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Abstract

Genetic association studies, in particular the genome-wide association study (GWAS) design, have provided a wealth of
novel insights into the aetiology of a wide range of human diseases and traits, in particular cardiovascular diseases and lipid
biomarkers. The next challenge consists of understanding the molecular basis of these associations. The integration of
multiple association datasets, including gene expression datasets, can contribute to this goal. We have developed a novel
statistical methodology to assess whether two association signals are consistent with a shared causal variant. An application
is the integration of disease scans with expression quantitative trait locus (eQTL) studies, but any pair of GWAS datasets can
be integrated in this framework. We demonstrate the value of the approach by re-analysing a gene expression dataset in
966 liver samples with a published meta-analysis of lipid traits including .100,000 individuals of European ancestry.
Combining all lipid biomarkers, our re-analysis supported 26 out of 38 reported colocalisation results with eQTLs and
identified 14 new colocalisation results, hence highlighting the value of a formal statistical test. In three cases of reported
eQTL-lipid pairs (SYPL2, IFT172, TBKBP1) for which our analysis suggests that the eQTL pattern is not consistent with the lipid
association, we identify alternative colocalisation results with SORT1, GCKR, and KPNB1, indicating that these genes are more
likely to be causal in these genomic intervals. A key feature of the method is the ability to derive the output statistics from
single SNP summary statistics, hence making it possible to perform systematic meta-analysis type comparisons across
multiple GWAS datasets (implemented online at http://coloc.cs.ucl.ac.uk/coloc/). Our methodology provides information
about candidate causal genes in associated intervals and has direct implications for the understanding of complex diseases
as well as the design of drugs to target disease pathways.
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Introduction

In the last decade, hundreds of genomic loci affecting complex

diseases and disease relevant intermediate phenotypes have been

found and robustly replicated using genome-wide association

studies (GWAS, [1]). At the same time, gene expression

measurements derived from microarray [2] or RNA sequencing

[3] studies have been used extensively as an outcome trait for the

GWAS design. Such studies are usually referred to as expression

quantitative trait locus (eQTL) analysis. While GWAS datasets

have provided a steady flow of positive and replicable results, the

interpretation of these findings, and in particular the identification

of underlying molecular mechanisms, has proven to be challeng-

ing. Integrating molecular level data and other disease relevant

intermediate phenotypes with GWAS results is the natural step

forward in order to understand the biological relevance of these

results. This strategy has been explored before and allowed the

identification of the genes and regulatory variations that are

important for several diseases (reviewed in [4]).

In this context, a natural question to ask is whether two

independent association signals at the same locus, typically generated

by two GWAS studies, are consistent with a shared causal variant. If

the answer is positive, we refer to this situation as colocalised traits,

and the probability that both traits share a causal mechanism is

greatly increased. A typical example involves an eQTL study and a

disease association result, which points to the causal gene and the

tissue in which the effect is mediated [5–7]. In fact, looking for

overlaps between complex trait-associated variants and eQTL

variants has been successfully used as evidence of a common causal

molecular mechanism (e.g., [5,8]). The same questions can also be

considered between pairs of eQTLs [9,10], or pairs of diseases [11].
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However, identifying the traits that share a common association

signal is not a trivial statistical task. Visual comparison of overlaps

of association signals with an expression dataset is a step in this

direction (using for example Sanger tool Genevar http://www.

sanger.ac.uk/resources/software/genevar/), but the abundance of

eQTLs in the human genome and across different tissues makes an

accidental overlap between these signals very likely [2]. Therefore

visual comparison is not enough to make inferences about

causality and formal statistical tests must be used to address this

question.

Nica et al. [5] proposed a methodology to rank the SNPs with

an influence on two traits based on the residual association

conditional on the most associated SNP. By comparing the GWAS

SNP score with all other SNPs in the associated region, this

method accounts for the local LD structure. However, this is not a

formal test of a null hypothesis for, or against, colocalisation at the

locus of interest. A formal test of colocalisation has been developed

in a regression framework. This is based on testing a null

hypothesis of proportionality of regression coefficients for two

traits across any set of SNPs, an assumption which should hold

whenever they share causal variant(s) [12,13]. No assumption is

made about the number of causal variants, although the method

does assume that in the case of multiple causal variants, all are

shared. Both the ranking method and proportionality testing share

the drawback of having to specify a subset of SNPs to base the test

on, and Wallace [14] shows that this step can generate significant

biases. The main sources of bias are overestimation of effect sizes

at selected SNPs (termed ‘‘Winner’s curse’’), and the fact that,

owing to random fluctuations, the causal variant may not always

be the most strongly associated one. These factors lead to rejection

of colocalisation in situations where the causal SNP is in fact

shared. Although this can be overcome in the case of proportion-

ality testing by averaging over the uncertainty associated with the

best SNP models [14], perhaps the greatest limitation is the

requirement for individual level genotype data, which are rarely

available for large scale eQTL datasets.

The success of GWAS meta-analyses has shown that there is

considerable benefit in being able to derive association tests on the

basis of summary statistics. With these advantages in mind, He et

al. [7] developed a statistical test to match the pattern of gene

expression with a GWAS dataset. This approach, coded in the

software Sherlock, can accommodate p-values as input. However,

their hypothesis of interest differs from the question of colocalisa-

tion, with the focus of the method being on genome-wide

convergence of signals, assuming an abundance of trans eQTLs.

In particular, SNPs that are not associated with gene expression do

not contribute to the test statistic. Such variants can provide strong

evidence against colocalisation if they are strongly associated with

the GWAS outcome.

These limitations motivate the development of novel method-

ologies to test for colocalisation between pairs of traits. Here, we

derive a novel Bayesian statistical test for colocalisation that

addresses many of the shortcomings of existing tools. Our analysis

focuses on a single genomic region at a time, with a major focus on

interpreting the pattern of LD at that locus.

Our underlying model is closely related to the approach

developed by Flutre et al. [10], which considers the different but

related problem of maximising the power to discover eQTLs in

expression datasets of multiple tissues. A key feature of our

approach is that it only requires single SNP p-values and their

minor allele frequencies (MAFs), or estimated allelic effect and

standard error, combined with closed form analytical results that

enable quick comparisons, even at the genome-wide scale. Our

Bayesian procedure provides intuitive posterior probabilities that

can be easily interpreted. A main application of our method is the

systematic comparison between a new GWAS dataset and a large

catalogue of association studies in order to identify novel shared

mechanisms. We demonstrate the value of the method by re-

analysing a large scale meta-analysis of blood lipids [15] in

combination with a gene expression study in 966 liver samples

[16].

Results

Overview of the method
We consider a situation where two traits have been measured in

two distinct datasets of unrelated individuals. We assume that

samples are drawn from the same ethnic group, i.e. allele

frequencies and pattern of linkage disequilibrium (LD) are

identical in both populations. For each of the two samples, we

consider for each variant a linear trend model between the

outcome phenotypes Y and the genotypes X (or a log-odds

generalised linear model if one of the two outcome phenotypes Y
is binary):

Y~mzbXze

We are interested in a situation where single variant association p-

values and MAFs, or estimated regression coefficients b̂b and their

estimated precisions var(b̂b), are available for both datasets at Q
variants, typically SNPs but also indels. We make two additional

assumptions and discuss later in this paper how these can be

relaxed. Firstly, that the causal variant is included in the set of Q
variants, either directly typed or well imputed [17–19]. Secondly,

that at most one association is present for each trait in the genomic

region of interest. We are interested in exploring whether the data

support a shared causal variant for both traits. While the method is

fully applicable to a case-control outcome, we consider two

quantitative traits in this initial description.

SNP causality in a region of Q variants can be summarised for

each trait using a vector of length Q of (0, 1) values, where 1 means

Author Summary

Genome-wide association studies (GWAS) have found a
large number of genetic regions (‘‘loci’’) affecting clinical
end-points and phenotypes, many outside coding inter-
vals. One approach to understanding the biological basis
of these associations has been to explore whether GWAS
signals from intermediate cellular phenotypes, in particular
gene expression, are located in the same loci (‘‘colocalise’’)
and are potentially mediating the disease signals. Howev-
er, it is not clear how to assess whether the same variants
are responsible for the two GWAS signals or whether it is
distinct causal variants close to each other. In this paper,
we describe a statistical method that can use simply single
variant summary statistics to test for colocalisation of
GWAS signals. We describe one application of our method
to a meta-analysis of blood lipids and liver expression,
although any two datasets resulting from association
studies can be used. Our method is able to detect the
subset of GWAS signals explained by regulatory effects
and identify candidate genes affected by the same GWAS
variants. As summary GWAS data are increasingly available,
applications of colocalisation methods to integrate the
findings will be essential for functional follow-up, and will
also be particularly useful to identify tissue specific signals
in eQTL datasets.

Bayesian Test for Colocalisation
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that the variant is causally associated with the trait of interest and at

most one entry is non-zero. A schematic illustration of this

framework is provided in Figure 1 in a region that contains 8

SNPs. Each possible pair of vectors (for traits 1 and 2, which we refer

to as ‘‘configuration’’) can be assigned to one of five hypotheses:

N H0: No association with either trait

N H1: Association with trait 1, not with trait 2

N H2: Association with trait 2, not with trait 1

N H3: Association with trait 1 and trait 2, two independent SNPs

N H4: Association with trait 1 and trait 2, one shared SNP

In this framework, the colocalisation problem can be re-

formulated as assessing the support for all configurations (i.e. pairs

of binary vectors) in hypothesis H4.

Our method is Bayesian in the sense that it integrates over all

possible configurations. This process requires the definition of

prior probabilities, which are defined at the SNP level (Methods).

A probability of the data can be computed for each configuration,

and these probabilities can be summed over all configurations and

combined with the prior to assess the support for each hypotheses

(H)5
1. The result of this procedure is five posterior probabilities

(PP0, PP1, PP2, PP3 and PP4). A large posterior probability for

hypothesis 3, PP3, indicates support for two independent causal

SNPs associated with each trait. In contrast, if PP4 is large, the

data support a single variant affecting both traits. An illustration

of the method is shown in Figure 2 for negative (Figure 2A–B,

FRK gene and LDL, PP3 .90%) and positive (Figure 2C–D,

SDC1 gene and total cholesterol, PP4 .80%) colocalisation

results.

While the method uses Approximate Bayes Factor computa-

tions (ABF, [20], and Methods), no iterative computation scheme

(such as Markov Chain Monte Carlo) is required. Therefore,

computations are quick and do not require any specific

computing infrastructure. Precisely, the computation time

behaves as Qd , where Q is the number of variants in the

genomic region and d the number distinct associations (typically

d = 2, assuming two traits and at most one causal variant per

trait).

Importantly, the use of ABF enable the computation of

posterior probabilities from single variant association p-values

and MAFs, although the estimated single SNP regression

coefficients b̂b and their variances or standard errors are preferred

for imputed data.

Sample size required for colocalisation analysis
Given the well-understood requirements for large sample size

for GWAS data, we used simulations to investigate the power of

Figure 1. Example of one configuration under different hypotheses. A configuration is represented by one binary vector for each trait of
(0,1) values of length n = 8, the number of shared variants in a region. The value of 1 means that the variant is causally involved in disease, 0 that it is
not. The first plot shows the case where only one dataset shows an association. The second plot shows that the causal SNP is different for the
biomarker dataset compared to the expression dataset. The third plot shows the configuration where the single causal variant is the fourth one.
doi:10.1371/journal.pgen.1004383.g001

Bayesian Test for Colocalisation

PLOS Genetics | www.plosgenetics.org 3 May 2014 | Volume 10 | Issue 5 | e1004383



our approach. We generated pairs of eQTL/biomarker

datasets assuming a shared causal variant. We varied two

parameters: the sample size of the biomarker dataset and the

proportion of the biomarker variance explained by the shared

genetic variant. We set the proportion of the eQTL variance

explained by the shared variant to 10% and we used the

original sample size of the liver eQTL dataset described

herein [16]. Text S1 contains a description of the simulation

procedure.

Results are shown in Figure 3. We find that given a sample size

of 2,000 individuals for the biomarker dataset, the causal variant

needs to explain close to 2% of the variance of the biomarker to

provide reliable evidence in favour of a colocalised signal (lower

10th percentile for PP4 .80%).

Consequence of limited variant density and non-additive
associations

Until recently the assumption that, for a given GWAS signal,

the causal variant in that interval had been genotyped was

unrealistic. However, the application of imputation techniques

[17–19] can provide genotype information about the majority of

common genetic variants. Therefore, in situations where a

common variant drives the GWAS signal, it is now plausible that,

in imputed datasets, genotype information about this variant is

available. Nevertheless, limited imputation quality can invalidate

this hypothesis. This prompted us to investigate the implication of

not including the causal variant in the genotype panel.

To address this question, we used Illumina MetaboChip data and

imputed the genotyped regions using the Minimac software ([19]

Figure 2. Illustration of the colocalisation results. Negative [SPACE] (A–B, FRK gene and LDL, PP3 .90%) and positive (C–D, SDC1 gene and
total cholesterol, PP4 .80%) colocalisation results. 2log10(p) association p-values for biomarker (top, A and C) and 2log10(p) association p-values
for expression (bottom, B and D) at the FRK (A, B) and SDC1 locus (C, D), 1Mb range.
doi:10.1371/journal.pgen.1004383.g002

Bayesian Test for Colocalisation
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and Methods). We then selected only the subset of variants

present in the Illumina 660K genotyping array. We simulated

data under the assumption of a shared causal variant, with 4,000

individuals in the biomarker dataset. We then computed the PP4

statistic with and without restricting the SNP set to the Illumina

660K Chip SNPs (Figure 4). We also considered two different

scenarios, with the causal SNP included/not included in the

Illumina 660W panel (Figures S1 and S2 for more exhaustive

simulations).

Our results show that when the causal variant is directly

genotyped by the low density array, the use of imputed data is not

essential (Figure 4A). However, in cases where the causal variant is

not typed or imputed in the low density panel, the variance of PP4

is much higher (Figure 4B). In this situation, the resulting PP4

statistic tends to decrease even though considerable variability is

observed. Inspection of simulation results in Figure 5 (bottom row

for tagging SNP, leftmost graph for shared causal variant) shows

that while PP4 tends to be lower than for its counterpart with

complete genotype data (top row, leftmost graph), PP3 remains

low. This indicates that more probability is given to PP0, PP1 and

PP2, which can be interpreted as a loss of power rather than

misleading inference in favour of distinct variants for both traits.

Statistical power may also be affected by the mode of

inheritance of the causal variant. To address this, we simulated

cases under a recessive pattern of inheritance. Our results show

that if the true model is recessive, but the eQTL signal is

nonetheless analysed using the trend test, then we will often also

successfully detect a colocalised signal (Figure S9).

Comparison with existing colocalisation tests
We compared the behaviour of our proposed test with that of

proportional colocalisation testing [12,14] in the specific case of a

biomarker dataset with 10,000 samples (Figure 5, and also Figures

S3 and S4). Broadly, in the case of either a single common causal

variant or two distinct causal variants, our proposed method could

infer the simulated hypotheses correctly (PP4 or PP3 .0.9) with

good confidence, and PP3 .0.9 slightly more often than the

proportional testing p-value ,0.05. A key advantage in our

Bayesian approach is the ability to distinguish evidence for

colocalisation (i.e. high PP4) from a lack of power (i.e. high PP0,

PP1 or PP2). In both of these cases (high PP4 or high PP0/PP1/

PP2), the use of the proportional approach leads to failure to reject

the null even though the interpretation of these situations should

differ.

Figure 3. Simulation analysis with a shared causal variant between two studies. The two datasets used are one eQTL (sample size 966
samples, 10% of the variance explained by the variant) and one biomarker (such as LDL). The variance explained by the biomarker is colour coded
and the x-axis shows the sample size of the biomarker study. The y axis shows the median, 10% and 90% quantile of the distribution of PP4 values
(which supports a shared common variant).
doi:10.1371/journal.pgen.1004383.g003

Bayesian Test for Colocalisation
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It has been proposed that gene expression may be subject to

both global regulatory variation which acts across multiple tissues

and secondary tissue specific regulators [21]. Neither approach

covers this case explicitly in its construction, but it is instructive to

examine their expected behaviour. The proportional approach

tends to reject a null of colocalisation, suggesting that a single

distinct causal variant can be sufficient to violate the null

hypothesis of proportional regression coefficients. In contrast, the

Bayesian approach tends to favour the shared variant in the cases

covered by our simulations (median PP4 . median PP3), and

either hypotheses H3 or H4 can potentially have strong support

(PP4 .0.9 in close to 50% of simulations, and PP3 .0.9 in

around 25% of simulations). Of course, the ultimate goal

should be to extend these tests to cover multiple causal variants,

but in the meantime, it can be useful to know that a high PP4 in

our proposed Bayesian analysis indicates strong support for ‘‘at

least one causal variant’’ and that rejection of the null of

proportionality of regression coefficients indicates that the two

traits do not share all causal variants, not that they cannot share

one.

Dealing with several independent associations for the
same trait

We have so far assumed that each trait is associated with at most

one causal variant per locus. However, it is not unusual to observe

two or more independent associations at a locus for a trait of

interest [22]. In the presence of multiple independent associations,

the assumption of a single variant per trait prompts the algorithm

to consider only the strongest of these distinct association signals.

Hence, the presence of additional associations that explain a

smaller fraction of the variance of the trait, for example additional

and independently associated rare variants, have a negligible

impact on our computations.

To illustrate this situation, we simulated datasets with two causal

variants: one colocalised eQTL/biomarker signal plus a secondary

independent ‘‘eQTL only’’ signal (Figure S8). These simulations

confirm that the PP4 statistic is only affected in the presence of two

independent associations that explain a similar proportion of the

variance of the trait (Figure S8).

The natural and statistically exact modification of our approach

would compute, for each trait, Bayes factors for sets of SNPs rather

than single SNPs (up to N SNPs jointly to accommodate for N
distinct associations per trait). However, this approach has two

drawbacks. Firstly, the interpretation of the resulting posterior

probabilities is more challenging in situations where some but not

all of the variants are shared across both traits. More importantly,

the typical approach consists of publishing single variant summary

statistics, which would prevent the use of standard summary

statistics, a key feature of our approach.

Owing to the focus of our algorithm on the strongest association

signal, an alternative approach to deal with multiple associations

consists of using a stepwise regression strategy, which would then

reveal the secondary association signals. Our colocalisation test

can then be run on using the conditional p-values. We find this

approach to be the most practical and illustrate below an

application for a locus that contains several independent eQTL

associations (Figure 6). In situations where only single SNP

summary statistics are available, the approximate conditional

meta-analysis framework proposed by Visscher et al. [23] can be

used to obtain conditional p-values.

Application to a meta-analysis of blood lipids combined
with a liver expression dataset

Teslovich et al. [15] reported common variants associated with

plasma concentrations of low-density lipoprotein cholesterol

(LDL), high-density lipoprotein cholesterol (HDL) and triglyceride

(TG) levels in more than 100,000 individuals of European

ancestry. They then reported the correlations between the lead

SNPs at the loci they found and the expression levels of transcripts

in liver. For the lipid dataset we have access only to summary

statistics. The liver expression dataset used in this analysis is the

same as the one used in [15]. In Teslovich et al., regions are

defined within 500 kilobases of the lead SNPs, and the

threshold for significance is 5|10{8. At this threshold, they

Figure 4. Simulation analysis with a shared causal variant between two studies. The two datasets used are one eQTL (sample size 966
samples) and one biomarker (sample size of 4,000 samples). The variance explained by the biomarker and the expression is the same and is colour
coded. The x-axis shows the estimated PP4 for 1,000 simulations using data imputed from metaboChip Illumina array. The y-axis uses the same
dataset restricted to variants present on the Illumina 660W genotyping array to assess the impact of a lower variant density. A. The causal variant is
included in the Illumina 660W panel. B. The causal SNP not included in Illumina 660W panel.
doi:10.1371/journal.pgen.1004383.g004

Bayesian Test for Colocalisation
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found 38 SNP-to-gene eQTLs in liver (Supplementary Table 8 of

[15]). Table S1 shows our results for these 38 previously reported

colocalisations. A complete list of all our identified colocalisations

(independently of previous reports) is provided in Tables S2, S3,

S4, S5 (broken down by lipid traits). Using the coloc web server for

this analysis with a PP4 .75, it took 1 minute to complete

chromosome 1 and approximately 7 minutes to analyse the entire

imputed genome-wide data on a laptop.

The majority of our results are consistent with the findings of

Teslovich et al., with 26 out of 38 loci having PP4 §50%. To

assess the role of the prior, we varied the critical parameter p12,

which codes for the prior probability that a variant is

associated with both traits. Here we report the results using

the p12~10{6. The complete list of results is provided in Table

S1.

Table 1 lists the previously reported lipid-eQTL for which we

find strong support against the colocalisation hypothesis (PP3 .

75%). The LocusZoom association plots for each of these loci can

be found in Figure S5. In addition to the loci listed in Table 1, we

found strong evidence of distinct signals between HLA-DQ/

HLA-DR and TC (Table S1) but these results must be interpreted

with caution owing to the extensive polymorphism in the major

histocompatibility complex region.

For only one locus (CEP250), we did not find a significant

eQTL signal, pointing to potential differences in bioinformatics

processing and/or imputation strategy. In such a situation, both

PP3 and PP4 are low and PP0, PP1 and PP2 concentrate most of

the posterior distribution.

Three loci (TMEM50A, ANGPTL3, PERLD1/PGAP3) do

not have enough evidence to strongly support either colocalisation

or absence of colocalisation (Table S1) and these should remain

marked as doubtful.

One of these genes, ANGPTL3 is noteworthy. Examining this

locus (Figure S6), it is clear that the pattern of association p-values

is consistent between LDL and ANGPTL3 expression. However,

the extent of LD is strong, with 98 strongly associated variants. In

such a situation, there is uncertainty as to whether the data

support a shared causal variant for both traits, or two distincts

variants for eQTL/LDL. Because the data are consistent with

both scenarios, the choice of prior becomes determinant.

Accordingly, PP4 drops from 91% to 49% if one uses

p12~10{6 instead of p12~10{5.

Figure 5. Summary of proportional and Bayesian colocalisation analysis of simulated data. Each plot shows a different scenario, the total
number of causal variants in a region is indicated by number of circles in the plot titles with causal variants affecting both traits, the eQTL trait only, or
the biomarker trait only, indicated by full circles, top-shaded circles and bottom-shaded circles respectively. In the top row the causal variant is typed
or imputed, whereas only tag variants are typed/imputed in the bottom row. For proportional testing (under the BMA approach), we show the
proportion of simulations with posterior predictive p-value ,0.05 (black horizontal line) while for our Bayesian analysis we plot the proportion of
simulations with the posterior probability (PP3 or PP4) of the indicated hypothesis .0.9. Error bars show 95% confidence intervals (estimated based
on an average of 1,000 simulations per scenario). In all cases, for the eQTL sample size is 1,000; genetic variants explain a total of 10% of eQTL
variance; for the biomarker trait, the sample size is 10,000.
doi:10.1371/journal.pgen.1004383.g005

Bayesian Test for Colocalisation
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Table 2 lists the 14 colocalised loci (15 genes) that were not

reported by Teslovich et al. (or in Global Lipids Genetics

Consortium [24] for the gene NYNRIN), but for which our

method finds strong support for colocalisation (PP4 .75%). Figure

S7 shows the LocusZoom plots for these colocalisation results.

Eleven of these 15 genes are strong candidates for involvement in

lipid metabolism and/or have been previously suggested as

candidate genes: SDC1, TGOLN2, INHBB, UBXN2B,
VLDLR, VIM, CYP26A1, OGFOD1, HP, HPR, PPARA.

See Text S2 for a brief overview of the function of these genes.

Four others genes have a less obvious link: CMTM6, C6orf106,
CUX2, ENSG00000259359.

Three previously reported genes (SYPL2, IFT172, TBKBP1)

which, based on our re-analysis, do not colocalise with the lipid

traits, have a nearby gene with a high probability of colocalisation

(respectively, SORT1, GCKR, KPNB1). This suggests that these

genes are more likely candidates in this region. To explore the

possibility that secondary signals may colocalise, we applied the

stepwise regression strategy described above to deal with several

independent associations at a single locus. We performed

colocalisation test using eQTL results conditional on the top

eQTL associated variant. Two of the loci (SYPL2/LDL or TC,

APOC4 and TG) showed evidence of colocalisation with

expression after conditional analysis (Table 1).

An example of this stepwise procedure for the gene SYPL2 and

LDL is provided in Figure 6. We find that the top liver eQTL

signal is clearly discordant with LDL association (Table 1 and

Figure 6). However, conditioning on the top eQTL signal reveals a

second independent association for SYPL2 expression in liver.

This secondary SYPL2 eQTL colocalises with the LDL associ-

ation (PP4 .90%, Figure 6).

Web based resource
We developed a web site designed for integration of GWAS

results using only p-values and the sample size of the datasets

(http://coloc.cs.ucl.ac.uk/coloc/). The website was developed

using RWUI [25]. Results include a list of potentially causal

genes with the associated PP4 with their respective plots and ABF,

and can be viewed either interactively or returned by email.

Researchers can request a genome-wide scan of results from a

genetic association analysis, and obtain a list of genes with a high

probability of mediating the GWAS signals in a particular tissue.

The tool also allows visualisation of the signals within a genetic

region of interest.

The database and browser currently include the possibility of

investigating colocalisation with liver [15] and brain [26,27]

expression data, however the resource will soon be extended to

include expression in different tissues. This method, as well as

alternative approaches for colocalisation testing [12,14], are also

available with additional input options in an R package, coloc,

from the Comprehensive R Archive Network (http://cran.r-

project.org/web/packages/coloc).

Discussion

We have developed a novel Bayesian statistical procedure to

assess whether two association signals are colocalised. Our method

Figure 6. LDL association and eQTL association plots at the
SYPL2 locus. The x-axis shows the physical position on the
chromosome (Mb) A: -log10(p) association p-values for LDL. The

p-values are from the Teslovich et al published meta-analysis of .
100,000 individuals. B: 2log10(p) association p-values for SYPL2
expression in 966 liver samples. C: 2log10(p) association p-values for
SYPL2 expression conditional on the top eQTL associated SNP at this
locus (rs2359653).
doi:10.1371/journal.pgen.1004383.g006
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is best suited for associations detected by GWAS, which are likely

to reflect common, imputable, variations with small effects, or a

rare variants with large effect sizes. Our aim differs from a typical

fine-mapping exercise in the sense that we are not interested in

knowing which variant is likely to be causal but only whether a

shared causal variant is plausible. The strength of this approach

lies in its speed and analytical forms, combined with the fact that it

can use single variant p-values when only these are available.

Our results show that to provide an accurate answer to the

colocalisation problem, high-density genotyping and/or accurate

use of imputation techniques are key. The quality of the

imputation is another important parameter. Indeed, while the

variance of the regression coefficient can be estimated solely on

the basis of the minor allele frequency for typed SNPs and sample

size (and the case control ratio in the case of a binary outcome)

[17,28], this ignores the uncertainty due to imputation. Filtering

out poorly imputed SNPs partially addresses this problem, with the

drawback that it may exclude the causal variant(s). Hence,

providing estimates of the variance of the MLE, together with

the effect estimates, will result in greater accuracy. This additional

option is available on the coloc package in R (http://cran.r-

project.org/web/packages/coloc).

We currently assume that each genetic variant is equally likely a

priori to affect gene expression or trait. A straightforward addition

to our methodology would consider location specific priors for

each variant, which would depend for example on the distance to

the gene of interest, or the presence of functional elements in this

chromosome region [29]. Our computation of the BF also assumes

that, under H4, the effect sizes of the shared variant on both traits

are independent. This could be modified if, for example, one

compares eQTLs across different tissue types, or the same trait in

two different studies. [30] has proposed a framework to deal with

correlated effect sizes, and these ideas could potentially be

incorporated in our colocalisation test.

Another related issue is the choice of prior probabilities for the

various configurations. For the eQTL analysis, we used a 10{4

prior probability for a cis-eQTL. A more stringent threshold may

be better suited for trans-eQTLs where the variants are further

away from the gene under genetic control. We also used a prior

probability of 10{4 for the lipid associations. Although our

knowledge about this is still lacking, this estimate has been

suggested in the literature in the context of GWAS [20,31,32]. We

assigned a prior probability of 1|10{6 for p12, which encodes the

probability that a variant affects both traits. It has been shown that

SNPs associated with complex traits are more likely to be eQTLs

compared to other SNPs chosen at random from GWAS platforms

[33], and a higher weighting for these SNPs has been proposed

when performing Bayesian association analyses [34,35]. Also,

eQTLs have been shown to be enriched for disease-associated

SNPs when a disease-relevant tissue is used [9,36]. Our sensitivity

analysis for the p12 parameter showed broadly consistent results

(Table S1). In cases where GWAS data are available for both

traits, [10] show that it is possible to estimate these parameters

from the data using a hierarchical model. This addition is a

possible extension of our approach.

The interpretation of the posterior probabilities requires

caution. For example, a low PP4 may not indicate evidence

against colocalisation in situations where PP3 is also low. It may

simply be the result of limited power, which is evidenced by high

values of PP0, PP1 and/or PP2. Moreover, a high PP4 is a

measure of correlation, not causality. To illustrate this, one can

consider the relatively common situation where a single variant

appears to affect the expression of several genes in a chromosome

region (as observed, for example, in the region surrounding the
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SORT1 gene). Several eQTLs will be colocalised, both between

them and with the biomarker of interest. In this situation one

would typically expect that a single gene is causally involved in the

biomarker pathway but the colocalisation test with the biomarker

will generate high PP4 values for all genes in the interval.

We show that we can use conditional p-values to deal with

multiple independent associations with the same trait at one locus.

While we found this solution generally effective, Wallace [14]

points out that this top SNP selection for the conditional analysis

can create biases, although the bias is small in the case of large

samples and/or strong effects. For difficult loci with multiple

associations for both traits and available genotype data, it may be

more appropriate to estimate Bayes factors for sets rather than

single variants in order to obtain an exact answer. This extension

would avoid the issue of SNP selection for the conditional analysis.

Importantly, GWAS signals can be explained by eQTLs only

when the causal variant affects the phenotype by altering the

amount of mRNA produced, but not when the phenotype is

affected by changing the type of protein produced, although the

former seems to be the most common [33]. Furthermore, since

many diseases manifest their phenotype in certain tissues

exclusively [2,21,37,38], colocalisation results will be dependent

on the expression dataset used. In addition to identifying the

causal genes, the identification of tissue specificity for the

molecular effects underlying GWAS signals is a key outcome of

our method. We anticipate that building a reference set of eQTL

studies in multiple tissues will provide a useful check for every new

GWAS dataset, pointing directly to potential candidate genes/

tissue types where these effects are mediated.

While this report focuses on finding shared signals between a

biomarker dataset and a liver expression dataset, we plan to utilise

summary results of multiple GWAS and eQTL studies, for a

variety of cell types and traits. In fact, our method can utilise

summary results from any association studies. Disease/disease, (cis
or trans) eQTL/disease or disease/biomarkers comparisons are all

of biological interest and use the same statistical framework. We

expect that the fact that the test can be based on single SNP

summary statistics will be key to overcome data sharing concerns,

hence enabling a large scale implementation of this tool. The

increasing availability of RNA-Seq eQTL studies will further

increase the opportunity to detect isoform specific eQTLs and

their relevance to disease studies. Owing to the increasing

availability of GWAS datasets, the systematic application of this

approach will potentially provide clues into the molecular

mechanisms underlying GWAS signals and the aetiology of the

disorders.

Materials and Methods

Ethics statement
This paper re-analyses previously published datasets. All

samples and patient data were handled in accordance with the

policies and procedures of the participating organisations.

Expression dataset
We used in our analysis gene expression and genotype data

from 966 human liver samples. The samples were collected post-

mortem or during surgical resection from unrelated European-

American subjects from two different non-overlapping studies,

which have been described in [16]. The cohorts were both

genotyped using Illumina 650Y BeadChip array, and 39,000

expression probes were profiled using Agilent human gene

expression arrays. All of the expression data has been normalised

as one unit even though they were part of different studies, since

high concordance between data generated using the same array

platforms has been previously reported. Probe sequences were

searched against the human reference genome GRCh37 from

1000 Genomes using BLASTN. Multiple probes mapping to one

gene were kept in order to examine possible splicing. The probes

were kept and annotated to a specific gene if they were entirely

included in genes defined by Ensembl ID or by HGNC symbol

using the package biomaRt in R [39]. After mapping and

annotating the probes, we were left with 40,548 mapped probes

covering 24,927 genes.

Imputation of genetic data
Quality control filters were applied both before and after

imputation. Before imputation, individuals with more than 10%

missing genotypes were removed, and SNPs showing a missing

rate greater than 10%, a deviation for HWE at a p-value less than

0.001 were dropped. After imputation, monomorphic SNPs were

excluded from analyses.

To speed up the imputation process, the genome was broken

into small chunks that were phased and imputed separately and

then re-assembled. This was achieved using the ChunkChromo-

some tool (http://genome.sph.umich.edu/wiki/ChunkxChromo

some), and specifying chunks of 1000 SNPs, with an overlap

window of 200 SNPs on each side, which improves accuracy near

the edges during the phasing step. Each chunk was phased using

the program MACH1 with the number of states set to 300 and the

number of rounds of MCMC set to 20 for all chunks. Phased

haplotypes were used as a basis for imputation of untyped SNPs

using the software Minimac with 1000 Genomes European

ancestry reference haplotypes (phase1 version 3, March 2012) to

impute SNPs not genotyped on the Illumina array. Variants with a

MAF less than 0.001 were also excluded post-imputation. The

data was then collated in probability format that can be used by

the R Package snpStats [39].

eQTL analysis
eQTL p-values, effect sizes, and standard errors were obtained by

fitting a linear trend test regression between the expression of each

gene and all variants 200 kilobases upstream and downstream from

each probe. After filtering out the variants with MAF ,0.001,

monomorphic SNPs, multi-allelic SNPs (as reported in 1000

Genomes or in the Ensembl database) and variants not sufficiently

well imputed (Rsq ,0.3, as defined by minimac http://genome.

sph.umich.edu/wiki/minimac) between both datasets, we applied

our colocalisation procedure. We conducted conditional analysis on

SNPs with p-values v10{4 for the expression associations, and

repeated the colocalisation test using expression data conditioned on

the most significant SNP. The aim of this analysis is to explore

whether additional signals for expression other than the main one

are shared with the biomarker signal.

Biomarker dataset
The biomarker p-values from the meta-analyses (with genomic

control correction) were obtained from a publicly available re-

pository (http://www.sph.umich.edu/csg/abecasis/public/lipids

2010/).

The regional association plots for the eQTL and Biomarker

datasets were created using LocusZoom [40] (http://csg.sph.

umich.edu/locuszoom/).

Posterior Computation
We call a ‘‘configuration’’ one possible combination of pairs of

binary vectors indicating whether the variant is associated with the
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selected trait. We can group the configurations into five sets, S0,

S1, S2, S3, S4, containing assignments of all SNPs Q to the

functional role corresponding to the five hypothesis H0, H1, H2,

H3, H4. We can compute the posterior probabilities given the data

for each of these 5 hypothesis by summing over the relevant

configurations:

P(HhjD)!
X
S[Sh

P(DjS)P(S) ð1Þ

where P(S) is the prior probability of a configuration, P(DjS) is

the probability of the observed data D given a configuration S,

and the sum is over all configurations S which are consistent with

a given hypothesis Hh, where h = (1,2,3,4). Thus, the probability of

the data given a configuration is weighted by the prior probability

of that configuration.

Next, to avoid computing the proportionality constant in

Equation 1, we can reformulate the posterior probability for each

hypothesis by writing this quantity as a ratio. For example, the

posterior probability under hypothesis 4, dividing each of these

terms by the baseline P(H0jD), is:

PP4

~P(H4jD)

~
P(H4jD)

P(H0jD)zP(H1jD)zP(H2jD)zP(H3jD)zP(H4jD)

~

P(H4jD)

P(H0jD)

1z
P(H1jD)

P(H0jD)
z

P(H2jD)

P(H0jD)
z

P(H3jD)

P(H0jD)
z

P(H4jD)

P(H0jD)

ð2Þ

The ratios in the numerator and denominator of equation 2 are:

P(HhjD)

P(H0jD)
~
X
S[Sh

P(DjS)

P(DjS0)
|

P(S)

P(S0)
ð3Þ

The first ratio inside the sum in this equation is a Bayes Factor (BF)

for each configuration, and the second ratio is the prior odds of a

configuration compared with the baseline configuration S0. The

BF can be computed for each variant from the p-value, or

estimated regression coefficient b̂b and variance of b̂b, using

Wakefield’s method. By summing over all configurations in Sh

we are effectively comparing the support in the data for one

alternative hypothesis versus the null hypothesis. An in-depth

description of the method making use of the current assumptions

can be found in Text S1.

Bayes factor computation
A Bayes Factor for each SNP and each trait 1 and 2 was

computed using the Approximate Bayes Factor (ABF, [20]).

Wakefield’s method yields a Bayes factor that measures relative

support for a model in which the SNP is associated with the trait

compared to the null model of no association.

The equation used is the following:

ABF~
ffiffiffiffiffiffiffiffiffiffi
1{r
p

|exp
Z2

2
|r

� �
ð4Þ

where Z~b̂b=
ffiffiffiffi
V
p

is the usual Z statistic and the shrinkage factor r

is the ratio of the variance of the prior and total variance

(r~W=(VzW )). Assuming a normal distribution, the p-value of

each SNP can be converted to standard one-tailed Z-score by

using inverse normal cumulative distribution function. So for a

SNP, all that it is needed are the p-values from a standard

regression output, and
ffiffiffiffiffiffi
W
p

, the standard deviation of the normal

prior N(0,W) on b. The variance of the effect estimate, V, can be

approximated using the MAF and sample size. However for

imputed data it is preferable to use the variance outputted in

standard regression analysis directly in the ABF equation. For the

expression dataset used here, the variance and effect estimates

from the regression analysis were used for computation of ABFs

(see Text S1 for more details).

Choice of priors
Prior probabilities are assigned at the SNP level and correspond

to mutually exclusive events. We assigned a prior of 1|10{4 for

p1 and p2, the probability that a SNP is associated with either of

the two traits. Since all SNPs are assumed to have the same prior

probability of association, this prior can be interpreted as an

estimate for the proportion of SNPs that we expect to be associated

with the trait in question. We also assigned a prior probability of

1|10{6 for p12, the probability that one SNP is associated

with both traits. This probability can be better understood when

it is re-expressed as the conditional probability of a SNP

being associated with trait 2, given that it is associated with

trait 1. So assigning a probability of 1|10{6 means that 1 in 100

SNPs that are associated with trait 1 is also associated with the

other. As a sensitivity analysis, we ran the comparison with

Teslovich et al. using two other prior probabilities for p12,

2|10{6 which means 1 in 50 SNPs that are associated with one

trait is also associated with the other; and 10{5 which means 1 in

10 SNPs.

To compute the ABF, we also needed to specify the standard

deviation for the prior, and we set this to 0.20 for binary traits and

0.15 for quantitative traits (more details in Text S2).

Supporting Information

Figure S1 Simulation analysis with a shared causal variant

between two studies, comparing results using imputed versus

not imputed data where the causal SNP is included in both the

cases. The two datasets used are one eQTL (sample size 966

samples) and one biomarker, and each plot shows different

sample sizes for the biomarker dataset. The variance explained

by the causal variant for both the traits is colour coded. The x-

axis shows the estimated PP4 for 1,000 simulations using data

imputed from metaboChip Illumina array (Methods). The y-

axis uses the same dataset restricted to variants present on the

Illumina 660W genotyping array to assess the impact of a

lower variant density. The causal variant is included in the

Illumina 660W panel.

(TIF)

Figure S2 Simulation analysis with a shared causal variant

between two studies, comparing results using imputed versus not

imputed data where the causal SNP is not included in one of the

datasets. The two datasets used are one eQTL (sample size 966

samples) and one biomarker, and each plot shows different sample

sizes for the biomarker dataset. The variance explained by the

causal variant for both the traits is colour coded. Column and row
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headings are the same as in previous figure. The causal SNP is not

included in Illumina 660W panel.

(TIF)

Figure S3 The relationship between PP4 and the posterior

predictive p-value (on a -log10 scale) from proportional testing.

Proportional testing uses the BMA approach, integrating over all

possible two SNP models. Each row shows a different scenario,

the total number of causal variants in a region is indicated by

number of symbols in the plot titles with the type of causal

variant indicated by the symbol: full circle - affects both traits;

top only - affects one trait; bottom only- affects other trait. For

proportional testing, the grey vertical line indicates the

threshold ppp of 0.05. Each column shows the total proportion

of trait variance for the biomarker explained by all variants in

a region, with variance explained spread equally over all

variants. In all cases, for the eQTL trait, n = 1,000, 10% of the

variance explained by the variant; for the biomarker trait,

n = 10,000.

(TIF)

Figure S4 The relationship between PP4 and the posterior

predictive p-value (on a -log10 scale) from proportional testing,

using subset of SNPs which appear on the Illumina HumanOm-

niExpress genotyping array. For the eQTL trait, n = 1,000, 10%

of the variance explained by the variant; for the biomarker

trait, n = 10,000, 1% or 2% of the variance explained by the

variant. Column and row headings are the same as in previous

figure.

(TIF)

Figure S5 Regional Manhattan plots corresponding to loci listed

in Table 1 of main text. The plots focus on a specific region of the

genome with a range of *400 kilobases around the expression

probe of the gene specified below each plot. The top plots use the -

log10(p-value) from the published meta-analysis with one of the

four lipid biomarkers; the bottom plots show the -log10(p-value)

computed by fitting a generalised linear model with expression as

dependent variable and SNP genotypes as independent variable.

Each dot represents one SNP, imputed or directly typed. The

value on the top of each plot shows the PP4 from the colocalisation

test between the two top SNP of the expression and biomarker

associations.

(PDF)

Figure S6 LDL association and eQTL association plots at

the ANGPTL3 locus. The x-axis shows the physical position

on the chromosome (Mb) A: 2log10(p) association p-values

for LDL. The p-values are from the Teslovich et al published

meta-analysis of .100,000 individuals. B: 2log10(p) associ-

ation p-values for ANGPTL3 expression in 966 liver

samples.

(TIF)

Figure S7 Regional Manhattan plots corresponding to loci

listed in Table 2 of main text. Row and column headers

defined as in previous figure. The genomic range may be

greater than *400 kilobases to improve visualisation of the

signal.

(PDF)

Figure S8 Simulation analysis with multiple shared causal

variants. The first plot represents cases with only one causal

variant in a region, while the following plots illustrate the

behaviour of the statistic in the presence of an additional

causal variant affecting the variance explained of the eQTL

trait. In all scenarios, the first causal variant explains 10% of

the variance of the eQTL trait. The second causal variant

explains 1%, 5%, or 10% of the eQTL trait. We show the

proportion of simulations with the posterior probability (PP3

or PP4) of the indicated hypothesis .0.9. Error bars show

95% confidence intervals (estimated based on an average of

1,000 simulations per scenario). In all cases, for the eQTL

sample size is 1,000; for the biomarker trait, the sample size is

10,000.

(TIF)

Figure S9 Simulation analysis with a recessive shared causal

variant. The two datasets used are one eQTL (sample size 966

samples, 10% of the variance explained by the variant) and one

biomarker (sample size 10,000). The variance explained by the

biomarker is colour coded and the shape of the dots represent the

different mode of inheritance. The simulation procedure and

distribution of the statistic are the same as defined in previous

figure.

(TIF)

Table S1 Results using reported loci that colocalise with liver

eQTL. Published results of loci correlating with both liver

expression and one of the four lipid traits (Teslovich et al.

Supplementary Table 8) and posterior probability of different

signal (PP3) and common signal (PP4) after applying colocalisa-

tion test. Each row lists the results for one probe, and the multiple

entries for the same locus and trait represent multiple probes

mapping to the same locus. the columns Biom pval and eQTL
pval report the lowest p-values found for the association with the

trait listed and for the liver expression association respectively,

with the corresponding SNP name (Biom SNP and eQTL
SNP); the column Best Causal reports the SNP within the

region with the highest posterior probability to be the true causal

variant. The probabilities have been rounded to 1 significant

figure.

(PDF)

Table S2 eQTL/LDL colocalisation. Positive (PP4 .75%)

eQTL/LDL colocalisation results between the liver eQTL dataset

and the Teslovich meta-analysis using the most stringent prior for

the probability that one SNP is associated with both traits,

p12~10{6. The column Signal includes genes that are part of

overlapping regions and that colocalise at PP4 .75%; the column

Region represents the genomic coordinates for the start and stop

of the signal; in the column Tesl, ‘‘Y’’ indicates that this signal

with any of the genes included has been reported to be an

intermediate for any of the four lipid biomarker associations by

Teslovich et al. ; the columns Biom pval and eQTL pval report

the lowest p-values found for LDL association and for the

expression association respectively, with the corresponding SNP

name (Biom SNP and eQTL SNP); the column Best Causal
reports the SNP within the region with the highest posterior

probability to be the true causal variant. The probabilities have

been rounded to 1 significant figure.

(PDF)

Table S3 eQTL/HDL colocalisation. Positive (PP4 .75%)

eQTL/HDL colocalisation results between the liver eQTL dataset

and the Teslovich meta-analysis. Column and row headings are

the same as in previous figure.

(PDF)
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Table S4 eQTL/TG colocalisation. Positive (PP4 .75%)

eQTL/HDL colocalisation results between the liver eQTL dataset

and the Teslovich meta-analysis. Column and row headings are

the same as in previous figure.

(PDF)

Table S5 eQTL/TC colocalisation. Positive (PP4 .75%)

eQTL/HDL colocalisation results between the liver eQTL dataset

and the Teslovich meta-analysis. Column and row headings are

the same as in previous figure.

(PDF)

Text S1 Supplementary materials. Expanded methods, deriva-

tions and analyses.

(PDF)

Text S2 Overview of gene function of new colocalisation results

associated with blood lipid levels and liver expression.

(PDF)
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