions by external entities
*TPMA Total Process Model Access (TFI+ TFO)

*TIPM Total Interconnection (Process Model) (TFI x TFO)2
*TDSA Total Data Store Access (TPDS + TCDS)
*TEM Total Element Manipulation (TDEP + TDEC)
*TC Total Containment (TPEE + TCEE)
*TSPM Total Size (Process Model) (TPMA + TDSP + TDSC + TEEP + TEEC)

Table 4.10: System level process model measures

The level of system containment is also considered to be important. Dependence
on data supplied from outside the system boundaries may have an effect on the
ease of system implementation and maintenance, especially where control over the
form and validity of the data is out of the developer's hands. External entities
that receive data, on the other hand, often require this information in some form of
report. For example, a packing slip may be sent to a warehouse, or an invoice to
a customer. Therefore development and maintenance of the relevant process would
also involve the creation or consideration of a report form and the incorporation of
extra processing to produce that report. The EEP, EEC, TSEEP, TSEEC, (T)PEE
and (T)CEE measures are therefore included to reflect the impact of process model
containment . The measures differ in the fact that the first four simply consider the
number of external entities that are involved in the operation of a primitive function
or a system, whereas the final four assess the actual number of interactions between
system processes and external entities. This follows the same approach as that used
in the collection of the DSP, DSC, TDSSP, TDSSC, (T)PDS and (T)CDS measures.

The process model primitive example shown earlier in the chapter in Figure 4.4
may be useful in illustrating the derivation of microanalysis process model measures.
If we know from the user interface assessment that the Class List report contains
fourteen data elements then all of the non-composite process model measures can

72

be determined immediately, as shown in Table 4.11.

II Measure I Value II
FI 4
FO 1
DSP 4
PDS 4
DSC 0
CDS 0
DEP 14
DEC 0
PPI 0
PD 3
EEP 0
PEE 0
EEC 1
CEE 1

Table 4.11: Example process model primitive measures

4.3.6 Data Model Measures

Measures concerned with the size and intercm;mection of the data model representa
tion are also included in the analysis scheme. The size of a data model will provide
a first-cut, basic indication of the amount of processing that is to be performed on
it; that is, a larger data model implies a greater degree of processing to reference,
manipulate and/ or write to the entities and individual attributes involved. Data
model size may also be influential in the estimation of maintenance tasks, particu
larly for data retrieval systems, where the structure of the existing data will have
an impact on how new data should be incorporated into the system. This approach
is similar to the work of Symons [236] and Gray et al. [102] that was examined
in the previous chapter. Measures from this class in the current analysis scheme,
as defined in Tables 4.12 and 4.13, include EDM, TESDM, EPD, TDEPD, ECD,
TDECD, (T)EP, (T);EC, (T)AU, (T)AC and (T)EL.

The number of entities involved in system operations are considered by the EDM,
TESDM, EPD, TDEPD, ECD, TDECD, (T)EP and (T)EC measures. The first two
measures are quite straightforward-they are simply counts. of the number of entities
that are referenced or traversed by a primitive function or by a system. The other
measures then consider the types of references that the entities undergo, whether
providing data, consuming data or both, as a result of system operations. Use of
the measures is based on the same approach as that used for the process model as
sessment. That is, EPD through to TDECD consider the number of distinct entities
referenced, whereas (T)EP and (T)EC consider the actual number of references.

73

II Microanalysis data model measures
EDM Number of entities in the data model primitive
EPD Number of distinct entities providing primitive function data
EP Number of entity provisions
ECD Number of distinct entities consuming primitive function data
EC Number of entity consumptions
AU Number of attributes updated by the primitive function
AC Number of attributes consumed by the primitive function
EL Number of entity look-ups performed by the primitive function
001 Number of 1:1 links between entities in the data model primitive
OML Number of l:n links between entities in the data model primitive
MML Number of n:m links between entities in the data model primitive
01 Number of optional links in the data model primitive
ML Number of mandatory links in the data model primitive
MEL Number of exclusive links between entities in the data model primitive
*EA Entity Access (EP+ Ec)
*AM Attribute Manipulation (AU +Ac)
*DMA Data Model Access (EA+ EL)
*IDM Interconnection (Data Model) (001+0M1+MML)
*SDM Size (Data Model) (EDM+IDM)

Table 4.12: Primitive function level data model measures

Gray et al. [102] suggest that data model measures should also include some
consideration of the amount of data actually passed to and from the database. They
therefore propose that this could be derived from the number of attributes flowing in
the system-for create and delete operations this would be the number of attributes
in the entity referenced; for the update and read operations it would be the number of
actual attributes referenced. Although this suggestion was developed independently
of the current study, these measures equate precisely to the attributes-updated and
attributes-consumed measures ((T)AU and (T)AC) of the current proposal. The
entity look-up count, (T)EL, should be incremented only when an entity is referenced
purely for validation purposes, that is, when an entity is read only to ensure that a
particular field value .is allowed-the entity's data is not actually used in the process.
An entity may, however, be counted more than once for a given system/primitive
function if it is accessed both to supply data for processing and for look-up validation.

The interconnection among entities using various relationship types also gives an
indication of processing requirements . For example, a one-to-many relationship sug
gests a hierarchical link, such as that for orders and order lines, providing an insight
as to how the relevant data will be entered and processed. Eglington [73] suggests,
in fact, that the complexity of many data processing systems is mainly contained in
the relationships between records. It would therefore seem worthwhile to consider

· ·• entity relationship link types at the logical level in an assessment of complexity.
Participation requirements may also be important . A mandatory connection, for

I

74

example, may indicate a need for validation during processing to ensure that no null
entries are supplied. Bushell [38] and Keuffel [140] both state that many-to-many
(n:m) relationships are difficult to implement. Bushell [38] also suggests that con
nections between entities should be minimised because, if there are several ways of
traversing system data for essentially the same purpose, different paths will be used
in different cases. Moreover, subsequent changes will be made more difficult. The
existence of only one path therefore ensures a standard approach. To this end, the
interconnection measures 001 through to TMELS are also included in the analysis
scheme.

II Macroanalysis data model measures II
TESDM Total number of entities in the system data model
TDEPD Total number of distinct entities providing data
TEP Total number of entity provisions
TDECD Total number of distinct entit ies consuming data
TEC Total number of entity consumptions
TAU Total number of attributes updated by the system
TAC Total number of attributes consumed by the system
TEL Total number of entity look-ups performed by the system
TOOLS Total number of 1 :1 links bet ween entities in the system data model
TOMLS Total number of 1 :n links between entities in the system data model
TMMLS Total number of n:m links between entities in the system data model
TOLS Total number of optional links between entities in the data model
TMLS Total number of mandatory links between entities in the data model
TMELS Total number of exclusive links between entities in the data model
*TEA Total Entity Access (TEP + TEC)
*TAM Total Attribute Manipulation (TAU + TAC)
*TDMA Total Data Model Access (TEA+TEL)
*TIDM Total Interconnection (Data Model) (TOOLS + TOMLS + TMMLS)
*TSDM Total Size (Data Model) (11=.~ 'i>lf\ +TIDM)

Table 4.13: System level data model measures

Derivation of the 001, OML, MML, TOOLS, TOMLS and TMMLS counts
may not be obvious yvhen it comes to the assessment of certain relationship types.
Recommendations are therefore made for the following situations:

• a. recursive relationships - as these have no direct impact on the difficulty of
development, they should be assessed in the same way as any other relationship

• b. multiple relationships -

1. where more than one distinct relationship exists between .two entities on
a given system or primitive data model, and where the system/primitive
function being assessed may traverse any of these relationships at one
time, each relationship should be counted separately as part of the as
sessment ;

75

2. where more than one distinct relationship exists between two entities on
a given system or primitive data model, and where the system/ primitive
function being assessed may traverse only a subset of those relationships
at one time, each relationship in the subset should be counted as part of
the assessment.

Returning to the primitive function depicted in Figures 4.4 and 4.5, the micro
analysis data model measures can now also be determined. For simplicity's sake let
us state that each of the entities in the data model primitive contains five attributes
and that none of the entities are referenced for look-up purposes. The non-composite
data model primitive measures are therefore assigned the values shown in Table 4.14.

II Measure I Value II
EDM 4
EPD 4
EP 4
ECD 0
EC 0
AU 0
AC 20
EL 0
OOL 0
OML 3
MML 0
OL 2
ML 4
MEL 0

Table 4.14: Example data model primitive measures

4.4 Proposal Summary

Use of the GQM and Classification paradigms at the beginning of this chapter
provided a foundation for the determination of the data items required to achieve
the goals and objectives of this study. This foundation in turn led to the selection
of specific software product and development process measures, based on intuitive
expectations and on literary support. Empirical evidence of important measures
would clearly have been more reliable; however, the absence of previous studies of
this kind means that intuitive expectations have to suffice. The work of Tate and
Verner [243], however, has provided indirect but extensive support for the approach
adopted in the proposal. They suggest that, in a CASE environment, size measures
taken from DFDs, ERDs · and user interface representations will be important in
estimating other attributes at later development phases. Several possible measures
were put forward by Tate and Verner [243], many of which also appear in the current

, I

76

proposal-for example, numbers of processes and flows, numbers of entities and
attributes and numbers of screens and reports. Tate and Verner [243] then raise the
question-are all these measures really needed? Their answer, that it is not easy
to choose from the measures until some observational work has been performed,
provides indirect motivation for the current study. It is also a reflection of the
somewhat exploratory nature of this study-it is therefore hoped that the validation
of the current scheme will provide recommendations for further research as well as
for practical project management.

Now that the analysis scheme has been formally proposed, the next two chapters
are concerned with its evaluation. Chapter 5 considers the theoretical validity of the
study, in the light of recent discussions on the validity of software measurement as
an analysis approach. This is followed by a discussion of the empirical procedures to
be used in the evaluation of the proposal, including details of the study's objectives
in operational terms, as well as a more in-depth description of the required project
management data. Chapter 6 then contains the results of the empirical evaluation
and provides a discussion of the findings.

r I I
I

•
77

Chapter 5

Theoretical Validity and
Empirical Procedures

5 .1 Introduction

If the results obtained from the statistical examination of the analysis scheme are
to be used with confidence within the software development industry then both the
scheme and the statistical procedures must be shown to be valid and appropriate.
This chapter is therefore concerned with the validity and evaluation of the proposed
scheme. A discussion on the theoretical validity of the approach is followed by
an examination of the criteria used in the empirical evaluation. An outline of the
systems analysed in the study is then provided, with the remainder of the chapter
being taken up by a discussion of the statistical techniques employed.

5.2 Theoretical Validation

Quite distinct from empirical validation, theoretical validation has become increas
ingly important in its own right over the last five years. Several analysis models
and approaches have been criticised for having very weak theoretical foundations.
It has been suggested that this failing overrides the validity of any empirical results,
as the results are derived from models that are based on flawed assumptions. Issues
concerning the validity of software complexity assessment in general are therefore
examined in the next section. This is followed by a discussion on the theoretical
validity of the current study.

5.2.1 Theoretical Validity of Software Measurement

The metric/measurement approach to software complexity analysis has recently re
ceived extensive criticism, relating particularly to the assumed equivalence of psy
chological and structural complexity and to the inadequate internal validation per
formed in measurement studies . Fenton [79] provides a detailed discussion on the
underlying theory and effective use of software metrics. A distinction is made be-

78

tween internal and external software attributes, the former being directly derivable
from a software product- for example, length or structuredness-and the latter
being at least partially dependent on the environment- for example, software re
liability or understandability. It is suggested by Fenton [79] that a major failing
of many previous studies is the inherent implication, or explicit suggestion, that
internal attributes may be used to effectively measure external ones, for example,
that code length or design module structure may be used to measure software un
derstandability. (Further discussion of this problem can be found iri Fenton and
Melton [81 J and in Baker et al. [8].) Melton et al. [177] suggest that this is a result
of the failure of most researchers to distinguish clearly between psychological mea
sures and software product measures. Many product measures are said to quantify
understandability or maintainability, despite the fact that there are undoubtedly
factors other than document structure that affect these attributes. Moreover, any
consideration of psychological complexity should incorporate not only the software
product but also the person who is attempting to comprehend it. This second com
ponent, however, is almost always disregarded because of the difficulty of measuring
human understanding.

A second related problem hindering the effective measurement of software com
plexity is a lack of operational definition. Shepperd and Ince [224] state that most
metrics are overgeneralised, in that they are simply expounded as measuring com
plexity or quality, despite the fact that these attributes are seldom defined before
hand in terms of software development. This has resulted in a situation where
'complexity' has been illustrated in a variety of guises, for example, the number
of development errors, the frequency of changes or the effort required to perform
an enhancement (Kitchenham et al. [153]). Melton et al. [177] also remark that
units are only rarely provided for the measures extracted, increasing the scope for
misinterpretation of results. Moreover, Fenton [79] suggests that it seems curious
that so much effort has been invested in validating metrics through the prediction
of errors, changes and so on, when definitions of these attributes vary significantly
across studies and are seldom provided in the experimental reports.

Inadequate validation has also been cited as a significant drawback of previous
metrics research. Fenton [79] separates measurement validation into the two classes
of internal and external, with the former being performed far less frequently than the
latter. Internal validation should be performed to ensure that a measure is in fact a
numerical represent<l,tion of the property that it claims to quantify. Each measure
must be derivable from a clearly defined aspect of the software development process
or product and should itself have a formal definition, to ensure that no ambiguity
exists in quantification. Fenton [79] cites lines of code (LOC) as an example of an

' ' internally valid measure. It is based on program code, a specific software product ,
and it can be formally defined so that there is no ambiguity in its assessment . The
measure is also always able to show if one code example is longer than another, for
all code examples. Lines of code is therefore an internally valid measure of code
length. It is not, however, an internally or externally valid measure of complexity, ·

External validation is the process by which an internal attribute, that is, orie that
is completely derivable from a software product, may be shown to be an important

' I

79

indicator of some external attribute. This is the type of validation usually performed
in metric research. If an internal measure, such as the number of predicate constructs
in the code, is validated by relating it to, say, the number of reported post-delivery
errors, then it would be fair to say that the measure is a validated indicator of
post-delivery error-proneness, but again, not of complexity. This type of validation
has always taken preference over that which has investigated characteristics such
as quality or reliability because of the difficulty of objectively measuring external
attributes such as these. Internal validation, however, is at least as important, and
should be performed as a standard component of measurement research (Fenton
(79]).

There has also been some discussion of the use of formal axioms as a basis
for the development of appropriate measures (Prather (198); Bollmann and Zuse
(28]). These studies suggest that the use of such axioms will ensure that no easily
confounded metrics will be proposed, as they will fail to satisfy the axioms. However,
Cherniavsky and Smith (4 7] showed that the axiomatic-type approach developed by
Weyuker [260) could easily be circumvented by a nonsensical measure. Shepperd
and Ince (225) have also criticised the Prather approach [198] for its operational
weakness. Moreover, all of the measurement axioms suggested so far have been
applicable only to software code. With changes in technology this would appear to
have little current applicability, at least within the commercial software development
domain.

5.2.2 Validity of the Current Study
The approach adopted in this study has attempted to conform as closely as possible
to the recommendations and remarks made in the previous section. Whereas many
previous measurement proposals have asserted to quantify understandability or psy
chological complexity, this is certainly not a claim of this project. In fact, it is seen
as an advantage of this proposal that understandability is of much less influence,
due to automatic system generation facilities and English-like language use. Where
acknowledgement is made of the need for specification understanding, for example,
in software maintenance, it should be clear that only functional complexity, and not
understandability, is considered to be assessable. Thus this study holds no claim to
being able to measure software understandability or psychological complexity. Some
reiteration may tl~erefore be required as to the overall objective of the study, that
is , the development and validation of a specification-based functional complexity
analysis or assessment scheme applicable to interactive commercial systems.

Analysis or assessment - throughout the discus~ion of the proposed scheme
in the previous chapter it was referred to as an analysis or assessment scheme and
not as a measurement scheme. Consider the following dictionary definitions (Allen
[5]):

analyse - examine in detail; ascertain elements or structure of [complexity] ;

analysis - detailed examination of elements or structure of [complexity);

assess - estimate magnitude or quality of [complexity) ;

1\

80

measure - (v.) find extent or quantity of [complexity] by comparison with fixed
unit or with object of known size.

Measurement therefore requires the use of fixed units or well-defined measurable
baseline properties. Given that complexity is abstract, multi-dimensional and poorly
defined, scientific measurement would appear to be an unlikely prospect. Analysis or
assessment, on the other hand, can be performed without the need for a more solid
definition of the item being considered,. which is in this case functional complexity.

Functional complexity- despite widespread ackiiowledgement of the absence
of an operational definition, 'complexity' is still used here. Although this does not
adhere totally to the comments of the preceding section, continued use of this expres
sion is considered to be acceptable, for three reasons. Firstly, it is almost certain that
we will never have a universally applicable measure for software complexity, if only
because of constantly changing technologies. This should not, however, preclude
us from using the term as a descriptive indication of the effect of a combination of
(what are perceived to be) important factors that make a given task in any domain,
not just software development, more difficult to perform.

Secondly, a lack of complete definition should also not stop us from making value
judgements regarding relative levels of certain attributes, in spite of the fact that the
attributes themselves have not been measured. For example, a student may remark:
'Today's test was much more difficult than the one we had last week'. Clearly this
is based on individual perception and on other measurable factors, such as the time
needed to complete the test, the number of questions in the test, the number of
questions completed and so on. Although difficulty itself has not been measured,
various levels of the attribute may be compared in general terms based on other
related measures , such as the number of questions completed. It is considered that,
at least in this particular study, a similar approach may be applicable for complexity
analysis.

The third reason for the continued focus on complexity is its multi-dimensional
nature. Measures of an attribute that may be much more clearly defined, such
as measures of size, account for only one of the many aspects of software that
may contribute to the likelihood of errors and to development effort requirements.
Other features, including interconnection, are ignored by size indicators. This can
result in a situation in which size measures are only poor discriminators of actual
complexity, one of the failings of some of Halstead's measures and the lines-of
code measures. Thus complexity is not necessarily a component of size. However,
complexity indicators can include measures of size, as well as other measures , so
that a comprehensive analysis of all the contributing factors may be performed.

Thus, although not measures of complexity itself, ·a basic assumption of this
study is that the various specification measures are certainly related to complexity.
Oman and Cook [194] state that, in general, complexity measures do not measure
complexity itself, but the extent to which those features thought to contribute to
complexity exist in a software product. The specification measures investigated in
this study are therefore considered to be indicators of functional complexity and
the project management attributes a{:e viewed as the partial consequences of that
functional complexity. It should be noted, however , that given the abstract nature

of complexity, the link between these measures and complexity is one based on in
tuitive expectations and not on any validated direct mapping of the measures to
complexity. Thus although this study may provide empirical evidence of relation
ships between the specification measures and the project management attributes, the - - . - . . - - - -

i1
link between these relationships and 'complexity' is founded only on the assumption
that systems/functions returning higher value specification and project management
measurement values are more complex than those returning lower values.

The specification measures considered here are all internally valid according to
Fenton's criteria [79]. All are derivable from well-defined abstractions of software
products, that is, ERDs, DFDs, FDHs, screen and report formats and data dic
tionaries. All may be rigorously defined to ensure that counting of any item is
unambiguous, and all quantify relative levels of product attributes, for example, the
number of entities in a data model primitive or the maximum depth of a function .
Given unambiguous definitions and assessment procedures, the project management
indicators, as discussed in the following section, should also be considered to be in
ternally valid.

5.3 Empirical Validation
It was stated in Chapter 1 that more than ninety complexity metrics are currently
in existence. One of the reasons that many of these methods have not been used in
the development industry is a lack of 'proof' that they actually provide some form
of consistent benefit to prospective users. In cases where it is provided, this proof is
most often an analysis of the results obtained by applying the measurement scheme
to a sample of representative systems. Although this type of verification is clearly to
be encouraged, problems have occurred with this activity, particularly in relation to
the use of inappropriate statistical techniques when undertaking data analysis. The
following sections therefore describe the empirical validation and analysis procedures
used in the current study. The project management criteria used in the validation
are explained in the next section, followed by a short description of the systems
analysed and a discussion of the statistical techniques employed.

5.3.1 Evaluation Criteria

As stated previously, complexity is thought to be influential in determining two
types of development attributes:

1. attributes such as software quality and reliability;

2. attributes such as development effort and error occurrence.

Given the difficulties in obtaining objective, quantitative indications of the items in
the first category, evaluation in this study is restricted to the discrimination and
estimation of attributes from the second class.

In the previous chapter it was suggested that high values of the various specifica
tion measures would indicate primitive functions/systems that were time consuming
and error-prone to develop. To empirically evaluate the proposed analysis scheme,
this assertion must be tested-quantitative indicators of development effort and er
ror occurrence are therefore required a t both levels of analysis . For the purposes of
this study, these indicators are defined as follows :

• analysis effort - time, in person:-days, spent on analysing and specifying the
requirements of a primitive function/system in an automated environment

11

82

• design effort - time, in person-days, spent on designing a primitive func
tion/ system in an automated environment

• construction effort - time, in person-days, spent on constructing a primitive
function/system in an automated environment

• unit test effort - time, in person-days, spent on the unit testing of a primitive
function/system in an automated environment

• system test effort - time, in person-days, spent on the integration testing of a
system in an automated environment

• total development effort - time, in person-days, spent on analysing, design
ing, constructing and testing a primitive function/system in an automated
environment

• number of errors - number of functional errors applicable to a primitive func
tion/ system reported during the acceptance testing phase

• number of amendments - number of functional amendments applicable to a
primitive function/system reported during the acceptance testing phase.

These indicators are related to various well-supported assumptions associated
with relative complexity levels (Gremillion [103] ; Brooks [32]) . It is generally ex
pected that a more complex primitive function/system will take longer to develop
and test than a less complex counterpart. The effort measures therefore reflect
the amount of work carried out by personnel using CASE tools and/or 4GLs over
the various phases of development. It is also likely that a complex primitive func
tion/ system will be more prone to errors during its development and will require
a greater number of amendments after initial delivery, due to increased misunder
standing between users and developers. Thus the error and amendment counts are
included. Errors are defined to be instances where the required functionality, as
represented in the specification, is missing or has been incorrectly implemented.
Amendments, on the other hand, represent situations in which the functionality is
present and is performed correctly by the system, but in a different way than that
required by the user.

All of these pr_oject management indicators can still be influenced in unexpected
ways by other factors, including organisational changes. However the impact of sev
eral external influences, including those relating to personnel, will be reduced within
an automated development environment, so the overall influence of outside factors
should be lessened. It is certainly an assumption of this 'study that extensive quanti
tative analysis is currently the best method available for obtaining early indications
of effort requirements and error occurrence, despite the possible influence of factors
that cannot be anticipated. Thus the general expectation of the evaluation is that
primitive functions or systems that return higher specification complexity indica
tor values will be more time-consuming and error-prone to develop than primitive
functions or systems that return lower indicator values .

83

5.3.2 Systems Analysed

After an extensive mailing campaign, ten business and government organisations
subsequently agreed to provide systems for this project. Most agreed to allow one
system only to be analysed, giving an overall sample size of sixteen systems. A much
larger sample of both sites and systems had been anticipated at the beginning of
this research but the response from development sites was extremely disappointing.
Although the sample is certainly small, it is hoped that the results will be applicable
to systems developed with a wide range of CASE and 4GL tools, given the variation
in products examined. Appendix A.I contains further discussion on the mailing
campaign and on the resulting response from development organisations.

The ten organisations that agreed to participate in the study are as follows:

• BP Chemicals Ltd - a subsidiary of one of the United Kingdom's largest com
panies, manufacturing chemical and plastic products for a worldwide market

• British Gas plc - concerned with the exploration, purchase, distribution and
sale of gas in the U.K. and overseas, supplying over 17.5 million domestic sites

• Home Office - a government department concerned with the administration of
justice, immigration and public safety in the United Kingdom

• ICI Chemicals and Polymers Ltd - a subsidiary of Imperial Chemical Industries
plc, involved in the manufacture of chemical products for the European market

• Merrett Management Services Ltd - a subsidiary of Merrett Holdings plc,
providing accounting and personnel services for Lloyd's underwriting and in
surance agencies

• Office of Population Censuses and Surveys - the government department re
sponsible for the registration and reporting of demographic statistics in the
United Kingdom

• Pro IV Holdings Ltd - a private company providing information systems to
a national client base that includes airlines, breweries and local government
bodies

• Rover Advanced Technology Centre - an industry-sponsored research group
undertaking projects of interest to the motor vehicle industry

• Royal Insurance (UK) Ltd - one of the U .K. 's largest insurers, providing almost
all types of insurance services to a national market

• Unipart Information Technology - designers, manufacturers and distributors
of automotive parts, components and accessories for the UJ{. market.

The sixteen ;3ystems in the sample performed a number of overall functions ,
including custo:i:ne1~ and supplier recording, costing and charging , accounting, site
and personnel administration, scheduling and rostering, and were implemented on

84

a range of mainframe and microcomputer platforms. CASE tools and/ or 4GLs
were used extensively in the development of all sixteen systems. The tools used
included Oracle CASE, AutoMate Plus, IEW / ADW, Model 204 and MADM, the
IEF, Quickbuild, Excelerator, Application Master, ProKit Workbench and Pro IV.

Collection of the analysis scheme data items was performed manually from vari
ous specification documents, that is, ERDs, DFDs, FDHs, screen and report formats
and data dictionaries. Although automatic extraction would have been more efficient

· and less error-prone, the tools used in the development of the systems investigated
here did not have the facilities to perform this function. Furthermore, manual col
lection also resulted in a minimum of interruption to the normal operations of the
organisations, whereas in-house analysis without automatic extraction tools would
have been more disruptive. The project data relating to development effort and
reported errors was gathered from a combination of on-line and paper-based records
that had been kept as part of the organisations' routine project management proce
dures.

5.3.3 Statistical Analysis Techniques

Analysis procedures were chosen so that the empirical objectives of the study, as
stated in Chapter 1 and repeated here, could be achieved. The original objectives
were as follows:

• the determination of relationships between functional complexity indicators
and project management data (relating to development effort and error occur
rence)

• the early determination of relative functional complexity indicators (in terms
of development effort and error occurrence) at both the system and individual
function level

• the classification of systems and individual functions according to their likely
project management consequences (in terms of development effort and error
occurrence) based on functional complexity indicators

• the development of equations for the estimation of project management data
(relating to 1evelopment effort and error occurrence) based on functional com
plexity indicators.

In order to satisfy the above objectives a number of statistical techniques were
used. Recent work in the software measurement domain has highlighted a need
for the use of more appropriate statistical procedures in the analysis of collected
data (Ince and Shepperd [125]; Coupal and Robillard [57]). The distributions of
complexity analysis data, both product measures and project management measures,
are often skewed to the right and contain a number of outliers. This is particularly
the case for primitive function error data, which can never take a value of less than
zero and yet are often concentrated near the zero data point. Similarly for product
measurement, data points tend to be clustered at the lower end of the distribution

p

85

(Kitchenham (150]; Card et al. (39]). A number of previous studies have failed to
take this into consideration when using statistical analysis techniques. Therefore in
this study a variety of procedures were used in an attempt to ensure that the results
obtained were valid and that they provided a sound basis for the development of
appropriate and applicable conclusions. A short description of the procedures now
follows.

Correlation

The Pearson product-moment correlation coefficient indicates the extent of a linear
association between two variables (Woodfield et al. [263]). The value of the coeffi
cient can take a value between -1 and +1 , where a value approaching -1 indicates
an increasingly negative, or inverse, linear relationship, and a value approaching + 1
indicates an increasingly positive or direct linear relationship. A coefficient value
of O indicates that the two variables are unrelated. Use of this coefficient requires
that the underlying data should have been drawn from normally distributed samples
(Knafl and Sacks [155]) .

A correlation technique that does not make this assumption of normality is the
Spearman rank correlation coefficient. This is a measure of the correspondence
between two sets of observations when they are ranked in the same order; it is
also considered to be an indication of the strength of the relationship between the
two variables of interest (Daniel [62]). Thus the measure can illustrate the relative
correspondence between two variables, as required by the second objective. The
Spearman statistic is subject to the same limits as the Pearson coefficient. The only
drawbacks to the use of this statistic are that it can be confounded by large numbers
of tied data elements and that a correspondence of ranks does not necessarily reflect
a close linear relationship (which the Pearson statistic does indicate). Thus an
examination of the data should be carried out in conjunction with the computation
of the correlations.

Classification

Classification and outlier identification techniques have become increasingly popular
within software assessment procedures over the last decade. Kafura and Canning
[134], Card et al. [39] and Kitchenham et al. [153], for example, describe a number of
methods for component classification and for the detection of abnormal modules. In
cases where data follows the normal pattern, aspects of the distribution can be used
to examine the effectiveness of, for example, a specification measure in classifying
systems or functions according to their subsequent requirements for development
effort and error-proneness, as performed in this study. They can also be used in the
identification of relatively abnormal 'otitlier ' values. Those systems or functions with
abnormally high values of influential specification measures may demand further
development or enhancement to ensure that problems do not arise in subsequent
development phases (Shepperd and Ince [224]; Kitchenham and Pickard [152]). The
method employed in this study used a direct comparison of the distributions of values

11

86

for the two related variables, as initially identified by the correlation techniques
described above.

For example, fifteen systems may return the following set of values for measure
A: 7, 9, 13, 11, 14, 14, 19, 21, 15, 20, 23, 26, 26, 30 and 28. The arithmetic mean of
this distribution is 18.4 and the standard deviation (s.d.) is 6.955. For those same
fifteen systems, measure B, to which measure A is related, takes the values: 94, 106,
108, 119, 111, 102, 122, 125, 119, 118, 141, 136, 140, 144 and 151. The mean in
this case is 121.4 and the standard deviation is 16. ~31 . If we consider an outlier to
be a data element that has a value greater than one standard deviation above the
mean, given the small size of the data sets, an analysis such as the following may
be performed:

Measure A:
mean= 18.400, mean - 1 s.d . = 11 .445, mean+ 1 s.d. = 25.355

Systems: 1 2 4

Systems: 1 2 6

Measure B:

11.445
I 3 5 6 7 9
I
I

18.400
I s 10 11
I
I

I 3 4 5 7 9 10
I

8 12

I
106. 0b3, 122.. 4.00

25.355
I 12 13 14 15
I
I

11 13 14 15

13 i.T37

mean= 12 7.. . ~00, mean - 1 s.d. = 106. 0bo , mean+ 1 s.d. = 13i . 'T37

Direct mapping for systems: 1 2 3 5 7 9 8 13 14 15
Number of systems: 15 Correct classification: 10/15 = 66.7%

Direct mapping for outliers: 13 14 15
Number of response outliers: 4 Correct identification: 3/4

Number of incor!ectly identified outliers : 1

Thus in the example above the classification of a system according to the cate
gories of measure A would also be the correct classification for the system in terms
of measure B, for 66. 7% of the systems classified. So If, for example, we were to
state that measure A was the number of entities in the system data model and that
measure B was the total number of development effort hours , such a technique would
enable a project manager to estimate with 66. 7% confidence, within two bounding
figures, the approximate number of development hours that a project would require
based only on the number of entities in the system data model. Furthermore he or
she could predict with 75% accuracy the systems that would be outliers in terms

I

87

of development effort. A significant advantage of this approach is that it can be
performed entirely at the specification stage.

If the data in question is not normally distributed the classification procedure
could instead be carried out based on boxplot distributions. Boxplots (Hoaglin et
al. (1 20]), such as the one shown in Figure 5.1 (Norusis [193)) , depict the spread of
values about the median of a distribution. The median is considered to be a more
robust indicator of central location when the underlying data is skewed (Rousseeuw
and Leroy [211] ; Daniel [62]; Norusis [193]).

(E) CASEn

(0) CASEm

-~

*

_L

(0) CASE f

(E) CASE g

- - - - - - - - - - Extreme outlier data point-greater than (1.5xbox-length)
from the 75th percentile.

- - - - - • - - - - Outlier data point-greater than (lxbox-length) from the
75th percentile but less than {1.5xbox-length) from the
75th percentile .

- - • - - • - • - • The largest data point less than (lxbox-length) from the
75th percentile.

- - - - - - - - - - The 75th percentile. One of Tukey's hinges.

- - • - - - - • - - The median value (the 50th percentile).

- - • - - • - - - • The 25th percentile. The second of Tukey's hinges .

- - - - - - - - - The smallest data point less than (lxbox-length) from the
25th percentile.

- - - - - - - - - - Outlier data point-greater than (lxbox-length) from the
25th percentile but less than (1.5xbox-length) from the
25th percentile.

- - - - ·- - - - - - Extreme outlier data point-greater than (1.5xbox-length)
from the 25th percentile.

Figure 5.1: Boxplot diagram

Classification using boxplot distributions is also performed according to four
bounded categories. The lower class contains those data points with values less
than the median value; the second class includes items with values greater than or
equal to the median but less than that of the 75th percentile; the third group of
values must be greater than or equal to that of the 75th percentile but less than
the upper whisker value; and the fourth class contains all those data points with
values greater than or equal to the upper whisker value. This fourth class therefore

I

I.

88

contains all the outliers of a given distribution.

Estimation

Accurate prediction of requirements and outcomes for projects still to be developed
has been one of the most sought after goals of software assessment research. This
is particularly the case for the estimation of effort-models have been proposed by,
among others, Albrecht [2] , Symons [236] and Boehm [25]. Two factors that . are
common to most, if not all, effort estimation methods are the need for extensive
calibration and the assessment of a number of external, that is, non-system related
considerations; Both procedures are considered to be essential if the results obtained
are to be applicable to the local development environment. One of the purposes of
this study, however, was to develop an assessment rriethod that was less dependent
on both development personnel and on aspects particular to individual development
organisations or groups. It is therefore envisaged that calibration for 'unique' cir
cumstances will not be as necessary. If a relatively reliable equation can be obtained
from the samples used here, with the variations in sites and products employed, then
approximate predictions using a single equation may become more feasible.

Another important reason for the inclusion of estimation procedures in this study
is less justifiable in theoretical terms, but is important in a more pragmatic manner.
Although effective predictions are difficult to obtain and are not necessary for effec
tive software measurement (Baker et al. [8]) they are almost certainly what project
managers require. Therefore if this study can provide equations that are useful for
the majority (say, seventy-five percent) of MIS and transaction-based projects using
automated tools in committed development organisations then this will still be a
worthwhile and potentially useful achievement.

The popular least-(mean-)squares (LS) regression method was therefore used
in conjunction with the less common least-median-squares (LMS) technique in an
attempt to ensure that robust estimates, that is, estimates that are not overly influ
enced by outliers, are developed for the predictions in this study. The LS method
has .become the cornerstone of classical statistics, due to both ease of computation
and to tradition (Rousseeuw and Leroy [211]). In cases where outliers seldom occur,
the LS method is often more than adequate. However, outliers are a common feature
of software engineering data sets (Kitchenham and Pickard [152]). Moreover, the
LS technique yields the arithmetic mean of observations, in spite of the fact that,
for skewed data, the mean is not a robust indicator of central location. Thus even
in cases where there are small departures from the normal model the LS method
loses much of its efficiency (Hampel et al. [109]; Myrvold [184]). The LMS method,
as discussed by Rousseeuw and Leroy [211 J, was therefore also used.

The traditional statistic for assessing the strength of a linear relationship under
the LS method is the coefficient of determination (R2

). This statistic reflects the
amount of variation in the response variable that can be explained by the predictor
variable(s). It takes a value of between zero and one, with the latter value indicating
a total ability of the predictor variable to explain the variation of the response vari
able. An analogous statistic, also called the coefficient of determination, is available

89

for the LMS regression, although the formulation is slightly different. This coeffi
cient was used in this study to assess the effectiveness of the regression equations, in
conjunction with examinations of the residuals and, in appropriate cases, an F-test
of the significance of the regression slope.

Computer-Based Analysis

The set of techniques described above includes methods applicable to normally and
non-normally distributed data sets. Particular statistical methods were deemed
to be applicable to the various data sets according to two tests of normality-the
Lilliefors version of the Kolmogorov-Smirnov test and the powerful Shapiro-Wilks
test (Daniel [62]; Norusis [193]).

The methods were implemented using two different computer-based statistical
analysis packages. The correlation procedures and the distribution/normality tests
were performed using the SPSS/PC+ system. Both the Spearman and Pearson
correlation coefficients were provided to two levels of significance, enabling the de
termination of appropriate relationships and the selection of variables for subsequent
examination. The distribution and normality tests also automatically provided sig
nificance figures so the selection of classification methods was straightforward.

The regression tests were carried out using the PROGRESS (Program for RO bust
reGRESSion) package developed by Rousseeuw and Leroy [211]. The PROGRESS
system includes both the least-squares and least-median-squares techniques, and
automatically computes reweighted least-squares (RLS) equations based on the LMS
analysis results. The RLS procedure removes the outliers identified in the LMS
regression and computes a new LS equation based on the remaining data points.
The PROGRESS system also enables the examination of residual plots, so as to
ensure that any equation developed satisfied the requirements for residuals, that is ,
that they are independent of one another, that they are evenly dispersed about the
mean (at zero on the vertical axis) and that they reflect a constant variance. Linear
prediction models that produce residuals that do not conform to these requirements
are generally inadequate, in that they may be improved only through the inclusion
of weighted or transformed terms.

The methods described in this section were chosen in order that the objectives of
the study could be achieved in a valid manner. Both parametric and non-parametric
correlation techniques were used to satisfy the first two objectives, boxplots and
normal distributions were used to carry out the classifications required by objective
three and both least-mean- and the more robust least-median-squares regression
methods were applied so that the fourth objective could be achieved. The results
obtained from the application of all these procedures are summarised in the next
chapter. Examples of the actual listings that were produced as output from the two
packages appear in Appendix A.2.

89

for the LMS regression, although the formulation is slightly different. This coeffi
cient was used in this study to assess the effectiveness of the regression equations, in
conjunction with examinations of the residuals and, in appropriate cases, an F-test
of the significance of the regression slope.

Computer-Based Analysis

The set of techniques described above includes methods applicable to normally and
non-normally distributed data sets. Particular statistical methods were deemed
to be applicable to the various data sets according to two tests of normality-the
Lilliefors version of the Kolmogorov-Smirnov test and the powerful Shapiro-Wilks
test (Daniel [62]; Norusis [193]).

The methods were implemented using two different computer-based statistical
analysis packages. The correlation procedures and the distribution/normality tests
were performed using the SPSS /PC+ system. Both the Spearman and Pearson
correlation coefficients were provided to two levels of significance, enabling the de
termination of appropriate relationships and the selection of variables for subsequent
examination. The distribution and normality tests also automatically provided sig
nificance figures so the selection of classification methods was straightforward.

The regression tests were carried out using the PROGRESS (Program for RO bust
reGRESSion) package developed by Rousseeuw and Leroy [211]. The PROGRESS
system includes both the least-squares and least-median-squares techniques, and
automatically computes reweighted least-squares (RLS) equations based on the LMS
analysis results. The RLS procedure removes the outliers identified in the LMS
regression and computes a new LS equation based on the remaining data points.
The PROGRESS system also enables the examination of residual plots, so as to
ensure that any equation developed satisfied the requirements for residuals, that is,
that they are independent of one another, that they are evenly dispersed about the
mean (at zero on the vertical axis) and that they reflect a constant variance. Linear
prediction models that produce residuals that do not conform to these requirements
are generally inadequate, in that they may be improved only through the inclusion
of weighted or transformed terms.

The methods described in this section were chosen in order that the objectives of
the study could be achieved in a valid manner. Both parametric and non-parametric
correlation techniques were used to satisfy the first two objectives, boxplots and
normal distribution·s were used to carry out the classifications required by objective
three and both least-mean- and the more robust least-median-squares regression
methods were applied so that the fourth objective could be achieved. The results
obtained from the application of all these procedures are summarised in the next
chapter. Examples of the actual listings that were produced as output from the two
packages appear in Appendix A.2.

90

Chapter 6

Empirical Analysis Report

6.1 Introduction

The two previous chapters describe in detail the proposed analysis scheme and the
methods that were used in its evaluation. These factors are now combined in this ,
the report on the statistical analysis of the scheme. The chapter begins with a
brief description of the final samples and a short discussion on the availability of
the necessary data. This is followed by a summary of the results obtained from the
analysis of each of the four samples. Sample results, including listings of the raw
data and of the direct output of the statistical analysis procedures , are provided in
Appendix A.2. A discussion of the results and appropriate recommendations then
conclude the chapter.

6.2 Description of Samples

The sixteen systems described in Chapter 5 provided four distinct samples for sta
tistical analysis. Table 6.1 describes the four samples in terms of the number of
data sets in each, the level at which t he data was collected and the type of project
management dat a that was available for those data sets.

II Sample I Level I Project Data I No. Data Sets II
1 Macroanalysis Effort 13
2 Macroanalysis Errors 11
3 Microanalysis Effort 1
4 Microanalysis Errors 1

Table 6.1 : Analysis samples

Table 6.1 shows that macroanalysis data was collected from thirteen and eleven
projects for t he effort and error invest igations respectively. Although these are not
large samples they are certainly non-trivial, given that they were obtained from a
selection of diverse sites. Moreover, very little empirical work has been previously

91

undertaken concerning complexity assessment at the specification stage-as far as
the author is aware there have been no previous studies of this type that have
concentrated solely on systems developed with extensive automated assistance. It
is therefore felt that the results obtained from the macroanalysis investigations will
prove to be useful when applied to future development projects.

Unfortunately this is not likely to be the case for the microanalysis samples. As
illustrated in Table 6.1 only one data set was available for the investigation of rela
tionships for both the effort and error perspectives. Although Chapter 4 highlighted
the reasons in favour of low-level data collection it would appear that this activity is
still not widely practised. With increased automation of collection procedures this
situation is likely to change over the next five years-more effective investigations
will then be possible. In spite of the clear limitation that this places on the current
microanalysis study, statistical analysis should still provide some preliminary insight
into the effectiveness of low-level specification assessment. Clearly, however, it would
be unwise to draw any generalisable conclusions from such an analysis. Therefore
much of the following discussion is based on the analysis of the system level data.
Information specific to the single microanalysis data sets has been included with the
result summaries for samples three and four provided below.

6.2.1 Data Availability
Due to access difficulties, several system level variables of interest proposed in the
scheme had to be discarded before the analysis could proceed. From the set of
macroanalysis user interface measures only the numbers of distinct screens and re
ports (TDSCR and TDREP) were consistently available. This was due to the fact
that just three of the system specifications contained, in document form, copies of
the system screens and reports. The number of report and screen calls and the num
ber of data elements used were therefore only accessible in these three cases. Thus
the TREPC, TDER, TSCRC and TDED variables were removed from the analysis.

More significantly, it was decided that the analysis of process model measures
would be abandoned at the outset, as only three projects were found to have made
full use of data flow diagrams in their system specifications. Although this finding
may be taken to suggest that DFDs are now uncommon, it is more likely that it is
simply a reflection of the particular tools that were encountered in this study. A
recent assessment_ of several CASE products (Vessey et al. [255]) showed that DFD
assistants were still among the most widely available features of automated tools.
Future studies with systems developed using other tools should therefore provide
useful results relating to the influence of process mo1el factors. Only one of the
macroanalysis data model measures was removed before the statistical procedures
were applied. The number of entity look-ups (TEL) was documented as a separate
figure in just two of the projects-in all other cases a look-up was included as a read
operation. Thus statistical analysis of the variable was not applicable.

The need to discard the variables mentioned was at least partially due to the
fact that data collection in this study was based completely on document versions
of specifications. If access to the system-held specifications had been allowed then

92

many of the discarded variables would have become available. Therefore although
they have been removed from this study the variables may still be of interest, and
if the counting scheme is automated then variables of this type will be more readily
accessible. Analysis of the complete data set may then be performed.

Some of the project management indicators were also removed before the com
mencement of the statistical analysis. It was found that, not unexpectedly, records
of phase effort were not recorded in a consistent manner across both projects and
organisations. For example, some sites performed only design before construction,
and any analysis-type activities were included as design tasks. Similarly, construc
tion effort often incorporated unit-testing effort, rather than it being recorded as
a distinct figure. It was therefore decided to create two new project management
indicators:

• analysis-design effort - time, in person-days, spent on analysing, specifying
and designing a primitive function/system in an automated environment

• program-unit test effort - time, in person-days, spent on constructing and unit
testing a primitive function/system in an automated environment.

As system test effort figures were also only available for four projects it was necessary
to omit this variable at the outset. This therefore left five effort indicators-the two
defined above, denoted AN_DES and PROG_UT in the statistical discussion, along
with the original design effort, program effort and total effort measures, referred to as
DESIGN, PROGRAM and TOTAL respectively. In terms of error indicators, both
the originally defined measures of errors and amendments were available. These are
denoted ERRORS and AMEND in the following discussions.

6.3 Analysis Results

The following sections present the results obtained from the statistical examination
of the analysis scheme measures and the project management indicators, for each of
the four samples described earlier in this chapter. These results form the basis for
the subsequent discussions and conclusions of the study.

6.3.1 Sample One: Macroanalysis-Effort

A total of thirteen valid project data sets were collected for this sample. Correlation
procedures identified a number of highly significant associations involving variables
from all of the specification perspectives. Many of the'se relationships were signifi
cant at the a = 0.001 level; that is, there was less than 0.1 % probability that the
relationships had been encountered by chance. Those specification indicators that
were found to be significantly correlated with system level effort indicators at this
level are shown in Table 6.2. The abbreviation 'C.M.' stands for the correlation
method, with 'P' denoting Pearson's statistic and. 'S' representing the Spearman
statistic.

93

II Perspective I C.M. I Specification Indicators II
Transaction p TRE

s TRE
Functional p F1EV 1415 TFUNC TD

s F1EV 15 TD
User Int. p TDSCR

s TDSCR
Data p TESDM TDEPD TEP TDECD TEC TAU TAC

TOM1S T01S TM1S TEA TAM TIDM TSDM
s TESDM TDEPD TAU TAC TM1S TAM TIDM TSDM

Table 6.2: Significant correlations-macroanalysis indicators and effort

Since the Spearman coefficient is said to be conservative, except in cases where
ties are common (Kitchenham and Pickard [152]), it was decided that further anal
ysis would be carried out only on variables that showed highly significant values for
both this statistic and the Pearson statistic. The variables chosen based on this
criteria appear in Table 6.3.

II Perspective I Specification Indicators
Transaction TRE
Functional TD
User Int. TDSCR
Data TESDM TDEPD TAU TAC TM1S TAM TIDM TSDM

Table 6.3: Macroanalysis-effort indicators chosen for further analysis

Thus only two correlated variables were discarded when the choice of variables
for subsequent analysis was made. The 15 variable was found to contain a large
number of data points with a value of zero, producing a high degree of correlation
that was not evident from the data itself. 15 was therefore removed before the next
tests were carried out. Similarly, the F1EV variable contained a number of data
points of equal value; it was therefore also removed.

Another variable selection method was then employed to ensure that interrelated
variables did not go forward for use in the other tests. Kitchenham and Pickard
[152] suggest that closely related predictor indicators should be treated with caution
when used together, especially for estimation purposes,. Furthermore it is often the
case that one of a group of interrelated variables is sufficiently powerful to act for
the group. Criteria other than the original correlation coefficients should therefore
be used to select appropriate independent variables from related groups. In cases
where the data is normally distributed some form of factor analysis may be useful.
As stated earlier, however, normality in software engineering data distributions is
uncommon. Hampel et al. [109] suggest that there is practically always no guarantee
of normality and that slight departures from the model have a significant effect on

'I

94

the results obtained. Variables were therefore selected from groups according to
their ease of extraction and the time at which they became available-variables
that are easily determined and are available as early as possible are clearly to be
preferred over more complicated, later-phase variables.

Correlation tables illustrated the significantly high degree of correlation within
the chosen group of variables from the data perspective. The data model measures
were all very highly correlated, except for the TAU and TAC variables. Since these
two variables were easily extracted, were elementary rather than composite, were
available very early in the development process and appeared to be relatively inde
pendent but still highly correlated with the effort indicators, they were both selected
for separate use in the procedures to follow. For the current sample this led to a final
set of specification variables, as shown in Table 6.4. A summary of the correlation
test results is provided in Table 6.5. This table shows the variables finally chosen
and the levels of correlation that were achieved between the specification indicators
and the effort variables. All the correlation coefficients were significant at the a =
0.001 level.

II Perspective I Specification Indicators II
Transaction TRE
Functional TD
User Int. TDSCR
Data TAU or TAC

Table 6.4: Independent macroanalysis-effort indicators

Specification Effort Pearson Spearman
Indicator Indicator Correlation Correlation
TRE TOTAL 0.8058 0.6923
TD TOTAL 0.8876 0.7912
TDSCR AN_DES 0.9053 0.7180

TOTAL 0.7800 0.8748
TAC PROG_UT 0.8471 0.8736

TOTAL 0.9160 0.9341
TAU AN_DES 0.9372 0.8077

Table 6 .5: Macroanalysis-effort variaqle summary

The descriptions of the classification procedures provided in the previous chapter
stated that appropriate methods would be chosen according to the results of normal
ity tests of the distribution.s of the selected variables. The results of the distribution
tests for this sample are summarised in Table 6.6.

95

Indicator Shapiro- Lilliefors Classification
Wilks Method

TRE Normal Normal Normal
TD Non-normal Non-normal Non-normal
TDSCR Non-normal Normal Both
TAC Non-normal Non-normal Non-normal
TAU Non-normal Non-normal Non-normal
DESIGN Normal Normal Normal
AN_DES Non-normal Non-normal Non-normal
PROG_UT Normal Normal Normal
TOTAL Normal Normal Normal

Table 6.6: Macroanalysis-effort normality tests

A normal distribution was considered to be applicable if the level of significance
of the Shapiro-Wilks or Lilliefors statistic was greater than a = 0.01 for each of the
variables. Otherwise a non-normal distribution was considered to be more appropri
ate. The selected classification method, shown in the final column of Table 6.6, was
based on the combination of the two statistical results returned for each variable.
Where both statistics returned the same result for a variable then that method,
normal or non-normal, was chosen as the appropriate classification procedure. If
two different results were returned, however, as in the case of TDSCR in Table 6.6,
then both methods were selected.

Specification Effort Distribution Classification
Indicator Indicator Results Method
TRE TOTAL Normal Normal
TD TOTAL Mixed Both
TDSCR AN_DES Mixed Both

TOTAL Mixed Both
TAC PROG_UT Mixed Both

TOTAL Mixed Both
TAU AN_DES Non-normal Boxplot

Table 6 .7: Macroanalysis-eff ort classification method selections

The information in Table 6.7 , which shows the combined results of the distri
bution tests, formed the basis for the classification tests. In cases where the dis
tributions of both the related specification and effort indicators were the same, the
'Distribution Results ' column was filled with the common term, normal or non
normal. Otherwise it was shown as a mixed result. A normal distribution result
indicated that classification would be carried out using the parameters of the nor
mal distributi9n; ~ result of non-normal suggested a boxplot-based classification. A
mixed result indicated that both methods would be used, and the most effective one
would then be chosen from them.

II

96

Spee. Effort Classif. Classif. Outliers Excess
lndic. lndic. Method Correct (%) Correct Outliers
TRE TOTAL Normal 84.6 2/ 3 0
TD TOTAL Normal 76.9 2/ 3 0

Boxplot 76.9 2/ 2 0
TDSCR ANJ)ES Normal 84.6 1/ 2 0

Boxplot 69.2 2/ 3 0
TOTAL Normal 69.2 1/ 3 0

Boxplot 92.3 2/ 2 0
TAC PROG_UT Normal 84.6 2/ 3 0

Boxplot 61.5 0/1 1
TOTAL Normal 84.6 2/ 3 0

Boxplot 69.2 0/ 2 1
TAU ANJ)ES Boxplot 76.9 3/ 3 0

Table 6.8: Macroanalysis- effort classification results

The results of the classification tests are summarised in Table 6.8. The table
shows how effective the specification indicator variables were in correctly classifying
the thirteen systems in relation to their final effort requirements. Several results
showed a high degree of success in both the classification of systems and in the
identification of outliers. Moreover, only two of the classifications incorrectly iden
tified outlier data points. This was clearly a useful outcome of the tests, although
the spread of some of the distributions did mean that the classifications provided
only approximate estimations of subsequent effort. For example, even though the
TDSCR variable returned a 92.3% success rate in total effort classification, the dis
persion of the TOTAL data significantly reduced the usefulness of such a result. If a
new specification contained, say, fifty-six screens we could only predict that the total
effort needed to develop that system would fall somewhere between 226.5 and 315
days, an unacceptably wide t ime interval in terms of effective schedule management.

Based on the results obtained from both the correlation and the classification
tests a set of possible predictive relationships was formulated. The variable pairs,
shown in Table 6.9, unfortunately did not include estimations for the DESIGN and
PROGRAM variables. An absence of reliable and consistent figures for these effort
indicators, for reasons outlined earlier in this chapter, meant that it would have
been impossible to achieve accurate and general predictions for these variables. For
each of the prediction pairs shown in Table 6.9 two separate regression procedures
were performed. The first allowed a constant term to be included in the regression
equation, the second did not. PROGRESS automatically computes the significance
of the constant term when it is included-this result, in conjunction with other
tests, can then be used to determine which of the two types of equation should be
chosen for the prediction. In all seven of the LS tests performed for this sample the
c611stant £erm was shown to be insignificant. Models that do not include a constant
term reflect situations where it is natural to assume that if the predictor variable
has a value of zero then the response variable should also have a zero value. For the

97

current data set this would seem to be quite a reasonable assumption, in that an
interactive system that, for example, has no screens, or reads no attributes, would
take no days to develop; that is, a system of this type would not exist within the
application area of this study.

Response 'Predictor
Variable Variable
AN_DES TDSCR

TAU
PROG_UT TAC
TOTAL TRE

TD
TDSCR
TAC

Table 6.9: Macroanalysis-effort estimation tests

All of the predictor coefficients computed in the non-constant term tests were
shown to be significant by the PROGRESS system. This result indicated that
the slopes of the computed regression lines were all significantly different from zero.
Similarly, the coefficient of determination (R2

) values for every equation were shown
to be significant using an automatically computed F-statistic. This indicated that,
in cases where the residuals adhered to the restrictions mentioned in the previous
chapter, the predictor variable in each equation did indeed account for the response
variable in a significant way. The overall results of these regression tests, including
the R2 values, are shown in Table 6.10 . As the constant term was found to be
insignificant in all of the LS tests the results of these predictions have not been
included in the table.

Response Predictor LS LMS RLS
Variable Variable R2 Res. R2 Res. R2 Res. Points

OK? OK? OK? Removed
AN_DES TDSCR 0.903 u 0.848 N 0.783 u 12,13

TAU 0.934 u 0.940 y 0.966 y 13
PROG_UT TAC 0.857 u 0.967 u 0.959 u 7,9,13
TOTAL TRE 0.845 u 0.934 N 0.934 u 13

TD 0.862 N 0.868 N 0.909 N 9
TDSCR 0.794 N 0.955 y 0.958 y 12
TAC 0.918 N 0.962 u 0.969 y 11

Table 6.10: Macroanalysis-effort regression test results

Based on the information presented in Table 6.10 final predictive equations were
chosen for each of the effort variables investigat ed. Of the two predictions of analysis
and design effort (AN_DES) , prediction based on the TAU variable was the most

98

accurate. The three R2 values obtained from the regressions using this variable
were higher than those achieved with the equations based on the TDSCR variable.
Furthermore it was unclear as to whether the residual plots of the TDSCR models
were satisfactory (where the 'RES. OK?' column contains the letter 'U'), whereas
those obtained from the TAU models were adequate. Prediction of program and unit
test effort (PROG_UT) was only performed in this study with the TAC variable.
The results of this estimation were mixed, in that the R2 values were very high but
the residual plots were not completely satisfactory. However, given that this was
the only predictor for program and unit test effort to be chosen from this data set,
continued use of TAC in estimation will show whether it is indeed an accurate and
useful predictor. The choice of an estimation model for total development effort
(TOTAL) was between the models based on TDSCR and TAC. Both returned very
high coefficients of determination, indicating good explanatory ability, and both
models produced adequate or good residual plots. Personal preference or ease of ex
traction may therefore determine which model is more appropriate for an individual
project manager. Hence, both models were selected as useful. To summarise the
initial :findings of the estimation tests the following equations were chosen:

or

AN_DES = 0.171TAU

P ROG_UT = 0.080T AC

TOTAL= 3.842TDSCR

TOT AL = 0.281T AC.

The accuracy of the above equations was then assessed through an examination
of the residual and error information provided by each model. A summary of this
information appears in Table 6.11.

AN_DES PROG_UT TOTAL TOTAL
TAU TAC TDSCR TAC

Number of systems/functions 12/13 10/13 12/13 12/13
Highest absolute residual 26.5 29.0 77.0 58.0
Lowest absolute residual < 0.5 < 1.0 2.0 1.5
Largest overestimate 23.0 11.0 77.0 30.0
Largest underestimate 26.5 29.0 35.5 58.0
Total residual -32.5 -30.5 +122.0 -64.0
Average residual -2.7 -3.0 +10.0 -5.5
Overall residual -5.0% -7.5% +8.0% -4.0%
Absolute error 129.0 80.0 336.5 283.0
Average absolute error 10.7 8.0 28.0 23.5
Overall absolute error 21% 20% 22% 19%

Table 6.11: System effort estimation residual and error results

99

This table provides an insight into the adequacy of the models initially selected
from the regression tests. The number of systems/functions entry shows the total
number of systems or primitive functions with which the selected equation was
developed over the number in the original sample. If the numerator is markedly
less than the denominator then the general applicability of the equation may be
questionable. The highest absolute residual equals the largest absolute difference
between the estimated and observed values of the project management indicator
over the set of systems or functions when the estimates have been determined using
the equation. This equates to the worst estimate achieved by the equation over
the sample. Conversely, the lowest absolute residual equates to the best estimate
of the equation. High values for both of these figures indicates a lack of accuracy
in the model. The largest overestimate is equal to the greatest difference between
estimated and observed values from the sample in cases where the estimated figure
is greater than the observed figure; the largest underestimate is determined in the
same way, but from cases in the sample in which the estimated figure is lower than
the observed. Again, smaller values for both of these figures are to be preferred, as
this indicates a model that is not consistently producing predictions that are too
high or too low.

The total residual is the sum of the differences between the estimated and ob
served values for all of the systems or functions used in the regression. An optimal
total residual would equal zero; that is, the model should overestimate and under
estimate to the same degree, preferably by very small amounts in both cases. The
average residual of each equation, probably the most useful of the figures in the
table, equals the total residual figure divided by the number of systems or functions.
The resultant figure is the average amount of overestimation (+) or underestima
tion (-) produced by the equation, shown as the number of project management
indicator units per system/function. One would again prefer this to be as close to
zero as possible. The next item in the table, the overall residual, is a percentage
representation of the total residual divided by the sum of the observed values. This
allows the residual to be considered in relation to the actual number of effort units
expended or error units encountered. A large total residual is always undesirable,
but it can be put into perspective using the overall residual figure.

The last three figures in the table are concerned only with the amount of residual,
not with the direction. That is, all the residuals are considered to be the outcome
of incorrect estim~tes, irrespective of whether they resulted in over- or underestima
tion. The absolute error is therefore the sum of the absolute values of the residuals
produced by the equation. Similarly, the average absolute error is the maximum
scope for error of each system or function in the eq~ation sample. Finally, the
overall absolute error reflects the degree of inaccuracy attained by an equation (the
absolute error) in relation to the total observed units.

One way in which the information provided in Table 6.11 can be used, apart
from simply checking the figures for unacceptably high values (inchouselimits may
be imposed for some of the figures) , is in the comparison of two or more estima
tion models that are being considered for the prediction of the same variable. In
the current sample two candidate equations were selected for the prediction of total

100

development effort-those based on TDSCR and TAC. Although they were previ
ously considered to be of roughly the same merit, based on the relevant R 2 values
and the residual plots, the information from Table 6.11 enabled more effective dis
crimination to be carried out. For the two models only the largest underestimate
figure was greater under the TAC-based model than it was under the TDSCR equa
tion. The TDSCR-based equation produced an estimate that was on average ten
days greater than the observed total development effort for each system, whereas
the TAC-based equation underestimated by only five and a half days per system.
Moreover, in terms of the total development effort over the complete sample, the
TAC model produced an estimate that was 4% less than the actual effort; on the
other hand, the TDSCR-based equation provided an estimate that was 8% over the
actual figure. Thus the equation based on the TAC variable was selected as the
most accurate in the prediction of total development effort. The following set of
equations was therefore finally selected:

AN_DES = 0.171TAU

P ROG _UT = 0.080T AC

TOT AL = 0.281T AC.

6.3.2 Sample Two: Macroanalysis-Errors

This sample contained eleven valid data sets. A small number 'of significant cor
relations were identified by the initial procedures. Unfortunately all of the signifi
cant relationships occurred for the ERRORS variable-no relationships of significant
strength were found for the AMEND variable. Thus no further investigation into
the classification or prediction of amendments was performed. The relationships
that were found for the ERRORS variable are shown in Table 6.12.

II Perspective I C.M. I Specification Indicators II
User Int. p TDREP

s TDREP
Data p TAU TAC TAM

s TAC TAM

Table 6.12: Significant correlations-macroanalysis indicators and errors

The full correlation tables showed no result for the relationship between TMEL
and ERRORS. The coefficient for this relationship could not be computed because
all but one of the TMEL data points had the same value. This lack of dispersion in
the TMEL data points meant that the variable could be disregarded in the rest of the
analysis procedures, as its discriminatory power was minimal.Those variables show
ing significant and valid correlations for both the Spearman and Pearson statistics
were then selected for further analysis . These variables are show:ri in Table 6.13.

101

II Perspective I Specification Indicators 11

II Data I TAC TAM II

Table 6.13: Macroanalysis-errors indicators chosen for further analysis

The TDREP variable was discarded at this stage as it was found to contain
a large number of data points with a value of zern. This left only the two data
perspective variables, TAC and TAM, for further analysis. An examination of the
intercorrelation between these two variables highlighted a very strong relationship.
This is hardly a surprise, given that TAM is simply the total of TAC and TAU for
a given system. As the TAC variable was available first and was not a composite
variable it was chosen as the sole variable to be used for further analysis. The
correlation results for this variable are summarised in Table 6.14. The coefficients
were significant at the a = 0.001 level.

Specification Error Pearson Spearman
Indicator Indicator Correlation Correlation

II TAC I ERRORS I 0.9032 o.15s6 11

Table 6.14: Macroanalysis-errors variable summary

Classification procedures could only proceed after the normality tests had been
carried out. A summary of the results is provided in Table 6.15.

Indicator Shapiro- Lilliefors Classification
Wilks Method

TAC Non-normal Normal Both
ERRORS Non-normal Non-normal Non-normal

Table 6.15: Macroanalysis-errors normality tests

The table shows that a mixed result was obtained from the normality tests for
the TAC variable. Classification was therefore carried out using both the normal
distribution and boxplot distribution methods.

Spee. Error Classif. Classif. Outliers Excess
Indic. Indic. Method Correct (%) Correct Outliers
TAC ERRORS Normal 63.6 1/2 1

Boxplot 45.4 1/2 1

Table 6 .16: Macroanalysis-errors classification results

The results of the classification tests are summarised in Table 6.16. Although a
correct classification rate of 63.6% would seem to be quite useful at first, once again

102

the spread of the data makes any class-based allocation very approximate, with the
very large error classes that were generated.

Estimation for this data set contained just the one test, that of ERRORS and
TAC, due to the absence of other significant correlations. Again the constant term
was found to be insignificant when it was included in the regression formulation, so
it was decided to use a non-constant term predictor model. The resulting regression
slope was tested by the PROGRESS system and was shown to be significant, as
were the R2 values. A summary of this information is shown in Table 6.17.

Response Predictor LS LMS RLS
Variable Variable R2 Res. R2 Res. R2 Res. Points

OK? OK? OK? Removed
II ERRORS I TAC 1 o.697 1 u I o.s61 1 u I o.919 1 Y 9,10,11 11

Table 6.17: Macroanalysis-errors regression test results

The regression results, as presented in Table 6.17, showed that the reweighted
least squares equation provided useful estimates for the number of user acceptance
errors (ERRORS). The equation, using the TAC variable, had a significant R2 value
of 0.919 and the associated residual plot conformed to the requirements for valid
prediction. Thus the following equation was proposed:

ERRORS = 0.015T AC.

The residual and error information associated with this equation is shown in Ta
ble 6.18.

II II ERR~:~ II
Number of systems/functions 8/ 11
Highest absolute residual 19
Lowest absolute residual 2
Largest overestimate 19
Largest underestimate 11
Total residual -7
Average residual < -1
Overall residual -5.0%
Absolute error 52
Average absolute error 7
Overall absolute error 36%

Table 6.18: System error estimation residual and error results

103

6.3.3 Sample Three: Microanalysis-Effort

Unfortunately only one system was available for this examination of the relation
ship between low-level specification measures and development effort. The system
consisted of eighteen sub-systems from which specification measures were extracted.
Total development effort data for each of the sub-systems had also been recorded,
so an examination of the relationship between these two sets of data was possible.

Correlation.procedures highlighted just a handful of significant relationships be
tween the effort variable (TOT) and the specification measures. Table 6.19 contains
a list of those relationships.

II Perspective I C.M. I Specification Indicators II
User Int. p SCR

s
Process p FOEM

s

Table 6.19: Significant correlations-microanalysis indicators and effort

The correlation tables once again included several variable pairs with blank co
efficient results. As in the previous sample this is because the variables concerned,
NP, PPI, EEP, 001 and MML, all contained data points with exactly the same
value for each of the sub-systems. Therefore correlation tests could not be carried
out effectively-these variables were consequently removed from the remainder of
the procedures due to their lack of discriminatory power.

Variable selection at this stage was normally based on the attainment of sig
nificantly high correlation values for both the Spearman and Pearson statistics, as
long as the variables concerned did not include a number of tied data points. Un
fortunately this meant that all three variables chosen from the initial correlation
procedures, as shown in Table 6.19, would have been discarded. Both the SCR and
FO variables contained a large number of tied data points when compared to the
number of ties in the TOT data-FO took only three values for the eighteen data
points and SCR took six, whereas TOT contained twelve different values-and the
EM variable returned a Spearman statistic that was only significant at the a =
0.01 level. Furthermore the EM variable also contained some tied values. However
in the absence of any valid, highly significant Spearman statistics, and given the
fact that the TOT data did include some ties, the EM variable was chosen for the
classification and estimation tests . The actual correlation coefficients obtained from
the tests on the EM-TOT relationship are shown in Table 6.20.

Specification Effort Pearson Spearman
Indicator Indicator Correlation Correlation

II EM ITOT 0.7077 0.4882 II

Table 6.20: Microanalysis- effort variable summary

104

The Shapiro-Wilks and Lilliefors tests for normality were then performed on the
EM and TOT data sets. The results of these tests are shown in Table 6.21. The
results suggested the use of both boxplot and normal distribution classification tests.

Indicator Shapiro- Lilliefors Classification
Wilks Method

EM Normal Normal Normal
TOT Non-normal Normal Both

Table 6.21: Microanalysis-effort normality tests

Spee. Effort Classif.
lndic. lndic. Method

I TOT I Normal I
Boxplot

Classif.
Correct (%)

66.7
38.8

Outliers
Correct

2/2
1/3

Excess
Outliers

1
0

Table 6.22: Microanalysis-effort classification results

II

The classification test results, shown in Table 6.22, were encouraging. The proce
dure that used the EM variable with parameters of the normal distribution correctly
classified two thirds of the primitive level functions in terms of their total develop
ment effort requirements. The two effort outliers were also identified by this method,
but another function that did not turn out to be ;i,n effort outlier was incorrectly
classified as such by the specification indicator. Overall, however, given the reduced
spread of the TOT data, the classification method could be used with some degree
of confidence to obtain intervals of effort for the development of future primitive
functions based on the number of non-file data elements used or produced by those
functions.

Inclusion of a constant term in the estimation tests again proved to be insignif
icant and resulted in relatively weak explanatory effectiveness. Thus prediction
without a constant t erm was carried out, with greater success. Both the slope co
efficients and the coefficients of determination were found to be significant. The
relevant results are shown in Table 6.23.

Response Predictor LS LMS RLS
Variable Variable R2 Res. R2 Res. R2 I Res. I Points

OK? OK? OK? Removed

II TOT I EM I 0.800 I N I 0.934 I Y I 0.961 I Y I 3,6,7,17,18 II

·. Table 6 .23: Microanalysis-effort regression test results

Table 6.23 shows the very high explanatory efficiency of the EM variable in
terms of total development effort (TOT), with an optimum R2 value of 0.961 under

105

the RLS method. Since the residual plots adhered to the requirements of a valid
model the RLS estimation equation showed the greatest ability to accurately predict
the total development effort requirements of primitive level functions. The relevant
equation was therefore:

TOT = 0.139EM.

Table 6.24 contains the residual and error information relating to the above TOT
prediction equation.

II II T~~ II
Number of systems/ functions 13/ 18
Highest absolute residual 2.7
Lowest absolute residual < 0.1
Largest overestimate 1.5
Largest underestimate 2.7
Total residual -3.9
Average residual -0.3
Overall residual -6.0%
Absolute error 13.4
Average absolute error 1.0
Overall absolute error 19%

Table 6.24: Primitive function effort estimation residual and error results

6.3.4 Sample Four: Microanalysis- Errors

The final sample of this study again consisted of just one system, due to the lack
of available project management records at the primitive function level for most of
the systems investigated in the macroanalysis samples. The one system that was
provided for this analysis procedure was made up of twenty-nine low-level func
tional units, for which system test error data had been recorded .. The system could
therefore be used to identify possible relationships between primitive function spec
ification measures and the frequency of system test errors applicable to those low
level functions.

Unfortunately some of the microanalysis variables were unavailable from the sys
tem specification documents-this included all four user interface measures (SCR,
REP, DER and DED) and the data element usage variables. from the process model
set of measures (DEP and DEC). Therefore an investigation of the relationships be
tween these variables and the frequency of system test errors was impossible. Initial
correlation tests using the remainder of the variables identified just two significant
associations with the system test error data (STERR). These relationships are shown

· in .Table 6.25.
A.s · in the investigation of sample three above, this set of correlations failed to

identify any highly significant relationships between the two sets of data using the

106

Spearman statistic. Moreover, the PPI variable took just four different values for the
twenty-nine functions, deeming it unsuitable for further use. This left the 1PM vari
able for possible investigation. An examination of the actual 1PM data set revealed
that only t welve distinct values were returned by the twenty-nine functions ; however
a similar examination of the STERR data showed that this set also contained a large
number of ties. Therefore the 1PM variable was selected for use in subsequent tests.

· The relevant correlation data for this relationship appears in Table 6.26 .

II Perspective I C.M. I Specification Indicators II
II Process I PPI 1PM

II

p
s

Table 6.25: Significant correlations-microanalysis indicators and errors

Specification Error Pearson Spearman
Indicator Indicator Correlation Correlation

!I 1PM j STERR j 0.6720 0.4139 11

Table 6.26: Microanalysis-errors variable summary

Normality tests of the 1PM and STERR variables provided the results shown in
Table 6.27. As both results indicated non-normal distributions the boxplot-based
classification method was chosen as the most appropriate in this case.

Indicator Shapiro- Lilliefors Classification
Wilks Method

1PM Non-normal Non-normal Boxplot
STERR Non-normal Non-normal Boxplot

Table 6.27: Microanalysis-errors normality tests

Spee. Error Classif. Classif. Outliers Excess
lndic. Indic. Method Correct (%) Correct Outliers

II 1PM I STERR I Boxplot I 48.3 3/ 4 2 II

Table 6.28: Microanalysis- errors classification results

The results of the classification test , shown in Table 6.28, revealed only moderate
success. Just under half of the functions were placed into the same class for both
the 1PM and STERR variables. Rather more encouraging was the fact that three
of the four error outliers were identified using the specification indicator; however,
two further data points were incorrectly identified by t his method. In spite of this,

107

identification of primitive function error outliers using the process model intercon
nectivity measure (IPM) may prove to be a worthwhile technique to pursue and test
further with other systems.

Estimation of system test errors using the IPM variable at first provided similar
results to those obtained in previous studies . . That is, inclusion of a constant term
was found to be of insignificant benefit and the explanatory power of the constant
term models was very weak. More useful results were again obtained using the
regression procedures that did not include a constant term. Significant values were
achieved for both the slope and the explanatory ability of the resultant models.

Response Predictor LS LMS RLS
Variable Variable R2 Res. R2 Res . R2 Res. Points

OK? OK? OK? Removed

II STERR I IPM 1 0.603 I Y I 0.621 1 Y I o.s82 1 Y 8,9,11 II

Table 6.29: Microanalysis-errors regression test results

The R2 values for the models, shown in Table 6.29, were somewhat weaker than
those achieved in the three previous analyses. Moreover, t he reweighted least squares
(RLS) regression appeared to be less effective than the LS and LMS methods in this
case, at least .in terms of the explanatory power of the three model types. This
may have been due to the fact that the results of the LMS method, which form the
basis of an RLS regression, are less effective when residuals are actually normally
distributed (Hampel et al. [109]) , as was the case for this sample. Thus the LMS
technique was chosen as the most efficient regression method for this sample. The
resultant prediction equation was therefore:

STERR = 0.083/PM.

This equation produced the residual and error information depicted in Table 6.30.

II I/ ST~~ ,,

Number of systems/functions 29/29
Highest absolute residual 36
Lowest absolute residual 0
Largest overestimate 26
Largest underestimate 36
Tot al residual -63
Average residual - 2
Overall residual - 24 .0%
Absolute error 181
Average absolute error 6
Ove1'all absolute error 70%

Table 6.30: Primitive function error estimation residual and error results

108

6.4 Discussion of Results

The implications of the results obtained from the statistical examination of the four
samples are now considered in isolation before a summary of general observations
and recommendations is made at the conclusion of the chapter.

6.4.1 Sample One: Macroanalysis-Effort
It was clear even from the correlation results that a strong relationship existed
between a number of the macroanalysis specification measures and some of the
system effort measures. Significant associations of interest were:

• the number of read operations and total development effort

• the system decomposition structure and total development effort

• the number of distinct system screens and the analysis and design effort

• the number of distinct system screens and total effort

• the number of attributes read by a system and the program and unit test effort

. • the number of attributes read by a system and the total development effort

• the number of attributes updated by a system and the analysis and design
effort.

The Spearman coefficients for the above relationships also highlighted the very
strong relative correspondence of the sets of observations-this was especially so for
the relationships involving the number of distinct screens (TDSCR) and the number
of attributes read (TAC). These results provided strong support for the subsequent
use of the specification variables in the estimation of system development effort
requirements.

The results of the classification procedures were, for this sample, rather less
useful than they might have been, due to the large spread of data points for many
of the variables. Use of just four classes in each test led, in most cases, to extremely
large effort intervals. Moreover because of this large data dispersion more applicable
results would only have been forthcoming if a very large number of classes had been
used, reducing the advantage of simplicity in the classification approach. Thus
although all three effort indicators were classed correctly at least 84.6% of the time,
the real applicability of these results is not significant.

Similarly the outlier detection procedure, although quite successful, has only
limited benefit in this context. In fact, most of the outlier data points from the
distributions in this sample were only outliers because the systems from which they
were drawn were large (systems ten to thirteen). Little is to be gained from identify
ing systems that require large amounts of effort to develop simply because they are
larger than most of the systems in the sample. Normalisation using a representative
variable can often reduce the influence of size on development data; however, when

109

this approach was tried with the TESDM variable it resulted in significant decreases
in the effectiveness of both the classification and outlier identification procedures.
Normalisation was therefore abandoned as a solution to the classification difficulties.
It is likely that improvements would only have been achieved with the availability
of larger samples, leading to a decrease in the class sizes and to a greater degree of
effectiveness in determining actual outliers.

The estimation tests, however, were quite successful for this first sample. The
explanatory power of each of the three final equations was greater than 0;959, the
residual plots all conformed to the requirements of valid predictor models and the
overall residuals were all less than 7.5%. In three of the four estimations 92% of
the original data points were included, while the fourth estimation included 77% of
the original observations. Finally, the equations led to discrepancies of between just
2.7 and 5.5 days per system over the samples included. All of these factors provide
support for the accuracy of the equations developed. Furthermore the high degree
of inclusion, at levels of 77% and 92% for the four equations, is an encouraging
illustration of the general applicability of the equations.

6.4.2 Sample Two: Macroanalysis-Errors
Correlation tests produced mixed results for this investigation-significant relation
ships were found between a number of specification. measures and the ERRORS
variable, but none were evident for the AMEND data. This suggests that post
delivery amendments were influenced by more than just the function of the systems
being considered. It may have also been the result of counting and collection anoma
lies, that is, amendment figures may have actually included requests for functional
enhancements and additions as well as changes to originally specified functional
ity. These suggestions reflect the fact that as a system comes into operation, users
recognise the potential of the system and consequently add to their demands for
functionality. Amendment figures may also have been influenced by the system de
velopment method employed. If a system had been developed using a prototyping
methodology then there should have been, in theory at least, relatively few post
delivery change requests. Thus the absence of any significant relationships for the
AMEND variable is not without explanation; however it does indicate that the se
lection of amendment data as a property largely determined by functionality alone
was inappropriate. _

Hence the remainder of the examination for this sample was performed only
with regard for the occurrence of errors. The final relationship selected from the
correlation results was:

• the number of attributes read by a system and the number of functional errors
reported during user acceptance testing.

A significant Spearman correlation statistic between the variables also provided
evidence of the relative correspondence of the two sets of observations.

Classification again proved to be ineffective because the already small sample
contained such a large spread of values. This lack of success was reinforced further

110

by the low success rate-just 63% of the eleven data points were classified correctly.
Outlier identification also proved to be redundant at the systems level- larger sys
tems can generally be expected to contain a proportionately greater number of post
delivery errors. However, a potentially useful outcome of the procedure, although
only applicable after development is complete, is that it may enable managers to
identify and investigate systems that are error outliers and not specification measure
outliers, as in system ten of this sample.

The estimation results for this investigation were rather more encouraging. A
very strong R2 value was achieved by the final equation, the residual plot was ad
equate for a valid model, the overall residual was just 5% and, on average, the
predictions were out by less than one error per system. It should be noted that
the equation only predicts the number of functional errors, not the severity of those
errors. An indication of this type, however, should still be useful in the allocation
of testing resources and similar tasks. The only drawback to this success was the
fact that three systems, numbers nine through eleven, were discarded in the formu
lation of the equation. These were by far the largest systems in the sample. This
suggests that the final equation may only be applicable for systems within a certain
size interval. However, the other eight systems still constituted 73% of the original
sample-this represents a satisfactory success rate in the estimation of functional
errors using the number of attributes read by a system.

6.4.3 Sample Three: Microanalysis- Effort

The results of the correlation tests for this sample failed to provide clear evidence of
any significant relationships between the primitive function specification measures
and total development effort. Subsequent examination of the distribution of the EM
variable, however, supported further investigation of the relationship between this
data set and the corresponding development effort observations. Although evidence
of a linear association did exist in the Pearson statistic, the relative correspondence
of the two data sets, confounded somewhat by tied values in both sets, was lower
than that obtained in the two previous investigations. This suggested that the EM
variable was not an effective relative indicator of total effort; however it could still
have been linearly related to development effort, warranting further examination:

• the number of elements manipulated and the total development effort of prim
itive functions. ·

As the analysis of this sample was performed at a much finer level of detail
than that of the two earlier analyses the classification procedure proved to be much
more effective. The smaller classes enabled two thirds of the functional primitives
to be correctly allocated, in terms of their effort requirements, based only on the
values of the EM variable. Furthermore, both effort outliers were identified as such
by the variable. These results suggest that a project manager could, in 67% of
cases, correctly estimate the number of days of effort that would be needed for ~he
development of functional primitives within an interval of, at most , plus or minus
two days, based on the number of non-file data elements used and produced by

111

a process model primitive. They also support the assertion that a manager could
correctly identify the primitive functions that would take a greater amount of effort
to develop than the majority of functions. This should be of significant assistance
in resource and personnel allocation activities.

Prediction proved to be relatively successful. A final R2 value of greater than
0.961 was achieved from a valid estimation model. The predictions were out by
just 0.3 days per primitive function , with an overall residual of 6%. However, only
thirteen of the eighteen primitive functions were included in the equation after the
removal of the other five due to their excessive LMS residuals. This means that the
accuracy of the equation applied to just 72% of the original data set . However, this
is not necessarily a bad thing. The results showed that primitive functions three,
six, seven, seventeen and eighteen were removed. Investigation of these data points
showed that four of the five had disproportionately large TOT values in relation
to their EM values. Information such as this would enable the manager to further
investigate these observations in an attempt to find out why they incurred such
high demands on development effort. Therefore estimation of total development
effort based on the number of data elements used and produced by process model
primitives should continue.

6.4.4 Sample Four: Microanalysis- Errors

This investigation turned out to be the weakest of the four. Correlation tests pro
vided only scant evidence of any useful relationships and the coefficients were once
again confounded by large numbers of tied data points. The choice of the IPM
variable for further examination was based on its significant Pearson statistic, in the
absence of any other promising associations:

• process model interconnection and system test errors for primitive functions.

When the normality tests subsequently showed that both variables were non-nor
mally distributed, however, expectations of useful results lessened considerably as
the Pearson statistic is not reliable under these circumstances. Classification results
returned a correct classification of just over 48%, the lowest result of the four sam
ples. Almost half of the STERR data points were from the lowest distribution class,
reflecting the skewed nature of the distribution. Of the four error outliers, three were
correctly identified by the IPM classification. Although two further values were in
correctly described as outliers according to the specification variable, this procedure
was at least partially successful and may enable managers to pinpoint particularly
error-prone primitive functions at the specification stage. ,

Not unexpectedly, the estimation results obtained from this investigation were
also rather disappointing. A maximum R2 of 0.627 was attained from the LMS
model, with an acceptable residual pattern. The average residual was an unac
ceptably high two errors per primitive function and the overall residual was 24%,
providing further evidence of a lack of accuracy in the model. There is therefore
no evidence in the results of this study to suggest that system test errors inay be
estimated accurately using specification measures.

112

6.5 Evaluation Summary and Recommendations

The results of the empirical evaluation of the proposed complexity analysis scheme,
as presented and discussed in the two previous sections, produced a number of useful
:findings. The majority of the results confirmed the assumption that specification
based complexity indicators can . be used in the effective discrimination of systems
and functions in terms of project management consequences. Although the last of
the four analyses failed to provide any potentially useful results in terms of practical
assistance for project management, the evidence supporting the :findings of the other
three analyses would appear to be significant.

This degree of significance is reduced somewhat when it is considered that the
results of the analysis of sample three, although strong, were derived from the inves
tigation of a single system. It would therefore be inadvisable to extrapolate these
results to other projects. However, given the somewhat exploratory nature of this
study the results do at least provide first support for the assessment of complexity, in
relation to development effort, at the primitive function level. The results obtained
from the two macroanalysis-level analyses, however, do provide strong support for
system level assessment. The relationships in question were established using data
from a number of sites so large differences could have been expected, but the resul
tant estimation equations were found to be applicable to between 73% and 92% of
the original data sets. Furthermore the estimation models all appeared to be valid
in terms of residual dispersion requirements. It is therefore envisaged that contin
ued use of the complexity analysis scheme, particularly in an automated collection
environment, will provide significant support to project managers.

The statistical procedures chosen were found to be generally appropriate, al
though the nature of some of the data sets meant that several variables were dis
carded before analysis and that the statistical methods were not appropriate in
every case. For example, correlation procedures were confounded in some cases by
the existence of variables with large numbers of ties. Some, such as PPI and NP in
sample three, returned only one value for all of the data points. It is now clear that
variables such as these, that are likely to include large numbers of tied values, should
not be collected, let alone analysed, as their lack of discriminatory power renders
them inappropriate for classification and estimation purposes . Similarly, problems
were caused by the large dispersion of values evident in some of the variable distri
butions. This meant that the classification procedures were generally less effective
than had been anticipated.

An absence of consistent records relating to analysis, design, program and system
test effort meant that these indicators were removed prior t~ the analysis. Although
this was unfortunate , in terms of obtaining results applicable to individual phases
of development, removal of the data was certainly more valid than performing sta
tistical analysis on the inconsistent and incomplete data sets. Moreover, it is felt
that the composite measures created during the observational work (ANJ)ES and
PROG_UT) were appropriate replacements, and that the estimates obtained for
these effort indicators will still be useful in project management;

At the macroanalysis level classification procedures were generally ineffective,

113

but the estimation methods were successful. The following procedures are therefore
recommended:

• estimation of system level effort parameters based on data model measures

estimation of analysis and design phase effort, in person-days, using the
measure of the number of attributes updated by a system

ANJJES = 0.l71TAU

estimation of programming and unit test effort, in person-days, using the
measure of the number of attributes read by a system

PROG_UT = 0.080TAC

- estimation of total development effort, in person-days, using the measure
of the number of attributes read by a system

TOT AL = 0.281T AC

• estimation of user-acceptance phase errors using the measure of the number
of attributes read by a system

ERRORS = 0.015T AC.

As stated several times in this chapter, the results obtained from the microanaly
sis investigations were based on data extracted from just one system each. Although
this restricts the development of generally applicable conclusions, the following rec
ommendations may be useful when examining the results of future studies at this
level:

• classification of primitive functions using the EM variable, in order to pro
vide total development effort intervals and to assist in the identification and
prediction of effort outlier data points

• estimation of primitive function development effort using the measure of the
number of non-file data elements used and produced by a primitive process

TOT = 0.139EM.

Although some or all of the five equations above are likely to change in the
future as more extensive studies are performed, they are at this point recommended
as being generally applicable to commercial system development projects undertaken
in an extensively automated environment. One of the goals of this study was the
development of a functional assessment technique that needed a lesser degree of
calibration than most other methods. Given that generally applicable equations
have been developed in spite of the widesprec1,d . differences in products, people and
projects encountered in this study, it is hoped that extensive calibration at other
sites will indeed no longer be necessary.

114

Chapter 7

Conclusions and
Recommendations

7.1 Summary and Conclusions

This study set out to develop and validate a specification-based functional com
plexity analysis scheme applicable to interactive commercial systems. To this end,
previously proposed complexity assessment methods were examined so that a ba
sis for improvement could first be established. The subsequently proposed analysis
scheme was developed as a direct response to the failings of previous methods, ad
dressing issues such as subjectivity and environment dependence. The scheme was
then tested using data collected from sixteen projects developed at ten different sites.
Strong evidence of significant, useful relationships was provided using robust sta
tistical analysis methods, confirming the assertion that specification measures were
related to project management data. Recommendations for project management
were therefore made, based on the results obtained from the analysis.

Chapter 1 showed that , in terms of new project parameter estimation, traditional
approaches to complexity assessment have little to offer. Results of the lexical and
topological techniques are clearly not available at the conceptual development stage
of a project, when managers need to justify cost and effort requirements. Similarly,
most structural methods can only be applied after a significant amount of effort, and
therefore expense, has been invested in a project. This is clearly undesirable under
increasingly tight economic constraints. Support for functional assessment meth
ods is therefore strong-their development and use, however, is not yet widespread.
Functional software specification methods were discussed in Chapter 2, in order
to provide a basis for the development of appropriate f:unctional assessment tech
niques. To this end, the impact of increasing software development automation
was also considered. These discussions revealed strong support for the use of data
centred specification notations as a basis for functional complexity assessment in an
automated environment. With this in mind, currently proposed functional analysis
techniques were examined in Chapter 3; This examination highlighted a number
of areas of concern, particularly in relation to the subjective nature of many of
the techniques and to the extensive dependence of the methods on personnel and

115

environment considerations.
The extensive literary support for functional assessment, coupled with the need

for more objective and comprehensive techniques, provided direct motivation for
the development of the specification-based- analysis scheme proposed in Chapter 4.
Use of the GQM and Classification paradigms enabled the structured selection of
appropriate specification and project management measures. This resulted in the
development of a scheme that was intended to achieve two main aims: (i) to overcome
the problems of previously proposed techniques; and (ii) to satisfy the empirical
objectives of the study. Achievement of these objectives, however, was preceded by
a consideration of the theoretical validity of the scheme. Although the proposal was
shown to be valid according to most of the recent discussions on theoretical criteria,
some deviations were noted and justification for these differences was provided. The
empirical requirements of the study were then discussed, with particular emphasis
being placed on the need to use robust statistical analysis in order to obtain valid
results.

Analysis of the collected data sets provided evidence to suggest that the scheme
had succeeded in achieving the two aims mentioned above. It had certainly satisfied
the requirements for an early, objective, comprehensive, independent and validated
approach. The products of the statistical analysis also supported the achievement
of the empirical objectives. Although mixed results were obtained from some of
the empirical analyses, the outcome of most of the procedures was generally use
ful, providing strong evidence of relationships between specification measures and
project management data. Recommendations based on this evidence were therefore
provided for the discrimination and estimation of both development effort and post
delivery error occurrence. Given that this analysis was the first empirical validation
of its type, the study has been somewhat exploratory in nature. It is hoped, how
ever, that the accuracy and applicability of the results will provide a sound basis for
future observational studies.

Thus the overall goal of this study, the development and validation of an appro
priate complexity analysis scheme, was achieved. Similarly the research objectives
stated in Chapter 1 were also satisfied-complexity assessment failings were identi
fied , a new strategy was developed, relationships between complexity indicators and
project management data were established, classification based on these relation
ships was performed and predictive equations for project management parameters
were developed. The a,ccuracy and general applicability of the equations provides ev
idence supporting the assertion that complexity analysis could be performed without
consideration of organisational or personnel factors. The approach is still dependent
on technology, in that it assumes the use of structured m~thods in an automated
environment. This is not seen as a major constraint, however, as these methods and
tools are widely used in the commercial software development domain.

A detailed examination of the analysis results reveals that data model variables
were selected as those most closely related to effort and error data at the macroanal
ysis level. This may be taken to suggest that the data model is the most appropriate
of the specification representations , in terms of providing a basis for complexity as
sessment. It should .be remembered, however, that process model data was not

116

available for these analyses. This conclusion must therefore remain unconfirmed
until further studies can be performed. In the microanalysis investigations process
model variables were found to have the closest relationship with project manage
ment data. However the conclusions reached based on these procedures cannot be
generalised, due to their basis in single system samples.

The results of the system-level analyses were particularly encouraging in that
relatively useful predictive equations were developed from data sets collected from
different sites employing different people, products and procedures. One factor that
may have contributed to this outcome is the fact that the sites were all relatively
mature and committed CASE/4GL product users, providing some support for the
assertion that automation is a leveller of sorts. The extensive use of automation
therefore enabled objective, quantitative assessment to be performed, leading to the
development of simple but relatively accurate estimation equations.

It was suggested in Chapter 1 that user satisfaction was indirectly influenced by
software complexity. Although this dissertation has attempted to develop methods
that enable some sort of control to be established over complexity, user satisfaction
may still remain elusive. The goal of estimation studies such as this one must be to
assist in the delivery of a quality software product on time according to estimates. If
the product no longer matches the requirements of the user, because these require
ments have changed but have not been incorporated into the specification, then this
is unfortunate and it is a reflection of the hazards of software development in a
dynamic environment. It is not, however, a failure of the assessment and estimation
processes.

The findings of this study should therefore provide assistance to researchers
and practitioners alike. The results and discussions of the previous chapter should
form the basis for effective, objective and early discrimination and estimation of
development effort and post-delivery errors in the commercial software development
environment. Use of the recommended procedures by project managers should en
able them to more effectively control the influence that functional complexity has
on their development projects.

7.2 Recommendations for Research

The summary at the end of the previous chapter included a number of suggestions
for appropriate and effective project management procedures, based on the analysis
results of this study. Ongoing use of these procedures and equations should enable
managers to obtain frequent and accurate indications of effort requirements and
error occurrence. The equations , however, are only applicable to small or medium
sized interactive commercial systems developed with extensive automated assistance.
Given that the data from some of the larger systems was discarded during the
analyses before the equations were developed, it may be that other. equations will
be more appropriate for the prediction of effort requirements and error occurrence for
larger systems. Fwthe~· research and analysis of larger systems will provide evidence
to support or refute this remark. More extensive analysis of systems developed with

117

other automated tools is also needed. This will produce more comprehensive data
sets, enabling more general use of the resultant procedures and equations. Extensive
investigations of systems specified using process models is also required, so that the
consideration of process model measures, which had to be abandoned in this study
because of a lack of relevant data, can still be performed.

Similarly, reinforcement of the results obtained from small and medium sized
systems will be forthcoming as larger samples become available for analysis and as
collection becomes increasingly automated within development tools. It is envisaged
that the current scheme will be incorporated into a CASE tool in the near future.
This will have two advantages over the current study: firstly, it will enable more
objective, non-intrusive, less error-prone collection of the data to be carried out
without the need for time-consuming manual collection; secondly, it will mean that
analysis and prediction may be performed in the background of development as an
integral part of a project. Tate [240) and Tate and Verner [243) also suggest that on
workbench data, relating to development effort, will soon be collected automatically
within CASE environments. Collection of project management data will therefore
also be more precise and cost-effective. All of these factors will encourage continu
ing refinement of the equations, providing relevant feedback to managers whenever
required.

Although the proposal developed in this study was comprehensive in terms of
the commercial software specification representations examined, consideration of a
number of other notations may prove to be useful in future analyses. Recent studies
investigating the combination of petri nets with data flow diagrams, to add rigour
to process development (Benwell et al. [17) ; Tse and Pong [249); Lee and Tan [157)) ,
highlight a combined environment that may be a more appropriate foundation for
process model assessment. Similarly, object-oriented development, which is steadily
becoming more established in the commercial development domain, may also provide
a useful basis for analysis. The combination of data and process into objects reduces
the distinction between the two at the code level. At the conceptual specification
level, however; this distinction is still present (Macdonald [167)) . However it is
augmented by the specification of events so this overall representation may need to
be considered in an object-oriented environment.

A similar approach within structured development methods would be to include
the consideration of entity life histories, which describe the states that entities as
sume during system operation, or event lists, which describe the triggers that cause
data to begin or stop flowing (Keuffel [141); Symons [236]; Robinson [204)). Mac
donald [167) also suggests that control conditions and state transitions could be
important. It is currently unclear as to whether these sp~cification methods are
widely used in the commercial software development domain. If, however, they do
become standard approaches then their consideration should be encouraged.

The possible incorporation of formal methods into commercial software devel
opment would also provide further scope for analysis. An environment of this type
would enable straightforward determination and specification of requirements using
traditional structured methods, but would also enable validation of consistency and
completeness to be performed (Babin et al. [7]; Fraser et al. [90]) , resulting in more

118

rigorous development. Bishop and Lehman [21] and Fenton [79], however, state
that formal methods are difficult to use, particularly for the non-mathematically
inclined. They suggest that CASE support is necessary if they are to become widely
used. Furthermore, Tao and Kung [239] state that even with formal methods it is
still difficult to show that commercial system requirements have actually been met,
because the language used to describe businesses and organisational processes is dif
ferent from current formal specification languages . For example, business activities
have deadlines and are started or stopped by time-dependent triggers; temporality,
however, is difficult to express in formal specifications (Denning [71]) . In spite of
these problems, Forte and Norman (89] state that the attempts to incorporate for
mal methods within commercial development techniques should be pursued as their
use will introduce a greater degree of rigour into the development process. If and
when this integration does occur, further functional complexity analysis will become
possible.

Finally an issue of increasing importance within the software development com
munity is that of reuse, that is, the incorporation of existing software components
into new systems. This study has not considered reuse in its assessment, as all of
the systems used for validation of the proposal were developed from new require
ments. However, the current approach would not be appropriate in projects where
previously developed components are to be used. Clearly reused components have
already progressed through the analysis-design-construction-test phases, so effort
and error predictions for these components using the current equations would be
incorrect. Some consideration of the complexity of the reused component speci
fications , in terms of the contribution that they make to the overall specification
measures , should therefore be undertaken.

Until software development in the commercial environment becomes a totally au
tomated procedure, functional complexity will continue to be an important influence
on the progress and outcomes of the development process. Continually rising devel
opment costs , coupled with more and more demands for increasingly complicated
systems, will encourage extensive research into quantifiable assessment/ estimation
methods and into development automation. It is therefore hoped that this study,
which has empirically considered the interaction of these factors, will form the basis
for continued research in this area.

119

References

[1] Alavi, M. and Wetherbe, J.C., "Mixing Prototyping and Data Modeling For In
formation System Design" , IEEE Software , May 1991, pp. 86-91.

[2] Albrecht, A.J., "Measuring Application Development Productivity", Proceedings
IBM GUIDE/SHARE Applications Development Symposium, California, 1979.

[3] Albrecht, A.J., Open Letter to the Secretary of the International Function Point
User Group. IFPUG Memorandum, June 1988.

[4] Albrecht, A.J. and Gaffney, J.E. Jr, "Software Function, Source Lines of Code,
and Development Effort Prediction: A Software Science Validation" , IEEE Trans
actions on Software Engineering 9 (6) , November 1983, pp. 639-648.

[5] Allen, R.E. (ed.), The Pocket Oxford Dictionary of Current English. Oxford
University Press (7th ed.), Oxford, 1984.

[6] Arthur, L.J ., Measuring Programmer Productivity And Software Quality. John
Wiley & Sons, New York, 1985.

[7] Babin, G. , Lustman, F. and Shoval, P., "Specification and Design of Transactions
in Information Systems: A Formal Approach", IEEE Transactions on Software En
gineering 17 (8), August 1991, pp. 814-829.

[8] Baker, A.L., Bieman, J.M., Fenton, N.E., Gustafson, D.A., Melton, A. and
Whitty, R., "A Philosophy for Software Measurement", Journal of Systems and
Software 12, 1990, pp.-277-281.

[9] Banker, R.D. and Kauffman, R.J ., "Reuse and Productivity in Integrated Com
puter-Aided Software Engineering: An Empirical Study", MIS Quarterly, Septem
ber 1991, pp. 375-401.

[10] Basili, V.R. and Rombach, H.D., "The TAME Project: Towards Improvement
Oriented Software Environments", IEEE Transactions on Software Engineering 14
(6), June 1988, pp . 758-773.

[11] Basili, V.R. and Weiss , D.M. , "A Methodology for Collecting Valid Software

120

Engineering Data", IEEE Transactions on Software Engineering 10 (6), November
1984, pp. 728-738.

[12] Bastani, F.B., "An Approach To Measuring Program Complexity", ProGeedings
COMPSAC '83, Chicago IL, 1983, pp. 1-8.

[13] Batini, C., Lenzerini, M. and Navathe, S.B., "A Comparative Analysis of
Methodologies for Database Schema Integration", ACM Computing Surveys 18 (4),
December 1986, pp. 323-364.

[14] Baxter, I.D., "Design Maintenance Systems", Communications of the ACM 35
(4), April 1992, pp. 73-89.

[15] Beane, J., Giddings, N. and Silverman, J., "Quantifying Software Designs", Pro
ceedings 1th International Conference on Software Engineering, Orlando FL, 1984,
pp. 314-322.

[16] Belson, M. and Devonald, S., "Using Design Templates with IEW", Proceedings
Knowledge Ware International User Conference, Atlanta GA, April 1991, pp. 571-
579.

[1 7] Benwell, G.L., Firns, P.G. and Sallis, P.J., "Deriving Semantic Data Models
from Structured Process Descriptions of Reality", Journal of Information Technol
ogy 6 (1), March 1991, pp. 15-25.

[18] Berns, G.M., "Assessing Software Maintainability", Communications of the
ACM 27 (1), January 1984, pp. 14-23.

[1 9] Bersoff, E.H., Henderson, V.D. and Siegel, S.G., Software Configuration Man
agement - An Investment in Product Integrity. Prentice-Hall, Englewood Cliffs NJ,
1980.

[20] Bhide, S., "Generalized Software Process-Integrated Metrics Framework", Jour
nal of Systems and Software 12, 1990, pp. 249-254.

[21) Bishop, R. and Lehman, M.M., "A View of Software Quality", Proceedings
IEE Colloquium on Designing Quality into Software Based Systems, (PGCl, No.
1991/151), London, October 1991, pp. 1/1-1/3.

[22] Blaha, M.R., Premerlani, W.J. and Rumbaugh, J.E., "Relational Database De
sign Using An Object-Oriented Methodology", Communications of the ACM 31 (4),
April 1988, pp. 414-427.

[23] Blaine, J.D. and Kemmerer, R.A., "Complexity Measures for Assembly Lan
guage Programs", Journal of Systems and Software 5, August 1985, pp. 229-245.

121

[24] Bobbie, P.O., "Productivity Through Automated Tools", ACM SIGSoft Soft
ware Engineering Notes 12 (2) , April 1987, pp. 30-31.

[25] Boehm, B.W., Software Engineering Economics. Prentice-Hall, Englewood
Cliffs NJ, 1981.

[26] Boehm, B.W., Gray, T.E. and Seewaldt, T., ~'Prototyping Versus Specifying:
A Multiproject Experiment", IEEE Transactions on Software Engineering 10 (3),
May 1984, pp. 290-302.

[27] Boehm, B.W. and Papaccio, P.N., "Understanding and Controlling Software
Costs", IEEE Transactions on Software Engineering 14 (10), October 1988, pp.
1462-1477.

[28] Bollmann, P. and Zuse, H., "An Axiomatic Approach To Software Complexity
Measures", Proceedings 3rd Symposium on Empirical Foundations of Information
and Software Science, Roskilde, 1985, pp. 13-20.

[29] Bowker, P., "The Challenge for Software Development", in Gillies, A. (ed.),
Case Studies in Software Engineering. Salford University Business Services Ltd,
UK, March 1991 , pp. 9-18.

[30] Bowman, B.J. and Newman, W.A., "Software Metrics as a Programming Train
ing Tool", Journal of Systems and Software 13, 1990, pp. 139-14 7.

[31] British Gas, Bang Metric Analysis. Document Num. 000763, Process Support,
British Gas plc, Dorking, June 1991.

[32] Brooks, F,P. Jr, "No Silver Bullet - Essence and Accidents of Software Engi
neering", Computer 20 (4), April 1987, pp. 10-19.

[33] Brown, A.W. and McDermid, J.A., "Learning from IPSE's Mistakes", IEEE
Software, March 1992, pp. 23-28 .

[34] Brown, D.W., Carson, C.D., Montgomery, W.A. and Zislis, P.M., "Software
Specification and Prototyping Technologies", AT&T Technical Journal, July/ Au
gust 1988, pp. 33-45.

[35] Buckler, G., "Speeding Up the Programming Process", Computing Canada 14
(11), 26 May 1988, pp. 26-27.

[36] Burkhard, D.L. and Jenster, P.V., "Applications of Computer-Aided Software
Engineering Tools: Survey of Current and Prospective.Users" ; ACM SIGBDP Data
Base, Fall 1989, pp. 28-37.

122

(37] Bush, M.E. and Fenton, N.E., "Software Measurement: A Conceptual Frame
work" , Journal of Systems and Software 12, 1990, pp. 223-231.

[38] Bushell, C.J., "The Strengths Of Data Modelling", Proceedings 18th CAE Com
puter Conference, Australia, 1987, pp. 105-117.

(39] Card, D.N., Page, G.T and McGa:rry, F.E., "Criteria for Software Modulariza
tion", Proceedings 8th International Conference on Software Engineering, London,
1985, pp. 372-377.

(40] Case, A.F. Jr, Information Systems Development: Principles of Computer-Ai
ded Software Engineering. Prentice-Hall, Englewood Cliffs NJ, 1986.

(41] Chapin, N., "A Measure of Software Complexity", Proceedings 1979 National
Computer Conference, New York, 1979, pp. 995-1002.

[42] Chen, E.T., "Program Complexity and Programmer Productivity", IEEE Tran
sactions on Software Engineering 4 (3), May 1978, pp. 187-194:

(43] Chen, M. and Norman, R.J., "A Framework for Integrated CASE", IEEE Soft-
ware, March 1992, pp. 18-22. ·

(44] Chen, M., Nunamaker, J.F. Jr and Weber, E.S., "Computer-Aided Software
Engineering: Present Status and Future Directions", A CM SIGBDP Data Base,
Spring 1989, pp. 7-13.

[45] Chen, P.P., "The Entity Relationship Model: Towards a Unified View of Data",
ACM Transactions on Database Systems 1 (1), March 1976, pp. 9-36.

[46] Chen, P.P. (ed.), Entity-Relationship Approach - The Use of E-R Concept in
Knowledge Representation. IEEE Computer Society Press, Washington, 1985.

[47] Cherniavsky, J.C. and Smith, C.H., "On Weyuker's Axioms for Software Com
plexity Measures!', IEEE Transactions on Software Engineering 17 (6), June 1991,
pp. 636-638.

[48] Chikofsky, E.J. and Rubenstein, B.L., "CASE: R,eliability Engineering for In-
formation Systems", IEEE Software , March 1988, pp. 11-16. ·

[49] Choong, L.S. and Churcher, N., "Macaw: An Entity-Relationship Diagrammer
for the Macintosh", New Zealand Journal of Computing 1 (1), April 1989, pp . 66-72.

[50] CIS, CASE Project - Report on Computer Aided Software Engineering in New
Zealand . Case Study Report, Center for Information Science, University of Auck-

123

land, May 1989.

[51] Clarke, R., "A Contingency Approach to the Application Software Genera
tions", ACM SIGBIT Data Base, Summer 1991, pp. 23-34.

[52] Colligan, I.C. and Nevill, D.G., "Software Metrics for Planning and Control",
Information Management, Winter 1988, pp. 13-18.

[53] Compton, B.T. and Withrow, C., "Prediction and Control of ADA Software
Defects", Journal of Systems and Software 12, 1990, pp. 199-207.

[54] Conte, S.D., Dunsmore, H.E. and Shen, V.Y., Software Engineering Metrics
and Models. Benjamin/Cummings Publishing, Menlo Park CA, 1986.

[55] Cote, V., Bourque, P., Oligny, S. and Rivard, N., "Software Metrics: An
Overview of Recent Results", Journal of Systems and Software 8, 1988, pp. 121-131.

[56] Coulter, N.S., "Software Science and Cognitive Psychology", IEEE Transac
tions on Software Engineering 9 (2), March 1983, pp. 166-171.

[57] Coupal, D. and Robillard, P.N., "Factor Analysis of Source Code Metrics", .
Journal of Systems and Software 12, 1990, pp. 263-269. ·

[58] Crozier, M., Glass, D., Hughes, J.G., Johnston, W. and McChesney, I., "Criti
cal Analysis of Tools for Computer-Aided Software Engineering", Information and
Software Technology 31 (9), November 1989, pp. 486-496.

[59] Curtis, B., "The Measurement of Software Quality and Complexity", in Perlis,
A.J., Sayward, F.G. and Shaw, M. (eds.), Software Metrics. MIT Press, Mas
sachusetts, 1981, pp. 203-224.

[60] Curtis, B., "Software Metrics: Guest Editor's Introduction", IEEE Transac
tions on Software Engineering 9 (6), November 1983, pp. 637-638.

[61] Curtis, B., Sheppa_rd, S.B., Milliman, P., Borst, M.A. and Love, T., "Measuring
the Psychological Complexity of Software Maintenance Tasks with the Halstead and
McCabe Metrics", IEEE Transactions on Software Engineering 5 (2), March 1979,
pp. 96-104.

[62] Daniel, W.W. , Applied Nonparam etric Statistics. PWS-Kent Publishing Com
pany, Boston MA, 1990.

[63] Date, C.J ., An Introduction to Datr;ibase Systems. Addison-Wesley, New York,
1986.

124

[64] Davis, J.S., "Chunks: A Basis For Complexity Measurement", Information Pro
cessing & Management 20 (1-2), 1984, pp. 119-127.

[65] Davis, J.S. and LeBlanc, R.J., "A Study of the Applicability of Complexity
Measures", IEEE Transactions on Software Engineering 14 (9), September 1988,
pp. 1366-1372.

[66] Dawson, K.S. and Purgailis Parker, L.M., "From Entity-Relationship Diagrams
to Fourth Normal Form: A Pictorial Aid to Analysis", The Computer Journal 31
(3), 1988, pp. 258-268.

[67] DeMarco, T., Structured Analysis and System Specification. Prentice-Hall, En
glewood Cliffs NJ, 1978.

[68] DeMarco, T., Controlling Software Projects. Yourdon, New York, 1982.

[69] DeMarco, T., "An Algorithm For Sizing Software Products", ACM SIGMetrics
Performance Evaluation Review 12 (2), 1984, pp. 13-22.

[70] Demurjian, S.A. and Hsiao, D.K., "Towards a Better Understanding of Data
Models Through the Multilingual Database System", IEEE Transactions on Soft-
ware Engineering 14 (7), July 1988, pp. 946-958. ·

[71] Denning, P.J., "Editorial - What is Software Quality?", Communications of the
ACM 35 (1), January 1992, pp. 13-15.

[72] Dunsmore, H.E., "Software Metrics: An Overview of an Evolving Methodolo
gy", Information Processing & Management 20 (1-2), 1984, pp. 183-192.

[73] Eglington, D., "Cost-Effective Computer System Implementation in Medium
Sized Companies", in Gillies, A. (ed.), Case Studies in Software Engineering. Sal
ford University Business Services Ltd, UK, March 1991, pp. 56-59.

[74] Eisenbach, S., McLoughlin, L. and Sadler, C., "Data-Flow Design as a Vi
sual Programming Language", Proceedings 5th International Workshop on Software
Specification and Design/ ACM SIGSoft Software Engineering Notes 14 (3), May
1989, pp . 281-283.

[75] Ejiogu, 1.0., "A Simple Measure Of Software Complexity", ACM SIGMetrics
Performance Evaluation R eview 13 (1), June 1985, pp. 33-47.

[76] Evangelist, W.lVL, "Software Complexity Metric Sensitivity to Program Struc
turing Rules", Journal of Systems and Software 3, 1983, pp. 231-243.

[77] Evangelist, W.M., "An Analysis Of Control Flow Complexity", Proceedings

125

COMP SAC '84, Chicago IL, 1984, pp. 388-396.

[78] Factor, R.M. and Smith, W.B., "A Discipline for Improving Software Produc
tivity", AT&T Technical Journal, July/ August 1988, pp. 2-9.

[79] Fenton, N.E., "Software Metrics: Theory, Tools and Validation", Software En
gineering Journal, January 1990, pp. 65-78.

[80] Fenton, N.E. and Kaposi, A.A., "Metrics and Software Structure", Information
and Software Technology 29 (6), July/ August 1987, pp. 301-320.

[81] Fenton, N.E. and Melton, A., "Deriving Structurally Based Software Measures",
Journal of Systems and Software 12, 1990, pp. 177-187.

[82] Ferg, S., "Modelling the Time Dimension in an Entity-Relationship Diagram",
in Chen, P.P. (ed.), Entity-Relationship Approach - The Use of ER Concept in
Knowledge Representation. IEEE Computer Society Press, Washington, 1985, pp.
280-286.

[83] Fetzer, J.H., "Program Verification: The Very Idea", Communications of the
A CM 31 (9), September 1988, pp. 1048-1063.

[84] Finkelstein, C., "Information Engineering", Computerworld, May-June 1981.

[85] Finkelstein, C., An Introduction to Information Engineering. Addison-Wesley,
New York, 1989.

[86] Firns, P.G., "Determining a Useful Balance Between Understandability and
Rigour in Data Modelling", New Zealand Journal of Computing 2 (1), December
1990, pp . 13-21.

[87] Firns, P.G., "Entity Relationship Modelling in GIS Design: An Efficacious Ap
proach or an Exercise in Futility?", Proceedings 18th Australasian Conference in
Urban and Regional Planning Information Systems, Australia, 1990.

[88] Fisher, D. and Betteridge, R., Forecasting ASD Resource Requirements for New
Elements . Internal Report, Inland Revenue IT Division M3/T3, Telford, 14 Decem
ber 1987.

[89] Forte, G. and Norman, R.J ., "A Self-Assessment by the Software Engineering
Community", Communications of the ACM 35 (4), April 1992, pp. 28-32.

[90] Fraser, M.D. , Kumar , K. and Vaishnavi, V.K. , "Informal and Formal Require
ments Specification Languages: Bridging the Gap", IEEE Transactions on Software
Engineering 17 (5), May 1991, pp. 454-466.

[

I I

I

126

(91) Freeman, P., "Mapping Specifications to Formalisms: Some Problems with Tra
ditional Approaches to Capturing Specifications", in Chen, P.P. (ed.), Entity-Rela
tionship Approach - The Use of ER Concept in Knowledge Representation. IEEE
Computer Society Press, Washington, 1985, pp. 100.

(92) Gaffney, J.E. Jr, Goldberg, R. and Misek-Falkoff, L.D., "Score82 Summary",
ACM SIGMetrics Performance Evaluation Review 12 (4), 1984-85, pp. 4-9.

(93) Gane, C. and Sarson, T ., Structured Systems Analysis: Tools and Techniques.
Prentice-Hall, Englewood Cliffs NJ, 1979.

(94) Gavurin, S.L., "Where Does Prototyping Fit In IS Development?" , Journal of
Systems Management, February 1991, pp. 13-17.

(95) Gerritsen, R., Morgan, H. and Zisman, M., "On Some Metrics for Databases
or What is a Very Large Database?" , ACM SIGMOD Record 9 (1), June 1977, pp.
50-74.

(96) Gibson, V.R. and Senn, J.A., "System Structure and Software Maintenance
Performance", Communications of the ACM 32 (3), March 1989, pp. 347-358.

(97) Glass, R.1., "Editor's Corner - 4GLs and CASE: What's the Payoff?" , Journal
of Systems and Software 14, 1991, pp. 131-132.

[98) Godwin, A.N., Gore, M.B. and Salt, D.W., "A Comparison of JSD and DFD
as Descriptive Tools", The Computer Journal 32 (3), 1989, pp. 202-211.

[99) Goering, R., "Design Tools Advance to Keep Pace With System Complexity",
Computer Design, December 1987, pp. 103-119.

[100] Gordon Group, Before You Leap - A Software Cost Model. Product User Man
ual, Gordon Group, San Jose CA, 1987.

[101] Grady, R.B., "Wo;rk-Product Analysis: The Philosopher's Stone of Software?",
IEEE Software, March 1990, pp. 26-34.

[102] Gray, R.H.M., Carey, B.N., McGlynn, N.A. and PengeVy, A.D., "Design Met
rics for Database Systems", BT Technology Journal 9 (4), October 1991, pp. 69-79 .

[103) Gremillion, 1.1., "Determinants of Program Repair Maintenance Require-
·. ments" , Communications of the ACM 27 (8), August 1984, pp. 826-832.

[104] Grupe, F.H. and Clevenger, D.F., "Using Function Point Analysis as a Soft
ware Development Tool", Journal of Systems Ma nagement, December 1991 , pp.

127

23-26.

[105] Haddley, N. and Sommerville, I., "Integrated Support for Systems Design",
Software Engineering Journal, November 1990, pp. 331-338.

[106] Hall, N.R. and Preiser, S., "Combined Network Complexity Measures", IBM
Journal of Research and Development 28 (1), January 1984, pp. 15-27.

[107] Halstead, M.H., Elements of Software Science. Elsevier North-Holland, New
York, 1977.

[108] Hamer, P.G. and Frewin, G.D., "M.H. Halstead's Software Science - A Critical
Examination", Proceedings 6th International Conference on Software Engineering,
Tokyo, 1982, pp. 197-206.

[109] Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A., Robust
Statistics. John Wiley & Sons, New York, 1986.

[11 0] Han, W.-T., Choe, Y.-C. and Park, Y.-J., "Software Metrics Using Operand
Type", Proceedings TENCON '81, Seoul, 1987, pp. 1212-1 215.

[111] Harel, D., "Biting the Silver Bullet - Toward a Brighter Future for System
Development", Computer, January 1992, pp. 8-20.

[112] Harel, E.C. and McLean, E.R., "The Effects of Using a Nonprocedural Com
puter Language on Programmer Productivity", MIS Quarterly, June 1985, pp. 109-
120.

[113] Harrison, W.A., "Software Complexity Metrics: A Bibliography and Category
Index", ACM SIGPLan Notices 19 (2), February 1984, pp. 17-27.

[114] Harrison, W.A. and Cook, C., "A Micro/Macro Measure of Software Complex
ity", Journal of Systems and Software 7, 1987, pp. 213-219.

[115] Harrison, W.A. and Magel, K.1., "A Complexity Measure Based On Nesting
Level", ACM SIGPLan Notices 16 (3), March 1981, pp. 63-74.

[11 6] Harwood, K., "On Prototyping and the Role of the Sof~ware Engineer", ACM
SIGSojt Software Engineering Notes 12 (4), October 1987, pp. 34.

[117] Hawryszkiewycz, I.T., Introduction to Systems Analysis and Design. Prentice
Hall Australia, Sydney, 1988.

[118] Henry, S. and Kafura, D., "Software Structure Metrics Based on Information
Flow", IEEE Transactions on Software Engineering 7 (5), September 1981 , pp. 510-

128

518.

[119] Henry, S. and Lewis, J., "Integrating Metrics into a Large-Scale Software De
velopment Environment", Journal of Systems and Software 13, 1990, pp. 89-95.

[120] Hoaglin, D.C., Mosteller, F. and Tukey, J.W., Understanding Exploratory Data
Analysis. John Wiley & Sons, New York, 1983.

[121] Horch, J.W., "Productivity Through Quality", Proceedings 12th New Zealand
Computer Conference, Dunedin, 1991, pp. 1-4.

[122] Hsu, C., "Structured Database Systems Analysis and Design Through Entity
Relationship Approach", in Chen, P.P. (ed.), Entity-Relationship Approach - The
Use of ER Concept in Knowledge Representation. IEEE Computer Society Press,
Washington, 1985, pp. 56-63.

[123] IE, IE-Metrics Knowledge Base. James Martin & Co., Reston VA, November
1989.

[124] Ince, D.C., "The Influence of System Design Complexity Research on the
Design of Module Interconnection Languages", ACM SIGPLan Notices 20 (10), Oc
tober 1985, pp. 36-43.

[125] Ince, D.C. and Shepperd, M., "System Design Metrics: A Review And Per
spective", Proceedings 2nd IEE/BCS Conference on Software Engineering, London,
1988, pp. 23-27.

[126] Ivan, I., Arhire, R. and Macesanu, M., "Programs Complexity: Comparative
Analysis, Hierarchy, Classification", ACM SIGPLan Notices 22 (4), April 1987, pp.
94-102.

[127] Iyengar, S.S., Bastani, F.B. and Fuller, J.W., "An Experimental Study Of The
Logical Complexity Of Data Structures", Proceedings 2nd Symposium on Empirical
Foundations of Information and Software Science, Atlanta GA, 1985, pp. 225-239.

[128] Jackson, M., Principles of Program Design. Academic Press, New York, 1975.

[129] Jackson , M., "Software Engineering for Business DP: Looking Back and Look
ing Forward", Proceedings 11th International Conference on Software Engineering,
Pittsburgh PA, 1989, pp. 135.

[130] Jarke, M., "Strategies for Integrating CASE Environments", IEEE Software ,
March 1992, pp. 54-61.

[131] Jayaprakash, S., Lakshmanan, K.B. and Sinha, P.K., "MEBOW: A Compre-

129

hensive Measure Of Control Flow Complexity", Proceedings COMPSAC '81, 1987,
pp. 238-244.

(132] Jones, R., "A Quantum Leap in Languages: Major Gains in Using 4GLs" ,
Computerworld New Zealand, 31 October 1988, pp. 18-19.

(133] Jones, T.C. , "Why Choose CASE?", BYTE, December 1989, pp. 80IS3-10.

(134] Kafura, D. and Canning, J., "A Validation of Software Metrics Using Many
Metrics and Two Resources", Proceedings 8th International Conference on Software
Engineering, London, 1985, pp. 378-385.

(135] Karimi, J. and Konsynski, B.R., "An Automated Software Design Assistant",
IEEE Transactions on Software Engineering 14 (2), February 1988, pp. 194-210.

(136] Kearney, J.K., Sedlmeyer, R.L., Thompson, W.B., Gray, M.A. and Adler,
M.A., "Software Complexity Measurement", Communications of the ACM 29 (11),
November 1986, pp. 1044-1050.

[137] Kerr, J .M., "The Information Engineering Paradigm", Journal of Systems
Management, April 1991, pp. 28-35.

(138] Keuffel, W., "CASE for the Rest of Us", Computer Language (USA), January
1991 , pp. 25-29.

(139] Keuffel, W., "Data Modeling in Context", Computer Language (USA), March
1991, pp. 27-33.

[140] Keuffel, W., "Exploring ERD Tools", Computer Language (USA), April 1991,
pp. 27-35.

[141] Keuffel, W., "Event Lists and Essential Models", Computer Language (USA),
May 1991, pp. 29-34.

[142] Keuffel, W., "Building Essential DFDs", Computer Language (USA), June
1991, pp. 29-41.

[143] Keuffel, W., "The Structured Specification Data Dictionary", Computer Lan
guage (USA) , July 1991, pp. 29-34.

[144] Keuffel, W., "Transformation Strategies", Computer Language (USA) , Octo
ber 1991, pp. 35-42.

[145] Kilov, H., "Conventional and Convenient in Entity-Relationship Modeling" ,
ACM SIGSoft Software Engineering Notes 16 (2) , April 1991, pp. 31-32.

130

[146] King, K.A., Findings of the CASE Review. ISG Research Report 58, Whit
bread plc, London, May 1991.

[14 7] King, S.F., "Making CASE Work". Unpublished Research Proposal, Advanced
Technology Centre, University of Warwick, Coventry, April 1992.

[148] King, S.F., "The Quality Gap: A Case Study in Information System Devel
opment Quality and Productivity Using CASE Tools", in Spurr, K. and Layzell, P.
(eds.), CASE: Current Practice, Future Prospects. John Wiley & Sons Ltd, Chich
ester, 1992, pp. 35-54.

[149] King, S.F. and Warren, G.J., A Study of the Use of Systems Engineering Tools
in a System Development Project. University of Warwick & Rover Advanced Tech
nology Centre Report, Coventry, July 1991.

[150] Kitchenham, B.A., "An Evaluation of Software Structure Metrics", Proceed
ings COMPSAC '88, 1988, pp. 369-376.

[151] Kitchenham, B.A., "Empirical Studies of the Assumptions Underlying Soft
ware Cost Estimation Models", To appear, Information and Software Technology,
1992.

[152] Kitchenham, B.A. and Pickard, L.M., "Towards a Constructive Quality Model
Part II: Statistical techniques for modelling software in the ESPRIT REQUEST
project", Software Engineering Journal, July 1987, pp. 114-126.

[153] Kitchenham, B.A., Pickard, L.M. and Linkman, S.J., "An Evaluation of Some
Design Metrics", Software Engineering Journal, January 1990, pp. 50-58.

[154] Kitchenham, B.A. and Walker, J.G., "A Quantitative Approach to Monitoring
Software Development", Software Engineering Journal, January 1989, pp. 2-13.

[155] Knafl, G.J. and Sacks, J., "Software Development Effort Prediction Based on
Function Points", Pro<;eedings COMPSAC '86, Chicago IL, 1986, pp. 319-324.

[156] Lanphar, R., "Quantitative Process Management in Software Engineering, A
Reconciliation Between Process and Product Views", Journ!ll of Systems and Soft
ware 12, 1990, pp. 243-248.

[157] Lee, P.-T. and Tan, K.P., "Modelling of Visualised Data-flow Diagrams Using
Petri Net Model", Software Engineering Journal, January 1992, pp. 4°12.

[158] Lennselius, B., "Software Complexity and its Impact on Different Software
Handling Processes", Proceedings IEE 6th Conference on Software Engineering for

131

Telecommunication Switching Systems, Eindhoven, 1986.

[159) Lew, K.S., Dillon, T.S. and Forward, K.E., "Software Complexity and Its Im
pact on Software Reliability", IEEE Transactions on Software Engineering 14 (11) ,
November 1988, pp. 1645-1655.

[160) Li, H.F. and Cheung, W.K., "An Empirical Study of Software Metrics", IEEE
Transactions on Software Engineering 13 (6), June 1987, pp. 697-708.

[161) Lin, C.-Y., "Systems Development With Application Generators: An End User
Perspective", Journal of Systems Management, April 1990, pp. 32-36.

[162) Lloyd's, Code of Practice for Computer System Development Projects. Issue
4, Systems Development Division, Lloyd's of London, August 1989.

[163) Lloyd-Williams, M. and Beynon-Davies, P., "Knowledge Based CASE Tools
for Database Design", in Spurr, K. and Layzell, P. (eds.), CASE: Current Practice!
Future Prospects. John Wiley & Sons Ltd, Chichester, 1992, pp. 205-222.

[164) Londeix, B., Cost Estimation for Software Development. Addison-Wesley,
Wokingham, 1987.

[165) Longworth, H.D., Ottenstein, L.M. and Smith, M.R., "The Relationship Be
tween Program Complexity And Slice Complexity During Debugging Tasks", Pro
ceedings COMPSAC '86, Chicago IL, 1986, pp. 383-389.

[166) Lor, K.-W.E. and Berry, D.M., "Automatic Synthesis of SARA Design Models
from System Requirements", IEEE Transactions on Software Engineering 17 (12),
December 1991, pp. 1229-1 240.

[167) Macdonald, I., The Finer Points of Data Modelling. Presented to the BCS
CASE Specialist Group, London, 5 September 1991.

[168) MacDonell, S.G. , "An Examination of Techniques for the Measurement and
Improvement of Softw;:t,re Development Productivity". Honours Dissertation, De
partment of Quantitative and Computer Studies, University of Otago, Dunedin,
November 1988.

[169] Magel, K.I., "A Theory of Small Program Complexity", A CM SIGPLan No
tices 17 (3), March 1982, pp. 37-45.

[1 70] Mantha, R.W., "Data Flow and Data Structure Modeling for Database Re
quirements Determination: A Comparative Study", MIS Quarterly, December1987;
pp. 531-545.

132

[171] March, S.T. (ed.), Entity-Relationship Approach. IEEE Computer Society
Press, Washington, 1988.

[172] Maria, A., "CASE Technology: Today's Reality", Journal of Systems Manage
ment, February 1991, pp. 18, 26.

[173] Martin, J. and McClure, C., Software Maintenance - The Problem And Its
Solutions. Prentice-Hall, Englewood Cliffs NJ, 1983:

[174] Mason, R.E.A. and Carey, T.T., "Prototyping Interactive Information Sys
tems", Communications of the ACM 26 (5), May 1983, pp. 347-354.

[175] McCabe, T.J., "A Complexity Measure", IEEE Transactions on Software En
gineering 2 (4), December 1976, pp. 308-320.

[176] McFadden, F.R. and Hoffer, J.A., Data Base Management. Benjamin/Cum
mings Publishing (2nd ed.), Menlo Park CA, 1988.

[177] Melton, A., Gustafson, D.A., Bieman, J.M. and Baker, A.L., "A Mathemat
ical Perspective for Software Measures Research", Software Engineering Journal,
September 1990, pp. 246-254.

[178] Miller, G.A., "The Magical Number Seven, Plus or Minus Two. Some Limits on
our Capacity for Processing Information", Psychological Review 63, 1956, pp. 81-97.

[179] Modell, M.E., "The Entity-Relationship Approach as a Tool for Application
Analysis", in Chen, P.P. (ed.), Entity-Relationship Approach - The Use of ER Con
cept in Knowledge Representation. IEEE Computer Society Press, Washington,
1985, pp. 123-130.

[180] Munson, J.C. and Khoshgoftaar, T.M., "The Dimensionality of Program Com
plexity", Proceedings 11th International Conference on Software Engineering, Pitts
burgh PA, 1989, pp. 245-253.

[181] Munson, J.C. and Khoshgoftaar, T.M., "Applications of a Relative Complex
ity Metric for Software Project Management", Journal of Systems and Software 12,
1990, pp. 283-291.

[182] Myers, G.J., Composite/Structured Design. Van Nostrand Reinhold, New
York, 1978.

[183] Myers, J.P. Jr, "The Complexity of Software Testing", Software Engineering
Journal, January 1992, pp. 13-24.

[184] Myrvold, A., "Data Analysis for Software Metrics", Jo.urnal of Systems and

133

Software 12, 1990, pp. 271-275.

[185] Naib, F.A., "An Application Of Software Science To The Quantitative Mea
surement Of Code Quality", ACM SIGMetrics Performance Evaluation Review 11
(3), Fall 1982, pp. 101-128.

[186] Naulls, R., "User Experience with a CASE Tool Set (IEW and GAMMA)",
Proceedings 11th New Zealand Computer Conference, 1989, pp. 309-318.

[187] NCC, Software Engineering - A Case-Based Introduction For Managers. The
National Computing Centre Ltd, Manchester, 1988.

[188] Necco, C.R., Gordon, C.L. and Tsai, N.W., "Systems Analysis and Design:
Current Practices", MIS Quarterly, December 1987, pp. 461-476.

[189] Nejmeh, B.A., "NPATH: A Measure Of Execution Path Complexity And Its
Applications", Communications of the ACM 31 (2) , February 1988, pp. 188-200.

[190] Nelson, M.S., "Computer Aided Software Engineering (CASE)". Paper 645,
Master of Business Administration, University of Otago, Dunedin, February 1990.

[191] Norman, R.J. and Chen, M., "Working Together to Integrate CASE (Guest
Editors' Introduction)", IEEE Software, March 1992, pp. 13-16.

[192] Norman, R.J. and Nunamaker, J.F. Jr, "CASE Productivity Perceptions of
Software Engineering Professionals", Communications of the ACM 32 (9), Septem
ber 1989, pp. 1102-1108.

[193] Norusis, M.J., SPSS/PC+ V3.0 Update Manual. SPSS Inc., Chicago 11, 1988.

[194] Oman, P.W. and Cook, C.R., "Design and Code Traceability Using a PDL
Metrics Tool", Journal of Systems and Software 12, 1990, pp. 189-198.

[195] Ottenstein, L.M., "Predicting Numbers Of Errors Using Software Science",
ACM SIGMetrics Performance Evaluation Review 10 (1), 1981, pp. 157-167.

[1 96] Paulson, D. and Wand, Y., "An Automated Approach to Information Systems
Decomposition", IEEE Transactions on Software Engineer~ng 18 (3), March 1992,
pp. 174-189.

[197] Porter, A.A. and Selby, R.W., "Empirically Guided Software Development Us
ing Metric-Based Classification Trees", IEEE Software, March 1990, pp. 46-54.

[198] Prather, R.E., "An Axiomatic Theory of Softwal'e Complexity Measure", The
Computer Journal 27 (4), 1984, pp. 340-347.

134

[199] Protsko, L.B., Sorenson, P.G., Tremblay, J.P. and Schaefer, D.A., "Towards
the Automatic Generation of Software Diagrams", IEEE Transactions on Software
Engineering 17 (1), January 1991, pp. 10-21.

[200] Ramamoorthy, C.V., Prakash, A., Tsai, W.-T. and Usuda, Y., "Software En
gineering: Problems and Perspectives", Computer, October 1984, pp. 191-209.

[201] Ramamoorthy, C.V., Tsai W.-T., Yamaura, T. and Bhide, A., "Metrics Gui
ded Methodology", Proceedings COMPSAC '85, Chicago 11, 1985, pp. 111-120.

[202] Ratcliff, B. and Rollo, A.L., "Adapting Function Point Analysis to Jackson
System Development", Software Engineering Journal, January 1990, pp. 79-84.

[203] Rinaldi, D., "Case: Front-End Tools - Getting Beyond Drawings", Software
Magazine 8 (5), April 1988, pp. 51-58.

[204] Robinson, K., "Putting the SE into CASE", in Spurr, K. and Layzell, P.
(eds.), CASE: Current Practice, Future Prospects. John Wiley & Sons Ltd, Chich
ester, 1992, pp. 1-20.

[205] Rodriguez, V. and Tsai, W.-T., "Software Metrics Interpretation Through Ex
perimentation", Proceedings COMPSAC '86, Chicago 11, 1986, pp. 368-374.

[206] Rodriguez, V. and Tsai, W.-T., "Evaluation Of Software Metrics Using Dis
criminant Analysis", Proceedings COMPSAC '87, 1987, pp. 245-251.

[207] Rodriguez, V. and Tsai, W.-T., "A Tool for Discriminant Analysis and Clas
sification of Software Metrics", Information and Software Technology 29 (3), April
1987, pp. · 137-151.

[208] Roland, J., "Software Metrics", Computer Language (USA}, June 1986, pp.
27-33.

[209] Roman, G.-C., "A Taxonomy of Current Issues in Requirements Engineering" ,
Computer, April 1985, pp. 14-21.

[210] Rosenquist, C.J., "Entity Life Cycle Models and their _Applicability to Infor
mation Systems Development Life Cycles", The Computer Journal 25 (3) , 1982, pp.
307-315.

[211] Rousseeuw, P.J. and Leroy, A.M., Robust Regression and Outlier Detection.
John Wiley & Sons, New York, 1987.

[212] Rudolph, E.E., Productivity In Computer Application Development . Working

135

Group Report, University of Auckland, Auckland, 1983.

[213] Rudolph, E.E., Measuring Information Systems. Seminar Guide and Addi
tional Notes, Auckland, 1987.

[214] Rummens, N. and Sucher, R., "CASE: Competitive Edge", Systems Interna
tional 17 (3), March 1989, pp. 31-34.

[215] Sallis, P.J., "Functionality And Performance With 4GL System Development",
Proceedings VAX Forum '86, Wellington, 1986.

[216] Sallis, P.J., "Quality Assurance And Productivity Enhancement", Proceedings
Rutherford Conference, New Plymouth, 1988.

[217] Samson, W.B., Nevill, D.G. and Dugard, P.I., "Predictive Software Metrics
Based on a Formal Specification", Information and Software Technology 29 (5),
June 1987, pp. 242-248.

[218] Senn, J.A., Analysis and Design of Information Systems. McGraw-Hill, New
York, 1985.

[219] Senn, J.A., Analysis and Design of Information Systems. McGraw-Hill (2nd
ed.), Singapore, 1989.

[220] Shen, V.Y., Conte, S.D. and Dunsmore, H.E., "Software Science Revisited: A
Critical Analysis of the Theory and Its Empirical Support", IEEE Transactions on
Software Engineering 9 (2), March 1983, pp. 155-165.

[221] Shepperd, M., "A Critique of Cyclomatic Complexity as a Software Metric",
Software Engineering Journal, March 1988, pp. 30-36.

[222] Shepperd, M., "An Evaluation of Software Product Metrics", Information and
Software Technology 30 (3), April 1988, pp. 177-188.

[223] Shepperd, M., "Design Metrics: An Empirical Analysis" , Software Engineering
Journal, January 1990, pp. 3-10.

[224] Shepperd, M. and Ince, D.C., "Metrics, Outlier Analysi,s and the Software De
sign Process", Information and Software Technology 31 (2), March 1989, pp. 91-98.

[225] Shepperd, M. and Ince, D.C., "Design Metrics and Software Maintainability:
An Experimental Investigation", Software Maintenance 3, 1991, pp. 215-232.

[226] Shoval, P. and Even-Chaime, M., "Data Base Schema Design: An Experimen
tal Comparison Between Normalization And Information Analysis", ACM SIGBDP . ·

136

Data Base, Spring 1987, pp. 30-39.

[227] Snyders, J., "The CASE of the Artful Dodgers", Infosystems, March 1988, pp.
28-32.

[228] Sorensen, P.F., "In Search Of Program Complexity", ACM SIGPLan Notices
23 (2), February 1988, pp. 28-35.

[229) Spaccapietra, S. (ed.), Entity-Relationship Approach. IEEE Computer Society
Press, Washington, 1987.

[230] Spratt, L. and McQuilken, B., "Applying Control-Flow Metrics To COBOL",
Proceedings 1987 Conference on Software Maintenance, Austin TX, 1987, pp. 38-44.

[231] Stamps, D., "CASE vs. 4GLs", Datamation, 15 August 1989, pp. 29-32.

[232] Statland, N., "Payoffs Down the Pike: A CASE Study", Datamation, April
1989, pp. 32-33, 52.

[233] Stevens, O.B., Project Sizing Methodology. Development Assurance Services
Report, Lloyd's Bank, London, August 1990.

[234] Sumner, M.R., "How Should Applications Be Developed? An Analysis of Tra
ditional, User, and Microcomputer Development Approaches", A CM SIGBDP Data
Base, Fall 1985, pp. 25-33.

[235] Symons, C.R., "Function Point Analysis: Difficulties and Improvements",
IEEE Transactions on Software Engineering 14 (1), January 1988, pp. 2-10.

[236] Symons, C.R., Software Sizing and Estimating: Mk II FPA (Function Point
Analysis). John Wiley & Sons Ltd, Chichester, 1991.

· [237] Takahashi, M. and Kamayachi, Y., "An Empirical Study of a Model for Pro
gram Error Prediction", IEEE Transactions on Software Engineering 15 (1), Jan
uary 1989, pp. 82-86.

[238] Tan, K.P., Chua, T.S. and Lee, P.-T., "AUTO-DFD: An Intelligent Data Flow
Processor", The Computer Journal 32 (3) , 1989, pp. 194-201..

[239] Tao, Y. and Kung, C., "Formal Definition and Verification of Data Flow Dia
grams", Journal of Systems and Software 16, 1991, pp. 29-36.

[240] Tate, G., "Management; CASE and the Software Process", Proceedings 12th
New Zealand Computer Conference, Dunedin, 1991 , pp. 24 7-256.

137

[241) Tate, G. and Docker, T.W.G., "A Rapid Prototyping System Based On Data
Flow Principles", ACM SIGSoft Software Engineering Notes 10 (2), April 1985, pp.
28-34.

[242) Tate, G. and Verner, J., "Software Metri~s for CASE Development", Proceed
ings COMPSAC '91, Tokyo, 1991, pp. 565-570.

[243) Tate, G. and Verner, J., "Approaches to Measuring Size of Application Prod
ucts with CASE Tools", Information and Software Technology 33 (9), November
1991, pp. 622-628.

[244) Tate, G., Verner, J. and Jeffery, R., "CASE: A Testbed for Modeling, Measure
ment and Management", Communications of the ACM 35 (4), April 1992, pp. 65-72.

[245] Teorey, T.J., Yang, D. and Fry, J.P., "A Logical Design Methodology for Re
lational Databases Using the Extended Entity-Relational Model", ACM Computing
Surveys 18 (2), June 1986, pp. 197-222.

[246] Troy, D.A. and Zweben, S.H., "Measuring the Quality of Structured Designs",
Journal of Systems and Software 2, 1981, pp. 113-120.

[247) Tsai, J.J.-P. and Ridge, J.C., "Intelligent Support for Specifications Transfor
mation", IEEE Software, November 1988, pp. 28-35.

[248] Tsai, W.-T., Lopez, M.A., Rodriguez, V. and Volovik, D., "An Approach To
Measuring Data Structure Complexity", Proceedings COMPS AC '86, Chicago IL,
1986, pp. 240-246.

[249) Tse, T.H. and Pong, L., "Towards a Formal Foundation for DeMarco Data
Flow Diagrams", The Computer Journal 32 (1), 1989, pp. 1-11.

[250] Turnbull, C., "Translating Creativity into Working Systems", Computing Ca
nada 14 (7), 31 March 1988, pp. 24-25, 36.

[251) Vargo, J. and Kong, Y.S., "CASE Productivity in New Zealand", New Zealand
Journal of Computing 2 (1), December 1990, pp. 55-67.

[252) Verner, J. and Tate, G., "A Model for Software SiziI).g", Journal of Systems
and Software 7, 1987, pp. 173-177.

[253] Verner, J. and Tate, G., "Estimating Size and Effort in Fourth-Generation
Development", IEEE Software, July 1988, pp. 15-22.

[254] Verner, J., Tate, G., Jackson, B. and Hayward, R.G., "Te'chnology Dependence
in Function Point Analysis: A Case Study and Critical Review", Proceedings 11th

138

International Conference on Software Engineering, Pittsburgh PA, 1989, pp. 375-
382.

[255] Vessey, I., Jarvenpaa, S.L. and Tractinsky, N., "Evaluation of Vendor Prod
ucts: CASE Tools as Methodology Companions", Communications of the ACM 35
(4), April 1992, pp. 90-105.

[256] Vessey, I. and Weber, R., "Some Factors Affecting Program Repair Mainte
nance: An Empirical Study", Communications of the ACM 26 (2), February 1983,
pp. 128-134.

[257] Waguespack, L.J. Jr and Badlani, S., "Software Complexity Assessment: An
Introduction and Annotated Bibliography", ACM SIGSoft Software Engineering
Notes 12 (4), October 1987, pp. 52-71.

[258] Webster, D.E., "Mapping t he Design Information Representation Terrain",
Computer, December 1988, pp. 8-23.

[259] Weissman, 1., "Psychological Complexity Of Computer Programs: An Exper
imental Methodology", ACM SIGPLan Notices 9 (6), June 1974, pp. 25-36.

[260] Weyuker, E.J., "Evaluating Software Complexity Measures", IEEE Transac
tions on Software Engineering 14 (9), September 1988, pp. 1357-1365.

[261] Williamson, M., "Learning to Practice What They Preach", CIO 5, April 1988,
pp. 22-29.

[262] Wilson, M.L., "The Measurement Of Usability", in Chen, P.P. (ed.), Entity-Re
lationship Approach To Systems Analysis And Design. North-Holland, Amsterdam,
1980, pp. 75-101.

[263] Woodfield, S.N. , Shen, V.Y. and Dunsmore, H.E., "A Study of Several Metrics
for Programming Effort", Journal of Systems and Software 2, 1981, pp. 97-103.

[264] Worsley, L.M., "Project Management and the Use of Metrics in a Fourth Gen
eration Environment", Proceedings 8th European Oracle Users Group Conference,
Madrid, April 1990.

[265] Wrigley, C.D. and Dexter, A.S., "A Model for Measuring Information System
Size" , MIS Quarterly, June 1991, pp. 245-257.

[266] Yadav, S.B., "Control and Definition Modularization: An Improved Software
Design Technique for Organizing Programs", IEEE Transactions on Software Engi
neering 16 (1), January 1990, pp. 92-99.

139

[267) Yau, S.S. and Collofello, J.S., "Some Stability Measures for Software Main
tenance", IEEE Transactions on Software Engineering 6 (6), November 1980, pp.
545-552.

(268) Zahniser, R.A., "The Perils of Top-Down Design", ACM SIGSoft Software
Engineering Notes 13 (2), April 1988, pp. 22-24.

140

Appendices

A.1 Development Site Response Results

The general applicability of the results of the empirical segment of this study is
somewhat restricted by the small data sets available for analysis. This situation is a
direct result of the lack of response and commitment from the software development
sites and automated tool vendors contacted in the first year of this research. The
degree of response obtained is shown in the following two spreadsheet printouts.

Development Sites : UK CASE NZ CASE
Sites Sites

4GL Devmt
Sites Sites

Number of sites 156 80 21
Number of repeats 69 0 0
Total letters 225 80 21

Number of replies 45 33 9
Number of calls 9 0 0
Total responses 54 33 9

TOTALS

83 340
3 72

86 412
39 126
17 26
56 152

Percent responses 24 . 00% 41 .25% 42 . 86% 65 . 12% 36 . 89%

Further contact 21 6 0 12 39
Preliminary agreement 13 3 0 6 22
Final agreement 7 0 0 3 10

Minimal use of tool(s) 5 10 1 4 20
Data unavailable 11 3 4 5 23
Just starting with tools 10 3 0 7 20
Plan off-shelf / third party O 5 0 0 5
Have rejected tools O 2 0 0 2
Mgmt/Takeover O 1 0 1 2
Training only 1 1 0 0 2
No resources 4 2 1 2 9
Security/Confidentiality 6 1 1 2 10
Still evaluating too l s .·. 3 0 0 2 5
No CASE/4GL use 10 0 1 11 22
Number sent on 4 2 1 2 9
No reason 6 3 3 3 15

Vendors and Others:
===================

Number of sites
Number of repeats
Total letters

Number of replies
Number of calls
Total responses
Percent responses

Number sent on
List provided

CASE/4GL
Vendors
Distrib .

44
6

50
13

4
17

34.00%

5
3

141

Consult.

13
0

13
4
1
5

38.46%

0
1

Indep. User TOTALS
Drgns Group

Reps .

6 4 67
0 0 6
6 4 73
4 1 22
0 0 5
4 1 27

66.67% 25 . 00% 36 . 99%

1 0 6
2 0 6

From the first set of figures it can be seen that a total of 340 distinct development
sites were contacted, in an effort to obtain a large representative sample. The overall
rate of response, however, was just 37%. Particularly disappointing was the low
response rate from U.K. CASE product users, at just 24% of those contacted. This
was in spite of the fact that the research was 'free ', it was to take up very little
of the participating organisations' time and resources, and was hopefully to lead
to outcomes beneficial to those organisations. Furthermore, of the 152 replies that
were received, continued response was only maintained by thirty-nine, leading to a
group of twenty-two granting preliminary agreement and to a final sample of just
ten sites.

A number of reasons were given by responding sites as to their unwillingness or
inability to take part in the study. A total of forty sites stated that their automated
tool usage was minimal or had only just begun. Moreover, t wenty-two others cited
no tool use; surprisingly, ten of these twenty-two were from CASE product user
lists . Whether this absence of tool use was because these sites had abandoned the
tools , or because the organisations were mistakenly on the lists , however, is un
clear. King [147] states t hat CASE is still relatively new, with widespread use only
being achieved in the last two to three years . This may help to explain the poor
response level achieved and the low usage in those organisations that did respond.
Another contributor, although not explicitly cited in the replies, may have been a
lack of success with the products. Although CASE is becoming increasingly accepted
(Chen and Norman [43]) , success is unfortunately not inherent with the purchase
of automated products. In fact, failures are relatively common in situations where
organisations have purchased a product as the solution to their development prob
lems, but have failed to address the equally important issues of effective training,
management commitment and the adoption of appropriate work methods. Organ
isations , however, that have directed their attention to these problems as well as

142

to their technical requirements have achieved success with automated tools. It was
a requirement of this study that the participating organisations were committed
and relatively mature product users-this may have inadvertently precluded a large
number of those contacted. Experience from the United States, however, where
successful CASE usage would appear to be increasing (Burkhard and Jenster [36];
Glass [97]) , would suggest that this may not be the situation for long.

Despite the opportunity for 'free' research nine respondents cited lack of re-
.· . sources · as a reason for their non-participation. Rather more frustrating was the

issue of security/ confidentiality-ten sites chose not to take part because they felt
they were unable to release details of their systems for analysis. Although in many
situations this apprehension would be justified, it was thought that the current
study would not have caused too many security fears, given that details of the oper
ational systems were not required and only the specifications were used as the basis
for assessment. Furthermore it was stressed to the organisations that any written
agreements required by the sites would be complied with.

Finally an issue of major concern was the unavailability of the requested project
management data in twenty-three of the responding sites, including almost half of the
replying U.K. CASE sites. It would appear that routine data collection relating to
project development progression is still not a high priority in many organisations, in
spite of increasing emphasis being placed on project durations and budget control.
Some respondents remarked that they needed proof that collection was actually
worthwhile before they were prepared to allocate resources to it . However, this
produces a cyclic problem: no data means that proof cannot be provided; a lack of
proof discourages sites to collect the data. It can only be hoped that the prediction
of Tate and Verner [243], that project management data will also be automatically
collected in a CASE environment, will prove to be correct. Perhaps in this way
consistent data will become available for ongoing analysis.

The second set of figures above, relating to approaches to product vendors and
other organisations, reveal an equally disappointing response rate at just 37% of
those contacted. Of the sixty-seven distinct organisations originally contacted only
six provided a list of product users. Although this project was clearly an academic
one, the objectives were of a practical nature and it was hoped at the outset that the
outcomes would be of real use to the software development community. Inclusion
of this observation in the contact letters , however, failed to produce the anticipated
degree of response.

The relative success of this project was only made possible by the involvement of
the ten sites that did take part-the results obtained in the analysis will hopefully
be of use to them. More importantly, however, it is hoped that the results may
encourage other sites to participate in future studies of this type , because only with
real-world assistance can we hope to provide real-world solutions.

143

A.2 Examples of Data and Statistical Analysis
Output Listings

EXAMPLE OF RAW DATA

Sample One: Macroanalysis-Effort

Transaction Measures

TCR TRE TUP TDE
3 29 2 3

17 62 5 4
11 17 20 0
20 47 10 5
18 54 12 10
5 13 5 5

14 67 22 2
14 28 11 i2 ·
26 158 20 9
36 145 81 11

7 250 5 0
103 241 103 103

16 107 20 6

Data Model Measures
------ .------------

TESDM TDEPD TEP TDECD TEC TAU TAC
4 4 29 4 8 19 60

14 14 62 11 26 61 152
10 6 17 9 31 203 61
21 13 47 14 35 110 206
18 15 29 18 40 152 188
6 4 13 4 15 180 149
9 9 54 9 38 ' 144 207

16 15 28 13 37 236 220
23 22 114 22 55 255 758
40 35 145 33 128 577 821
32 29 250 8 12 137 1766
77 77 241 77 309 1287 1080
32 32 107 16 42 572 1271

144

System Effort Measures
--
DESIGN PROGRAM AN/DES PROG/UT TOTAL

6.0 2.5 6.0 3.5 11.5
9 . 5 4 . 0 9 . 5 6 . 5 21.0

12.0 4.5 12.0 7 . 0 26.0
15.5 4.0 15.5 5.5 27.5
11.0 19.5 20.0 19.5 39.5
39.5 30 . 0 51.5 30.0 81.5
40.0 26.5 40 . 0 73.5 113.5
56.0 12.5 56 . 0 46 . 5 119.5
13 . 5 136.0 38.5 136 . 0 189.5
88.5 41.0 88.5 67.0 216.5
50.0 60.0 50.0 140.0 290.0
70.0 40 . 0 220.0 80.0 315.0

119.5 185 . 0 165.5 185.0 355.5

EXAMPLE OF STATISTICAL ANALYSIS OUTPUT LISTINGS

Sample One : Macroanalysis-Effort

Correlation

N of cases: 13 1-tailed Signif: * - . 01 ** - .001

Data Model Measures:

Correlations : DESIGN PROGRAM AN_DES PROG_UT TOTAL

TESDM . 5614 .2859 .8521** . 4304 .7466*
TDEPD .5736 .3184 .8804** .4630 .7685*
TEP .4780 .3658 .6314 . 6278 .8147**
TDECD . 3789 . 1190 .7839** . 1992 .5310
TEC . 3942 . 0543 .7882** . 1524 .5078
TAU . 6346* .3048 . 9372** . 3739 .7000*
TAC . 6390* . 6428* . 6152 .8471** . 9160**
TOOLS - . 0408 .3629 .0849 . 5450 .4474
TOMLS . 6668* .3170 . 8935** . 4333 .7617*
TMMLS . 7596* .7365* . 4957 . 6370* .5838

145

RANK ALL / PRINT NO .

Correlations: RDESIGN RPROGRAM RAN_DES RPROG_UT RTOTAL

RTESDM . 6602* . 6529* . 6437* . 6300 . 7868**
RTDEPD . 6804* . 6869* . 6970* .7025* . 8264**
RTEP .4512 . 5923 .4017 .6327 . 6547*
RTDECD .4132 .4138 . 4738 . 3581 .5152
RTEC .5495 . 5447 . 6154 .5110 .6209
RTAU .7198* . 6850* . 8077** .6319 .7473*
RTAC .8077** . 8033** . 7582* .8736** . 9341**
RTDOLS .1509 .4250 . 2829 . 5093 .4715
RTDMLS .6648* . 5722 .6374* . 5495 .7418*
RTMMLS .5237 . 3254 .3881 . 3344 . 4291

Intercorrelation

Correlations : TESDM TDEPD TAU TAC TMLS

TESDM 1 . 0000** .9921** .9223** . 6695* .9893**
TDEPD . 9921** 1 . 0000** . 9346** . 6713* . 9843**
TAU . 9223** . 9346** 1 . 0000** .4896 . 9084**
TAC .6695* . 6713* .4896 1 . 0000** .7258*
TMLS . 9893** . 9843** .9084** .7258* 1.0000**
TAM . 8792** . 8860** . 7857** . 9241** . 9131**
TIDM . 9749** . 9706** . 9321** .7071* . 9750**
TSDM . 9916** . 9858** .9337** .6955* . 9871**

Normality Tests

TRE
Statistic df Significance

Shapiro -Wilks . 8528 13 . 0363
K-S (Lilliefors) . 2440 13 . 0332

TOTAL
Statistic df Significance

Shapiro-Wilks .8833 13 .0876
K-S (Lilliefors) . 1787 13 > .2000

146

Classification
======= ·======

TDSCR and TOTAL (Normal):

Measure TDSCR:
-4 . 550 48.000

Systems: I 1 2 3 4 5 6 7 I 10 11 13
I s 9 I
I I

Systems: 1 2 3 4 5 6 7 8 9 10

16.888 138.962
Measure TOTAL:

Direct mapping for systems: 2 3 4 5 6 7 8 10 12

105 . 550
I 12
I
I

11 12 13

261. 036

Number of systems: 13 Correct classification: 9/13 = 69 . 2%

Direct mapping for outliers: 12
Number of response outliers: 3 Correct identification: 1/3
Number of incorrectly identified outliers: 0

TDSCR and TOTAL (Boxplot):

Measure TDSCR:

Systems:

Systems:

32 . 000
1 2 3 4 5 6 I 7 8 9

I
I

1 2 3 4 5 6 7 8 9 10

113 . 500
Measure TOTAL:

48.500
I 10 11

I
I

11

226.500

85.000
I 12 13
I
I

12 13

315.000

Direct mapping for systems : 1 2 3 4 5 6 7 8 9 11 12 13
Number of systems : 13 Correct classification : 12/13 = 92 . 3%

Direct mapping for outliers : 12 13
Number of response outliers : 2 Correct identification: 2/2
Number of incorrectly identified outliers : 0

147

Estimation

Estimation - An_Des Effort Using TDSCR (Constant Term)

LEAST SQUARES REGRESSION

VARIABLE

TDSCR
CONSTANT

COEFFICIENT

SUM OF SQUARES

1.11132
6.11806

DEGREES OF FREEDOM
SCALE ESTIMATE

=
=
=

STAND . ERROR

.15724
10 .95432

9013.06300
11
28.62463

COEFFICIENT OF DETERMINATION (R SQUARED)=

T - VALUE

7.06746
.55851

.81952

P - VALUE

.00002

. 58769

THE F-VALUE = 49 .949 (WITH 1 AND 11 DF) p - VALUE= .00002

LEAST MEDIAN OF SQUARES REGRESSION

VARIABLE

TDSCR
CONSTANT

COEFFICIENT

1.92857
- 14.96428

FINAL SCALE ESTIMATE =

COEFFICIENT OF DETERMINATION=
16.16273

.80201

REWEIGHTED LEAST SQUARES BASED ON THE LMS

VARIABLE COEFFICIENT STAND. ERROR

TDSCR 2.09009 .22082
CONSTANT -24.44990 8. 75114

WEIGHTED SUM OF SQUARES = 1800.76200
DEGREES OF FREEDOM = 8
SCALE ESTIMATE = 15.00318
COEFFICIENT OF DETERMINATION (R SQUARED)=

T - VALUE

9 .46496
-2.79391

. 91802 ·

P - VALUE

. 00001

.02342

THE F-VALUE = 89. 585 · (WITH 1 AND 8 DF) p - VALUE= .00001
THERE ARE 10 POINTS WITH NON-ZERO WEIGHT .
AVERAGE WEIGHT = .76923

148

Least Squares - AN_DES and TDSCR
STAND. 2.5 +++
RES. I 1 I

I I
I I
I I
+ +
I I
I I
I I
I I
+ 1 +
I 1 I
I I
I I
I I
+ +
I 1 I
I I
I I
I I

0.0 +-----------------1-------1---------------------------+
I 1 1 I
I 1 I
I 1 1 I
I I
+ 1 +
I I
I I
I I
I I
+ 1 +
I I
I I
I I
I I
+ +
I I
I I
I I
I I

- 2.5 +++
1 13 ·

INDEX OF THE OBSERVATION

149

Least Median Squares - AN_DES and TDSCR

. 2680E+01 + 1 +
STAND. 2.5 I+++I
RES. I

I
I
+

I 1 1

I
I

1 I
+
I

0.0 I-----1-------1----------------1----------------------I
I 1 I
I 1
+

I
I 1 1

I
+
I
I

-2.5 I+++I
+ +
I I
I I
I I
I I
+ +
I I
I I
I 1 I
I I
+ +
I I
I I
I I
I I
+ +
I I
I I
I I
I I
+ +
I I
I I
I I
I I

-. 9804E+01 + 1 +
I -+----+----+~---+----+----+----+----+~---+--~~+----+-I

1 13
INDEX .OF THE OBSERVATION

150

Reweighted Least Squares - AN_DES and TDSCR

. 3391E+01 + 1 +
STAND. 2.5 I+++I
RES. I

I
I
+
I 1

1
1 1

I
I
I

1 +
I

0.0 I-1----------------------------1----------------------I
I 1 I
I I
+
I
I

1
1

+
I
I

-2.5 I+++I
+ +
I I
I I
I I
I I
+ +
I 1 I
I I
I I
I I
+ +
I I
I I
I I
I I
+ +
I I
I I
I I
I I
+ +
I I
I I
I I .
I I

-.1213E+02 + 1 +
I-+----+---~+----+----+----+~---+----+----+----+----+-I

1 13
·. INDEX OF THE OBSERVATION

151

Estimation - An_Des Effort Using TDSCR (Through Origin)

LEAST SQUARES REGRESSION

VARIABLE

TDSCR

COEFFICIENT

1.17183 .

SUM OF SQUARES
DEGREES OF FREEDOM

=
=

STAND. ERROR .

.11065

9268.64700
12

SCALE ESTIMATE = 27.79186

T - VALUE

10.59080

.90335

P - VALUE

. 00000

COEFFICIENT OF DETERMINATION (R SQUARED)=
THE F-VALUE = 112.165 (WITH 1 AND 12 DF) P - VALUE= . 00000

LEAST MEDIAN OF SQUARES REGRESSION

VARIABLE

TDSCR

FINAL SCALE ESTIMATE

COEFFICIENT

.79167

=
COEFFICIENT OF DETERMINATION=

23 .06456
.84874

REWEIGHTED LEAST SQUARES BASED ON THE LMS

VARIABLE COEFFICIENT STAND. ERROR T - VALUE P - VALUE

TDSCR 1. 05155 .15964 6.58716 . 00006

WEIGHTED SUM OF SQUARES = 4357 .38900
DEGREES OF FREEDOM = 10
SCALE ESTIMATE = 20.87436
COEFFICIENT OF DETERMINATION (R SQUARED)= .78336
THE F-VALUE = 36 .159 (WITH 1 AND 10 DF) p - VALUE= .00013
THERE ARE 11 POINTS WITH NON-ZERO WEIGHT.
AVERAGE WEIGHT = .84615

STAND.
RES.

152

Least Squares - AN_DES and TDSCR
2.5 +++

I 1 I
I I
I I
I I
+ +

I I
I I
I 1 I
I I
+ 1 +
I I
I I
I I
I I
+ 1 +

I I
I 1 I
I I
I 1 I

0.0 +-----1-------------------1---------- _ · _____ ·--- ---~+

I I
I 1 1 I
I I
I 1 1 I
+ +

I I
I I
I I
I 1 I
+ +

I I
I I
I I
I I
+ +

I I
I I
I I
I I

-2 . 5 +++

1 13
INDEX OF THE OBSERVATION

.-

153

Least Median Squares - AN_DES and TDSCR

.4258E+01 + 1 +
I
I
I
I
+
I
I
I
I

STAND. I
RES. I

I
I
+
I
I
I
I

2.5 +++1+++++++

I
I
I
I
+
I
I
I
I
+
I
I
I
I

1

1

1

1

1

1

1 I
I
I
I
+

I
I
I
I
+

I
I
I
I

0 . 0 +-1---1---+
I 1 1 I

· r I
I I
I I
+ +
I I
I I
I I
I I
+ +
I I
I I
I I
I . I

-2.5 +++

1 13
INDEX OF THE OB SERVATION

154

Reweighted Least Squares - AN_DES and TDSCR

. 3647E+01 + 1 +
STAND.
RES .

I I
I I
I I
I I
+ +

2 . 5 I+++I
I I
I I
I I
+ 1 +
I 1 I
I I
I I
I I
+ +
I I
I 1 I
I I
I I
+ 1 +
I 1 1 I
I I

0.0 I -----1-------1------- - ---- - ----- ---------------------I
I I
+ 1 1 +
I I
I 1 I
I I
I I
+ +
I 1 I
I I
I I
I I
+ +
I I
I I
I I
I I

-2.5 +++
1 13

INDEX OF THE OBSERVATION

CAMBRIDGE

UNIVERSITY LIBRARY

Attention is drawn to the fact that the

copyright of this dissertation rests with its author.

This copy of the dissertation has been supplied

on condition that anyone who consults it is

understood to recognise that its copyright rests with

its author. In accordance with the Law of Copyright

no information derived from the dissertation or

quotation from it may be published without full

acknowledgement of the source being made nor any

substantial extract from the dissertation published

without the author's written consent.

