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ABSTRACT  10 

Consideration of moment redistribution (MR) in the design of continuous reinforced concrete (RC) beams 11 

results in an efficient and economical design. Adding fibre-reinforced polymer (FRP) materials to RC 12 

structures to enhance flexural capacity leads to a reduction in ductility such that design standards severely 13 

limit the exploitation of MR in the design of FRP strengthening systems. This has forced engineers to use 14 

elastic analyses for the strengthening design which leads to waste of FRP materials under many 15 

circumstances. To overcome this, complicated or empirical solutions have been applied to solve the problem 16 

of MR in FRP-strengthened RC members, with limited success. This paper presents a novel theoretical 17 

strategy for quantifying and tracking MR in such members by employing basic structural mechanics without 18 

any need for estimating rotation capacity or ductility. Fully non-linear flexural behaviour of continuous FRP-19 

strengthened members can be predicted, and any geometry, loading arrangement and strengthening technique 20 

or configuration can be considered. The numerical model is validated against existing experimental data from 21 

the literature. Good agreement is shown between the experimental and numerical data, with the significance 22 

of this work being that, potentially, for the first time MR could credibly and confidently be incorporated into 23 

design guides for FRP strengthening of RC structures. 24 

 25 

1. INTRODUCTION 26 

There are various reasons why existing reinforced concrete (RC) structures may require strengthening or 27 

retrofitting. This may be because of a need for greater strength, durability or even ductility. Adding fibre 28 

reinforced polymer (FRP) materials to RC structures has been recognised as an effective technique to enhance 29 

the strength and durability of such structures (Hollaway and Leeming, 1999; Teng et al., 2001). However, 30 

research has demonstrated that FRP strengthening of flexural members reduces their original ductility prior to 31 

FRP debonding (El-Refaie et al., 2003; Casadei et al., 2003; Oehlers and Seracino, 2004; Oehlers et al., 32 

2007). The elastic nature of the FRP generally leads to a more brittle failure of FRP-strengthened RC 33 

members.  34 

Ductility is an intrinsic characteristic in many materials which allows them to deform plastically before 35 

failure. Beeby (1997) discussed that one of the major advantages of ductility is that bending moment (BM) 36 

can be redistributed automatically in a ductile continuous member from zones which are stressed plastically to 37 

zones which are not yet plastic. Having sufficient ductility helps to satisfy the lower bound theorem of 38 

plasticity in design, which in turn ensures that no undesired collapse mechanism occurs prior to the expected 39 

failure mode. In addition, the ability for redistribution of BM in conventional statically indeterminate RC 40 

members allows for an efficient and economical design by reducing the cross-sectional area or internal 41 

reinforcement in the zones with maximum BM and congested reinforcement (Mattock, 1958; Scott and 42 

Whittle, 2005).  43 

If a structure is not ductile or if the original ductility is fully lost after strengthening, no advantage can be 44 

taken of moment redistribution (MR) in the structure. However, what level of ductility is required to allow 45 
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some MR to occur? A lack of sufficient research looking at a link between the precise reduction in the 1 

ductility of RC members after FRP strengthening and any possible MR thereafter has resulted in uncertainty 2 

in this issue such that design standards worldwide have ignored (or overly conservatively limited) the 3 

exploitation of MR in FRP-strengthened RC flexural members (e.g. ACI-440-2R, 2008; TR55, 2012). This 4 

means that RC members which need to be strengthened using FRP must be designed based on assumed elastic 5 

flexural behaviour up to failure, despite the fact that the original structure may have been designed with full 6 

consideration of ductility and MR. As Ibell and Silva (2004) described, this results in a very complex design 7 

condition because, after strengthening, the zones which were originally designed for a reduced BM must now 8 

be designed according to the original un-redistributed elastic BM plus any additional BM which is required 9 

for the strengthening requirement. Therefore, it can result in the need for great quantities of strengthening 10 

material. Consequently, it is very important that the profession knows exactly the level of MR which is likely, 11 

lest vast quantities of materials are wasted unnecessarily.  12 

Quantifying MR in FRP-strengthened RC beams is potentially a complex problem. A few theoretical research 13 

studies have been conducted on this issue. Oehlers et al. (2004) claimed that it is very hard to determine the 14 

adequacy of ductility in an FRP-strengthened RC beam. They proposed two different analytical approaches, 15 

called the ‘Flexural rigidity approach’ and the ‘Plastic hinge approach’, for quantifying MR. In the first 16 

approach, stiffness variation is accommodated within zones with sagging and hogging BMs, while in the 17 

second approach it is assumed that flexural stiffness is constant along the entire beam except for the zones 18 

where plastic hinges are formed. They discuss that the hinge approach cannot be applied to FRP-strengthened 19 

beams as, usually, FRP debonding typically occurs prior to concrete crushing, and the strengthened region 20 

usually behaves elastically prior to debonding. This means that no plastic hinge (i.e. a region of constant BM 21 

capacity with increase in curvature) can be formed in FRP-strengthened zones. However, using the rigidity 22 

approach, they indicate that ductility of FRP-plated beams is lower than that of steel-plated beams. A 23 

simplified theoretical method was proposed by Ashour et al. (2004) to predict the load capacity of an FRP-24 

strengthened beam. The method relies on equilibrium of forces and compatibility of deformations. This 25 

method can be used to calculate MR at failure, although it is assumed that the critical sections in the sagging 26 

and hogging zones reach their moment capacity at the time of failure.  27 

Silva and Ibell (2008) applied a theoretical strategy to investigate ductility in such structures. They showed 28 

that an RC beam can still exhibit rotation capacity even after FRP strengthening, provided that the 29 

strengthened section has sufficient curvature ductility. They demonstrated that although ductility is reduced in 30 

general, BM can be redistributed out of an FRP-strengthened section by at least 7.5%, if the section has a 31 

curvature ductility capacity (defined as the ratio of the curvature at ultimate failure to the curvature at steel 32 

first yield) of at least 2.0, and a certain minimum strain is obtained in the steel reinforcement. This finding is 33 

based on an assumption that failure occurs through debonding of the FRP at a typical strain of 0.8%. This 34 

method appears to be somewhat complex to implement in a general sense. A few studies (Dalfré and Barros, 35 

2011; Breveglieri et al., 2012) have also been conducted recently to predict or analyse MR in strengthened 36 

structures using an FEM-based computer program. The results showed that the technique and configuration of 37 

strengthening significantly influences the degree of MR. Santos et al. (2013) and Lou et al. (2015) presented 38 

finite element models to predict MR in FRP-reinforced RC beams. The models basically assume a specific 39 

damage model for concrete, elastic-plastic behaviour for steel, isotropic behaviour for the steel-concrete 40 

interface, linear elastic behaviour for FRP and perfect bond for the FRP-concrete interface. The numerical 41 

simulations showed good comparison with the experimental findings.   42 

There is a lack of sufficient research on defining clearly and relatively simply the extent to which MR can be 43 

relied on when an RC beam is strengthened using FRP. This paper presents a new numerical model which 44 

allows redistribution of BM in an FRP-strengthened RC beam to be quantified rigorously. To predict the 45 

flexural behaviour of the strengthened beam, the model applies a fundamental approach which is based on 46 

structural mechanics, not on empirical limits, and allows stiffness variations along the length of the beam to be 47 

found and updated during loading, using an iterative approach. The degree of MR can be determined at any 48 

point along the beam length, and at any applied load until failure. The new model is verified against 49 
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experimental findings which exist in the literature. It must be noted that this paper only aims to present a 1 

model which can predict how MR occurs over the loading cycle, up to failure, based on assumed values for 2 

FRP debonding or rupture, and not to predict the actual failure mode. However, if required or desired, models 3 

for predicting failure modes (including concrete crushing, FRP debonding/rupture, and even shear failure) can 4 

be accommodated in the numerical model presented here. 5 

2. MOMENT REDISTRIBUTION 6 

In this section, the implication of MR is briefly presented through a particular (simple) example. An idealised 7 

elastic-plastic relationship between curvature (K) and bending moment (M) is considered in Figure 1 for all 8 

sections throughout the beam shown in Figure 2. A section reaches its moment capacity of Mu at a curvature 9 

of φy when the steel reinforcement yields, and the section fails at an ultimate curvature of φu.  10 

 11 
Figure 1: A theoretical elastic-plastic M-K relationship adopted for the example beam 12 

Shown in Figure 2 is a statically-indeterminate two-span conventional RC beam which is loaded 13 

symmetrically under a concentrated load at each mid-span. A constant flexural stiffness of EI is assumed 14 

along the entire length of the beam before loading.  15 

 16 
Figure 2: A simple two-span RC beam and the implication of MR 17 

Within the elastic range across the entire beam, the ratio of the hogging-zone BM to the sagging-zone BM 18 

remains constant. According to ‘elastic theory’, this ratio is 1.20 for this particular example. As long as this 19 

ratio is fixed, no redistribution of BM occurs in the beam. If the load increases further (Load P1, as shown in 20 

Figure 2), the steel reinforcement will yield first in the hogging zone (over the central support), due to the 21 

loading arrangement adopted, and this zone will just reach its moment capacity of Mu, at which point the 22 

sagging-zone BM is 
5

6
 𝑀𝑢 (line A in Figure 2). Any further loading will cause only the sagging-zone BM to 23 
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increase as the hogging-zone BM must remain constant at Mu. As shown in Figure 2 by a black dashed line 1 

(line C), ultimate failure occurs when the sagging zone at mid-span also reaches its moment capacity of Mu (at 2 

Load P1+P2). The black solid line (line B) shows the theoretical elastic BM diagram at the failure load, 3 

assuming that there had been no stiffness variation during loading to have led to MR. The primary reason 4 

which allows the increase in BM in the sagging zone (from 
5

6
 𝑀𝑢 to Mu) to occur is the presence of curvature 5 

ductility of the hogging zone. It is seen that the ratio of hogging-zone BM to sagging-zone BM becomes 1.0 at 6 

ultimate failure, rather than the elastic ratio of 1.20. Hence, it can be concluded that BM has been redistributed 7 

from the hogging zone to the sagging zone, as shown in Figure 2. 8 

But this process becomes more complicated when FRP is added. As shown in Figure 3, there are various 9 

zones in an FRP-strengthened RC member which can be unstrengthened (such as Zone A), or lightly 10 

strengthened (such as Zone B), or heavily strengthened (such as Zone C). When the member is loaded, these 11 

zones experience different rates of stiffness variation.  12 

 13 
Figure 3: (a) Schematic image of a continuous FRP-strengthened beam; and (b) M-K relationships for 14 

different zones of the beam 15 

As illustrated in Figure 3, there is no horizontal plastic plateau in the M-K relationship of the FRP-16 

strengthened zones. This means that no plastic hinge is formed in the strengthened zones even if the steel 17 

reinforcement yields as the FRP withstands the applied load elastically until failure. In addition, various 18 

amounts of FRP can be added to the member in various configurations, affecting the mode of failure and 19 

flexural behaviour of the strengthened member. These complexities indicate a need for a fundamental solution 20 

to this problem. A novel numerical model is described in the following section which can predict the flexural 21 

behaviour of FRP-strengthened RC members using a fundamental approach. The model relies only on 22 

structural mechanics and tracks stiffness variations in the beam logically, whether strengthened or not. 23 

3. THE NUMERICAL MODEL 24 

The new model employs sectional analysis to determine stiffness variations in the beam over the loading 25 

cycle. A computer programme has been written for the numerical calculations and analytical modelling. The 26 

given beam is initially subdivided into a large number of narrow vertical segments (e.g. slices of 10mm 27 

thickness). The full M-K relationship is found for each section along the length of the beam, whether 28 

strengthened with FRP or not. It is obvious that the more precise the relationship found between moment and 29 

curvature, the more accurate the prediction made for the flexural behaviour of the beam.  30 

3.1 Determination of the M-K relationship 31 

To find a precise relationship between Moment and Curvature for each section, required data for the 32 

numerical model include the geometry, specifications of the internal reinforcement and strengthening 33 

materials, and constitutive material models.  34 

Figure 4 illustrates the material models adopted for concrete, steel and FRP in this numerical technique. A 35 

parabolic curve has been adopted for the stress-strain relationship of the concrete in compression, according to 36 
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BS EN 1992-1-1: 2004 (Figure 4(a)). εc1 is the strain at peak stress, and is equal to (εc1 =) 0.7×fcm
0.31

, where fcm 1 

is the mean compressive strength of concrete at 28 days. εcu1 is the ultimate compressive strain in concrete 2 

which is considered to be 0.35% in this parabolic model. A linear relationship between stress and strain has 3 

been adopted for concrete in tension, according to BS EN 1992-1-1: 2004 (Figure 4(b)). The tensile strength 4 

(fctm) is equal to 0.3×fck
(2/3) 

(in MPa), where fck is the characteristic cylinder strength of concrete (fck = fcm -8 5 

(MPa)). In addition, εct = fctm/Ecm, where εct is the tensile strain, and Ecm is the modulus of elasticity of concrete 6 

(GPa), and is equal to 22 × [(fcm)/10]
0.3

. Softening of the concrete under tension is ignored in the numerical 7 

model as it does not play any role in the degree of MR quantified at failure. The behaviour of steel 8 

reinforcement is represented by a bilinear model (Figure 4(c)) with a linear elastic branch ending at the yield 9 

stress (fy), and a linear inclined plastic branch which shows strain hardening in the steel reinforcement after 10 

yielding, ending at ultimate fracture (fu). The relationship between stress and strain for FRP is considered 11 

linear-elastic up to rupture (Figure 4(d)).  12 

                13 

             14 
Figure 4: Constitutive material models adopted for the numerical model 15 

The M-K relationship for each section along the beam is found according to standard procedures, which are 16 

outlined here for completeness. Each cross-section along the beam is divided into horizontal segments of 1mm 17 

thickness. For varying curvatures starting from zero, strains in each segment are found using an initial 18 

estimate for the neutral axis depth (kd), by assuming that there is a perfect bond between concrete and steel 19 

reinforcement, and between concrete and FRP, and also that plane sections remain plane. Using the adopted 20 

material models, the stresses and forces are calculated separately for the tension and compression zones of the 21 

section, by knowing the corresponding strains in each constitutive material. As shown in Figure 5, the overall 22 

tension force (T) includes tension in the steel reinforcement (Ts), concrete (Tc) and FRP (Tf), and the overall 23 

compression force (C) includes compression in the concrete (Cc) and compression steel (Cs). If the overall 24 

tension force is not in equilibrium with the overall compression force (i.e. T ≠ C), the neutral axis position is 25 

adjusted and the forces are recalculated while maintaining the same curvature. This calculation is performed 26 

iteratively until equilibrium is achieved and a precise position for the neutral axis is found. Note that it is a 27 

simple matter to assume Tc=0 if this is thought sensible.  28 
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 1 
Figure 5: Calculation of tension and compression forces in an FRP-strengthened RC section 2 

Finally, the corresponding moment of resistance (M) is determined from the calculated kd for the adopted level 3 

of curvature by taking moments for the tension and compression forces about the neutral axis: 4 

𝑴 = (𝑪𝒄 × ӯ) + (𝑪𝒔 × (𝒌𝒅 − 𝒅𝒔)) + (𝑻𝒄 × ӯ′) + (𝑻𝒔 × (𝒅 − 𝒌𝒅)) + (𝑻𝒇 × (𝒉 − 𝒌𝒅))              Eq. 1 5 

where ӯ represents the distance between the neutral axis and the centroid of the concrete’s compression zone, 6 

and is found from Eq. 2.  7 

ӯ = (𝜮(𝑨𝒊 × 𝑪𝒄𝒊
× 𝒚𝒊)/𝜮(𝑨𝒊 × 𝑪𝒄𝒊

))                                              Eq. 2 8 

where Ai is the area of horizontal layer i, Cci is the compression force in layer i, and yi is the depth from the 9 

centroid of layer i to the neutral axis. Similarly, ӯ′ is the distance between the neutral axis and the centroid of 10 

the concrete’s tension zone. A complete M-K relationship is found for all cross-sections along the beam by 11 

repeating these calculations for different curvature values, until failure. Ultimate failure is simply controlled 12 

through specifying limiting values for strains in the concrete and FRP. In this study, a typical strain value of 13 

0.35% is adopted for crushing of concrete in compression, and values of 0.8% and 1.5% are assumed for 14 

failure of the FRP through debonding (usual) and rupture (if the FRP is fully anchored) respectively. These 15 

values are based on what has been observed in the literature but are not definitive. If required, these assumed 16 

values can be refined appropriately.  17 

3.2 Determination of the real BM distribution 18 

Now, the real distribution of BM along the beam length is determined for each applied load using the M-K 19 

relationships found in the previous section. For a load increment starting from zero, the elastic BM is 20 

determined for all sections along the beam using, for example, the virtual work method and using the baseline 21 

uncracked flexural stiffness for each section. Knowing the BM at each section and using the corresponding M-22 

K relationship, the curvature of each section is found. From ‘elasticity theory’, the actual effective stiffness, 23 

(EI)effective , can then be found for each section according to: 24 

                                                      (𝑬𝑰)𝒆𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆 =
𝑴

𝑲
                                                                Eq. 3 25 

where M is the bending moment and K is the curvature of each section. Now, a new distribution of bending 26 

moments is found along the beam, knowing the new stiffness of all sections. As shown schematically in 27 

Figure 6, this set of calculations is performed iteratively until it converges and a distribution of BM is found in 28 

the beam at the particular load increment. Convergence is defined by comparing the new BM diagram with 29 

the previous diagram after each iteration, and the iterative calculations are stopped when the difference 30 

between the two diagrams is less than 1N.mm at the point of maximum BM along the beam.  31 
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  1 
Figure 6: A schematic image of how iterations are conducted using the new numerical model 2 

3.3 Moment redistribution quantification 3 

The degree of MR is calculated at each load increment using the following equation, as described by Cohn 4 

(1986), Cohn and Lounis (1991) and Rebentrost et al. (1999): 5 

𝑴𝑹 (%) = 𝟏𝟎𝟎 × (𝟏 −
𝑴𝒓𝒆𝒅𝒊𝒔

𝑴𝒆𝒍𝒂𝒔
)                                                    Eq. 4 6 

where Mredis is the last BM at a critical location obtained from the iterative approach, taking into account 7 

variation of stiffness, and Melas is the theoretical elastic BM determined from elastic analysis at the same 8 

location, assuming an initial uncracked elastic flexural stiffness. These calculations are repeated for each load 9 

increment, and MR can be quantified, until a critical section reaches one of the limiting strains described 10 

previously, and the section fails through failure of the concrete or FRP. It is to be noted that shear failure is 11 

assumed to be prevented through providing sufficient shear reinforcement along the beam, and that shear 12 

deformations are negligible. 13 

4. ADVANTAGES OF THE NEW MODEL 14 

The new model allows MR to be assessed and quantified simply for design purposes, using structural 15 

mechanics in a logical way, without any need to rely on empirical or complex equations for the calculation of 16 

rotation capacity or curvature ductility in an FRP-strengthened RC beam. In addition, the following 17 

advantages can be identified: 18 

 Redistribution of BM can be quantified at any stage of loading, from the beginning right through to 19 

failure. 20 

 Various changes and features of the structural behaviour of the beam can be monitored, including 21 

crack initiation, steel yield, FRP debonding, FRP rupture, and concrete crushing. All are controlled 22 

via the M-K relationship of the sections without the need for any explicit assumption about the 23 

‘plastic’ behaviour of the strengthened beam. 24 

 The position of any critical point is easily identified. Also, the degree of MR can be quantified at any 25 

point along the length of the beam, at any load. 26 

 The model is compatible with any material model for the constitutive materials, and for any assumed 27 

failure strain limits. 28 

Iteration until 

convergence 
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 Any beam shape or dimensions, loading arrangements, and techniques of FRP strengthening can be 1 

accommodated by the new model, even if asymmetric and/or multi-span.  2 

It should be noted that the proposed model shows less accurate results when the zone which is controlling MR 3 

is unstrengthened. This is because, in this specific case, the plastic plateau of the M-K relationship related to 4 

the critical zone is almost a horizontal line (line A in Figure 3(b)), making it difficult or impossible to define a 5 

unique and accurate curvature for a given BM after steel yield. Hence, the numerical model requires a non-6 

horizontal plastic plateau to be able to complete the computational iteration required for the calculation of 7 

BMs described earlier. To overcome this problem, an alternative approach based on equilibrium of BMs in the 8 

sagging and hogging zones was developed (Tajaddini, 2015). This is not required for the cases presented in 9 

this paper.  10 

5. VERIFICATION OF THE NEW MODEL 11 

In this section, the numerical model is validated against existing experimental data in the literature. Figure 7 12 

illustrates a schematic image of the geometry and loading arrangement of the experiments conducted by El-13 

Refaie et al. (2003), Oehlers et al. (2004), and Aiello et al. (2007). All specimens were two-span rectangular 14 

RC beams which were loaded under concentrated loads at each mid-span, symmetrically. The experiments 15 

were carried out to investigate MR arising after flexural strengthening of continuous RC flexural members. 16 

Various strengthening techniques were used for the specimens in the different test series. Details of the test 17 

specimens, specifications of the test layouts, and configurations of FRP strengthening are summarised in 18 

Table 1.  19 

 20 

 21 
Figure 7: A schematic image of the existing experimental work in the literature 22 

Table 1: Details of some existing experiments in the literature 23 

Beam 
Width*Depth 

(mm) 

L  

(mm) 

L1 

(mm) 

Top  

steel bars 

Bottom 

steel bars 

FRP 

position 

FRP EA 

value (kN) 

Steel yield 

strength (MPa) 

Concrete 

strength (MPa) 

H2
*
 150*250 3830 1915 2T8 2T20 Hogging 6180 505-510 43.5

cu
 

H3
*
 150*250 3830 1915 2T8 2T20 Hogging 18500 505-510 33.0

cu
 

H4
*
 150*250 3830 1915 2T8 2T20 Hogging 30900 505-510 33.2

cu
 

H5
*
 150*250 3830 1915 2T8 2T20 Hogging 18500 505-510 46.0

cu
 

H6
*
 150*250 3830 1915 2T8 2T20 Hog&Sag 6180

#
 505-510 44.0

cu
 

SF2
**

 375*120 2400 1200 2T12 4T16 Hogging 8640 601-540 39.0
cy

 

SF3
**

 375*120 2400 1200 2T12 4T16 Hogging 13800 601-540 39.0
cy

 

SF4
**

 375*120 2400 1200 2T12 4T16 Hogging 10500 601-540 48.0
cy

 

S0-1
***

 150*200 1750 800 2T12 2T12 Hogging 5700 557 21.1
cy

 

S1-1
***

 150*200 1750 800 2T12 2T12 Hog&Sag 5700
#
 557 21.1

cy
 

*Beams tested by El-Refaie et al. (2003);       **Beams tested by Oehlers et al. (2004);     *** Beams tested by Aiello et al. (2007). 24 
#EA value at each of the sagging and hogging zones;            cu Cube strength;                   cy Cylinder strength. 25 
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Figure 8 compares the experimental data and the numerical results obtained from the new model for the 1 

failure load and hogging-zone BM at failure in the specimens. It should be noted that the numerical results 2 

were obtained assuming similar failure strains for the FRP debonding or rupture to those recorded 3 

experimentally. Except for Beam SF4, a reasonable agreement can be seen between the experimental and 4 

numerical results, indicating the ability of the numerical model to predict the flexural behaviour of continuous 5 

RC members strengthened using FRP. 6 

       7 

 8 
Figure 8: Comparison of the experimental data with the numerical model. (a) Failure load; (b) Hogging 9 

moment at failure 10 

It is observed that the numerical model generally predicts correctly the flexural softening and mode of failure 11 

in the critical zones of the tests reported in the literature. Using the proposed model, progression in flexural 12 

softening can be tracked and monitored logically. Table 2 provides a comparison between the experimental 13 

data and corresponding numerical results. Summarised in the table are the modes of failure, the load values at 14 

which first cracking occurred, the load values at which first steel yield occurred, and the values of 15 

experimentally recorded strain in the FRP at failure. All the numerical predictions are based on the recorded 16 

strains. As seen in Table 2, the correlation between the experimental and numerical data, over the full extent 17 

of loading, is reasonably good. 18 

0

50

100

150

200

250

H2 H3 H4 H5 H6 SF2 SF3 SF4 S0-1 S1-1

152 

173 
162 

142 

173 

84 82 

122 

161 

211 

166 
174 

157 
151 

178 

76 
84 

103 

162 

212 

F
a

il
u

re
 l

o
a

d
 (

k
N

) 

Beam 

Experimental data

Numerical model

(a) 

0

10

20

30

40

50

60

H2 H3 H4 H5 H6 SF2 SF3 SF4 S0-1 S1-1

31.6 

46.5 

53 

35 

28.3 

13.4 13.3 

18.3 

31.3 
34 32.2 

44.6 

51.7 

30 31 

12.7 12 

16.2 

32.7 34.7 

H
o

g
g

in
g

 m
o

m
en

t 
a

t 
fa

il
u

re
 (

k
N

m
) 

Beam 

Experimental data

Numerical model

(b) 



Page 10 of 15 
 

Table 2: Experimental data versus numerical predictions over the loading cycle 1 

Beam 
Failure mode 

 (Exp.) 

Failure mode 

(Numerical) 

Exp.  

cracking load 

(kN) 

Numerical 

cracking load 

(kN) 

Exp.  

yield load 

(kN) 

Numerical 

yield load 

(kN) 

FRP  

Failure strain 

(exp.) 

H2 FRP rupture FRP rupture 19.5 20.1 118 102 1.6% 

H3 FRP debonding FRP debonding 20 20.3 142 131 0.8% 

H4 FRP debonding FRP debonding 20.5 21 155 140 0.62% 

H5 FRP debonding FRP debonding 20 20.2 140 128 0.4% 

H6 FRP rupture FRP rupture 19.5 19.8 121 106 1.6% 

SF2 FRP debonding FRP debonding 20.1 21.5 - 96 0.29% 

SF3 FRP debonding FRP debonding 33.6 34 - 122 0.25% 

SF4 FRP debonding FRP debonding 36.7 34.8 - 104 0.42% 

S0-1 
CC

*
, followed by 

FRP rupture 

CC
*
, followed by 

FRP rupture 
22.7 19.8 146 132 1.5% 

S1-1 
CC

*
, followed by 

FRP rupture 

CC
*
, followed by 

FRP rupture 
21.2 19.1 129 117 1.5% 

         *CC = Concrete Crushing. 2 

MR was quantified for the beams tested, using the numerical model and applying Eq. 4, and then compared 3 

with the experimental data reported in the corresponding literature. A reasonable correlation is observed 4 

between the experimental and numerical results at failure, as illustrated in Figure 9, indicating that the new 5 

model can reasonably predict the degree of MR in continuous FRP-strengthened RC beams. In addition, as 6 

seen in Figure 9 and reported in the corresponding literature, MR can occur in FRP-strengthened RC beams to 7 

a reasonable extent, even up to 35% in the present study, although increasing the amount of FRP in the zone 8 

from which BM is redistributed reduces the level of redistribution, as observed in Beam H4. Also, this may 9 

cause BM to be redistributed conversely from the sagging zone to the hogging zone, as observed in Beam S0-1. 10 

It should be noted that a prediction for MR, assuming a strain of 0.8% (where the FRP debonded in the test) 11 

and 1.5% (where the FRP actually ruptured in the test), has also been provided in Figure 9, such that predicted 12 

results are consistent. Generally, such predictions are adequate across the full range. 13 

      14 
Figure 9: Comparison of the experimental MR data with those predicted numerically  15 

It is worth noting that, as seen in Figure 9, the initial condition and design of the specimens influence their 16 

capacity for MR such that beams S0-1 and S1-1 exhibited a lower degree of MR at failure compared to the 17 

others. This is due to the fact that the arrangement of internal reinforcement in beams S0-1 and S1-1 reduces 18 
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their overall capacity for MR, while the other beams have higher capacities due to the difference between the 1 

proportion of steel reinforcement in the top and bottom of the cross section. It should also be noted that the 2 

reason for beam H4 exhibiting low capacity for MR is the quantity of the FRP used for strengthening.  3 

6. Conclusions  4 

A new numerical approach has been proposed in this paper to model the flexural behaviour of RC continuous 5 

members strengthened using FRP materials. The model applies basic structural mechanics, and can quantify 6 

redistribution of BM over the full loading cycle. The numerical model has been validated against existing 7 

experimental data in the literature. The following conclusions are drawn based upon the study conducted: 8 

 Various beam geometries, loading arrangements, strengthening techniques or configurations can be 9 

adopted to the numerical model. 10 

 A good comparison has been observed between the numerical results obtained from the model and the 11 

test findings and observations in terms of predicting the flexural behaviour of continuous FRP-12 

strengthened RC members over loading, also in terms of failure mode, failure load and BM at failure. 13 

 A reasonable agreement has been seen between the numerical predictions and experimental results for 14 

the degree of MR which occurred in the test specimens, assuming that the debonding strain in the FRP 15 

remained constant. However, the failure mode could potentially be predicted in future work by 16 

adopting a reliable debonding/failure model. 17 

 This work opens the possibility for MR to be quantified and included explicitly in FRP-strengthening 18 

design guidelines. 19 
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List of notations 27 

Afrp  Area of the FRP 

As  Area of the tension steel reinforcement 

Asc  Area of the compression steel 

reinforcement 

C  Total force in compression 

Cc  Compression in the concrete 

Cs  Compression in the steel reinforcement 

d Effective depth to the tension 

reinforcement 

ds Effective depth to the compression 

reinforcement 

Ecm Young’s modulus of concrete 

Ef  Tensile modulus of the FRP 

EA  Tension stiffness of the FRP 

EI Flexural stiffness 

f’c  Compressive strength of concrete 

fy  Yield strength of steel reinforcement 

fck  Characteristic cylinder strength of concrete 

fctm  Characteristic tensile strength of concrete 
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fcm  The mean compressive strength of concrete 

at 28 days 

h  Overall height of beam 

Kd  Neutral axis depth 

M  Bending moment 

Melas  Theoretical bending moment determined 

from elastic analysis 

Mredis  Redistributed bending moment    

Mu Moment capacity 

MR  Moment redistribution 

P  Applied load 

Pu  Ultimate (failure) load 

T  Total force in tension 

Tc  Tension in the concrete 

Tf  Tension in the FRP 

Ts  Tension in the steel reinforcement 

ȳ  Depth from neutral axis to the centroid of 

the concrete’s compression zone 

ȳ’  Depth from neutral axis to the centroid of 

the concrete’s tension zone 

ε  Strain 

εc1  Concrete strain at peak stress 

εcu1  Ultimate strain in the concrete 

εf  Strain in the FRP 

εs  Strain in the tension steel reinforcement 

εct  Tensile strain in the concrete 

σ  Stress 

φu Ultimate curvature 

φy curvature at steel yield 
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