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ABSTRACT
Security mechanisms for systems programming languages, such as
fine-grained memory protection for C/C++, authorize operations
at runtime using access rights associated with objects and point-
ers. The cost of such fine-grained capability-based security models
is dominated by metadata updates and lookups, making efficient
metadata management the key for minimizing performance impact.
Existing approaches reduce metadata management overheads by
sacrificing precision, breaking binary compatibility by changing
object memory layout, or wasting space with excessive alignment
or large shadow memory spaces.

We propose FRAMER, a capability framework with object granu-
larity. Its sound and deterministic per-object metadata management
mechanism enables direct access to metadata by calculating their
location from a tagged pointer to the object and a compact sup-
plementary table. This may improve the performance of memory
safety, type safety, thread safety and garbage collection, or any so-
lution that needs to map pointers to metadata. FRAMER improves
over previous solutions by simultaneously (1) providing a novel
encoding that derives the location of per-object metadata with low
memory overhead and without any assumption of objects’ align-
ment or size, (2) offering flexibility in metadata placement and size,
(3) saving space by removing any padding or re-alignment, and
(4) avoiding internal object memory layout changes. We evaluate
FRAMER with a use case on memory safety.

CCS CONCEPTS
• Security and privacy→ Systems security; Software and ap-
plication security.
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1 INTRODUCTION
Despite advances in software defenses, exploitation of systems
code written in unsafe languages such as C and C++ is still possible.
Security exploits use memory safety vulnerabilities to corrupt or
leak sensitive data, and hijack a vulnerable program’s logic. In
response, several defenses have been proposed for making software
exploitation hard.

Current defenses fall in two basic categories: those that let mem-
ory corruption happen, but harden the program to prevent ex-
ploitation, and those that try to detect and block memory corrup-
tion in the first place. In the first category, for instance, Control-
flow Integrity (CFI) [1, 14, 20, 35, 37, 45–47, 53–55] contains all

control flows in a statically computed Control-flow Graph (CFG),
while Address Space Layout Randomization (ASLR) hides the avail-
able CFG when the process executes. Both approaches can be by-
passed [15, 42], since memory corruption is still possible, albeit
exploitation is much harder.

We focus on the second category, including deterministic ap-
proaches that detect and block memory safety violations by main-
taining runtime metadata for access rights and instrumenting the
program to block unintended accesses at runtime [3, 5, 13, 16, 19, 21–
23, 32–34, 52]. These systems can offer deterministic guarantees by
preventing memory corruption in the first place, however tracking
all objects (or pointers) incurs heavy performance overheads. Per-
formance is critical for adoption since unsafe languages like C/C++
are employed for performance-sensitive applications. Some of these
systems trade accuracy for speed by allowing false negatives, and
hence are more useful for troubleshooting than security.

Some existing techniques trade off compatibility for high locality
of reference, however, it is desirable to minimise the disruption
owing to tacit assumptions by programmers and compatibility with
existing code or libraries that cannot be recompiled. In particular, so-
called fat pointers [34] impose incompatibility issues with external
modules, especially precompiled libraries.

With these limitations in mind, object-capability models [9, 25,
48, 49] using hardware-supported tags become very attractive, be-
cause they can manage compatibility and control runtime costs.
However, they cannot entirely avoid undesirable overheads such
as metadata management related memory accesses just by virtue
of being hardware-based. In turn, some hardware-based solutions
also trade accuracy for acceptable performance [? ].

In this paper, we present FRAMER, a memory-efficient capability
model using tagged pointers for fast and flexible metadata access.
FRAMER provides efficient per-object metadata management that
enables direct access to metadata by calculating their location using
the (currently) unused top 16 bits of a 64-bit pointer to the object
and a compact supplementary table. The key considerations behind
FRAMER are as follows.

Firstly, FRAMER enables the memory manager freedom to place
metadata in the associated header near the object to maximise
spatial locality, which has positive effects at all levels of the memory
hierarchy. Headers can vary in size, unlike approaches that store
the header at a system-wide fixed offset from the object, which
may be useful in some applications. Headers can also be shared
over object instances (although we do not develop that aspect in
this paper). Our evaluation shows excellent D-cache performance
where the performance impact of software checking is, to a fair
extent, mitigated by improved instructions per cycle (IPC).
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Figure 1: Embedded Metadata: P, UB, and LB represent a
pointer itself, upper bound, and lower bound, respectively.

Secondly, the address of the header holding metadata is derived
from tagged pointers regardless of objects’ alignment or size. We
use a novel technique to encode the relative location of the header in
unused bits at the top of a pointer. Moreover, the encoding is such
that, despite being relative to the address in the pointer, the tag
does not require updating when the address in the pointer changes.
A supplementary table is used only for cases where the location
information cannot be directly addressed with the additional 16-bits
in the pointer. The address of the corresponding entry in the table
is also calculated from our tagged pointer. With the help of the
tag, this table is significantly smaller compared to typical shadow
memory implementations.

Thirdly, we avoid wasting memory from any padding and su-
perfluous alignment, whereas existing approaches using shadow
space [3, 17, 25, 32, 39] re-align or group objects to avoid conflicts
in entries, FRAMER provides great flexibility in alignment, that
completely removes constraining the objects or memory. The av-
erage of space overheads of our approach is 20% for full checking
despite the generous size of metadata and the supplementary table
in our current design.

Fourthly, our approach facilitates compatibility. Our tag is en-
coded in otherwise unused bits at the top of a pointer, but the
pointer size is unchanged and contiguity can be ensured.

The contributions of this paper are the following:
∙ We present an efficient encoding technique for relative off-

sets that is compact and avoids imposing object alignment
or size constraints. Moreover, it is favourable for hardware
implementation.

∙ Based on the proposed encoding, we design, implement and
evaluate FRAMER, a generic framework for fast and practical
object-metadata management with potential applications in
memory safety, type safety and garbage collection.

∙ We illustrate the use of FRAMER with a case study on spatial
memory safety that guarantees near-zero false negatives/-
positives, using our framework to allow inexpensive valida-
tion of pointer dereferences by associating pointers to object
metadata containing bounds information. We demonstrate
promising low memory overheads and high instruction-level
parallelism.

2 BACKGROUND AND RELATEDWORK
Several approaches have been proposed for tracking memory and
detecting memory-related errors. The overhead is one of the biggest
challenges of run-time protection mechanisms along with detection
coverage. In light of recent hardware-based solutions, memory

bandwidth remains the main performance constraint for a broad
class of applications and additional cache misses or DRAM row
activations, owing to lack of spatial consistency, larger footprint or
poor structure alignment, always needs to be minimised. We review
here trade-offs of systems that either track objects or pointers.

Pointer-based tracking guarantees near complete memory safety.
Its per-pointer metadata hold the valid range that a pointer is al-
lowed to point to. This enables it to detect internal overflows easier,
such as an array out-of-bounds inside a structure, unlike object-
based approaches.

Pointer-based approaches are often implemented using fat point-
ers [5, 34? ]. They define a new pointer representation that carries
metadata with itself, thus increasing locality but sacrificing com-
patibility. Since fat pointers increase the number of bytes used to
hold a pointer (Fig. 1a) they require modification of the memory
layout and this damages compatibility with non-instrumented code.
Moreover, updates to fat pointers spanning multiple words are not
atomic, while some parallel programs rely on this.

Several pointer-based approaches [32] chose memory layout
compatibility over locality. Using disjoint metadata achieves com-
patibility by storing metadata in a separate memory region. In-
tel MPX [19, 31, 36] is an ISA extension that provides hardware-
accelerated pointer-checking using disjoint metadata in a bounds
table holding per-pointer metadata as illustrated in Fig. 2b.

Pointer-tracking approaches’ strong guarantees comes with the
additional runtime overhead from metadata copy and update at
pointer assignment, while object-based approaches update meta-
data only at memory allocation/release. In addition, the number of
pointers is typically larger than that of allocated objects, so pointer-
intensive programs may suffer from heavier runtime overheads.

Hardware support [10, 19, 25, 49? ? ] does not remove this over-
head. Reportedly, MPX suffers due to lack of memory even with
small working sets [24], and has turned out to be slow for pointer-
intensive programs, owing to exhausting the limited number of
special-purpose bounds registers (4 registers), requiring spill opera-
tions from regions of memory that themselves require management
and consume D-cache bandwidth and capacity.

Due to the heavy cost of per-pointer metadata, more techniques
track objects. Object-based approaches [22? ? ] store metadata per
object and also make a trade-off against complete memory safety. By
not changing the memory layout of objects, they offer compatibility
with current source and precompiled legacy libraries.

Modern approaches reduce slowdown using a shadow space that
allows direct array access to metadata [3, 8, 10, 17, 32, 34, 38, 51].
Beyond early techniques’ byte-to-byte mapping of the application
space, recent techniques reduced the size of shadow space with
compact encoding, at the cost of minimum allocation size or loss of
some precision. An example is Baggy bounds checking (BBC) [3].
BBC mandates object alignment to the base of a block, to prevent
metadata conflicts caused by multiple objects in one block. In addi-
tion, it pads each object to the next power of two, so that each one-
byte sized entry stores only 𝑙𝑜𝑔2(padded object size). BBC performs
approximate bounds checking, tolerating going out-of-bounds yet
within the padded bound.

Address Sanitizer [39] (ASan) utilizes shadow space differently.
It re-aligns and pads each object with redzones front and back as
shown in Fig. 2a, and considers access to redzones as out-of-bounds.
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Figure 2: Disjoint Metadata

At memory access, ASan derives the address of its corresponding
entry from a pointer, and the entry tells if the address is addressable.
Disadvantage of ASan is that its error detection relies on spatial
distance. It loses track of pointers going far beyond of redzone and
reaching another object’s valid range, so fails to address tracking
intended referents [22]. The wider the redzone, the more errors ASan
detects. ASan detects most errors, but it is less deterministic in
theory and trades-off memory space for detection coverage. In our
experiments, ASan and FRAMER’s normalised memory footprints
are 8.84 and 1.23, respectively.

Rather than fat pointers or shadow space, tagged pointers [23, 24]
can instead be used. SGXBounds [24] trades-off address space for
speed and near-complete memory safety. SGXBounds makes objects
carry their metadata in a footer as shown in Fig. 1b, and utilizes
the higher 32 bits of a pointer to hold the metadata location (upper
bound of its referent at the same time). Storing the absolute address
of bounds frees SGXBounds from false negatives that challenge
many object-tracking approaches. This approach works when there
are enough spare bits in pointers, which is the case with SGX
enclaves, where only 36 bits of virtual address space are currently
supported.

Hardware accelerated tagged pointers are available without sacri-
ficing address space. ARM v8.5 ISA [26, 27] introduces the Memory
Tagging Extension (MTE) assigning a 4-bit tag to each 16 bytes at
memory allocation, and tapping memory accesses with incorrect
tags in the pointer. The memory bandwidth impact will depend
greatly on the underlying hardware architecture and could be close
to zero if the tags are largely implemented in separate hardware
resources and blocks are normally cleared on allocation. However,
this approach has 1/16 chance of false negatives at each memory
access.

In this work, to achieve deterministic memory protection with
data memory efficiency, while preserving the full 48-bit address
space available in contemporary CPUs, we sacrifice dynamic in-
struction counts. We (1) rein in the increase in extra cache misses for
metadata (owing to spatial locality compared with a total shadow
memory approach) and (2) we tolerate an increase in outgrowth of
executed instructions for arithmetic operations. This may sound un-
favourable, but note that we can move to an even sweeter spot in the
future where the instruction overhead for calculation is reduced
via customised ISA. Our framework provides a novel encoding
that derives metadata location from a tagged pointer, lowering both
memory footprint and cache misses. In our experiments, normalised
L1 D-cache miss counts for FRAMER and ASan on average are 1.40
and 2.31, respectively.
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Figure 3: Aligned frames in memory space: a memory space
can be divided into frames that are defined by memory
blocks that are 2𝑛-sized and aligned by their size. Amemory
object’swrapper frame is the smallest frame completely con-
taining the object. For instance, the 2-byte sized object a’s
wrapper frame size is 21 (called 1-frame). In the same way,
objects b and c’s wrapper frames are 4-frame and 3-frame,
respectively.

FRAMER can be the base of a solution for both (1) practical
deployment with customised ISA for its efficiency of memory foot-
print and cache memory and (2) sound runtime verification during
development.

3 FRAMER APPROACH
In a nutshell, FRAMER places per-object metadata close to their
object and calculates the location of metadata from only (1) an
inbound pointer and (2) additional information tagged in the oth-
erwise unused, top 16 bits of the pointer. We exploit the fact that
relative addresses can be encoded in far fewer bits than absolute
addresses with assistance from the memory manager to restrict the
distance between the allocation for an object and a separate object
for its metadata. In our case, the metadata can be stored in front
of the object, essentially as a header that an object carries with
itself, requiring only a single memory manager allocation. For the
remaining cases where the relative address cannot fit in a 16-bit tag,
we use a compact supplementary table to locate the header. The tag
encodes when this is the case, and also sufficient information to
locate the supplementary entry.

We are now going to introduce the concept of frames used to
encode relative offsets. We first define frames in Section 3.1 and
show how to calculate an object’s wrapper frame in Section 3.2.
In Section 3.3 we explain how relative location can be encoded
in a tagged pointer using these concepts, and how to exploit this
encoding to reduce the supplementary table’s size.

3.1 Frame Definitions
To record the relative location in the top 16 bits of a 64-bit pointer,
which are spare in contemporary CPUs, we define a logical structure
over the whole data space of a process, including statics, stack, and
heap. The FRAMER structures are based on the concept of frames,
defined as memory blocks that are 2𝑛-sized and aligned by their
size, where 𝑛 is a non-negative integer. A frame of size 2𝑛 is called
n-frame. A memory object x will intrinsically lie inside at least one
bounding frame, and x’s wrapper frame is defined as the smallest
frame completely containing 𝑥, so there exists only one wrapper
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frame for x. For instance, in Fig. 3, each sharp-cornered box repre-
sents a byte, and contiguous coloured bytes are objects allocated
in memory (e.g. object a has a size of 2 bytes). Memory space is
divided to frames illustrated as round-cornered boxes. Objects a,b
and c’s wrapper frames are (𝑛 = 1)-frame (or 1-frame), 4-frame,
and 3-frame, respectively. For 0 ≤ 𝑚 < 𝑛, we call 𝑚-frames placed
inside an 𝑛-frame f, f’s subframes.

Frames have several interesting properties. Firstly, an 𝑛-frame is
aligned by 2𝑚 for all 𝑚 < 𝑛. Secondly, an object’s wrapper frame
size is not proportional to the object’s size. As shown in Fig. 3, the
object b has a larger wrapper frame than c, even though b’s size
is smaller. This is because the wrapper frame size for an object
is determined by both the object’s size and location. Thirdly, as
discussed previously, an object’s wrapper frame is defined as the
smallest frame containing the object. Given an object x, its wrapper
frame is obtained by finding a frame having x’s base (i.e. lower
bound) and upper bound in its lower-addressed (𝑛− 1)-subframe
and higher-addressed (𝑛 − 1)-subframe, respectively. For exam-
ple, in Fig. 3, object b’s lower and upper bound are placed in b’s
wrapper frame (4-frame)’s lower-addressed and higher-addressed
3-subframes, respectively. It is trivial to prove that an object’s wrap-
per frame is the frame having the object’s lower and upper bound
in its biggest subframes, as presented in Appendix A.1.

Following basic malloc semantics, FRAMER does not natively
support object movement or growth (we reset its wrapper frame
at realloc). Therefore, there exists a unique wrapper frame for
each object, and it is determined at memory allocation. Since it
does not change during the life time of an object, we can encode
the metadata location using an offset relative to the wrapper frame.
At memory allocation, we determine the wrapper frame for the
allocated object and store the metadata offset in the pointer tag.

3.2 Frame Selection
We now show how to calculate the size of the wrapper frame, given
an object. We call an object whose wrapper frame is an 𝑛-frame
an n-object. For any 𝑘-object 𝑜, since its wrapper frame (i.e. a 𝑘-
frame) is aligned by 2𝑘 by definition, the addresses of all bytes in
the frame coincide in their most significant (64− 𝑘) bits, and so
do the addresses of all bytes in 𝑜. In addition, the base and upper
bounds are located in the lower and higher-addressed (𝑘−1)-frame,
respectively. This means that the (𝑘 − 1)th least significant bit of
the base and that of the upper bound are complementary to each
other.

Based on these, we can calculate 𝑘, the binary logarithm (log2)
of 𝑜’s wrapper frame’s size. Let (𝑏63, ..., 𝑏1, 𝑏0) and (𝑒63, ..., 𝑒1, 𝑒0)
bit vectors of 𝑘-object 𝑜’s base and upper bound respectively, and 𝑋
a don’t care value. We derive log2(wrapper frame size) by perform-
ing XOR (exclusive OR) and CLZL (count leading zeros) operations
as follows (𝑏63 is the most significant):

(𝑏63, ..., 𝑏𝑘, 𝑏(𝑘−1), 𝑏(𝑘−2), ..., 𝑏0)
(𝑒63, ..., 𝑒𝑘, 𝑒(𝑘−1), 𝑒(𝑘−2), ..., 𝑒0) XOR

(0, ..., 0, 1, X, ..., X) CLZL

(64− 𝑘)

We then get 𝑘 by subtracting the result of the CLZL operation
from 64, since 𝑘 = 64− (64− 𝑘).

flag tag address

1
0

offset
N

if N<=15
if N>15

48151

Figure 4: Tagged pointer: the tag depends on the value of N
(binary logarithm of the wrapper frame size of a referent
object).

3.3 Metadata Storage Management
FRAMER’s memory manager places metadata in a header before
the object contents. For instance, in Fig. 5, a, b and c are all
objects containing a header. Using any bounding frame as a frame
of reference, we can encode the location of the object’s metadata
(i.e. header) relative to the base of this frame. We can then derive the
metadata location given an inbound pointer using the following:

(1) the binary logarithm of the bounding frame size (𝑁 =
𝑙𝑜𝑔22

𝑁 )
(2) an offset to a header from the bounding frame base
Given an inbound pointer and a bounding 𝑁 -frame, aligned by

2𝑁 by definition, we derive the bounding frame’s base by clearing
the pointer’s 𝑁 least significant bits. This means that once a bound-
ing frame’s 𝑁 value is known to us, we can obtain the frame’s
base without any other information but the address in an inbound
pointer’s 48 lower bits.

Having the value of 𝑁 at hand, we may tag pointers with the
offset from the bounding 𝑁 -frame’s base to the header. However,
even with the value of 𝑁 provided, the 16 bits of the tag cannot
hold the large offsets required for some combinations of wrapper
frame size and header location. For instance, a (𝑁 = 20)-object’s
offset (20-frame’s base ∼ the header) may need up to 19 bits.

To stuff the limited space of unused 16 bits of a pointer with both
an arbitrary offset and𝑁 value, FRAMER divides the virtual address
space into slots with a fixed size of 215 bytes, aligned to their size,
i.e., 15-frames. Slots are set to a size of 215 so that offsets to the
header of objects can be encoded in the unused 15 bits of a pointer
(one bit among 16 is reserved for a flag described subsequently). In
Fig. 5, 𝑑𝑎 is the offset to the header of the object a.

FRAMER then distinguishes between two kinds of objects, de-
pending on their wrapper frame size, namely small-framed and
large-framed objects. Small-framed objects are defined as (𝑁 ≤ 15)-
objects, i.e. objects whose wrapper frame size is less than/equal
to 215. Large-framed objects are defined as (𝑁 > 15)-objects. For
example, in Fig. 5, object a is small-framed, whereas b and c are
large-framed. One extra bit, in particular the most significant, is
used for a flag indicating if the object is small-framed or large-
framed as shown in Fig. 4. We handle objects differently depending
on their kind.

3.3.1 Small-framed Objects. Small-framed objects are completely
contained in a single slot, so any pointer to them is derived to the
slot base by zeroing the 15 least significant bits of the pointer. The
offset of a small-framed object 𝑥’s header from the base of the slot
containing 𝑥 is stored in the 15 bit pointer tag. For instance, in Fig. 5
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we tag pointers to the small-framed object a with 𝑑𝑎 (slot0’s
base ∼ a’s header).

We further turn on the most significant bit of the pointer to
indicate that the particular object is small-framed. FRAMER then
recognises a pointer to a small-framed object by the flag being on
and takes the 15-bit tag as an offset to its header from the base of
the slot containing the object. This way, we avoid storing the value
of 𝑁 for small-framed objects.

In summary, when we retrieve metadata from a header of a
small-framed object (i.e., flag is on), inbound (in-slot) pointers are
derived to the base of the slot by zeroing the 15 least significant
bits (𝑙𝑜𝑔2(𝑠𝑙𝑜𝑡 𝑠𝑖𝑧𝑒) = 15), and then to the address of the header
by adding the offset to the base address of the slot as follows:
// FLAGMASK: (1ULL ¡¡ 63)
// flag is on

offset = (taggedptr & FLAGMASK) ¿¿ 48;
slotbase = untaggedptr & (0ULL ¡¡ 15);
headeraddr = slotbase + offset;
objbase = headeraddr + headersize;

Small-framed objects are overwhelmingly common. Our experi-
ments showed the number of large-framed objects is very low com-
pared to small-framed ones: 1: > 200,000 on average and 1: millions
in some benchmarks. This is fortunate, because the header loca-
tion for small-framed objects is derived from tagged pointers alone,
while large-framed objects require additional bits of information.
These additional bits are provided by entries in a supplementary
table. We stress here that the location of this entry is also derived
using the tag in a way that enables much smaller tables than typical
shadow memory implementations. We describe this encoding next.

3.3.2 Large-framed Objects. Since large-framed objects span sev-
eral slots, zeroing the 15 least significant bits (𝑙𝑜𝑔2 of slot size) of a
pointer does not always lead to a unique slot base, thus the offset
in the tag cannot be solely used to derive their relative location. In
Fig. 5, a pointer to a 16-object b can derive two different slot bases
(slot0 and slot1) depending on the pointer’s value, and that
is the case for 17-object c (slot1 and slot2). In addition, the
offsets from the base of their wrapper frame ((𝑁 > 15)-frame) to
an (𝑁 > 15)-object’s header may not fit in spare bits. Hence, for
large-framed objects, we need to store additional location informa-
tion in our supplementary table, and use a different encoding in the
pointer tag to derive the address of the corresponding entry from
any pointer to the object.

During program initialisation, we create a table holding an entry
for each 16-frame. We call such a frame a division. Each entry
contains one sub-array and the sub-array per division is called
a division array. Each division array contains a fixed number of
entries potentially pointing to metadata headers, in the current
implementation as follows:
typedef struct ShadowTableEntryT –

HeaderTy *divisionarray[48]; // 64-16
DivisionT;

Contrary to small-framed objects, in the tag for large-framed
objects we store the binary logarithm of their wrapper frame size
(i.e., 𝑁 = 𝑙𝑜𝑔22

𝑁 ) as shown in Fig. 4. The address of an entry in a

slot0215 slot1 slot2
216 division0 division1

217 17-frame0

… b

0

c

1 2
…

47 48 0
…

a b c

𝑑𝑎 |ℎ| |𝑡𝑎|

division0’s array division1’s

Figure 5: Access to division array: the object a is small-
framed, while b and c are large-framed. 𝑑𝑎 is the offset to
a. ℎ denotes a header and |𝑡𝑎| is the size of a. b and c’s en-
tries are mapped to the same division array. The entries in
the division arrays store their corresponding object’s header
location, while the small-framed object a does not have an
entry. Only one entry of division1’s array is actually used,
since the division is not aligned by 217.

division array is then calculated from an inbound pointer and the
𝑁 value, and the entry holds the address of a header. By definition,
a wrapper frame of an (𝑁 ≥ 16)-object is aligned by its size,
2𝑁 , therefore, the frame is also aligned by 216. This implies that a
(𝑁 ≥ 16)-frame shares the base address with a certain division,
and is mapped to that division.

Each (𝑁 ≥ 16)-object maps to one division array, but that
division array contains entries for multiple large-framed objects.
In Fig. 5, both division0 and 17-frame0 are mapped to
division0. Their mapped division (division0) is aligned by
217 at minimum, while division1 is aligned by 216 at max.

The tag 𝑁 can be used as an index into the division array to
associate a header pointer, stored in an entry in the division array,
with each large-framed object mapped to the same division. For
each 𝑁 ≥ 16, at most one 𝑁 -object is mapped to one division
array, and the proof is presented in Appendix A.2. We use the value
𝑁 as an index of a division array, and tag 𝑁 in the pointer. Given
a 𝑁 value-tagged pointer (flag==0), we derive the address of an
entry as follows:
// UBASE: division base of userspace’s base
// SCALE: binary logarithm of divisionsize, i.e

. 16
// TABLE: address of a supplementary table
// flag is off

framebase = p & (0ULL ¡¡ N); // p is assumed
untagged here

tableindex = (framebase - UBASE) / (1ULL ¡¡
SCALE);

DivisionT *M = TABLE + tableindex;
headeraddr = M-¿divisionarray[N - SCALE];

The base of the wrapper frame (i.e. the base of the division) is
obtained by zeroing the least significant 𝑁 bits of the pointer. The
address of its division array is then derived from the distance from
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the base of virtual address space and 𝑙𝑜𝑔2(𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑠𝑖𝑧𝑒) (216).
Finally we access the corresponding entry with the index 𝑁 in the
division array.

Entries in a division array may not always be used, since an entry
corresponds to one large-framed object, which is not necessarily
allocated at any given time, e.g. if object b is not allocated in the
space in Fig. 5, 0th element ofdivision0’s array would be empty.
This feature is used for detecting some dangling pointers, and more
details are explained in Section 5.2.

Unlike existing approaches using shadow space, FRAMER does
not re-align objects to avoid conflicts in entries. Our wrapper frame-
to-entry mapping allows wrapper frames to be overlapped, that
gives full flexibility to memory manager.

We could use different forms of a header such as a remote header
or a shared header for multiple objects, with considering a cache
line, stack frame, or page. In addition, although we fixed the division
size (216), future designs may offer better flexibility in size.

We showed how to directly access per-object metadata only with
a tagged pointer. Our approach gives great flexibility to associate
metadata with each object; gives full freedom to arrange objects
in memory space, that removes padding objects unlike existing
approaches using shadow space. This mechanism can be exploited
for other purposes: the metadata can hold any per-object data.

4 FRAMER IMPLEMENTATION
This section describes the current implementation of FRAMER
which is largely built using LLVM. Additionally, we discuss how
we offer compatibility with existing code.

4.1 Overview
There are three main parts to our implementation: FRAMER LLVM
passes, and the static library (lib), and the binary lib in the dashed-
lined box in Fig. 6. The target C source code and our hooks’ functions
in the static lib are first compiled to LLVM intermediate represen-
tation (IR). Our main transformation pass instruments memory
allocation/release, access, or optionally pointer arithmetic in the
target code in IR. In general, instrumentation simply inserts a call
to lib functions, however, our use of header-attached objects and
tagged pointers requires more transformation at compile-time. The
third part is wrappers around malloc family routines and string
functions. Our customised compiler optimisations are discussed in
Section 6.

We also had to modify the LLVM framework slightly. Our main
transformation is implemented as a LLVM Link Time Optimisation

(LTO) pass for whole program analysis, and runs as a LTO pass on
gold linker [30], however, incremental compilation is also possible.

We also insert a prologue that is performed on program startup.
The prologue reserves address space for the supplementary meta-
data table, but pages are only allocated on demand.

4.2 Memory Allocation Transformations
We instrument memory allocation and deallocation to prepend
headers and update metadata by transforming the target IR code at
compile time.

4.2.1 Stack-allocated Objects (address-taken locals). For each local
allocation of aggregate-type that needs a header, we create a new
object with a structure type that contains two fields, one for the
header and one for the original allocation as shown below:

struct attribute((packed)) newTy –
HeaderTy hd;
Ty obj; // Ty is an original object’s type

;

We insert a callsite to our hook function that decides if it is small
or large-framed, updates metadata in the header, and also in the
entry for large-framed objects. It then creates a flag and tag (offset
or N value), and moves the pointer to the second field whose type
is the actual allocated type by the target program. The hook returns
a tagged pointer. The allocation of the original object is removed
by FRAMER’s pass, after the pass replaces all the pointers to the
original object with the tagged pointer to the new object.

We instrument function epilogues to reset entries for large-
framed non-static objects. Currently we instrument all the epi-
logues, but this instrumentation can be removed for better perfor-
mance.

4.2.2 Statically-allocated objects (address-taken globals). Transfor-
mation on static/global objects is similar to handling stack objects.
Creating a new global object with a header attached is straight-
forward, however, other parts of the implementation are more
challenging.

For stack objects, FRAMER’s pass replaces pointers to an orig-
inal object with a tagged one (i.e. the return value of the hook).
This cannot be applied to global objects, since the return value of
a function is non-constant, whereas the original pointer may be
an initializer of other static/global objects or an operand of con-
stant expression (LLVM ConstExpr) [28]. Global variables’
initializer and ConstExpr’s operands must be constant, hence, the
operations performed in a hook for stack objects should be done
by a transformation pass for global objects.

In addition, while the tag should be generated at compile-time,
the wrapper frame size is determined by their actual addresses
in memory, that are known only at run-time. To implement a
tagged pointer generated from run-time information at compile-
time, FRAMER’s transformation pass builds ConstExpr of (1) the
wrapper frame size 𝑁 (2) offset, (3) tag and flag selection depending
on its wrapper frame size, (4) pointer arithmetic operation to move
the pointer to the second field, and then finally (5) constructs a
tagged pointer based on them. The original pointers are replaced
with this constant tagged pointer. The concrete value of the tagged
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Table 1: FRAMER inserts code, highlighted in gray, for cre-
ating a header-padded object, updatingmetadata and detect-
ing memory corruption. Codes in line 2, 5, and 8 in the first
column are transformed to codes in the second column.

Original C Instrumented C
1 struct HeaderTy {unsigned size; unsigned type id;};

struct newTy{HeaderTy hd;int A[10];};
2 int A[10]; struct newTy new A;
3 tagged = handle alloc(&new A, A size);

/* tagged = tag & &(new A->A[0]),
A size = sizeof(int) * 10 */

4 int *p; int *p;
5 p = A+idx; p = tagged + idx;
6 check inframe(tagged, p);
7 untagged p = check bounds(p, sizeof(int));
8 *p = val; *untagged p = val;

pointer is then propagated at run-time, when the memory addresses
for the base and bound are assigned.

FRAMER inserts at the entry of the program’s main function
a call to an initialisation function for each object. This function
updates metadata in the header and, for large-framed objects, the
address in the table entry, during program initialisation.

4.2.3 Heap objects. We interpose calls to malloc, realloc,
and calloc at link time with wrapper functions in our binary
libraries. The wrappers increase the user-defined size by the header
size, call the wrapped function, and perform the required updates
and adjustments similar to the hook for stack objects. We also
interpose free with a wrapper to reset table entries for large-
framed objects.

4.3 Memory Access
FRAMER’s transformation pass inserts a call to our bounds check-
ing function right before each store and load, such that each
pointer is examined and its tag stripped-off before being derefer-
enced. The hook extracts the tag from a pointer, gets the header
location, performs the check using metadata in the header, and then
returns an untagged pointer after cleaning the tag. The transforma-
tion pass replaces a tagged pointer operand of store/load with
an untagged one to avoid segmentation fault caused by dereferenc-
ing it.

Bounds checking and untagging are also performed on memcpy,
memmove and memset in similar way. (Note that LLVM over-
rides the C lib functions to their intrinsic ones [29]). memmove
and memcpy has two pointer operands, so we instrument each
argument separately.

As for string functions, we interpose these at link time. Wrap-
per functions perform checks on their arguments, call wrapped
functions with pointers cleared from tags, and then restore the tag
for their return value.

4.4 Interoperability
FRAMER ensures compatibility between instrumented modules and
regular pointer representation in precompiled non-instrumented
libraries. We strip off tagged pointers before passing them to non-
instrumented functions. FRAMER adds a header to objects for track-
ing, but this does not introduce incompatibility, since it does not
change the internal memory layout of objects or pointers.

5 FRAMER APPLICATIONS
In this section we discuss how FRAMER can be used for building
security applications. We explore mainly spatial safety, but we
discuss additional case studies related to temporal safety.

5.1 Spatial Memory Safety
FRAMER can be used to track individual memory allocations, and
store object bounds in the header associated with the object. These
bounds can be used at runtime to check memory accesses. Un-
like other object-tracking or relative location-based approaches,
FRAMER can tackle legitimate pointers outside the object bounds
without padding objects, or requiring metadata retrieval or bounds
checking at pointer arithmetic operations.

In this section, we describe how FRAMER performs bounds
checking at run-time.

5.1.1 Memory allocation. As described in Section 4.2, a header
is prepended to memory objects (lines 1, 2 in Table 1). For spa-
tial safety, this header must hold at least the raw object size, but
can hold additional information such as a type id. This could be
used for additional checks for sub-object bounds violations or type
confusion. Its potential in type confusion checking is presented in
Section 5.3, and we do not experiment with these in this work.

Once we get the header address from a tagged pointer, an object’s
base address is obtained by adding the header size to the header
address. After a new object is allocated, a hook (handle alloc)
updates metadata, moves the pointer to (new A-¿A), and then tags
it (line 3). The pointer to the removed original object is replaced
with a tagged one (A to tagged in line 5).

5.1.2 Pointer arithmetic. Going out-of-bounds at pointer arith-
metic is not corrupting memory as long as the pointer is not deref-
erenced. However, skipping checks at pointer arithmetic can lose
track of pointers’ intended referents. Memory access to these pointer
can be seen valid in many object bounds-based approaches. To keep
track of intended referents, object-tracking approaches may have
to check bounds at pointer arithmetic [22]. However, performing
bounds checks only at pointer arithmetic may therefore cause false
positives, where a pointer going out-of-bounds by pointer arithmetic
is not dereferenced as follows:
int *p;
int *a = malloc(n * sizeof(int));
for (p = a; p ¡ &a[100]; p++) *p = 0;

On exiting the for loop, p goes out-of-bounds yet is not deref-
erenced – this is valid according to the C standard. [3] handles
this by marking such pointers during pointer arithmetic and re-
porting errors only when dereferenced, and [22] pads an object by
off-by-one byte.

Instead of padding, we include one imaginary off-by-one byte (or
multiple bytes) when deciding the wrapper frame (see Section 3.2)
on memory allocation. The fake padding then is within the wrapper
frame, and pointers to this are still derived to the header, even
when they alias another object by pointer arithmetic. The biggest
advantage of fake padding is that it is allowed to be overlapped
with neighboring objects and thus saves memory. The fake padding
does not cause conflicting supplementary table 𝑁 values across
objects possibly overlapping the bytes.
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Figure 7: By pointer arithmetic, a pointer p goes out-of-
bounds (p’), and also violates its intended referent (a to b).
FRAMER still can keep track of its referent, since p’ is in-
frame. p” is out-of-frame, which we catch at pointer arith-
metic.

FRAMER tolerates pointers to the padding at pointer arithmetic,
and reports errors on attempts to access them. FRAMER detects
those pointers being dereferenced, since bounds checking at mem-
ory access retrieves the raw size of the object. Currently FRAMER
adds fake padding only in the tail of objects, but it could be also
attached at the front to track pointers going under lower bounds,
even though such pointer are banned by the C standard.

Beyond utilising fake padding, to make a stronger guarantee
for near-zero false negatives, we could perform in-frame checking
(currently not included for evaluation) at pointer arithmetic (line
6 in Table 1). We can derive the header address of an intended
referent, as long as the pointer stays inside its wrapper frame (slot
for small-framed), in any circumstance. In Fig. 7, consider a pointer
(p), and its small-framed referent (a). Assuming p going out-of-
bounds to p’ by pointer arithmetic, p’ even violates its intended
referent, but p’ is still within slot0. Hence, p’ is derived to
a’s header by zeroing lower 𝑙𝑜𝑔2(𝑠𝑙𝑜𝑡 𝑠𝑖𝑧𝑒) (15) bits and adding
offset. This applies the same for large-framed objects.

Hence, we could check only out-of-frame (p” in Fig. 7) by per-
forming simple bit-wise operations (no metadata retrieval) checking
if p and p’ are in its wrapper frame (or slot for small-framed):

// p: the source pointer of pointer arithmetic
// p’: the result of pointer arithmetic
// N: log2 wrapperframesize (or slotsize)
isinframe = (p’ p) & (0ULL ¡¡ N);
assert(isinframe == 0);

FRAMER may report false positives for programs not comform-
ing to the C standard with out-of-frame pointers getting back in-
frame by pointer arithmetic without being dereferenced while they
are out-of-frame. This is very rare, and those uses will be usually
optimised away by the compiler above optimisation level -O1. Nor-
mally the distance between an object’s and its wrapper frame’s
bounds is large. We can also increase the wrapper frame size for all
objects to enlarge this distance.

There is another rare case of false positives (we did not encounter
them), where library code uses a tagged pointer it reads from mem-
ory, where the instrumentation did not have a chance to clear the
tag (the pointer was not passed as a function argument). This can be
handled with hardware support or, with a performance overhead,
by a segmentation fault handler.

5.1.3 Memory access. As mentioned in Section 4.3, we instrument
memory access by replacing pointer operands with a return of our

hook, so that the pointers are verified and tag-stripped, before being
dereferenced (line 7,8 in Table 1).

check bounds first reads a tagged pointer’s flag telling if the
object is small or large-framed. As we described in Section 3.3.1
and 3.3.2, we derive the header address from either an offset or an
entry, and then get an object’s size from the header and its base
address as follows:
objbase = headeraddr + sizeof(HeaderTy);
objsize = ((HeaderTy *)headeraddr)-¿size;

We then check both under/overflows ((1) and (2) below, respec-
tively). Detection of underflows is essential for FRAMER to prevent
overwrites to the header.
assert(untaggedp ¿= objbase);

// (1)
assert(untaggedp + sizeof(T) - 1 ¡= upperbound)

); // (2)
// Where T is the type to be accessed

The assertion (2) aims to catch overflows and memory corrup-
tion caused by access after unsafe typecast such as the following
example:
char *p = malloc(10);
int *q = p + 8;
*q = 10; // Memory corruption

In a similar fashion, we instrument memcpy, memmove,
memset, and string functions (strcpy, strncmp, strncpy,
memcmp, memchr and strncat). Handling individual func-
tion depends on how each function works. For instance, strcpy
copies a string src up to null-terminated byte, and src’s length
may not be equal to the array size holding it. As long as the desti-
nation array is big enough to hold src, it is safe, even if the source
array is bigger than the destination array. Hence, we check if the
destination size is not smaller than strlen(src), returning the
length up to the null byte as follows:
assert(destarraysize ¡= strlen(src));

On the other hand,strncpy copies a string up to user-specified
n bytes, so we check both sizes of destination and source arrays are
bigger than n. Metadata for both arrays are retrieved for bounds
checking unlike handling strcpy.

5.2 Temporal Memory Safety
Although our primary focus in this paper is spatial safety, FRAMER
can also detect some forms of temporal memory errors [2, 11, 33, 40]
that we now discuss briefly.

Each large-framed object is mapped to an entry in a division
array in the supplementary table, and the entry is mapped to at
most one large-framed object for each 𝑁 . We make sure an entry
is set to zero whenever a corresponding object is released. This
way, we can detect an attempt to free an already deallocated
object (i.e. a double free), by checking if the entry is zero. Access to
a deallocated object (i.e. use-after-free) is detected in the same way
during metadata retrieval for a large-framed object. Note that this
cannot detect invalid temporal intended referents, i.e., an object is
released, a new object mapped to the same entry is allocated, and
then a pointer attempts to access the first object.
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Detection of dangling pointers for small-framed objects is out-
of-scope for this case-study.

5.3 Type Cast Checking
FRAMER can be used for other applications such as type safety,
garbage collection and etc. We did not implement in the aspect in
this paper, but we briefly introduce how to utilise FRAMER as the
base of type safety enforcement as an application in this section.

The majority of type casts in C/C++ programs are either up-
casts (conversion from a descendant type to its ancestor type) or
downcasts (in the opposite direction). Upcasts are considered safe,
and this can be verified at compile time, since if a source type of
upcasts is a descendant type, then the type of the allocated object
at runtime is also a descendant type.

In contrast, the target type of downcasts may mismatch the run-
time type (RTT). If an allocated object’s type is a descendant type
of the target type at downcast, access to an object after downcasts
may cause boundary overruns including internal overflows. This
is a vulnerability commonly known as type confusion [16, 21? ? ].
The RTT is usually unknown statically due to inter-procedural data
flows, so downcasts require run-time checking to prevent this type
confusion.

RTT verification is more challenging than upcast checking at
compiler-time, since it requires pointer-to-type mapping. We need to
track individual objects (or pointers) and store per-object (pointer)
type information in the database. In addition, RTT checking requires
mappings of unique offsets to fields corresponding to types of sub-
objects. FRAMER could be the basis of metadata storage (mapping
a pointer to per-object type) with supplementary type descriptors.
FRAMER’s header can hold corresponding per-object type layout
information (i.e. a list of types at each offset in the object type)
or its type ID for the object, and all type layout information and
type-compatibility relations can be stored in the type descriptors
(implementations can vary). FRAMER’s current implementation as
an LTO pass makes it easier to collect all used types of the whole
program.

Downcasts may be critical for approaches using embedded meta-
data (e.g. fat pointers or tagged pointers), since memory writes after
unsafe type casts on program’s user data can pollute metadata in a
neighboring object’s header. Prevention of metadata corruption is
easier with FRAMER than with fat pointers. We can detect memory
overwrites to another object’s header caused by downcasts by sim-
ply keeping track of structure-typed objects and using our bounds
checking. Unlike fat pointers, we do not need to check internal
overflows by unsafe downcasts to protect metadata, since metadata
is placed outside an object.

6 OPTIMISATIONS
We applied both our customised and LLVM built-in optimisations.
This section describes our own optimisations. Suggestion of further
optimisations is provided later in Section 8.3.

Implementation Considerations. As described in Section 4.2.2, we
replaced all occurrences of an original pointer to a global object
with a tagged one in constant expression (LLVM ConstExpr). Unfor-
tunately, we experienced runtime hotspots due to the propagation

of a constant (a global variable’s address) to every large ConstExpr.
To work around this issue we created a helper global variable for
each global object; assigned the result of the constant propagation
to the corresponding helper variable during program initialisation;
and then replaced uses of an original pointer with load of the
helper variable. This way, runtime overheads are reduced, for in-
stance, benchmark anagram’s overhead decreased from 14 to 1.7
seconds.

Non-array Objects. We do not track non-array objects that are
not involved with pointer arithmetic, e.g., int-typed objects. It is
redundant to perform bounds checking or untagging for pointers
to them. We filter out simple cases, easily recognised, from being
checked. In the general case, it is not trivial to determine if a pointer
is untagged at compile time, since back-tracing the assignment for
the pointer requires whole-program static analysis.

Safe Pointer Arithmetic. Instead of full bounds checks, we only
strip off tags for pointers involved in pointer arithmetic and stati-
cally proven in-bound for simple cases. For pointers where the
bounds can be determined statically, we checks if the index is
smaller than the number of elements.

In some SPEC benchmarks, there are statically proven out-of-
bound accesses, but we do not report memory errors since they
may be unreachable. We inserted a termination instruction for this
case so that it can report errors at runtime, when the execution
reaches the point.

Hoist Run-time Checks Outside Loops. Loop-invariant expressions
can be hoisted out of loops, thus improving run-time performance
by executing the expression only once rather than at each iteration.
We modified SAFECode’s [12, 41] loop optimisation passes. We
apply hoisting checks to monotonic loops, and pull loop invariants
that do not change throughout the loop, and scalars to the pre-
header of each loop. This pass works on each loop and if there
are inner loops, it handles them first. While iterating our run-time
checks inside each loop including inner loops, we determine if the
pointer is hoistable. If a pointer is hoistable, we place its scalar
evolution expression along with its run-time checks outside the
loop, and delete the checks inside loop.

Inlining Function Calls in the Loop. Inlining functions can im-
prove performance, however it can bring more performance degra-
dation due to the bigger size of the code (runtime checks are called
basically at every memory access). Currently, we only inline bounds
checks that are inside loops to minimise code size.

7 EVALUATION
We measured the performance of FRAMER on C benchmarks from
Olden [7], Ptrdist [4], and SPEC CPU 2006 [18]. For each bench-
mark we measured four binary versions: uninstrumented, only
store-checked and full (both load and store checking enabled) on
FRAMER, and ASan – one of the most widely used sanitizers. We dis-
abled ASan’s memory leak detection at run-time and halt-on-error
to measure overheads in the same setting as FRAMER. Binaries
were compiled with the regular LLVM-clang version 4.0 at opti-
misation level -O2. Measurements were taken on an Intel® Xeon®

E5-2687W v3 CPU with 132 GB of RAM. Results were gathered
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Table 2: Summary averages over all benchmarks (first three columns normalised)

Memory Runtime Dynamic IPC Load D-cache Branch B-cache
footprint (cycles) instructions density MPKI density MPKI

Baseline 1.00 1.00 1.00 1.70 0.28 24.85 0.19 2.85
Store-only 1.22 1.70 2.24 2.17 0.20 12.27 0.15 1.34
Full check 1.23 3.23 5.25 2.54 0.14 5.28 0.17 0.86

using perf. Table 2 summarises the average of metrics of the
baseline and the two instrumented tests.

In this text, cache and branch misses refer to L1 D-cache misses
and branch prediction misses both per 1000 instructions (MPKI),
respectively.

7.1 Memory Overhead
Our metadata header was a generous 16 bytes per object. The large-
frame array had 48 elements for each 16-frame (division) in use
where the element size was 8 bytes to hold full address of the header.
The header size and the number of elements of each division array
can be reduced. Currently we mandate 16 alignment for compati-
bility with the llvm.memset intrinsic function that sometimes
assumes this alignment. Despite inflation of space using larger
than needed headers and division array entries and some changes
of alignment, we see FRAMER’s space overheads are very low at
1.22 and 1.23 as shown in Fig. 9. These measurements reflect code
inflation for instrumenting both loads and stores.

The memory overheads of FRAMER are low and stable com-
pared to other approaches [32, 39]. ASan’s average normalised
overheads are 8.84 for the same working set in our experiments,
and the highest overhead is 4766% for hmmer. The average mem-
ory overhead of FRAMER is 22% ∼ 23% for both store-only and full
checking, and only two tests, perlbench.2 (84%) and yacr2
(116%) recorded comparably higher growth than other tests. The two
tests produce many small-sized objects, for example, perlbench
allocates many 1-byte-sized heap objects. Currently FRAMER in-
struments every heap object, so attaching a 16-byte-sized header
to all the 1-byte-sized objects made the increase higher. FRAMER’s
overheads for those benchmarks are still much lower than ASan’s:
2808% for perlbench.2 and 714% for yarc2.

7.2 Slowdown
Fig. 8 reports the slowdown per benchmark (relative number of
additional cycles). The average is 70% for store-only and 223% for full
checking. For full-checking, anagram (410%) and ks (452%) stand
out for high overheads despite its smaller program size, mostly due
to heavy recursion and excessive allocations causing big growth
in executed instructions (674% for anagram, 812% for ks) as
shown in Fig. 12, but decreases in cache misses are moderate (76%
for anagram, 81% for ks) compared to average (decreased by
63%). On contrast, mcf recorded the highest instruction overheads
(1097%), but cache (91%) and branch misses (92%) are dropped the
biggest among all the tests, so run-time overhead did not grow
in proportion to increased instruction count. perlbench and
bzip sets’ overheads are high in both FRAMER and ASan. Both
tests produce many objects, and especially bzip recorded much

higher growth in executed instructions than perlbench and
others.

Performance was impacted far less than would naively be ex-
pected from the additional dynamic instruction count (metric columns
2 and 3 in Table 2). The rise in IPC (column 4) is quite considerable
on average, although the figure varies greatly by benchmark. The
original IPC ranged from 0.22 to 3.20 but after instrumentation
there was half as much variation.

Our slowdown is mainly due to increased dynamic instructions
to calculate metadata location. We measured runtime overheads
for metadata management/retrieval (excluding bounds checking)
of benchmarks with the highest runtime overheads by forcing or
preventing inline our hooks. As shown in Fig. 10, the fluctuations in
proportion is negligible. Benchmarks with low runtime overheads
showed a similar pattern.

Slowdown is dominated by Calculation (69.66%) – ALU oper-
ations to (1) derive the header address at memory access and (2)
generate a tag at memory allocation. Hardware acceleration in a
future ISA would largely resolve this overhead. We isolated tag-
cleaning from Calculation to show the cost of using tagged pointers
without hardware support. Its cost (6.07%) would be removed on
current ARM that ignores top spare bits. The cost of generating
tags was negligible, since it is performed only at allocation.

The remaining 3 components cannot be resolved with simple
ISA changes. Branch checking for tagged/untagged and small/large-
framed contributes 10.19% of the total overheads of metadata man-
agement. Current FRAMER encoding avoided any restriction on
object alignment, however, we are open to manipulate memory
manager to remove large-framed objects for the future design. Ac-
cessheader and Accessentry represent ratios of overheads to access
a header and entry, once their addresses are calculated from tagged
pointers. Accessing a header takes more time than accessing an
entry, since it is performed on both types of objects. Excluding the
overhead of arithmetic operations, the cost is around 25% of that of
metadata management and retrieval.

The remaining part of the total runtime overhead that is not
included in the measurement shown in Fig. 10 is bounds checking
performing arithmetic operations with loaded metadata, which can
be resolved by ISA.

7.3 Data Cache Misses
One of the goals of FRAMER is to allow flexible relationships be-
tween object and header locality to minimise additional cache
misses from metadata access. We do not analyse L1 instruction
cache miss rate since this generally has negligible performance
effect on modern processors, despite our slightly inflated code. To
explain the measured increase in IPC we analyse L1 D-cache misses
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Figure 10: Runtime overheads for metadata management
and retrieval (the overhead for bounds checking excluded)

MPKI (cache misses) and branch prediction misses MPKI. The base-
line D-cache miss rate was 2.48% (Table 2) but this improves with
FRAMER enabled owing to repeated access to the same cache data.

In Fig. 11, we normalise cache misses to the uninstrumented
figure. The average normalised cache misses is 0.66 and 0.38 for
store-only and full-checking, respectively. The miss rate is reduced
since the additional operations we add have high cache affinity
which dilutes the underlying miss rate of the application.

While ASan showed increase for four tests. ASan’s normalised
misses on average is 0.73, which is higher than FRAMER’s 0.38.
ASan’s highest overhead is 197% for bc, and two tests reached in-
crease more than by 100%. On FRAMER, power’s overhead by 48%
is mainly caused by the very low increase in instruction executed
in producing MPKI. The rest of benchmarks’ misses decreased, and
normalised misses in full-checking mode were below 0.5 for 21
tests among 28 working set, whereas only 13 tests’ on ASan were
lower than 0.5. The overall cache miss rate showed FRAMER is
cache-efficient and stable.

Cache misses (MPKI) may appear decreased with bloated instruc-
tion counts, so we also present the increase in total numbers of
cache misses. Fig. 13 shows the normalised counts of cache misses
for big-sized programs in SPEC. The averages of shown tests for
FRAMER (Full) and ASan are 1.24 and 2.40, and the averages for the
whole set are 1.40 and 2.31, respectively. This shows the increase in

cache miss count to access metadata in FRAMER is minimal. On
FRAMER, the increase rate of all the tests except one (277% for
voronoi) are below 100%. On ASan, the increases for 7 tests are
above 100%, and bc’s increase rate is 1160%.

7.4 Instructions Executed
Fig. 12 reports normalised overheads per benchmark. FRAMER
increases dynamic instruction count by 124% for store-only, and
425% for full checking. This increase is the main contributor to
slowdown. Dynamic instruction penalty arises from setting up and
using tagged pointers. The major source of the growth is arithmetic
operations. As shown in Fig. 10, 75% of runtime overhead of meta-
data management/retrieval is dominated by calculation of (1) the
header address at memory access and (2) the tag at allocation. This
cost can be resolved with hardware acceleration with ISA.

The penalty of utilising top bits is over-instrumentation – unless
individual memory access is proven tag-free statically, we have to
instrument it (i.e. tag-cleaning) to avoid segmentation fault in all
major architectures, requiring the top bits to be zero (or special
pointer authentication code in ARM8). This results in stripping the
tag field for untagged pointers.

The average overhead for ASan is 226%, which is lower than
FRAMER. The average excluding the highest test (1336% for bh) is
184%, while FRAMER’s average excluding the highest (1098% for
mcf) is 400%. The difference in slowdown on average (FRAMER:
213%, ASan: 139%) was not big as the difference of instruction
executed due to FRAMER’s cache efficiency. ASan consumes fewer
dynamic instructions, since shadow space-only metadata storage
helps simpler derivation of metadata location, taking advantage of
re-alignment of objects, as trade-off of space and high locality.

Future implementations can optimise the case where conserva-
tive analysis reveals the tag never needs to be added. More discus-
sion on optimisation is described in Section 8.3.
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Figure 11: Normalised L1 D-cache load misses per 1000 instructions (MPKI)
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Figure 13: Normalised L1 D-cache load miss count

7.5 Branch Misses
Additional conditional branches arise in FRAMER from checking
whether small or large frame is used and in the pointer validity
checks themselves. Many approaches using shadow space are re-
lieved from these branches at metadata retrieval.

As shown in Table 2 col 7, the dynamic branch density de-
creases slightly under FRAMER instrumentation, but the branch
mis-prediction rate greatly decreases (col 8). The averages of nor-
malised branch misses for store-only and full-checking are 0.62
and 0.42, respectively. This shows the additional branches achieve
highly accurate branch prediction and that branch predictors are
not being overloaded. Of the new branches added, the ones checking
small/large frame size are completely statically predictable owing
to the checking code instances being associated with a given object.
And the ones checking pointer validity also predict perfectly since
no out-of-bounds errors are detected.

8 DISCUSSION
8.1 Comparison with Other Approaches
8.1.1 Shadow space-based approaches. Shadow space-based ap-
proaches reduce slowdown by lowering executed instructions. Trade-
off of data memory is tolerable in most systems during development.
For practical deployment, however, their slowdown is still high and
memory footprint is critical in some systems, e.g. ARM running
in an embedded system or I/O-heavy server-side loads. In using

shadow space, it is inevitable to pad and re-align objects to avoid
conflicts in entries [3, 25, 39]. ASan pads each object for wider de-
tection coverage and more padding for alignment, which burdens
space, whereas FRAMER’s fake padding and wrapper frames do
not consume any space. Furthermore, their higher cache misses
to access metadata in remote memory region (including ASan’s
resetting entries at deallocation), making its runtime overheads
unpredictable.

In comparison with ASan, FRAMER showed better efficiency
both in memory footprint (FRAMER: 23%, ASan: 784%) and cache
miss counts overhead (FRAMER: 40%, ASan: 131%). ASan showed
lower increase in runtime overheads (FRAMER: 223%, ASan: 139%),
however, 75% of FRAMER’s overhead of metadata management and
retrieval is consumed for calculation, that can be largely resolved
with new ISA. The rest of overhead comes from bounds checking
using loaded metadata, that can be also implemented as ISA.

8.1.2 SGXBounds. SGXBounds spares 32 bits for a tag among 64
bits, while FRAMER tags only upper spare 16 bits. SGXBounds’s
retrieving an upper bound first, not the base like FRAMER, may save
some overheads if we perform overflow-only checking. However,
using a footer makes systems slightly more vulnerable to metadata
pollution without complete memory safety. For both over/under
underflow checking, we do not consider our derivation of the base,
not the upper bound, as a weakness. In addition, frame encoding
can be easily integrated to SGXBounds’ design.

8.1.3 MPX. In principle, FRAMER could utilize MPX extensions
for performance when used for spatial safety. We showed FRAMER
is more cache-friendly, but it could be made even faster if a single
instruction implemented the complete tag decode operation, split-
ting apart the tagged pointer into an untagged object pointer and
separate header pointer in another register. This would be a fairly
simple, register-to-register instruction, operating on general pur-
pose registers. Since this has not used the D-cache, an enhancement
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would be to compare the pointer against a bounds limit at hard-
coded offset loaded from the header, but the best design requires
further study.

8.2 Hardware Implementation of FRAMER
We believe FRAMER’s encoding is at its best when it is imple-
mented as instruction set extensions. As mentioned in 8.1.3, the
increase in the number of executed instructions for calculation, the
main contributor to slowdown of FRAMER, can be resolved with
new instructions. Tag-cleaning can be supported by hardware [27].
Moreover, generating a tag and deriving a metadata address can be
implemented as a single operation, respectively.

8.3 Additional Optimisations
8.3.1 UtilisingMore Spare Bits. Currently, we mandate 16-alignment
due to llvm.memset intrinsic function. On this alignment, we have
spare 4 bits at the end of offset for small-framed and another 4 bits
in the pointer. (We already have spare bits for large-framed ones.)
Using the bits, we can perform bounds checking only at pointer
arithmetic and mark out-of-bounds pointers, so that we can report
errors when they are dereferenced. This way, we expect to remove
duplicated runtime checks, since the pointer may be used for mem-
ory access multiple times. Above this, we can utilise them to encode
more information for better performance.

8.3.2 Compiler Optimisation. Redundant runtime checks can be
eliminated using dominator trees. SoftBound [32] reported that their
simple dominator-based redundant check elimination improved
performance by 13% and claimed more advanced elimination [6, 50]
can reduce more overheads.

The penalty of using tagged pointers is that unless individual
memory access is proven safe at static time, we may have to over-
instrument memory access to avoid segmentations fault. Some ap-
proaches can save expensive runtime checks to reduce performance
degradation, bearing false negatives, but it is difficult in approaches
using tagged pointer. We did not run dedicated pointer-analysis
for this version but it can remove over-instrumentation. Loop opti-
misation did not show big impact on reducing overheads, even for
some SPEC benchmarks whose number of hoisted run-time checks
reached hundreds at static time. Our naive optimisation skipping
untagging improved performance more than state-of-the-art loop
hoist pass. Static points-to analysis [43, 44], as long as it does not
assume the absence of memory errors, potentially enables many
tags and bounds checks to be removed at compile time.

9 CONCLUSION
We presented FRAMER, a per-object capability system utilising the
currently unused significant bits of pointers to store a tag. A key
insight is that this tag can be bifurcated using a flag bit so that the
overwhelmingly common case of small-framed objects can be dealt
with efficiently in terms of both time and space. This ultimately
benefits the performance of exceptional large-framed objects too,
because the design can special-case them as well.

We evaluated FRAMER with a case study on spatial memory
safety in C programs. However, we believe its capability design
could benefit the performance of other programming language
security mechanisms as well. Compared to existing approaches,

our frame-based offset encoding is more flexibile both in metadata
association and memory management, while still offering a fairly
simple calculation to map from arbitrary pointers to metadata loca-
tions. In addition, its intrinsic memory and cache-efficiency make
it potentially attractive for direct hardware support.
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A PROOFS
A.1 Proof 1
Given an object 𝑜 and its wrapper frame 𝑓 , let’s assume there exists a
smaller frame 𝑥 that has 𝑜 inside. Since 𝑜 resides in both 𝑓 and 𝑥, we
can conclude that 𝑥 is a subframe of 𝑓 . According to the assumption,
the base address of 𝑜 (𝑏𝑎𝑠𝑒𝑜) is within the range of 𝑥, hence, we get
𝑏𝑎𝑠𝑒𝑥 ≤ 𝑏𝑎𝑠𝑒𝑜. Here, 𝑓 is 𝑜’s wrapper frame, so 𝑏𝑎𝑠𝑒𝑜 is placed in
𝑓 ’s lower subframe. 𝑥 is a subframe of 𝑓 , hence 𝑥 must be 𝑓 ’s lower
subframe. This is resolved to contradiction between the assumption
(𝑥 has 𝑜 inside) and the definition of wrapper function (𝑜’s upper
bound in the upper subframe). Hence, we can conclude that there is
no smaller frame than 𝑜’s wrapper frame; this is actually the unique
wrapper frame, and it can be used as a reference point.

A.2 Proof 2
We prove that for each𝑁 , there exists at most one𝑁 -object mapped
to each entry of a division array, and show 𝑁 identifies an object
mapped to the same division array. To prove this, we assume there
exist two distinctive objects, 𝑥 and 𝑦; both are 𝑁 -objects (𝑁 ≥ 16)
mapped to the same division array. Since 𝑥 and 𝑦 are 𝑁 -objects,
their wrapper frame (𝑓𝑥 and 𝑓𝑦) is 2𝑁 -sized by definition. The
division is the only one that 𝑓𝑥 and 𝑓𝑦 are mapped to as shown
previously, so 𝑓𝑥 and 𝑓𝑦 have the same base address as the division.
In addition, both frames have the same size, so they are identical.
Both base addresses of 𝑥 and 𝑦 (𝑏𝑥, 𝑏𝑦) must be in the lower (𝑁−1)-
subframe of 𝑓𝑥 (or 𝑓𝑦), and end addresses must be in the other
sub-frame. From this, 𝑏𝑥 and 𝑏𝑦 must be smaller than 𝑒𝑥 and 𝑒𝑦 .
However, the objects are distinct, so 𝑏𝑥 < 𝑒𝑥 < 𝑏𝑦 < 𝑒𝑦 or
vice versa must hold. The assumption leads to a contraction. We
conclude that for each 𝑁 , there is a unique 𝑁 -object mapped to
one division array.
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