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A B S T R A C T

We present a new framework characterizing training-induced changes in WM as the acquisition of novel cog-
nitive routines akin to learning a new skill. Predictions were tested in three studies analyzing the transfer be-
tween WM tasks following WM training. Study 1 reports a meta-analysis establishing substantial transfer when
trained and untrained tasks shared either a serial recall, complex span or backward span paradigm. Transfer was
weaker for serial recall of verbal than visuo-spatial material, suggesting that this paradigm is served by an
existing verbal STM system and does not require a new routine. Re-analysis of published WM training data in
Study 2 showed that transfer was restricted to tasks sharing properties proposed to require new routines. In a re-
analysis of data from four studies, Study 3 demonstrated that transfer was greatest for children with higher fluid
cognitive abilities. These findings suggest that development of new routines depends on general cognitive re-
sources and that they can only be applied to other similarly-structured tasks.

Performance on many working memory (WM) tasks can be im-
proved by training. However, the benefits of that training rarely
transfer to other activities that also depend on WM. Why is this, and
what conditions give rise to transfer? Here we present a new framework
designed to explain both how and when the benefits of WM training
will transfer from one task to another. Our claim is that training-in-
duced transfer occurs only when we have learned a new complex
cognitive skill in the course of training and when that skill can be ap-
plied to a novel task.

The potential of intensive training to expand on our intellectual
capacities has long fascinated philosophers and psychologists. In recent
years, many commercial training products have been developed for
individuals keen to boost their cognitive skills (for reviews see:
Bavelier, Green, Pouget, & Schrater, 2012; Simons et al., 2016; Strobach
& Schubert, 2016). With extensive practice, performance on most
trained tasks will improve, and gains are also reflected in changes in
underlying brain systems. This kind of learning is often described as
neuroplasticity. While there have been some important recent advances
in understanding the impact of training on both the structure and
functioning of neural networks (Astle et al., 2015; Barnes, Woolrich,
Baker, Colclough, & Astle, 2016; Caeyenberghs, Metzler-Baddeley,
Foley, & Jones, 2016; Salmi, Nyberg, & Laine, 2018), the field lacks
detailed accounts of the cognitive changes that take place. A new fra-
mework presented here describes what these changes might be and how
these both enable and constrain transfer to novel situations. We do this

in one of the most extensively investigated areas of cognitive training,
WM.

Training has been investigated in many different areas of cognition
ranging from rote learning, problem solving and WM through to ex-
pertise in highly specialized domains such as chess and academic
learning (Simons et al., 2016 for recent review). Two broad conclusions
have emerged. First, transfer is much more likely under conditions
where trained and untrained activities share many features (near
transfer) than few (far transfer, Barnett & Ceci, 2002; Noack, Lövdén,
Schmiedek, & Lindenberger, 2009). Second, beyond this broad dis-
tinction, there is little understanding of the cognitive constraints on
transfer (Shipstead, Redick, & Engle, 2010; Simons et al., 2016;
Taatgen, 2013).

Our primary goal is to characterize the task features that engender
transfer within WM. We propose that transfer occurs primarily when
training leads to the acquisition of a new complex cognitive skill that
can be applied to an untrained activity. This learning is conceptualized
as the development of cognitive routines that coordinate the execution
of the processes necessary to perform an unfamiliar task. For training
activities supported by cognitive routines or mechanisms that are al-
ready firmly established, a new routine is not required. There is con-
sequently less scope for transfer within these activities, even if the tasks
are very similar.

Predictions derived from the framework about the conditions under
which transfer to other WM tasks is expected to be strongest are tested
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in three studies. Study 1 provides a meta-analysis of published rando-
mized controlled trials (RCTs) of WM training. The aim was to discover
which features common to both trained and untrained tasks are asso-
ciated with transfer, and to establish the magnitude of any transfer that
does occur. Studies 2 and 3 re-analyze data from several published
studies of Cogmed training in children to test whether transfer is indeed
mediated by the development and application of new routines. Study 2
investigates transfer across WM tasks following training on a single WM
program. Study 3 examines the sources of individual differences in
transfer following WM training in a large sample of children with the
aim of establishing whether transfer originates in the WM system itself
or from more general cognitive resources.

Transfer from WM training

WM is the cognitive system responsible for the temporary storage
and manipulation of information (Baddeley & Hitch, 1974). Substantial
and enduring benefits of intensive training for performance on similar
untrained WM tests have been widely reported (e.g. Dunning, Holmes,
& Gathercole, 2013; Jaeggi, Buschkuehl, Jonides, & Perrig, 2008;
Klingberg et al., 2005). These gains have been found at all ages from the
preschool years through to late adulthood, and for individuals with a
range of developmental and acquired disorders of cognition (Karbach &
Verhaeghen, 2014; Melby-Lervåg & Hulme, 2013; Sonuga-Barke et al.,
2013; Wass, Scerif, & Johnson, 2012). Enhancements in cognitive per-
formance following training are mirrored by changes in the neural ac-
tivity and connectivity of the brain networks serving WM (Astle et al.,
2015; Barnes et al., 2016; Caeyenberghs et al., 2016; Constantinidis &
Klingberg, 2016; Dahlin, Neely, Larsson, Backman, & Nyberg, 2008;
Kundu, Sutterer, Emrich, & Postle, 2013; Olesen, Westerberg, &
Klingberg, 2004; Takeuchi & Kawashima, 2012; Takeuchi, Sekiguchi
et al., 2010; Westerberg & Klingberg, 2007). These findings indicate
that WM training may be capable of inducing fundamental and en-
during improvements to a cognitive system critical for everyday func-
tioning across the lifespan.

The therapeutic potential of WM training is far-reaching. WM is
impaired in developmental disorders of attention (Holmes et al., 2014;
Martinussen, Hayden, Hogg-Johnson, & Tannock, 2005), language
(Hesketh & Conti-Ramsden, 2013; Montgomery, 2000; Montgomery &
Evans, 2009; Newbury, Bishop, & Monaco, 2005; Pimperton & Nation,
2012; Ramus, Marshall, Rosen, & van der Lely, 2013; Schuchardt,
Bockmann, Bornemann, & Maehler, 2013), reading (Swanson, Xinhua,
& Jerman, 2009) and mathematics (McLean & Hitch, 1999; Swanson &
Beebe-Frankenberger, 2004; Szucs, Devine, Soltesz, Nobes, & Gabriel,
2013; Szucs, Nobes, Devine, Gabriel, & Gebuis, 2013). It is also dis-
rupted following brain injury (Cicerone & Giacino, 1992; Dunning,
Westgate, & Adlam, 2016; Phillips, Parry, Mandalis, & Lah, 2017). In
typically-developing populations, variation in WM skills is closely
linked with practical abilities such as maintaining focused attention in
everyday life and following instructions (Engle, Carullo, & Collins,
1991; Gathercole, Durling, Evans, Jeffcock, & Stone, 2008; Kane,
Bleckley, Conway, & Engle, 2001).

To date the evidence that WM training can ameliorate these prac-
tical problems is not compelling. There have been reports that WM
training yields benefits in selective attention (Klingberg et al., 2005),
fluid intelligence (Jaeggi et al., 2008), reading (Loosli, Buschkuehl,
Perrig, & Jaeggi, 2012), mathematical abilities (Holmes, Gathercole, &
Dunning, 2009), and ratings of mental states and behaviors including
mood (Åkerlund, Esbjörnsson, Sunnerhagen, & Björkdahl, 2013), in-
attentivity and hyperactivity/ impulsivity (Klingberg et al., 2005), oc-
cupational satisfaction (Lundqvist, Grundstrom, Samuelsson, &
Ronnberg, 2012) and behavioral self-regulation (Foy & Mann, 2014).

Positive outcomes such as these are outnumbered by null findings.
Many systematic reviews and meta-analyses of WM training have been
published in recent years and with some exceptions (Au et al., 2015;
Spencer-Smith & Klingberg, 2015), the consensus is that training

benefits are largely confined to near transfer to other similar WM tasks
(Cortese et al., 2015; Karbach & Verhaeghen, 2014; Melby-Lervåg &
Hulme, 2013; Rapport, Orban, Kofler, & Friedman, 2013; Redick,
Shipstead, Wiemers, Melby-Lervåg, & Hulme, 2015; Schwaighofer,
Fischer, & Bühner, 2015; Shipstead, Redick, & Engle, 2012; Simons
et al., 2016; Sonuga-Barke et al., 2013; Soveri, Antfolk, Karlsson, Salo,
& Laine, 2017; Weicker, Villringer, & Thöne-Otto, 2016). Lack of far
transfer is most evident in studies employing rigorous intervention
methodologies such as randomized controlled trials (RCTs), active
control conditions, and blind assessments before and after the inter-
vention.

Theories of transfer

Neuroplasticity

An appealing explanation for transfer is that the WM gains observed
following adaptive training reflect cortical plasticity in the neural
system underpinning WM. Klingberg (2010) speculated that WM
training “might lead to durable neuronal changes in WM-related areas
in the same way as perceptual training does for neurons of the visual
cortex” (p. 318). Westerberg and Klingberg (2007) suggested that this
could be mediated by changes in the response characteristics of single
neurons, possibly reflecting plasticity in cellular components including
synapses and dendrites. Takeuchi, Taki, and Kawashima (2010) pro-
posed that training enhances the structure of the white matter tracts in
the neural system underpinning WM. These plasticity-based accounts
resonate with evidence for neural changes following intensive training
in motor activities such as repetitive neural stimulation of fingers in
primates (Xerri, Merzenich, Peterson, & Jenkins, 1998), perceptual
discrimination learning in monkeys (Law & Gold, 2008), and in golf and
juggling in humans (Bezzola, Mérillat, Gaser, & Jäncke, 2011;
Draganski et al., 2004; May 2011).

The problem with this concept of neuroplasticity is that it fails to
explain why training has so little benefit for aspects of everyday cog-
nitive functions that are widely considered to depend on WM. If the
neural efficiency of WM improves with training, its benefits should
extend to these activities too. In fact, even transfer within WM is lim-
ited. Consider n-back and complex span, two common WM paradigms.
In n-back, participants judge whether for each item in a lengthy se-
quence is the same as the item that appeared n positions back (1 item, 2
items, etc.). In complex span, an unrelated processing activity is in-
terpolated between the presentation of successive memory items
(Daneman & Carpenter, 1980; Turner and Engle, 1989). A recent meta-
analysis of n-back training established that the magnitude of transfer to
WM paradigms such as complex span is very small (Soveri et al., 2017).

Process-specific transfer

An alternative explanation is that rather than expanding the fun-
damental capacity of the system in an undifferentiated manner, WM
training enhances the specific processes within WM that are engaged by
particular tasks (Dahlin et al., 2008; Dunning & Holmes, 2014; Holmes
et al., 2009; Minear et al., 2016; Shipstead et al., 2012; Soveri et al.,
2017; Sprenger et al., 2013; von Bastian & Oberauer, 2013a). This
approach accounts for the absence of transfer across WM paradigms by
assuming that training originates in processes in WM such as updating,
inhibitory function and short-term memory (STM) storage that are en-
gaged by some but not all WM tasks (STM, Dahlin et al., 2008; Minear
et al., 2016). Transfer should only be observed when training and
transfer tasks both place demands on the same processes.

Participants in training studies often report using mnemonic stra-
tegies (Holmes et al., 2009; Minear et al., 2016), and these too are also
potential sources of training-induced change. Strategy transfer will
necessarily be limited by the ways in which the stimuli in the untrained
stimuli can be represented. Training a mental imagery strategy to assist
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recall of lists of concrete nouns would not, for example, be expected to
benefit the recall of either abstract nouns or movements. Evidence for
the content-specificity of mnemonic strategies is provided by Chase and
Ericsson’s (1981) study of an individual completing a lengthy period of
digit span training. SF began with a typical digit span of seven items
which had expanded to 79 items after two years of training. He reported
that this was achieved by recoding digit sequences into long-distance
running times that he was familiar with as a runner. Tellingly, his
memory span for letter sequences over the same period did not change.
The capacity of verbal STM per se was therefore unchanged. Similar
conclusions were reached in a study of two adults who trained on digit
span for a period of four months reached (Martin & Fernberger, 1929).

Strategies may be of limited value even when the stimuli are the
same if the WM tasks change. Minear et al. (2016) asked participants
completing either spatial n-back or verbal complex span training to
describe the mnemonic strategies they had used. Although letters were
the memoranda in both cases, participants reported different strategies.
N-back trainees employed many different strategies, although a sub-
stantial minority reported using no strategy. Participants who under-
went verbal complex span training described strategies involving
chunking the letter sequences in some way, for example by forming
associations between the letters and words and then forming sentences.
A transfer measure of serial recall of letters was included in this study.
The authors reasoned that if the gains on the trained complex span task
reflected the development of such material-specific strategies, they
should extend to this task too. No such benefits were found. It therefore
appears that any letter-chunking strategy must have been tied in with
the broader information processing demands of the paradigm that was
originally trained, limiting its transfer (see also, von Bastian &
Oberauer, 2013b).

A limitation of process-specific accounts of training to date is that
they do not distinguish shared task features that will be sufficient for
transfer from those that will not. Often, these accounts are advanced
speculatively to explain unexpected transfer rather than generating
specific hypotheses that are directly tested in new studies (Sprenger
et al., 2013; von Bastian, Langer, Jancke, & Oberauer, 2013). One
proposal is that the magnitude of transfer is related to the extent of task
overlap, with highest levels of transfer for tasks with the greatest
numbers of shared task features (Soveri et al., 2017). As we shall see
later, the presence of shared task elements alone is not a sufficient
explanation for either the presence or absence of its transfer, or its
magnitude. One of the greatest challenges for existing theories of
transfer is therefore not only to explain why transfer arises, but also
why it does not.

Cognitive training as skill acquisition

Here we present a new perspective on transfer following WM
training. This broadly conceptualizes transfer as a consequence of ac-
quiring complex cognitive skills that can then be applied to untrained
tasks with similar demands. It has its origins in production system
models that represent skilled behavior as sets of production rules in-
corporating specific knowledge (Anderson, 1982; Newell, 1991).
Complex new activities are accomplished by combining these rules. The
execution of the rules becomes increasingly automatic with practice, a
developmental process characterized in Anderson’s ACT-R model as
progression from a declarative to a procedural stage. As learning pro-
gresses, the demand on limited resources diminishes and this leads to
performance gains. Transfer arises when the production rules can be
applied to new tasks (Singley & Anderson, 1989).

Taatgen (2013) incorporated new principles into a production
system framework that provide more specific predictions about the
conditions for transfer. His primitive elements theory of cognitive skills
distinguishes individual low-level elements of production rules that are
entirely specific to a particular task, from task-general skills that control
the flow of information across the task independently of content.

Transfer occurs when the task-general skills are consistent, even if tasks
differ in low-level task features. This approach was applied to model
data showing transfer from complex WM span training to performance
on a Stroop interference task (Chein & Morrison, 2010). Transfer was
modelled as an increase in a process of proactive (executive) control
that corresponds to a high-level executive state of planning. This en-
hanced both rehearsal in the WM task and the selection of the ink color
in Stroop.

Primitive elements theory places no limits on the transferability of
task-general skills across tasks: transfer may in principle occur for any
tasks requiring common higher-order processes such as proactive con-
trol. We will see later that this is not necessarily the case for WM
training, in which some paradigms are more trainable than others.
Other models of skill acquisition do impose constraints on transfer, and
these offer some insights as to why transfer within WM may not always
occur even within paradigms. Fitts and Posner (1967) suggested that
learning progresses through three stages: cognitive, associative, and
autonomous. As an example, the cognitive stage of acquiring arithmetic
skills might involve performing multiplication by explicit calculation.
In the associative stage, the results of calculations would already have
been stored in long-term memory, requiring only search followed by
retrieval. In the autonomous stage, this process would operate auto-
matically. A reasonable expectation is that for typical participants in
WM training studies many of the basic processes of storage and retrieval
within WM will already be fully established and will have reached the
autonomous stage. This will leave relatively little scope for further re-
finement even with the extensive practice provided in a WM training
program. Neither training nor transfer would therefore be expected for
tasks supported by systems such as verbal STM that are already fully
established.

Some of these principles are incorporated into the present frame-
work. We propose that in many complex WM tasks, training cannot be
accomplished by established configurations of processes within WM.
Participants must therefore learn how to perform these unfamiliar
tasks. This form of learning follows the conventional path to acquiring a
new skill. It starts with a period in which execution and coordination of
its components are highly demanding of cognitive resources. With ex-
perience the skill becomes more autonomous, improving performance.
Once established, the new skill will transfer to other tasks with similar
structures. For WM tasks that are already served by existing mechan-
isms there will be much less scope for training or transfer, because the
configurations of processes needed to support them are already in
place. The framework builds on these principles to explain the limits on
WM training and its transfer to new tasks.

The cognitive routine framework

We make two assumptions about WM training. First, training on
unfamiliar WM tasks will lead to the development of novel cognitive
routines that control the sequence of cognitive processes required to
perform the task. Second, these routines can be applied only to other
tasks with common structures and only then will transfer occur. A
cognitive routine is a structured specification of the coordinated se-
quence of processes that must be implemented to accomplish a mental
activity. In the initial stages of performing a complex WM task, general
cognitive resources are required to determine the optimal sequence of
the processes, and to execute the routine. With practice, the execution
of the routine will become more autonomous, mirroring changes seen in
the acquisition of other cognitive skills (Tenison & Anderson, 2016).

A new routine is needed to martial and execute existing processes in
a novel sequence when a task has complex and unfamiliar cognitive
requirements. For complex WM tasks, it is envisaged that the routines
will have a hierarchical structure composed in part of sub-routines re-
peatedly executed across the course of a trial. New routines and sub-
routines may also support mnemonic strategies such as mental imagery
and grouping items into larger meaningful chunks. These strategies
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require sequences of processes integrating the to-be-remembered ma-
terial with more permanent knowledge outside of WM. For example in
using mental imagery, knowledge must be retrieved from semantic
memory to generate visuo-spatial representations for temporary sto-
rage. To use a chunking strategy, items in WM must be supplemented
by or linked with representations of stimuli from long-term memory
bound into multi-item chunks (Cowan, Rouder, Blume, & Saults, 2012;
Miller, 1956). In these ways, strategies involve the coordination of
processes in WM with systems in long-term memory. To do this, we
propose that a new cognitive skill (or routine) has to be learned.

Current process-specific theories of transfer focus on the features
common to both the training and transfer tasks. The framework takes
two further steps, specifying both the conditions under which training
itself will occur, and why. A core assumption is that transfer following
WM training is restricted to cases where the training tasks require the
establishment or refinement of a cognitive routine that is not already
fully developed. If a routine is already well-established there will be
little scope for either training or transfer even if the trained and un-
trained tasks both call upon the same routines and processes. One do-
main where the basic cognitive routines will already be well established
is verbal short-term memory (STM). The encoding of item and order
information and the engagement of a maintenance rehearsal process are
core elements of this system which can readily account for many key
verbal serial recall phenomena (Burgess & Hitch, 1992; Page & Norris,
1998). It is frequently engaged in everyday occasions such as re-
membering new words and names, following instructions, and re-
membering unfamiliar phone numbers, PIN codes and passwords. As
the skills required to perform these tasks will have already been ac-
quired there will be no need to develop new routines. If no new routines
are developed, there will necessarily be no routine-mediated transfer.

A computer analogy is useful here to highlight the differences be-
tween this approach and concepts of plasticity that emphasize the
malleability of the neural processes underpinning WM capacity. The
framework represents a shift away from thinking of training as a way of
modifying the hardware of WM towards viewing it as the generation of
new software. This software controls both the operation of the hard-
ware of WM and the interface between WM and other cognitive sys-
tems. The capacity of buffers in WM could be considered to be hard-
ware whereas the control of rehearsal or of a chunking strategy would
be controlled by software. As discussed above, there is little indication
that the storage capacity of verbal STM (hardware) can be increased by
training (Chase & Ericsson, 1981; Martin & Fernberger, 1929). How-
ever, the ability to rehearse (software) can be trained in non-rehearsing
individuals (Broadley & MacDonald, 1993; Johnston, Johnson, & Gray,
1987).

Continuing with the computing analogy, we can see that there may
be choices about the particular forms of software (routines) that will
influence transfer. For instance, a function to reverse the order of a
sequence might be written in a way that accepts only a list of spoken
digits as an argument. Such a function would improve performance on
the backward recall of spoken digits, but would be of no value for the
backward recall of written letters. Alternatively, the function might be
written in a more general fashion so that it could accept written and
spoken words, digits, letters, and even visual objects as arguments.
Either function will result in improved performance on a training task
using digits, but only the more general function will be transferable to
different materials. The basic capacity of the system would be un-
changed but because its software differs, so too will the extent of
transfer. It will also be influenced by the particular software solutions
selected by the programmer.

To develop firm predictions about transfer we need to be able to say
something about the detailed routines employed. Although we can
speculate on grounds of principle alone, the best guide to the nature of
these routines and the limits of their transferability is provided by hy-
pothesis-driven experimental analysis. A good example of this is Chase
and Ericsson’s (1981) digit span training study of SF. The tenfold

increase in SF’s digit span across two years of practice does not tell us
whether he had developed a general-purpose serial recall routine or one
specific to digits. However, his description of chunking digits in terms
of running times led to the prediction that this strategy (or routine)
would not transfer to letters. This was indeed found to be the case,
confirming that the routines developed during training were indeed tied
to a specific set of stimuli.

Up to this point, we have argued that training in complex tasks
involving the novel coordination of existing processes or the develop-
ment of new mnemonic strategies will lead to the construction of cog-
nitive routines that are the source of transfer to other routine-compa-
tible tasks. An important caveat is that training-induced changes also
originate outside of routines in established processes. A wealth of evi-
dence indicates that performance on almost any cognitive activity, in-
cluding basic low-level visual discrimination of perceptual features,
shows gradual improvement with training (for review see Bavelier
et al., 2012). Performance on almost all speeded tasks also continues to
improve to some degree, even after extensive practice, a ubiquitous
phenomenon termed the “law of practice” (Newell & Rosenbloom,
1981). If components of a WM task can be performed faster, then this
too should enhance performance (Barrouillet, Bernardin, & Camos,
2004).

It is therefore likely that extensive practice on all WM tasks will
produce some fine-tuning in the efficiency of established processes.
These subtle changes may generate relatively small degrees of transfer
that cannot be reliably detected in the low- to moderately-powered
studies that dominate WM training research. With larger sample sizes or
more data-intensive psychophysical testing, however, they should be
evident. The primary goal here is to understand the origins of the more
substantial effect sizes that can be detected the studies that typify the
field of WM training research. We suggest that these moderate to large
transfer effects are the hallmark of routine-mediated learning during
training.

A cognitive taxonomy of WM tasks

To generate predictions from the cognitive routine framework about
transfer across WM tasks it is necessary to distinguish the tasks that
need new routines from those that can be supported by existing pro-
cesses. To do so requires the development of a cognitive taxonomy of
WM tasks. Deriving such is not straightforward because there are many
conceptually distinct theories and models of WM that also differ in the
scope of the paradigms they address. Baddeley, Hitch and colleagues
developed a highly influential modal model of WM that has framed
much of the research in the field (Allen, Baddeley, & Hitch, 2006;
Baddeley, 2000; Baddeley & Hitch, 1974). At its heart is a limited-ca-
pacity central executive sub-system supplemented by an episodic buffer
that binds temporary representations both within and beyond WM.
Further buffers provide limited and specialized storage for verbal and
visuo-spatial material (Baddeley, 1986, 2000; Baddeley & Della Sala,
1996; Baddeley, Lewis, & Vallar, 1984). Cowan, Engle and others have
conceptualized WM not as a separate storage medium but as long-term
memory (LTM) representations temporarily boosted via a limited at-
tentional resource (Cowan, 1998; Cowan & Morey, 2007; Engle,
Tuholski, Laughlin, & Conway, 1999). Others have located WM within a
broader framework of executive functions (von Bastian & Oberauer,
2013a) or as the combined product of two parallel memory systems
(primary and secondary memory) with distinct temporal and organi-
zational features (Shelton, Elliott, Matthews, Hill, & Gouvier, 2010;
Unsworth & Engle, 2007). Even when models focus on the same para-
digms there is little consensus about the nature of the component
processes (e.g. Barrouillet, Bernardin, Portrat, Vergauwe, & Camos,
2007; Oberauer, Lewandowsky, Farrell, Jarrold, & Greaves, 2012;
Towse, Hitch, & Horton, 2007).

In the absence of theoretical convergence, the current taxonomy
was generated from an evidence-based task analysis. The analysis was
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confined to the paradigms required the serial recall of list items that
dominate the current generation of WM training. In those paradigms in
which evidence points to domain-specific differences, verbal and visuo-
spatial tasks are analyzed separately.

Verbal serial recall

Serial recall of verbal material is supported by a multi-component
system of verbal STM. It consists of processes responsible for encoding
item and order information, and for linking together the two sets of
representations. Key phenomena including serial position and trans-
position functions have been successfully modelled as associations be-
tween temporary representations of each item and either temporally-
evolving context or order signals that can be decoded to retrieve item
position or order (e.g. Burgess & Hitch, 1992, 1999; Page & Norris,
1998).

Older children and adults spontaneously use a verbal rehearsal
strategy to enhance serial recall (Gathercole & Hitch, 1993; Hitch et al.,
1983). This has been suggested to involve the reactivation of phono-
logical representations in STM as a means to offset time-based decay,
possibly through a process of covert articulation (Baddeley et al., 1984;
Baddeley, Thomson, & Buchanan, 1975). Rehearsal has been modelled
as the re-presentation of the stored sequence back into verbal STM
(Burgess & Hitch, 1992; Page & Norris, 1998). Once established at
around seven years, rehearsal is a highly effective strategy for retaining
information in verbal STM (Flavell et al., 1966).1 What happens prior to
this developmental milestone is not fully understood. Recent work in-
dicates that rehearsal may be underestimated in children performing
poorly on verbal STM as a consequence of low measurement sensitivity
to experimental indicators of rehearsal (Jarrold & Citroën, 2013;
Jarrold, Tam, Baddeley, & Harvey, 2010). But most importantly for the
present purposes, it is reasonable to assume that the contribution of
rehearsal to verbal serial recall develops over the early school years and
becomes fully functional by seven years or so.

Does training on verbal STM training tasks transfer to similar un-
trained tasks? A key assumption of the framework is that established
processes such as those involved in encoding verbal item and order
information should not be amenable to further training. Verbal STM
performance is therefore predicted to be relatively impervious to
training once rehearsal has been established. Performance may, how-
ever, be enhanced by the adoption of new material-specific strategies
under conditions of extensive and prolonged practice (Chase &
Ericsson, 1981; Martin & Fernberger, 1929).

With sufficient practice and instruction, rehearsal can be induced in
non-rehearsing children, leading to increases in memory span (Broadley
& MacDonald, 1993; Johnston et al., 1987). Training gains can extend
to serial recall for untrained verbal content: Comblain (1994) showed
that training individuals with Down syndrome to rehearse word lists led
to benefits in digit span. Thus, even without explicit strategy instruc-
tion, WM training programs that provide extensive practice in verbal
serial recall for children who are not yet rehearsing may provide cat-
alytic conditions for a new rehearsal routine (Holmes, Butterfield,
Cormack, Loenhoud, Ruggero, Kashikar, & Gathercole, 2015). In older
children and adults, the routine will already be well-established and
hence not be amenable to further training.

When the number of items to be recalled is close to span, verbal
memory depends primarily on phonological coding, although for supra-
span sequences there may be a shift to non-phonological strategies
(Gathercole & Baddeley, 1990; Salamé & Baddeley, 1982). Other non-
phonological strategies such as semantic linkage and visual imagery can

also be beneficial in immediate memory tasks (McNamara & Scott,
2001; St Clair-Thompson, Stevens, Hunt, & Bolder, 2010; Turley-Ames
& Whitfield, 2003). These recoding strategies may increase the depth of
processing (Craik & Lockhart, 1972), permit the generation of multiple
representations for each item (Paivio, 1990) and allow multiple items to
be formed into single chunks (Cowan, Chen, & Rouder, 2004). We as-
sume that for most individuals these strategies require the development
of new routines that have the potential to transfer to other WM tasks
with similar stimulus content.

In summary, two aspects of verbal STM may require the develop-
ment of cognitive routines and hence to yield transfer to other verbal
STM tasks. The first is subvocal rehearsal in pre-rehearsing children,
and the second is the development of new mnemonic strategies. The
basic mechanisms of encoding item and order information in verbal
STM are already in place early in childhood and do not warrant new
routines. Transfer of verbal STM training is therefore expected to be
minimal for older children and adults unless novel mnemonic strategies
are developed.

Visuo-spatial serial recall

The representations and processes involved in visuo-spatial serial
recall are much less well understood. Standard paradigms involve a
variety of stimulus forms including spatial locations, continuous
movements, static patterns, unfamiliar objects, and scenes. Hallmark
experimental phenomena indicate that mechanisms encoding serial
order may be similar in the verbal and spatial domains (for review see
Hurlstone, Hitch, & Baddeley, 2014). However, verbal and visuo-spatial
memory span are largely independent in both children and adults
(Alloway, Gathercole, & Pickering, 2006; Baddeley, Papagno, & Vallar,
1988; Della Sala, Gray, Baddeley, Allamano, & Wilson, 1999). Further
evidence indicates that within this system, visual characteristics and
spatial locations may be stored separately (Darling, Della Sala, Logie, &
Cantagallo, 2006; Logie & Pearson, 1997; Pearson, Ball, & Smith, 2014;
Pickering, Gathercole, Hall, & Lloyd, 2001), with serial spatial rehearsal
providing a means of maintaining either visual or spatial representa-
tions (Logie, 1995). This appears to be accomplished through the covert
control of eye movements (Awh, Vogel, & Oh, 2006; Logie & Pearson,
1997; Waters, Rochon, & Caplan, 1992).

While the wealth of evidence distinguishing between the STM pro-
cesses involved in verbal and visuo-spatial STM is undisputed, the ex-
tent to which it reflects separate but analogous temporary storage for
the two domains is a matter of current debate. For many years, the most
prominent position has been that information is represented in terms of
its visual or spatial characteristics in the relevant domain-specific store
(STM) within WM (Baddeley, 2012; Logie, 1995). This conclusion has
been strongly challenged in comprehensive analysis of experimental
and neuropsychological evidence by Morey (2018). The issue here is
not whether verbal and visuo-spatial STM can be distinguished, but
whether STM for visuo-spatial material is domain-specific in nature.
There is substantial evidence that it is not. Across many studies em-
ploying a wide range of paradigms, it has been shown that visuo-spatial
tasks show a far greater reliance on general attentional resources than
their verbal equivalents (Alloway et al., 2006; Kane et al., 2004; Morey
& Miron, 2016; Pearson et al., 2014; Thompson et al., 2006). On this
basis Morey concludes that “neither the neuropsychological evidence
nor the dual-task literature provides strong support for a dedicated
visual-spatial STM system” (p. 876).

One reason why a specialized STM system may not have evolved for
this domain is that, unlike verbal material, recall of the order of visuo-
spatial events is rarely required in everyday life. In our terms, this could
mean that there is no established STM system to support this material.
In order to make improvements during training, participants must
therefore develop new cognitive routines that draw initially on domain-
general cognitive resources. These routines may involve learning to
exploit the unique configurations of visuo-spatial stimuli in particular

1 On the basis of simulations Lewandowsky and Oberauer (2015) have argued
that there is no evidence for the effectiveness of rehearsal. However, their si-
mulations are based on the assumption that people make errors in rehearsal
which they then further rehearse leading to an accumulation of errors.
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tasks. For sequences involving temporally dynamic information such as
Corsi block recall (De Renzi & Nichelli, 1975), this may involve en-
coding properties that can include multiple transitional features in-
cluding the lengths of spatial paths, their crossing points and their
angles (Parmentier, Elford, & Maybery, 2005). Neuroimaging data
suggests that exploiting some of these spatial properties may impose
significant attentional burdens: prefrontal activity associated with the
multiple demand system increases when spatial sequences have prop-
erties that encourage their recoding into higher-order chunks (Bor,
Duncan, Wiseman, & Owen, 2003).

In summary, verbal and visuo-spatial serial recall are both sup-
ported by domain-specific processes that encode and maintain item and
order information. A difference that may turn out to be important for
transfer is that visual-spatial STM shows a greater dependence on
general cognitive resources than verbal STM. This may provide scope
during training for the development of new cognitive routines (or the
refinement of existing ones) tailored to meet the relatively unfamiliar
task demands. If so, training on visuo-spatial STM should generate
greater transfer to untrained tasks with similar recall demands than the
corresponding verbal STM tasks.

WM tasks

Most training programs include complex WM tasks that combine the
temporary storage demands of simple serial recall tasks with additional
processing requirements such as changing the order of items at recall,
updating the contents of WM, or handling irrelevant distraction. They
share the common feature of requiring participants to store material in
highly unfamiliar and challenging cognitive conditions. To cope with
these unfamiliar conditions it will be necessary to develop novel cog-
nitive routines.

The cognitive routine framework predicts that these paradigms will
not generate transfer unless the untrained task shares the same un-
familiar demands. Transfer will be determined by the fit of the co-
ordinating structure of the routine (for example, executing a particular
form of memory updating or reversing the sequence of items at recall)
to an untrained task, and not simply by the overlap with individual
processes embedded within subroutines. Significant mismatches in task
structure will prevent transfer. We suggest that routines readily adapt
to changes in lower-level features such as the modality of an input (e.g.,
auditory or visual) or a response (e.g., spoken or mouse click) that
preserve the higher-level structure of the routine. Taatgen (2013) drew
a similar distinction between low-level elements of production rules
specific to a particular task and the task-general skills that alter the flow
of information across the production system. In his conceptualization,
transfer can only occur across individual elements in the production
system if the same task-general skills can be applied across two tasks.

Complex span
Complex span tasks differ from simple serial recall tasks through the

interpolation of episodes of distractor processing between successive
memory items. For example, in operation span (Turner and Engle,
1989), sequences of words are presented for serial recall and, after each
word is presented, participants must read and verify an arithmetic
problem such as “Is (4/2)-1 = 1?”. After the final calculation the par-
ticipant attempts serial recall of the word list. An example of a visuo-
spatial complex span task is symmetry span. In this task, the distractor
activity involves judging the symmetry of a pattern and the items to be
remembered are the locations of squares presented successively in a
matrix (Redick & Engle, 2011).

In these tasks, participants must work out how to protect the
memory representations from the interference or decay that might be
caused by the punctuating periods of distraction. Several ways in which
this could be achieved have been proposed. One is through rapid
switching between processing of the distractor events and rehearsal of
the memory items (Towse, Hitch, & Hutton, 1998). An alternative

proposal is that participants might use attentional refreshing to revive
decaying representations by switching between distractor processing
and rapid serial reactivation of the encoded memory sequence
(Barrouillet, Gavens, Vergauwe, Gaillard, & Camos, 2009). Oberauer
et al. (2012) implemented a very different account of complex span in
their SOB-CS (serial-order-in-a-box – complex span) neural network
model. In this, interference is generated by the unwanted encoding of
distractor items resulting from a novelty-gating mechanism. This is
minimized by the active removal of distractor representations with the
aim of restoring the quality of earlier memories. Note that in each one
of these accounts, a novel set of cognitive processes (time-switching to
permit rehearsal or attentional refreshing, or active removal of dis-
tractors) is required to meet the unusual needs of the particular com-
plex span task. From our perspective these represent novel cognitive
routines developed across the course of an extended training program
that can then be applied to other similarly-structured tasks.

Beyond this point, it is not possible to make firm predictions about
the limits on the transferability of a complex span routine to other
untrained complex span tasks. We would certainly expect routines to
adapt readily to changes in superficial task features such as the sensory
modality of inputs or outputs that call on relatively peripheral and
specialized processing systems, as these have few consequences for the
higher-level structuring of task processes. Whether more profound
mismatches such as changes in the interpolated distractor activities will
be sufficient to prevent transfer to an untrained task is less clear. The
overlap in the cognitive processes involved in performing distractor
tasks such as verifying equations and judging whether letters are up-
right or mirror-reversed when mentally rotated (Harrison et al., 2013)
is minimal. Indeed, the distractor activities employed in the trained and
untrained complex span tasks differ in all relevant training studies fa-
miliar to the authors.

What the different distractor activities in complex span tasks do
share is their functional position in the higher-level of the task struc-
ture: in each case, they are interpolated between memory items and
disrupt stimulus maintenance and encoding processes that might
otherwise take place. In most complex span tasks, the distractor activ-
ities are unrelated to the to-be-recalled stimulus items.2 The different
distractor activities may therefore be supported by substitutable sub-
routines within a broader routine common to multiple complex span
tasks designed to minimize distraction and maintain stimulus re-
presentations. Could a match to this higher-order structure be sufficient
to allow the routine to be applied to complex span tasks involving
different distraction, or is the tolerance to deviance in task structures
limited to more superficial tasks elements? The transfer data from the
meta-analysis in Study 1 directly address this question.

Re-sequencing
Another way in which complexity can be introduced into WM tasks

is by changing the sequence in which memory items should be recalled.
The most common re-sequencing task is backward span in which par-
ticipants are instructed to recall lists in reverse sequence. Compared
with forward recall, backward recall is generally slow (Anders &
Lillyquist, 1971) and errorful (Isaacs and Vargha-Khadem, 1989). Some
participants report doing this by engaging in successive forward re-
trievals in order to peel off the numbers backwards (Anders & Lillyquist,
1971; Conrad, 1965; Thomas, Milner, & Haberlandt, 2003). First, the
whole list is run through and the final item reported. The process is then
repeated, each time reporting what has now become the final un-
recalled item (1,2,3,4 …1,2,3…, 1,2… etc.).

Like any ad hoc strategy designed to solve the unusual problem of
reversing an input sequence, this strategy requires a new routine for the

2 An exception is listening span, in which the recall items are the final words
in interpolated sentences that participants read aloud (Daneman & Carpenter,
1980)
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recall phase. Existing cognitive processes must be coordinated in a
novel way to make repeated forward covert retrieval attempts. For
verbal stimuli, this is likely to involve control of the rehearsal process.
As storage in verbal STM is phonological rather than semantic in nature
(Baddeley et al., 1975; Gathercole, Frankish, Pickering, & Peaker,
1999), the same routine should be readily extended to backward span
tasks employing different categories of verbal stimuli such as word,
letters and digits. Transfer is therefore expected to any backward span
tasks employing verbal material.

It is less clear whether training in backward span should transfer
across verbal and visuo-spatial domains. Whereas backward recall leads
to much lower memory span for verbal stimuli, its impact is minimal
when the task involves recalling spatial sequences (Isaacs and Vargha-
Khadem, 1989). This raises the possibility that the backward recall of
spatial sequences may not involve the effortful and time-consuming
peeling-off strategy that can be applied in backward digit span (Norris,
Hall, & Gathercole, under review). If this is the case, the routines verbal
and visuo-spatial will differ substantially and this will limit transfer.

Other re-sequencing tasks include recalling numbers in mixed lists
in numerical order and recalling letters according to either alphabetical
order (Wechsler, 2008) or semantic category (Sheslow & Adams, 1990).
These tasks are also unfamiliar and highly challenging. They require
use of stored knowledge such as numerical sequences, the alphabet, and
object category to guide retrieval and output. Distinctive routines will
be required to meet each specific task requirement. No transfer is
therefore predicted across these different re-sequencing variants.

Updating
Many WM training programs use tasks that involve continuous up-

dating of the to-be-remembered items in lists of unknown length. The
two updating paradigms used most frequently in training studies are n-
back and running span.

N-back. In n-back tasks, participants encounter a lengthy sequence of
items and must judge, for each item, whether it matches the item
presented n positions back. There are a number of ways in which n-back
tasks might be performed. Most accounts of n-back have focused on
how the potential set of memory items might be updated with
successive presentations. Alternatively, participants might repeatedly
break and then reconstruct bindings between item and order
information as each new item is presented.

Chatham et al. (2011) developed a neurally inspired model of n-
back. In line with the idea that n-back requires the development of a
novel routine, it has to be trained explicitly to perform the task with a
specific value of n. Juvina and Taatgen (2007) presented behavioral
evidence indicating that n-back may be supported by at least two dif-
ferent spontaneous strategies. One group of participants showed de-
creases in recognition accuracy at later positions. This was interpreted
and simulated in an ACT-R production system model as reflecting a
strategy of maintaining an active rehearsal set of n items, in combina-
tion with inhibition of items that drop out of the window. The re-
maining participants showed a flatter serial position function simulated
in an alternative model without rehearsal.

There are two key points here. The first is that, irrespective of the
specific cognitive processes required to support n-back, the task de-
mands are so unfamiliar and challenging that they cannot be met by
ready-to-go mechanisms. We argue that this necessitates the develop-
ment of a new routine specifying the set of coordinated processes that
need to be performed. Second, there is more than one way to perform n-
back and it looks as though individuals choose between alternative
strategies, and hence routines. We speculate that this variability in how
tasks are performed even without training may be a hallmark of the
unfamiliar complex tasks that benefit from the acquisition of new
routines during training. Similar findings have been reported both for
running span, in which participants may adopt either a passive strategy
or an active updating strategy (Hockey, 1973) and in backward span

(Norris et al., in preparation).
As with all complex WM tasks requiring novel routines, on-task

performance is expected to improve with training, and benefits should
extend to other similarly-structured tasks. Changes within stimulus
domain (e.g., letters, digits), the input modality of the memory items, or
the modality of response should not constrain transfer. In the case of
these task deviations, the routine requires a minor modification that is
unlikely to have repercussions on the higher-order structure of the
routine. Whether transfer will extend across different representational
domains (verbal, visuo-spatial) is harder to anticipate because it is
unknown whether n-back is supported entirely by domain-general
processes (in which case there should be cross-domain transfer) or in
part by domain-specific processes such as rehearsal (in which case
transfer may be limited to same-domain tasks). Transfer is not expected
between n-back tasks and complex span tasks because of the mismatch
in overall task structures and hence the routines they require. A similar
point was made by Shipstead et al. (2012): “learning (e.g., practice,
strategies) that occurs during n-back … training may simply not apply
to complex span tasks” (p. 646). Outcomes of a recent meta-analysis of
n-back training studies indicate that this is indeed the case (Soveri
et al., 2017).

Running span. In this paradigm, sequences of memory items of
unpredictable length are presented and participants attempt to recall
the last n items when the end of the list occurs (Jaeggi et al., 2008).
Continuous updating of the memory items to be potentially recalled is a
highly unfamiliar activity that can only be performed by developing a
new routine. Although there is no agreed model of running span, there
is consensus regarding the high cognitive demands of the task. Postle,
Berger, Goldstein, Curtis, and D'Esposito (2001) proposed that it
requires not only encoding, storage and rehearsal but also the
discarding of previously encoded items and repositioning.

The cognitive routine framework and other process-specific ac-
counts make different predictions regarding the transferability of
training between n-back and running span. Despite the common up-
dating requirement, no transfer is expected because the broad set of
processes required to perform each paradigm are so different. Whereas
n-back requires comparisons of each successive stimulus with the most
recently presented item, running span requires full serial recall of the
updated stimulus set following the unpredictable end of the sequence.
Any updating that takes place will therefore occur in the context of
completely different preceding and succeeding processes, yielding
routines with distinct higher-order structures. In contrast, according to
the process-specific account of Dahlin et al. (2008), both tasks employ a
common updating process that can be enhanced by training and will
therefore show transfer. The data they report are consistent with this
position, with transfer to an n-back task following training on running
span. However, this study lacked an active control condition for com-
parison with running span training, potentially over-estimating the
specificity of any training effects to updating in particular. To our
knowledge there have been no further tests of transfer of training across
these paradigms.

Study 1

The aim of this study was to investigate whether transfer following
WM training arises when specific task features are shared both by
training activities and transfer tasks and to discover the magnitude of
their transfer. We performed a meta-analysis of randomized controlled
trials (RCTs) of WM training that reported data on transfer to other WM
tasks. The analysis was restricted to studies including untrained tasks
that required the ordered recall of memory items in the context of
simple serial recall or more complex WM paradigms.

The extent to which transfer is mediated by common elements of
trained and untrained tasks was examined for the following task fea-
tures: stimulus input modality (auditory, visual), recall modality
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(spoken, manual), stimulus category (words, letters, digits for verbal
stimuli, objects and spatial locations for visuo-spatial stimuli), stimulus
domain (verbal, visuo-spatial), and recall paradigm (serial recall,
complex span, backward span). In each, transfer was measured under
two conditions: i) when the feature was present in both the untrained
task and at least one of the training activities (matched), and ii) when it
was present in the untrained task but not during training (unmatched).
If training induces changes in any of the cognitive processes associated
with specific features of the trained activity, transfer should be greater
when that feature is also present in the untrained WM task.

Analyzing the impact of feature overlap on transfer for multiple task
features provides a systematic means of identifying the cognitive pro-
cesses which undergo change during WM training. It also provides a
way of testing predictions from the cognitive routine framework and,
where predictions could not be made, of providing new information to
inform its theoretical refinement. The framework predicts that training-
related changes will be most substantial when participants have to
perform unfamiliar WM activities that require the development of novel
cognitive routines because these new routines can then be applied to
untrained tasks sharing the same requirements. The more unusual the
cognitive demands of a WM task and the less that they can be met by
existing mechanisms, the greater the potential for transfer.

Transfer was not expected to be influenced by whether the input
(memory items) or output (response) modalities were matched.
Consider the case of linguistic material. Words can be presented and
recalled through several modalities: we can recall verbal information by
either speaking it aloud or writing it down, and this information may
have initially been experienced in the form of spoken language, print,
objects or images. In comprehension, production and reading, we
readily translate between representations in these different modalities,
so it should be unnecessary to develop new routines to enable transfer
across modalities.

Predictions about whether transfer should depend on whether
training and transfer tasks involve stimuli belonging to the same cate-
gory are harder to derive. In the case of verbal stimuli there is sub-
stantial evidence that, irrespective of the input modality, verbal mate-
rial is encoded in phonological form only in verbal STM (Salamé &
Baddeley, 1982). We might therefore expect that transfer across verbal
tasks will be independent of whether the semantic category of stimuli in
trained and untrained tasks are matching, regardless of whether they
are words, nonwords, digits, or letters. On the other hand, individuals
engaging in extensive practice in verbal STM tasks clearly can develop
highly material-specific recoding strategies that boost memory span if
conditions permit (Chase & Ericsson, 1981). The gain in digit span was
achieved by recoding the list items into familiar chunks in long-term
memory (running times). We consider this strategy to be an example of
a cognitive routine developed to exploit the recodable properties of just
one category of stimuli. Category-specific transfer of this kind will ne-
cessarily be restricted to the trained stimulus category. However, it is
not entirely clear whether the current generation of WM training pro-
grams provide the same opportunities for developing such strategies as
these earlier studies of digit span training. In these, training typically
took place over many months, the participants were small in number
and highly motivated, and training was restricted to a single task or
highly similar variants. In contrast, contemporary training programs
usually involve multiple training activities with differing materials and
involved fewer than 20 h of training in total. The strategies developed
by individuals in complex WM tasks also appear to be relatively idio-
syncratic (Minear et al., 2016; Norris et al., in preparation). For these
reasons, the strength of transfer when the categories of verbal memory
items are matched is hard to anticipate.

For the studies included in this meta-analysis, the majority of the
visuo-spatial tasks involved recall of spatial locations. It was therefore
not possible to test within-domain transfer across alternative forms of
visuo-spatial stimuli. We can, however, ask whether transfer is medi-
ated by stimulus domain. In serial recall, predictions differ for simple

verbal and visuo-spatial material. Serial recall for verbal items is not
expected to require a new routine because it is fully served by the es-
tablished system for encoding items and order information of verbal
STM. A common verbal serial recall paradigm is therefore predicted to
generate minimal transfer. For spatial recall, robust transfer is expected
in light of the likely absence of an established visuo-spatial STM system
(Morey, 2018; Morey & Miron, 2016). It is therefore proposed that in
the course of training in the serial recall of spatial locations, partici-
pants develop new cognitive routines that allow them to improve per-
formance and diminish reliance on more general cognitive resources.
The detailed nature of these routines is not known but could, for ex-
ample, involve refining a spatial rehearsal strategy or developing task-
specific recoding strategies.

The final task feature is the WM paradigm itself. Transfer was
analyzed for verbal and visuo-spatial variants of three WM paradigms:
simple serial recall and two complex WM paradigms, complex span and
backward span. N-back and running span were also coded, although for
these paradigms it turned out that there were insufficient data for
analysis. We expect that novel routines will be developed during
training for visuo-spatial but not verbal serial recall, for complex span,
and for backward span. Substantial routine-mediated transfer is there-
fore predicted across task sharing these paradigms.

Method

Literature search and inclusion criteria
A flow diagram summarizing the process of selecting studies for

inclusion in this study is provided in Fig. 1. In March 2018 separate
comprehensive literature searches of the electronic databases Psych
Info and Google Scholar were carried out by two authors (DD, JH).
Studies were identified from searches of keywords and titles that con-
tained both working memory and training. The reference lists of studies
and reviews were also checked for additional potentially relevant stu-
dies. The searches were then collated and, after duplicates were re-
moved, the abstracts of the remaining studies were independently re-
viewed (SG, DD). If the abstract suggested that the study may be
appropriate for inclusion in the meta-analysis then the full-text article
of the study was evaluated against our inclusion criteria. These were:

(i) publication in a peer-reviewed journal;
(ii) randomized controlled trial of an adaptive WM training program;

(iii) restriction of training activities to only one of the following
complex WM paradigms with or without additional simple span
tasks: complex span, backward span, updating;

(iv) data for a minimum of 10 participants in the adaptive training
condition;

(v) inclusion of an active control training condition that involved ei-
ther non-adaptive WM training or a form of adaptive training with
a low WM load;

(vi) outcome measures provided quantitative data from which effect
sizes could be calculated for individual tasks. If not provided in the
publications the data were requested from the authors and in-
cluded if supplied;

(vii) assessments of untrained WM tasks both before training and
within 3 months of the completion of training.

Table 1 summarizes the characteristics of the selected studies.
Training groups ranged in size from 14 to 62 participants, with a mean
group size of 27 (median = 24) for adaptive WM training and 26
(median = 26) for the active control group. Participants were children
or adolescents in 11 studies and adults aged 18 to 60 years in the re-
maining nine studies. Two of these included a group of older partici-
pants (60+). Most studies involved a single group of participants
completing a single adaptive WM program. In four studies different
groups completed different WM training programs: updating and
Cogmed RM (Ang, Lee, Cheam, Poon, & Koh (2015); complex span and
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running span (Foster et al., 2017) complex span and simple span
(Harrison et al. (2013); n-back and complex span (Minear et al., 2016).
The nature of the active control conditions varied across studies. In 13
studies the control group received a non-adaptive version of the WM

training program that was fixed at a level of either low memory load or
no memory load. The remaining studies either employed adaptive
programs that either did not tax WM at all (e.g., visual search training)
or other activities assumed to place only low demands on WM (e.g.,

Fig. 1. PRISMA (Liberati et al., 2009) flow diagram for the selection of studies for the meta-analysis.

Table 1
Characteristics of the selected studies in Study 1.

Study Sample Training program (n) Active control (n)

Ang et al. (2015) Children with low WM, 7–8 years Updating (32), Cogmed RM (25) No memory load updating (28)
Bergman Nutley et al. (2011) Children, 4 years Cogmed JM (24) Non-adaptive Cogmed (26)
Bigorra et al. (2016) Children with ADHD, 7–12 years Cogmed RM (30 Non-adaptive Cogmed (31)
Brehmer et al. (2012) Younger (20–30 years) and older (60–70 years) adults Cogmed QM (54) Non-adaptive Cogmed (45)
Chacko et al. (2013) Children with ADHD, 7–11 years Cogmed RM: (44) Non-adaptive Cogmed (41)
Chooi and Thompson (2012) Adults N-back (15) Non-adaptive 1-back (26)
Dentz et al. (2017) Adults with ADHD, 18–63 years Cogmed QM (23) Non-adaptive Cogmed (21)
Dunning and Holmes (2014) Adults 18–21 years Cogmed RM (15) Non-adaptive Cogmed (15)
Foster et al. (2017) Adults 18–35 years, low or high span Complex span (40), running span

(39)
Adaptive visual search (39)

Gray et al. (2012) Adolescents with severe learning difficulties and ADHD,
12–17 years

Cogmed RM (32) Adaptive mathematics (20)

Harrison et al. (2013) Adults Complex span (21), simple span
(17)

Adaptive visual search (17)

Henry et al. (2013) Children, 8–10 years Complex span (18) Processing speed (18)
Hitchcock and Westwell (2017) Children, 10–13 years Cogmed RM (50) Non-adaptive Cogmed (44)
Karbach et al. (2015) Children, 7–9 years Complex span (14) Non-adaptive Cogmed (14)
Kundu et al. (2015) Adults, 18–35 years N-back (15) Adaptive computer game (15)
Lawler-Savage and Goghari (2016) Adults, 30–60 years N-back (27) Adaptive processing speed (30)
Metzler-Baddeley et al. (2016) Adults, mean age 26 years Cogmed QM (20) Non-adaptive Cogmed (20)
Minear et al. (2016) Adults, mean age 19 years N-back (31), complex span (32) Adaptive video game (26)
Passolunghi and Costa (2016) Children, 5 years Complex span(15) Adaptive numeracy training (15)
Redick et al. (2013) Adults, 18–30 years N-back (24) Adadptive visual search (29)
Thompson et al. (2013) Adults, 18–45 years Updating (20) Adaptive object tracking (19)
Van der Molen et al. (2010) Adolescent with intellectual disabilities Complex span (41) Non-adaptive version same task (26)
von Bastian et al. (2013) Adults 18–35 years & 61–77 years Complex span (61) Adaptive non-memory (62)
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mathematics training, video games).

Feature coding
Each untrained WM task was paired with a single WM task in the

training program and both tasks were then coded according to five
categories of feature3: stimulus type (digits, letters, words, objects,
spatial locations), stimulus domain (verbal, visuo-spatial), stimulus
modality (auditory, visual), response modality (spoken, manual), and
paradigm (serial recall, complex span, and backward span). The use of
the serial recall category was restricted to simple serial recall tasks. The
procedure for matching the trained task with each untrained task
within each study was as follows.

1. Match on both paradigm and stimulus domain (e.g., verbal & com-
plex span).

2. If 1 is not possible, match on paradigm alone (e.g., complex
memory, or serial recall).

3. If 2 is not possible or there are multiple trained tasks for 2, match on
the trained task with the greatest total number of other matched
features.

4. If two or more training activities are equivalently matched ac-
cording to the above criteria, select a single representative trained
task for matching.

For some tasks, it was necessary to code multiple features within a
single category. For example, in dual n-back tasks each stimulus item
consists of both a verbal and visuo-spatial stimulus (e.g. Kundu et al.,
2013). In total, 113 pairs of trained (T) and untrained (UT) WM tasks
met the task selection criteria. Full feature coding for each of these pairs
with details of the trained and untrained tasks and sample sizes is re-
ported in Gathercole, Dunning, Holmes, and Norris (in press). For each
task pair, each feature was coded as either not present (empty cell),
present in the trained task only (T), present in the untrained task only
(UT), or present in both tasks (T&UT). In the four studies in which
different groups performed different WM training programs, each un-
trained task was matched with the closest task from each of the dif-
ferent training programs. For the Ang et al. (2015) study, for example,
backward letter span performance was analyzed separately for each of
the following combinations of groups: adaptive/ non-adaptive Cogmed
WM training, and adaptive/ non-adaptive running span training.

Meta-analytic procedure
The following data were recorded for each transfer task in each

study: the number of participants in the adaptive WM training and the
active control groups, the means and SDs for the two groups pre- and
post-training. All analyses were conducted using version 3.3 of the
Comprehensive Meta-Analysis program (Borenstein, Hedges, Higgins, &
Rothstein, 2005). Confidence intervals were calculated for Cohen’s d
effect sizes (Cohen, 1988).

Due to variation in studies (e.g. type of training program used, age
of sample, outcome measures used) a random effects model was chosen
for all analyses. For each analysis, outcomes with a standard residual
value greater than 2 were classified as outliers and excluded (Hedges &
Olkin, 1985). The following effect sizes were excluded: Brehmer et al.
(2012) – stimulus type (spatial location matched), stimulus domain
(verbal matched, visuo-spatial matched), response modality (spoken
unmatched, all), backward span (verbal matched, all); Chooi &
Thompson (2012) – complex span (verbal unmatched, all). For serial
recall, complex span, and backward span untrained tasks, data were
analyzed separately for the conditions in which the stimuli were both
verbal, both visuo-spatial, or crossed the two domains (verbal trained to
visuo-spatial untrained and vice versa) if there were at least two effect

sizes in each case. A further set of analyses was performed for each
paradigm summed across the different domain conditions.

Analysis plan
For each feature separate analyses were conducted for the matched

conditions, the unmatched feature conditions, and the summed com-
parisons across both categories (‘all’). Cohen’s d effect sizes were cal-
culated for the pre- to post-training gain for the adaptive relative to the
control group (difference between the gain scores for the two groups/
summed SD), with confidence intervals, z-scores and p values for the
effect sizes. The criterion was significance was set at .05. By convention,
an effect size d of .2 is considered small, .5 moderate and .8 large.
Measures of heterogeneity (Q, p, I2) and publication bias (Eggers) were
also calculated. For I2 estimates, a value of 0% equates to no hetero-
geneity, 25% to low heterogeneity, 50% to moderate heterogeneity and
75% to high heterogeneity (Higgins & Green, 2008).

Moderator analyses tested whether feature match had a significant
impact on the magnitude of effect size. Feature match (matched, un-
matched) was coded as a categorical moderator variable in each re-
gression model and its influence on effect size was assessed for the
summed matched and unmatched data for each feature. The critical
outcomes of the moderator analyses are the p value and R2. The cri-
terion for significance was set at p = .05. In order to test further whe-
ther the effect size (transfer) for matched conditions differs for verbal
and visuo-spatial material, the matched feature data were summed
across the two domains for each of the serial recall and complex span
paradigms. The significance of domain as a moderator variable for
matched effect sizes was tested for each paradigm.

Results

The results of the analyses are summarized in Tables 2–4
(Supplementary materials). Across all 113 task pairs in the analysis, the
mean effect size (d) was .42, SD = 0.54. The analyses assessed the
statistical significance of the effect sizes according to each matched and
unmatched feature, and of feature match condition as a moderator of
transfer. The patterns of significance for each feature are summarized in
Table 5. It should be noted that for three features the number of cases is
less than 10, the recommended minimum number of cases for mod-
erator analysis (Higgins & Green, 2008). These features are indicated by
parentheses in Table 5. It should be noted that in each case the number
of effect sizes included in the moderator analysis was greater than 18.

Digits
The effect size was large for matched task pairs (d = 0.994,

p < .001) and smaller but significant for unmatched pairs (d = 0.357,
p < .01). Match was a significant moderator of transfer (p = .005).

Letters
Effect sizes were small but significant both when the stimuli were

matched across the trained and untrained tasks (d = 0.301, p < .05)
and when they were not (d = 0.337, p = .046). Match was not a sig-
nificant moderator of transfer (p > .05).

Words/nonwords
The effect size was moderate and significant for matched pairs

(ES = 0.568, p < .05) and nonsignificant for unmatched pairs
(d = 0.294, p > .05). Match was not a significant moderator of transfer
(p > .05).

Objects
The effect sizes were moderate and comparable in magnitude both

when the stimuli were matched (d = 0.575, p < .05) and when they
were unmatched (d = 0.403, p < .05). Match was not a significant
moderator of transfer (p > .05).

3 Feature coding was conducted independently by SG and DD/ JH, with dif-
ferences resolved by discussion.
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Spatial location
The effect size was moderate for matched task pairs (d = 0.551,

p < .001) and nonsignificant when the trained task for unmatched
pairs (d = 0.360, p > .05). Match was not a significant moderator of
transfer (p > .05).

Stimulus domain

Verbal
The effect size was moderate in magnitude and highly significant

when both tasks were verbal (d = 0.455, p < .001) and non-significant
when the domain did not match (d = 0.018, p > .05). Match was a
significant moderator of transfer (p < .004).

Visuo-spatial
With matched spatial material the effect size was significant and

moderate (d = 0.470, p < .001). It remained moderate in magnitude
but was nonsignificant when the stimuli were not matched across tasks
(d = 0.643, p > .05). Match was not a significant moderator of transfer
(p > .05).

Stimulus modality

Auditory
The effect size was large when both tasks employed auditory pre-

sentation (d = 0.470, p < .001) and was nonsignificant when they did
not (d = 0.128, p > .05). Match was not a significant moderator of
transfer (p > .05).

Visual
The effect size was large and significant when both tasks employed

visual presentation (d = 0.459, p < .001). There were no data for
cross-modal task pairs.

Response modality

Spoken
The effect size was moderate in magnitude both when both tasks

employed spoken recall and when they did not (d = 0.615 and .401,
respectively, p < .001). Match was not a significant moderator of
transfer (p > .05).

Manual
The effect size was significant and moderate in magnitude when

spoken recall at transfer was combined with manual recall at training
(d = 0.463, p < .001). No data are available for cross-modal task pairs.

Serial recall

Verbal
The effect size was moderate and significant for matched pairs

(d = 0.508, p < .001) and nonsignificant for unmatched pairs
(d = 0.173, p > .05). The match significantly moderated transfer
(p < .05).

Visuo-spatial
The effect size was very large and significant for matched pairs

(d = 1.054, p < .001) and nonsignificant for unmatched pairs

Table 2
Outcomes of the meta-analysis of matched features on transfer.

Matched feature at training

Intervention effects Heterogeneity

Feature category Transfer feature k N n d SE 95% CI z p Q I2 p

Stimulus type
Digits 7 7 421 0.994 0.194 0.615–1.374 5.132 < .001 19.397 69.068 < .001
Letters 5 10 245 0.301 0.142 0.023–0.578 2.123 0.034 4.750 15.791 0.314
Words/ nonwords 3 4 115 0.568 0.273 0.033–1.103 2.080 0.038 3.952 49.399 0.139
Objects 2 2 85 0.575 0.222 0.140–1.010 2.590 0.010 0.073 0.000 0.787
Spatial location 14 26 774 0.551 0.097 0.362–0.740 7.088 < .001 18.770 0.130 0.130

Stimulus domain
Verbal 19 48 1058 0.455 0.069 0.319–0.591 6.546 < .001 22.691 16.268 0.251
Visuo-spatial 14 40 681 0.470 0.078 0.316–0.624 0.470 < .001 45.542 69.259 < .001

Stimulus modality
Auditory 12 21 638 0.470 0.096 0.283–0.658 4.917 < .001 14.924 26.293 0.186
Visual 21 82 1058 0.459 0.074 0.315–0.603 6.231 < .001 26.501 24.532 0.150

Response modality
Spoken 2 5 68 0.615 0.253 0.119–1.110 2.431 0.015 0.862 0.000 0.353
Manual 18 78 1019 0.463 0.077 0.312–0.614 6.021 < .001 26.346 27.883 0.121

Serial recall
Verbal 9 9 509 0.508 0.095 0.322–0.694 5.355 < .001 8.575 6.709 0.379
Visuo-spatial 10 10 517 1.054 0.205 0.652–1.456 5.142 < .001 39.318 77.110 < .001
All 11 19 611 0.709 0.111 0.490–0.927 6.357 < .001 42.525 60.024 < .001

Complex span
Verbal 6 8 325 0.544 0.175 0.201–0.888 3.110 0.002 10.580 52.743 0.060
Visuo-spatial 3 4 108 1.010 0.272 0.476–1.544 3.709 < .001 3.471 42.378 0.176
Cross-domain 3 4 154 0.119 0.267 - 0.405–0.643 0.445 0.656 4.989 59.911 0.083
All 7 16 423 0.540 0.153 0.241–0.840 3.540 < .001 33.025 66.692 0.001

Backward span
Verbal 7 7 381 0.778 0.120 .542–1.013 6.470 < .001 7.282 18.722 0.287
Cross-domain 2 2 161 1.294 0.368 0.572–2.016 3.514 < .001 4.296 76.722 0.038
All 7 9 381 0.901 0.143 .621–1.181 6.309 < .001 18.853 57.567 0.016

k = number of studies; N = number of effect sizes; n = number of participants
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(d = 0.138, p > .05 The match was a significant moderator of transfer
(p < .001). As there was only one cross-domain matched effect size for
serial recall, this condition could not be analyzed.

In order to test whether transfer differed significantly across verbal
and spatial tasks, a further moderator analysis was performed on the
matched feature data across all serial recall tasks with domain entered
as a categorical moderator variable. Domain was a significant mod-
erator of effect size, Q = 41.473, I2 = 61.688, p < .001, demonstrating
greater transfer for matched pairs for spatial than verbal serial recall.

All
The effect size was moderate and significant for matched pairs

(d = 0.709, p < .001) and nonsignificant for unmatched pairs
(d = 0.158, p > .05). Match was a significant moderator of transfer
(p < .001).

Complex span

Verbal complex span
The effect size was moderate and significant for matched pairs

(d = 0.544, p = .002) and nonsignificant for unmatched pairs
(d = 0.046, p > .05). Match was a significant moderator of transfer
(p < .005).

Visuo-spatial complex span
The effect size was moderate and significant for matched pairs

(d = 1.010, p < .001) and nonsignificant for unmatched pairs
(d = 0.183, p > .05). Match was a significant moderator of transfer
(p = .003).

In order to test whether transfer differed significantly across verbal

and visuo-spatial spatial tasks, a further moderator analysis was per-
formed on the matched feature data with domain entered as a catego-
rical moderator variable. Domain was not a significant moderator of
transfer, Q = 17.706, I2 = 58.487, p > .05.

Cross-domain
The effect size was nonsignificant (d = 0.119, p > .05).

All
The effect size was moderate for matched pairs (d = 0.540p <

.001) and very small for unmatched pairs (d = 0.112, p > .05). The
match was a significant moderator of transfer (p < .001).

Backward span

Verbal
The effect size was moderate and significant for matched pairs

(d = 0.778, p < .001) and nonsignificant for unmatched pairs
(d =0 .144, p > .05). Feature match was a significant moderator of
transfer (p < .05).

Spatial
There were insufficient data for analysis in this condition.

Cross-domain
The effect size was large and significant for matched pairs

(d = 1.294, p < .001).

All
The effect size was moderate and significant for matched pairs

Table 3
Outcomes of the meta-analysis of unmatched features on transfer.

Unmatched feature at training

Intervention effects Heterogeneity

Feature category Transfer feature k N n d SE 95% CI z p Q I2 p

Stimulus type
Digits 10 15 564 0.357 0.136 0.091–0.623 2.631 0.009 21.545 58.228 0.010
Letters 3 9 233 0.337 0.169 0.006–0.668 1.998 0.046 3.019 33.752 0.221
Words/nonwords 8 18 482 0.294 0.159 −0.017 to 0.606 1.855 0.064 19.026 63.209 0.008
Objects 3 22 136 0.403 0.174 0.062–0.744 2.316 0.021 0.571 0.000 0.752
Spatial location 5 10 286 0.360 0.411 −0.446 to 1.166 0.875 0.382 42.027 90.482 < .001

Stimulus domain
Verbal 5 14 246 0.018 0.136 −0.248 to 0.283 0.130 0.897 4.382 8.711 0.357
Visuo-spatial 4 11 257 0.643 0.423 −0.185 to 1.472 1.522 0.128 29.480 89.824 < .001

Stimulus modality
Auditory 2 6 121 0.128 0.288 −0.437 to 0.693 0.443 0.658 2.394 58.236 0.658
Visual

Response modality
Spoken 12 26 672 0.401 0.103 0.199–0.602 3.899 0.000 18.192 39.533 0.077
Manual

Serial recall
Verbal 6 11 305 0.173 0.150 −0.122 to 0.468 1.151 0.250 8.219 39.167 0.145
Visuo-spatial 6 10 279 0.138 0.121 −0.990 to 0.376 1.140 0.254 4.810 0.000 0.440
All 10 21 490 0.158 0.077 0.008–0.308 2.064 0.039 21.254 20.014 0.215

Complex span
Verbal 8 11 416 0.046 0.103 −0.155 to 0.248 0.452 0.652 7.340 4.636 0.394
Visuo-spatial 7 16 379 0.183 0.103 −0.019 to 0.386 1.776 0.076 1.467 0.000 0.962
Cross-domain
All 12 27 649 0.112 0.072 −0.029 to 0.253 1.562 0.118 9.728 0.000 0.782

Backward span
Verbal 3 3 178 0.144 0.153 −0.315 to 0.644 0.673 0.501 5.113 60.885 0.078
Cross-domain
All 4 4 239 0.354 0.258 −0.152 to 0.860 1.372 0.170 11.298 73.446 0.010

k = number of studies; N = number of effect sizes; n = number of participants.
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(d = 0.901, p < .001) and nonsignificant for unmatched pairs (see
verbal backward span above). Feature match was a significant mod-
erator of transfer (p < .05).

One limitation of the coding method is that although individual
features are coded and analyzed independently of one another, matched
features are often highly or indeed perfectly correlated with one an-
other. For example, a pair of tasks involving spatial stimuli will ne-
cessarily also be coded as visuo-spatial. As a consequence, it is not al-
ways possible to identify which matched task features are critical to
transfer. We therefore examined whether any of the matched features
found to be significantly associated with substantial transfer in the
moderator analysis could be explained in terms of another correlated
feature that could potentially be the origin of transfer.

There were two such features. One is digits . Matched digits yielded
a large transfer effect (d = 0.990). On closer examination it was found
that all seven of the task pairs with matched digits employed a back-
ward span paradigm which was also associated with a high level of
transfer effect (d = 0.901). A second confounded feature is verbal
material. For this feature the transfer effect was smaller, but still highly
significant (d = 0.455). This feature too was associated with recall
paradigm: of the 50 matched verbal pairs, 27 also had shared the same
paradigm, whereas none of the 14 unmatched verbal untrained tasks
did. Thus both for digits and for verbal material more generally, it is
possible that the the significant levels of transfer observed were con-
sequences of matched paradigms rather than the stimulus items.

Discussion

The meta-analysis evaluated the features associated with transfer
within WM in RCTs of adaptive WM training with active control
training conditions. Across the 24 studies furnishing data for 113 pairs
of trained and WM untrained tasks, the strength of transfer was small to
moderate (d = 0.42). The magnitude of transfer was associated with

some matched features but not with others. Transfer was high when the
tasks employed the same paradigm - either serial recall, complex span,
or backward span paradigms. Paradigms differed in the impact of do-
main on transfer. For complex span, transfer was substantial when both
the untrained and trained tasks employed material in the same domain
(either verbal or visuo-spatial), but was absent when the domains dif-
fered across the task pairs. For serial recall, transfer was very large for
spatial material, and reduced, although still significant, for verbal
material. In the case of backward span, transfer was large both for
verbal tasks and for task pairs that crossed domains. In contrast, the
following more specific features did not generate transfer: stimulus
category (letters, words/ nonwords, objects, locations), the stimulus
domain (verbal, visuo-spatial), input modality (auditory, visual), and
output modality (manual, spoken). Transfer was observed when the
memory items were either digits or verbal material more generally,
although this could reflect the confounding influences of shared para-
digms.

The findings provide broad support for the predictions of the cog-
nitive routine framework. By this account, substantial transfer fol-
lowing WM training occurs only when both the trained and untrained
activities impose the same unfamiliar task demands that are not sup-
ported by existing WM sub-systems. In complex span, distractor activ-
ities are interpolated between the presentation of items required for
subsequent serial recall. This presents a major challenge for the main-
tenance and retrieval of stimulus presentations in the face of near-
continuous distraction that must be addressed by engaging additional
cognitive processes either to prevent decay (Barrouillet et al., 2009) or
to minimize interference caused by encoding distractor items (Oberauer
et al., 2012). It is this novel schedule that we suggest constitutes a
cognitive routine, and its construction and refinement represents the
process of acquiring a new cognitive skill.

The present findings tell us two important things about the structure
and generalizability of a complex span routine. First, high levels of

Table 4
Outcomes of the meta-analysis collapsed across feature match condition on transfer and the feature moderator analysis.

All features Feature moderator analysis

Intervention effects Heterogeneity

Feature category Transfer feature k N n d SE 95% CI z p Q I2 p R2 p

Stimulus type
Digits 13 22 985 0.619 0.139 0.347–0.892 4.459 < .001 67.416 76.267 < .001 0.490 0.003
Letters 7 19 478 0.306 0.099 0.113–0.500 3.111 0.002 7.774 9.953 0.353 0.000 0.163
Words/nonwords 11 22 597 0.361 0.134 0.098–0.623 2.660 0.007 24.006 58.344 0.008 0.090 0.362
Objects 4 24 221 0.468 0.137 0.200–0.737 3.420 0.001 1.015 0.000 0.908 0.000 0.543
Spatial location 161 36 810 0.516 0.125 0.271–0.761 4.122 < .001 61.205 70.591 < .001 0.020 0.462

Stimulus domain
Verbal 23 62 1185 0.370 0.070 0.232–0.508 5.253 < .001 36.101 33.521 0.054 0.690 0.004
Visuo-spatial 16 51 912 0.531 0.111 0.314–0.748 4.798 < .001 44.425 61.733 < .001 0.090 0.401

Stimulus modality
Auditory 13 27 759 0.416 0.094 0.231–0.601 4.408 < .001 20.478 36.517 0.084 0.400 0.134
Visual

Response modality
Spoken 14 31 738 0.422 0.094 0.238–0.607 4.486 < .001 19.732 34.118 0.102 0.080 0.482

Serial recall
Verbal 14 20 814 0.371 0.093 0.189–0.554 3.985 < .001 22.742 38.439 < .001 0.830 0.044
Visuo-spatial 14 20 826 0.732 0.18 0.380–1.084 4.076 < .001 82.633 81.847 < .001 0.530 < .001
All 16 40 910 0.445 0.081 0.286–0.604 5.471 < .001 95.801 63.466 < .001 0.560 < .001

Complex span
Verbal 12 19 407 0.263 0.117 .034–0.492 2.253 0.024 29.541 55.994 0.005 0.870 0.002
Visuo-spatial 9 20 447 0.390 0.132 0.130–0.650 2.942 0.003 17.892 49.698 0.036 1.000 < .001
All 15 43 859 0.320 0.083 0.157–0.483 3.854 < .001 60.968 55.715 < .001 0.290 0.021

Backward span
Verbal 10 10 559 0.579 0.146 0.294–0.865 3.973 < .001 24.252 62.889 0.004 0.800 0.025
All 11 13 620 0.724 0.146 0.438–1.010 4.961 < .001 44.09 72.783 < .001 0.41 0.026

k = number of studies; N = number of effect sizes; n = number of participants.
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transfer between complex span tasks indicate that the routine can be
readily adapted to accommodate novel interpolated activities. In every
case included in the meta-analysis, these activities differed between the
trained and untrained tasks. Combinations included processing the
meaning of sentences and mental arithmetic (Harrison et al., 2013),
sentence verification and counting (Henry, Messer, & Nash, 2014),
symmetry and orientation judgments (Harrison et al., 2013), lexical
decision and arithmetic calculations (Minear et al., 2016), and vowel/
consonant and odd/even judgments (von Bastian & Oberauer, 2013a).
The processes required to accomplish these activities are highly specific
and have relatively little in common. Transfer across these distractor
activities indicates that if the high-level structure of alternating sti-
mulus presentation and distractor activity is preserved, distractor sub-
routines can be substituted one for another with relative ease.

Second, the representational domain of the memory items limits the
generalizability of the routine. There was no transfer for complex span
task pairs that crossed stimulus domain (d = 0.12) although it was
substantial when the task pairs shared the stimulus domain (d = 0.66).
This suggests that domain-specific encoding and/ or maintenance pro-
cesses cannot readily be adapted to fit a complex span task drawn from
another domain. This contrasts with the subroutines for handling dis-
tractor activities, which do show a high degree of content generality.
The implication is that the domain influences more than just the local
elements (subroutines) of the routine, preventing modular substitutions
of one for another. This may not be too surprising given the different
nature of stimulus maintenance processes for verbal and visuo-spatial

material. Rehearsal depends on the covert control of the relevant do-
main-specific action production systems - of articulation in the case of
verbal rehearsal (Caplan, Rochon, & Waters, 1992; Waters et al., 1992)
and of eye movements for spatial rehearsal (Pearson et al., 2014;
Pearson & Sahraie, 2003). A consequence of the distinctiveness of these
underpinning systems may be that the two forms of rehearsal cannot be
readily substituted for one another. Rehearsal may also be interleaved
with the periods of distractor activity throughout the trial (Barrouillet
et al., 2009), influencing multiple points during the execution of the
routine. In this way, informational domain may directly shape the
broad structure pf the routine, limiting its transfer to complex span
tasks embedded in the same domain.

Backward span is another complex WM task that is not readily
served by existing mechanisms in STM, as a consequence the forward-
going representation of serial order in STM (Hurlstone et al., 2014).
One of the ways in which the task can be accomplished is by peeling off
the last item across successive forward retrievals of diminishing length
(Conrad, 1965; Anders & Lillyquist, 1971; Norris et al., in preparation).
Such a strategy would require the establishment of a new routine to
coordinate the multiple processes required to achieve the end goal. The
present findings demonstrate high levels of transfer across backward
span tasks, both for verbal stimuli and for cross-domain task pairs. It is
tempting to conclude that this demonstrates the application of a
backward recall routine to a novel task on this basis. However, in the
present dataset the degree of generalization captured by the task pairs
in the verbal condition is very limited. In the six of the seven task pairs,
the trained and untrained tasks were identical (with digits as memory
items), differing only in the modality of response (manual responding
during training, spoken recall at transfer). The large degree of cross-
modal transfer in backward span suggests that higher-order features of
the routine can be adapted to fit new stimuli, although here the data are
restricted to just two task pairs. The extent to which the high-order
structure of the backward span routine can be generalized across ma-
terials has therefore yet to be fully established.

Although tests of visuo-spatial serial recall such as Corsi blocks and
spatial span are considered to tap STM, the conclusion of the task
analysis was that there is not a highly developed STM system for storing
visuo-spatial material (Alloway et al., 2006; Kane et al., 2004; Pearson
et al., 2014; Thompson et al., 2006). We therefore speculate that rou-
tines may be developed and refined for tasks involving the recall of
spatial locations. The present findings of substantial transfer across
visuo-spatial serial recall tasks are consistent with this position. As the
great majority of matched task pairs employed spatial locations as the
memory items, the potential generalizability of this routine to other
visuo-spatial characteristics is unknown.

The cognitive routine framework contrasts with other process-spe-
cific accounts of WM training in generating predictions not only about
the features that generate transfer but also those that will not. One
prediction is that verbal serial recall tasks will not require a new routine
because they are already supported directly by specialized system of
verbal STM. Transfer was indeed significantly lower for verbal than
visuo-spatial recall (d = 0.51 vs .84). However, it extended across dif-
ferent stimuli (letters, digits, words), suggesting that it does not origi-
nate from material-specific mnemonic strategies. So, where does it
come from? Not, we suggest, from new routines. The training benefits
may instead reflect subtle adjustments and re-calibration of the order-
based encoding system already in place in verbal STM. These could
have two possible sources. One is the optimization of the routines to
task-specific characteristics likely to generalize to untrained tasks in the
same study. An example is the temporal properties of the task such as
the stimulus presentation rate and time allowed for recall.
Alternatively, the extended practice may lead to subtle fine-tuning of
the core mechanisms themselves.

Minimal levels of transfer were also predicted for local features of
tasks such as the stimulus presentation modality and the response
format as these are likely to be handled by specialized and highly

Table 5
Summary of significance of effect sizes (transfer) as a function of feature match.

Feature
category

Transfer feature Feature match Feature as a
moderator

Matched Unmatched

Stimulus type
Digits *** ** **

Letters * * (–)
Words/
nonwords

* – –

Objects * * (–)
Spatial location *** – –

Stimulus domain
Verbal *** – **

Visuo-spatial *** – –

Stimulus modality
Auditory *** – –
Visual ***

Response modality
Spoken * *** –
Manual ***

Serial recall
Verbal *** – *

Visuo-spatial *** – ***

All *** * ***

Complex span
Verbal ** – **

Visuo-spatial *** – (***)
Cross-domain –
All *** – *

Backward span
Verbal *** – *

Cross-domain ***

All *** – *

Cases < 10 for symbols shown in parentheses (see text for details).
– p > .05.

* p < .05.
** p < .01.
*** p < .001.
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modularized systems for the processing of inputs and outputs. The
present findings provide strong support for this position: neither a
common input nor output modality had any impact on transfer. It was
predicted that within the verbal domain at least, the specific category of
stimuli (letters, digits, etc.) will not modulate transfer because in-
formation in verbal STM is represented in a phonological rather than
semantic form (Salamé & Baddeley, 1982). There was partial support
for this prediction: for letters and words/nonwords a category match
across tasks did not generate transfer. For digits, transfer was high. This
could be because participants developed digit-specific recoding strate-
gies during training, as reported in previous studies of lengthy intensive
training in digit span (Ericsson & Simon, 1981). However, in each of the
task pairs included in this analysis, both tasks also employed a back-
ward span paradigm and this is an alternative and possibly more
plausible source of routine-mediated transfer. Further data are needed
to resolve this issue.

Study 2

The broad set of training paradigms included in the meta-analysis
provide a more comprehensive analysis of the boundary conditions to
transfer within WM than any single study could provide. However,
some of the strengths of the approach are also limitations. One of these
is the heterogeneity of the studies included in the meta-analysis: there
was variation in the training activities, training regimens, the transfer
tests, the active control conditions, the participants, and sample sizes.
While this forms a sound basis for the generalization needed for broad
theoretical analysis, it cannot provide the more detailed level of ana-
lysis needed to test the cognitive routine framework as an explanation
for the patterns of transfer observed in individual studies.

A second limitation is the relatively coarse level of analysis yielded
by the independent coding and analysis of individual features of the
pairs of trained and untrained tasks selected to be most closely mat-
ched. We have already seen that this can generate potentially mis-
leading results: in all cases in which both tasks in the meta-analysis
employed digits as the memory items, they also happened to be back-
ward span tasks, but the two features were analyzed independently.
Whether the robust levels of transfer observed in these data is mediated
by the common stimulus category, the complex WM paradigm, or the
combined impact of both is therefore indeterminate. Other kinds of
interactions between matched and unmatched features that influence
transfer could also go undetected in this method. For example, we
cannot using this method determine whether cross-paradigm transfer
occurs only under conditions of matched stimulus features such as
domain.

One way of addressing these limitations is to examine whether the
cognitive routine framework can successfully account for the transfer
found with a single WM training program. This allows a more fine-
grained analysis of the impact of combinations of features on transfer.
We adopted this complementary approach in the present training study.
In this, we re-analyzed a dataset from two studies of children (n = 106)
who had completed either a single adaptive or non-adaptive WM
training program and four WM transfer tasks (Dunning et al., 2013;
Holmes et al., 2009). The children were selected on the basis of low
scores on complex WM tasks. These studies were not included in the
meta-analysis and therefore provide an independent evaluation of the
cognitive routine framework. Participants in the Holmes et al. study
were excluded from Study 1 because they were not randomly allocated
to the adaptive and non-adaptive training conditions; instead, they
were recruited sequentially (adaptive first, then non-adaptive) using
identical recruitment criteria. Dunning at al. reported analyses only for
composite scores that combined pairs of transfer tests (e.g., digit and
word span for verbal STM). We chose not to incorporate previously
unreported descriptive statistics for these measures in Study 1, re-
taining the data instead for the present independent test of transfer
patterns.

Participants completed either the standard adaptive or non-adaptive
form of Cogmed RM Working Memory Training (http://www.cogmed.
com). It provides training on eight WM activities drawn from a larger
set of 12 activities on each daily session for at least 20 daily sessions.
Further information on Cogmed RM training activities is provided in
the Appendix. The following transfer tests were completed before and
after training. The WM measures were taken from the Automated
Working Memory Assessment (Alloway, 2007) and consisted of tests of
verbal and visuo-spatial serial recall (digit span and dot matrix),
backward digit span and Mr. X, a test of visuo-spatial complex span. The
Wechsler Abbreviated Scales of Intelligence (WASI: Wechsler, 1999)
was also administered. This consists of four subtests: Similarities and
Vocabulary (from which a verbal IQ composite is formed), and Matrix
Reasoning and Block Design (performance IQ). Analyses were based on
standard scores for each measure.

The cognitive routine framework was used to generate predictions
based on analysis of the profile of matched and unmatched features in
this study, guided by the coding protocol employed in the meta-ana-
lysis. Consider first dot matrix, a test of serial recall of successively
highlighted spatial locations in cells in a 4 × 4 grid. This tasks differs
only in superficial aspects of the spatial layout multiple from spatial
STM activities trained daily in Cogmed RM including Data Link, in
which spatial elements such as colored panels illuminate in sequence.
The coded features for dot matrix and Data Link were identical. In the
meta-analysis, combinations of spatial recall tasks such as these gen-
erated very high levels of transfer (d = 1.12). We propose that this
reflects the development and refinement of a routine for the serial recall
of spatial material. A high degree of transfer was therefore expected for
the dot matrix task.

The digit span transfer task involved the spoken serial recall tasks of
spoken items. Its closest match, the Decoder task, was completed on
each of the first five days of training. Sequences of letters were pre-
sented auditorily with recall by mouse selection of each item from a
choice of three items at each position. The two tasks therefore differed
on two features: stimulus category (digits vs letters) and response
modality (spoken vs mouse click). These differences would not be ex-
pected to have any impact on ease of the phonological encoding of
items and their order in verbal STM, representing input and output
conditions that are widely used in studies of verbal serial recall.
Findings from the meta-analysis reported in Study 1 indicate transfer
across verbal serial recall tasks that although moderate in magnitude
and highly significant (d = 0.51), is markedly smaller than that for
visuo-spatial serial recall. We have argued that this transfer is not
mediated by the development of a new routine as verbal STM is already
well-established but instead by fine-tuning of STM processes within this
system, possibly to optimize task fit. In the present study, a small to
moderate transfer effect is therefore predicted for digit span.

The untrained backward digit span task involved auditory pre-
sentation and spoken recall. Two daily Cogmed RM tasks also require
backward recall of digits. In Input Module with Lid the response pad is
not displayed until recall, and in Input Module without Lid it was
present during presentation. The trained and untrained tasks differed
only in response modality (spoken vs mouse selection). Transfer levels
were found to be high for verbal backward span tasks (d = 0.78) in the
meta-analysis. The framework predicts high levels of transfer across
backward span tasks because the unusual nature of the task demands
will require the development of a new routine. We note that because in
this study the trained and untrained tasks are distinguished only by the
mode of recall, transfer across tasks would represent very near transfer
only. In this respect, as in the majority of previous studies, this does not
provide a particularly strong test of routine-mediated transfer across
backward span tasks.

Mr. X is a complex span task in which participants judge whether
pairs of figures are holding a ball in the same hand as one another for
each of a series of displays, and then remember the location of the ball
held by the figure on the right which can appear at one of six compass
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positions. At the end of a trial, participants are required to recall the
successive locations of the ball. There was no visuo-spatial complex
span task in the Cogmed RM training program, and its closest match
was a visuo-spatial serial recall activity, Visual Data Link. This shares
the requirements for the serial recall of spatial locations in Mr. X, but
not the interpolated distractor activity characteristic of complex span
tasks. The cognitive routine framework does not generate any strong
predictions for this transfer task because the trained and untrained
paradigms do not squarely match. However, it is at least plausible that
any improvements in encoding, maintaining and recalling spatial lo-
cations resulting from extensive training will enhance the same sti-
mulus encoding and maintenance activities in subroutines embedded
within the more complex structure of a complex span routine. We
would though expect transfer to be diminished to Mr. X relative to the
dot matrix, for which there is a precise match in the entire paradigm.

Finally, measures of verbal and performance IQ provided tests of the
specificity of transfer. Individual differences studies have established
close links between WM and problem-solving skills (Engle et al., 1999;
Kyllonen & Christal, 1990; Wiley, Jarosz, Cushen, & Colflesh, 2011).
However, the cognitive routines developed to accomplish complex WM
tasks would be expected to have very little overlap with the specific
structures problem-solving tasks using unfamiliar spatial designs used
to index performance IQ. These typically involve simultaneous pre-
sentation of multiple response alternatives as well as the application of
rules to transform the spatial form of one stimulus for another (Cattell,
1963; Raven, 2003). The same applies to the vocabulary-based assess-
ment of verbal IQ, which relies on access to stored knowledge based on
prior learning with little or no reliance on either the basic processes of
WM or the more specific routines that develop them further to address
more specific needs. Transfer of WM training benefits to performance
on tests of either verbal or nonverbal IQ is therefore not expected.

Method

The participants were children aged 7 to 12 years with low WM
scores identified through routine classroom-wide screening on two WM
tests. In the adaptive training group there were 32 boys and 24 girls
ranging in age from 7 years 1 month to 12 years 0 months (M = 9 years
1 month, SD = 14.42 months), and in the non-adaptive group there
were 29 boys and 21 girls with ages ranging from 7 years 6 months to
11 years 6 months (M = 8 years 10 month2, SD = 9.82 months). The
children participated in either standard Cogmed RM training (n = 56)
or the non-adaptive version of the same program in which the difficulty
level was fixed at a span length of two (n = 50). Sixty-four participants
(34 adaptive, 30 non-adaptive) who participated in the Dunning at al.
(2013) study were selected on the basis of standard scores below 86 on
the backward digit span and Mr. X tasks from the AWMA (Alloway,
2007). A further 42 children from the Holmes et al. (2009) study (22
adaptive, 20 non-adaptive) had standard scores below 86 for the lis-
tening recall and backward digit span tasks from the AWMA.

Written parental consent for participation was provided for all
children. Further details of participant recruitment and methods are
supplied in the original publications. A post hoc power analysis with a
total N of 106 yielded power of .99 to detect a large effect size,
f2 = 0.35, with linear regression at p = .05. The power to detect a
medium effect size of f2 = 0.15 was .95, and .23 for a small effect size,
f2 = 0.02.

Analysis plan

The effect size Cohen’s d was computed as the difference between
the gain scores (pre- to post-training) for the two groups divided by
their pooled SD (Weisz & Hawley, 2001). Univariate analyses were
performed on baseline scores to identify any group differences prior to
training. For baseline measures without a significant group effect, a
general linear model (GLM) was run with post-training scores as the

dependent variable and age and baseline scores as independent vari-
ables. For baseline measures with significant group differences, both
centered baseline scores and centered baseline score x group product
terms were also included in the regression models. Product terms were
derived by the product of the centered scores (individual score minus
the group mean) and the grouping variable. Where product terms were
not significantly associated with post-training scores, GLMs were re-run
omitting the product term or centered scores in the final analyses (i.e.
with post-training scores as the dependent variable and group and pre-
training scores as independent variables). In all cases, the critical term
of interest was the group effect in the GLM and the criterion for sig-
nificance was set at p = .05. Separate regression models were tested
with each of the six transfer tests. Corresponding analyses were also
performed on verbal and performance IQ scores in order to test the
specificity of any transfer effects to WM.

In addition to traditional null hypothesis significance testing
(NHST), Bayesian analysis was used to test support for the null hy-
pothesis relative to the alternative hypothesis that training has a gen-
uine effect. Bayesian linear regressions were conducted using JASP
(Love et al., 2015). Regression models with baseline scores and inter-
vention condition as independent variables were computed individually
for each post-test dependent variable. Bayes factors are reported. By
convention (Jeffreys, 1961), values are interpreted as follows: 1–3
(anecdotal evidence for the alternative hypothesis, in this case that
there is an effect of training), 3–10 (substantial evidence), 10–30
(strong evidence), 30–100 (very strong evidence), 100+ (decisive
evidence). The corresponding values in support of the null hypothesis
are the inverse values: 0.33–1.0 (anecdotal evidence for the null hy-
pothesis), 0.10–.33 (substantial evidence), and so on.

Results

Descriptive statistics and statistical outcomes are shown in Table 6.
Bayesian analysis provided decisive evidence in favor of the alternative
hypothesis for dot matrix and backward digits. The effect sizes for
transfer were 0.92 and 0.77, respectively. For Mr. X there was sub-
stantial support for the alternative hypothesis and a transfer effect size
of.58. For digit span, the transfer effect size was 0.29 and the evidence
did not favor either the null or alternative hypothesis (effect size of
0.29). For both verbal and performance IQ, the evidence provided
substantial evidence in support of the null hypothesis of no transfer.

The same pattern of outcomes was reflected in the GLM analyses.
Significant group differences were found at baseline on the dot matrix
and Mr. X tests. For these variables the group product term (centered
baseline score x group) was entered along with centered baseline scores
and group. In the GLMs for dot matrix and Mr. X, the product terms
were nonsignificant, indicating that baseline differences did not affect
the outcomes. The GLMs were subsequently run without the product
terms and centered baseline scores. Highly significant group differences
arising from increased performance following adaptive training were
found for backward digit recall, dot matrix, and Mr. X (p < .001 in
each case). For digit recall, the training group effect was significant
(p = .035). It should be noted that this term reflects in part a reduction
in post-training scores for the non-adaptive comparison group (.09),
with a mean increase in standard scores in the adaptive group of only
2.6 points. The effect of training condition on verbal IQ was non-
significant (p > .05) for verbal IQ but significant for performance IQ
(p < .05). This arose from a greater post-training improvement for the
non-adaptive than the adaptive group and so does not reflect a positive
transfer effect.

Discussion

The transfer patterns observed in this re-analysis of transfer data
from two published studies are consistent with predictions derived by
applying the cognitive routine framework to the profile of overlapping
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and distinct features of the training program and the individual transfer
tasks. They also largely uphold the conclusions regarding the features
governing transfer from the meta-analysis.

The strength of transfer varied considerably across the untrained
WM tasks. Highest levels were found for the two untrained tasks with
WM paradigms that were also employed during training and which are
hypothesized to require the development of new routines that can be
transferred to similarly-structured tasks. These tasks involve the recall
of spatial locations (dot matrix) and the recall of digits in reverse se-
quence. The same paradigms also generated large transfer effects in the
meta-analysis.

An intermediate degree of transfer was found for a visuo-spatial
complex span task (Mr. X), even though there was no corresponding
paradigm in the Cogmed training program. We propose that this is
driven by routine-mediated improvements in the recall sequences of
spatial locations of multiple daily training activities. This finding is
important as it extends the range of the critical conditions beyond the
scope of the meta-analysis, which was not designed to quantify cross-
paradigm transfer. Transfer was very weak for the untrained verbal
serial recall task, even though participants had trained on another serial
recall task employing different verbal stimuli (letters rather than digits)
during training. This outcome is entirely consistent with the proposal
that cognitive routines are only necessary and only generate transfer
when they cannot be readily accomplished with existing WM processes
and mechanisms. The verbal STM system amply meets the needs of
verbal serial recall tasks and will therefore not lead to transfer. In the
meta-analysis, tasks that shared this paradigm showed levels of transfer
that were moderate but significantly smaller than for visuo-spatial STM
tasks. Finally, we found no evidence that WM training influenced per-
formance on either vocabulary or nonverbal reasoning tests. This too
we expected: although WM may play a role in nonverbal reasoning, the
paradigm-specific routines developed in the course of WM training will
have minimal overlap with the cognitive demands of such assessments.

One limitation of the study is that the participants were all children
who performed poorly at screening on tests on complex WM. The
reason for this is that the motivation of the original studies was to in-
vestigate whether their relatively common WM problems (they re-
presented the 16% of children with the lowest WM scores in the school
population) could be ameliorated through training. The extent to which
these results generalize to other populations of individuals with either
typical or atypical WM abilities or of different ages therefore cannot be
determined. What we can conclude is that in accordance with the
predictions of the cognitive routine framework, training-induced
transfer is greatest when the trained and untrained tasks tap aspects of
WM other than verbal STM in children with weak WM skills. Moreover,
the patterns of transfer observed in this particular population provide a
close fit to the broader analysis of the factors driving transfer from the

meta-analysis in Study 1 of training studies employing many different
populations.

Study 3

One issue we have not yet addressed is how new routines might be
created. These are only needed when existing processes and mechan-
isms are not sufficient to satisfy the demands of the task. The process of
constructing a routine must therefore draw in part at least on cognitive
resources that fall outside of WM. This position stands in opposition to
more general plasticity-based accounts of training, according to which
training-induced changes reflect increases in the fundamental capacity
of the underlying WM system itself.

One way of conceptualizing the establishment of new routines is as
a form of problem-solving behavior involving the decomposition of a
complex task into its constituent cognitive parts. When assembled,
these parts enable the individual to meet task goals. This might, for
example, be to protect memory representations from interference or
decay caused by distraction in complex span tasks, or to reverse the
input sequence at output in backward span. This kind of problem-sol-
ving capacity has been most widely investigated In the context of
nonverbal reasoning where it has been widely considered to be sup-
ported by limited general cognitive resources labelled either g or fluid
intelligence (Cattell, 1963; Duncan, Emslie, Williams, Johnson, & Freer,
1996). It has been linked to the fronto-parietal brain networks that
respond flexibility to multiple kinds of cognitively challenging activities
(Duncan, Burgess, & Emslie, 1995; Duncan & Owen, 2000). It has been
proposed that the same flexible resources may be responsible for the
cognitive segmentation of complex reasoning tasks into their compo-
nent parts (Duncan, 2013; Duncan, Chylinski, Mitchell, & Bhandari,
2017). Although the concept of a cognitive routine that we use is
broadly influenced by the production systems approach to the acqui-
sition of complex skills (Anderson, 1982; Taatgen, 2013), it also has
much in common with Duncan’s notion of cognitive segmentation.
Perhaps, then, cognitive routines depend on the same general atten-
tional resources believed to be critical for the restructuring process in
the context of nonverbal reasoning tasks.

To date, investigations of individual differences in transfer fol-
lowing WM training have focused primarily on links with WM perfor-
mance prior to training. There is some evidence from n-back training
that trainees who begin training with relatively high WM scores fare
better on the training tasks and, to some extent, on measures of transfer
(Au et al., 2015; Jaeggi et al., 2008). In a study of complex span
training, participants with higher WM showed greater performance
benefits on the trained tasks as the number of sessions increased, but
there was little evidence that the magnitude of transfer to other WM
tasks varied as a function of pre-training WM ability (Foster et al.,

Table 6
Descriptive statistics and statistical outcomes for Study 2.

Measure Time Adaptive Non-adaptive Effect size d Group effects

Mean SD Mean SD GLM p BF10

Digit span pre 92.21 15.07 87.16 14.62 0.30 0.035 1.050
post 94.88 16.92 86.22 14.82

Backward digit span pre 76.11 8.59 78.58 7.62 0.77 < .001 186.170
post 97.96 14.13 88.34 11.05

Dot matrix pre 84.45 12.19 90.84 14.01 0.92 < .001 1283.100
post 106.88 19.92 96.00 13.14

Mr. X pre 80.38 7.68 84.02 9.31 0.58 < .001 3.870
post 97.09 15.35 92.00 13.51

Verbal IQ pre 90.00 10.83 93.61 15.64 0.31 0.249 0.173
post 90.95 12.93 91.59 13.75

Performance IQ pre 90.70 13.35 88.78 10.18 −0.46 0.029 0.481
post 91.29 13.17 92.91 11.20
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2017). The authors speculated that these findings may reflect greater
ability to generate and implement new strategies during training rather
than a fundamental increase in WM capacity.

Borella, Carbone, Pastore, De Beni, and Carretti (2017) conducted a
detailed analysis of individual differences in baseline measures of vo-
cabulary, age and WM the magnitude of transfer across STM and WM
tasks following training on a verbal complex span task. Participants
monitored lists of words in a sequence of lists for the presence of animal
words and recalled the sentence-final words. In tasks judged to require
active processing (which included dot matrix and backward digit span),
higher-performing participants benefitted more from training. The
converse pattern of greater gains for individuals with lower initials
levels of performance was found for digit span. These findings show the
same differentiation observed in the previous WM training study be-
tween digit span on the one hand (yielding little or no transfer) and dot
matrix and backward span on the other (with very substantial transfer).
In this study, the baseline predictors of post-training scores did not
include fluid intelligence, the issue of particular interest of the present
study.

In Study 3 we examined whether the magnitude of transfer fol-
lowing adaptive WM training is modulated by the fluid cognitive abil-
ities indexed by nonverbal reasoning. If the development of new rou-
tines during training and hence their transferability depends on this
ability, the strength of routine-mediated transfer should be more
strongly predicted by pre-training measures of fluid intelligence than by
the WM measures themselves. This association should be present in the
three tasks showing substantial transfer following Cogmed WM training
in the previous WM training study: dot matrix, backward span and Mr.
X. No link is predicted for post-training digit span, for which transfer
was insubstantial.

To achieve the statistical power and heterogeneity required to ex-
amine individual differences in transfer following training, we re-ana-
lyzed data from four WM training studies in which measures of IQ as
well as WM were obtained before and after training. The sample of 108
children were a mixed group of individuals who were either typically
developing, had low WM but no other recognized developmental im-
pairments, or had a diagnosis of ADHD. They completed the four tests
of WM from the AWMA (digit span, backward digit span, the dot matrix
test of visuo-spatial STM, and Mr. X, a visuo-spatial test of interpolated
span) and the verbal and performance IQ subtests of the WASI (WASI,
Wechsler, 1999).

Method

The sample was composed of 34 children with low WM from
Dunning et al. (2013), 22 children with low WM from Holmes et al.
(2009), 25 children with a diagnosis of ADHD from Holmes et al.
(2014), and 27 children (12 with low language abilities and 15 children

matched for nonverbal abilities) from Holmes et al. (2015). The parti-
cipants from the Dunning et al. and Holmes et al. (2009) studies com-
prised the adaptive training group in WM Training Study 1. All children
completed standard adaptive Cogmed RM training. Further information
regarding recruitment and methods are provided in the individual
publications. Written parental consent for participation was provided
for all children. The mean age of the children was 9 years 3 months
ranging from 8 to 11 years, and there were 68 boys and 40 girls.

Analysis plan

The effect size d calculated for this study is the mean training gain
(average of difference between pre- and post- training scores) divided
by the pooled SD (average of pre and post SDs). It should be noted that
because all of the participants completed adaptive training, the effect
sizes are not directly comparable with those reported in Study 1 and 2
which compared the gain scores for the adaptive and control training
conditions. Univariate ANOVAs were conducted on scores on each of
the four WM transfer tests as a function of time (pre-training and post-
training). Corresponding Bayesian ANOVAs were also performed. In
order to examine individual differences in transfer, separate GLMs and
Bayesian regression analyses were performed for each set of post-
training WM scores. The criterion for significance was set at p = .05. In
these, the post-training measure was the dependent variable and
baseline WM scores, verbal and performance IQ scores were the in-
dependent variables. Outcomes of these analyses establish the strength
of unique associations between each independent and depend variable.

Results

Descriptive statistics for the six tests administered before and after
training and the outcome of analyses of these data are shown in Table 7.
Transfer increased significantly after training on all four WM tests
(BF10 > 100, p < .001, in each case). The effect sizes were large for
both dot matrix (1.27) and backward digit span (0.96), moderate for
Mr. X (0.75) and small for digit span (0.37). For verbal and performance
IQ, they were very small (0.14 in both cases).

Table 8 summarizes the outcomes of the individual differences
analyses examining associations between baseline (pre-training) mea-
sures and post-training scores on the WM tests. Pre-training scores
significantly predicted post-training scores for all four WM tests. In the
Bayesian analyses the evidence in favor of a positive effect was decisive
for digit span, strong for Mr. X and substantial for both backward span
and dot matrix. NHST outcomes were consistent with this pattern, with
p < .001 for digit span and p < .05 for all other tasks. The corre-
sponding beta weights were between 2.2 and 2.9 times greater for digit
span than each of the other measures.

Pre-training performance IQ significantly predicted dot matrix and

Table 7
Descriptive statistics and statistical outcomes for Study 3.

Measure Time Mean SD Effect size F p BF10

Digit span pre 93.70 15.12
post 99.70 17.60 0.37 18.60 < .001 473.943

Backward digit span pre 85.72 15.14
post 100.25 15.04 0.96 74.34 < .001 3.60E+11

Dot matrix pre 88.74 14.29
post 110.46 20.01 1.27 131.67 < .001 2.81E+18

Mr. X pre 87.14 15.00
post 99.21 17.20 0.75 51.31 < .001 9.76E+07

Verbal IQ pre 92.06 11.89
post 94.02 15.4 0.14 4.218 0.042 1.022

Performance IQ pre 91.10 13.32
post 92.91 12.451 0.14 5.052 0.027 1.526
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Mr. X scores (p < .005 in both cases) and, less strongly, backward digit
span (p < .05). It was not significantly associated with digit span
(p > .05). Bayesian analysis provided substantial evidence for the null
hypothesis for digit span, anecdotal evidence for the alternative hy-
pothesis for backward span and strong support for the alternative hy-
pothesis for both dot matrix and Mr. X. Baseline verbal IQ scores were
not significantly associated with any of the four WM measures
(p > = .05 in each case). There was substantial evidence only for digit
span, where the null hypothesis of difference was favored.

Discussion

The baseline predictors of post-training performance differed
markedly across the four WM transfer tests. Digit span was very
strongly related to digit span prior to training but was not linked with
either verbal or performance IQ. Dot matrix, backward digit span and
Mr. X were also related to their own baseline scores, although here the
strength of association was much weaker than for digit span. Each of
these WM tasks was significantly associated with baseline performance
IQ but not verbal IQ. This association was strongest for the two visuo-
spatial tasks - dot matrix and Mr. X.

Performance IQ was therefore linked with post-training scores only
on the same tasks that showed substantial transfer with adaptive
training in the previous study: dot matrix, backward span and Mr. X.
This is consistent with the suggestion that the flexible cognitive capa-
cities indexed by this measure are involved in the construction and
refinement of new routines. It is not obvious why these general re-
sources would be critical if training simply results in increases in the
fundamental efficiency of established processes. If so, post-training
performance should be best predicted by pre-training scores on the
same task, as an index of the baseline capacity on which training ex-
perience could be built. This was not the case.

We note that the composition of the sample included in this study is
unusual. It combines data from studies of typically-developing children
and two samples with compromised WM skills: children selected on the
basis of low WM, and children with ADHD. The cognitive heterogeneity
of this large sample is ideal for exploring the cognitive origins of
transfer through individual differences analyses. However, general-
ization across other populations of trainees will require further data.

General discussion

We have proposed that substantial transfer from WM training is a
consequence of the development of new routines that are applied to
new tasks. In learning a new task, individuals must develop a new
cognitive routine that specifies the precise sequence of cognitive pro-
cesses necessary to perform the task. It is a form of learning that follows

well-established principles of the acquisition of complex skills
(Anderson, 1982; Fitts & Posner, 1967; Taatgen, 2013). Once estab-
lished, new routines can be applied to other similar new tasks. For
activities that are already highly practiced before training commences,
no new routine will be needed. There will therefore be little scope for
either improvement on the trained activity or for transfer.

The approach differs from previous conceptualizations of WM
training and transfer in several respects. In contrast to accounts of
training with a primary focus on the neuroplasticity (Klingberg, 2010;
Takeuchi, Sekiguchi et al., 2010), it does not characterize training-in-
duced change as an undifferentiated process that simply and auto-
matically propagates itself across any activity relying on WM. Instead,
transfer is considered to be the direct consequence of the cognitive
routines developed during training and, critically, how they can be
adapted to fit new tasks at the point of potential transfer. Unlike pro-
cess- and task-specific accounts of WM transfer (Dahlin et al., 2008;
Dunning & Holmes, 2014; Holmes et al., 2009; Minear et al., 2016;
Shipstead et al., 2012; Soveri et al., 2017; Sprenger et al., 2013; von
Bastian & Oberauer, 2013a), the framework generates predictions about
which overlapping task properties both will and will not lead to
transfer, and specifies the cognitive conditions necessary for transfer. It
does so by building both on a detailed task analysis of common WM
tasks and on a skill acquisition framework. Finally, the approach is
clearly differentiated from theories of cognitive training which assume
that benefits might arise from “learning to learn” (Bavelier et al., 2012;
Harlow, 1949). The learning that we believe drives WM training ex-
tends only to tasks that can benefit directly from common routines.
Learning to learn implies that there are higher-order routines that can
be developed in the course of experience with different learning si-
tuations which can then be applied to new learning situations. In WM
training we believe there is little opportunity to develop sufficiently
higher-order routines that can be applied to other paradigms.

The framework was tested in two steps. First, a task analysis of the
cognitive processes involved in common WM tasks was performed. This
was used to guide the classification of whether or not each task meets
the criteria for requiring a new cognitive routine. Framework predic-
tions were then tested in three studies investigating the task features
influencing transfer. The first two studies examined the shared char-
acteristics of trained and untrained WM activities associated with
transfer. Study 1 reported a meta-analysis of the features associated
with transfer in RCTs of WM training. The studies varied widely in the
nature of the training activities, transfer tasks, control conditions,
participants, statistical power and the methods of analysis. Study 2
investigated the task features associated with transfer for a single WM
training program with a small set of WM transfer tests in children with
low WM. Study 3 adopted an individual differences approach to in-
vestigate the hypothesis that routine-mediated transfer depends pri-
marily not on expansion of existing WM processes, but instead on the
recruitment of more general cognitive resources that fall outside of the
WM system.

The findings were broadly consistent with the predictions. The task
analysis led to the conclusion that the following paradigms require new
routines: visuo-spatial serial recall, complex span, backward span, and
the updating tasks of n-back and running span. When these paradigms
are shared by trained and untrained tasks, there should be transfer. This
was indeed found to be the case: transfer was strongly linked with the
serial recall of spatial locations (Studies 1 and 2), complex span (Study
1), and backward span (Studies 1 and 2). Data were insufficient for
corresponding analysis of the two updating paradigms.

A further prediction was that there should be little transfer across
verbal serial recall tasks because they do not need a new routine. This is
because mechanisms for encoding, maintaining and retrieving item and
order information are served by an existing and highly-practised system
of verbal STM. This prediction was partially supported. Transfer was
found across verbal serial recall tasks in the meta-analysis (Study 1).
However, its magnitude was significantly lower than for visuo-spatial

Table 8
Outcomes of regression analyses of post-training WM scores in Study 3.

Dependent
variable

Independent variable at
pre-training

Regression statistics

Stand. β t p BF10

Digit span Digit span 0.572 6.48 < .001 3.368e 6

Verbal IQ 0.046 0.481 0.631 0.200
Performance IQ 0.088 1.028 0.306 0.298

Backward digit
span

Backward digit span 0.231 2.551 0.012 4.663
Verbal IQ 0.197 1.983 0.050 1.489
Performance IQ 0.209 2.141 0.035 1.996

Dot matrix Dot matrix 0.196 2.051 0.043 1.574
Verbal IQ 0.168 1.692 0.094 0.852
Performance IQ 0.291 3.004 0.003 13.256

Mr. X Mr. X 0.26 2.875 0.005 9.255
Verbal IQ 0.15 1.575 0.118 0.681
Performance IQ 0.295 3.138 0.002 18.381
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recall in Study 1 and in the training study (Study 2), it was very weak.
We therefore conclude that there may be subtle but genuine training-
related improvements in the efficiency of established processes within
verbal STM. These gains are small in magnitude and may be reliably
detected only under conditions of higher statistical power than the
standard WM training study. We speculate that they reflect either the
fine-tuning of basic mechanisms or recalibration to optimize task
parameters is evident even in low-level perceptual discrimination
paradigms (Bavelier et al., 2012). What is clear is that transfer within
verbal STM does not have the same robust character associated with
more complex WM paradigms that require new routines.

The meta-analysis established that more basic features of tasks such
as the input modality (auditory or visual) and output modality (spoken
or manual) are not critical for transfer. For example, there were high
levels of transfer across backward span tasks that differed only in
whether the responses involved spoken recall or mouse-based selection
of response alternatives. We had predicted that this would indeed be
the case: changes in the sensory modality of either stimulus items or
responses should require adjustment only to specialized input and
output processing systems employed as low-level elements of routines,
and shifting from one to another (from auditory to visual presentation,
or spoken to manual responses) should not modify the higher-order
structures of the task. It should therefore be possible for routines to be
rapidly modified to adapt to these peripheral changes.

A common stimulus category in itself does not appear to be a suf-
ficient basis for transfer (see Minear et al., 2016; von Bastian &
Oberauer, 2013a). The meta-analysis established that for letters,
words/nonwords and spatial locations, transfer was not influenced by
whether the stimulus category was matched except when digits were
the memory items in both tasks. Although this may reflect a recoding
strategy (or routine) developed during training (Chase & Ericsson,
1981), it could also be due to a confound in the shared features of the
relevant task pairs. In all of the cases in this dataset, the trained and
untrained tasks shared not only digits but also a backward span para-
digm. This was itself predicted to generate high levels of routine-
mediated transfer.

The goal of the new framework was to define the boundary condi-
tions on transfer within WM. Our starting position was that routines are
hierarchically organized, consisting of subroutines that control the ex-
ecution of processes necessary to accomplish different task components
(e.g., encoding, maintenance, distractor processing, retrieval). At the
most peripheral level, these processes include task-specific input and
output settings such as the modality of the stimulus inputs or the re-
sponses. Switching between these settings should not have an impact on
other elements and subroutines: borrowing Taatgen’s (2013) termi-
nology, they should not alter the flow of information processing across
the system. There should therefore be transfer across low-level settings,
as was indeed found in Study 1. In contrast, mismatches in the high-
level structure of the subroutines corresponding to the paradigm were
expected to limit the adaptability of a routine to a new task. The meta-
analysis established that this was the case.

What was much less clear to us in formulating the framework were
the limits on transfer when tasks differed at intermediate levels of a
routine. The meta-analysis generated new information on this issue. In
every pair of complex span tasks included in the analysis, the distractor
activity was different. The strength and consistency of transfer found
for both verbal and visuo-spatial matched complex span task pairs es-
tablishes that transfer does indeed occur when the higher-order struc-
ture [(stimulus, distractor processing)rep, retrieval] of the routine can
be preserved but individual subroutines differ. However, this was true
only when the stimulus domain was also matched across the two tasks
(verbal or verbal, or visuo-spatial to visuo-spatial): transfer did not
extend across complex span tasks in which the domains differed. This
suggests that although one distractor subroutine can be substituted for
another, the intermediate level of organization is so strongly framed by
domain-specific encoding and maintenance processes that the routine

cannot be adapted to fit complex span tasks with stimuli drawn from a
different domain. This interpretation clearly requires further systematic
experimental analysis.

Study 3 investigated the cognitive skills that might support the
development of new routines during training. We speculated that the
flexible cognitive resources believed to play a critical role in the process
of decomposing the unfamiliar tasks into their constituent cognitive
parts (Duncan et al., 2017) may also play a critical role in constructing
the bespoke specification of cognitive processes to be executed in a
routine. This hypothesis was explored in the re-analysis of training data
from a large sample of children completing a single WM training pro-
gram in Study 3. Higher performance IQ scores were uniquely asso-
ciated with the magnitude of transfer to the three WM tests (visuo-
spatial serial recall, visuo-spatial complex span and backward span)
hypothesized to require new routines. In contrast, post-training per-
formance on the verbal serial task (digit span) was very strongly asso-
ciated only with baseline levels of performance on the same task but not
with nonverbal reasoning. This suggests that when WM tasks do not
need new routines, training-induced changes reflect modifications in
the capacity of existing systems. In contrast when routines must be
constructed, they depend on general attentional resources.

Other theoretical accounts of WM training are less successful in
accounting for both the presence and absence of transfer with different
shared task features in the present studies. Accounts that attribute
training and transfer to plasticity in the undifferentiated neural sub-
strate of WM (Klingberg, 2010; Westerberg & Klingberg, 2007) lack the
specificity to accommodate limited transfer across WM tasks. On the
other hand, process-specific explanations of transfer as reflecting in-
creases in the efficiency of individual processes within WM (Dahlin
et al., 2008; Minear et al., 2016; Sprenger et al., 2013) struggle to ex-
plain why some shared task features and processes are sufficient for
transfer whereas others are not.

These challenges disappear if we move away from the idea that
training improves existing processes within WM and consider instead
that WM training simply involves learning how to perform an unusual
task. This learning is conceived as the construction of new cognitive
routines and transfer is only expected for tasks that might be expected
to share routines. From this we conclude that there is little prospect that
WM training with a small number of tasks will ever have a substantial
impact on real-life skills such as those required to enhance educational
achievement. Such real-life skills are likely to rely on an extensive array
of cognitive routines; too many, probably, to be trained with anything
other than real-life experience.
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A. Cogmed RM tasks

Measure Paradigm Stimulus presentation Stimulus
domain

Stimulus ca-
tegory

Stimulus
modality

Response Training
sessions

Visual data l-
ink

Visuo-spatial se-
rial recall

Sequence of spatial location of illuminated
lamps in 4 × 4 grid

Visuo-spa-
tial

Spatial lo-
cations

Visual Mouse selection of lamp locations in se-
quence

1–25

Data room Visuo-spatial se-
rial recall

Sequence of lamps illuminated in a 2D-
representation of a 3D grid of 20 lamps

Visuo-spa-
tial

Spatial lo-
cations

Visual Mouse selection of lamp locations in se-
quence

1–10, 12,
14, 16, 18,
20, 22, 24

Space whack Visuo-spatial se-
rial recall

Sequence of puffs of smoke appearing from
craters

Visuo-spa-
tial

Spatial lo-
cations

Visual Mouse selection of puff locations in se-
quence

16–25

Input module
with lid

Backward span Sequence of spoken digits with response grid
not visible

Verbal Digits Auditory Mouse selection of digits on a 3 × 3 grid in
sequence

1–25

Input module
without
lid

Backward span Sequence of spoken digits with response grid
visible

Verbal Digits Auditory Mouse selection of digits on a 3 × 3 grid in
sequence

1–25

Decoder Verbal serial re-
call

Sequence of spoken letters Verbal Letters Auditory Mouse selection of each letter from 3
alternatives presented visually

1–5

Random let-
ters

Verbal serial re-
call and visuo-
spatial recall

Sequence of spoken letters each accompa-
nied by the illumination of a lamp in a
particular spatial location

Verbal &
visuo-spa-
tial

Letters and
spatial loca-
tions

Auditory
& visual

Mouse selection of spatial locations corre-
sponding to position illuminated as each
latter was presented

1–11. 13,
15–21, 23,
25

Numbered g-
rid

Resequencing Sequence of spoken letters each accompa-
nied by the illumination of a lamp in a
particular spatial location

Verbal &
visuo-spa-
tial

Digits and
spatial loca-
tions

Auditory
& visual

Mouse selection of spatial locations corre-
sponding to the location of digits in as-
cending order

6–15, 17,
19, 20, 22,
24

Asteroids Visuo-spatial se-
rial recall

Slowly-moving asteroids illuminated in se-
quence

Visuo-spa-
tial

Spatial lo-
cations

Visual Mouse selection of asteroid locations in
sequence

11–16, 18,
20, 22–25

Rotating data
link

Visuo-spatial se-
rial
recall + spatial
rotation

Sequence of spatial location of illuminated
lamps in 4 × 4 grid

Visuo-spa-
tial

Spatial lo-
cations

Visual Mouse selection of lamp locations in se-
quence on a grid rotated by 90 degrees

1–10, 12,
14, 16, 18,
21, 23, 25

Rotating dots Visuo-spatial se-
rial
recall + spatial
rotation

Sequence of spatial location of illuminated
lamps on a rotating dial

Visuo-spa-
tial

Spatial lo-
cations

Visual Mouse selection of dot locations in se-
quence on rotating dial

1–11, 13,
15, 17, 19,
21–22, 24

Space cube Visuo-spatial se-
rial recall

Sequence of panels illuminated on a 2D
representation of a 3D cube

Visuo-spa-
tial

Spatial lo-
cations

Visual Mouse selection of the panel locations in
sequence

11–15, 17,
19, 21–25

B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.jml.2018.10.003.
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