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Shape of a bistable composite tape-spring in folding 

B. Wang*, K. A. Seffen†, S. D. Guest‡ 

Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom 

A composite tape-spring structure is a thin-walled, laminated open slit tube.  With fibres 

oriented at ±45˚, it is stable in both the extended and coiled configurations.  In this research, 

we devise a simple ‘free’ bending system with minimal constraints to evaluate the folding 

nature of composite tape-springs.  The shape of the tape-spring is characterised by considering 

both the shape during folding and the final folded shape.  Experiments are carried out on 

composite tapes with different geometries: a finite element model is established and calibrated 

using the experimental results; a parametric study on the folded tape shape is performed 

based on a theoretical model to evaluate the effects of the initial geometry.  Torsional buckling 

is clearly observed, and complemented with details from the FE model.  Here, we show good 

agreement between experiments, simulation and theoretical analysis.   

Nomenclature 
b = Width, mm 

c = Curvature 

k = Decay parameter 

t = Thickness, mm 

v = Poisson’s ratio 

D = Flexural rigidity, 𝐸𝑡3/12(1 − 𝑣2/𝛽) 

E = Young’s modulus, GPa 

F = Force, N 

G = Shear modulus, GPa 

L = Length, mm 

M = Moment, N∙mm 

R = Radius, mm 

U = Strain energy 

Vf = Fibre volume fraction 

𝛼 = Orthotropic torsional rigidity 

β = Modulus ratio, Ey/Ex 

γ = Shear strain 

δ = Displacement, mm 

θ = Fibre angle, ˚ 

σ = Tensile strength, MPa 

τ = Shear strength, MPa 

𝜅𝑥  = Longitudinal curvature 

𝜅𝑦 = Transverse curvature 

𝜅𝑥𝑦 = Twisting curvature 

𝜒𝑥  = Change in longitudinal curvature 

𝜒𝑦  = Change in transverse curvature 

𝜒𝑥𝑦  = Change in twisting curvature 
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I. Introduction 

OMPOSITE materials have great potential in aerospace engineering for reducing weight and complexity, and for 

improving aerodynamic efficiency and shape adaption [1]; morphing composite structures in particular, are 

intended for extensive use in deployable air- and spacecraft structures.  For decades, thin metallic tape-spring 

structures have been used to construct storable tubular extendible members (STEMs) [2]. More recently, composite 

tape-springs have been considered for lightweight, low cost and efficient deployable booms [3].  The folding behaviour 

of a tape-spring structure is highly nonlinear and directionally dependent [4].  For a tape with or without initial 

longitudinal curvature, bending which generates positive Gaussian curvature is recognised as equal-sense bending, 

whilst opposite-sense bending induces negative Gaussian curvature.   

The elastic folding of an isotropic tape-spring is very well understood.  It eventually buckles to form a localised 

folded region that is approximately uniformly curved longitudinally, with a radius of curvature almost equal to the 

transverse radius of the undeformed cross-section [5].  The analytical moment-rotation relationships for symmetrical 

tape bending have been developed by Rimrott [6], Calladine [7], Mansfield [8] and more recently by Seffen [9].  

Unsymmetrical bending characterised by tape twisting has been studied also by Mansfield in consequence to uniform 

equal-sense bending and buckling in a torsional mode. 

In this research, we characterise the folding of bistable composite tape-spring structures, which are envisaged as 

replacements for side lock-stays or link-stays within large aircraft landing gear [10].  Unlike normal three-point 

bending tests, we established a ‘‘free’’ three-point bending set-up with minimal end constraints, in order to permit 

twisting throughout: this is not the same as Mansfield’s uniform curving but it represents a step that way.   

Initial findings have been recently reported [11,12]; here, we provide further details including how the tape shape 

changes during folding, and characterisations of the final folded static shapes.  Firstly, the mechanical properties of 

the composite layup are evaluated with embedded strain gauges, and these data are used to establish the finite element 

(FE) model.  The ‘‘free’’ bending tests are carried out on a range of composite tapes and complemented by an FE 

model, following the modified Naik’s approach [13] and calibrated by experimental results.  The folded tape shape is 

evaluated both experimentally and numerically.  A parametric study is performed to understand how the folded shape 

changes with initial geometry: subtended angle, radius and thickness.   

II. Theoretical 

Fig. 1 schematically presents a typical force-displacement profile from ‘‘free’’ three-point, equal-sense bending 

of a tape-spring structure, made from either isotropic or orthotropic materials [12].  The tape ends are free to rotate 

and to approach one another, but are restrained linearly against the centrally applied, vertical force, F.  Four stages of 

deformation are experimentally observed: stage A is initial, symmetrical bending with smooth and uniform 

deformation along the tape; stage B commences when torsional buckling initiates, and twisting deformation gradually 

follows.  Twisting then diminishes during stage C as the fold begins to localise and become well formed as the applied 

force drops.  A minimum force is then expressed at the onset of stage D where the curved fold is complete and central, 

and separated by transition, or “ploy”, regions, Fig. 2, on either side: “point-like” folding then proceeds under 

increasing force.   

We are first interested in the linear limit of the applied force, defined in the first instance by the force at buckling 

Fcrit. Using the approach outlined in [12], we express first the total strain energy per unit length of tape as U:  
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𝐷𝑏
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                                            with   𝜙 = 𝑏4(1 − 𝑣2/𝛽)/(60𝑡2) 

(1) 

This assumes instantaneously uniform curvatures, 𝜅, at the centre of the tape-spring, which informs the bending 

moments and ultimately the applied force.  If no axial torque is applied, we must observe a minimum in U with respect 

to twisting curvature, 𝜅𝑥𝑦, [8].  If no axial torque is applied,  

 
𝜕𝑈

𝜕𝜅𝑥𝑦

= 𝜅𝑥𝑦[𝛼 + 𝜙(𝜅𝑥𝑦
2 − 𝜅𝑥/𝑅)] = 0 (2) 

Two solutions are obtained, either (i) 𝜅𝑥𝑦 = 0, corresponds to initial bending in stage A; or (ii) 𝜅𝑥𝑦
2 − 𝜅𝑥/𝑅 =

−𝛼/𝜙, represents non-zero twisting and a fixed level of Gaussian curvature: this gives the onset of stage B but without 

capturing the localisation further into the deformation mode.   

C 
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Fig. 1 Schematic representation of force-displacement profile during equal-sense bending of a tape-spring 

structure according to the set-up in Fig. 3.  Insets show examples of deformed shapes at different 

stages of a woven composite tape-spring with fibres in ±45°.   

The applied moment for each solution found by substituting 𝜅𝑥𝑦 and then differentiating U with respect to 𝜅𝑥:  

 𝑀A = 𝐷𝑏𝜅𝑥 [1 +
𝜙

𝑅2
] (3) 

and 

 𝑀B = 𝐷𝑏[𝜅𝑥 + 𝛼/𝑅] (4) 

They are linear and differ in gradient.  The rest of stages B and C defy straightforward modeling because of how 

twisting and bending interact and localise; the untwisted fold of stage D, however, allows the applied force to be 

estimated from the leverage of the fold behaving as a point-like hinge with an elastic torsional resistance equal to the 

well-known transverse bending moment [12].   

 

Fig. 2 Schematic folded tape-spring shape: the shaded region B is the ploy region up to the start of the 

circular fold region A with radius r, and region C is the natural end with radius R.  The length of 

the ploy region is 𝑳∗ where the transverse curvature ranges from 0 to 1/R.   

The folded tape has three clear regions, which are shown for half of a tape in Fig. 2: the fold itself, region A, which 

connects to the start of the ploy region B over which the change in transverse curvature decays before the undeformed 

straight end region C.  At the connection between A and B 𝜅𝑥 = 1/𝑟  and  𝜅𝑦 = 0 , which define the boundary 

conditions for the ploy region.  One solution from [12] for this shape is given by:   

 𝜒𝑥 = −
𝑘2

𝑅
𝑒−𝑘
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where, k is a decay parameter given by:   
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which allows the ploy region length, 𝐿∗, in Fig. 2, to be estimated as:   

 𝐿∗ =
𝑏2

𝜋
[
1 − 𝑣2/𝛽

120𝛽
]

1/4

√
𝑐

𝑡
 (9) 

III. Experimental 

A. Production of composite tape-springs 

Our composite tapes use glass fibre (GF) reinforced polypropylene (PP).  The layup consists of three layers of 

plain-weave GF and PP sheet, and Table 1 gives the suppliers materials properties.  To produce a tape sample, the 

layup was placed between two pieces of PTFE coated glass fabric paper, and gradually wrapped and tightened on a 

cylindrical mould (diameter 25 mm, length 300 mm) using heat shrink tape.  A jubilee clip was then used to lock the 

whole layup before curing in a pre-heated fan-assisted oven at 225 ˚C for 4 hours.  After the mould was released, each 

sample was manually cut for testing.  The composite has a typical fibre volume fraction, Vf, of 30%.   

Table 1 Materials properties of glass fabric and polypropylene sheet.   

Materials GF plain-weave woven [14] PP sheet [15] 

Density 200 g/m2 0.9 g/cm3 

Thickness (mm) 0.20 0.5 

Construction warp×weft (th/cm) 7.4×7.4 -- 

Poisson’s ratio 0.2 0.42 

Elastic modulus (GPa) 72.4 1.53 

Shear modulus (GPa) 30 0.54 

Thermal expansion coefficient  

(TEC µm/m°C) 5.0 84.8 

B. Mechanical properties 

To evaluate the mechanical properties of composite, flat samples were produced with embedded strain gauges. 

Production of flat samples are similar to Section III.A, using flat steel plate of size (320 × 50 × 3 mm) as a mould, and 

strain gauges were embedded in the layup. This arrangement ensured direct contact between the strain gauges and 

samples to minimise effects from using adhesives, as well as keeping minimal effects to the composite properties.  

The embedded strain gauge was soldered to a lead pad, and connected to a National Instrument PXIe-1071 series 

transducer; data were monitored and recorded at 2 Hz.  A sample dimension of 250 × 30 × 0.65 mm was employed 

with a testing span of 190 mm.  A 6 mm strain gauge with resistance 120 Ω was supplied by Tokyo Sokki Kenkyujo 

Co. Ltd., with a thermal expansion coefficient of 11 μm/(m∙˚C), and transverse sensitivity (Kt) of 0.1%.   

Mechanical tests were carried out using an Instron 4483 universal tensile machine with a 30 kN load cell at room 

temperature.  A constant crosshead speed of 2 mm/min was adopted for all tests.  Elastic properties in fibre direction 

were determined by testing samples with warp fibres in the longitudinal and transverse directions following ASTM 

D3039, the layups being designated as [0F]3 and [90F]3 separately.  Shear properties were derived from tests of in-

plane shear responses according to ASTM D3518 with warp fibres oriented in 45˚, and the layup was denoted as 

[45F]3. Three samples for each test were conducted to evaluate repeatability.   

C. Optical microscopy 

Although plain-weave GF fabric has the same warp and weft yarn count as in Table 1, the mechanical properties 

of the woven composite are also dependent on the yarn bundle geometry within the cross-section [13], which is 

evaluated using optical microscopy: flat woven composite samples were embedded into an epoxy matrix, cured and 

then progressively grounded and polished for examination.   

D. Three-point bending 

The three-point, equal-sense bending set-up is shown schematically in Fig. 3.  Long steel wires were attached to 

each of the three connection points within an Instron Serious 5564 materials testing machine.  The speed of 

displacement was set at 60 mm/min and the applied force was recorded using a 100 N load cell.  Each test was repeated 

three times to evaluate repeatability.   
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Fig. 3 Experimental setup for the folding of a tape-spring structure under equal-sense bending.   

E. 3D laser-scanning  

The folded tape shape of a CTS was recorded using a zSnapper® vario 3D laser-scanner [16].  Fig. 4 schematically 

shows the experimental setup.  The laser projector emits stripes of laser light onto an object, which are deformed by 

its shape and captured by the camera.  Calibration was made by measuring a calibration gauge (with reference points) 

in different positions using SnapCal software.  The calibration data were imported into SingleZsn software, where all 

sample scans were recorded and constructed into a discrete point cloud [16], and reconstructed using MATLAB [17].  

All scans had a resolution of 640 × 480 pixels and scanned using without reference mode.   

 
Fig. 4 Schematic representation of 3D laser-scanning setup.   

IV. Finite element method 

A. Micromechanics of woven composite 

There have been many attempts to model woven composites, as documented by Ansar et al [18].  Performances of 

woven composite for specific purposes have been simulated through idealization or homogenisation of geometric 

parameters and weave architecture at a micro-structural level; while it is complicated by discretising the unit cell into 

elements and slices, which involves substantial computation at a macroscopic level.  Here, woven fabric layers are 

usually simplified by using multiple unidirectional (UD) fibre layers, which provide close approximation of the 

membrane stiffness [19,20].  Our FE model is based on the simplified Naik’s model [13]: a woven composite ply is 

composed of one isotropic matrix layer and two UD laminates, which gives effective and reasonable correlation to the 

real woven composites [20].   

Fig. 5 shows the coordinate system and fibre directions.  Properties of the optimised UD laminate are determined 

by mechanical tests and by the micro-mechanical model.  Since the well-known rule-of-mixtures is unrealistic in the 

prediction of transverse modulus for the iso-stress assumption [21], another widely accepted model based on Hashin-

Shtrikman (H-S) bounds [22] (also known as the composite cylinder assemblage model) provides an alternative basis.   
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Fig. 5 Coordinate system and fibre directions of the GF/PP woven composite: ‘1’ denotes the fibre in warp 

direction; ‘2’ is the fibre in weft direction; ‘x’ is along the sample length and ‘y’ is transverse; ‘θ’ 

defines the fibre angle with +θ in warp and -θ in weft.   

B. Finite element model 

The FE model is constructed using ABAQUS/Explicit [23].  As discussed above, the woven composite layup 

[±45F]3 is simplified into UD laminates described as [m/(45/-45)3/m], where the m-ply is the pure PP matrix layer.  

The actual thickness of each ply is determined from optical microscopy, setting the thickness of the optimised UD 

layer to be 0.1 mm and the matrix layer as 0.025 mm.   

The model uses S4R reduced integration, four-noded shell elements coupled to hourglass control, finite membrane 

strains and a geometrically nonlinear analysis.  The ‘‘stabilise’’ function minimises instabilities and we specify a 

damping factor of 1×10-6.  Convergence studies on the mesh size have been carried out to determine acceptable 

accuracy of the model: an element edge size of 2 mm and around 2000 elements in total were found to be successful.   

The constrained translational degrees of freedom are kept minimal: displacement restrictions in the z-direction 

were applied on two nodes at the centre of cross-section at both ends; one node was able to move towards the other 

along the x-direction.  Displacement restriction was also applied to the central node in the y-direction.  No rotational 

degrees were constrained.  Folding was then achieved by displacing the mid-node of the shell in z-direction.   

V. Results and discussion 

A. Mechanical properties of woven composite 

Mechanical properties of the GF/PP composite are evaluated with embedded strain gauges, see Table 2.  Though 

the woven composite samples were fabricated with the same fibre counts in both directions, the Young’s modulus in 

the warp direction is found to be slightly lower than the weft direction: the relative difference in modulus values is 

0.81.  A similar variance is obtained for the value of Poisson’s ratio, with v12=0.11 compared to v21=0.17.  This may 

be caused by the differences of fibre tow geometry in the warp and weft directions [13], and this is further addressed 

below.  The H-S bounds based micromechanical model (Section IV.A) gives 𝐸1
𝑊𝐶 = 𝐸2

𝑊𝐶 =13.70 GPa, 𝐺12
𝑊𝐶 =

978 MPa, and v12=v21=0.10.  Despite the experimental system error, these agree well with the mean measured modulus 

value of 14.53 GPa, shear modulus of 824 MPa and Poisson’s ratio of 0.14.   

The tensile strength of the composite layup in warp (𝜎1
𝑊𝐶) and weft (𝜎2

𝑊𝐶) directions are 215 MPa and 198 MPa, 

respectively, corresponding to failure strains of 𝜀1𝑓
𝑊𝐶 = 3.5%, and 𝜀1𝑓

𝑊𝐶 = 2.3%, with a shear strength (𝜏12
𝑊𝐶) and strain 

(𝛾12𝑓
𝑊𝐶) of 42.3 MPa and 26.9%, respectively.   

Fig. 6 shows the cross-section of GF/PP composite in both the warp and weft directions.  Though the count of 

filaments is the same in both directions, the tow geometry is clearly different.  Table 3 presents the tow geometry of 

a single woven ply as measured by using FIJI [24].  The fibre tow in warp direction are two times wider and ~70% 

less in height compared to weft fibre tow.  The thickness of a single woven lamina is 0.205 mm, which correlates to 

the lamina geometry in the FE model.   

To clearly define the differences in tow geometry, a unit cell model of the woven composite is established using 

TexGen [25] base on the measured data in Table 3, and is shown in Fig. 6-c.  For the same fibre counts, Table 1, the 

cross-section area of a single warp fibre tow is 20% lower than a weft tow, in accordance with the difference in 

measured modulus values: a more effective and collective response of fibres can be expected in the weft direction 

under loading, which would result in a higher value of modulus, see Table 2.  The tensile strength in weft direction is 

y 

x 
1 2 

θ 
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also lower than warp direction as identified in Table 2.  Thus, the discrepancy in modulus, strength and Poisson’s ratio 

values are due to variations in the fibre tow geometry.   

Table 2 Mechanical properties of GF/PP composite samples with embedded strain gauges.  SE is the 

‘‘standard error’’.   

Sample No Strength (MPa) Strain at failure (%) Modulus (GPa) Poisson’s ratio 

      

[0F]3 𝜎1
𝑊𝐶 𝜀1𝑓

𝑊𝐶 𝐸1
𝑊𝐶  v12 

1 206.68 3.55 12.79 0.11 

2 206.52 3.56 12.27 0.12 

3 233.08 3.26 13.90 0.11 

Mean ± SE 215.43 ± 8.83 3.46 ± 0.10 12.99 ± 0.48 0.11 ± 0.01 

      

[90F]3 𝜎2
𝑊𝐶 𝜀2𝑓

𝑊𝐶 𝐸2
𝑊𝐶  v21 

1 196.29 2.33 15.52 0.13 

2 203.05 2.34 18.69 0.16 

3 194.8695 2.34 13.98 0.21 

Mean ± SE 198.07 ± 2.52 2.34 ± 0.01 16.06 ± 1.39 0.17 ± 0.03 

     

[45F]3 𝜏12
𝑊𝐶 𝛾12𝑓

𝑊𝐶 𝐺12
𝑊𝐶  -- 

1 41.06 27.99 713 -- 

2 43.09 25.58 847 -- 

3 42.74 27.19 912 -- 

Mean ± SE 42.30 ± 0.63 26.92 ± 0.71 824 ± 59 -- 

      

 

 

Fig. 6 Cross-sectional of GF/PP woven composite in (a) warp and (b) weft directions, (c) shows the unit 

cell model constructed base on the data in Table 3.   

Table 3 Tow geometry of the plain-weave GF in warp and weft directions.   

Direction Tow width, at, (mm) Tow height, ht,  (mm) Tow spacing (mm) 

Warp 1.285 0.092 1.332 

Weft 0.669 0.153 1.332 

 

B. Validation of the FE model 

The folding behavior of composite tapes with lengths of 50, 100 and 200 mm are shown in Fig. 7.  The sharp peaks 

at onset of loading observed in FE model are derived from torsional buckling [11,12]; while Experiments show a 

gradual and smooth torsional buckling response owing to the presence of imperfections.  Apart from the torsional 

coupling peak, the load magnitudes mostly match each other.  Table 4 shows the data points at peaks (Fmax), and 

valleys (Fmin) extracted from Fig. 7.  It is clear that the model is capable of capturing the main features of composite 

tape-spring in folding.   

(a) (b) (c) 
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Fig. 7 Force-displacement curves of composite tapes with different lengths from FE model and 

experiments: inset figures compare shapes of a tape 50 mm in length.   

Table 4 FE data on peaks and valleys during folding of composite tape-springs with different length, 

compared to expeirments in Fig. 7.  SE is the ‘‘standard error’’. 

Subtended 

angle (˚) 

Length 

(mm) 

Peak  Valley 

Fmax (N) δ (mm)  Fmin (N) δ (mm) 

180 50 49.79 6.71  -- -- 

  50.17 6.59  -- -- 

  50.22 6.60  -- -- 

 Mean ± SE 50.01 ± 0.14 6.64 ± 0.04  -- -- 

 FE 51.67 4.10  -- -- 

 100 28.20 4.51  5.13 23.81 

  29.05 4.40  5.09 23.46 

  29.40 4.07  5.09 23.40 

 Mean ± SE 28.88 ± 0.36 4.33 ± 0.13  5.10 ± 0.01 23.55 ± 0.13 

 FE 29.77 2.59  4.17 17.64 

 200 12.39 9.31  3.10 41.62 

  12.48 8.97  3.24 41.42 

  12.47 8.57  3.16 41.52 

 Mean ± SE 12.45 ± 0.03 8.95 ± 0.21  3.17 ± 0.04 41.52 ± 0.06 

 
FE 14.78 4.11  2.43 40.75 

C. Tape shape in folding 

Further insights can be gleaned from plotting the changes in curvature at the central loading point, see Fig. 8.  Pure 

bending in stage A corresponds to curvature changes in both x- and y-directions, and the torsional coupling peak is 

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

F
o

rc
e,

 F
(N

)

Displacement, δ (mm)

L050-01

L050-02

L050-03

L050-FE model

L100-01

L100-02

L100-03

L100-FE model

L200-01

L200-02

L200-03

L200-FE model



9 

 

clearly demonstrated by the sharp peak in 𝜒𝑦  at displacement of ~3 mm.  The tape twists in stage B, reaching a 

maximum value at ~30 mm in stage C, before decreasing.  In stage D, a minimum force is observed when 𝜒𝑦  

approaches 1/𝑅 and twisting disappears.   

 

Fig. 8 Curvature changes of the central node in longitudinal (𝝌𝒙), transverse (𝝌𝒚) and twisting (𝝌𝒙𝒚) 

directions during folding process.  Inset shows the position of the central node.   

D. Folded tape shape 

Fig. 9 shows the curvature changes on nodes along central line of a folded tape shape with a folded angle of ~90˚.  

Theoretically, along the central line of a folded tape within region B,  𝜒𝑥 = 𝜒𝑥𝑦 = 0, accompanied by an exponential 

decay in 𝜒𝑦  as defined by k.  The value of k can be determined by fitting Eq. 6 to the data of curvature changes from 

the FE model.  Fig. 9 shows that there is a transition point T, defined as the maximum derivative value point, which 

indicates the onset of exponential decay in 𝜒𝑦 , and is well-fitted by Eq. 6 with the decay parameter 𝑘 = 0.62.  In this 

region, 𝜒𝑥 and 𝜒𝑥𝑦  are also close to zero, which correlates with our assumptions for Eqs. 5 and 7.   

The fitting-curve is extended to 𝜒𝑦 = 1/𝑅, i.e. point N where 𝜒𝑦 = 1/𝑅, as indicated by the dashed line in Fig. 9, 

and defines the theoretical boundary.  Thus, there is a transition region Aʹ between regions A and B.  Any differences 

between the theoretical analysis and real shape is considered to be minor compared to the complexity it would bring 

mathematically.  The ploy length, 𝐿∗, is therefore characterised as the distance between points N and P.  Considering 

𝜒𝑦 < 5%  of 𝜅𝑦0 as a boundary to the natural end region C, the ploy length 𝐿∗ = 𝐿𝑃 − 𝐿𝑁 is found to be 57 mm.  This 

correlates well with the prediction from Eq. 9 which gives the value of 53.7 mm.  A parametric study is performed 

later in Section E.   
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Fig. 9 Curvature changes on nodes along central line of a folded tape.  Solid curve is fitted by Eq. 6, dashed 

line shows an extension of exponential decay.   

 
Fig. 10 Folded tape shape: shape of folded CTS of 200 length and subtended angle 180˚ from the 3D laser-

scanning and FE analysis: points are from scanning.   
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The same tape is folded to a larger angle, 180˚, and the folded shape is evaluated by using the 3D laser-scanning 

and the FE model, Fig. 10.  Scanned regions of interest lie in the ploy region A and B as highlighted in Fig. 10-a.  The 

shapes of the real sample are then compared to the FE model.  In the folded circular central region, Fig. 10-b, the 

measured shape gives nearly uniform transverse curvature, 𝜒𝑦 = 0.00036, with 𝜒𝑥 = 0.0452.  The FE shape also 

indicates similar transverse curvature, 𝜒𝑦 = 0.00039, while 𝜒𝑥 = 0.0722.  This can be attributed to the differences 

in the applied boundary conditions, since the central fold region is quite sensitive to the load conditions [4]: to facilitate 

the 3D scanning, the two ends of the real tape sample are bonded together transversely, while for FE shape, the whole 

model is constrained longitudinally.   

In Fig. 10-c, the slight undulations in the FE shape are due to the relatively large element size compared to the 

resolution of the laser-scanning system.  The transverse curvature is calculated through the scanned region, Fig. 10-d, 

and it agrees well with the FE shape.  Therefore, the parametric study is focused on the ploy region B.   

E. Parametric study 

A parametric study on the governing factors of the folded tape shape is performed using the FE model.  Fig. 11-a 

shows the ploy length 𝐿∗ (Eq.9) as a function of sample width, b, which is dominated by subtended angle: the initial 

radius and thickness are kept as 12.5 mm and 0.65 mm.  With an increase in sample width, i.e. subtended angle, the 

ploy region B also increases.  The ploy length data points from the FE model are determined with different accuracies.  

𝜒𝑦  at point P (Fig. 9) is ~10% ∙ 1/𝑅 for 𝑏 = 25 mm (120˚ in subtended angle), ~5% ∙ 1/𝑅 with 𝑏 = 40 mm (180˚ 

in subtended angle), and < 1% ∙ 1/𝑅 for 𝑏 ≥ 50 mm.  For the tapes with a constant subtended angle of 180˚, the 

folding behaviour with same L/b ratio is expected to be similar, except their loading magnitudes.  Fig. 11-b shows the 

effects of initial radius, R, on the 𝐿∗.  The theoretical predictions of the 𝐿∗ closely match the FE model: data were 

extracted with 𝜒𝑦  lying between 2%-5% of 1/𝑅 in each case at point P.  By increasing the sample thickness, Fig. 11-

c, the ploy length decreases.  The analytical model for 𝐿∗ is developed based on thin-shell theory (with typically 𝑡/𝑅 <
1/20 [26]), its effectiveness reduces with increasing in tape thickness: 𝜒𝑦 < 10% ∙ 1/𝑅 is adopted for 𝑡 ≤ 1 mm, and 

𝜒𝑦  is 20% of the original curvature with 𝑡 = 2.6 mm.   

 

Fig. 11 Effects of (a) sample width, (b) initial radius and (c) thickness on ploy length 𝑳∗.  Solid lines are 

analytical predictions using Eq. 9; data points are extracted from the FE model.   

VI. Conclusions 

In this research, we evaluated the shape of a composite tape-spring structure.  Both the shape-changing process 

during folding and the static folded shapes are evaluated.  The ‘‘free’’ bending set-up with minimal constraints enable 

the folding to be studied in great details.  An FE model is established following the Naik’s idealisation, and calibrated 

by experimental results.   

The torsional buckling is clearly demonstrated by curvature changes from the FE model; while experiments show 

more gradual and smooth response owing to the presence of initial imperfections.  The folded tape shape from the FE 

model is also compared to the real composite tape.  Owning to the differences in applied boundary conditions, the 

central fold region is not comparable, while the ploy region from both methods are effectively the same.  The 
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transverse curvature throughout the ploy shape follows the exponential decay.  Our analytical model provides a good 

prediction of the folded tape shapes.   
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