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In present global context, percussion-cup and fall-cone generally considered equally valid for liquid 1 
limit (LL) determination 2 
 3 
Fall cone (FC) approach generally has superior repeatability and reproducibility  4 
 5 
Recommendation to consistently redefine LL uniquely as water content at which universal FC 6 
penetrates specified depth into remoulded test specimen 7 
 8 
Plastic limit (plastic/brittle boundary) condition uniquely established using standard thread-rolling 9 
method  10 
 11 
Any agreement between water content values of plastic limit (PL) and PL100 parameter for given fine-12 
grained soil essentially coincidental 13 
 14 
PL100 is good choice for correlations with soil mechanical properties and may be useful as additional 15 
soil classification parameter, alongside PL and flow index  16 

Highlights
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Abstract 31 
 32 
The Authors have presented an interesting paper (Hrubesova et al., 2020), which aims (in part) to 33 
validate the Moharjerani (1999) calibration approach for establishing the 80g/30° fall-cone penetration 34 
depth equating to the liquid limit by the Casagrande percussion-cup approach, determined according to 35 
the British Standard. In this paper, the Discussers present some clarifications on, and state various 36 
observations regarding, the approaches adopted in the Hrubesova et al. (2020) investigation, as well as 37 
the Moharjerani (1999) calibration approach employed therein.  The Discussers also present a 38 
description of some relevant literature not covered in the Authors’ paper (Hrubesova et al. 2020) aimed 39 
at making further clarifications on this important area of geotechnical practice. 40 
 41 
 42 
 43 
1. Introduction 44 
 45 
The Authors’ paper and this Discussion paper are concerned with consistency limits determinations, 46 
particularly for LL, of fine-grained soils (i.e., for the saturated, remoulded soil fraction passing the 425-47 
m sieve size). Since Atterberg (1911a, 1911b) described the consistency limits, there have been many 48 
modifications to the classification framework for fine-grained soils. These include the mechanisation 49 
of the percussion cup (PC) liquid limit (LL) test by Casagrande (1932) (i.e., LLCas,ASTM), and then later 50 
the refinement of the Casagrande plasticity chart (Casagrande, 1947; Howard, 1984), as well as the 51 
development of other plasticity-based systems for fine-grained soil classification (see the reviews of 52 
O’Kelly, (2021b) and Moreno-Maroto et al., (2021)). Although the PC LL approach remains in favour 53 
and in widespread use for many regions, the fall cone (FC) approach for LL determination (i.e., LLcone) 54 
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has been adopted as the preferred method in numerous parts of the world, appearing in the British 55 
Standard in the 1970s. 56 
 57 
Given the apparent limitations of the thread-rolling test for plastic limit (PL) determination, some 58 
research work has focused on means of soil classification not reliant on its measurement, including a 59 
recent proposal by Vardanega et al. (2021) employing the FC flow index and a redrawn plasticity chart, 60 
thereby allowing fine-grained soil classification to be achieved solely from FC data. 61 
 62 
Apart from fine-grained soils, research on the variation of LLcone with clay content for sand–low 63 
plasticity clay and fine gravel–kaolin mixtures is reported in the papers by Cabalar and Mustafa (2015) 64 
and Kumar and Muir Wood (1999), respectively, along with the link between saturated, remoulded, 65 
undrained shear strength (su) and water content (w) for different clay contents in the mixtures. Likos 66 
and Jaafar (2014) investigated the FC penetration depth (d) as a function of saturation level for four 67 
sandy soils, studied using an effective stress approach linking the soil–water retention and suction–68 
stress characteristic curves. Mahajan and Budhu (2009) discerned the viscous drag as the FC penetrates 69 
fine-grained soils with w > LL, and they showed that shear viscosities of clays at LI (liquidity index) of 70 
< 1.5 may be approximated from penetration time – d data. 71 
 72 
 73 
 74 
2. Consistency limits  fundamentals, their determination and use for soil classification 75 
 76 
2.1 For the liquid limit 77 
 78 
The mechanically different PC and FC approaches, which imply arbitrarily criteria-chosen low shear 79 
strengths at the LL, are generally considered in the present global context equally valid means for LL 80 
determination. As such, the Discussers do not agree with the Authors’ contentions, citing Mohajerani 81 
(1999), that (i) determining the LLcone based on the same condition (i.e., using 80g/30° FC with d = 20 82 
mm universally) for all soils was “incorrect”, and (ii) the assumption of d = 20 mm was correct only 83 
when LL ranged ~ 30–40%. 84 
 85 
The PC and FC approaches can produce systematically different LL values for a given fine-grained soil. 86 
Considerable efforts have been made to relate LLCas deduced using various PC apparatus variants 87 
specified in different codes with values of LLcone obtained using 80g/30 and 60g/60 cones for different 88 
values of d assigned at the LLcone condition (e.g., Moon and White, 1985; Özer, 2009; Claveau-Mallet 89 
et al., 2012; O’Kelly et al., 2018, 2020b; and Vardanega et al., 2018).  90 
 91 
Fundamentally, the water content corresponding to LLcone is concurrent with a small undrained shear 92 
strength value (i.e., su,LL-FC), whose magnitude is defined by the cone characteristics (mass, apex angle, 93 
surface roughness) and the value of d specified for the LLcone  condition (Hansbo, 1957; Haigh et al., 94 
2019; Koumoto and Houlsby, 2001; O’Kelly, 2018, 2021b; O’Kelly et al., 2018; 2020a). Whereas LLCas, 95 
being based on the dynamic failure of a cohesive slope, defines the water content at which the ratio of 96 
associated undrained shear strength (su,LL-PC) to soil bulk density () (this ratio termed as specific 97 
strength) has some fixed value (Haigh, 2012). In other words, the su,LL-PC magnitude progressively 98 
reduces with increasing value of LLCas owing to the decreasing soil density with increasing water content 99 
(Haigh, 2012; Youssef et al., 1965; O’Kelly, 2019a). While, as cited in the Authors’ paper; for Norman 100 
(1958)’s soft-base PC apparatus, the specific strength was demonstrated to be 0.787 m2/s2, subsequent 101 
work by Haigh (2016), based on a survey of PC devices in use worldwide, showed that those of soft 102 
base-material construction mobilised specific strengths at the LLCas ranging 0.30–0.66 m2/s2, with 103 
average value of 0.47 m2/s2.  104 
 105 
Compared to the PC approach, the FC LL determination generally is reported as having improved 106 
repeatability and reproducibility (Sherwood, 1970; Sherwood and Ryley, 1970; O’Kelly et al., 2018; 107 
Sivakumar et al., 2015; Vardanega et al., 2021), including Casagrande (1958) who argued that the PC 108 



3 
 

LL test should no longer be used. For instance, Sherwood (1970) showed that between laboratories, 109 
there was considerably less variability of measured LLcone compared to measured LLCas. Some confusion 110 
arguably ensued in subsequent geotechnical engineering literature when, in replacing the PC with the 111 
FC approach, proponents of the latter wished to retain the original ‘value’ of LLCas via FC-LL testing 112 
for use with the Casagrande plasticity chart and/or in deriving useful design parameter values from prior 113 
correlations based on LLCas data (O’Kelly et al., 2018). The Discussers contend that what should have 114 
been done was to consistently redefine the LL uniquely in terms of the water content at which a 115 
universal FC (agreed mass, apex angle and surface roughness features would be needed) penetrates to 116 
a specified depth into the remoulded test specimen (see O’Kelly et al., 2018). Considering the arbitrary 117 
nature of current LLCas and LLcone definitions, this proposal remains valid once the identified soil 118 
condition for the adopted FC LL method is relatively liquid. As such, it is not really the issue to relate 119 
the LLcone with LLCas, but rather to choose a consistent FC-criterion for LLcone determination and then to 120 
apply it appropriately for soil classification work. For instance, in proposing their LLcone – PI (plasticity 121 
index) classification chart, with PI derived from the 80g/30 FC flow index (defined in Sridharan et al., 122 
1999) and for LLcone obtained at d = 20 mm, Vardanega et al. (2021) applied appropriate adjustments to 123 
reposition the A-line and U-line of the Casagrande plasticity chart. 124 
 125 
As elaborated above, the PC and FC approaches, with their variants specified in different codes (e.g., 126 
AS, 2009; ASTM, 2017; BSI, 1990), can produce systematically different LL values for a given fine-127 
grained soil. As a demonstration, in Figure 1 of their paper, the Authors presented various correlations 128 
in the plot of the British Standard soft-base PC LL (i.e., LLCas,BS) against LLcone (80g/30; d = 20 mm), 129 
including the correlation of Claveau-Mallet et al. (2012). Claveau-Mallet et al. (2012) deduced their 130 
correlation based on regression analysis of combined data from six earlier studies, in which other 131 
researchers had compared either the 60g/60 or 80g/30 FCs with either hard base or soft base PCs. 132 
Such an analysis involving a mixture of test device types is not consistent with the particular case in 133 
point, such that its inclusion in the Authors’ Figure 1 may cause ambiguity for the reader. 134 
 135 
As stated by the Authors, following the European Standard EN ISO 17892-12 (EN, 2018) and 136 
considering intermediate to high plasticity fine-grained materials, the LLCas,BS is found to give slightly 137 
greater LL values compared to the 80g/30 FC approach. Other authors previously highlighted the 138 
problem of soil classification to EN (2018) (e.g., Di Matteo, 2012; Di Matteo et al., 2016; O’Kelly et 139 
al., 2018, 2020b). As discussed in Di Matteo (2012), according to Sampson and Netterberg (1985), 140 
Wasti and Bezirci (1986), Leroeuil and Le Bihan (1996) and Sridharan and Prakash (2000), for materials 141 
with LL > 60–70%, the PC approach gives much greater LL values than the FC approach. This was also 142 
shown in the correlations from O’Kelly et al. (2018). Consequently, using LLcone values in 143 
Eurocode/CEN soil classification frameworks may impact on the use of soils in geotechnical practice 144 
and this may increase financial costs for disposal and/or improvement of soil (Di Matteo, 2012).  145 
 146 
 147 
 148 
2.2 Comments on Moharjerani (1999) calibration approach  149 
 150 
Figure 1 of the present paper plots alongside data of Mohajerani (1999) various contours relating to the 151 
specific strength range of su,LL-PC/ = 0.30–0.66 m2/s2 (average value of 0.47 m2/s2), which were deduced 152 
from analysis presented in Haigh (2016) for soft-base PC LL devices in use worldwide. The Australian 153 
Standard AS 1289.3.1.1–2009 (AS, 2009) specifies use of soft-base PC apparatus, presumably implying 154 
that Mohajerani (1999)’s study utilised one. Referring to Figure 1, Mohajerani’s own data are consistent 155 
with using a PC device mobilising an average specific strength of 0.47 m2/s2. Note the other data, after 156 
Sherwood and Ryley (1970), plotted in this figure are within the range of expected values, albeit towards 157 
the higher end of the su,LL-PC/ range, because the PC device they employed was probably at the upper 158 
(harder) end of the range observed for soft-base devices (Haigh, 2016). 159 
 160 
Mohajerani (1999)’s best-fit trendline is biased by the fact that all data at high LL were obtained using 161 
his soft base PC device, whereas data at lower LL were probably obtained from a different sample of 162 
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apparatus. Mohajerani’s trendline fits the dataset that he has chosen to use, and can be demonstrated to 163 
be consistent with the mechanics proposed in Haigh (2012). However, the trendlines for fixed values 164 
of su,LL-PC/, as plotted in Figure 1, are more likely to be consistent with datasets from single sets of PC 165 
apparatus. This shows that large errors that may be associated with employing different sets of 166 
apparatus, even when these are nominally identical, as described by Haigh (2016). In other words, the 167 
Mohajerani (1999) semi-logarithmic d – LLCas calibration line for LLCas < 149.5%, reported as Equation 168 
(5a) in the Authors’ paper, strongly diverges from the soft-base Casagrande average contour value of 169 
su,LL-PC/ = 0.47 m2/s2 for reducing water content at LLCas. Consequently, it is argued that deduced LLMoh 170 
values (obtained as the intersection of Equation (5a) and the 80g/30° d – w correlation for a particular 171 
soil (in semi-logarithmic representation)) are probably underestimations. 172 
 173 
 174 

 175 
 176 
Figure 1. Comparison of specific strength at LLCas contours and Mohajerani (1999)’s trendline and data. 177 
 178 
 179 
 180 
2.3 For the plastic limit 181 
 182 
From a soil classification perspective, the PL (i.e., plastic/brittle boundary) condition is a soil-specific 183 
criterion that cannot be assigned (related) to a definitive undrained shear strength value (or FC 184 
penetration depth) (cf. Haigh et al., 2013; O’Kelly, 2013, 2019b, 2021a, 2021b; O’Kelly et al., 2018; 185 
Sivakumar et al., 2016). The PL condition is established using the thread-rolling method, originally 186 
described by Atterberg (1911a, 1911b), being standardised worldwide (e.g., AS, 2009; ASTM, 2017; 187 
BSI, 1990; EN, 2018), with the test involving hand rolling of a soil thread on a glass plate until it 188 
crumbles at a nominal diameter (e.g., 3 mm). The thread failure is caused by air entry or cavitation 189 
within the soil during the rolling action (Haigh et al., 2013). Based on the initial work from Bobrowski 190 
and Griekspoor (1992), the alternative device-rolling technique described in ASTM (2017) and 191 
AASHTO (2020), which uses the same fundamental principles as the hand-rolling method, produces 192 
similar values of PL (Soltani and O’Kelly, 2021). Soltani and O’Kelly (2021) found that compared to 193 
hand rolling, the alternative PL rolling-device method produced the same soil classifications (based on 194 
the Casagrande plasticity chart) in 82 cases out of 84 diverse fine-grained soils examined. 195 
 196 
In their paper for soils with LL close to 20–50%, the Authors used 80g/30° LLcone results (using d = 20 197 
mm) to deduce values of PL100; that is, the lower water content associated with a 100-fold greater su 198 
magnitude compared to that mobilised at LLcone (i.e., su,LL-FC). This is perfectly valid for establishing the 199 
strength-based PL100 parameter, termed the ‘plastic strength limit’ in Haigh et al. (2013). In other words, 200 
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with d = 20 mm at LLcone, the 80g/30 FC approach gives su,LL-FC  1.7 kPa (O’Kelly et al., 2018; Haigh 201 
et al., 2021), such that the water content at PL100 equates to an undrained strength of ~170 kPa. 202 
 203 
Based on their experimental data along with data published in studies by Feng (2000) and Hrubesova 204 
et al. (2017), the Authors then compare the FC-derived PL100 with the water content corresponding to 205 
the measured thread-rolling PL (i.e., wP). The Authors concluded by reporting that (page 7 of their 206 
paper) “the PL obtained from the fall cone and standard thread rolling tests showed very good 207 
agreement”. It should be noted that in their earlier analysis of these data, the Authors found that the 208 
ratio of water contents at the PL100 to wP ranged between 0.8 and 1.2. The same PL100/wP ratio range 209 
was reported in the paper by Feng (2000) from investigations of 26 fine-grained soils with LLCas ranging 210 
30–526%. Indeed, the experimental data in the PL100 against wP plot presented as Figure 8 of the 211 
Authors’ paper are very scattered, with values of PL100 and wP generally tending to diverge very quickly 212 
for PL100 >20%, such that the PL100 is not a good wP simulator. 213 
 214 
Two important points are raised here, as follows.  215 
 216 
 The PL cannot be obtained consistently from strength-based FC approaches (Barnes and O’Kelly, 217 

2011; Haigh et al., 2013; O’Kelly, 2013, 2019b, 2021b; O’Kelly et al., 2018; Sivakumar et al., 218 
2016); rather the PL is uniquely established using the standard thread-rolling method. 219 

 220 
 Any agreement for a given fine-grained soil found between the values of PL100 and wP (from thread-221 

rolling) is essentially coincidental. 222 
 223 
 224 
For instance, based on analysis of experimental su values deduced for thread-rolling PL (i.e., su,PL) data 225 
of 71 fine-grained soils, Haigh et al. (2013) found that the strength gain factor R* (= su,PL/su,LL-FC) 226 
associated with reducing water content over the traditionally-defined plastic range is generally 227 
significantly different from the 100-fold increase implicit in determining the PL100. From analysis 228 
presented in Haigh et al. (2013), the 71 investigated soils had a computed mean su,PL = 152 kPa (standard 229 
deviation of 89 kPa), and with su,LL-FC  1.7 kPa (80g/30 FC and d = 20 mm) (O’Kelly et al., 2018), 230 
this implies a mean R* value of 89.4, considering all 71 soils. It is also worth remembering that, with 231 
the R* value for a given fine-grained soil often derived from fitting of su data across its full plastic 232 
range, different R* values may be inferred for the same soil depending on the use of semi-logarithmic, 233 
double-logarithmic or multi-linear model approaches (Barnes, 2021; Vardanega and Haigh, 2014). 234 
 235 
Considering all the above, the Discussers do not recommend the adoption of empirical PL100 – wP 236 
correlations, such as Equation 13 in the Authors’ paper, or other such relationships reported elsewhere 237 
in the literature. 238 
 239 
However, the PL100 may be useful as an additional soil classification parameter, alongside the thread-240 
rolling PL and the flow index (cf. Haigh et al., 2013; O’Kelly et al., 2018; Sridharan et al., 1999; Stone 241 
and Phan, 1995; Vardanega et al., 2021; Soltani and O’Kelly, 2022). Haigh et al. (2013) and Kyambadde 242 
et al. (2014) explained that for correlations with soil mechanical properties, the PL100 or its associated 243 
‘plasticity’ index IP100 (= LLcone – PL100) would be a good choice, as both are linked implicitly to su 244 
changes arising from water content variation (see also O’Kelly, (2021b) for further discussion). 245 
 246 
It is also important to consider that with R* < 100 for many fine-grained soils (Haigh et al., 2013; 247 
O’Kelly, 2013; O’Kelly et al., 2020a), they can frequently occur at a brittle state near the PL100 water 248 
content (i.e., when PL100 < wP). In these cases, the test-specimen preparation can be challenging (Wroth 249 
and Wood, 1978; Stone and Phan, 1995; Feng, 2000), and the use of Hansbo’s (1957) FC-strength 250 
equation for soils in this non-ductile state is highly questionable, as explained in O’Kelly et al. (2018, 251 
2020a). To encompass a sufficiently wide su range whilst ensuring that the soil exists in the plastic range 252 
for water contents corresponding to the chosen R* value, O’Kelly et al. (2018) defined the PL25 253 
parameter (i.e., the lower water content mobilising an undrained strength of 25-fold greater than that at 254 
LLcone) as a good compromise replacement for PL100. In other words, with LLcone obtained using the 255 
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80g/30 FC for d = 20 mm, PL25 corresponding to su  42.5 kPa (see also O’Kelly, (2021b) for further 256 
discussion). 257 
 258 
 259 
 260 
3. Summary 261 
 262 
In the present global context, the PC and FC approaches are generally considered equally valid for LL 263 
determination. Systematic differences in their experimental values can occur for a given fine-grained 264 
soil since these approaches are mechanically different. Given that the FC approach has arguably 265 
superior repeatability and reproducibility, the Discussers contend that the LL should be consistently 266 
redefined in terms of the water content at which a universal FC (agreed cone characteristics needed) 267 
penetrates to a specified depth into the remoulded test specimen. 268 
 269 
In relating the LLCas and LLcone; with the average su,LL-PC/ value for soft-base PC devices being 0.47 270 
m2/s2 (Haigh, 2016), the Discussers argued that Mohajerani (1999)’s calibration line considering soft 271 
base LLCas < 149.5% (reported as Equation (5a) in the Authors’ paper) gives underestimations for 272 
deduced LLMoh values. 273 
 274 
From a soil classification perspective, the PL (i.e., plastic/brittle boundary) is uniquely determined using 275 
the codified thread-rolling approach, and any agreement between it and the strength-based PL100 is 276 
essentially coincidental, as evidenced by their 20% variation reported in the Authors’ paper and also 277 
for the Feng (2000) investigation. As such, empirical PL100 – wP correlations are not recommended in 278 
connection with soil classification work. 279 
 280 
 281 
 282 
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Abstract 31 
 32 
The Authors have presented an interesting paper (Hrubesova et al., 2020), which aims (in part) to 33 
validate the Moharjerani (1999) calibration approach for establishing the 80g/30° fall-cone penetration 34 
depth equating to the liquid limit by the Casagrande percussion-cup approach, determined according to 35 
the British Standard. In this paper, the Discussers present some clarifications on, and state various 36 
observations regarding, the approaches adopted in the Hrubesova et al. (2020) investigation, as well as 37 
the Moharjerani (1999) calibration approach employed therein.  The Discussers also present a 38 
description of some relevant literature not covered in the Authors’ paper (Hrubesova et al. 2020) aimed 39 
at making further clarifications on this important area of geotechnical practice. 40 
 41 
 42 
 43 
1. Introduction 44 
 45 
The Authors’ paper and this Discussion paper are concerned with consistency limits determinations, 46 
particularly for LL, of fine-grained soils (i.e., for the saturated, remoulded soil fraction passing the 425-47 
m sieve size). Since Atterberg (1911a, 1911b) described the consistency limits, there have been many 48 
modifications to the classification framework for fine-grained soils. These include the mechanisation 49 
of the percussion cup (PC) liquid limit (LL) test by Casagrande (1932) (i.e., LLCas,ASTM), and then later 50 
the refinement of the Casagrande plasticity chart (Casagrande, 1947; Howard, 1984), as well as the 51 
development of other plasticity-based systems for fine-grained soil classification (see the reviews of 52 
O’Kelly, (2021b) and Moreno-Maroto et al., (2021)). Although the PC LL approach remains in favour 53 
and in widespread use for many regions, the fall cone (FC) approach for LL determination (i.e., LLcone) 54 
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has been adopted as the preferred method in numerous parts of the world, appearing in the British 55 
Standard in the 1970s. 56 
 57 
Given the apparent limitations of the thread-rolling test for plastic limit (PL) determination, some 58 
research work has focused on means of soil classification not reliant on its measurement, including a 59 
recent proposal by Vardanega et al. (2021) employing the FC flow index and a redrawn plasticity chart, 60 
thereby allowing fine-grained soil classification to be achieved solely from FC data. 61 
 62 
Apart from fine-grained soils, research on the variation of LLcone with clay content for sand–low 63 
plasticity clay and fine gravel–kaolin mixtures is reported in the papers by Cabalar and Mustafa (2015) 64 
and Kumar and Muir Wood (1999), respectively, along with the link between saturated, remoulded, 65 
undrained shear strength (su) and water content (w) for different clay contents in the mixtures. Likos 66 
and Jaafar (2014) investigated the FC penetration depth (d) as a function of saturation level for four 67 
sandy soils, studied using an effective stress approach linking the soil–water retention and suction–68 
stress characteristic curves. Mahajan and Budhu (2009) discerned the viscous drag as the FC penetrates 69 
fine-grained soils with w > LL, and they showed that shear viscosities of clays at LI (liquidity index) of 70 
< 1.5 may be approximated from penetration time – d data. 71 
 72 
 73 
 74 
2. Consistency limits  fundamentals, their determination and use for soil classification 75 
 76 
2.1 For the liquid limit 77 
 78 
The mechanically different PC and FC approaches, which imply arbitrarily criteria-chosen low shear 79 
strengths at the LL, are generally considered in the present global context equally valid means for LL 80 
determination. As such, the Discussers do not agree with the Authors’ contentions, citing Mohajerani 81 
(1999), that (i) determining the LLcone based on the same condition (i.e., using 80g/30° FC with d = 20 82 
mm universally) for all soils was “incorrect”, and (ii) the assumption of d = 20 mm was correct only 83 
when LL ranged ~ 30–40%. 84 
 85 
The PC and FC approaches can produce systematically different LL values for a given fine-grained soil. 86 
Considerable efforts have been made to relate LLCas deduced using various PC apparatus variants 87 
specified in different codes with values of LLcone obtained using 80g/30 and 60g/60 cones for different 88 
values of d assigned at the LLcone condition (e.g., Moon and White, 1985; Özer, 2009; Claveau-Mallet 89 
et al., 2012; O’Kelly et al., 2018, 2020b; and Vardanega et al., 2018).  90 
 91 
Fundamentally, the water content corresponding to LLcone is concurrent with a small undrained shear 92 
strength value (i.e., su,LL-FC), whose magnitude is defined by the cone characteristics (mass, apex angle, 93 
surface roughness) and the value of d specified for the LLcone  condition (Hansbo, 1957; Haigh et al., 94 
2019; Koumoto and Houlsby, 2001; O’Kelly, 2018, 2021b; O’Kelly et al., 2018; 2020a). Whereas LLCas, 95 
being based on the dynamic failure of a cohesive slope, defines the water content at which the ratio of 96 
associated undrained shear strength (su,LL-PC) to soil bulk density () (this ratio termed as specific 97 
strength) has some fixed value (Haigh, 2012). In other words, the su,LL-PC magnitude progressively 98 
reduces with increasing value of LLCas owing to the decreasing soil density with increasing water content 99 
(Haigh, 2012; Youssef et al., 1965; O’Kelly, 2019a). While, as cited in the Authors’ paper; for Norman 100 
(1958)’s soft-base PC apparatus, the specific strength was demonstrated to be 0.787 m2/s2, subsequent 101 
work by Haigh (2016), based on a survey of PC devices in use worldwide, showed that those of soft 102 
base-material construction mobilised specific strengths at the LLCas ranging 0.30–0.66 m2/s2, with 103 
average value of 0.47 m2/s2.  104 
 105 
Compared to the PC approach, the FC LL determination generally is reported as having improved 106 
repeatability and reproducibility (Sherwood, 1970; Sherwood and Ryley, 1970; O’Kelly et al., 2018; 107 
Sivakumar et al., 2015; Vardanega et al., 2021), including Casagrande (1958) who argued that the PC 108 



3 
 

LL test should no longer be used. For instance, Sherwood (1970) showed that between laboratories, 109 
there was considerably less variability of measured LLcone compared to measured LLCas. Some confusion 110 
arguably ensued in subsequent geotechnical engineering literature when, in replacing the PC with the 111 
FC approach, proponents of the latter wished to retain the original ‘value’ of LLCas via FC-LL testing 112 
for use with the Casagrande plasticity chart and/or in deriving useful design parameter values from prior 113 
correlations based on LLCas data (O’Kelly et al., 2018). The Discussers contend that what should have 114 
been done was to consistently redefine the LL uniquely in terms of the water content at which a 115 
universal FC (agreed mass, apex angle and surface roughness features would be needed) penetrates to 116 
a specified depth into the remoulded test specimen (see O’Kelly et al., 2018). Considering the arbitrary 117 
nature of current LLCas and LLcone definitions, this proposal remains valid once the identified soil 118 
condition for the adopted FC LL method is relatively liquid. As such, it is not really the issue to relate 119 
the LLcone with LLCas, but rather to choose a consistent FC-criterion for LLcone determination and then to 120 
apply it appropriately for soil classification work. For instance, in proposing their LLcone – PI (plasticity 121 
index) classification chart, with PI derived from the 80g/30 FC flow index (defined in Sridharan et al., 122 
1999) and for LLcone obtained at d = 20 mm, Vardanega et al. (2021) applied appropriate adjustments to 123 
reposition the A-line and U-line of the Casagrande plasticity chart. 124 
 125 
As elaborated above, the PC and FC approaches, with their variants specified in different codes (e.g., 126 
AS, 2009; ASTM, 2017; BSI, 1990), can produce systematically different LL values for a given fine-127 
grained soil. As a demonstration, in Figure 1 of their paper, the Authors presented various correlations 128 
in the plot of the British Standard soft-base PC LL (i.e., LLCas,BS) against LLcone (80g/30; d = 20 mm), 129 
including the correlation of Claveau-Mallet et al. (2012). Claveau-Mallet et al. (2012) deduced their 130 
correlation based on regression analysis of combined data from six earlier studies, in which other 131 
researchers had compared either the 60g/60 or 80g/30 FCs with either hard base or soft base PCs. 132 
Such an analysis involving a mixture of test device types is not consistent with the particular case in 133 
point, such that its inclusion in the Authors’ Figure 1 may cause ambiguity for the reader. 134 
 135 
As stated by the Authors, following the European Standard EN ISO 17892-12 (EN, 2018) and 136 
considering intermediate to high plasticity fine-grained materials, the LLCas,BS is found to give slightly 137 
greater LL values compared to the 80g/30 FC approach. Other authors previously highlighted the 138 
problem of soil classification to EN (2018) (e.g., Di Matteo, 2012; Di Matteo et al., 2016; O’Kelly et 139 
al., 2018, 2020b). As discussed in Di Matteo (2012), according to Sampson and Netterberg (1985), 140 
Wasti and Bezirci (1986), Leroeuil and Le Bihan (1996) and Sridharan and Prakash (2000), for materials 141 
with LL > 60–70%, the PC approach gives much greater LL values than the FC approach. This was also 142 
shown in the correlations from O’Kelly et al. (2018). Consequently, using LLcone values in 143 
Eurocode/CEN soil classification frameworks may impact on the use of soils in geotechnical practice 144 
and this may increase financial costs for disposal and/or improvement of soil (Di Matteo, 2012).  145 
 146 
 147 
 148 
2.2 Comments on Moharjerani (1999) calibration approach  149 
 150 
Figure 1 of the present paper plots alongside data of Mohajerani (1999) various contours relating to the 151 
specific strength range of su,LL-PC/ = 0.30–0.66 m2/s2 (average value of 0.47 m2/s2), which were deduced 152 
from analysis presented in Haigh (2016) for soft-base PC LL devices in use worldwide. The Australian 153 
Standard AS 1289.3.1.1–2009 (AS, 2009) specifies use of soft-base PC apparatus, presumably implying 154 
that Mohajerani (1999)’s study utilised one. Referring to Figure 1, Mohajerani’s own data are consistent 155 
with using a PC device mobilising an average specific strength of 0.47 m2/s2. Note the other data, after 156 
Sherwood and Ryley (1970), plotted in this figure are within the range of expected values, albeit towards 157 
the higher end of the su,LL-PC/ range, because the PC device they employed was probably at the upper 158 
(harder) end of the range observed for soft-base devices (Haigh, 2016). 159 
 160 
Mohajerani (1999)’s best-fit trendline is biased by the fact that all data at high LL were obtained using 161 
his soft base PC device, whereas data at lower LL were probably obtained from a different sample of 162 
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apparatus. Mohajerani’s trendline fits the dataset that he has chosen to use, and can be demonstrated to 163 
be consistent with the mechanics proposed in Haigh (2012). However, the trendlines for fixed values 164 
of su,LL-PC/, as plotted in Figure 1, are more likely to be consistent with datasets from single sets of PC 165 
apparatus. This shows that large errors that may be associated with employing different sets of 166 
apparatus, even when these are nominally identical, as described by Haigh (2016). In other words, the 167 
Mohajerani (1999) semi-logarithmic d – LLCas calibration line for LLCas < 149.5%, reported as Equation 168 
(5a) in the Authors’ paper, strongly diverges from the soft-base Casagrande average contour value of 169 
su,LL-PC/ = 0.47 m2/s2 for reducing water content at LLCas. Consequently, it is argued that deduced LLMoh 170 
values (obtained as the intersection of Equation (5a) and the 80g/30° d – w correlation for a particular 171 
soil (in semi-logarithmic representation)) are probably underestimations. 172 
 173 
 174 

 175 
 176 
Figure 1. Comparison of specific strength at LLCas contours and Mohajerani (1999)’s trendline and data. 177 
 178 
 179 
 180 
2.3 For the plastic limit 181 
 182 
From a soil classification perspective, the PL (i.e., plastic/brittle boundary) condition is a soil-specific 183 
criterion that cannot be assigned (related) to a definitive undrained shear strength value (or FC 184 
penetration depth) (cf. Haigh et al., 2013; O’Kelly, 2013, 2019b, 2021a, 2021b; O’Kelly et al., 2018; 185 
Sivakumar et al., 2016). The PL condition is established using the thread-rolling method, originally 186 
described by Atterberg (1911a, 1911b), being standardised worldwide (e.g., AS, 2009; ASTM, 2017; 187 
BSI, 1990; EN, 2018), with the test involving hand rolling of a soil thread on a glass plate until it 188 
crumbles at a nominal diameter (e.g., 3 mm). The thread failure is caused by air entry or cavitation 189 
within the soil during the rolling action (Haigh et al., 2013). Based on the initial work from Bobrowski 190 
and Griekspoor (1992), the alternative device-rolling technique described in ASTM (2017) and 191 
AASHTO (2020), which uses the same fundamental principles as the hand-rolling method, produces 192 
similar values of PL (Soltani and O’Kelly, 2021). Soltani and O’Kelly (2021) found that compared to 193 
hand rolling, the alternative PL rolling-device method produced the same soil classifications (based on 194 
the Casagrande plasticity chart) in 82 cases out of 84 diverse fine-grained soils examined. 195 
 196 
In their paper for soils with LL close to 20–50%, the Authors used 80g/30° LLcone results (using d = 20 197 
mm) to deduce values of PL100; that is, the lower water content associated with a 100-fold greater su 198 
magnitude compared to that mobilised at LLcone (i.e., su,LL-FC). This is perfectly valid for establishing the 199 
strength-based PL100 parameter, termed the ‘plastic strength limit’ in Haigh et al. (2013). In other words, 200 
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with d = 20 mm at LLcone, the 80g/30 FC approach gives su,LL-FC  1.7 kPa (O’Kelly et al., 2018; Haigh 201 
et al., 2021), such that the water content at PL100 equates to an undrained strength of ~170 kPa. 202 
 203 
Based on their experimental data along with data published in studies by Feng (2000) and Hrubesova 204 
et al. (2017), the Authors then compare the FC-derived PL100 with the water content corresponding to 205 
the measured thread-rolling PL (i.e., wP). The Authors concluded by reporting that (page 7 of their 206 
paper) “the PL obtained from the fall cone and standard thread rolling tests showed very good 207 
agreement”. It should be noted that in their earlier analysis of these data, the Authors found that the 208 
ratio of water contents at the PL100 to wP ranged between 0.8 and 1.2. The same PL100/wP ratio range 209 
was reported in the paper by Feng (2000) from investigations of 26 fine-grained soils with LLCas ranging 210 
30–526%. Indeed, the experimental data in the PL100 against wP plot presented as Figure 8 of the 211 
Authors’ paper are very scattered, with values of PL100 and wP generally tending to diverge very quickly 212 
for PL100 >20%, such that the PL100 is not a good wP simulator. 213 
 214 
Two important points are raised here, as follows.  215 
 216 
 The PL cannot be obtained consistently from strength-based FC approaches (Barnes and O’Kelly, 217 

2011; Haigh et al., 2013; O’Kelly, 2013, 2019b, 2021b; O’Kelly et al., 2018; Sivakumar et al., 218 
2016); rather the PL is uniquely established using the standard thread-rolling method. 219 

 220 
 Any agreement for a given fine-grained soil found between the values of PL100 and wP (from thread-221 

rolling) is essentially coincidental. 222 
 223 
 224 
For instance, based on analysis of experimental su values deduced for thread-rolling PL (i.e., su,PL) data 225 
of 71 fine-grained soils, Haigh et al. (2013) found that the strength gain factor R* (= su,PL/su,LL-FC) 226 
associated with reducing water content over the traditionally-defined plastic range is generally 227 
significantly different from the 100-fold increase implicit in determining the PL100. From analysis 228 
presented in Haigh et al. (2013), the 71 investigated soils had a computed mean su,PL = 152 kPa (standard 229 
deviation of 89 kPa), and with su,LL-FC  1.7 kPa (80g/30 FC and d = 20 mm) (O’Kelly et al., 2018), 230 
this implies a mean R* value of 89.4, considering all 71 soils. It is also worth remembering that, with 231 
the R* value for a given fine-grained soil often derived from fitting of su data across its full plastic 232 
range, different R* values may be inferred for the same soil depending on the use of semi-logarithmic, 233 
double-logarithmic or multi-linear model approaches (Barnes, 2021; Vardanega and Haigh, 2014). 234 
 235 
Considering all the above, the Discussers do not recommend the adoption of empirical PL100 – wP 236 
correlations, such as Equation 13 in the Authors’ paper, or other such relationships reported elsewhere 237 
in the literature. 238 
 239 
However, the PL100 may be useful as an additional soil classification parameter, alongside the thread-240 
rolling PL and the flow index (cf. Haigh et al., 2013; O’Kelly et al., 2018; Sridharan et al., 1999; Stone 241 
and Phan, 1995; Vardanega et al., 2021; Soltani and O’Kelly, 2022). Haigh et al. (2013) and Kyambadde 242 
et al. (2014) explained that for correlations with soil mechanical properties, the PL100 or its associated 243 
‘plasticity’ index IP100 (= LLcone – PL100) would be a good choice, as both are linked implicitly to su 244 
changes arising from water content variation (see also O’Kelly, (2021b) for further discussion). 245 
 246 
It is also important to consider that with R* < 100 for many fine-grained soils (Haigh et al., 2013; 247 
O’Kelly, 2013; O’Kelly et al., 2020a), they can frequently occur at a brittle state near the PL100 water 248 
content (i.e., when PL100 < wP). In these cases, the test-specimen preparation can be challenging (Wroth 249 
and Wood, 1978; Stone and Phan, 1995; Feng, 2000), and the use of Hansbo’s (1957) FC-strength 250 
equation for soils in this non-ductile state is highly questionable, as explained in O’Kelly et al. (2018, 251 
2020a). To encompass a sufficiently wide su range whilst ensuring that the soil exists in the plastic range 252 
for water contents corresponding to the chosen R* value, O’Kelly et al. (2018) defined the PL25 253 
parameter (i.e., the lower water content mobilising an undrained strength of 25-fold greater than that at 254 



6 
 

LLcone) as a good compromise replacement for PL100. In other words, with LLcone obtained using the 255 
80g/30 FC for d = 20 mm, PL25 corresponding to su  42.5 kPa (see also O’Kelly, (2021b) for further 256 
discussion). 257 
 258 
 259 
 260 
3. Summary 261 
 262 
In the present global context, the PC and FC approaches are generally considered equally valid for LL 263 
determination. Systematic differences in their experimental values can occur for a given fine-grained 264 
soil since these approaches are mechanically different. Given that the FC approach has arguably 265 
superior repeatability and reproducibility, the Discussers contend that the LL should be consistently 266 
redefined in terms of the water content at which a universal FC (agreed cone characteristics needed) 267 
penetrates to a specified depth into the remoulded test specimen. 268 
 269 
In relating the LLCas and LLcone; with the average su,LL-PC/ value for soft-base PC devices being 0.47 270 
m2/s2 (Haigh, 2016), the Discussers argued that Mohajerani (1999)’s calibration line considering soft 271 
base LLCas < 149.5% (reported as Equation (5a) in the Authors’ paper) gives underestimations for 272 
deduced LLMoh values. 273 
 274 
From a soil classification perspective, the PL (i.e., plastic/brittle boundary) is uniquely determined using 275 
the codified thread-rolling approach, and any agreement between it and the strength-based PL100 is 276 
essentially coincidental, as evidenced by their 20% variation reported in the Authors’ paper and also 277 
for the Feng (2000) investigation. As such, empirical PL100 – wP correlations are not recommended in 278 
connection with soil classification work. 279 
 280 
 281 
 282 
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