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in CNS disorders 
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Gene silencing therapies have successfully suppressed the translation of target proteins, a strategy that holds great promise 
for the treatment of central nervous system (CNS) disorders. Advances in the current knowledge on multimolecular delivery 
vehicles are concentrated on overcoming the difficulties in delivery of small interfering (si)RNA to target tissues, which 
include anatomical accessibility, slow diffusion, safety concerns, and the requirement for specific cell uptake within the 
unique environment of the CNS. The present work addressed these challenges through the implementation of polyornithine 
derivatives in the construction of polyplexes used as non-viral siRNA delivery vectors.  Physicochemical and biological 
characterization revealed biodegradability and biocompatibility of our polyornithine-based system and the ability to silence 
gene expression in primary oligodendrocyte progenitor cells (OPCs) effectively. In summary, the well-defined properties and 
neurological compatibility of this polypeptide-based platform highlight its potential utility in the treatment of CNS disorders. 

Introduction 
Gene therapy based on small interfering RNA (siRNA) 
represents a clinically-applicable therapeutic stratey 
[1];however, setbacks concerning delivery have hampered 
development and highlighted important considerations for 
clinical translation. Enzymatic degradation, insufficient 
circulation lifetimes, reduced tissue penetration, cell 
endocytosis, and cytosolic transport often represent 
insurmountable biological barriers for unmodified siRNA. As a 
result, gene-silencing technology has only recently gained 
approval for clinical applications after almost two decades of 
intense research and development [2]. Patisiran® (ALN-TTR02 
[Alnylam]), the first therapy based on RNA interference (RNAi), 
is intended to treat transthyretin (TTR) amyloidosis by reducing 
the levels of a mutated protein whose fibrils accumulate and 
impact heart and nerve system function. The lipopeptide 
nanoparticles (NPs) transporting anti-mutant TTR siRNA [3] 
accumulate in the liver and kidney, the desired target for siRNA 
function. This successful therapeutic demonstration of a 

nanotechnological approach to siRNA delivery sparked renewed 
interest in RNAi-based therapies. Alnylam, also presents in its 
pipeline liver targeted siRNA-based gene therapy strategy: 
GalNAc-SiRNA conjugates [4]. The most advance example is 
Givosiran® for acute hepatic porphyria with excellent results in 
phase III clinical trials and has been very recently submitted for 
marketing authorization to the European Medicine Agency 
(EMA) [5].    
 siRNA therapeutics show promise for the treatment of a 
variety of otherwise untreatable pathologies, including central 
nervous system (CNS) conditions [6]thataffect more than one 
billion people worldwide, yet  suffer from a lack of therapeutics. 
siRNA can silence/ downregulate disease-related gene 
expression, including those traditionally considered to be 
undruggable, expanding putative therapeutic capabilities 
beyond traditional small-molecule drug-based approaches. 
siRNA also represents an ideal therapeutic candidate for chronic 
CNS disorders whose treatment requires long-term 
administration. Moreover, the high specificity of siRNA reduces 
unwanted side effects in the brain [6, 7]. Finally, RNA-based 
technologies are fast and relatively easy to develop, thanks to 
well-defined synthetic routes and bioinformatics tools that 
facilitate target identification.  

Of the >60 clinical trials involving siRNAs [8-10], less than 7% 
deal with CNS-related pathologies like glioblastoma, 
amyotrophic lateral sclerosis or multiple sclerosis (MS) [11]. 
Most research remains in early preclinical stages, as 
applications rely on effective blood-brain barrier (BBB) crossing 
while the therapeutic window for patient safety remains 
difficult to achieve. Among the nanotechnological platforms 
investigated for siRNA delivery, non-viral vectors represent a 
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favorable alternative to viral vectors. The clinical 
implementation of viral vectors has been restricted due to 
biosafety risks, uncertainties regarding the causes of adverse 
effects, low gene capacity, and inferior targeting [12]. Non-viral 
vectors are ostensibly less immunogenic and easier/cheaper to 
manufacture [13]. Polymer-based gene delivery systems are 
particularly enticing given an inherent structural/chemical 
versatility that facilitates control over physicochemical 
properties, vector stability, and larger gene capacity [14]. 
Furthermore, polymer-based systems display compatibility with 
good manufacturing practices and reproducibility in 
anticipation of translational manufacturing [15].  

Cationic polymers interact with siRNA via electrostatic 
interaction, resulting in polyplexes formation - multi-
component nanosystems belonging to the polymer 
therapeutics family [16]. To date, CALAA-01 represents the 
most successful example, comprising an siRNA targeting the M2 
subunit of ribonucleotide reductase complexed with a 
transferrin-coated self-assembling cationic cyclodextrin 
polymer conjugated with polyethylene glycol (PEG) that targets 
tumor cells overexpressing the transferrin receptor [8]. 
Polymers commonly investigated for CNS-related applications 
include polyethyleneimine, PEGylated-poly(amidoamine) 
(PAMAM) systems or PEGylated- polyaminoacids[17]. Although 
polyplexes have successfully delivered siRNA to the brain via 
intravenous or intranasal routes in preclinical studies, 
neurotoxicity-related issues and off-target effects related to 
poor biodistribution can hamper clinical translation, thus 
requiring the development of optimized siRNA delivery 
systems.  
 Biodegradable polymers, such as polypeptides, possess 
advantageous characteristics related to the safe and effective 
function of drug delivery vehicles. As an example, Opaxio, a 
poly(L-glutamic acid) conjugated to paclitaxel, has 
demonstrated safety and tolerability in clinical trials for high-
grade glioma and other cancer types [18, 19]. 
 We selected poly-L-ornithine (PLO) as a candidate for siRNA 
delivery to the brain. Ornithine (Orn) is a naturally-occurring 
non-proteinogenic amino acid containing a primary amine in 
the pendant group that provides the positive charge necessary 
for oligonucleotide complexation. To date, applications of PLO 
and Orn include: (i) gene silencing by polyplex formation 
(plasmid [20-22], DNA [24], and siRNA [25] complexation), (ii) 
cell penetration [26], (iii) growth improvement and cell [27-29], 
and (iv) coating materials [30], overall displaying lower 
immunogenicity than other cationic polypeptides. PLO also 
provides for tighter/stronger oligonucleotide condensation at a 
lower mass [23, 31] and increased resistance anionic counter 
species-mediated disruption [23].  
 To our knowledge, this study is the first to exploit PLO as a 
gene delivery carrier to the CNS. We describe a biodegradable 
PLO-based platform synthesized by N-carboxy anhydride (NCA) 
polymerization in a reproducible/scalable manner, resulting in 
a polypeptide with a controlled degree of polymerization and 
narrow molecular weight (MW) distribution. After post-
polymerization modifications, we created a library of PLOs that 
robustly form complexes with siRNA. Through an exhaustive 

physicochemical characterization, we also demonstrate the 
utility of this platform in terms of biocompatibility and 
biodegradability.   
 Aiming to mimic physiological conditions, we selected 
primary neural cells to evaluate gene silencing efficacy of novel 
polyplexes with a proposed application in the treatment of MS,. 
[32]. There is an immediate need for research into limiting MS 
progression, with a focus on delivering neuroprotective and 
neuroregenerative therapies. We explored our novel non-viral 
vectors as a means of promoting remyelination and axon 
regeneration by silencing death receptor 6 (DR6) viasiRNA 
delivery. Mi et al. [33] reported that DR6 negatively regulated 
oligodendrocyte (OD) survival, maturation, and myelination, 
and that attenuation of DR6 boosts remyelination and inhibits 
autoimmune activation in vivo. All OD subtypes express DR6 
during maturation, including oligodendrocyte progenitor cells 
(OPCs), and DR6 overexpression induced caspase-3 activation 
and cell death. 

Excitingly, our polyplexes provided sustained transfection 
efficiency in primary OPCs, a relevant in vitro model for 
potential neurotherapeutic applications. These results provide 
evidence for the promising future of PLO-based delivery in the 
development of siRNA-based therapies for CNS disorders. 

Results and Discussion 

1. Synthesis and characterization of poly-L-ornithine 

derivatives 

We selected PLO as a novel material with well-established 

potential in CNS applications to develop an efficient siRNA 

delivery system for the treatment of CNS disorders. Polyamino 

acids/polypeptides mimic natural proteins and possess 

demonstrated biocompatibility and biodegradability due to the 

endogenous nature of the monomeric building-blocks [43]. 

Often, biocompatible naturally-occurring biodegradable 

polymers (e.g. chitosan, cyclodextrins, etc.) present an inherent 

size heterogeneity (polydispersity index (PDI)>1.6) [44], which 

masks precise structure-activity relationships. Thus, to foster 

clinical translation it is required well-defined characterization 

and the minimization of variability through strict control of the 

production procedure. 

The first innovation in this study relates to PLO synthesis; we 

synthesized PLO using a facile and versatile methodology based 

on ROP-NCA chemistry (ring-opening polymerization of α-

amino acid N-carboxyanhydrides) that permits the reproducible 



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3  

Please do not adjust margins 

Please do not adjust margins 

generation of well-defined homogenous polypeptides [45]. This 

potent methodology allows for the synthesis of well-defined 

polypeptides on multigram scales and with low polydispersity 

(PDI <1.2), adjustable MW, controlled chain end-functionality, 

and robust  stereoselectivity, all ideal features for biomedical 

applications and industrial development [46]. Currently 

published studies exploit PLOs with broad MW distributions 

and/or structural heterogeneity, which might impede drug 

development and regulatory approval. In our study, we 

synthesized PLO using ROP-NCA, giving a high-quality polymer 

with low polydispersity. As remarked before, these 

characteristics are crucial for further translational 

manufacturing. 

PLO (P) derivatization resulted in the generation of four 

different products: P1 (PLO-2PD), P2 (PLO-PEG3000), P3 (PLO-

PEG3000Fmoc), and P4 (PLO-PEG2000) (Figures 1A and S2). The 

major concern driving the derivatization of PLO was to at least 

partly neutralize the cationic character of the main chain to 

decrease any associated cellular toxicity, minimize electrostatic 

interactions, reduce protein binding, and modulate nucleic acid 

complexation capabilities. Therefore, we introduced different 

moieties into the main chain by covalent linkage via the pendant 

amino groups. Interestingly, studies have demonstrated that 

aromatic molecules such as peptidic residues (e.g., tyrosine, 

phenylalanine, or tryptophan) or drugs (e.g., doxorubicin or 

daunomycin) can complex DNA/oligonucleotides [47-51]. 

Aromatic residues may intercalate into the nucleic acid base 

pairs, contributing to improved condensation and providing 

higher transfection efficiency. Therefore, we decided to study 

the stabilizing effect of introducing aromatic molecules into the 

polymer, e.g., pyridyl moieties (P1) and the Fmoc group (P3) 

(Figure 1A); the hydrophobicity of the Fmoc moiety in P3 may 

induce conformational changes in comparison with the P2 

derivative. The pyridyl moiety can promote crosslinking with 

free amino groups via the reactive thiol group [52], which might 

contribute in creating clusters to better accommodate siRNA 

complexation.  We also covalently attached PEG chains onto the 

polymer backbone pendant groups to increase polyplex steric 

stability and prevent non-specific interactions [53]. In the 

context of CNS disorders, PEGylation contributes to generating 

a near-neutral surface charge that favors the spread of the 

polymer throughout the brain [54-56]. Therefore, we examined 

two different PEGs (MW of 2,000 g/mol (P2) and 3,000 g/mol 

(P4)). Polymer derivatization can modify the polymer’s in vivo 

fate, biodistribution, and thus, therapeutic activity. 

We calculated the substitution degree of all derivatives 

(Figure 1B) from the corresponding peak intensity ratio 

between the PEG or 2PD (pyridyl disulfide) protons and the PLO 

protons in the 1H-NMR spectra (Figure S3A-D). We observed 

different retention times upon analysis of the derivatives by gel 

permeation chromatography (GPC), indicating that differences 

in MW depend on the introduced motif (Figure 1C and S4). As 

part of the characterization of these novel derivatives, 

diffusion-ordered NMR spectroscopy (DOSY NMR) studies 

determined diffusion coefficients (Figure 1B) and proved the 

successful conjugation of the residues (2PD, PEG or PEG-Fmoc), 

verifying identity and purity. This diffusion coefficient is 

inherent to the product and relates not only to intrinsic 

properties (size, shape, MW, charge, etc.) but also to the 

surrounding environment (e.g., concentration, solvent, 

temperature, etc.). This technique has been applied in different 

contexts, including MW prediction, predicting the effect of 
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shape in polymers, bioconjugation studies, and polypeptide 

studies [57-61].  

NMR results indicated that, after derivatization, PEG-

derivatives displayed a slight increase in size, which further 

diminishes their diffusion coefficient. This data highlights the 

influence of the conjugated moieties on the size in solution, 

which can treble the initial hydrodynamic radius (Rh). In the 

case of 2PD derivation (P1), the diffusion coefficient (D) 

increases; the low MW of the 2PD molecule in comparison with 

the polymer and the possible conformation of the derivative 

result in a smaller size in solution than the polymer alone. We 

can speculate that the disposition of 2PD within a core 

(A) 

(B) 

(C) 

PLO P - 4,43E-11
PLO- 2PD P1 8 4,96E-11
PLO - PEG3000 P2 1,4 4,08E-11
PLO - PEG3000-Fmoc P3 2,7 4,11E-11
PLO - PEG2000 P4 1,8 4,12E-11
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Figure 1. (A) Poly-L-ornithine derivatives (P1-P4). (B) Molar percentage of 
modification calculated by 1H-NMR and diffusion coefficients of the obtained 
derivatives by DOSY. (C) Degradation of  P2  monitored by GPC (PLO150). 
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interacting through π-π interactions due to the aromaticity of 

the molecule can result in a more compact structure than PLO. 

The use of polymeric systems based on amino acids as drug 

delivery carriers provides the advantage of fully biodegradable 

vehicles. Although ornithine is a non-essential amino acid, it is 

generated in the body through several mechanisms and 

degraded into non-toxic metabolites [62]. PLO degradation 

inside the human body has yet to be extensively studied [63], 

and polymer chemical modification might impact the 

degradation rate of the final construct. Therefore, we studied 

the biodegradability of the newly synthesized polymers under 

various enzymatic conditions. The protease cocktail mixture 

employed contained a non-specific enzymatic matrix composed 

of at least ten proteases [64]. Previous studies have 

demonstrated that trypsin, chymotrypsin, or papain fail to 

degrade PLO [65-67], although metallocarboxypeptidases can 

catalyze the hydrolysis of basic amino acids such as ornithine 

[68]. We observed the degradation of modified PLO by a 

protease cocktail (Figures 1C and S4) with no effect of PEG 

derivatization on the degradation of the polymer, supporting 

the adequacy of the derivative for in vivo purposes. 

2. Preparation and Characterization of siRNA Polyplexes  

We prepared PLO polyplexes (Px, Px1, Px2, Px3, Px4) by 

mixing siRNA (or dsDNA, where indicated) and the 

corresponding polymer at varying molar ratios of amines in PLO 

to phosphates in siRNA (define as N/P ratio). We assessed 

oligonucleotide complexation by gel shift assay to evaluate the 

best N/P ratio (Figure S5). Increased electrophoretic migration 

retardation was observed at higher N/P ratios, yet all ratios 

tested (N/P from 2 to 10) demonstrated successful 

complexation. We next assessed the in vitro biocompatibility of 

these novel polymers by colorimetric (3-(4,5-dimethylthiazol-2-

yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium) (MTS) viability assays in the B16-F10 melanoma 

cell line as a preliminary screening cell model for our PLO 

derivatives (Figure S6). N/P ratios 3 and 4 did not compromise 

cell viability, and we selected N/P ratio 3 for further 

experiments to use the least amount of polymer. 

Dynamic light scattering (DLS) revealed that all polyplexes 

displayed similar physicochemical properties, including a 

hydrodynamic diameter of 30-60 nm and PDI below 0.2, 

associated with a unimodal size distribution (Figures 2A and S7). 

Size comparison with hydrodynamic radius (Rh) of parent 

polyplexes (Table S1) can indicate that compaction occurred 

due to siRNA complexation. We discovered the zeta-potential 

for the derivatized polyplexes to be roughly half the value of a 

PLO polyplex (30±2 mV) (Figure 2A), confirming the expected 

decrease in charges after chemical modification. We observed 

a slightly neutral-to-positive final zeta-potential for the 

polyplexes (Px1-Px4). siRNA delivery generally required 

positively-charged carriers for electrostatic interactions with a 

negatively-charged oligonucleotide cargo. The cationic systems 

reported in the literature (e.g., PEI, PAMAM, etc.) are often 

affected by aggregation, toxicity, premature sequestration by 

phagocytic cells, and non-specific cell membrane and serum 

protein-interactions [69]. Thus, modulation of positive charges 

represents a critical issue that must be addressed during 

delivery vehicle optimization. Some comparable cationic 

polypeptidic graft copolymers have demonstrated their 

potential as biocompatible carriers for other biomedical 

applications [70]. 

Transmission electron microscopy (TEM) images confirmed 

the DLS-measured sizes of the polyplexes, which displayed a 

biconcave disc morphology (Figures 2B and S8). Due to the 

concentration-dependent limitations of the technique, we 

carried out a parallel DLS study to confirm that concentration 

did not affect the apparent polyplex size (Figure S9). In addition, 

we observed the same morphology for all derivatives at all 

tested concentrations. 

Circular dichroism (CD) spectroscopy is a powerful tool for 

the study of dynamic alteration to secondary structures and the 

conformations adopted by biomolecules such as nucleic acids, 

proteins, or synthetic polypeptides under various conditions 

[71-73]. In this study, we employed far-UV analysis (180-250 

nm, where peptidic bonds reveal secondary structure 

characteristics) to estimate the influence of PLO main chain 

modification. Also, the application of this technique to certify 
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the complexation process can confirm the interaction of the 

dsDNA/siRNA with the polymeric derivative. We selected 

phosphate buffer (PB) as a solvent to analyze all components. 

First, we confirmed the similarity of the dsDNA band pattern to 

that previously reported [74, 75].  As expected, the unmodified 

PLO spectrum resembled that of a random coil structure (Figure 

S10A). All derivatives (P1-P4) demonstrated slight changes 

compared to unmodified PLO but still maintained the 

appearance of a random coil structure after chemical 

modification. Only P3 exhibited a marked increase in molar 

ellipticity at 195 nm and a small decrease at ~220 nm that can 

likely be attributed to interactions among the Fmoc groups. 

Analysis of polyplexes suggested the retention of the ellipticity 

characteristic of their polymeric counterpart (Figure S10B). In 

the case of PEG derivatives (P2, P3, and P4), the differences 

observed in comparison with each correspondent derivative 

(e.g., shifts in the area 190-200 nm and at approx. 250 nm) 

might be ascribed to complexation with the dsDNA, confirming 

the co-existence of both species in the polyplex. The 

conformation of PLO is downgraded when dsDNA is complexed, 

with the observation that Px2 and Px3 presented a higher 

prevalence of dsDNA structure and higher trend to adopt an 

alpha-helix conformation.  

Next, we performed stability studies, mimicking in vitro or 

in vivo scenarios, to assess the ability of the polyplexes to 

release siRNA. We employed the polyanion heparin as an 

indicator of binding strength between siRNAs and cationic 

polymers [76, 77] as heparin acts as a competing polyanion, 

triggering polyplex disassembly. Our  polyplexes (Px: 0.011, Px1: 

0.015, Px2: 0.016, Px3: 0.022, Px4: 0.018 mg/mL) demonstrated 

stability in the presence of up to 0.75 IU of heparin per 20 μL 

(this corresponds to 75 IU/100 mL, well above the average 

heparin levels in human plasma, which only reach 15 IU/100 mL 

[78]) (Figure 2C). We applied an excess of heparin to prove 

siRNA/dsDNA release (1 IU per 20uL, 5000 IU/100mL), verifying 

the integrity of the polyplex under the selected conditions. 

Before in vitro experiments, we studied polyplex stability in 

B16-F10 and OPC cell media. Serum is often present in cell 

media and contains abundant polyanions, such as 

proteoglycans and glycosaminoglycans, that can promote 

oligonucleotide release from the complex. Encouragingly, we 

discovered complex stability after 24 hours of incubation in cell 

medium (with and without serum), thereby indicating the 

overall stability of polyornithine complexes (Figure S11).  

Envisioning the possible intravenous (i.v.) administration of 

these novel polyplexes, we next determined blood stability of 

polyplexes and their ability to induce red blood cell (RBC) lysis 

as a means to predicting their integrity and safety for in vivo 

administration [79]. The RBC hemolysis assay can also help to 

determine pH-dependent membrane disruption. Stability at pH 

7.4 mimics the conditions faced by the polyplex following i.v. 

administration, as well as the pH in extracellular and cytosolic 

environments. All polyplexes and their parent polymers 

displayed <5% hemolysis at pH 7.4 when employing a polymer 

concentration range of 0.05-0.005 mg/mL (polymer content), 

thereby suggesting suitability for i.v. administration in this 

concentration range (Figure S12). At 0.1 mg/mL, all polyplexes 

displayed hemolytic behavior at low pHs, suggesting possible 

efficient endosomal disruption/escape. For subsequent activity 

experiments, we employed a concentration of 0.05 mg/mL in 

the hope of maximizing dosage without reaching hemolytic 

levels. We further evaluated the stability of the siRNA 

polyplexes in blood (Figure 2D and S13). The complexes 

remained stable for at least 5 h in plasma, confirming their 

suitability for systemic delivery applications. Finally, we 

analyzed the stability of preformed polyplexes (in suspension) 

at 4°C for 15 days (Figure S14) to mimic relevant conditions for 

short-term storage. Of the four polyplexes, only Px2 displayed 

non-significant variations in both size and Z-potential (Px1 

displayed a substantial increase in size over time, while both Px3 

and Px4 underwent considerable Z-potential increases). 

3. In vitro Validation of PLO Polyplexes 
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Once we demonstrated the ability of these novel polymeric 

nanocarriers to form stable and biodegradable siRNA 

complexes effectively, we next aimed to verify their 

biocompatibility and functionality as gene silencing vectors. 

Luciferase Inhibition 

Initially, we employed luciferase (luc) transfected cells (B16-

F10-luc-G5) as a cell model to quantify gene silencing, with luc 

as the reporter protein. Cell proliferation (MTS) assays carried 

out in B16-F10 cells revealed high cell viability after treatment 

with all polyplexes (≥85% for Px1, Px2 and Px3, and ≥75% for 

Px4) (Figure S15), independent of the siRNA payload (non-

targeted control (NT) or Luc), or the parent polymers (Figure 

S6). All the systems exhibited similar equivalent silencing of 

luciferase gene expression (~50-68% reduction), thereby 

proving the capacity of PLO derivatives to deliver siRNA (Figure 

S16) efficiently. Given these encouraging results, we next tested 

these polyplexes in an in vitro model relevant to 

neurodegenerative disorders. 

Figure 2. (A) Study of size (black bars) and Z-potential (red squares) of the polyplexes by DLS [pol] = 0.012 mg/mL and (B) 
representative TEM images of the polyplex Px2 [pol] = 0.12 mg/mL (diameter = 44.7 ± 10.5 nm). (C) Stability studies by shift-gel assay 
of the polyplexes after their dilution in OPC cell media and after 1h incubation at 37°C. 1 IU/mL of heparin was added after the 1 h at 
37 °C incubation to disassemble the polyplex and verify the presence of the siRNA in the complex.  NT = non-target siRNA. (D) Plasma 
stability assay of Px2 after 5 h of incubation. 
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DR6 Inhibition 

The Death receptor 6 (DR6) protein is involved in several 

neurodegenerative disorders. As a member of the tumor 

necrosis factor (TNF) receptor family (a.k.a. TNF receptor 

superfamily member 21 (TNFRSF21)), DR6 regulates apoptosis 

through caspases in a range of neural cell types [80, 81]. 

Upregulation of DR6 has been reported to result in (i) caspase 3 

(Casp3) activation, axon degeneration, and motor neuron death 

in ALS [82], (ii) Casp6 and Casp3 activation and induction of 

axonal degeneration in prion-related diseases [83], and (iii) 

Casp3 activation, oligodendrocyte cell death, and 

demyelination [33]. In this latter example, Mi et al. described 

how DR6 attenuation enhanced oligodendrocyte maturation 

and myelination and inhibited autoimmune activation during in 

vivo studies in an animal model of MS. Recent studies also 

suggested that DR6 plays a role in T helper cell activation, with 

a potential role in inflammation and immune regulation [84, 

85]. 

In this study, we focused on silencing DR6 in primary OPCs to 

validate our polyplexes as gene silencing vectors as a potential 

treatment for MS. Primary cells constitute a step up in 

complexity over immortalized cells in in vitro models, ostensibly 

providing a more realistic scenario, a critical point in the 

Figure 3. Safety and gene silencing in primary OPCs. (A) LDH cytotoxicity assay 48 h post-transfection. n > 3, mean ± SEM. 
Indicated concentrations corresponds to siRNA. (B) qPCR assays showing the knockdown of Tnfrs21 target mRNA by 
polyplexes.  Downregulation measured 48 h after transfection. Lipofectamine or NT siRNA polyplexes were used as 
negative controls. GAPDH was selected as the reference gene. (B) Study of PLO derivates at 100nM (siRNA concentration) 
and (C) concentration study of Px2. Data from the experiments were analyzed using one-way ANOVA and Bonferroni 
posthoc for pairwise comparison. In all cases, differences were considered to be significant when ***p < 0.001; **p < 
0.01; *p < 0.05. ***p < 0.001 versus CTRL.   
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development of regenerative therapies in the CNS. We 

prepared OPCs from newborn rat brains as previously described 

[86], which involves A2B5 magnetic cell sorting to obtain pure 

OPC cultures (90% A2B5+ cells) from the neonatal brain while 

avoiding the culture of cells in mixed glial cultures. This setup 

allows us to study the role DR6 silencing directly in OPCs, 

avoiding off-target effects that could happen in mixed glial 

cultures, as well as eliminating the presence of FBS in the media 

which is always a confounding factor. 

Having established N/P 3 as the effective ratio for gene 

silencing, we tested several siRNA concentrations at this ratio in 

OPCs (from 25 to 200 nM). Transfection of OPCs with the 

polyplexes proved to be non-toxic for 48 h post-transfection at 

concentrations up to at least 100 nM, as verified by colorimetric 

LDH cytotoxicity assay (Figure 3A).  

We then proceeded to study DR6 downregulation at mRNA 

and protein level. Transfection with Px1, Px2, and Px3 at 100 nm 

[siRNA] led to a decrease in Tnfrsf21 expression relative to non-

transfected cells (35%, 36% and 39%, respectively), as observed 

in the analysis of mRNA levels via qPCR (Figure 3B). Delivery of 

NT negative control siRNA resulted in no significant change in 

the expression of Tnfrsf21. In comparison, siRNA-mediated 

knockdown using Lipofectamine (LF) as a transfection reagent 

yielded a lower silencing effect (18%). Higher concentrations of 

LF as a transfection agent further enhanced gene silencing due 

to higher cytotoxicity in OPCs. A more exhaustive assay with Px2 

revealed a dose-dependent silencing response, in which 200 nM 

decreased Tfnrsf21 by >60% (Figure 3C). We do note that the 

only two of the four siRNAs that compose the siRNA pool 

targeted rat sequences; therefore, further optimizing the siRNA 

pool to more fully target the rat sequences may further 

potentiate the silencing effect. 

At this stage, we selected P2 as the candidate with which to 

move forward with protein knockdown studies owing to its 

better stability, lower apparent cytotoxicity, and greater 

downregulation efficacy in qPCR studies. We chose a siRNA 

concentration of 100 nM and performed protein collection four 

days post-transfection, as downregulation of DR6 was not 

observed until 48 h after gene silencing (Figure S17). Px2/DR6 

induced a significant reduction in DR6 protein expression 

(Figure 4A); DR6 levels decreased 34% upon Px2/DR6 treatment 

relative to the non-treated control. Interestingly, Lipofectamine 

(LF/DR6) failed to silence DR6 at the protein level at 48 h or 4 

days after transfection (Figure S17), suggesting the potent 

nature of our newly developed polyplexes. We examined 

poly(ADP-ribose) polymerase (PARP) expression to assess the 

effect of DR6 silencing on Casp3 activation. PARP is a Casp3 

substrate whose cleavage constitutes a hallmark of apoptotic 

cells [85, 86]. A 49% reduction in PARP upon Px2/DR6 treatment 

(Figure 4A) verified the correlation between DR6 and Casp3 

established in the literature. However, when we analyzed the 

expression levels of proteins known to be markers of OPC 

differentiation and maturation after DR6 knockdown, including 

2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP), myelin-

associated glycoprotein and myelin oligodendrocyte 

glycoprotein, we did not observe any differences between 

treated and control samples (Px and LF) (Figure 4B). To validate 

this result, we performed further qualitative assessments of 

OPC maturation markers by immunofluorescence assays. To 

determine OPC maturation after DR6 silencing, we addressed 

the various differentiation/maturation stages using three 

different markers: Olig2 a pan-oligodendrocyte marker staining 

OPCs and mature oligodendrocytes; O4, a marker for immature 

and mature oligodendrocytes; and CNP, a marker for mature 

oligodendrocytes [89]. We analyzed the proportion of Olig2+ 

cells expressing the immature marker O4 and the mature 

marker CNPase and observed no differences between those 

treated with control NT siRNA polyplexes or DR6 siRNA 

polyplexes. Despite DR6 knockdown at the gene and protein 

level, this downregulation seemed to have no effect on the 

ability of OPCs to differentiate into mature oligodendrocytes, 

nor their morphology (Figure S18). Therefore, protein analysis 

by Western blot and immunocytochemical analysis of OPC 

differentiation revealed that independent to the efficacy of the 

polyplexes to silence DR6 in OPCs, DR6 silencing did not 

translate into enhanced OPC maturation as published 

previously [33]. 
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In parallel with these studies, we evaluated cell viability and 

gene silencing efficiency in other neural cell types. For example, 

we observed that our Pxs were non-cytotoxic in neural stem 

cells (NSCs), NSC-derived astrocytes, and two immortalized OPC 

cell lines: CG-4 [90, 91] and BO-1 [92] (Figure S19A-C). 

Additionally, did not succeed in downregulating DR6 in any of 

these cell lines (NSCs, BO-1, and CG-4), supporting the relevance 

of primary cell culture as a more realistic in vitro model for our 

aims, and the marked biocompatibility of our polyplexes with 

different brain cells. 

Conclusions 

Recent developments in nanotechnology have established 

extraordinary opportunities to address the biological challenge of 

making siRNA a feasible therapeutic approach for the treatment of 

CNS disorders. Previously reported non-viral systems have 

succeeded in effective brain delivery via i.v. or intranasal routes in 

preclinical studies; however, clinical translation of such platforms can 

be hampered by neurotoxicity-related problems and/or off-target 

effects due to inadequate biodistribution. To address these critical 

problems, we described, for the first time, novel biodegradable PLO-

based polyplexes for the delivery of siRNA to neural cells. This amino 

acid-based synthetic polymer exhibits several advantages over 

previously-reported systems. First, we obtained a well-defined and 
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Figure 4.  Densitometry-based quantification of (A) DR6 (68 KDa), cleaved PARP (89 KDa), and (B) CNP (48 KDa) Western 
blots showing siRNA-induced protein knockdown and a representative image. Quantification is expressed relative to β-
actin and normalized to non-transfected control samples. 
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homogenous polypeptide through a robust and scalable 

polymerization procedure. 

Moreover, we accomplished PEG-derivatization employing a 

well-established and straightforward methodology that did not alter 

the secondary structure of the main polypeptidic chain, as 

demonstrated by CD. Secondly, we established platform 

biodegradability, addressing the critical concern of drug carrier 

degradation after siRNA delivery. These characteristics are amenable 

to the future industrial scale-up of manufacturing as well as clinical 

translation.  

The modification of the well-defined PLO chain with different 

PEG motifs or the small molecule 2PD gave rise to systems that 

formed complexes with siRNA. These nanocarriers facilitated 

oligonucleotide delivery by improving their stability in vitro and 

under in vivo-mimicking conditions. With neurological disorders 

commonly affecting specific parts of the CNS, and even sub-

phenotypes of neural cells, the route of administration is a crucial 

aspect of nucleic acid delivery [69]. Envisioning the i.v. 

administration of our PLO-derivatives, we demonstrated stability in 

the bloodstream, with complexes remaining intact for at least 5 h. 

Also, they were found to be non-haemolytic. For i.v. delivery, the 

final design will include a blood-brain barrier-targeting moiety (e.g., 

the Angiopep2 peptide) to favor uptake [17]. Another possibility will 

be the formulation of our polyplexes for intranasal administration, 

providing a direct delivery via nose-to-brain pathway [17]. 

Furthermore, increased selectivity towards the final target cell 

through the incorporation of another cell-specific targeting moiety 

will be required to realize the full potential of this proposed siRNA-

based therapy. Fortunately, the multifunctional nature of PLO 

facilitates the conjugation of multiple moieties within the same 

polymer main chain. For intranasal administration, the inclusion of 

our PLO-derivative in a polymeric hydrogel, creating a multicomplex 

system, will endow the carrier with increased nose-to-brain delivery 

[14].  

As a preliminary proof of activity, we successfully employed PLO 

complexes in the transfection of B16-F10 cells, as demonstrated by 

luciferase assay. Further evaluation of therapeutically active 

polyplexes in primary OPCs underpinned their efficacy in silencing 

DR6, as established by qPCR assays. Px2 (PLO-PEG3000) 

demonstrated the highest silencing efficiency, suggesting the 

relevance of the MW of the introduced PEG. We observed a 

concomitant reduction in DR6 and PARP protein expression, thus 

corroborating the reported connection between DR6 and cell death 

through the Casp3 pathway. However, we found no evidence of 

effects on OPC differentiation and maturation after DR6 silencing. 

Regardless of this fact, our polyplexes have shown their ability to 

facilitate gene silencing in primary neural cells, in parallel with their 

biocompatibility with other neural cell types. Within this context we 

would like to draw attention to the vital importance of the selection 

of the in vitro model, because our nanocarriers worked efficiently 

with primary cells. In addition, our polyplexes were found to be safe 

in a diversity of brain cells.   

In summary, we have described the implementation of novel 

biodegradable and biocompatible polyornithine derivatives as non-

viral vectors for siRNA that effectively silence gene expression in 

primary neural cells. We postulate that this well-defined polypeptidic 

platform and its suitability for applications in neural cells will 

translate into effective therapies for the treatment of CNS disorders. 

Experimental 
Materials 

Poly-L-ornithine (PLO, 5,700 g/mol, n=50, PDI = 1.09) was 

provided by Polypeptide Therapeutic Solutions SL. (PTS; 

Valencia, Spain). 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methyl 

morpholinium chloride (DMTMM·Cl) salt was synthesized, 

according to Kunishima et al.  [34] and the tetrafluoroborate salt 

(DMTMM·BF4) according to Kamiński et al. [36]. Pyridyl dithiol 

ethylamine HCl salt was synthesized as described in van der 

Vlies et al. [36]. All other chemicals were reagent grade and 

used without further purification. The mono or 

heterobifunctional poly(ethylene glycol) (PEG) derivatives 

mPEG(3000)-NHS (3,023 g/mol), Fmoc-PEG(3000)-NHS (3,219 

g/mol) and mPEG(2000)-COOH (2,015 g/mol), where NHS is N-

hydroxysuccinimide, and Fmoc is the 

fluorenylmethyloxycarbonyl protecting group, were supplied by 

Iris Biotech (Germany). 
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N,N-dimethyl aminopyridine (DMAP), diisopropylethylamine 

(DIEA), ethylenediaminetetraacetic acid (EDTA), anhydrous 

dimethylsulfoxide (DMSO), poly-D-lysine (PDL, 70,000-

150,000g/mol), phenylmethanesulfonyl fluoride (PMSF), 

tris(hydroxymethyl)aminomethane (TRIS), and Streptomyces 

griseus protease cocktail were obtained from Sigma Aldrich. PD-

10 Columns Sephadex G-25 M for size exclusion 

chromatography (SEC) and ECL Prime Western Blotting System 

(RPN2232) were obtained from GE Healthcare. Deuterated 

solvents, such as deuterated oxide (D2O), were purchased from 

VWR (Spain). 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (HEPES) was purchased from Biomol GmbH, while agarose 

(Molecular Biology Grade) was obtained from Fisher Scientific. 

All siRNAs (siGENOME Mouse Tnfrsf21 (94185) siRNA – 

SMARTpool, Luciferase GL3 Duplex (siRNA) and ON-TARGETplus 

Non-targeting Pool siRNA) were purchased from Dharmacon 

(Cultek, Spain). The QIAzol Lysis Reagent was purchased from 

QIAGEN, and the Complete Protease Inhibitor Cocktail was 

purchased from Roche. All RNA solutions and buffers were 

prepared using RNAase-free water. 

Dulbecco’s Modified Eagle’s Medium (DMEM), phosphate-

buffered saline (PBS), fetal bovine serum (FBS), penicillin, 

streptomycin, and trypsin were provided from Gibco Life 

technologies. The MTS and Bright-Glo Luciferase Assay systems 

were supplied by Promega. The LDH-Cytotoxicity Assay Kit II and 

radioimmunoprecipitation assay (RIPA) buffer (10X) were 

purchased from Abcam. High-Capacity cDNA Reverse 

Transcription kit was obtained from Life Technologies.  

OPC isolation was performed using papain (Worthington), 

Hybernate A (produced in-house), DNase (Sigma-Aldrich), B27 

(Gibco Life Technologies), 10% pluronic acid (Gibco Life 

Technologies), Percoll (GE Healthcare), 10X PBS ( Gibco Life 

Technologies), 7.5% Bovine Serum Albumin fraction V (Gibco 

Life technologies), 0.5M EDTA pH=8.0 (Gibco Life technologies), 

recombinant insulin (Gibco life technologies), anti-Mouse A2B5 

antibody (Millipore, MAB312), Anti IgM Microbeads (Miltenyi 

Biotech), and Magnetic Cell Separation kit from Miltenyi 

Biotech.  

OPC media was composed of DMEM F12 (Gibco life 

technologies), 1.5 mM sodium pyruvate, 25 mM D-glucose 

(Sigma Aldrich), 10 µg/mL insulin (Gibco life technologies), 60 

µg/mL N-acetyl cysteine (Sigma-Aldrich), 50 µg/mL apo-

transferrin (Sigma-Aldrich), 16.1 µg/mL putrescine (Sigma-

Aldrich), 40 ng/mL sodium selenite (Sigma-Aldrich), and 60 

ng/mL progesterone (Sigma-Aldrich). Growth factorsBasic 

fibroblast growth factor (bFGF) (10 ng/mL) and platelet-derived 

growth factor AA (PDGF-AA) (20 ng/mL) (Peprotech) were 

supplemented daily. 

Cells were plated on 5 µg/mL PDL-coated plates at a density of 

either 143 cells/mm2 or 31 cells/mm2 depending on the 

experiment set-up.  

Polyvinylidene difluoride (PVDF) transfer 0.45 μm membranes 

for Western blotting, Lipofectamine RNAiMAX Transfection 

Reagent, TaqMan Fast Universal PCR Master Mix (2✕) No 

AmpErase UNG, DR6 Taqman probe (Mm00446361_m1 

Tnfrsf2), Mouse GAPDH endogenous control Taqman probe 

(4352339E), Halt Phosphatase Inhibitor Cocktail, and Pierce BCA 

Protein Assay kit were obtained from Thermo Fisher. The 

intercalating agent GelRed was purchased from Biotium/VWR. 

Immunofluorescence reagents: normal donkey serum (NDS) 

was acquired from Sigma-Aldrich. Primary antibodies: rabbit 

anti-Olig2 (AB9610) was obtained from Millipore; mouse anti-

CNPase (C5922) and Hoechst from Sigma-Aldrich and O4 from 

R&D systems. Fluoromount G was obtained from Southern 

Biotech (Birmingham, AL) Primary antibodies western blot: 

Cleaved Caspase-3 (Asp175) #9661 and poly(ADP-ribose) 

polymerase (PARP) #9542 antibodies were acquired from Cell 

Signaling Technology. DR6/TNFRSF21 Antibody (NBP1-45952) 

was purchased from Novus Biologicals. A β-actin antibody was 

obtained from Merck Millipore. Secondary antibodies: Goat 

Anti-Rabbit IgG H&L (HRP) (ab205718) was acquired from 

Abcam, mouse anti-rabbit IgG-HRP (sc2357) was obtained from 

Santa Cruz Biotechnology, Inc and anti-mouse IgG (A9044) from 

Sigma Aldrich. 

Methods 

1. Synthesis and Characterization of poly-L-ornithine Derivatives  

1.1 Synthesis of PLO50 Derivatives 
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PLO-2PD (P1). One eq. of PLO50 Br salt (0.15 mmol, MW 195 

per unit) was dissolved in 1 mL of PBS-EDTA 10mM under 

agitation at room temperature (RT). Then, 0.1 eq. of pyridyl 

dithiol cysteamine (2PD) previously dissolved in 200 µL of DMSO 

was added dropwise to the PLO solution. The reaction was 

allowed to proceed for 1 h under agitation at RT. Then, the 

reaction volume was lyophilized, and the residue resuspended 

in double-distilled water (ddH2O) and purified on a PD-10 

column. Fractions were lyophilized and the obtained solid 

analyzed by 1H NMR and DOSY (D2O). 1H NMR δH (300 MHz, 

D2O): 8.41-7.31 (4xH, m), 4.34 (1H, m), 3.21-3.06 (4xH + 2H, m), 

1.82 (4H, m). x: percentage of modification. 

PLO-PEG3000 (P2). All reagents were weighed in separate 

recipients and purged under N2 flow before and during their 

solution. In a two-necked round bottom flask, fitted with a stir 

bar and two septae, 1 eq. of PLO50 Br salt (0.15 mmol, MW 195 

per unit) was dissolved in 2 mL anhydrous DMSO under 

magnetic stirring. Then, mPEG(3000)-NHS (0.01 eq.) dissolved 

in 1 mL DMSO was added to the flask followed by a catalytic 

amount of DMAP (previously dissolved in 200 μL DMSO). pH was 

adjusted to 8 with DIEA, and the reaction was left under 

magnetic stirring for 36 h. The solvent was removed under 

reduced pressure, and the product was re-suspended in 300 μL 

of Milli-Q water and purified by size exclusion chromatography 

(G25, PD-10 column). Fractions were lyophilized and the 

obtained solids analyzed by 1H NMR and DOSY (D2O). 

1H NMR δH (300 MHz, D2O): 4.41 (1H, m), 3.74 (68xH + 4H m), 

3.07 (2H, m), 1.82 (4H, m). x: percentage of modification. 

PLO-PEG3000Fmoc (P3). All reagents were weighed in separate 

recipients and purged under N2 flow before and during their 

solution. 1 eq. of PLO50 Br salt (0.15 mmol, MW 195 per unit) 

was dissolved in 2 mL DMSO anhydrous under magnetic stirring. 

Fmoc-PEG(3000)-NHS (0.01 eq.) previously dissolved in 1 mL 

DMSO was added to the flask followed by a catalytic amount of 

DMAP (previously dissolved in 200 μL DMSO). pH was adjusted 

to 8 with DIEA and reaction was left under magnetic stirring for 

72 h. The solvent was removed under reduced pressure, and the 

product was re-suspended in 300 μL of Milli-Q water and 

purified by size exclusion chromatography (G25, PD-10 column). 

Fractions were lyophilized and the obtained solids analyzed by 

1H NMR and DOSY (D2O). 

1H NMR δH (300 MHz, D2O): 4.41 (1H, m), 3.74 (68xH + 4H m), 

3.07 (2H, m), 1.82 (4H, m). x: percentage of modification. 

PLO-PEG2000 (P4). All reagents were weighed in separate 

recipients and purged under N2 flow before and during their 

solution. P4 was synthesized using DMTMM with a modification 

of a previously published method [37]. In a two-necked round 

bottom flask fitted with a stir bar and two septae, mPEG(2000)-

COOH (0.01 eq, 0.0021 mmol) dissolved in 1 mL anhydrous 

DMSO. To the resulting suspension, DMTMM·BF4 (0.02 eq., 

0.004 mmol) dissolved in 0.3 mL of anhydrous DMSO was added 

dropwise and stirred at RT for 15 min. Subsequently, PLO50 

(MW 195 per unit, 0.2 mmol, 1 eq.) dissolved in 1 mL anhydrous 

DMSO was added, and the reaction mixture was stirred for 72 

h. The solvent was removed under reduced pressure, and the 

product re-suspended in 300 μL of Milli-Q water and purified by 

size exclusion chromatography (G25, PD-10 column). Fractions 

were lyophilized and the obtained solids analyzed by 1H NMR 

and DOSY (D2O). 

1H NMR δH (300 MHz, D2O): 4.41 (1H, m), 3.74(44xH + 4H m), 

3.07 (2H, m), 1.82 (4H, m). x: percentage of modification. 

1.2. NMR 

1H-NMR Experiments 

NMR spectra were recorded at 27 °C (300 K) on an Avance III 

500 MHz Bruker spectrometer equipped with a 5 mm TBI 

broadband probe or a 300 Ultrashield from Bruker (Billerica, 

MA, USA). Data were processed with the software Mestrenova 

(Bruker GmbH, Karlsruhe, Germany). Samples were prepared at 

the desired concentration in D2O. 

Diffusion Experiments  

Pulsed-field gradient NMR spectroscopy was employed to 

measure translational diffusion by fitting the integrals or 

intensities of the NMR signals to the Stejskal−Tanner equation 

[38, 39]: I= I0 exp[-Dγ2g2δ2(Δ-δ ⁄ 3)] where I is the observed 

intensity, I0 the reference intensity (unattenuated signal 

intensity), D the diffusion coefficient, γ the gyromagnetic ratio 
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of the observed nucleus, g the gradient strength, δ the length of 

the gradient, and Δ the diffusion time. Two-dimensional 

diffusion-ordered NMR spectroscopy (DOSY) was performed 

with a stimulated echo sequence using bipolar gradient pulses. 

The lengths of delay were held constant at Δ= 100 ms, and 32 

spectra of 64 scans, 10 each were acquired with the strength of 

the diffusion gradient varying between 5% and 95%. The lengths 

of the diffusion gradient and the stimulated echo were 

optimized for each sample.  

1.3 Gel Permeation Chromatography 

Gel Permeation Chromatography (GPC) was performed in an 

AF2000 system from Postnova Analytics (Landsberg, Germany) 

using aqueous media containing 0.1 M of NaNO3 and 0.005% 

(w/w) sodium azide as an additive. The system was configured 

to work on GPC mode with an isocratic pump (PN1130) an 

autosampler (PN5300), a 6 refractive index (RI, PN3150), 21 

angle-multi angle light scattering (MALS, PN3621) and an 

ultraviolet-visible (UV-VIS) (PN3211) detectors. A working flow 

rate of 0.7 mL/min for 40 min at 30°C was employed with one 

TSKgel G50000PWxl-CP column. 40 μL of a polymer solution of 

5 mg/mL was injected each time. 

1.4 PLO Degradation Studies 

A cocktail of bacterial proteases from Streptomyces griseus was 

used as a degradation matrix. A compound analogous to P2, but 

synthesized with PLO150 instead PLO50, was used to explore 

the stability of the PLO polymer. This derivative was spiked into 

the protease cocktail matrix at a final polymer concentration of 

10 mg/mL, with the matrix diluted to a protein concentration of 

10 mg/mL and buffered to pH 6.0 with 20mM Tris. The mixture 

was incubated at 37°C under agitation (300 rpm), and 120 μL 

aliquots were removed at each desired time point and analyzed 

by GPC under the same conditions detailed in section 1.3.  

2. Preparation and Characterization of siRNA polyplexes 

2.1 Polyplex formation - N/P ratio Optimization 

500 ng of dsDNA/siRNA and the calculated amount of polymer 

at indicated charge-ratio (+/-) or amine to phosphate ratio (N/P) 

were diluted in separate tubes in 20 mM HEPES buffer at pH 7.4 

each. Only protonable nitrogens, not amide nitrogens, were 

considered in the +/- ratio and N/P ratio calculations. The 

nucleic acid and the polymer solution were mixed by rapidly 

pipetting up and down (at least five times) and incubating for 

20 min at RT before next usage. 

Electrophoresis assays were carried out to ensure polyplex 

formation. A 2.5 wt% agarose gel was prepared by dissolving 

agarose in TAE buffer (Tris base, acetic acid, and EDTA) and 

boiling at 100 °C. After cooling to 50 °C and GelRed addition, the 

agarose gel was set in an electrophoresis unit. Polyplexes 

containing 500 ng of siRNA/dsDNA in 20 μL HEPES 20mM and 

loading buffer were placed into the sample lanes. 

Electrophoresis was performed at 80 V for 80 min.  

2.2 Size and Zeta-potential Determination 

DLS measurements were performed using a Malvern ZetaSizer 

NanoZS instrument, equipped with a 532 nm laser at a fixed 

scattering angle of 173° (Malvern Instruments, Worcestershire, 

UK). Polyplex solutions were filtered through a 0.45 μm 

cellulose membrane filter and measured in a DTS 1070 cell. Size 

distribution was measured (diameter, nm) for each compound 

in triplicate preparations, each with n > 3 measurements. For 

size measurements, polyplex solutions were prepared in HEPES 

20mM pH=7.4 at 0.012-0.014 mg/mL and measured at 25 °C. 

Automatic optimization of beam focusing and attenuation was 

applied for each sample. Zeta-potential measurements were 

performed using disposable folded capillary cells, provided by 

Malvern Instruments Ltd. Polymer solutions were prepared 

under the same conditions as for size measurements. The zeta 

(ζ)-potential was calculated using the Smoluchowski model. 

Accordingly, 10–30 sub-runs of 10 s at 25 °C (n = 3) were 

measured. 

TEM images were recorded using a JEOL 2100 transmission 

electron microscope. Samples of polyplexes were applied 

directly onto carbon film on 200 mesh copper grids. Excess of 

the sample was carefully removed by capillarity, and the grids 

were immediately stained with one drop of 2% uranyl acetate 

for 30 s. Excess of staining was likewise removed by capillarity. 

2.3 Gel Electrophoresis Studies of Polymer Stability 
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Heparin Displacement Assay 

The strength of the dsDNA/siRNA-polymer interaction was 

examined by heparin competitive displacement assay [40]. 

Polyplexes were incubated with heparin (0.75 IU /mL; 50 IU/mL 

and 250 IU/mL) and evaluated by gel electrophoresis/UV 

illumination as described in Section 2.1 to observe 

dsDNA/siRNA release.  

Plasma Stability by Gel Shift Assay 

Polyplexes prepared as in section 2.1 were incubated in a 

solution containing 20% mouse serum at 37 ˚C and different 

incubation times (0 h, 2 h, 3 h, and 5 h) to determine plasma 

stability. Subsequently, an agarose gel electrophoresis assay 

was performed using the same protocol described above.  

Cell Culture Media Stability by Gel Shift Assay 

Polyplexes were incubated in a solution containing 80% cell 

culture media (B16-F10 or OPC media) at 37 ˚C and different 

incubation times (0, 1, 5, and 24 h) to ensure cell culture media 

stability.  Subsequently, an agarose gel electrophoresis assay 

was performed using the same protocol described above. 

Storage Stability by Gel Shift Assay 

Polyplexes prepared as in section 2.1 were stored at 4˚C for 15 

days to study polyplex stability during storage. Subsequently, an 

agarose gel electrophoresis assay was performed using the 

same protocol described above.  

2.4 Circular Dichroism 

Circular dichroism (CD) spectroscopy was performed with a J-

815 CD Spectrometer (JASCO Corporation) using a Peltier 

thermostated cell holder (PTC-423, JASCO 15 Corporation) with 

a recirculating cooler (JULABO F250, JASCO Corporation). A 

nitrogen flow (~2.7 L/min) was filtered through the 

spectrometer and controlled with a nitrogen flow monitor 

(Afriso Euro-Index). The samples (polymer, polyplex, and 

dsDNA) were dissolved in phosphate buffer (PB) pH 7.4, at 0.15 

mg/mL. Samples were measured repeatedly (n= 3) in a quartz 

cuvette with d = 0.1 cm at 20°C. Obtained molar ellipticities 

were plotted as mean residue ellipticity. 

2.5 Polyplex Haemocompatibility Evaluation  

Red blood cells (RBC) were isolated from fresh mouse blood 

obtained by cardiac puncture after death and placed in a tube 

with an anticoagulant compound (0.5M EDTA, 1/10 volume) on 

ice. Blood was diluted with PBS pH 7.4 up to 10 mL and then 

centrifuged (3000 rpm, 10 min, 4°C, x 3), removing the 

supernatant after each centrifugation and re-suspending the 

cells in sterile PBS. The final RBC pellet was weighed and 

resuspended at 2% (v/v) in sterile PBS. Stock solutions were 

dissolved in PBS adjusted to pH 6.5 or 7.4 and citrate solution 

adjusted to pH 5.5 to mimic different stages in the endo-

lysosomal pathway to study the hemolytic activity of the 

polymers and the polyplexes. Samples were added to wells 

(n=3, 100 μL) covering the concentration range 0.1-0.005 

mg/mL of systems (0.1, 0.05, 0.01, and 0.005 mg/mL). Buffer at 

the corresponding pH was used as a control. Triton X–100 1% 

(w/v) was used as a positive control to determine a 100% RBC 

lysis and dextran (2 mg/mL) was used as a negative control. The 

plates were then incubated at 37 °C for 1 h. Plates were 

centrifuged (3000 rpm, 10 min, 20°C) and the supernatant of 

each well was transferred into a new plate to assess hemoglobin 

(Hb) release. The hemoglobin released was assessed by 

measuring the absorbance at 570 nm using a Wallac Victor2 

plate reader. The percentage of hemolysis of each sample was 

calculated relative to 100% hemolysis obtained from incubation 

with Triton-X 100. 

3. Cell Culture Studies 

3.1 Cell-Culture 

Murine melanoma cells B16-F10-luc-G5 (B16-F10) cells which 

stably express firefly luciferase were cultured at 37 °C in a 5% 

CO2 atmosphere using DMEM medium supplemented with 10% 

FBS, 2 mM L-glutamine, 100 IU/mL penicillin, 100 μg/mL 

streptomycin. Cells were maintained at 37 °C in an atmosphere 

of 5% CO2 and 95% air, and they underwent passage twice 

weekly when 80% cell confluence was reached. 

Primary OPCs were isolated using A2B5-primary antibody 

(Millipore) and anti-IgM Microbeads for positive magnetic cell 

sorting following Miltenyi Biotech indications with some 

modifications, as previously described [41] (Supporting 
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Information). Briefly, P4-P7 rats were euthanized via an 

intraperitoneal injection of Pentoject and then decapitated 

following schedule 1 procedures (Animal Scientific Procedure 

Act 1986). The brains were cut into small pieces and digested 

with a papain solution containing 1:25 papain and 1:100 DNase 

in HALF (“Hibernate A low fluorescence” made in-house) for 30 

min at 35 °C. Following tissue digestion, papain was removed 

with HBSS (-/-) (without Ca2+ and Mg2+) washes and via 

centrifugation. The tissue was then triturated with HALF with 1X 

B27 and 2 mM sodium pyruvate first, and the single-cell 

suspension was passed through a 70 µm strainer. The remaining 

tissue bits were triturated a second and third time with HALF 

with 0.1% pluronic acid and 2 mM sodium pyruvate and the 

single-cell suspension transferred through a 70µm strainer. The 

single-cell suspension was centrifuged for 20 min at 800 x g in a 

22.5% Percoll (GE Healthcare) solution with DMEM F12. 

Following centrifugation, Percoll was removed by aspiration, 

and the cells were washed with HBSS (-/-). Cells were incubated 

with A2B5 antibody (MAB312) for 25 min at 4 °C in wash buffer 

(0.5% BSA, 2 mM sodium pyruvate, 2 mM EDTA and 10 ug/ml 

insulin in 1X PBS). Excess of antibody was washed away with 

HBSS (-/-), and cells were incubated with secondary IgM-

microbeads for 15 min at 4 °C in wash buffer. Excess of antibody 

was again removed by washing with HBSS (-/-), and the cells 

were magnetically sorted following the manufacturer’s 

instructions (Miltenyi Biotech). Cells were eluted in OPC media 

with 20ng/mL of bFGF and 20ng/mL PDGF-AA and plated in 

poly-D-lysine coated coverslips. The OPCs cells were kept under 

in culture and media with growth factors (20 ng/mL bFGF and 

20 ng/mL PDGF-AA) was added every other day. 

3.2 Cell cytotoxicity Studies 

MTS Assay for Cell Viability Evaluation  

B16-F10 cells were seeded into sterile 96-well plates at a density 

of 10,000 cells per well. After 24 h, the culture medium was 

replaced with 80 µL of fresh growth medium containing 10% 

FBS. Then, 20 µL of parent polymers or polyplexes solution (0.2 

µm filter sterilized) at different +/- or N/P ratios were added. 

Studies were performed in triplicate (n=8 samples). 48 h post-

transfection, 10 µL of a solution containing MTS/phenazine 

methosulfate (PMS) (20:1) were added to each well, and the 

cells were incubated for a further 2 h. The optical density of 

each well was measured spectrophotometrically at 490 nm 

using a Wallac Victor2 plate reader. The absorbance values 

were represented as the percentage of cell viability relative to 

the viability of untreated control cells (100%).  

LDH assay for cell viability 

The toxicity of polyplexes in primary OPCs was ascertained using 

an LDH-Cytotoxicity II kit following the instructions provided by 

the supplier. Toxicity/viability was normalized to non-treated 

cells (100% viability) and samples lysed with a 10% solution of 

Triton X-100 (0% viability). Assays were performed on the 

supernatant of treated/non-treated OPCs at 48 h post-

transfection. This time point included a medium change at 6 h 

post-transfection. 

4. In vitro transfection 

4.1 Luciferase Silencing 

B16-F10 cells were seeded in sterile 96-well plates in 100 μL 

medium (10,000 cells per well). After 24 h, the medium was 

exchanged for 80 μL fresh medium. The formed polyplexes 

containing 500 ng of siRNA (scrambled siRNA or luciferase 

silencing siRNA) per well were added in a volume of 20 μL to 

each well and incubated at 37 °C. Lipofectamine RNAiMAX at 

non-toxic optimum N/P ratio with scrambled siRNA or luciferase 

silencing siRNA were used as positive controls for transfection 

efficiency, according to manufacturer instructions. All 

experiments were performed in triplicate. 48 h after 

transfection, cells were treated with 20 μL of Bright-Glo reagent 

(luciferin (150 μg/mL) in PBS). Luciferase activity was 

spectrophotometrically quantified using a Wallac Victor2 plate 

reader (λem 535 nm). 

4.2 DR6 silencing in OPCs 

24 h prior to transfection, penicillin, and streptomycin were 

removed from the cell media to avoid interference with the 

Lipofectamine transfection. Polyplexes, parent polymers or 

Lipofectamine RNAiMAX complexes were incubated for 6h at 

cell culture conditions. Then, the medium was removed, and 

new cell media with growth factors (bFGF and PDGF-AA) was 
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added. RNA was collected 48h after transfection, and protein 

collection was performed 4 days after transfection. 

  4.2.1 Gene expression Through Real-Time qPCR 

Primary OPCs were seeded in sterile 12-well plates (previously 

coated with PDL 5 µg/mL) at 80,000 cell/well. Every other day 

the medium was exchanged for fresh medium. Compounds 

(polyplexes with scrambled siRNA or DR6-silencing siRNA, 

parent polymers, and Lipofectamine RNAiMAX with scramble 

siRNA or DR6-silencing siRNA) were incubated for 6 h at 37 °C 

and then replaced by fresh media. 48h post-transfection, total 

RNA was extracted using QIAzol Lysis reagent and the protocol 

provided by the supplier. RNA was quantified using a NanoDrop 

2000 spectrophotometer with purity assessed by means of 

A260/A280 and A260/A230 ratios. From 500 ng of total RNA, 

cDNA was generated using a High-Capacity cDNA Reverse 

Transcription kit using random hexamer primers. qRT-PCR was 

subsequently performed using TaqMan reagents (TaqMan Fast 

Universal PCR Master Mix [2x] and FAM-labeled TaqMan Gene 

Expression Assays) and an Applied Biosystems 7500 Fast real-

time PCR system. Mouse Gapdh (VIC labeled) was used as a 

reference gene for determining relative Tnfrsf21 gene 

expression using the 2-ΔΔCt method [42]. Each biological sample 

was measured in triplicate, and the experiment was performed 

with three independent biological replicates. 

  4.2.2 Protein Expression Analysis  

Primary OPCs were seeded in sterile 6-well plates (previously 

coated with PDL as previously indicated) at 200,000 cells/well. 

Every other day, fresh medium was added to the cells. 

Compounds (polyplexes with scramble siRNA or DR6-silencing 

siRNA, parent polymers, and Lipofectamine with scramble 

siRNA or DR6-silencing siRNA) were incubated for 6 h at 37°C 

and then replaced with fresh media. Cells were collected 4 days 

post-transfection. Proteins were extracted by solubilization in 

RIPA buffer with the addition of Complete Protease Inhibitor 

Cocktail and Halt Phosphatase Inhibitor Cocktail, and 1 mM 

PMSF to inhibit serine proteases. Cell lysates were centrifuged 

at 10,000 rpm for 10 min at 4°C. Supernatants were collected, 

and protein concentration was determined using Bio-Rad 

Protein Assay. Sample volumes equivalent to 15 µg of total 

protein were mixed with 5 × SDS sample buffer, boiled for 5 min 

and separated through 12.5% SDS-PAGE gels. After 

electrophoresis, the proteins were transferred to nitrocellulose 

membranes by electrophoretic transfer. The transfer was 

confirmed by Ponceau S staining. The membranes were blocked 

in 5% skimmed milk for 1 h, rinsed, and incubated overnight at 

4°C with the primary antibodies: DR6/TNFRSF21 (1:500 

dilution), cleaved Caspase-3 (1:5000 dilution), PARP (1:500) and 

β-actin (1:1000). Excess antibody was then removed by washing 

the membrane in PBS/0.1% Tween 20, and the membranes 

were incubated for 1 h with horseradish peroxidase-conjugated 

secondary antibodies: mouse anti-rabbit IgG (1:5000), goat anti-

rabbit IgG (1:4000), mouse anti-rabbit IgG (1:5000) and anti-

mouse IgG (1:10000) (respectively). After washing with 

PBS/0.1% Tween 20, immuno-detection was performed using 

the ECL Prime Western Blotting Detection system, according to 

the manufacturer's instructions. Densitometry measurements 

were performed using Fiji, with each protein band being 

normalized to the β-actin loading controls. 

  4.2.3 Immunofluorescent Studies  

OPCs were seeded on a 9 mm glass coverslip (VWR) at a density 

of 2000 cells/coverslip with daily supplementation 10 ng/mL of 

PDGF-AA and 10 ng/mL of bFGF. After three days, the coverslips 

were transferred to 48 well-plates and siRNA experiments 

performed as described above. Cells were fixed after 48h of 

incubation with 4% PFA for 15 min and then washed twice with 

PBS prior to proceeding to immunocytochemistry. 

Cells were blocked with 5% normal donkey serum (NDS) with 

0.01% triton for 1 h at RT. Cells were then incubated with 

primary antibodies diluted in blocking solution for 1h at RT: 

rabbit Olig2 (1:500), mouse CNP (1:500). Excess primary 

antibody was washed away with PBS, and cells were incubated 

with secondary antibodies in blocking solution for 1 h at RT. 

Upon secondary antibody incubation, the excess of antibody 

was washed out, and cells were incubated again with primary 

antibody against O4 (1:500) for 1h at RT in blocking solutions. 

Again, the excess of antibody was washed out with PBS, and the 

cells were incubated with the corresponding secondary for 1h 

at RT. After washing away the excess of the secondary antibody, 

the cells were stained with Hoechst (1:5000) and coverslips 
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were mounted with Fluoromount G. Images were taken using a 

Leica SP5 confocal. 

5. Statistical Analyses 

Data from the experiments were analyzed using one-way 

ANOVA and Bonferroni posthoc for pairwise comparison. In all 

cases, differences were considered to be significant when ***p 

< 0.001; **p < 0.01; *p < 0.05; ns: nonsignificant. 
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