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We experimentally realize a spin-momentum lattice with a homogeneously trapped Fermi gas.
The lattice is created via cyclically-rotated atom-laser couplings between three bare atomic spin
states, and are such that they form a triangular lattice in a synthetic spin-momentum space. We
demonstrate the lattice and explore its dynamics with spin- and momentum-resolved absorption
imaging. This platform will provide new opportunities for synthetic spin systems and the engineering
of topological bands. In particular, the use of three spin states in two spatial dimensions would allow
the simulation of synthetic magnetic fields of high spatial uniformity, which would lead to ultra-
narrow Chern bands that support robust fractional quantum Hall states.

Ultracold atoms in optical lattices have been estab-
lished as an important tool for the quantum emulation of
condensed matter models [1], especially those with topo-
logical features [2, 3]. The inherent tunability afforded
by optical lattices provides access to a variety of param-
eter regimes, which has proved essential in the seminal
realizations of topological phases in ultracold matter [4–
7]. Since then, efforts to study topology in other systems
have led to the exploration of synthetic dimensions [8, 9],
which provide internal degrees of freedom beyond those
afforded by the trapping geometry and have enabled a
new generation of experiments [10].

Several approaches to synthetic dimensions have been
experimentally realized. Real-space lattices augmented
with spin-orbit coupling (SOC) connect spin “lattice”
sites via momentum exchange, creating Hall cylinders
pierced by magnetic flux in a synthetic position-spin
space [11–18], or creating Hall ribbons in optical clock
experiments [19–22]. Real-space lattices are not always
needed; SOC itself can provide synthetic degrees of free-
dom, which can act as a potent generator of Berry cur-
vature [23–28] or provide control parameters for Hamil-
tonian engineering [29, 30]. Synthetic lattices entirely
in momentum-space [31, 32] have been realized, and,
with carefully engineered hopping schemes, have proven
topological [33–36]. Recently, a synthetic lattice of
Rydberg states has been employed for the study of a
Su–Schrieffer–Heeger model [37], and a synthetic dimen-
sion of trap states created with patterned light [38].

Lattices composed of spin and momentum states, or
spin-momentum (SM) lattices, have been proposed [39]
as a platform to exhibit topological features, with some
schemes potentially realizing the Laughlin state of the
fractional quantum Hall effect [40, 41]. As a step towards
this, we realize a fermionic spin-momentum lattice using
SOC and three atomic Zeeman spin states. Previous ex-
periments using spin-momentum lattices utilized bosons
in a single-dimension [42, 43], and used a real-space lat-
tice with lattice-band pseudospins [44]. Recently, a two-
spin bosonic SM lattice has been implemented in an op-
tical cavity [45]. Here, by providing sufficient links be-
tween three spin sites, we build a lattice of fermions in

a 2D spin-momentum space, without a traditional scalar
optical lattice. This platform increases the flexibility of
the synthetic dimension approach. In particular, the use
of three spin states in two spatial dimensions allows the
simulation of synthetic magnetic fields of high spatial uni-
formity, which lead to ultra-narrow Chern bands that
support robust fractional quantum Hall states [41, 46].

Implementation. The synthetic lattice is composed of
three Zeeman spin states in the 1S0(F = 9/2) ground
state of 87Sr, labeled X ≡ |mF = −9/2⟩, Y ≡ |mF =
−7/2⟩, Z ≡ |mF = −5/2⟩. In a momentum-dependent
manner, the spins are cyclically coupled by up to 9 Ra-
man lasers intersecting at 120◦. In the rotating-wave
approximation, we describe the atom-laser coupling as

V̂ = Ωmne
i(kR·r+φi−φj)|m⟩⟨n|+H.c. (1)

where m ̸= n runs over the states X,Y, Z, |kR| = |ki −
kj | = kL sin2 θ

2 is the magnitude of the single-photon
recoil wavevector with i ̸= j denoting the beams driving
a particular m-n coupling, Ωmn is the coupling strength,
and θ = 120◦ is the angle between any pair of beams.
The single-photon recoil energy is ER = (ℏkR)2/2m =
ℏ × 22.7 kHz. The phase differences φi − φj are set to
zero in the experiment, but we note that setting nonzero
phases is at the heart of the ultra-narrow-band optical
flux lattice experiment [41].

The setup implementing the optical couplings in Eqn.
(1) is shown in Fig. 1(a). Up to three running-wave
triplets of beams are incident on a degenerate Fermi
gas (DFG) spin-polarized mostly into state |X⟩ with
T/TF = 0.36(5), where TF is the Fermi temperature.

Each beam k̂i contains up to three frequencies ωi, ω
′
i, ω

′′
i ,

such that the energy difference between any two frequen-
cies ωi(

′(′′))−ωj(
′(′′)) matches an energy difference in the

X,Y, Z manifold. These beams provide a Raman cou-
pling between states, as in Fig 1(b). The quantization
axis is defined by a ẑ-oriented magnetic field B ≈ 9.3 G,
along which we align the linear polarization of a beam
ωLift [15, 47, 48] providing a strong ac Stark shift that lifts
the degeneracy of the states X,Y, Z. The coupling beam
polarizations are linear and angled at 33(1)◦ with respect
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FIG. 1. Experiment schematic and coupling details. (a)
A degenerate Fermi gas (DFG) in a crossed optical dipole
trap (ODT) is exposed to cyclic Raman couplings between
three internal spin states; see text for details. A beam ωLift

provides a nonlinear energy splitting between the states. (b)
States X,Y, Z are connected among themselves through spin-
momentum exchange in units of ℏδkij = ℏ(ki − kj). With a
single set of beams, no net phase pickup is possible, denoted
by the 0. (c) The couplings form a lattice in momentum space.
Atoms encircling plaquettes labeled by α, β, γ can pick up a
net phase. The link color indicates the frequency set in (d) to
which the beams belong. (d) Details of the resonant couplings
between the three internal states labeled X,Y, and Z, which
represent the nuclear angular momentum projections mF =
−9/2,−7/2,−5/2, respectively, in the 1S0(F = 9/2) ground
state. We circularly exchange the roles of the frequencies
colored red (ωi) in the blue (ω′

i) and green (ω′′
i ) coupling sets.

to the xy-plane, projecting approximately equal intensity
among the possible Raman transition types π, σ±. When
using all nine frequencies, the beams form an infinite lat-
tice in spin-momentum space, as in Fig. 1(c). Since
the average starting atomic momentum ⟨p⟩ ≪ 4ℏkR, the
fermions initially occupy only a small spread of states
|X/Y/Z,q ≈ 0⟩, where q is the quasimomentum. After
engaging the coupling beams, atoms with differing spin
or q occupy adjacent spin-momentum lattices, shifted by
their corresponding quantum numbers. These lattices
are not tight-binding, in the sense that in-situ motion is
constrained only by the overall harmonic trap, allowing
particles of different spin and q to mix. Unlike a square
lattice—which does not readily allow for nonzero Chern
number—this triangular lattice naturally breaks inver-

sion symmetry and allows for magnetic flux. We note
that nonzero gauge flux is possible only on the upward-
pointing triangles, corresponding to momentum transfers
involving all three frequency sets.

As shown in Fig. 1(d), the coupling beams utilize the
dipole-forbidden transition 1S0(F = 9/2) → 3P1(F =
9/2), detuned below resonance by ∆/2π = 210 MHz. The
transition’s narrow linewidth Γ/2π = 7.4 kHz allows co-
herent manipulation with minimal spontaneous emission,
and no significant destructive interference [49, 50] arises
from the THz-separated fine structure states 3P0 and
3P2. In order to make each triplet unique, the upper-state
detunings of the blue and green couplings are shifted by
∓37 ER/ℏ, larger than the ≈ 7.5 ER/ℏ energy splittings.
The role of the frequency ωi in beam ki is circularly ro-
tated amongst the three triplets, such that all frequencies
resonantly couple all spin states.

In order to realize the lattice, careful attention must
be paid to the energy levels of X,Y, Z, which are natu-
rally degenerate. Since the ground states have J = 0—
rendering Zeeman shifts insignificant at our bias field—
we use an ac Stark shift approach. Further leveraging
the narrow-line intercombination transition, the lift beam
ωLift is operated at 434.829943(5) THz, midway between
the hyperfine resonance lines 1S0(F = 9/2) → 3P1(F =
7/2) and 1S0(F = 9/2) → 3P1(F = 9/2). This light was
designed to produce a strong tensor shift ϵ = 1.76ER/ℏ
of the X state, allowing each pair of Raman beams to
uniquely couple two spin-momentum states. A necessary
condition of the spin-momentum lattice model is that the
coupling strengths Ω ≪ ϵ. The coupling strengths here
are Ω ≈ 0.5ER/ℏ [51].

Experimental sequence. In our newly-built appara-
tus, we source 87Sr from a commercial atomic oven
from AOSense, which includes an integrated Zeeman
slower and 2D MOT optics. After two MOT load-
ing and cooling stages lasting 7s [52, 53], the atoms
are loaded into a crossed 1064 nm optical dipole trap
(ODT) with an initial temperature of ≈ 2 µK. The
vertical (horizontal) trapping frequency is ramped up
to 2.160(5) kHz (313(1), 397(2) Hz), at which point we
spin-polarize the sample with a series of pulses resonant
with the different mF states via the 1S0(F = 9/2) →
3P1(F = 9/2) transition [51, 54, 55]. The ODT frequen-
cies are then lowered back to ≈ 1 kHz vertically, and
forced evaporation proceeds over the next 10 s, finally
reaching a quantum-degenerate sample. Without spin-
polarization, we routinely achieve T/TF = 0.20, where
TF is the Fermi temperature, rising to T/TF = 0.36(5)
when spin-polarized. Evaporation ends at mean geomet-
ric trap frequency ω = (ωxωyωz)

1
3 = 71.4(1) Hz, yielding

a 50 nK Fermi gas. Immediately following evaporation,
the sample is spin-polarized in the state X(80±7%), and
the ac Stark shifting beam ωLift is ramped on in 0.5 ms.
Via optical Stern-Gerlach imaging [56], we verify that
this timescale does not alter the spin polarization. We
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FIG. 2. Demonstration of the spin-momentum lattice. A
DFG is exposed to the nine-beam coupling scheme, with the
k1 triplet frequency-swept in order to populate more lattice
sites; see text for details. The sweep progress is indicated in
units of recoil energy ER. The top row shows spin-unresolved
momentum-space images, in which the lattice is most clearly
evident. The second row shows the predicted dynamics from
simulations (Sim.). Subsequent rows show spin-resolved im-
ages. In each row, we draw a link connecting each lattice site
with a color corresponding to the involved beams, as detailed
in Fig. 1(d). In the top row, we encircle and label each new
lattice site as it becomes apparent during the sweep, and in
the spin-resolved rows the expected populations are also en-
circled. As a guide to the eye, the links are also drawn across
all rows. Each image is an average of ≈ 100 experimental
runs taken at 12 ms time of flight. The peak atomic density
is indicated in the top right of each image, in units of N atoms
per µm2.

then introduce the coupling beams with a turn-on time
of <1µs.

We demonstrate the spin-momentum lattice in Fig. 2.
In order to fill more sites, we emulate motion along a
single dimension by subjecting the atoms to an inertial
force [17] along k̂1, ramping all three of that beam’s fre-
quencies at a rate ℏ∂t(ω1, ω

′
1, ω

′′
1 ) = 16.607 ER/ms[57].

Hopping to neighboring sites is made favorable when
the frequency difference between two coupling beams
matches the energy and recoil shifts between states, pro-
viding enhanced state transfer between initial state |X,q⟩
and |X,q−K⟩, |Y,q−K⟩, |Z,q−K⟩ for some reciprocal
lattice vectors K = n1q1+n2q2 with integers n1, n2. Af-
ter a varying sweep time, all optical fields are quenched
off, releasing the atoms from the harmonic trap. Atoms

that have tunneled to different lattice sites acquire a con-
comitant increase in momentum, in discrete units of the
two-photon Raman momentum ℏkR =

√
3/2ℏkL. The

lattice sites become spatially resolved after 12 ms time
of flight, since the starting momentum distribution’s full-
width half-max width is 1.05(1)ℏkL and external heating
by spontaneous emission from 3P1 is minimal [51]. The
atoms are then absorption-imaged in the xy plane using
the 1S0 → 1P1 transition at 461 nm (Γ461/2π = 30MHz),
which images all spins with approximately equal effi-
ciency [58]. The bias magnetic field is kept on at all
times, in order to maintain the spin quantization axis.

The individual columns of Fig. 2 demonstrate spin-
and momentum-resolved imaging at various quench
times. Sweep time is indicated by the final frequency de-
viation of the swept beam, in units of ER. Intuitively,
one would not expect stationary atoms (⟨p⟩ ≈ 0) to
tunnel before at least overcoming the recoil shift 4ER,
and we observe this in the experiment. Denoting trans-
ferred momentum by ℏδkij = ℏ(|ki − kj |), and refer-
ring to beam triplets by their colors in Fig. 1(d), when
the sweep reaches 4ER we see beams ω1, ω2 from the
red triplet driving the corresponding Raman transition
|X, 0⟩ → |Y, ℏδk12⟩; similarly, the green beams ω′

1, ω
′
3 al-

low |X, 0⟩ → |Z, ℏδk13⟩. By 8ER, atoms have firmly pop-
ulated sites |Y, ℏδk12⟩, |Z, ℏδk13⟩, with initially-faster-
moving atoms beginning to populate the site |X, p =
−3ℏkL⟩, completing a traversal of the first Brillouin zone.
By 12ER, more atoms have tunneled through the Bril-
louin zone, and the momentum center-of-mass proceeds
downward at 16ER; imaging becomes increasingly dif-
ficult due to the lower atom density, so we terminate
here. As a consistency check, we also demonstrate spin-
resolved imaging using spin blasts [51, 59] in order to
verify that sites on the SM lattice are of the expected
spin projection, mF . We observe good consistency with
the SM lattice model as drawn in Fig. 1(d), although me-
chanical effects of the spin-blasts can mask some lattice
sites; notably, the X-site at p = −3ℏkLŷ (see Appendix).
Our model shows qualitative agreement with the data for
a scaled value of the measured Rabi coupling strengths.
Some disagreement is evident, especially at the lattice
sites with momenta p =

√
3/2ℏkL, which are predicted to

have a stronger amplitude than is observed. We attribute
these mismatches to off-resonant effects not included in
our effective Hamiltonian [51].

The lattice scheme presented here is readily tunable.
Although the full spin-momentum lattice is composed
of nine frequencies, we can remove links between lat-
tice sites at will. We explore this flexibility in Fig. 3,
where we show the driven dynamics experiment of Fig.
2, but now with all images taken at a common sweep time
12ER. In the two-beam scheme, composed of a single fre-
quency in each of two beams k̂1, k̂2, we have reduced the
system to a 1D SOC model between an effective spin up
|↑⟩ = |X,q⟩ and spin down |↓⟩ = |Y,q⟩ [59, 60]. In the 3-
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FIG. 3. Building the spin-momentum lattice; all images taken
at a common sweep time of 12ER. The drawn links and circles
are as described in Fig. 2, with the second row showing the
predicted dynamics (Sim.). Each removed frequency corre-
sponds to a missing link in the full lattice setup, allowing the
exploration of quasi-1D SOC in the first column, to 2D SOC
in the second column, culminating in the full lattice shown in
the last column. The multiply-colored links in the last two
columns indicate two SM lattices simultaneously overlaid: a
two-state configuration, in which the experiment began with
equal populations of X,Y .

beam case, with a single frequency in each of the k̂1, k̂2, k̂3
beams, we have a 2D spin-orbit coupling [25, 61, 62] cycli-
cally linking the three states X,Y, Z. The 6-beam case
consists of beams k̂1, k̂2, k̂3 each possessing two frequen-
cies, labeled by their colors red and blue as labeled in
Fig. 1. In the last two columns, we explore the dynamics
starting from an even spin mix of states X and Y , which,
in the 9-beam experiment, can be visualized as two SM
lattices overlapped on p = 0.

Conclusion and outlook. We have demonstrated a
two-dimensional fermionic spin-momentum lattice with-
out the use of standing waves. This adds to the wealth
of cold atom synthetic dimension platforms available to
study topological materials. The system’s 15 ms lifetime
exceeds our current experimental duration by a factor
of 10, and could be further improved with increased Ra-
man detuning ∆. The current lift beam strength imposes
a 30 ms limit, which can be relaxed under appropriate
conditions [51]. The number of visible lattice sites can be
increased with larger Rabi coupling strengths, or by slow-

ing the sweep rate, which would couple more atoms out
of the p ≈ 0 momentum class. The spin-resolved imaging
presented here could be improved by using stronger blast
pulses to overcome the Doppler shifts among the lattice’s
numerous momentum states.
This work launches a novel platform for exploring

topological physics with optical flux lattices. The
natural extension of this work would be to load the
atoms adiabatically into the lowest band and set nonzero
coupling phases such that a gauge flux appears on the
plaquettes labeled α, β, γ in Fig. 1. The topology of the
band structure could then be probed using established
anomalous velocity techniques [6, 17, 63], which involve
accelerating the dressed atoms in the same manner as
done here. Demonstrating this topology would enable
the exploration of many-body fractional Hall states [41].
In the present experiment, spin-contact interactions
are not expected to play a significant role; but these
interactions may be increased through the use of a
vertical real-space lattice, as detailed further in [41] for
87Rb, which we note has the same scattering length
≈100a0 as 87Sr.
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structing an early version of the experiment. We thank
S. Mossman for helpful discussions of the experimental
design, and are grateful for helpful comments from I.
Spielman. We acknowledge support from the National
Science Foundation Award No. 1752630, EPSRC Grant
No. EP/P009565/1 and a Simons Investigator Award.

Appendix: Spin-resolved imaging

Atoms released from the SM lattice naturally spatially
resolve according to their spin and momentum; however,
in cases where the starting state is not pure or for veri-
fication purposes, it is necessary to have a means to re-
solve the spins. Directly imaging the spins using narrow-
line absorption imaging [56] is impractical due to the low
scattering cross-section and relatively low atom density
of Fermi gases. Furthermore, since the atoms are moving
after they are released from the SM lattice, the use of
optical Stern-Gerlach separation is not desirable because
it will (necessarily) disturb the momentum distribution.
We instead visualize the spin dynamics with blast

pulses [59], propagating in the xy plane, resonant with
the narrow 1S0(F = 9/2,mF ) → 3P1(F = 9/2,mF )
transition at 689 nm. To be effective, the blast beam
strength needs to be similar to the worst-case atomic
Doppler shifts in the SM lattice ΩDoppler ≈ n × 2π ×
4ER = n × 91 kHz, where n is the number of photons
absorbed in the SM lattice. Simultaneously, to avoid ex-
citing neighboring mF states, the blast strength must be
smaller than the typical Zeeman splitting of the upper
3P1(F = 9/2) states, here 2π × 790 kHz.
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FIG. 4. Spin-resolved imaging process. (a) Spin-blast Rabi frequency calibrated by electron shelving of the mF = −7/2 (Y)
state. The fitted single-photon Rabi frequency is Ω = 335(1) kHz. (b) Averaged atom shot of the SM lattice at sweep time
8ER. (c) Spin-blast beam resonant with mF = −7/2 applied to the SM lattice. (d) Subtraction of images (b) and (c), removing
the common-mode background and revealing the locations of mF = −7/2 atoms. A negative-OD region forms at the locations
of the blast-scattered atoms.

The beams are calibrated as in Fig. 4(a) with electron-
shelving [64]: atoms are excited into 3P1 with a resonant
689 nm pulse for a time t, after which we apply a 4 µs
pulse of 461 nm MOT light to blow away all remaining
ground-state atoms. Atoms so “shelved” in the 3P1 state
do not interact with the 461 nm light; instead, the frac-
tion projected onto the ground state is measured with
absorption imaging after a brief 2 ms time of flight. The
overall decay curve matches the 3P1 natural lifetime of
22 µs. The SM lattice in Fig. 4(b) is subjected to this
beam in Fig. 4(c), yielding the spin-resolved picture in
Fig. 4(d) after subtracting the two images. Since the
blast process relies on spontaneous emission, an atom
can scatter (at most) a few photons before decaying to
an adjacent mF state, which is then transparent to the
narrow-linewidth blast beam. This means the momen-
tum acquired by the targeted atoms is comparable to
the momentum of the atoms in the SM lattice, so some
overlap is inevitable—as the negative optical density re-
gion in Fig. 4(d) shows. This effect can be particularly
noticeable if the scattered atoms have strong geometric
overlap with a region of interest, as seen in the X row
of main text Fig. 2, particularly the 8ER panel, which
entirely masks the cloud at p = −3ℏkLŷ.

Furthermore, although the beam strengths are chosen
to be comparable to the Doppler shifts, the efficiency of
these single-tone blast pulses still decreases with increas-
ing SM lattice photon absorption. To overcome this, a
larger bias magnetic field would enable the use of stronger
blast pulses. To overcome the geometric overlap issue,
tilting the blast pulses out-of-plane would push targeted
atoms out of the imaging focus region, more effectively
removing them from the images.
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