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Abstract
The accurate diagnosis and clinical management of the growth restriction disorder Silver

Russell Syndrome (SRS) has confounded researchers and clinicians for many years due to

the myriad of genetic and epigenetic alterations reported in these patients and the lack of

suitable animal models to test the contribution of specific gene alterations. Some genetic

alterations suggest a role for increased dosage of the imprinted CYCLIN DEPENDENT
KINASE INHIBITOR 1C (CDKN1C) gene, often mutated in IMAGe Syndrome and Beckwith-

Wiedemann Syndrome (BWS). Cdkn1c encodes a potent negative regulator of fetal growth

that also regulates placental development, consistent with a proposed role for CDKN1C in

these complex childhood growth disorders. Here, we report that a mouse modelling the rare

microduplications present in some SRS patients exhibited phenotypes including low birth

weight with relative head sparing, neonatal hypoglycemia, absence of catch-up growth and

significantly reduced adiposity as adults, all defining features of SRS. Further investigation

revealed the presence of substantially more brown adipose tissue in very young mice, of

both the classical or canonical type exemplified by interscapular-type brown fat depot in

mice (iBAT) and a second type of non-classic BAT that develops postnatally within white

adipose tissue (WAT), genetically attributable to a double dose of Cdkn1c in vivo and ex-
vivo. Conversely, loss-of-function of Cdkn1c resulted in the complete developmental failure

of the brown adipocyte lineage with a loss of markers of both brown adipose fate and func-

tion. We further show that Cdkn1c is required for post-transcriptional accumulation of the

brown fat determinant PR domain containing 16 (PRDM16) and that CDKN1C and

PRDM16 co-localise to the nucleus of rare label-retaining cell within iBAT. This study

reveals a key requirement for Cdkn1c in the early development of the brown adipose line-

ages. Importantly, active BAT consumes high amounts of energy to generate body heat,
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providing a valid explanation for the persistence of thinness in our model and supporting a

major role for elevated CDKN1C in SRS.

Author Summary

Silver Russell syndrome is a severe developmental disorder characterised by low birth
weight, sparing of the head and neonatal hypoglycemia. SRS adults are small and can be
extremely thin, lacking body fat. Numerous genetic and epigenetic mutations have been
linked to SRS primarily involving imprinted genes, but progress has been hampered by the
lack of a suitable animal model. Here we describe a mouse model of the rare micro dupli-
cations reported in some SRS patients, which recapitulated many of the defining features
of SRS, including extreme thinness. We showed that these mice possessed substantially
more of the energy consuming brown adipose tissue (BAT), driven by a double dose of the
imprinted Cdkn1c gene. We further show that Cdkn1c is required for the postranscrip-
tional accumulation of the BAT determinant PRDM16 and that these proteins co-localise
to the nucleus of in a rare label-retaining cell within BAT. These data suggest that Cdkn1c
contributes to the development of BAT by modulating PRDM16 and supports a major
role for this gene in SRS.

Introduction
Silver-Russell syndrome (SRS; MIM 180860), Beckwith Weidemann Syndrome (BWS; MIM
130650) and IMAGe syndrome (MIM 614732) are all rare imprinted developmental disorders
that occur as a result of genetic or epigenetic alterations primarily at human chromosome
11p15 [1, 2]. Recent studies highlight the potential involvement of one maternally expressed
imprinted gene, CYCLIN DEPENDENT KINASE INHIBITOR 1C (CDKN1C), in all three disor-
ders [3]. Loss-of-function or loss-of-expression of CDKN1C is a common feature of BWS,
either through direct DNA mutation, epigenetic misregulation or loss of the maternal chromo-
some [4]. The rare IMAGe syndrome, which has the major features of fetal growth restriction,
metaphyseal displasia, adrenal hypoplasia congentia and genital abnormalities, is associated
with genetic mutations in the CDKN1C gene [5, 6]. The changes associated with growth restric-
tion are gain-of-function mutations of the PCNA domain, limited to a handful of rare familial
cases highlighted in a recent review [3], that may increase the stability of the protein [6, 7]. SRS
is characterised by severe pre and post natal growth restriction combined with some of the fol-
lowing: neonatal hypoglycaemia, excessive sweating, triangular shaped face, head circumfer-
ence of normal size but disproportionate to a small body size, clinodactyly, feeding problems,
low body mass index manifesting as extreme thinness, no catch up growth and increased risk
of delayed development and learning disabilities [8]. Numerous genetic and epigenetic alter-
ations have been reported in SRS patients but identifying the causal gene mutation(s) has been
challenging. Some studies suggest loss of function of the paternally expressed growth factor
INSULIN-LIKE GROWTH FACTOR 2 (IGF2) [9]. However, there are SRS patients that carry
an extra copy of maternally derived 11p15 without loss-of-function of IGF2 [10]. Maternal
duplications spanning the complex imprinted domain at 11p15 have been independently
reported in a number of studies [11–16] and the majority are associated with unbalanced trans-
locations suggesting that increased dosage of a maternally expressed imprinted gene may be
important in SRS. The minimal region of maternal microduplication in SRS encompasses
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CDKN1C and three other maternally expressed protein coding genes POTASSIUM CHANNEL,
VOLTAGE GATED KQT-LIKE SUBFAMILY Q,MEMBER 1 (KCNQ1), PLECKSTRIN HOMO-
LOGY-LIKE DOMAIN, FAMILY A,MEMBER 2 (PHLDA2) and SOLUTE CARRIER FAMILY
22,MEMBER 18 (SLC22A18) [17, 18]. Since CDKN1C is a maternally expressed gene [19, 20],
these SRS patients are predicted to have twice the normal level of CDKN1C expression.

We, and others, have shown that loss of Cdkn1c in mice results in a late fetal overgrowth
and disrupted placental development [21–25] consistent with a key role for this gene in BWS.
CDKN1C, which is maternally expressed in both humans and mice [19, 20], belongs to the Kip
cyclin dependent kinase inhibitor family that induce cell cycle arrest and limit proliferation
[26]. In mice, Cdkn1c is widely expressed during embryonic development in cells exiting differ-
entiation [27–29]. Cdkn1c also functions to orchestrate cell fate determination targeting key
transcription factors [30–36] and in stem cell self-renewal and quiescence in a number of
embryonic [32–34, 37–40] and adult [41–43] stem/progenitor cells. These multiple roles may
account for complex phenotypic consequences in response to alterations in the dosage of this
gene.

We previously reported growth restriction in mice carrying a bacterial artificial chromo-
some (BAC) transgene spanning Cdkn1c, Phlda2 and Slc22a18 [24]. This alteration essen-
tially models the minimal microduplicated region observed in some SRS patients [17, 18].
The mice exhibited significant fetal growth restriction from embryonic day (E) 13.5 with
the absence of catch-up growth. We were able to attribute the fetal growth restricting prop-
erties of this microduplication to two-fold expression of Cdkn1c consistent with the pheno-
type observed in SRS. Fetal growth restriction per se is a relatively generic phenotype and
more specific features of SRS would lend greater support to the hypothesis that altered
expression of CDKN1C contributes significantly to SRS in human patients. To provide fur-
ther evidence for or against a key role for CDKN1C in SRS, we examined the microduplica-
tion mice for additional SRS-associated phenotypes. This work revealed low birth weight
with a relative sparing of the head, neonatal hypoglycaemia, small sized adults with substan-
tially less white adipose tissue, all of which were genetically attributable to just two-fold
expression of Cdkn1c. These findings support a major role for elevated CDKN1C in SRS.
Importantly, we identified a novel function for Cdkn1c in directly promoting the develop-
ment of brown adipose tissue early in life, a finding that could account for the prevalence of
thinness in SRS.

Results
The minimal microduplicated region in SRS spans four imprinted, protein-coding genes:
KCNQ1, CDKN1C, PHLDA2 and SLC22A18 (Fig 1A). Our mouse BAC transgene spans three
of these genes, Cdkn1c, Phlda2 and Slc22a18 (Fig 1B). Previously we showed that a single copy
of the transgene (BACx1) drove significant fetal growth restriction on a mixed strain back-
ground which was more severe in a two copy line (BACx2) and absent in a reporter line in
which transgenic Cdkn1c was replaced by a β-galactosidase gene (BAC-lacZ) attributing growth
restriction to elevated expression of Cdkn1c [24]. The transgene was lethal on a pure 129S2/
SvHsd (129) background but preliminary breeding into C57BL/6J (BL6) suggested improved
viability with the retention of growth restriction, albeit attenuated [24]. For this study, three
transgenic lines (BACx1, BACx2 and BAC-lacZ) were bred further onto a BL6 strain back-
ground, to>12 generations. BACx1 and BACx2 fetuses were significantly lighter at embryonic
day (E) 18.5 while BAC-lacZ fetuses were similar in weight to wild type controls confirming
the fetal growth restricting properties of Cdkn1c. Importantly, fetal viability was not compro-
mised on this genetic background (S1 Fig).
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Fig 1. Bacterial artificial chromosome (BAC) spanning the intactCdkn1c locus in mice models minimal microduplication reported in Silver Russell
Syndrome. (A) Genomic map of human 11p15 imprinted region. Line below indicates extent of minimal region duplicated in SRS. (B) Genomic map of
mouse distal chromosome 7 imprinted region. Below is the map of the 85 kb BAC transgene (BAC144D14). Inset: Image of WT and BACx1 pups carrying
one copy of the BACx1 examined on a mixed 129/BL6 genetic background on postnatal day (P) 2. (C) Weights of WT and BAC transgenic pups at birth (P0)
after breeding onto BL6 genetic background for >12 generations. (D) Brain weight to body weight ratio. (E) Blood glucose levels (mmol/l). NS = not
significant. Data expressed as mean ± SEM, t test. Numbers given in S1 Fig.

doi:10.1371/journal.pgen.1005916.g001
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Children with SRS are born low birth weight and are prone to develop spontaneous hypo-
glycaemia, particularly if they are not fed both frequently and regularly [44]. Newborn BACx1
and BACx2 mice were lighter than their wild type littermates (Fig 1C). There was a significant
difference in the relative proportion of the brain to body weight in the two copy line (Fig 1D).
Marked hypoglycaemia in the fed state was evident for both the single copy and the two copy
line (Fig 1E). Glucose levels, birth weight and brain weights were normal in the control line
BAC-lacZ genetically attributing these phenotypes to elevated Cdkn1c expression. These data
were consistent with the observed phenotypes of low birth weight, head sparing and neonatal
hypoglycaemia reported in young SRS patients.

As adults, SRS patients commonly display short stature with a low body mass index and a
lack of subcutaneous fat [8]. At 10 weeks of age BACx1 and BACx2 male and female adult
mice were significantly lighter than their wild type littermates (Fig 2A). An exploratory mag-
netic resonance image of an adult BACx1 male mouse alongside a wild type co-housed litter-
mate suggested less white adipose tissue (WAT; S2 Fig). Dissection and weighing of individual
WAT depots revealed a disproportionate reduction in the weight of the mesenteric (mes),
inguinal (ing) and retroperitoneal (rp) WAT depots relative to total body weight (Fig 2B and
2C). Mice carrying a single copy of the transgene (BACx1) consumed a similar daily weight of
standard chow whereas mice carrying two copies (BACx2) consumed significantly less (Fig
2D). The basal body temperature of both BACx1 and BACx2 mice was significantly elevated
(Fig 2E). Histological examination of rpWAT revealed an abundance of smaller adipocytes
with a multilocular appearance, which were less apparent in wild type rpWAT and depots
from the reporter line BAC-lacZ (Fig 2F). BEIGE cells are a recruitable form of brown adipose
tissue (BAT) that develops postnatally within someWAT depots defined by a smaller cell size,
multilocular lipid droplet morphology, a high mitochondrial content and the expression of
brown fat–specific genes [45–50]. In addition to the elevated expression of Cdkn1c two key
markers of brown adipose tissue, uncoupling protein-1 (UCP1) and elongation of very long
chain fatty acids (FEN1/Elo2, SUR4/Elo3 and yeast)-like 3 (Elovl3), were significantly elevated
in rpWAT from adult BACx1 mice as compared to matched wild type rpWAT (Fig 2G).
Importantly, neither Cdkn1c nor these markers were elevated in rpWAT from the reporter line
BAC-lacZ (Fig 2G). These data suggested an increased representation of BEIGE cells, some-
times referred to as the “browning” of WAT, driven by increased expression of Cdkn1c.

Cdkn1c is expressed and imprinted in adipose tissue
Cdkn1c is expressed from the BAC in a number of tissues including the pituitary, the hypothal-
amus and the pancreas [51] that may stimulate the browning of WAT. However, elevated
Cdkn1c expression within transgenic rpWAT (Fig 2G) suggested the potential for a direct
role for Cdkn1c in brown adipogenesis. Expression of Cdkn1c has been reported in the epididy-
mal white adipose tissue of adult mice [52]. At postnatal day 7 (P7), Cdkn1c expression was
detectable within several adipose depots with levels positively correlating with the brown adi-
pose-like nature of these depots [53]. Cdkn1c was found to be most highly expressed in the
interscapular-type brown fat depot (iBAT), which is composed of a classical or canonical type
of BAT sharing a developmental origin with myoblasts [48], with moderate expression in
rpWAT and subcutaneous (sc) WAT and lowest expression in mesenteric (mes) WAT (Fig
3A). At E16.5, when iBAT is discernable as a discrete depot, a few Cdkn1c-positive cells were
identifiable by both in situ hybridisation and immunohistochemistry (Fig 3B). At P7, Cdkn1c
was more widely expressed within the iBAT depot (Fig 3C, left panel). Cdkn1c was also
expressed within a few discrete niches in P7 rpWAT (Fig 3D, left panel). Importantly, BACx1
and BACx2 rpWAT and iBAT displayed a similar expression pattern to WT depots by in situ
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Fig 2. ElevatedCdkn1c drives thinness in adult mice. (A) Weights of WT and BAC transgenic male and female mice at 10 weeks. (B) Dissection of WT
and BAC transgenic mice at 10 weeks to reveal adipose depots in situ. (C) Weights of adipose depots relative to body weights. (D) Food consumption per
day, measurements taken over 5 days. (E) Rectal body temperature. (F) H&E sections of 10 week rpWAT depots fromWT, BACx1 and BACx2 and BAClacZ
(WT from line BACx1). (G) QPCR analysis of Cdkn1c, Ucp1 and Elovl3 in BACx1 female 10 week rpWAT depots (n = 4 per genotype). Data expressed as
mean ± SEM, t test.

doi:10.1371/journal.pgen.1005916.g002
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Fig 3. Cdkn1c is expressed and imprinted in rpWAT and iBAT. (A) QPCR of Cdkn1c in P7 rpWAT, subcutaneous (sc) WAT, and iBAT relative to
mesenteric (mes) WAT (n = 4 each depot taken from two litters). Data expres sed as mean ± SEM, t test. ** P <0.01.(B) E16.5 transverse sections through
IBAT depots stained for Cdkn1cmRNA and protein. (C) WT, BACx1 and BACx2 P7 iBAT sections stained for Cdkn1c. -galactosidase staining of P7 BAC-
lacZ iBAT depot (far right panel).Cdkn1c-positive cells indicated by arrows. (D) WT, BACx1 and BACx2 P7 rpWAT sections stained for Cdkn1c.
-galactosidase staining of P7 BAC-lacZ rpWAT depot (far right panel).Cdkn1c-positive cells indicated by arrows. (E)Cdkn1cmaternal allele-specific
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hybridisation (Fig 3C and 3D, middle panels) indicating that Cdkn1c was not ectopically
expressed from the transgene in these depots. β-galactosidase staining of dissected intact depots
from BAC-lacZ pups revealed blue staining niches consistent with expression originating from
the transgene in both depots (Fig 3C and 3D, far right panels).

To determine whether expression of Cdkn1cwas imprinted in adipose tissue, we made use of
the Cdkn1c restriction fragment length polymorphism (RFLP) assay [54].Mus musculus domesti-
cus BL6 mice possess an AvaI restriction enzyme site within an exon of Cdkn1c that is absent in
Mus spretusmice (Fig 3E). P7 pups were generated from crosses between pure BL6 females and
BL6 males carrying a copy of theMus spretus Cdkn1c region. AvaI digestion of a PCR product
amplified across the polymorphic region from genomic DNA demonstrated that both alleles
were physically present. Digestion of the PCR product amplified from cDNA revealed the pre-
dominant presence of only the maternally inherited BL6 allele (lower band) in both P7 iBAT and
P7 rpWAT (Fig 3E). Similarly, depots from adult mice displayed predominantly maternal-allele
expression (Fig 3E). Differential DNAmethylation spanning the predicted Cdkn1c promoter
region [55] was also discernable in both adipose depots at P7 and in the adult (Fig 3F). These
data demonstrated that Cdkn1c was both expressed and imprinted in post-natal adipose tissue,
and that both expression and imprinting was maintained into adulthood.

Cdkn1c promotes the browning of WAT early in life
The in situ hybridisation analysis (Fig 3D) and further histological examination of rpWAT at
P7 suggested that the phenotypic differences present in adult mice were apparent at this much
earlier timepoint (Fig 4A). Electron microscopic imaging of BACx1 P7 rpWAT depots
revealed clusters of cells that possessed BEIGE characteristics including a larger volume of
cytoplasm, numerous mitochondria and smaller, multilocular, lipid droplets not readily
observed in matched WT depots (Fig 4B). QPCR demonstrated that Cdkn1c expression was
significantly elevated in BACx1 and BACx2 P7 rpWAT, by 1.5- and 2.2-fold respectively (Fig
4C). Several markers of BAT were also elevated including peroxisome proliferator-activated
receptor gamma, coactivator 1 alpha (Ppargc1a), cell death-inducing DFFA-like effector a
(Cidea), Ucp1, Elovl3 and PR domain containing 16 (Prdm16) in BACx1 and BACx2 P7
rpWAT (Fig 4D). Consistent with 10-fold higher expression of Ucp1mRNA, UCP1 protein
was more readily detectable in BACx1 rpWAT than in WT rpWAT in a within litter compari-
son (Fig 4E). PRDM16, a brown fat determinant [48], was also more readily detectable in
BACx1 rpWAT depots than wild type depots (Fig 4E). Importantly, P7 rpWAT from the
reporter line BAC-lacZ had a normal appearance and neither Cdkn1c nor key BAT markers
were elevated (S3A Fig). The presence of BEIGE-like cells in the BACx1 and BACx2 rpWAT
and their absence in the BAC-lacZ model, in which Cdkn1c was expressed at a normal level,
identified Cdkn1c as a gene that promotes the “browning” of WAT. Importantly, this pheno-
type was apparent when WAT first emerged as a distinct depot in very young mice.

Cdkn1c boosts the development of classic brown adipose tissue
Elevated expression of Cdkn1c also had an effect on iBAT. P7 BACx1 and BACx2 iBAT depots
were heavier as a proportion of total body weight, by 30% and 60% respectively, than WT

expression in P7 and adult iBAT and rpWAT from hybrid offspring from BL6 female mated with a BL6spretus-chr7 male assessed by the presence (BL6; B) or
absence (spretus; S) of an AvaI restriction enzyme site within the Cdkn1c PCR product. (F) Average methylated CpGs per sample with examples of
differential methylation ofCdkn1cDMR in P7 and adult iBAT and rpWAT. Each row corresponds to an individual sequenced DNA clone. Each circle
represents a CpG on the strand, filled circles and open circles indicate methylated and unmethylated sites, respectively. Percentage values given for n = 3 of
each condition.

doi:10.1371/journal.pgen.1005916.g003
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iBAT depots (Fig 5A). This was not due to increased lipid deposition as BACx1 and BAC2
iBAT depots displayed increased cellularity, confirmed by cell counting (Fig 5B). As in
rpWAT, Cdkn1c expression was significantly elevated in BACx1 and BACx2 iBAT, by 1.5- and

Fig 4. Cdkn1c promotes the browning of WAT in youngmice. (A) H&E of P7WT, BACx1 and BACx2 rpWAT (WT from line BACx1). (B) Electron
micrograph of WT and BACx1 P7 rpWAT (4000X). Mitochondria indicated by m and lipid by l. (C) QPCR analysis of Cdkn1cmRNA levels in P7 rpWAT from
BACx1 and BACx2 relative to wild type controls. (D) QPCR of BAT-selective genes in WT, BACx1 and BACx2 P7 rpWAT. (E) Western blot analysis of UCP1,
PRDM16 and β-ACTIN in P7 rpWAT from single litters of WT and BACx1 pups. Data expressed as mean ± SEM, t test. * P <0.05; ** P <0.01; *** P <0.005.

doi:10.1371/journal.pgen.1005916.g004
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2.2-fold respectively (Fig 5C). QPCR analysis revealed near wild type expression of the adipo-
genesis regulators retinoblastoma 1 (Rb1), peroxisome proliferator-activated receptor-γ
(PPARγ) and CCAAT-enhancer-binding protein-α (C/EBPα) but elevated expression of
CCAAT-enhancer-binding protein-β (C/EBPβ) in both BACx1 and BACx2 depots (Fig 5C).
BAT markers Ppargc1a, Ucp1 and Elovl3 were significantly elevated in BACx1. All five BAT
markers examined were significantly elevated in the higher dosage line, BACx2 (Fig 5C). Criti-
cally, BAC-lacZ iBAT appeared morphologically normal and neither Cdkn1c nor key BAT
markers were elevated (S3B Fig) genetically assigning these alterations to the increased dosage
of Cdkn1c in BACx1 and BACx2. The ratio of mitochondrial DNA to nuclear DNA can be
used as an estimate of mitochondrial load. Both BACx1 and BAC2 P7 iBAT depots contained
significantly increased mitochondrial DNA content compared to WT (Fig 5D). Consistent
with a greater mitochondrial load, expression of the nuclear mitochondrial marker cytochrome
c, somatic (Cycs) was significantly elevated in BACx2 and both Cycs and the mitochondrion-
encoded cytochrome c oxidase subunit II (Cox2) were elevated in BAC1 and BACx2 iBAT (Fig
5C).

Fully functional iBAT at birth is important for maintaining newborn body temperature.
33°C approaches thermoneutrality and corresponds to the temperature within litters of new-
born mice in contact with their mother [56] whereas 26°C elicits near-maximal thermogenesis
by brown adipose tissue [57]. P2 WT and BACx2 pups kept at 33°C and then exposed to room
temperature (22°C) for a 20 minute period both lost body heat at the same rate despite signifi-
cant differences in their body weights (Fig 5E), consistent with functional iBAT at this
timepoint.

Taken together, these data identified a novel function for Cdkn1c in boosting the develop-
ment of both BEIGE and iBAT early in post-natal life, with increasing expression of Cdkn1c
associated with the increased development of brown adipose.

Cdkn1c is required for the proper formation of iBAT
In contrast to the increase in classic iBAT in response to elevated Cdkn1c, loss-of-expression of
Cdkn1c resulted in the loss of iBAT. Mice inheriting a targeted deletion of Cdkn1cmaternally
(loss-of-function) die in the neonatal period [21]. Cdkn1c-/+ (KOMAT) embryos examined a
day prior to neonatal demise, at E18.5, possessed poorly discernable iBAT depots lacking the
characteristic butterfly shape normally observed at this stage of development (Fig 6A). H&E
staining of the isolated KOMAT depots revealed a disorganised morphology with large areas of
lipid (Fig 6B). QPCR analysis confirmed considerably reduced expression of Cdkn1c. KOMAT

expressed relatively normal levels of Rb1, PPARγ and C/EBPα (Fig 6C). C/EBPβ was expressed
at 50% the wild type level reciprocal to the increased expression observed in response to ele-
vated Cdkn1c. Pan-adipocyte markers fatty acid binding protein 4 (Fabp4) and perilipin 1
(Plin1) were also markedly reduced. Prdm16 was expressed at wild type levels while expression
of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (Ppargc1a), which
encodes a transcriptional coactivator that is involved in the activation of brown fat cells, was
markedly elevated indicating that the initiation of brown adipocyte commitment was not pre-
vented by loss of Cdkn1c. Nonetheless, there was a marked reduction in expression of down-
stream genes required for brown adipose development and function including the cAMP-
inducible gene, Ucp1, and the cAMP insensitive genes Cidea and Elovl3 (Fig 6C). Expression of
the nuclear mitochondrial marker Cycs and the mitochondrion-encoded Cox2 were also dimin-
ished, by 25–30% (Fig 6C). Mitochondrial DNA content was 40% less than the wild type level
(Fig 6D). UCP1 and PRDM16 proteins were barely detectable in Cdkn1c KOMAT iBAT (Fig 6E
and 6F), all indicative of severely compromised BAT development. Loss of function of
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Fig 5. ElevatedCdkn1c boosts the formation of classic BAT in youngmice. (A) Weights of WT, BACx1 and BACx2 iBAT relative to total body weight
(WT n = 20, BACx1 n = 18, BACx2 n = 8). (B) H&E staining of P7 iBAT depot sections fromWT, BACx1 and BACx2 pups (WT from line BACx1) and cell
counting data (n = 6 per genotype). (C) QPCR of Cdkn1c, adipogenesis regulators, thermogenic, BAT-selective and mitochondrial genes in BACx1 and
BACx2 P7 iBAT relative to WT (n = 4 per genotype). (D) Quantitation of mitochondrial genomic DNA of BACx1 and BACx2 iBAT relative to WT (n = 6). (E)
Surface body temperature of BACx2 P2 pups relative to WT littermates was assessed by thermal imaging (WT n = 19, BACx2 n = 8) within 1 minute of
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PRDM16 in iBAT early in life results in a switch from an iBAT identity towards a skeletal mus-
cle identity [48]. Consistent with the loss of PRDM16, Cdkn1c KOMAT iBAT expressed two-
fold higher levels of the skeletal muscle-selective genesmyogenic factor 5 (Myf5) andmyogenic
differentiation 1 (Myod1) (Fig 6C) further supported by western analysis for MYOD1 (Fig
6G). These data identified a requirement for Cdkn1c in the development of classic BAT.

Cdkn1c induces a BAT-like gene program ex-vivo
To determine whether Cdkn1c could function intrinsically to boost brown adipogenesis, we
performed an ex-vivo adipogenesis assay. Mouse embryonic fibroblasts (MEFs) are multipotent
and have the potential to differentiate into brown adipocytes. MEFs were isolated from E12.5
BACx1 and WT fetuses and induced to differentiate using a standard adipogenic protocol [58].
The expression profile of Cdkn1c in both WT and BACx1 MEFs followed similar pattern of up
regulation by day 2 and down regulation by day 8 of differentiation, with BACx1 MEFs
expressing consistently higher levels of Cdkn1c at each time point (Fig 7A). Having confirmed
elevated expression of Cdkn1c in the differentiating MEFs, a single copy of the Cdkn1c trans-
gene was genetically combined with a maternally inherited targeted deletion of Cdkn1c
(KOMAT) to generate MEFs of four genotypes: WT, BACx1, KOMAT and KO+BACx1. After 8
days of adipocyte-directed differentiation Cdkn1c was expressed 1.4-fold the WT level in
BACx1 MEFs and at barely detectable levels in KOMAT MEFs (Fig 7B). KO+BACx1 MEFs,
which carried both the transgene and the targeted allele, expressed Cdkn1c at WT levels (Fig
7B). All four genotypes differentiated into lipid-containing cells, as evidenced by Oil-Red O
staining and mRNA levels for general adipogenic markers (Fig 7C and S4 Fig). As in vivo, key
markers of BAT fate and function Cidea, Ucp1 and Elovl3 were elevated in BACx1 D8 MEFs
(Fig 7D). Importantly, KO+BACx1 MEFs, in which Cdkn1c was expressed at WT levels, did
not display altered expression of these markers (Fig 7D). After 8 days of adipocyte-directed dif-
ferentiation BACx2 D8 MEFs displayed 2.4-fold elevated expression of Cdkn1c and further ele-
vated expression of several BAT markers (Fig 7E) consistent with the dosage-related function
of Cdkn1c in inducing a BAT-like gene program. Confocal imaging suggested more mitochon-
dria in the BACx1 differentiated samples (Fig 7F), consistent with in vivo data (Fig 4B). UCP1
protein was detectable in BACx1 D8 MEFs but not WTMEFs, a difference further highlighted
by exposure to the positive regulator of Ucp1 gene transcription, retinoic acid [59, 60] (Fig
7G). Taken together, these data demonstrated that Cdkn1c can drive a BAT-like cell fate in adi-
pocyte-differentiated fibroblast cells ex-vivo, and in a dosage-sensitive manner.

There was a considerable loss of PRDM16 protein in Cdkn1c KOMAT iBAT (Fig 6F) but
Prdm16mRNA levels were relatively unaltered (Fig 6C) suggesting a function for Cdkn1c in
the post transcriptional regulation of PRDM16. Consistent with this role, CDKN1C protein
co-localised with the brown fat determinant, PRDM16, to the nucleus of rare cells present
within P7 iBAT (Fig 8A). Acute loss of CDKN1C, driven by siRNA transfection of the brown
preadipocyte cell line HIB-1B [61], resulted in a reduction of PRDM16 protein (Fig 8B).
Prdm16 and Cdkn1c are both known to be functionally important for adult haematopoietic
stem cells [41, 62] and adult neural stem cells [63, 64]. 5-bromo-2-deoxyuridine (BrdU) label
retention has been defined as a characteristic attributed to slow-cycling adult stem cells [65]. In
two independent experiments, pregnant females were injected with BrdU (single dose at E16.5
or four doses of BrdU from E16.5). Within the adult iBAT from offspring of these pregnancies

removal from nest temperature (33°C; approaching thermoneutrality) and after 20 minutes at room temperature (22°C). Data expressed as mean ± SEM, t
test. * P <0.05; ** P <0.01; *** P <0.005.

doi:10.1371/journal.pgen.1005916.g005
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Fig 6. Cdkn1c is required for the proper formation of iBAT. (A) Photograph of E18.5 WT andCdkn1c-/+ (KOMAT) fetuses with position of iBAT depot
highlighted by dotted black line. (B) H&E staining of iBAT sections of E18.5WT and KOMAT iBAT. (C) QPCR of Cdkn1c and the adipocyte regulators Rb1,
PPARγ, C/EBPα andC/EBPβ, pan-adipocyte genes Fabp4, Cidec and Plin1, BAT-selective genes Ppargc1a, Cidea, Prdm16, Ucp1 and Elovl3,
mitochondrial genesCycs andCox2, and the skeletal muscle-selective genesMyf5 andMyod1 in E18.5 KOMAT iBAT relative to WT (n = 4 per genotype). (D)
Mitochondrial DNA content of iBAT from E18.5 KOMAT iBAT relative to WT (n = 6 per genotype). (E) Western blot analysis of UCP1 and β-ACTIN in E18.5
iBAT isolated from twoWT and two KOMAT fetuses. Within litter comparison. (F) Western blot analysis of CDKN1C, PRDM16 and β-ACTIN in E18.5 iBAT
isolated from twoWT and two KOMAT fetuses. Within litter comparison. (G) Western blot analysis of MYOD and GAPDH in E18.5 E18.5 iBAT isolated from
twoWT and two KOMAT fetuses. Within litter comparison. Data expressed as mean ± SEM, t test. * P <0.05; ** P <0.01; *** P <0.005.

doi:10.1371/journal.pgen.1005916.g006
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Fig 7. Cdkn1c induces a BAT-like gene program ex-vivo. (A) QPCR of analysisCdkn1cmRNA levels in WT and BACx1 MEFs over 8 days of adipocyte
induction relative to WT day (D) 0. (B) QPCR analysis ofCdkn1c expression in WT, BACx1, KOMAT and BACx1+KOMEFs after 8 days of directed
differentiation. (C) Oil Red O (ORO) staining of D8 adipocyte-differentiated WT, BACx1, KOMAT and BACx1+KOMEFs. All genotypes produced lipid filled
adipocytes. (D) QPCR analysis of BAT marker genes Ppargc1a, Cidea, Ucp1, and Elovl3 in WT, BACx1, KOMAT and BACx1+KO D8 adipocyte-differentiated
MEFs. As in vivo, key markers of BAT fate and function were elevated. Critically BACx1+KOMEFs(Cdkn1c expressed at WT levels) expressed the BAT
markers at WT levels confirming that induction was in response to the transgenic elevation of Cdkn1c. (E) QPCR analysis of Cdkn1c and BAT marker genes
Ppargc1a, Cidea, Ucp1, and Elovl3 in WT and BACx2 D8 adipocyte-differentiated MEFs illustrating further elevation of BAT markers driven by increased
Cdkn1c dosage. (F) Confocal images of D8 adipocyte-differentiated WT, BACx1 and KOMAT MEFs. Membranes stained with Cell mask Deep Red plasma
(633nm; red), nuclei stained with Hoechst 366243 (450nm; blue) and mitochondria stained with Rhodamine-123 (540nm; green). Fields shown were
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CDKN1C/PRDM16 double positive cells retained BrdU for six to eight weeks after embryonic
labeling (Fig 8C). Taken together, all our data suggest that CDKN1C functions to support the
post transcriptional accumulation of PRDM16 in a progenitor cell, and thus promotes the
development of brown fat.

visualised under fluorescence microscope at appropriate wavelengths. Mitochondria indicated by m, lipid by l and nucleus by n. Scale bar = 19 d. (G)
Western analysis of UCP1 and β-ACTIN in D8 adipocyte-differentiatedWT and BACx1 MEFs and after addition of 1 mM 9-cis-retinoic acid for 48 hours.
UCP1 protein detectable by Western analysis in transgenic but not WT samples, an effect amplified by exposure to the positive regulator of Ucp1 gene
transcription, retinoic acid. For each QPCR analysis n = 4 genotypes per group taken from two independent litters; error bars represent ± s.e.m. * P <0.05; **
P <0.01; *** P <0.005.

doi:10.1371/journal.pgen.1005916.g007

Fig 8. CDKN1C and PRDM16 co-localise to the nucleus of rare BrdU label-retaining cells in iBAT. (A) Confocal imaging of P7 iBAT co-stained for
CDKN1C and PRDM16. DNA is stained with 40,6-diamidino-2-phenylindole (DAPI, blue). (B) Western analysis of PRDM16 protein after siRNA-induced
knock-down of Cdkn1c in the undifferentiated brown fat preadipocyte cell line HIB1.1. (C) Immunohistochemistry for CDKN1C (green), PRDM16 (red) and
BRDU (purple) in WT iBAT 8 weeks after in utero pulsed exposure to BrdU. DNA (DAPI, blue).

doi:10.1371/journal.pgen.1005916.g008
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Discussion
Here we provide in vivo evidence for key features of SRS in a novel mouse model of the mini-
mal microduplicated region reported in some patients with this syndrome [66, 67] including
low birth weight, head sparing, neonatal hypoglycaemia, smallness as adults and an extreme
lack of body fat. Critically, we show that these phenotypes were due solely to the two-fold
increased dosage of Cdkn1c consistent with the predicted expression levels in SRS patients. In
our model, Cdkn1c was not ectopically expressed nor was Cdkn1c expressed at excessively high
levels thus our findings are physiologically relevant. In addition to providing compelling evi-
dence for a major role of elevated CDKN1C is SRS, we demonstrated in vivo and ex-vivo that
Cdkn1c promotes the formation of brown adipose tissue, both the classic form exemplified by
the iBAT depot and also the BIEGE form that emerges within WAT depots which persists into
adulthood. Moreover, our data suggest that Cdkn1c functions to boost BAT, in part, by sup-
porting protein accumulation of the brown fat determinant, Prdm16. This work has implica-
tions both for the diagnosis of SRS and the clinical management of SRS patients.

Microduplication mice were born low birth weight with a relative sparing of the head and
neonatal hypoglycaemia. As adults the mice failed to catch-up in weight with their littermates
and possessed substantially less white adipose tissue. We were able to exclude a role for two
other genes present on the BAC (Phlda2 and Slc22a18) in driving these phenotypes by using a
reporter line in which expression of the BAC copy of Cdkn1c was replaced by lacZ [51]. While
fetal growth restriction and low birth weight are relatively common complications of preg-
nancy that can have numerous origins, the more specific features of SRS support a major role
for elevated CDKN1C expression in SRS. Currently the diagnosis of SRS is hampered by the
complexity of alterations reported in different patients and the variable presentation of pheno-
types. Moreover, some alterations may have an epigenetic origin not detectable by traditional
DNA based approaches or not present in accessible tissues. The greater certainty that CDKN1C
is a major contributor to SRS should lead to the development of better diagnostic tools and
potentially the improved sub-classification of patients. It would now seem pertinent to examine
BAT in SRS patients and, conversely, to assess individuals with a diagnosis of fetal growth
restriction followed by extreme thinness for alterations in the expression of CDKN1C.

In addition to observing several defining features of SRS in our microduplication model, we
identified Cdkn1c as a gene that functions in vivo, and in a dosage sensitive manner, to boost
the amount of brown adipose tissue that develops early in life. Elevated Cdkn1c was associated
with an increased amount of BEIGE adipose (non-classic BAT) located within the rpWAT
depot in very young and in adult mice. Transgenic rpWAT depots had a marked appearance of
BAT-like niches and expressed much higher levels of several BAT markers including Elovl3
and Cidea, markers that are insensitive to cAMP. Both UCP1 and PRDM16 protein were read-
ily detectable in BACx1 rpWAT depots in comparison to wild type depots in within litter com-
parisons. Elevated Cdkn1c also resulted in a larger iBAT depot relative to body weight in young
mice and augmented the existing brown adipose gene program. The function of Cdkn1c in
boosting the formation of BAT early in life would explain neonatal hypoglyceamia and the fail-
ure of our mice to lay down sufficient stores of white adipose tissue into adulthood manifesting
as thinness.

While Cdkn1c was expressed from the BAC in a number of tissues including the pituitary,
the hypothalamus and the pancreas [51] that may stimulate the browning of WAT, Cdkn1c
was expression and imprinted within both rpWAT and iBAT depots. Importantly, elevated
Cdkn1c enhanced the expression of brown adipose marker genes in adipogenically-differenti-
ated MEFs. Normalising Cdkn1c by combining a single copy of the transgene with maternal
inheritance of the targeted Cdkn1c allele in this same experiment resulted in wild type levels of
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both Cdkn1c and the BAT markers. This experiment demonstrated the intrinsic ability of
Cdkn1c to drive a BAT-like gene program ex-vivo. Our findings that Cdkn1c plays a key role in
promoting BAT development is novel and has important implications both for our under-
standing of BAT development.

Elevated Cdkn1c boosted the development of BAT while loss-of function of Cdkn1c resulted
in abnormal morphology of the iBAT depot alongside a striking reduction in the expression of
several brown adipose markers, and loss of UCP1 and PRDM16 protein. Classic iBAT derives
from a common progenitor to skeletal muscle and a switch between these two lineages is
thought to be controlled by Prdm16 [48]. Consistent with loss-of-function of Prdm16, Cdkn1c
KO iBAT expressed elevated levels of two muscle-specific genes. While PRDM16 protein was
barely detectable, Cdkn1c KO iBAT expressed normal levels of Prdm16mRNA. Acute knock-
down of CDKN1C in a brown fat cell line resulted in the loss of PRDM16 protein suggesting
that Cdkn1c acts to regulate the post transcriptional accumulation of PRDM16. A precedent
exists for Cdkn1c in regulating the post-transcriptional accumulation of several other transcrip-
tion factors [30–36, 68, 69]. Moreover, co-expression of CDKN1C and PRDM16 in the nucleus
of a rare, BrdU label-retaining cell in iBAT suggests that regulation takes place with an adult
brown adipose progenitor cell. Prdm16 and Cdkn1c are both already known to be functionally
important for adult HSC [41, 62] and adult NSC [63, 64]. However, it remains controversial
whether label retention is a definitive feature of stem cells and further work is required demon-
strate that the PRDM16/CDKN1C double positive cells are indeed brown fat progenitors.
What is clear is that both Prdm16 and Cdkn1c are required for the proper determination of
BAT cell fate, as evidenced by elevated expression of the myogenic markersMyf5 andMyoD in
response to loss-of-function of Prdm16 [48] and Cdkn1c (Fig 6). Rather than participating in
cell fate decisions, we propose that Cdkn1cmodulates the accumulation of PRDM16 to pro-
mote “brownness”, acting downstream of cell fate choice.

Our mouse model recapitulated several defining features of SRS but there are potential limi-
tations with this study. Firstly, the human and mouse CDKN1C predicted proteins share
amino acid sequence conservation in the cyclin-dependent kinase inhibitory domain and in
the QT domain, but the internal proline-rich and an acidic repeat domains found in the mouse
sequence are replaced by a single PAPA repeat in the human sequence [27]. A key question
that therefore arises is whether CDKN1C functions in humans to regulate brown adipogenesis?
Although a low body mass index is consistent with more brown adipose tissue, we can find no
report examining brown adipose tissue in SRS patients. However, recent data suggest that
increased methylation at CDKN1C is associated with a higher BMI in a normal population [70]
which holds promise. Secondly, while the transgenic model partially recapitulates the minimal
microduplication observed in SRS, some key Cdkn1c enhancers located at a distance from the
gene are absent from the mouse transgene [51]. We have examined the consequences of
increased dosage in only a subset of tissues in which Cdkn1c is normally expressed, which
excludes skeletal muscle and cartilage. However, this is likely to also be true for the SRS syn-
drome patients with smaller microduplications as the human CDKN1C enhancers are also
located at a distance from the gene body [55].

Loss-of-function of CDKN1C in humans has been reported in cases of BWS. Excessive
weight gain, which might be anticipated from a lack of BAT, is not a feature of BWS. BWS chil-
dren can display neonatal hypoglycemia and one recent study reported early onset diabetes in
a family with a mutation in CDKN1C [71], all of which could suggest a metabolic function for
CDKN1C in humans. There are differences in the epigenetic regulation between humans and
mice with some expression from the paternal allele in humans [55] which may attenuate the
phenotype in BWS. Our findings may therefore have implications for several rare human
imprinting disorders.
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There is now sufficient evidence from animal models and human studies to indicate a key
role for the imprinted CDKN1C gene in SRS, BWS and IMAGe syndrome (Fig 9). This knowl-
edge will undoubtedly improve our understanding of these complex childhood growth

Fig 9. Two-foldCdkn1c expression results in fetal growth restriction with characteristic features of Silver Russell Syndrome whereas loss-of
function ofCdkn1c results in fetal overgrowth with characteristic features of BeckwithWeidemann Syndrome.

doi:10.1371/journal.pgen.1005916.g009
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disorders and their longer term implications. From an evolutionary perspective, our finding
that Cdkn1c acts early in life to promote the formation of brown adipose tissue in mice is also
intriguing. Thermogenesis is critical for the survival of young mammals before the develop-
ment of subcutaneous fat and hair but comes at an energetic cost to the individual. Cdkn1c is
both a BAT-promoting gene and one that negatively regulates embryonic growth [24, 25]. Our
data predict that silencing of Cdkn1c by the paternal genome, which occurred after mammals
diverged from marsupials [72], would result in larger offspring with the simultaneous realloca-
tion of resources away from maintaining body temperature towards supporting the enhanced
growth, providing a clear competitive advantage and lending support to the hypothesis that
thermogenesis is an arena for genomic conflict in mammals [73].

In conclusion, this work provides genetic evidence from a physiological relevant animal
mode that Cdkn1c functions to boosts the development of BAT in mice. This work fundamen-
tally establishes that Cdkn1c gene dosage, rather than gene function per se, plays a key role in
this process. We critically show that relatively small (< two-fold) changes in gene expression
can have a dramatic consequence for development in mice with long lasting consequences. If
these functions hold true in humans, this information will provide a step change in our under-
standing of the pathologies that occur in SRS and potentially other disorders including BWS
and IMAGe syndrome, leading to improved diagnosis and the clinical management of patients.

Materials and Methods

Animals and husbandry
All animal studies and breeding was approved by the University of Cardiff ethical committee
and performed under a UK Home Office project license (RMJ). Mice were housed on a 12 hour
light–dark cycle with lights coming on at 06.00 hours with a temperature range of 21°C +/- 2
with free access to tap water and standard chow. BAC transgenic lines Cdkn1cBACx1,
Cdkn1cBACx2 and Cdkn1c BAC-lacZ, were bred onto a C57BL/6J (BL6) background for>12 gen-
erations and genotyped as described [51]. The Cdkn1ctm1Sje allele [21] for historical reasons
was maintained on the 129S2/SvHsd (129) background. Cdkn1c-RFLP mice were generated by
crossing aM.m. spretusmale with a BL6 female and selecting for the Cdkn1c AvaI RFLP for
>8 generations. Basal body temperatures of group-housed, experimentally naive female trans-
genic mice were monitored with a rectal probe (IN005A, Vet Tech solution). Surface tempera-
ture of P2 pups was recorded using a thermal imaging camera (Optris P1200). Glucose
concentrations in whole blood were determined in neonatal pups in the fed state with the
HemoCue system.

Histological analyses, in situ hybridisation and immunohistochemistry
β-galactosidase (lacZ) staining, H&E staining and in situ hybridisation were performed as pre-
viously described [51]. CDKN1C immunohistochemistry: 10 μm sections were prepared from
E16.5 fetuses fixed overnight in 4% PFA at 4°C and paraffin embedded. Slides were dewaxed in
xylene and rehydrated through graded ethanols, submerged in 1X Citrate Buffer (DAKO) and
heated in a pressure cooker for 20 minutes. Slides were cooled and blocked for 20 minutes in
Peroxidase Block (Envsion), then 30 minutes in 10% normal rabbit serum and 1% BSA in PBS,
and then incubated in primary antibody (Santa Cruz P57 M-20; SC-1039) overnight at room
temperature diluted 1:50 in 10% rabbit serum and 1% BSA in PBS, washed in PBS, incubated
with 1:200 dilution of HRP-conjugated rabbit anti-goat IgG secondary (DAKO) for 1 hour at
room temperature, washed in PBS 3 x 5 minutes at room temperature and visualized with DAB
(DAKO). Slides were counterstained in Mayers Haematoxylin, dehydrated, cleared and
mounted in DPX mounting medium. For electron microscopy, rpWATs from P7 mice were
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fixed overnight in 2% PFA/2% gluteraldehyde in 0.1M Sorensons PB, post fixed in 1% osmium
tetraoxide for 2 hours and stained in uranyl acetate overnight at 4°C. After sequential dehydra-
tion, samples were embedded in pure araldite and ultra-thin sections were visualised under
Philips TEM 208 transmission electron microscope (Phillips). Cryosections were incubated
with primary antibodies (1:100 dilution) for 3 hours at room temperature, washed in PBS
before incubation with fluorescent secondary antibodies (1:1000 dilution) for one hour at 4°C
followed by 4’,6-diamidino-2-phenylindole (DAPI) staining. Slides were mounted using Fluor-
omount aqueous media (Sigma) and imaged using Leica TCS SP2 AOBS laser confocal micro-
scope, and Leica Confocal software. Samples were scanned with appropriate excitation and
emission settings (S2 Table). To identify label-retaining cells in iBAT, we performed two BrdU
pulse chase experiments. WT pregnant mice were intraperitoneally administered injections of
BrdU at 80 mg/kg/time (Sigma, USA) either once at E16.5 or twice daily from E16.5 for two
days. Offspring born from these pregnancies were euthanised 6–8 weeks after the last BrdU
injection. iBAT was harvested and cryosections were incubated with the primary antibodies to
CDKN1C, PRDM16, BRDU and fluorescent secondary antibodies as described above. Samples
were scanned with appropriate excitation and emission settings (S3 Table).

DNA, RNA and protein analysis
Genomic DNA was bisulphite treated using an EZ DNAMethylation Kit (Zymo Research).
Sodiummodification treatments were carried out in duplicate for each DNA sample and at least
three independent amplification experiments were performed for each individual examined. The
region spanning the Cdkn1cwas amplified by PCR using primers 5’-tgggtgtagagggtggatttagtta-3’s
and 5’- cccacaaaaaccctaccccc-3’ and hemi-nested primer 5’- gtattgttaggattaggatttagttggtagtagtag.
The PCR products were cloned into pGEM-T (Promega, Madison, WI, USA) and an average of
20 clones per sample were sequenced using M13 reverse primer and an automated ABI Prism
3130xl Genetic Analyzer (Applied Biosystems, Foster city, CA, USA) as previously described
[74]. Quantitative RT-PCR was performed in duplicate on four independent samples obtained
from two litters as described [75]. Mitochondrial DNA was quantitated by comparing the nuclear
mitochondrial marker cytochrome c, somatic (Cycs) with the mitochondrion-encoded cytochrome
c oxidase subunit II (Cox2) by quantitative PCR. Primers are given in S1 Table. RFLP analysis
was performed on cDNA prepared from iBAT and rpWAT obtained from crossing a BL6 female
with a Cdkn1c-RFLPmale. Western blot analysis: total proteins (30 μg) were resolved by
SDS-PAGE, transferred to PVDF (Millipore Corp., Bedford, MA), blocked in TBS-T (10 mM
Tris, 150 mMNaCl, 0.05% Tween 20, 5% skimmed milk), incubated with primary antibodies
(Sigma SAB4500071 CDKN1C; Sigma SAB1300006 PRDM16; Abcam ab10983 UCP1; R&D
sytems MAB5966 MYOD; Sigma A5316 β-ACTIN) and visualised using secondary horseradish
peroxidase-linked antibodies (Invitrogen) and ECL.

Cell culture
For differentiation experiments, MEFs isolated from E12.5 embryos and cultured in DMEM/
F12 (Invitrogen), 10% fetal bovine serum (Invitrogen), 2 mM glutamine (Sigma) and 50 μg/ml
penicillin/streptomycin (Sigma) for two passages were used. Differentiation of two-day-post
confluent MEFs (D0) was performed by incubation with 170 nM insulin (Sigma), 250 nM
dexamethasone (Sigma), 2.5 nM rosiglitazone (Axxora ALX-350-125-M025) and 0.5 mM iso-
butylmethylxanthine (IBMX) (Sigma) for 2 days and medium containing only 170 nM insulin
and 2.5 nM rosiglitazone for 6 additional days, changing the medium every 48 hours. For
ORO, cells were fixed for 20 minutes in paraformaldehyde vapour and stained for 15 minutes
with Oil Red O solution (0.6% (w/v) in isopropanol:water 60:40), washed and photographed.
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For UCP1 western blots, cells differentiated for 8 days were harvested, or treated with vehicle
(dimethyl sulfoxide) or 9-cis-retinoic acid (1 μM in dimethyl sulfoxide) over 48 hours with pro-
tein extraction at intervals. For confocal microscopy, MEFs underwent differentiation in 5 cm
glass bottom plates (Mat Tek). After 8 days of differentiation, cells were stained with 5 μg/ml
Hoechst 33342 (Invitrogen) and Rhodimine-123 (Sigma Aldrich) for 30 minutes at 37°C. Dyes
were removed, and cells were washed for 5 minutes in media. Further staining with 7.5 μg/ ml
HCS CellMask Red (Invitrogen) for 10 minutes was performed followed by three washes in
ddH20. Samples were imaged using Leica TCS SP2 AOBS laser confocal microscope and Leica
Confocal software. HIB-1B cells were maintained in DMEM/F12 (Invitrogen) supplemented
with 10% fetal bovine serum (Invitrogen), 2 mM glutamine (Sigma) and 50μg/ml penicillin/
streptomycin (Sigma). The siRNA sequence for Cdkn1c-depletion was p57 siRNA (m) (Santa
Cruz Biotechnology sc-37621). Control siRNA-A (Santa Cruz Biotechnology sc-37007) was
used as the scrambled sequence. Lipid complexes were prepared and reverse transfected
according to manufacturer instructions (INTERFERin, Polyplus) in 12-well plates with 10
pmole of the siRNAs complexed with 2 μl of INTERFERin in OPTIMEM with a repeat trans-
fection performed at 24 hours. Cells were harvested 48 hours after transfection and analysed by
western blotting. Experiments were performed in three separate occasions in duplicate (ECL)
or triplicate (fluorescent) wells.

Statistical analyses
Statistical significance (Probability values) was determined using the Student’s t-Test (two
tailed distribution and two sample unequal variance). For qPCR analysis, Mann-Whitney test
was performed on ΔCt values between groups.

Supporting Information
S1 Fig. Assessment of fetal weights and survival on C57BL/6J strain background. (A) E16.5
weight data for BACx1, BACx2 and BAClaz (B) E18.5 weight data for BACx1, BACx2 and
BAClaz (C) CHI-SQUARED χ2 test. Null = no difference in n; Alternative = difference in n;
Critical Value 3.841; P = 0.05; Degrees of Freedom = 1
(TIF)

S2 Fig. Magnetic resonance images showing fat deposition in non-transgenic (A) and
BACx1 transgenic (B) adult male littermates on a mixed 129/BL6 genetic background. Two
multislice image sets were obtained without and with chemical shift selective fat suppression to
generate fat only images (right). Transgenic males had visibly less subcutaneous and visceral
fat (white signal).
(TIF)

S3 Fig. Assessment of BAC-lacZ reporter adipose depots. (A) H&E staining of WT and
BAC-lacZ P7 rpWAT. (B) QPCR of BAT markers in WT and BAC-lacZ P7 rpWAT. (C) H&E
staining of WT and BAC-lacZ P7 iBAT. (D) QPCR of BAT markers in WT and BAC-lacZ P7
iBAT. WT and reporter line are morphologically indistinguishable and exhibit wild type levels
of Cdkn1c, Ucp1, Elovl3 and Prdm16 genetically attributing the rpWAT and iBAT alterations
in BACx1 and BACx2 pups to elevated expression of Cdkn1c.
(TIF)

S4 Fig. QPCR analysis of markers of adipocyte differentiation for adipocyte-differentiated
MEFs. Rb1, PPARγ, C/EBPα and C/EBPβ in WT, BACx1 and KOMAT adipocyte-differentiated
MEFs (same samples as shown in Fig 7D).
(TIF)
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S1 Table. QPCR primers.
(DOCX)

S2 Table. Immunofluorescence primary and secondary antibodies used to generate data
shown in Fig 8A.
(DOCX)

S3 Table. Immunofluorescence primary and secondary antibodies used to generate data
shown in Fig 8C.
(DOCX)
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