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Modelling the influence of sensory dynamics on linear and
nonlinear driver steering control
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ABSTRACT
A recent review of the literature has indicated that sensory dynamics
play an important role in the driver–vehicle steering task, motivating
the design of a new driver model incorporating human sensory sys-
tems. This paper presents a full derivation of the linear driver model
developed in previous work, and extends the model to control a
vehicle with nonlinear tyres. Various nonlinear controllers and state
estimators are compared with different approximations of the true
system dynamics. The model simulation time is found to increase
significantly with the complexity of the controller and state estima-
tor. In general the more complex controllers perform best, although
with certain vehicle and tyremodels linearised controllers perform as
well as a full nonlinear optimisation. Various extended Kalman filters
give similar results, although the driver’s sensory dynamics reduce
control performance compared with full state feedback. The new
model could be used to design vehicle systems which interact more
naturally and safely with a human driver.
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1. Introduction

Automotive engineers are increasingly developing semi-autonomous systems which inter-
act with the driver to improve comfort, safety and driveability. However, current under-
standing of the role of the human driver in the vehicle control task is limited, so it is difficult
to predict how drivers will respond to vehicle systems without extensive testing. Previous
research has focussed on developing empirical driver models for specific circumstances,
which are generally limited in their scope and predictive ability [1]. More recently, optimal
control theory has been used to represent the learned behaviours of an experienced driver
[2,3]; however, physiological limitations faced by all human drivers have been ignored.

A substantial amount of research has been carried out in the fields of biology and neu-
roscience to understand human perception, cognition and action in various control tasks,
reviewed in detail in [4]. In many sensorimotor tasks, humans develop an internal model
of their surroundings [5,6]. This allows measurements from different senses to be inte-
grated in a statistically optimal fashion [7–10] and used to plan an appropriate control
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action. Themain sensory systems used by drivers are the visual [11–13], vestibular [14–17]
and somatosensory systems [18–21]. Cognitive responses to the signals measured by these
systems are delayed due to latencies in sensor responses [22–24], nerve conduction [25]
and neural processing [26]. Human sensory perception is also limited by thresholds below
which sensory measurements are not perceived [27–29] and the ‘just noticeable differ-
ence’ between two similar sensory stimuli which increases linearly with stimulus amplitude
[30,31]. Soyka et al. [32,33] showed that sensory thresholds can be explained by con-
sidering the signal amplitude required to exceed the level of random background noise,
caused by sensory limitations and spontaneous neuron firing in the brain. Studies have
shown that thresholds are larger during an active control task involving multiple stimuli
compared with the passive, unimodal measurements presented in the literature [34–36],
therefore sensory noise characteristics for active tasks cannot be inferred directly from
passive threshold measurements. Recent studies in the aerospace industry have shown
how system identification methods can be used to gather information about pilots’ use
of sensory information during an active control task [37–39].

A new linear model of driver steering control was introduced in [40], incorporating
models of the driver’s sensory dynamics and limitations. In [41] the model was used to
explain measured pilot control behaviour from [38], and in [42] the model was updated to
account for potential sensory conflicts between physical and visual motion when experi-
ments are performed in a driving simulator. Experiments were carried out in a simulator
with human drivers, adjusting the physical motion so that the separate roles of the driver’s
visual and vestibular systems could be studied. A parametric identification procedure was
used to find optimal model parameter values, resulting in a good fit to measured steering
responses. The derivation of the linear driver model developed in [40,42] is presented in
Section 2.

A linear model is a reasonable representation of normal driving conditions, however, in
more extreme manoeuvres the vehicle may operate near the friction limit of the tyres and
the operating point of the vehicle may vary rapidly. It is therefore necessary to develop
a model which can describe a driver’s control of nonlinear vehicle dynamics. Control
of nonlinear vehicles has previously been motivated by finding the minimum lap time
for a racing car [43–45]. Nonlinear control algorithms are also increasingly being devel-
oped for autonomous or semi-autonomous active steering systems [46–48].However, these
applications involve finding an optimal control performance rather than matching the
behaviour of a human driver. Various studies have attempted to model the nonlinear con-
trol behaviour of a human driver; however, they have neglected the effects of sensory
dynamics [49–51]. The linear driver model is therefore extended in Section 3 to give a
more realistic nonlinear driver model that takes account of the limitations of a human
driver, and parameter values for the new model are given in Section 4.

Due to the complexity of optimal control and state estimation for a nonlinear system,
a variety of approaches have previously been suggested involving different simplifications
and assumptions [43–52]. The aim of the work presented in this paper is to implement
and compare thesemethods, and evaluate their effectiveness formodelling human steering
control behaviour. Themost appropriate combinations will be tested against the behaviour
of human drivers in future work. Simulations carried out using the model to compare
different nonlinear control and state estimation methods are described in Section 5. The
results of these simulations are presented in Section 6 and discussed in Section 7. Themain
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conclusions are summarised in Section 8. This work extends preliminary results presented
in [53].

2. Linear driver model

Vehicle steering control can be represented as a combined target-following and
disturbance-rejection task [54], as shown in Figure 1. The driver must follow a target path
of curvature fκ while reacting to disturbances fv and fω on the lateral and angular velocities
of the vehicle. The target-following component is generally a feedforward control task, as
the driver can ‘preview’ the upcoming target path in order to plan future steering control
inputs. However, in previous work experiments were carried out where the driver could
not preview the upcoming target, allowing delays in the driver’s visual system to be mea-
sured [40,42]. The disturbance-rejection component is a feedback task, as the driver cannot
perceive disturbances until after they have occurred.

The structure of the new driver-vehicle control model is shown in Figure 2. The model
uses optimal control theory to represent a driver who has learned to steer as well as possible
on average based on the information available to them. It consists of three main com-
ponents: a plant, a controller and a state estimator. The dynamics of the vehicle and the
driver are described by the plant, which is perturbed by target and disturbance white noise
representations wκ , wv and wω, and process noise w. The plant equations are derived in
Section 2.1. The plant outputs y represent the outputs of the driver’s sensory systems, and
these are perturbed by measurement noise v. A state estimator calculates an estimate x̂ of
the plant states, using an internal model of the plant to reduce the uncertainty in the noisy
sensory measurements. The state estimator is described in Section 2.2. Finally, a controller
uses this state estimate and the internal model to calculate an optimal plant input δ̂, as
discussed in Section 2.3.

2.1. Plant

The plant describes the open-loop dynamics of the driver–vehicle system. In addition, the
driver has an internal model of the plant which is used by the controller and state esti-
mator [5,6]. A block diagram of the plant is shown in Figure 3. The plant is implemented
as a state-space system, in discrete time with sample period Ts so that delays can be mod-
elled explicitly. All continuous transfer functionsH(s) are converted to discrete state-space
matrices (A, B, C, D) with states x. Discretisation is carried out using a zero-order hold

Figure 1. Representation of steering control task in new driver model, adapted from [40]
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Figure 2. Overall structure of new driver model.

Figure 3. Block diagram of plant describing the dynamics controlled by the driver, adapted from [42].

method. In some cases this is approximated in the form A = I + TsAc, B = TsBc, where
Ac and Bc are continuous state-space matrices.

The driver’s neuromuscular dynamicsHnm(s) shape the plant input δ̂ (plus process noise
w) to give the steering angle δ which is included as a plant state:

xnm(k + 1) = Anmxnm(k)+ Bnm(δ̂(k)+ w(k)),

δ(k + 1) = Cnmxnm(k)+ Dnm(δ̂(k)+ w(k)).
(1)

Target and disturbance forcing function filtersHf κ(s),Hf v(s) andHfω(s) are written in
discrete state-space form. The target curvature fκ is given by

xf κ(k + 1) = Af κxf κ(k)+ Bf κwκ(k),

fκ(k) = Cf κxf κ(k)+ Df κwκ(k),
(2)

and the lateral velocity disturbance fv and angular velocity disturbance fω are found simi-
larly, wherewκ ,wv andwω are Gaussian white noise inputs with RMSmagnitudesWκ ,Wv

andWω.
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The vehicle HV(s) takes as inputs the steering angle δ and the disturbances fv and fω,
and its outputs are the vehicle lateral velocity v and angular velocity ω:

xV(k + 1) = AVxV(k)+ BV{δ(k) fv(k) fω(k)}T,
{v(k) ω(k)}T = CVxV(k)+ DV{δ(k) fv(k) fω(k)}T,

(3)

which expands to

xV(k + 1) = AVxV(k)+ BV(:,1)δ(k)+ BV(:,2)Cf vxf v(k)

+ BV(:,2)Df vwv(k)+ BV(:,3)Cfωxfω(k)+ BV(:,3)Dfωwω(k),

v(k) = CV(1, :)xV(k)+ DV(1,1)δ(k)+ DV(1,2)Cf vxf v(k)

+ DV(1, 2)Df vwv(k)+ DV(1,3)Cfωxfω(k)+ DV(1,3)Dfωwω(k),

ω(k) = CV(2,:)xV(k)+ DV(2,1)δ(k)+ DV(2,2)Cf vxf v(k)

+ DV(2,2)Df vwv(k)+ DV(2,3)Cfωxfω(k)+ DV(2,3)Dfωwω(k),

(4)

where M(i,j) indicates the ith row and the jth column of matrix M, and ‘:’ represents the
entire row or column.

The plant outputs are subjected to visual and vestibular delays τvi and τve, consisting of
Nvi = τvi/Ts andNve = τve/Ts time steps. The number of states required can be reduced by
applying the delays to v andω instead, then calculating the plant outputs from these delayed
values. Delayed values of v are found using a shift register of length Nm = max(Nvi,Nve):⎧⎪⎨
⎪⎩

v(k)
...

v(k − Nm + 1)

⎫⎪⎬
⎪⎭ =
[

0[1,Nm−1] 0
I[Nm−1,Nm−1] 0[Nm−1,1]

]⎧⎪⎨
⎪⎩
v(k − 1)

...
v(k − Nm)

⎫⎪⎬
⎪⎭+
[
1
0

]
v(k),

xτv(k + 1) = Aτxτv(k)+ Bτ v(k)

= Aτxτv(k)+ BτCV(1,:)xV(k)+ BτDV(1,1)δ(k)

+ BτDV(1,2)Cf vxf v(k)+ BτDV(1,2)Df vwv(k)

+ BτDV(1,3)Cfωxfω(k)+ BτDV(1,3)Dfωwω(k), (5)

where I is the identity matrix, 0 is a matrix of zeros, andM[i,j] is a matrix with i rows and j
columns. Delayed values of ω are found similarly:

xτω(k + 1) = Aτxτω(k)+ BτCV(2,:)xV(k)+ BτDV(2,1)δ(k)

+ BτDV(2,2)Cf vxf v(k)+ BτDV(2,2)Df vwv(k)

+ BτDV(2,3)Cfωxfω(k)+ BτDV(2,3)Dfωwω(k) (6)

The visual system measurements depend on ω, delayed by τvi. This is given by

ω(k − Nvi) = [0[1,Nvi−1] 1 0[1,Nm−Nvi]]xτω(k) = Cτvixτω(k). (7)

Similarly, the semi-circular canals (SCCs) take measurements of ω, delayed by τve:

ω(k − Nve) = [0[1,Nve−1] 1 0[1,Nm−Nve]]xτω(k) = Cτωxτω(k) (8)
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Figure 4. Visual systemmeasurements: Path-following error e and previewed road angles φ.

The otoliths measure the vehicle’s lateral acceleration, which is found from:

a = dv
dt

+ Uω (9)

In discrete time, and delayed by τve, this becomes

a(k − Nve) = 1
Ts
v(k − Nve + 1)− 1

Ts
v(k − Nve)+ Uω(k − Nve)

=
[
0[1,Nve−2]

1
Ts

−1
Ts

0[1,Nm−Nve]

]
xτv(k)+ UCτωxτω(k)

= Cτvxτv(k)+ UCτωxτω(k). (10)

The visual system of the driver measures the path-following error e and previews
upcoming target angles φ = [φ0(k) . . . φNp(k)] relative to the vehicle, as shown in
Figure 4. This gives a prediction horizon of Np = Tp/Ts time steps. The target angles are
stored as states in a shift register, given by

φn(k + 1) = φ(n+1)(k)− Tsω(k) (11)

with the most distant previewed angle φNp given by

φNp(k + 1) = φNp(k)− Tsω(k)+ UTsfκ(k + Np), (12)

In matrix form, and delayed by τvi:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̃f κ(k + 1)

φNp(k − Nvi + 1)
...

φ0(k − Nvi + 1)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎣

Af κ 0 0 0

UTsCf κ 1 0 0

0 1 0 0
0 0 I 0

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x̃f κ(k)

φNp(k − Nvi)

...
φ0(k − Nvi)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎣

Bf κ

UTsDf κ

0
0

⎤
⎥⎥⎥⎦ w̃κ(k)
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+
[

0
−Ts1[Np+1, 1]

]
ω(k − Nvi),

φvi(k) =

⎧⎪⎨
⎪⎩
φNp(k − Nvi)

...
φ0(k − Nvi)

⎫⎪⎬
⎪⎭ = [0 I[Np+1,Np+1]]xφ(k), (13)

where w̃κ(k) = wκ(k + Np − Nvi), x̃f κ(k) = xf κ(k + Np − Nvi) and 1 is a matrix of ones.
This can be written more concisely as

xφ(k + 1) = Aφxφ(k)+ Bφw̃κ(k)+ BφωCτvixτω(k),

φvi(k) = Cφxφ(k).
(14)

Assuming φ0 and fκ are small, from the geometry in Figure 4 the path-following error
e can be found from:

e(k + 1) = e(k)+ UTsφ0(k)− Tsv(k), (15)

which when delayed by τvi becomes

evi(k + 1) = e(k − Nvi + 1) = e(k − Nvi)+ UTsφ0(k − Nvi)− Tsv(k − Nvi)

= e(k − Nvi)+ UTs[0 1]xφ(k)− TsCτvixτv(k). (16)

The transfer function between the delayed angular velocity and the angular velocityωve
perceived by the SCCs is Hω(s) = HSCC(s)Hmω(s), where HSCC(s) is a transfer function
representing the dynamics of the SCCs andHmω(s) is the scaling or filtering applied to the
yaw motion. The perceived angular velocity is then found from:

xω(k + 1) = Aωxω(k)+ Bωω(k − Nve) = Aωxω(k)+ BωCτωxτω(k),

ωve(k) = Cωxω(k)+ Dωω(k − Nve) = Cωxω(k)+ DωCτωxτω(k).
(17)

The transfer function between the delayed lateral acceleration and the acceleration ave
perceived by the otoliths is Ha(s) = Hoto(s)Hma(s), where Hoto(s) is a transfer function
representing the dynamics of the otoliths and Hma(s) is the scaling or filtering applied to
the lateral acceleration. The perceived lateral acceleration is then found from:

xa(k + 1) = Aaxa(k)+ Baa(k − Nve) = Aaxa(k)+ BaCτvxτv(k)+ UBaCτωxτω(k),

ave(k) = Caxa(k)+ Daa(k − Nve) = Caxa(k)+ DaCτvxτv(k)+ UDaCτωxτω(k).
(18)

Combining all these equations gives the complete plant:

x(k + 1) = Ax(k)+ Bδ̂(k)+ [B Gv Gω Gκ ]{w(k) wv(k) wω(k) w̃κ(k)}T,
y(k) = Cx(k),

(19)

where

x = {xV δ xnm xf v xfω xτv xτω xφ xa xω evi
}T ,
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AV BV(:,1) 0 BV(:,2)Cf v BV(:,3)Cfω 0 0 0 0 0 0
0 0 Cnm 0 0 0 0 0 0 0 0
0 0 Anm 0 0 0 0 0 0 0 0
0 0 0 Af v 0 0 0 0 0 0 0
0 0 0 0 Afω 0 0 0 0 0 0

BτCV(1,:) BτDV(1,1) 0 BτDV(1,2)Cf v BτDV(1,3)Cfω Aτ 0 0 0 0 0
BτCV(2,:) BτDV(2,1) 0 BτDV(2,2)Cf v BτDV(2,3)Cfω 0 Aτ 0 0 0 0

0 0 0 0 0 0 BφωCτvi Aφ 0 0 0
0 0 0 0 0 BaCτv UBaCτω 0 Aa 0 0
0 0 0 0 0 0 BωCτω 0 0 Aω 0
0 0 0 0 0 −TsCτvi 0 [0 UTs] 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B = [0 Dnm Bnm 0 0 0 0 0 0 0 0
]T ,

Gv = [BV(:,2)Df v 0 0 Bf v 0 BτDV(1,2)Df v BτDV(2,2)Df v 0 0 0 0
]T ,

Gω = [BV(:,3)Dfω 0 0 0 Bfω BτDV(1,3)Dfω BτDV(2,3)Dfω 0 0 0 0
]T ,

Gκ = [0 0 0 0 0 0 0 Bφ 0 0 0
]T ,

y = {φvi evi ave ωve
}T ,

C =

⎡
⎢⎢⎣
0 0 0 0 0 0 0 Cφ 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 DaCτv UDaCτω 0 Ca 0 0
0 0 0 0 0 0 DωCτω 0 0 Cω 0

⎤
⎥⎥⎦ . (20)

The small angle assumptions made in this derivation allow a linear simulation to be run
even with large overall angles in the target path and the vehicle dynamics. However, the
Cartesian coordinates of the target path and vehicle must be calculated. For the target, the
x and y components xt and yt are given by

xt(k + 1) = xt(k)+ UTs cos

( k∑
i=0

UTsfκ(i)

)
,

yt(k + 1) = yt(k)+ UTs sin

( k∑
i=0

UTsfκ(i)

)
.

(21)

The position of the vehicle is linearised about the target path as shown in Figure 4
[43], and is given by finding the point located e away from the target coordinate in a
perpendicular direction:

x(k) = xt(k)+ e(k) sin

( k∑
i=0

UTsfκ(i)

)
,

y(k) = yt(k)− e(k) cos

( k∑
i=0

UTsfκ(i)

)
.

(22)

2.2. State estimator

The controller requires the full plant state vector x in order to calculate the optimal plant
input. However, the driver does not have access to all the states, and only measures the
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outputs y of the plant perturbed bymeasurement noise v. An estimate x̂ of the plant states is
obtained using aKalmanfilter [10], based on an internalmodel of the plant, ameasurement
of the noise-free plant input δ̂ and noisy measurements (y+v) of the outputs. The noise
covariance matrices QKF and RKF are given by

QKF = diag
([
W2 W2

v W2
ω W2

κ

])
,

RKF = diag
([
V2
φ1[1,Np+1] V2

e V2
a V2

ω

])
,

(23)

where W2 is the variance of the process noise w and V2
φ , V

2
e , V2

a , and V2
ω are the vari-

ances of the measurement noise added to the plant outputs φvi, evi, ave, and ωve. In some
implementations, QKF is replaced by the covariance of the process noise on the states,
given by

Q̂KF = [B Gv Gω Gκ ]QKF[B Gv Gω Gκ ]T (24)

The state estimate is given by

x̂(k + 1) = Ax̂(k)+ Bδ̂(k)+ L(y(k)+ v(k)− Cx̂(k)), (25)

where

L = APCT(CPCT + RKF)
−1 (26)

and P solves the discrete Riccati equation:

ATPA − P − ATPC(CTPC + RKF)
−1CTPA + Q̂KF = 0. (27)

This gives a linear time-invariant Kalman filter HKF(s), which can be calculated using
the Matlab function kalman. The state estimates x̂ can then be found from:

x̂(s) = HKF(s)
{

δ̂(s)
y(s)+ v(s)

}
. (28)

2.3. Controller

An optimal controller is used to minimise a cost function weighting the path-following
error against steering effort. There are two main implementations of optimal control, a
linear quadratic regulator (LQR) and model predictive control (MPC), which have been
found to be identical when used under the same conditions [3]. For the linear plant, an
LQR controller was used as it can find the optimum control input over an infinite control
horizon, assuming white noise inputs beyond the previewed target path.

The LQR method involves calculating an optimal gain vector KLQ, which acts on the
plant states to give an optimal plant input δ̂ which minimises a cost function J. Additive
white noise does not affect the optimal solution, so the white noise inputs w, wκ , wv and
wω can be ignored. The cost function incorporates costs on the tracking error evi and the
plant input δ̂, weighted by qe and qδ :

J =
∞∑
k=0

{qeevi(k)2 + qδδ̂(k)2}
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=
∞∑
k=0

{x(k)TQLQx(k)+ δ̂(k)TRLQδ̂(k)}, (29)

where

QLQ = diag
([
0 · · · 0 qe

])
, RLQ = qδ . (30)

The optimal plant input is [3]:

δ̂(k) = −KLQx(k), (31)

where

KLQ = (BTSB + RLQ)
−1BTSA (32)

and S solves the discrete Riccati equation:

ATSA − S − ATSB(BTSB + RLQ)
−1BTSA + QLQ = 0. (33)

The optimal gain KLQ can be found in this way using the Matlab function dlqr.

3. Nonlinear driver model

In this section the linear driver model derived in Section 2 is extended to control a con-
stant speed vehicle with nonlinear tyres. Nonlinear optimal control and state estimation
are much more difficult than their linear equivalents. However, it is possible to simplify
the task by approximating the system dynamics. There are various ways in which this can
be done, therefore, several state estimators and controllers are implemented. The perfor-
mance of the different methods is compared in Section 6 using simulations described in
Section 5.

3.1. Plant

The only difference between the linear and nonlinear plant is a nonlinear vehicle. The
disturbances are added using the linear relationship in Equation (3); however, the depen-
dence on the steering angle and previous states is nonlinear. The vehicle states (v and ω)
are therefore found from:{

v(k + 1)
ω(k + 1)

}
= AV

({
v(k)
ω(k)

}
, δ(k)
)

+ BV(:,2)Cf vxf v + BV(:,3)Cfωxfω, (34)

where AV is a nonlinear function. The remaining states are calculated as for the linear
model using Equation (19), and the same linear output equation is used.

In order to reduce the computational load of the nonlinear controllers, a reduced plant
is defined which includes only the states required by the controller. It should be noted
that the state estimator still requires the complete plant. The controller minimises a cost
function weighting δ̂ against e, therefore any parts of the plant which do not feed into e
in Figure 3 are ignored. This includes the motion filters, sensory dynamics and delays.
Furthermore, using an MPC formulation allows the target path to be implemented as a
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reference without including the preview shift register in the reduced plant. The driver’s
visual system previews (Np + 1) path angles; however, due to the visual delay Nvi of the
measured angles are already behind the current position of the vehicle. Therefore, the con-
trollers described in Section 3.3 evaluate the reduced plant equations from the current time
step k to (k + Np − Nvi + 1).

Equation (11) can be adapted to find future values of φ0 from the measured values of
φn:

φ0(k + n) = φn(k)− ψ̂(k + n) (35)

where ψ̂ is the yaw angle of the vehicle, referenced to the current yaw angle so that
ψ̂(k) = 0. It can be found from:

ψ̂(k + n + 1) = ψ̂(k + n)+ Tsω(k + n)

= ψ̂(k + n)+ TsCV(2,:)xV(k + n)+ TsDV(2,1)δ(k + n)

+ TsDV(2,2)Cf vxf v(k + n)+ TsDV(2,2)Df vwv(k + n)

+ TsDV(2,3)Cfωxfω(k + n)+ TsDV(2,3)Dfωwω(k + n). (36)

Equation (15) can then be rewritten to separate the predicted e over the prediction
horizon into a controllable part ŷ and a reference ŷref :

e(k + n + 1) = e(k + n)+ UTsφ0(k + n)− Tsv(k + n)

= e(k + n)+ UTsφn(k)− UTsψ̂(k + n)− Tsv(k + n)

= ŷref (k + n + 1)− ŷ(k + n + 1). (37)

The reference trajectory is found from:

ŷref (k + n) =
n−1∑
i=0
(UTsφi(k)) (38)

and the controllable part is

ŷ(k + n + 1) = ŷ(k + n)+ Tsv(k + n)+ UTsψ(k + n)

= ŷ(k + n)+ TsCV(1,:)xV(k + n)+ TsDV(1,1)δ(k + n)

+ TsDV(1,2)Cf vxf v(k + n)+ TsDV(1,2)Df vwv(k + n)

+ TsDV(1,3)Cfωxfω(k + n)+ TsDV(1,3)Dfωwω(k + n)+ UTsψ̂(k + n).
(39)

If the target is close to a straight line, ŷ and ŷref represent the vehicle and target lateral
displacements.



12 C. J. NASH AND D. J. COLE

The complete reduced plant for a linear vehicle has the same form as Equation (19), with
state-space matrices:

xR = {xV δ xnm xf v xfω ψ̂ ŷ
}T ,

AR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

AV BV(:,1) 0 BV(:,2)Cf v BV(:,3)Cfω 0 0
0 0 Cnm 0 0 0 0
0 0 Anm 0 0 0 0
0 0 0 Af v 0 0 0
0 0 0 0 Afω 0 0

TsCV(2,:) TsDV(2,1) 0 TsDV(2,2)Cf v TsDV(2,3)Cfω 1 0
TsCV(1,:) TsDV(1,1) 0 TsDV(1,2)Cf v TsDV(1,3)Cfω UTs 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

BR = [0 Dnm Bnm 0 0 0 0
]T ,

GvR = [BV(:,2)Df v 0 0 Bf v 0 TsDV(2,2)Df v TsDV(1,2)Df v
]T ,

GωR = [BV(:,3)Dfω 0 0 0 Bfω TsDV(2,3)Dfω TsDV(1,3)Dfω
]T ,

GκR = [0 0 0 0 0 0 0 0 0
]T ,

yR = ŷ,

CR = [0 0 0 0 0 0 1
]
,

(40)

although for a nonlinear vehicle the vehicle states are calculated using Equation (34).
For the control calculation at each time step, it is necessary to find the reduced state

vector xR(k) and reference trajectory ŷref (k) from the full state estimate x̂(k). Most of the
states in xR(k) can be taken directly from the equivalent states in x̂(k), and the yaw angle
ψ̂(k) is defined to start at zero. The value of ŷ(k) is equal to the negative of the current
path-following error e(k). However, only the delayed version evi(k) is stored directly in the
full state vector. Therefore, ŷ(k) must be calculated by iterating Equation (15) using the
stored delayed values of v, ω and φ0, giving:

ŷ(k) = −evi(k)− UTs

Nvi−1∑
n=0

{φn(k − Nvi)}

+ Ts

−1∑
n=−Nvi

{v(k + n)} + UT2
s

−2∑
n=−Nvi

{nω(k + n)}. (41)

Similarly, the reference trajectory depends through Equation (38) on previewed angles
φn(k); however, the full state vector contains delayed values φn(k − Nvi). The required
angles can be calculated by iterating Equation (11) over the visual delay:

φn(k) = φ(n+Nvi)(k − Nvi)− Ts

−1∑
i=−Nvi

{ω(k + i)}. (42)
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3.2. State estimators

State estimation for a nonlinear plant can be achieved using an extended Kalman fil-
ter, which operates on the same principles as the Kalman filter described in Section 2.2.
ExtendedKalman filters approximate the nonlinear plant dynamics by linearisation or sim-
ilar transformations. Four variations of the extended Kalman filter are implemented using
code provided by the EKF/UKF Matlab toolbox [52]. These four extended Kalman filters
are also compared with full state feedback, giving five state estimators in total:

• LKF: Linear Kalman filter: A time-varying implementation of a linear Kalman filter,
found by linearising the plant states about zero slip angle. It should give the same results
as the time-invariant filter derived in Section 2.2.

• EKF1: First-order extended Kalman filter. A linearised approximation to the plant states
is found at each time step.

• EKF2: Second-order extended Kalman filter. A quadratic approximation to the plant
states is found at each time step.

• UKF: Unscented Kalman filter. The nonlinear state covariance functions are approxi-
mated at each time step using an unscented transform.

• FSF: Full state feedback: The state estimate x̂ is equal to the real states x, removing the
effects of sensory dynamics.

Detailed derivations of each of the extended Kalman filters are given in [52]. The cal-
culations consist of two stages at each time step: First the predict stage in which a new
state estimate is predicted from the previous estimate using an internal model of the plant,
then the update stage where the estimate is updated based on the difference between pre-
dicted and measured plant outputs. Unlike the linear Kalman filter, the covariance matrix
P varies with time, and is also predicted and updated in these two steps. The initial covari-
ance matrix P0 is calculated by finding the steady-state solution for the plant linearised
about zero slip angle from Equation (27), using theMatlab function kalman. However, this
gives the covariance matrix after the prediction step only, so it must be passed through the
update step to ensure compatibility with the extended Kalman filters.

3.3. Controllers

Controllers are designed to calculate an optimal plant input δ̂, using an internal model
of the reduced plant described in Section 3.1. True optimal control for a nonlinear plant is
computationally intensive, therefore, several simplified controllers are implemented which
linearise the system dynamics. These linearised controllers are based on MPC, which
involves calculating an optimal control sequence δ̂ up to the prediction horizon Tp, then
taking the first of these as the next control input δ̂. For a linear plant this gives the same
solution as an LQR controller [3].

Ignoring any white noise inputs, the nonlinear reduced plant equations can be written
in discrete-time state-space form:

xR(k + 1) = AR(xR(k))+ BRδ̂(k),

ŷ(k) = CRxR(k. (43)



14 C. J. NASH AND D. J. COLE

(a) (b)

Figure 5. Illustration of linearisation carried out by different controllers. (a) Current time and (b) Future
prediction.

The nonlinear function AR can be linearised about states xL with the approximation:

AR(xR(k + n)) ≈ AR(xL(k + n))+ Ân(xR(k + n)− xL(k + n)), (44)

where Ân is the Jacobian dAR/dx evaluated at xL(k + n). Five different model predictive
controllers are implemented, with varying levels of approximation to the nonlinear plant
dynamics as illustrated in Figure 5:

• L0: Linearisation about zero slip angle, xL(k + n) = 0. This gives the same result as the
LQR controller derived in Section 2.3 (assuming the prediction horizon is sufficiently
long).

• LP0: Linearisation about the initial state xR(k) of the prediction horizon [46,48,50]. Â
is constant over the prediction horizon, linearised about xL(k + n) = xR(k).

• LPF: Linearisation about the full predicted trajectory [43,51]. The solution starts from
a nominal state trajectory XR0 = [xR0(k) · · · xR0(k + Np − Nvi + 1)], which is the
previous optimal sequence shifted by a single time step. The linearised matrix Ân is
calculated about each nominal state xL(k + n) = xR0(k + n).

• LPF∗: LPF constrained to stop the slip angles exceeding αmax, plus a constraint on the
maximum change in δ̂ from the nominal control sequence [44].

• FNO: Full nonlinear optimisation [45,47]. The full nonlinear equations are used to
predict the plant trajectory up to the prediction horizon.

3.3.1. LinearisedMPC
Four of the controllers simplify the control task by linearising the plant states. They are
derived based on the linear MPCmethod of [3], adapted for a nonlinear plant using meth-
ods similar to [51]. For simplicity the control horizon is chosen to equal the prediction
horizon. In each case the control sequence δ̂ is replaced with a nominal sequence δ̂0 plus a
small change 	δ̂, and similarly for ŷ. The linearised dynamics then give the approximate
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relationship	ŷ ≈ �	δ̂. The aim of the controller is to minimise the cost function:

J =
Np−Nvi+1∑

n=1
{qee(k + n)2 + qδδ̂(k + n)2}

=
Np−Nvi+1∑

n=1
{qe(ŷref (k + n)− ŷ(k + n))2 + qδδ̂(k + n)2}. (45)

Note that unlike Equation (29) the cost only applies over the finite prediction horizon.
Writing the values of ŷref , ŷ and qδ over the prediction horizon as vectors ŷref , ŷ and δ̂, and
removing the ŷ2ref term which is independent of the control input, Equation (45) can be
written as

J = qeŷTŷ − 2qeŷTref ŷ + qδ δ̂
T
δ̂. (46)

Replacing the control sequence δ̂ with a nominal sequence δ̂0 plus a small change 	δ̂,
and similarly for ŷ, gives

J = qe(ŷ0 +	ŷ)T(ŷ0 +	ŷ)− 2qeŷTref (ŷ0 +	ŷ)+ qδ(δ̂0 +	δ̂)T(δ̂0 +	δ̂) (47)

Multiplying out and removing any independent terms:

J = qe	ŷT	ŷ + 2qe(ŷ0 − ŷref )
T	ŷ + qδ	δ̂

T
	δ̂ + 2qδ δ̂

T
0	δ̂ (48)

and with the linearised dynamics	ŷ = �	δ̂:

J = 	δ̂
T
(qe�T� + qδI)	δ̂ + 2(qe(ŷ0 − ŷref )

T� + qδ δ̂
T
0 )	δ̂, (49)

which is in the form of a quadratic program. If there are no constraints this can be solved
using QR decomposition as in [3], however with constraints it can be solved using a solver
such as QPC [55] or Matlab’s quadprog function.

Similarly to the linear MPC derivation in [3], however with linearised matrices Ân
predicted n time steps ahead of the current time step k, � is found from:

�(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CRBR 0 0 · · · 0
CRÂ1BR CRBR 0 · · · 0

CRÂ2Â1BR CRÂ2BR CRBR · · · 0
...

...
...

. . .
...

CR

⎛
⎝Np−Nvi∏

i=1
Âi

⎞
⎠BR CR

⎛
⎝Np−Nvi∏

i=2
Âi

⎞
⎠BR CR

⎛
⎝Np−Nvi∏

i=3
Âi

⎞
⎠BR · · · CRBR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(50)

For LPF and LPF*, the nominal control sequence δ̂0 is the previous optimal control
sequence shifted by a single time step. The nonlinear plant equations are then evaluated
over the prediction horizon to get ŷ0. For L0 and LP0, the nominal control sequence δ̂0 is
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zero. However, the non-zero initial state xR(k) leads to non-zero ŷ0. For L0, as in [3]:

ŷ0 ≈ �xR(k), � = [CRÂ CRÂ2 · · · CRÂNp−Nvi ]T. (51)

For LP0:

xR(k + 1) = AR(xR(k))

xR(k + 2) = AR(xR(k + 1)) ≈ AR(xR(k))+ Â(xR(k + 1)− xR(k))

= (I + Â)AR(xR(k))− ÂxR(k)). (52)

Over the whole prediction horizon this leads to

ŷ0 ≈ �xxR(k)+ �AAR(xR(k)), (53)

where

�x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−CRÂ

−CR(Â2 + Â)
...

−CR

Np−Nvi∑
i=1

(Âi)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, �A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CR

CR(Â + I)

CR(Â2 + Â + I)
...

CR

Np−Nvi∑
i=0

(Âi)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (54)

3.3.2. LPF*
Controller LPF* is the same as LPF, however, it includes constraints to limit the solution
space to values more likely to give a successful outcome. Firstly, the linearisation assumes
that the changes in optimal control strategy	δ̂ are small. Therefore, constraints are added
to limit these changes, in the form:

	δ̂ < 	δ̂max,

−	δ̂ < 	δ̂max.
(55)

The value of 	δ̂max must be small enough to stop the optimal solution from moving
too far from the nominal solution; however, large enough that it does not limit the speed
with which the controller can respond to disturbances. Simulations were run with different
values of 	δ̂max, and a value of 0.1 rad* was found to be suitable (the superscript * after a
unit indicates that the value applies to a filtered version of that unit).

Another potential issue with linearised controllers is that they can become unstable if
the linearised force/slip characteristic becomes negative. Therefore, additional constraints
are added to limit the slip angles αf and αr to less than αmax, where αmax is defined to be
the maximum of the force-slip curve. Using the vehicle defined in Section 5, the slip angles
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are found from linear functions of the first 3 plant states:

αf = −v/U − lfω/U + δ/G, αr = −v/U + lrω/U, (56)

therefore the equations for αf and αr are linearised as

αf = αf0 + �αf	δ̂, αr = αr0 + �αr	δ̂, (57)

�αf and �αr are calculated using Equation (50), replacing CR with Cαf or Cαr, where

Cαf = [−1/U −lf/U 1/G 0
]
, Cαr = [−1/U lr/U 0 0

]
. (58)

The constraint equations therefore become

�αf	δ̂ < αmax − αf0, �αr	δ̂ < αmax − αr0,

−�αf	δ̂ < αmax + αf0, −�αr	δ̂ < αmax + αr0.
(59)

3.3.3. Full nonlinear optimisation
In order to find a solution which considers the nonlinear dynamics of the plant in full
without any approximation, a nonlinear optimiser can be used. Matlab’s fminunc function
is a versatile nonlinear optimiser, although it ismuchmore computationally expensive than
the linearised alternatives. As with the linearised MPC, the optimisation begins from a
nominal steering command sequence δ̂0, which is the previous optimal steering sequence
shifted by a single time step. The optimiser then iteratively evaluates the cost function for
different values of 	δ̂, in each case calculating the full nonlinear reduced plant equations
over the prediction horizon. Gradient-based optimisers such as fminunc use the Jacobian
of the cost function in order to estimate the direction of the optimal solution. Although this
can be estimated by the optimiser, it is much faster to calculate the Jacobian explicitly. This
can be achieved by linearising the dynamics similarly to the LPF controller. The derivative
of the cost function J about δ̂ is equal to the linear term in Equation (49):

dJ
dδ̂

= 2(qe(ŷ − ŷref )
T� + qδ δ̂

T
). (60)

4. Model parameter values

The performance of the driver model depends on the values of various transfer functions
and parameters. Some of these are properties of the driving conditions, for example, the
vehicle, motion filters and forcing function filters and amplitudes. In general it is assumed
that the driver’s internal model matches the true values of these exactly. Other values relate
to physical properties of the human driver; therefore, work has been carried out to find
suitable values for these parameters. A review of the literature was undertaken to choose
appropriate physiologicalmodels for the driver’s sensory and neuromuscular dynamics [4].
An approximation to drivers’ neuromuscular dynamics can be made using a second-order
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filter [56,57]:

Hnm(s) = ω2
nm

s2 + 2ζnmωnms + ω2
nm

. (61)

Transfer functions for the SCCs and otoliths are [58]:

HSCC(s) = 458.4s2

(80s + 1)(5.73s + 1)
, (62)

Hoto(s) = 0.4(10s + 1)
(5s + 1)(0.016s + 1)

. (63)

Motivated by previous work in the aerospace industry [37–39], experiments were car-
ried out by human drivers in a driving simulator, and an identification procedure was used
to find suitable values of the other parameters in order to fit the model as closely as possi-
ble to the measured data [40,42]. In [40], the process noise amplitudeW was found to be
proportional to the RMS steering angle δ, giving the relationship:

W = RMS(δ)/SNRW , (64)

where SNRW is the identified signal-to-noise ratio. Note that the SNR is expressed as the
ratio of the RMS values rather than the mean-square ratio more commonly used in com-
munications engineering. Similarly, in [42] the measurement noise amplitudes were found
to be proportional to the equivalent RMS signals, however, with thresholds η below which
the measurement noise remains constant. For example:

Va =
{
RMS(ave)/SNRa RMS(ave) > ηa,
ηa/SNRa RMS(ave) < ηa.

(65)

This is consistent with sensory noise and threshold characteristicsmeasured in previous
studies [27–33].Measurement noise of varianceV2

φ is added to each previewed visual angle
φvi; however, the influence of these measurements would vary with prediction horizon Np
ifVφ was kept constant. Therefore, the combined standard deviation σφ is calculated as for
Va in Equation (65), and Vφ is found from Vφ = σφ

√
Np + 1.

A single set of parameter values was identified in [42] to fit the results of 51 trials car-
ried out over a range of conditions. The identified values are given in Table 1. The only
parameters which are not given are the cost function weights, because these parameters
are a choice of the driver rather than a representation of human physiology. They depend
on both the driving conditions and the individual effort made by the driver. The controller
is affected only by the relative values of the weightings therefore qe is set to 1m−2. In the
experiments, values of qδ between around 0.1 and 2 rad−2∗ were identified.

Table 1. Driver model parameter values identified in [42].

SNRa SNRω SNRφ SNRe SNRW τvi τve
– – – – – (s) (s)

0.390 0.406 1.46 0.901 2.28 0.19 0.23

Tp ωnm ζnm ηa ηω ηφ ηe
(s) (rad/s) (–) (m/s2∗) (rad/s∗) (rad) (m)

0.87 14.3 0.537 0.221 0.0235 0.0129 0.0559
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Figure 6. Target path used in simulations.

5. Simulations

Simulations can be carried out to compare the various state estimators and controllers
derived in Section 3, in order to evaluate which may be suitable for modelling driver steer-
ing control. Each simulation involves driving round a 180◦ cornerwith a clothoid curvature
profile, as shown in Figure 6. In order to test the controllers at different operating points
on the force-slip curve, the minimum radius R of the corner is varied.

The vehicle is based on the two degree-of-freedom single-track model, shown in
Figure 7. Using Newton’s second law to balance lateral forces and moments gives

v̇ = Fyf
m

+ Fyr
m

− Uω, ω̇ = lfFyf
I

− lrFyr
I

. (66)

With linear tyres the cornering stiffness is constant, so:

Fyf = Cfαf , Fyr = Crαr, (67)

where αf and αr are given by Equation (56). These equations can be written in continuous
state-space form, adding disturbances fv and fω to the lateral and angular accelerations v̇
and ω̇:⎧⎪⎪⎨
⎪⎪⎩
dv
dt
dω
dt

⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎢⎣

−(Cf + Cr)

Um
−(lfCf − lrCr)

Um
− U

−(lfCf − lrCr)

UI
−(l2f Cf + l2rCr)

UI

⎤
⎥⎥⎦
{
v

ω

}
+

⎡
⎢⎢⎣

Cf

mG
1 0

lfCf

IG
0 1

⎤
⎥⎥⎦
⎧⎨
⎩
δ

fv
fω

⎫⎬
⎭ ,

ẋV(t) = AVcxV(t)+ BVc
{
δ(t) fv(t) fω(t)

}T .
(68)

The continuous matrices AVc and BVc are then discretised to give AV and BV. The
outputs v and ω are equal to the states, therefore, CV = I andDV = 0.

For the nonlinear vehicle, the lateral tyre forces are given by the ‘magic formula’ [59]:

Fy = FzD sin(C tan−1(B(1 − E)α + E tan−1(Bα))). (69)

For small slip angles this function is approximately linear, so an equivalent linear vehi-
cle can be found by letting Cf = dFyf/dαf = BCDFzf and Cr = dFyr/dαr = BCDFzr, and
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Figure 7. Single-track vehicle model used in simulations.

Figure 8. Characteristics of the three tyres used in the simulations.

Table 2. Nonlinear tyre parameters.

Tyre B C D E

Nonlinear increasing (NI) 12 1.5 1 1
Nonlinear decreasing (ND) 9 2.2 0.909 0.5

Table 3. Vehicle model parameters.

m lf lr I G U Fzf Fzr
Vehicle (kg) (m) (m) (kgm2) (–) (m/s) (N) (N)

Understeering 650 1.85 1.65 450 10 40 9500 15,000
Oversteering 650 1.85 1.65 450 10 40 12,000 13,000

this can be used to initialise the simulation. Three different tyres are simulated: a linear
tyre (L), a nonlinear tyre with force monotonically increasing as a function of slip angle
(NI), and a nonlinear tyre with force decreasing past the friction limit (ND). The force-slip
characteristics of these three tyres are shown in Figure 8, and the nonlinear tyre parame-
ters are given in Table 2. All three tyres have the same cornering stiffness at zero slip angle
(Cf/Fzf = Cr/Fzr = 18 rad−1). Two different vehicles are simulated, one with understeer-
ing characteristics and onewith oversteering characteristics. This is achieved by varying the
balance of the vertical loads Fzf and Fzr between the front and rear tyres. The parameters
for the two vehicles are given in Table 3.
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Simulations are run with each combination of state estimator and controller derived in
Section 3, controlling both the oversteering and understeering vehicles with the three dif-
ferent tyres. Initially, simulations are run with no disturbances and without adding driver
noise. A second set of simulations are then run with filtered white noise disturbances, with
amplitudesWv = 5m/s2 andWω = 5 rad/s2 and spectra:

Hf v(s) = Hfω(s) =
(

s
s + 1

)(
10

s + 10

)
. (70)

Further simulations are also carried out with simulated driver noise. Themotion scaling
filters Hma(s) and Hmω(s) are always set to 1, to represent a real driving scenario.

Parameter values for the model are taken from the experimental conditions and the val-
ues given in Section 4. The steering cost weight qδ is set to 0.5, and the prediction horizon
is extended to 2 s since Tp also represents the control horizon for the nonlinear model.
As explained in Section 4, the process and measurement noise amplitudes depend on the
RMS values of the equivalent signals. However, these RMS values are not known until after
the simulation has been run, so an iterative procedure would be needed to find the RMS
signal values for each condition. To save time, fixed estimates of the RMS signal values are
used to calculate the noise amplitudes, equal to 0.1 for RMS(ωve), RMS(evi), RMS(φvi) and
RMS(δ), and 1 for RMS(ave). The target signal fκ is not filtered white noise as assumed by
the model, but follows a transient corner profile. For the simulations the internal model
spectrum of the target is set to white noise (Hf κ(s) = 1), however, further work is needed
to understand fully how drivers react to transient target and disturbance functions.

6. Results

Twomain outcomes of the simulations can be analysed to compare the different controllers
and state estimators: the time each simulation takes to run and how well each combination
is able to minimise the cost function.

6.1. Simulation time

The time taken to run each simulation is an important factor when considering which
methods could be used practically in engineering applications. It can also be used as a
measure of the mental load involved, and hence the likelihood of a human driver being
able to use each method. The human brain contains bottlenecks which limit the capacity
of drivers to carry out simultaneous tasks [60]; therefore, a very intensive online calcula-
tion could use up too many mental resources. Instead, drivers may use learned responses
or simplifications similar to the linearised controllers and state estimators derived in
Section 3.

The average time taken to run one simulation with each combination of controller
and state estimator is shown in Figure 9. There is a difference of several orders of mag-
nitude between the fastest and slowest combinations, and the simulation time increases
with the accuracy of the approximation to the true nonlinear dynamics. This could reflect
the trade-off the driver must make between accuracy and mental load. In particular, the
FNO controller is around 20 times slower than the next slowest controller, highlighting the
complexity of carrying out true optimal control for a nonlinear plant.
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Figure 9. Average time taken (s) for simulation to run using each combination of controller and state
estimator.

6.2. Controller performance

The performance of each combination of state estimator and controller can be evaluated
by finding the total value of the controller cost function J given in Equation (29) over each
simulation. This can be used to investigate how close each combination is to the optimal
solution; however, further experimentation is required to determine the extent to which
real drivers are able to carry out optimal control for a nonlinear vehicle.

For the linear tyre, the controllers all perform similarly, as expected. A comparison of
the performance of the different controllers for the nonlinear tyres, with no disturbances or
driver noise, is shown in Figure 10. The cost has been normalised by the cost found using
the FNO controller, hence the FNO controller always has a normalised cost of 1. Figure 10
shows that FNO is generally the best performing controller, although for radii of 42 and
50m with the oversteering ND vehicle other controllers perform slightly better. This is
likely to be a result of the finite prediction horizon, which may not be sufficiently long to
give the optimal control response under all conditions. LPF* performs similarly to FNO in
most conditions, except for the oversteering ND vehicle at lower radii. LPF also performs
as well for the oversteeringNI vehicle, showing that the constraints are not necessary in this
condition. LP0 performs better than L0, and sometimes better than LPF. The performances
of all controllers converge at larger radii, as the vehicle response is close to linear for small
slip angles.

The performance of the different controllers with added disturbances and/or driver
noise is similar to the results shown in Figure 10, although with larger overall costs. For
the oversteering vehicle with ND tyres LPF* becomes unstable at a higher radius than seen
in Figure 10, and does not regain stability at the lowest radii. This may be because the dis-
turbances push the vehicle past the friction peak of the tyres, outside the constraints of
the LPF* controller. Controller FNO also becomes unstable in some cases, which may be a
result of the short prediction horizon or the fact that the FNO controller is not guaranteed
to be robust to disturbances for a nonlinear plant.
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Figure 10. Comparison of the performance of each controller for simulations without added distur-
bances or noise and with FSF. The total value of the cost function over each simulation has been
normalised by the value found for the FNO controller.

Figure 11. Comparison of the performance of each state estimator for simulations without added dis-
turbances or noise andwith the FNO controller. The total value of the cost function over each simulation
has been normalised by the value found for FSF.

6.3. State estimator performance

Theperformance of the different state estimatorswith nodisturbances or noise is compared
in Figure 11. The costs have all been normalised by the cost found for FSF. The linear
Kalman filter performs worst as expected, particularly for the understeering vehicle. All of
the extended Kalman filters perform very similarly; however, they always result in a cost at
least 20%higher than FSF. Thismay be a result of the target signal which is not formed from



24 C. J. NASH AND D. J. COLE

Figure 12. Comparison of the performance of each state estimator for simulations with added distur-
bances and driver noise and with the FNO controller. The total value of the cost function over each
simulation has been normalised by the value found for FSF.

filtered white noise, causing sub-optimal state estimates from the extended Kalman filters.
The significance of this effect can be altered by changing the relative noise amplitudes in the
model. For the oversteering vehicle, the extended Kalman filters are unable to control the
vehicle at small radii, particularly with ND tyres. For the linear vehicle, all state estimators
perform well in all conditions; however, they still perform slightly worse than FSF.

The performance of the state estimators with added disturbances and driver noise is
shown in Figure 12. The difference between the extended Kalman filters and FSF is larger
than for the results shown in Figure 11. This is mainly a result of the driver’s sensory delays,
which stop the disturbances being perceived until around 0.2 s after they have occurred.
In contrast, with FSF the driver has access to all the delay states so is aware of the distur-
bance straight away, and can react quicker in order to achieve a lower cost. Compared with
Figure 11, the extended Kalman filters become unstable for the oversteering vehicle at a
larger radius. Some differences between state estimators are seen in this region; however,
generally the extendedKalman filters perform similarly in stable conditions. Similar results
are found with disturbances and driver noise separately, although differences between FSF
and the state estimators are smaller than in the combined case.

6.4. Optimal performance

The costs presented in Sections 6.2 and 6.3 are normalised by the results for the best-
performing controller (FNO) and state estimator (FSF) to highlight differences between the
various implementations. To demonstrate the optimal performance achieved in the simu-
lations, the total absolute costs for a combination of FNO and FSF are plotted in Figure 13.
For the understeering vehicle, the total cost increases significantly as the corner radius
decreases, since the driver is required to apply a larger steering angle to account for the
vehicle understeer. For the oversteering vehicle, the total cost generally does not change
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Figure 13. Total value of the cost function J for simulations with no added disturbances or driver
noise and with the FNO controller. The best possible state estimator (FSF) is compared with the best-
performing realistic state estimator (EKF1).

significantly with corner radius. However with ND tyres large costs are seen for the small-
est radii, which indicates that the controller becomes unstable. This may be due to the
limited prediction and control horizons, resulting in a sub-optimal control performance.

Although the best performance is achieved with FSF, in reality drivers must estimate
the plant states based on noisy sensory measurements. All extended Kalman filters were
found to perform similarly in Section 6.3; therefore, EKF1 can be chosen to represent the
optimal performance of a real driver. The total cost for a combination of FNO and EKF1 is
also plotted in Figure 13. For the understeering vehicle, the performance is similar to FSF,
just with a slightly higher cost. For an oversteering vehicle, the costs at low radii are very
large, due to the driver–vehicle system becoming unstable. This happens at a larger radius
with the ND tyres than the NI tyres. Results with added disturbances and driver noise are
similar to those shown in Figure 13, although with higher costs.

7. Discussion

The results of the simulations presented in Section 6 can give some insight into the influ-
ence of a driver’s sensory dynamics on the control of a vehicle. They can also be used to
evaluate the controllers and state estimators for use in a driver model, both in terms of how
well they model a realistic driver and the practicality of using them in engineering appli-
cations. It is possible to suggest improvements to the controllers which may allow them to
run faster or more accurately, or better represent the human driver.

7.1. Effect of sensory dynamics

The effect of a driver’s sensory dynamics on the control of a nonlinear vehicle can be
investigated by comparing the performance of the extended Kalman filters with the results
using FSF in Figures 11–13. In all cases the simulated driver’s performance is worse with
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a state estimator than with FSF, showing that human drivers’ sensory limitations reduce
their control performance. For small-radius corners with an understeering vehicle the
driver–vehicle system becomes unstable with a realistic state estimator, which indicates
that sensory dynamics play a role in the robustness of the driver–vehicle system. This
is an important result for the design of safe, stable vehicles or stability control systems.
The difference between states estimators and FSF is larger when there are disturbances
added to the vehicle, showing that sensory dynamics are more important for disturbance-
rejection than target-following. This is intuitively reasonable, as drivers are able to preview
the upcoming target in order to compensate for sensory delays. Adding simulated driver
noise gives similar results to adding disturbances to the vehicle, showing that driving will
always involve a certain amount of feedback control even in the absence of external dis-
turbances. Even with no disturbances or noise FSF still performs better than the state
estimators, which may be a result of using a target which is not formed from filtered white
noise. Further work is necessary to understand how drivers react to transient target or
disturbance signals.

7.2. Controllers and state estimators

In general there is an inverse relationship between the performance and the computational
speed of each controller. FNO is the best performing controller as expected, however LPF*
performs as well in many conditions and is much faster. The driver model has particu-
lar difficultly controlling an oversteering vehicle with ND tyres, and even FNO sometimes
becomes unstable in these conditions. This may be in part due to the finite control hori-
zon, however increasing this would increase the time taken to simulate the controller.
Also, while the FNO controller should give an optimumperformance without disturbances
(with a sufficiently long control horizon), it is not necessarily a robust controller when dis-
turbances are added. Linearised controllers are much faster, however, they have difficulty
operating past the friction limit for ND tyres, so need to be constrained to operate below
this limit.

Differences between the state estimators are smaller in general than for the controllers.
LKF performs worse than the other state estimators for nonlinear tyres, as expected. FSF
performs best, however, this is not a good representation of a real driver who is affected
by sensory dynamics and delays. In most cases, all the nonlinear Kalman filters perform
similarly, so it is sensible to choose EKF1 which takes the least time to simulate.

While the results presented in Section 6 indicate which combinations of controller and
state estimator are most effective in minimising the cost function, they are not necessarily
representative of a real driver. For a linear vehicle drivers have been shown to steer close to
the optimal solution with full or scaled motion; however, they can have difficulty learning
accurate internal models of complicated motion filters [40,42]. Drivers may have simi-
lar difficulties with nonlinear vehicle dynamics, and might make simplifications similar to
the linearised controllers or state estimators in order to reduce their mental load. It has
been suggested that inexperienced drivers may hold a limited number of linearised inter-
nal models of the nonlinear plant [51]. Alternatively, drivers may use learned responses
to achieve close to optimal control without a large ‘online’ mental load. Experiments are
planned using a driving simulator to test how the performance of real drivers compares to
the simulations.
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7.3. Improvements to controllers

Various methods can be used to improve the optimality and efficiency of the controllers.
It has already been shown that the performance of controller LPF can be improved by
adding constraints to limit slip angles and keep the solution close to the linearised operating
point (LPF∗). Similar constraints were tested for LP0; however, they were found not to be
effective. An advantage of FNO over LPF∗ is that it is able to operate beyond the limit of
tyre friction; however, it may be possible to develop a combined controller that uses LPF∗
for smaller slip angles and FNO for larger slip angles. There are clearly some issues with
robustness, so it would be useful to develop a nonlinear controller that is more robust to
disturbances under all conditions.

The practicality of some of the more complex controllers is somewhat limited by the
computation time, with each simulation using FNO taking around 20 min to complete.
There are various approximations which can be made to try and reduce this time, and if
done carefully they may not significantly impact the performance of the controller. The
simulations were run at a sample frequency of 100Hz; however, driver steering control is
unlikely to act over such a high bandwidth. It may therefore be possible to reduce the sam-
ple frequency, or maintain a high sampling rate for simulating the plant dynamics while
running the controller less frequently. Recent research has investigated intermittent con-
trol, where the driver updates their control sequence less frequently and relies on their
previous computation in the interval between calculations [60]. It may also be possible to
calculate some portion of the control strategy offline to reduce the online computational
load, which could model drivers’ learned behaviours from previous driving experience.
Further speed increases may be achieved by writing the algorithms in a compiled language
such as C++.

8. Conclusions

A new model of driver steering control incorporating human sensory dynamics has been
developed, and themodel has been extended to represent the control of a nonlinear vehicle.
Simulations were run to compare various controllers and state estimators. In choosing the
controller there is generally a trade-off between computation time (which could represent
mental load) and controller performance, although a linearised controller was imple-
mented which performs as well as a full nonlinear optimisation in many conditions. All
versions of the extended Kalman filter perform similarly; therefore, it is sensible to use
the quickest of these which involves a linear approximation. Sensory dynamics affect the
control performance and stability of the driver–vehicle system, particularly with exter-
nal disturbances or driver noise. Experiments are planned to compare the simulations to
measured behaviour from human drivers.
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