
Definability of Semidefinite Programming and
Lasserre Lower Bounds for CSPs

Anuj Dawar and Pengming Wang
University of Cambridge Computer Laboratory

Email: {anuj.dawar, pengming.wang}@cl.cam.ac.uk

Abstract—We show that the ellipsoid method for solving semi-
definite programs (SDPs) can be expressed in fixed-point logic
with counting (FPC). This generalizes an earlier result that the
optimal value of a linear program can be expressed in this logic.

As an application, we establish lower bounds on the number
of levels of the Lasserre hierarchy required to solve many
optimization problems, namely those that can be expressed
as finite-valued constraint satisfaction problems (VCSPs). In
particular, we establish a dichotomy on the number of levels
of the Lasserre hierarchy that are required to solve the problem
exactly. We show that if a finite-valued constraint problem is not
solved exactly by its basic linear programming relaxation, it is
also not solved exactly by any sub-linear number of levels of the
Lasserre hierarchy.

The lower bounds are established through logical undefin-
ability results. We show that the SDP corresponding to any
fixed level of the Lasserre hierarchy is interpretable in a VCSP
instance by means of FPC formulas. Our definability result of
the ellipsoid method then implies that the solution of this SDP
can be expressed in this logic. Together, these results give a way
of translating lower bounds on the number of variables required
in counting logic to express a VCSP into lower bounds on the
number of levels required in the Lasserre hierarchy to eliminate
the integrality gap.

As a special case, we obtain the same dichotomy for the class of
MAXCSP problems, generalizing earlier Lasserre lower bound
results by Schoenebeck [17]. Recently, and independently of the
work reported here, a similar linear lower bound in the Lasserre
hierarchy for general-valued CSPs has also been announced by
Thapper and Živný [20], using different techniques.

I. INTRODUCTION

Semidefinite programming has developed into an essential
tool in optimization. Part of its success is owed to its wide
applicability to provide approximations to hard combinato-
rial problems through so-called relaxation hierarchies. These
hierarchies describe systematic ways to obtain increasingly
good approximations to problems expressed as 0–1 integer
linear programs. Indeed, since the problem of determining an
optimal solution to a 0–1 integer programming problem is NP-
complete, in principle any problem in NP can be so expressed
in this framework.

Any integer programming problem admits a linear pro-
gramming relaxation obtained by dropping the integrality
constraints. This relaxed linear program can then be solved
by standard polynomial-time algorithms, however it admits
solutions that are not solutions to the original integer program.

This work was partly carried out during the Logical Structures in Compu-
tation programme at the Simons Institute for the Theory of Computing.

The gap between the optimal solution to the integer program
and its linear programming relaxation is known as an integral-
ity gap. There are various ways that the linear programming
relaxation may be tightened by additional constraints to more
closely correspond to the original problem. Several systematic
ways have been studied in the literature of constructing
hierarchies of ever tighter linear or semidefinite programs,
including those of Sherali-Adams [18], Lovasz-Schrijver [14]
and Lasserre [13]. Of these, the Lasserre hierarchy is the
strongest. It gives, for each t, a semidefinite program of size
nO(t) (where n is the size of the original integer program) that
defines a feasible region whose projection on to the original
variables includes the solutions of the integer program. When
t = n, this projection is exactly the convex hull of the solutions
to the original integer program. When this can be achieved
for smaller values of t, we get substantially faster algorithms
for solving (possibly approximately) the original problem.
For many combinatorial optimization problems, the Lasserre
relaxations provide the best known approximation algorithms
(see [7]).

In this paper we establish a definability result for the prob-
lem of determining the optimal value of a given SDP. We show
that there is an interpretation in fixed-point logic with counting
(FPC) that can, for an explicitly given semidefinite program,
define its optimal solution, up to a given approximation.
This result generalizes earlier work by Anderson et al. [3],
[4] who showed an analogous result for the case of linear
programs. Extending their techniques, our proof is centered
around formalizing the ellipsoid method for solving SDPs in
logic.

As a direct application of this result we consider SDPs
obtained as Lasserre relaxations of certain constraint problems.
Here, we aim to establish integrality lower bounds, i.e. to
establish for particular combinatorial optimization problems
a lower bound on the value of t such that the tth level of the
Lasserre hierarchy shows no integrality gap. Schoenebeck [17]
previously established such lower bounds, showing a linear
lower bound on t for a variety of Boolean constraint satis-
faction problems, including Max-k-XORSAT. We show that
those lower bounds are part of a general pattern. Indeed,
we demonstrate a dichotomy on the minimum value of t
needed in the Lasserre hierarchy to establish exact solutions
to optimization problems in the framework of finite-valued
constraint satisfaction problems (VCSPs). That is, any such
VCSP is either already solved by simply relaxing the integral-

ity constraints in its 0–1 linear program formulation (resulting
in the so-called basic linear program relaxation (BLP)), or
requires a linear number of Lasserre relaxation steps to be
solved exactly. As a direct consequence, we obtain the same
dichotomy for the class of (weighted) MAXCSP problems.
More recently, and independently of our work, Thapper and
Živný [20] have announced a similar lower bound on general-
valued CSPs, obtained using different methods.

The study of the complexity of VCSPs has been quite suc-
cessful in the recent past, culminating in the dichotomy result
by Thapper and Živný [19]. There, a complete characterization
of the tractable and intractable cases of VCSPs are shown.
Namely, any VCSP is either solved exactly by its BLP; or
the problem MAXCUT reduces to it, and it is NP-hard. Our
result complements this dichotomy by showing a linear lower
bound for the levels of Lasserre relaxations required to exactly
solve the hard cases. This characterization of VCSPs into
those solvable by their BLP, and those to which MAXCUT
reduces, also applies in the context of logical definability. It is
known from [9] that in the former case, the class is definable
in fixed-point logic with counting (FPC), while in the latter
case there is no constant k such that it is definable using only
k variables, even in an infinitary logic with counting.

In the present paper, we establish a more fine-grained view
on the above undefinability result by lifting a previous undefin-
ability result on classical CSPs from [5], and connecting it to
the number of levels of the Lasserre hierarchy needed to solve
a corresponding VCSP exactly. To be precise, we show that
if k variables are required to define the VCSP in logic with
counting, then Ω(k) levels of the Lasserre hierarchy are needed
to capture the corresponding feasible region. This is obtained
as a consequence of our main definability result for SDPs. It
allows us to show that, given an integer program, for each
t, the optimal value of its tth Lasserre relaxation is definable
in FPC, using a linear number of variables. The dichotomy
is then completed by showing that, for every VCSP that is
not captured by the basic linear program relaxation, there is
a linear lower bound on the number of variables required to
define it.

We begin by introducing the necessary definitions from
combinatorial optimization, logic and constraint satisfaction
problems in Section II. Section III formulates the main results
and the steps establishing them are then given in Sections IV,
V, and VI.

II. BACKGROUND

Notation. We write N for the natural numbers, Z for the
integers, Q for the rational numbers, and use a superscript plus
for the non-negative subset, e.g. Z+ = N∪{0}. For a number
d ∈ N, we write [d] to denote the segment of the natural
numbers {1, 2, . . . , d}. For a set S, we denote its power set
by ℘(S), and we write ℘k(S) for the set of subsets of S that
have size k. We write ar(t) to denote the arity of t, where t
could be a tuple, function, or relation. We use the symbol ∪̇
for the disjoint union of sets.

Given sets A and I , an A-valued vector v indexed by I
is a function v : I → A. Often we simply use the subscript
notation, writing vi for v(i). When there is no explicit index
set given, vectors are indexed by [d] for some d. A matrix M
is a vector which is indexed by a product set I × J . We use
Mi,j to denote M(i, j).

For a rational valued vector v ∈ QI over some index
set I , its norm ‖v‖ is defined as the L2-norm over QI .
The inner product of two vectors a, b ∈ QI is defined as
〈a, b〉 :=

∑
i∈I aibi. In the case of matrices M,N ∈ QI×J ,

this definition results in 〈M,N〉 :=
∑

(i,j)∈I×JMi,jNi,j .
Note that the norm of a matrix M is defined as the norm
of M seen as a vector. For a set F ⊆ QI and a vector
v ∈ QI , we define the distance d(v,F) in the usual way, i.e.
as d(v,F) := minx∈F ‖x−v‖. The ball B(v, r) around v with
radius r ∈ Q is the set B(v, r) := {x ∈ QI | ‖x− v‖ ≤ r}.

A rational valued symmetric matrix M ∈ QI×I is positive
semidefinite, if for any x ∈ QI , it holds xTMx ≥ 0. We use
M � 0 to denote that M is positive semidefinite.

A. Semidefinite Optimization

In a typical semidefinite program we are interested in the
entries of a symmetric matrix X ∈ QV×V that maximizes
the value of an objective function 〈C,X〉, subject to a set
of constraints of the form 〈Ai, X〉 ≤ bi with the additional
constraint that X is a positive semidefinite matrix.

Definition 1. Let V,M be sets, and let V be non-empty. A
semidefinite program (SDP) is given by an objective matrix
C ∈ QV×V , a QV×V -valued vector A ∈ QM×(V×V), and a
vector b ∈ QM .

We call FA,b := {X ∈ QV×V | X � 0, 〈Ai, X〉 ≤ bi, Ai =
A(i), i ∈M} the set of feasible solutions.

We sometimes call sets that can be defined as feasible
regions of an SDP a positive semidefinite set. The above
definition covers SDPs that are in the so-called conic standard
form. Sometimes it is more convenient to specify SDPs in their
inequality standard form. In this form, the SDP is instead
given by a matrix Z ∈ QM×M , a matrix-valued vector
Y ∈ QV×(M×M), and an objective vector c ∈ QV . The
feasible region is then defined as FY,Z := {x ∈ QV |
Z +

∑
v∈V xvYv � 0}. Since the two standard forms can

be converted into each other by adding, substituting, and
rearranging of a linear number of variables, we will use
whichever representation is most convenient for any given
case.

In the context of optimization, we are interested in the two
following problems.

Definition 2. Let V be a non-empty set. Given a vector
c ∈ QV and a convex set F ⊆ QV , the strong optimization
problem is to either find an element y = argmaxx∈F 〈c, x〉,
or to determine that F is empty, or that maxx∈F 〈c, x〉 is
unbounded.

In the weak optimization problem we are given an additional
error parameter δ > 0, and want to determine an element y

that is δ-close to F , i.e. d(y,F) ≤ δ, that is also δ-maximal,
i.e. 〈c, y〉 + δ ≥ maxx∈F 〈c, x〉, or, again, to determine that
maxx∈F 〈c, x〉 is unbounded.

Definition 3. Let V be a non-empty set. Given a vector y ∈
QV and a convex set F ⊆ QV , the strong separation problem
is the problem of determining either that y ∈ F , or finding
a vector s ∈ QV with 〈s, y〉 > sup{〈s, x〉 | x ∈ F} and
‖s‖∞ = 1.

In the weak separation problem, we are given an additional
parameter δ > 0, and are looking to determine that either y
is δ-close to F , i.e. d(y,F) ≤ δ, or to find a vector s ∈ QV ,
such that 〈s, y〉+ δ > sup{〈s, x〉 | x ∈ F} and ‖s‖∞ = 1.

The relationship between the optimization and separation
problem of a given convex set is well-studied and is most
prominently expressed by Grötschel, Lovász, and Shrijver [11]
as being polynomial time equivalent. More precisely, with the
additional assumptions that the set F is full-dimensional (F
has positive volume in QV) and bounded (F is contained
within a ball of finite radius), the weak optimization problem
for F is solvable in polynomial time if, and only if, the corre-
sponding weak separation problem is solvable in polynomial
time. The following is essentially the statement of Theorem
4.2.7 in [11].

Theorem 1. Let V be a non-empty set, and F ⊆ QV a full-
dimensional convex set that is located inside the ball B(0, R)
for some known value R. The weak optimization problem
on F is solvable in polynomial time if its weak separation
problem is solvable in polynomial time.

As one of our main results, we show that the polynomial
time reduction described above can in fact be realized in fixed-
point logic with counting when considering positive semidef-
inite sets. Furthermore, we also show that a corresponding
weak separation oracle is definable in the same logic as
well. Together, this yields the definability result for SDPs in
Theorem 6.

B. Constraint Satisfaction Programs

We consider CSPs that are parameterized by a fixed finite
domain and a constraint language, and their optimization
variant of finite-valued CSPs.

Definition 4. A domain D is a finite, non-empty set. A
constraint language Γ over D is a set of relations over D,
where each R ∈ Γ is a relation of some arity m = ar(R), and
R ⊆ Dm.

An instance of the constraint satisfaction problem over
(D,Γ), or CSP(D,Γ), is a pair I = (V,C), where V is a
finite set of variables, and C is a finite set of constraints.
Each constraint c ∈ C is a pair (s,R) associating a function
R ∈ Γ with a scope s ∈ V ar(R).

We say an assignment h : V → D satisfies a constraint
c = (s,R) if h(s) ∈ R. The goal is to decide whether there
exists an assignment that satisfies all constraints c ∈ C.

Definition 5. Let D be a domain. A finite-valued constraint
language Γ is a set of functions, where each f ∈ Γ has some
arity m = ar(f), and f : Dm → Z+.

An instance of the valued constraint satisfaction problem
over (D,Γ), or VCSP(D,Γ), is a pair I = (V,C), where V
is a finite set of variables, and C is a finite set of constraints.
Each constraint c ∈ C is a triple c = (s, f, w) associating a
relation f ∈ Γ with a scope s ∈ V ar(f) and a weight w ∈ Z+.

The value of an assignment h : V → D for an instance I
is given as ValI(h) :=

∑
(s,f,w)∈C w · f(h(s)). The goal is to

determine the maximum value Opt(I) = maxh ValI(h).

Example 1. Let MAXCUT be the problem of determining
the value of the maximum cut in a graph G = (V,E) with
edge weights w : E → Z+. Furthermore, we fix D = {0, 1},
and Γ = {f} where f(x, y) = 0 if x = y, and f(x, y) = 1
if x 6= y. An instance of MAXCUT can be interpreted as an
instance I of VCSP(D,Γ): The variables are the vertices V ,
and we have the constraint ((u, v), f, w(u, v)) for every edge
(u, v) ∈ E. The value of the maximum cut is exactly Opt(I).

Example 2. A common class of optimization problems is
MAXCSP. Let MAXCSP(D,Γ) be the optimization problem
of determining the maximal number of constraints that can be
satisfied in a given instance of CSP(D,Γ). It is not difficult
to see that every MAXCSP(D,Γ) is a finite-valued CSP. For
any m-ary relation R, define a function fR : Dm → {0, 1} as
f(t) = 1 if t ∈ R and f(t) = 0 if t /∈ R. Let Γ′ be the finite-
valued constraint language that consists of fR for all R ∈ Γ.
Then, MAXCSP(D,Γ) = VCSP(D,Γ′).

When talking complexity classes and reductions, it is often
more convenient to also phrase VCSPs as decision problems.
Abusing notation, we will use VCSP(D,Γ) to also denote the
set of pairs (I, t) such that I is an instance with Opt(I) ≥ t.
The decision problem is then, given any pair (I, t), to decide
whether (I, t) ∈ VCSP(D,Γ).

In the study of valued constraint satisfaction problems,
linear programming in particular has proven to be a useful
tool. In fact, every instance I of VCSP(D,Γ) is equivalent to
the following integer linear program.

For an instance I = (V,C), the LP contains variables λc,x
for every c ∈ C with c = (s, f, w) and x ∈ Dar(s), and µv,a
for every v ∈ V and a ∈ D. A solution that sets a variable
λc,x to 1 then corresponds to an assignment that assigns the
scope of the constraint c to the tuple x. In order to maintain
consistency of the assignment between constraints, the variable
µv,a encodes whether the variable v is assigned the value a.
The objective is then to maximize the value of the assignment.

The 0–1 program is then given below.

max
∑
c∈C

∑
x∈Dar(s)

λc,x · w · f(x), where c = (s, f, w), s.t.∑
x∈Dar(s);xi=a

λc,x = µsi,a ∀c ∈ C, a ∈ D, i ∈ [ar(s)]

∑
a∈D

µv,a = 1 ∀v ∈ V

λc,x ∈ {0, 1} ∀c ∈ C, x ∈ Dar(s)

µv,a ∈ {0, 1} ∀v ∈ V, a ∈ D

If we relax the integrality constraints of the associated
integer LP (i.e. we replace the conditions λc,x, µv,a ∈ {0, 1}
by 0 ≤ λc,x, µv,a ≤ 1) we obtain the basic linear program
relaxation BLP(I). Since this allows rational assignments,
this LP can be solved exactly in polynomial time. In general
the optimal value of BLP(I) only gives an overestimate of
the optimal value Opt(I) to the VCSP. However, there are
(D,Γ) for which any instance I of VCSP(D,Γ) is solved by
BLP(I) exactly, and solving the LP gives an exact algorithm
for VCSP(D,Γ). Thapper and Živný [19] give a complete
characterization of those cases – and show that in all other
cases the problem is NP-hard.

Theorem 2 ([19]). For any domain D, and any finite-valued
constraint language Γ, either every instance I of VCSP(D,Γ)
is solved by BLP(I); or the problem MAXCUT polynomial-
time reduces to VCSP(D,Γ).

In this paper we expand on this dichotomy result, and show
a linear lower bound of the required levels of the Lasserre
hierarchy for all the cases not solved by the BLP relaxation.
This is stated in Theorem 7.

Note that that the framework of finite-valued CSPs is not
an overall generalization of classical CSPs, and hence any
dichotomy result for the former framework is not immediately
valid for the latter one. The framework that generalises both is
often called general-valued CSPs, and allows functions in Γ to
take values from Z+ ∪ {−∞}. A main conceptual difference
is that finite-valued CSPs are always feasible, i.e. their value
is always finite, while general-valued CSPs may be infeasible,
i.e. when their value is−∞. Our proof technique is specifically
suited for the finite-valued variant as this guarantees that the
resulting SDPs in the Lasserre hierarchy are non-empty.

C. Lasserre Hierarchy

The Lasserre hierarchy of relaxations defines sequences
of SDPs that give increasingly good approximations to 0–1
programs.

Definition 6. Let V , U be sets and K := {x ∈ QV | Ax ≥ b}
a polytope given by A ∈ QU×V , b ∈ QU .

For a vector y ∈ Q℘(V), and an integer t with 1 ≤ t ≤ |V |,
we define the tth moment matrix of y, Mt(y) as the ℘t(V)×
℘t(V)-matrix with entries

Mt(y)I,J := yI∪J , for |I|, |J | ≤ t.

Similarly, the tth moment matrix of slacks of y,A, b, and
some u ∈ U is given by

Sut (y)I,J :=
∑
v∈V

Au,vyI∪J∪{v} − buyI∪J , for |I|, |J | ≤ t.

Finally, the tth level of the Lasserre hierarchy of K, Last(K)
is the set defined by

Last(K) := {y ∈ Q℘2t+1(V) | y∅ = 1,Mt(y) � 0,

Sut (y) � 0 for all u ∈ U}.

We write Lasπt (K) := {y{v}, v ∈ V | y ∈ Last(K)} for the
projection of Last(K) onto the original variables.

The following basic properties of the Lasserre hierarchy
establish that Last(K) is indeed a relaxation of K ∩ {0, 1}V .
We write K∗ for the polytope that is defined by the convex
hull of the integer points in K, i.e. K∗ := conv(K∩{0, 1}V).

Lemma 3. Let K = {x ∈ QV | Ax ≥ b}. Then,
1) K∗ ⊆ Lasπt (K) for all t ∈ {1, . . . , |V |}.
2) Lasπ0 (K) ⊇ Lasπ1 (K) ⊇ . . . ⊇ Lasπ|V |(K).
3) Lasπ0 (K) ⊆ K, and K∗ = Lasπ|V |(K).

Proof. See, for instance, in [16]

Definition 7. Let I = (c,K) be a 0–1 linear program with
an objective vector c ∈ QV optimizing over a feasible region
K ∩ {0, 1}V . We say that I is captured at the tth level of the
Lasserre hierarchy if the projection of the tth level Lasserre re-
laxation coincides with the convex hull of integer solutions in
the direction of c, i.e. maxx∈K∗〈c, x〉 = maxx∈Lasπt (K)〈c, x〉.
We write l(I) for the minimum t, such that I is captured at
the tth level.

For a class of 0–1 linear programs C, we say that C is
captured at the tth level, if every program in C is captured at
the tth level of the Lasserre hierarchy.

We denote by LC(n) the function that maps an integer n
to the first level t at which every 0–1 program in C with size
n is captured. That is, LC(n) := maxI∈C;|V |≤n l(I).

We see that at a sufficiently high level, namely at most
at level t = |V |, any 0–1 program is captured by the tth

level Lasserre relaxation. In those cases, the optimum of the
Lasserre set yields not only an approximate optimum, but is
the exact optimal value of the original 0–1 problem.

In this paper, we establish a dichotomy for VCSPs with
respect to LC(n): For every (D,Γ), C = VCSP(D,Γ),
either LC(n) = 0 (VCSP(D,Γ) is solved by the basic linear
program relaxation); or LC(n) ∈ Ω(n).

D. Logic

We use the standard notions of relational vocabularies and
structures.

A relational vocabulary, or signature, τ is a finite sequence
of relation and constant symbols (R1, . . . , Rk, c1, . . . , cl),
where every relation symbol Ri has a fixed arity ai ∈ N.
A structure A = (dom(A), RA

1 , . . . , R
A
k , c

A
1 , . . . , c

A
l) over

the signature τ (or a τ -structure) consists of a non-empty set

dom(A), called the universe of A, together with relations
RA
i ⊆ dom(A)ai and constants cAj ∈ dom(A) for each

1 ≤ i ≤ k and 1 ≤ j ≤ l. Members of the set dom(A)
are called the elements of A and we define the size of A to
be the cardinality of its universe, often written as |A|.

1) Fixed-point Logic with Counting: Fixed-point logic with
counting (FPC) is an extension of inflationary fixed-point logic
with the ability to express the cardinality of definable sets. We
refer to [15] for its formal definition and semantics.

In descriptive complexity theory, fixed-point logics fre-
quently play an important role. Throughout the paper, we make
frequent use of the Immerman-Vardi theorem [10], which
establishes that fixed-point logic can express all polynomial-
time properties of finite ordered structures. It follows that
in FPC we can express all polynomial-time relations on the
number domain.

In addition to the logic FPC, we also consider Ck, the frag-
ment of first-order logic with counting quantifiers consisting
of those formulas that can be written using at most k distinct
variables. It is easy to see that any structure with n elements
can be described up to isomorphism by a formula using no
more than n variables. It follows that any isomorphism-closed
collection of structures, each of which has no more than n
elements, can be defined by a formula with no more than n
variables.

The minimum number of variables needed to define a class
of structures in first-order logic with counting turns out to be
a useful measure of complexity. This motivates the definition
of the counting width of a class.

Definition 8. For any class of structures C, the counting width
of C is the function νC : N→ N where νC(n) is the minimum
value k such that there is a formula φ in Ck, such that for any
structure A with |dom(A)| ≤ n, A |= φ⇔ A ∈ C.

It is clear that νC ≤ n for any class C. It is known that
if C is definable in FPC, then νC is bounded by a constant
(see [15]). The converse is not true in general as there are even
undecidable classes C for which νC is bounded by a constant.
However, the converse holds in special cases, such as for
constraint satisfaction problems. Here we have a dichotomy:
every C = CSP(D,Γ) is either definable in FPC or has
unbounded νC . For an explanation see [9] where this result
is extended to finite-valued CSPs.

In Section VI, we show that the counting width of finite-
valued CSPs is either bounded by a constant, or is Ω(n). We
use this for our main result to establish a similar dichotomy
on the number of levels of the Lasserre hierarchy needed to
capture the 0–1 linear programs coding instances of VCSPs.

2) Interpretations: We frequently need to consider ways of
defining one structure within another in some logic L, such
as first-order logic or FPC. Consider two signatures σ and
τ and a logic L. An m-ary L-interpretation of τ in σ is a
sequence of formulae of L in vocabulary σ consisting of: (i)
a formula δ(x); (ii) a formula ε(x, y); (iii) for each relation
symbol R ∈ τ of arity k, a formula φR(x1, . . . , xk); and (iv)
for each constant symbol c ∈ τ , a formula γc(x), where each

x, y or xi is an m-tuple of free variables. We call m the width
of the interpretation. We say that an interpretation Θ associates
a τ -structure B to a σ-structure A if there is a surjective map
h from the m-tuples {a ∈ dom(A)m | A |= δ[a]} to B such
that:
• h(a1) = h(a2) if, and only if, A |= ε[a1, a2];
• RB(h(a1), . . . , h(ak)) if, and only if, A |=
φR[a1, . . . , ak];

• h(a) = cB if, and only if, A |= γc[a].
Note that an interpretation Θ associates a τ -structure with
A only if ε defines an equivalence relation on dom(A)m

that is a congruence with respect to the relations defined
by the formulae φR and γc. In such cases, however, B is
uniquely defined up to isomorphism and we write Θ(A) := B.
Throughout this paper, we often use interpretations where ε
is simply defined as the usual equality on a1 and a2. In these
instances, we omit the explicit definition of ε.

The notion of interpretations is used to define logical re-
ductions. Let C1 and C2 be two classes of σ- and τ -structures
respectively. We say that C1 L-reduces to C2 if there is an
L-interpretation Θ of τ in σ, such that Θ(A) ∈ C2 if and
only if A ∈ C1, and we write C1 ≤L C2.

It is not difficult to show that formulas of FPC compose with
FPC-reductions in the sense that, given an interpretation Θ of
τ in σ and a τ -formula φ, we can define a σ-formula φ′ such
that A |= φ′ if, and only if, Θ(A) |= φ. Note that if φ uses k
variables, the composition φ′ may contain up to m · k many
variables, where m is the width of Θ. Likewise, interpretations
themselves compose. That is, given interpretations Θ of τ in
σ, and Σ of σ in ρ, we can obtain an interpretation Θ′ of
τ in ρ by composition: Θ′ consists of the functions of Θ
where the relation symbols of σ are instead replaced by the
corresponding ρ-formulas in Σ.

Proposition 4. Let C1 and C2 be two classes of structures,
such that C1 ≤FPC C2 by some FPC-reduction Θ. Furthermore,
let θ : N → N be defined as θ(n) = maxA∈C1;|A|≤n |Θ(A)|.
Then νC1

(n) ∈ O(νC2
(θ(n))).

Proof. Given any structure A (in the vocabulary of C1) of size
n, the corresponding structure Θ(A) has size at most θ(n). Let
k := νC2(θ(n)), then there is a formula φ in Ck for which
Θ(A) |= φ ⇔ Θ(A) ∈ C2. By composing φ with Θ, we
obtain a formula φ′ in Cmk that satisfies A |= φ′ ⇔ A ∈ C1,
where m is the width of Θ. This constant factor is accounted
for in the O-notation.

3) Representation: In order to discuss definability of con-
straint satisfaction and optimization problems, we need to fix
a representation of instances of these problems as relational
structures. We broadly adapt the representations used in [4].

Numbers and Vectors. We represent an integer z as a
relational structure in the following way. Let z = s · x,
with s ∈ {−1, 1} being the sign of z, and x ∈ N, and let
b ≥ dlog2(x)e. We represent z as the structure z with universe
[b] over the vocabulary τZ = {X,S,<}, where < is interpreted

the usual linear order on [b]; Sz is a unary relation where
Sz = ∅ indicates that s = 1, and s = −1 otherwise; and Xz

is a unary relation that encodes the bit representation of x,
i.e. Xz = {k ∈ [b] | BIT(x, k) = 1}. In a similar vein, we
represent a rational number q = s · xd by a structure q over
the domain τQ = {X,D, S,<}, where the additional relation
Dq encodes the binary representation of the denominator d in
the same way as before.

In order to represent vectors and matrices over integers or
rationals, we have multi-sorted universes. Let T be a non-
empty set, and let v be a vector of integers indexed by T .
We represent v as a structure v with a two-sorted universe
with an index sort T , and bit sort [b], where b ≥ dlog2(|m|)e,
m = maxt∈T vt, over the vocabulary (X,D, S,<). Now, the
relation S is of arity 2, and Sv(t, ·) encodes the sign of
the integer vt for t ∈ T . Similarly, X is a binary relation
interpreted as Xv = {(t, k) ∈ T × [b] | BIT(vt, k) = 1}.
In order to represent matrices M ∈ ZT1×T2 , we have three-
sorted universes with two sorts of index sets T1 and T2, or
simply a single index set that consists of pairs. The matrix
M is then represented as a structure M in the same way
as a vector, only XM is now a ternary relation, instead of
binary. Tensors of even higher dimensions, such as matrix-
valued vectors, are represented in a similar fashion, simply by
increasing the number of index sets, as well as the arity of the
relation X . The generalization to rationals carries over from
the numbers case. We write τvec to denote the vocabulary for
vectors over Q, τmat for the vocabulary for matrices over Q,
and τtens for the vocabulary for matrix-valued vectors.

Linear and Semidefinite Programs. We represent linear
or semidefinite programs in their respective standard forms
in the following way. An instance of a linear program in
standard form is given by a constraint matrix A ∈ QM×V ,
and vectors b ∈ QM , c ∈ QV . Hence, we represent it as
a structure over the vocabulary τLP = τmat ∪̇ τvec ∪̇ τvec.
That is, a linear program is represented as a structure with
a three-sorted universe with the two index sets V and M ,
and a bit sort, and we have triples of relations (XA, DA, SA),
(Xb, Db, Sb), and (Xc, Dc, Sc) that encode the entries of A,
b, and c respectively, along with the usual < relation on the
bit sort. Note that XA here is a ternary relation, and Xb and
Xc are binary relations.

Likewise, a semidefinite program in conic standard form
is specified by a matrix-valued vector A ∈ QM×(V×V), an
objective matrix C ∈ QV×V , and a vector b ∈ QM . This is
represented as a structure over τSDP = τtens ∪̇ τmat ∪̇ τvec.
Here, the universe is again three-sorted, with the two index
sets V × V and M plus a bit sort. Note that XA is a 4-ary
relation, and XC and Xb are ternary and binary relations.

Sometimes it is more convenient to consider an SDP in
inequality standard form, which is specified by a matrix
Z ∈ QM×M , a matrix-valued vector Y ∈ QV×(M×M) and
an objective vector c ∈ QV . Note that the vocabulary for
both representations are the same, and that the conversion
between the two standard forms can be expressed as an

FPC interpretation, as it only involves simple substitution and
rearranging of variables.

CSPs. For a fixed domain D, and a constraint language Γ,
we can represent an instance of CSP(D,Γ) in a natural way.
Namely, the vocabulary τCSP(Γ) consists of all relations in Γ.
An instance I = (V,C) is then represented as the τΓ-structure
I = (V, (RI)R∈Γ), where the universe is set to the set of
variables V , and s ∈ RI if there is a constraint c = (s,R) in
the constraint set C.

For the finite-valued variant, we define the vocabulary
τVCSP(Γ) as τVCSP(Γ) = {(Rf)f∈Γ,W,<}. An instance
I = (V,C) is then represented as a structure I with a three-
sorted universe: A sort for variables V ; a sort of constraints
C; and a bit sort [b] for some sufficiently large b. The
relation RI

f ⊆ V ar(f) × C then contains a tuple (s, c) if
C contains a constraint of the form (s, f, w). Similarly, the
relation W I ⊆ C × [b] encodes the weight of each constraint
c = (s, f, w) in the relational representation of integers, i.e.
W I(c, ·) = {k ∈ [b] | BIT(w, k) = 1}. Finally, < is again
just interpreted as the usual natural order on [b].

Throughout the paper we use the symbols τvec, τmat, τLP,
τSDP, and τΓ to refer to the vocabulary of vectors, matrices,
linear programs, semidefinite programs, and (valued) con-
straint satisfaction problems over Γ, respectively.

We can now state the definability result from [3], to the
effect that there is an FPC interpretation that can define
solutions to linear programs. We show a generalization of the
result to semidefinite programs in Theorem 6.

Theorem 5 (Theorem 11, [3]). Let instances of a linear
program be given by (A, b, c) with A ∈ QM×V , b ∈ QM ,
and c ∈ QV . Its feasible region is denoted by FA,b. Let I be
the relational representation of this LP. Then, there is an FPC-
interpretation Φ of τQ ∪̇ τvec in τLP such that Φ(I) defines a
relational representation of (f, v), with f ∈ Q, v ∈ QV , such
that
• f = 1 if, and only if, maxx∈FA,b c

Tx is unbounded;
• If FA,b 6= ∅ then v ∈ FA,b;
• and f = 0, v = argmaxx∈FA,bc

Tx otherwise.

III. MAIN RESULT

Our first main contribution is a generalization of Theorem 5
to well-bounded semi-definite programs.

Theorem 6. Let instances of an SDP be given by (A, b, C)
and an error parameter δ, with A ∈ QM×(V×V), b ∈ QM ,
C ∈ QV×V , and δ > 0. Its feasible region is denoted by
FA,b. Let I be the relational representation of this SDP. Then,
there is an FPC-interpretation Φ of τmat in τSDP ∪̇ τQ such
that Φ(I) defines a relational representation of X ∈ QV×V ,
such that
• if FA,b is non-empty and bounded, then X is a δ-close

and δ-maximal solution;
• otherwise X is unspecified.

Furthermore, we apply the above result to SDPs obtained
as the Lasserre relaxation of VCSP problems. We establish

a dichotomy: Either VCSP(D,Γ) is tractable, and every in-
stance is captured by its basic linear programming relaxation;
or there are instances that are only captured after Ω(n) levels
of the Lasserre hierarchy, where n is the size of the instance.
As a special case, we obtain the same dichotomy for the class
of MAXCSP problems.

Recall that we use LC(n) to denote the minimum number t,
such that the Lasserre relaxation at level t suffices to capture
all instances of C of size at most n, and we use νC to denote
the counting width of a class C. For the sake of legibility, we
use LΓ as a shorthand for LVCSP(D,Γ) and νΓ as shorthand
for νVCSP(D,Γ).

Theorem 7. For any VCSP(D,Γ) either every instance I is
solved by BLP(I); or LΓ(n) ∈ Ω(n).

Corollary 8. For any MAXCSP(D,Γ) either every instance
I is solved by BLP(I); or LMAXCSP(D,Γ)(n) ∈ Ω(n).

The key technical lemma for proving this dichotomy is
obtained by using Theorem 6 to bound the level of the Lasserre
hierarchy required to capture all instances of VCSP(D,Γ) by
the counting width of its class of decision problems.

Lemma 9. For any VCSP(D,Γ), LΓ ∈ Ω(νΓ).

In addition, we prove a counting width dichotomy for
VCSP(D,Γ). This is achieved by connecting the results of
[9] and [5] to show a linear lower bound of νΓ for the hard
cases of VCSP(D,Γ).

Lemma 10. If there are instances I of VCSP(D,Γ) that are
not solved by BLP(I), then νΓ(n) ∈ Ω(n).

Given the above two lemmas, we obtain as a direct con-
sequence Theorem 7. We devote the remaining sections to
proving Theorem 6 and Lemmas 9 and 10.

IV. EXPRESSING SEMIDEFINITE PROGRAMS

We now turn to prove Theorem 6, which states that the weak
optimization problem for explicitly given SDPs is expressible
in FPC. Our result generalizes the previous work by Anderson
et al. [3], [4] that established the FPC-definability of linear
programming, as stated in Theorem 5. In the same fashion as
in their work, the central piece of the proof is a formulation of
the ellipsoid method in FPC. In the present paper we extend
their methods to cope with feasible regions of SDPs, instead
of being limited to polyhedra. In particular, we show here
that the ellipsoid method for semi-definite regions, as well
as a suitable weak separation oracle for SDPs can both be
formalized in FPC.

A. Separation Oracle

Similar to the work in [3], our proof strategy is to use
an FPC-formulation of the ellipsoid method to reduce the
optimization problem to the separation problem. Therefore in
order to prove Theorem 6 we show first that we can express
a separation oracle for SDPs in FPC.

Lemma 11. There is an FPC-interpretation Φ of τmat in
τSDP ∪̇ τQ that does the following:

An instance of the separation problem is given by (A, b, Y),
and an error parameter δ, with A ∈ QM×(V×V), b ∈ QM ,
Y ∈ QV×V , and δ > 0. Let I be the relational representation
of this instance.

Then, Φ(I) defines a relational representation of S ∈
QV×V , such that

• if FA,b is empty or bounded, then there is no specification
on S;

• otherwise if S = 0, then Y is δ-close to FA,b;
• otherwise 〈S, Y 〉+ δ > max{〈S,X〉 | X ∈ FA,b}.

Algorithm 1 describes a method to solve the weak sepa-
ration problem for SDPs. It follows the classical separation
algorithm that attempts to find an eigenvector of a negative
eigenvalue of the input matrix. We introduce a couple of
modifications which allow this procedure to be formalized in
the logic FPC.

Algorithm 1 Weak separation oracle for semidefinite programs
Input: A = {A1, . . . , Am ∈ QV×V }, b ∈ Qm, Y ∈ QV×V ,

δ ∈ Q such that δ > 0.
Output: Solves weak separation problem on FA,b, Y , and δ.

1: function SEPARATION(A,b,Y ,δ):
2: V ← {Ai ∈ A | 〈Ai, Y 〉 > bi}
3: if V is non-empty then
4: v ←

∑
Ai∈V Ai

5: return v
‖v‖

6: Approximate eigenvalues {λ̃1, . . . , λ̃|V |} of Y up to
precision δ

4

7: if there is λ̃ with λ̃i < δ
2 then

8: v ← Vector satisfying ‖(Y − λ̃iI)v‖ < δ
2 and

‖v‖∞ = 1
9: return (−1)/‖vvT ‖ · vvT

10: return ACCEPT

The translation of Algorithm 1 into an FPC-interpretation
uses some known tools from descriptive complexity. First,
we note that the basic vector and matrix operations, such
as addition, multiplication, norm and even computing the
characteristic polynomial can all be defined in FPC [12]. A
key modification is in Line 4: In the original algorithm, we
have to choose a violated constraint from an unordered set of
constraints. In FPC, we have no mechanism to express this
choice. However, we can employ the same technique as in
[3]: The explicit choice of a constraint can be avoided by
summing all violated constraints, since by linearity, the sum
of violated constraints is again a violated constraint, which in
turn is expressible in FPC.

In Line 6, we compute the eigenvalues of the input matrix Y
up to a given precision δ/4. This is possible in FPC since it is
powerful enough to define the coefficients of the characteristic
polynomial of definable matrices (see [12]).

Proposition 12. There is an FPC interpretation of τQ in
τmat ∪̇ τQ that for a given a matrix A ∈ QV×V and a value
δ ∈ Q (in their relational representation) defines the value of
the smallest eigenvalue of A up to a precision of δ.

Proof. Holm [12] establishes that there is an interpretation
in FPC by which we can obtain from A the coefficients
α1, . . . , αn of the characteristic polynomial p(x) = det(xI −
A) = xn−α1x

n−1 +. . .+(−1)nαn. Note that the coefficients
are linearly ordered (by the power of their corresponding
monomial), and hence by the Immerman-Vardi theorem, any
polynomial time computable property can be defined in FPC,
such as computing the smallest eigenvalue up to a precision
δ.

Furthermore, the exact calculation of the eigenvector cor-
responding to a negative eigenvalue has been replaced by a
linear optimization step in Line 8. In general, the eigenvectors
corresponding to some eigenvalue λ are not uniquely defined.
Not only can we scale eigenvectors by an arbitrary amount,
in the case of an eigenvalue of higher multiplicity we have
to choose a representative from a whole multidimensional
eigenspace. To avoid this choice, we reformulate the problem
as a linear program and rely on Theorem 5 to express this
step in FPC. In particular, finding a vector v minimizing the
L1-norm min ‖(Y − λ̃iI)v‖1, subject to ‖v‖∞ = 1, can be
expressed as a LP. For a fixed dimension n, the L1- and
L2-norms only differ by a constant, and can be adjusted by
the choice of δ. Hence, by Theorem 5, a solution v can be
expressed in FPC.

The correctness of the algorithm then follows from some
basic calculations: Consider an input query (A, b, Y, δ). If
the algorithm accepts this input, then Y violated none of the
inequalities 〈Ai, Y 〉 ≤ bi, and all eigenvalues of Y are non-
negative, and we can conclude that Y is in fact inside the
feasible region FA,b.

If the algorithm does not accept, then either some inequality
〈Ai, Y 〉 ≤ bi is violated, in which case the algorithm pro-
duces a correct separating hyperplane; or some approximated
eigenvalue λ̃ is smaller than δ/2. In the latter case, the linear
optimization step looks for a vector v such that ‖v‖ = 1 and
‖(Y − λ̃)v‖ < δ/2. Note that such a vector always exists. Let
λ be the actual eigenvalue, such that λ̃ = λ+ ε for some error
ε with |ε| ≤ δ/4. We have

(Y − λ̃I)v = (Y − λI − εI)v.

Setting v to some eigenvector corresponding to λ with ‖v‖ =
1, we get

‖(Y − λ̃)v‖ = ‖(Y − λI − εI)v‖ = |ε| < δ/2.

Finally, given such a vector v, the normal of a weakly
separating plane is given by

S := −1/‖vvT ‖ · vvT .

To verify this, let ε := Y v − λ̃v. Then it follows

〈S, Y 〉 = −1/‖vvT ‖ · (vTY v)

= −1/‖vvT ‖ · (vT (λ̃v + ε))

= −1/‖vvT ‖(λ̃+ vT ε) < δ.

This shows that we can define a weak separation oracle for
SDPs in FPC.

B. Reducing Optimization to Separation

In this section we construct a FPC-reduction from the weak
optimization problem to the weak separation problem for
SDPs, by formalizing the ellipsoid method in logic.

Lemma 13. If there is a FPC-interpretation expressing the
weak separation problem for the feasible region of a given
SDP, then there is a FPC-interpretation which expresses the
weak semidefinite optimization problem.

The above result is known from [3], [4] for the case of LPs
instead of SDPs. The overall algorithm here follows a similar
line as the one for linear programs, however with a couple of
key extensions necessary to cope with the feasible regions of
SDPs.

The main idea behind the construction is to maintain and
increasingly refine an order relation on the set of variables.
The order is maintained through a set of equivalance classes
containing currently incomparable elements, and a linear order
on these equivalence classes. Since the equivalence classes are
linearly ordered, we can use the Immerman-Vardi theorem to
define the ellipsoid method. Technically, this is achieved by
defining a series of increasingly fine equivalence relations on
the variable set V , specified by so-called foldings that we
formalize below. Intuitively, these equivalence relations are
obtained in the following way: In the beginning, all elements
of V reside in the same equivalence class. However, there
may be some inputs on which the separation oracle returns
a vector d with different values du and dv for u, v ∈ V ,
which distinguishes the two elements u and v, say du < dv . In
subsequent iterations, u and v are put in different equivalence
classes, say Eu and Ev , and we define an order on the classes
to reflect the revealed order of du and dv , i.e. Eu < Ev .
This process is repeated until we obtain a sufficiently refined
ordered partition of V . Once such a partition of V is obtained,
we are able to apply the ellipsoid method on the set of
equivalence classes. As the equivalence classes themselves
are ordered, this is definable in FPC by Immerman-Vardi.
Finally, it can be shown that any (weakly) optimal solution to
a sufficiently folded SDP (where the variables are equivalence
classes) is also (weakly) optimal for the original input.

There are a couple of key modifications to be made to the
algorithm from [3]. Namely, we show (1) that the folding
operation preserves the positive semidefiniteness of sets, and
(2) how to cope with the additional parameters introduced by
the weak versions of the separation and optimization problems.

We start by defining the notion of folding.

Definition 9. Let V be a non-empty set. For k ≤ |V |, we call
a surjective mapping σ : V → [k] an index map. Furthermore,
for each i ∈ [k] we define Vi := {v ∈ V | σ(v) = i}.

For a vector x ∈ QV , the almost-folded vector [x]σ̃ ∈ Qk
is given by

([x]σ̃)i :=
∑
v∈Vi

xv, for i ∈ [k].

Its folded vector [x]σ ∈ Qk is given by

([x]σ)i := [x]σ̃i /|Vi|, for i ∈ [k].

For a vector x̂ ∈ Qk, its unfolded vector [x̂]−σ ∈ QV is
given by

([x̂]−σ)v := x̂i, with v ∈ Vi, for all v ∈ V.

For a given index map σ and a vector x ∈ QV , we say
x agrees with σ when for all u, v ∈ V σ(u) = σ(v) implies
xu = xv . The notion also extends in a natural way to sets S ⊆
QV , simply by defining the folded set [S]σ := {[s]σ | s ∈ S}.
This can be seen as a projection of S into the (ordered) k-
dimensional space Qk. When talking about matrices, that is,
when the variable set V consists of pairs from some product
set V ′ × V ′, we implicitly also require that σ is consistent.
Namely we require that an index map σ : V ′×V ′ → [k]× [k]
is defined by an underlying index map τ : V ′ → [k], with
σ(u, v) = (τ(u), τ(v)).

There are some useful properties of the folding operation
that allow us to infer some information about the geometry of
a folded set from its original.

Proposition 14. Let σ : V → [k] be an index map, x, c vectors
in QV , where c agrees with σ. Then,

〈c, [[x]σ]−σ〉 = 〈c, x〉 = 〈[c]σ̃, [x]σ〉.

Proof. See Proposition 12 from [3].

Proposition 15. Let P ⊆ QV be a polytope in QV and let
σ : V → [k] be an index map. Then the folded set [P]σ is a
polytope in Qk.

Proof. See Proposition 13 from [3].

Proposition 16. Let X ∈ QV×V be a positive semidefinite
matrix, and let σ : V × V → [k] × [k] be consistent. Then
[X]σ is also a positive semidefinite matrix in Qk×k.

Proof. Since σ is consistent, we have a map τ : V → [k]
with σ(u, v) = (τ(u), τ(v)). Furthermore, since X is positive
semidefinite, there exists vectors gv ∈ Ql for all v ∈ V and
some l ≥ 1 such that Xu,v = 〈gu, gv〉 for all u, v ∈ V (i.e.
the Gram representation of X). Let us now define vectors
gτ1 , . . . , g

τ
k by

gτi =
1

|Vi|
∑
v∈Vi

gv,

where Vi := {v ∈ V | τ(v) = i}. The vectors obtained in this
way now form a Gram representation of the folded matrix
[X]σ , since

[X]σi,j =
1

|Vi,j |
∑

(u,v)∈Vi,j

Xu,v

=
1

|Vi||Vj |
∑
u∈Vi

∑
v∈Vj

〈gu, gv〉

= 〈gτi , gτj 〉.

As the existence of a Gram representation implies positive
semidefiniteness, this proves our claim.

Since the feasible region of an SDP is the intersection of a
polytope with the positive semidefinite cone, Propositions 15
and 16 show that the result of folding the feasible region of
an SDP is again the feasible region of an SDP. Next we show
that a weak separation oracle of the original set either serves
as an oracle for the folded set, or produces some vector that
does not agree with the index map of the folding.

Proposition 17. Let F ⊆ QV be a convex set, and let σ :
V → [k] be an index map. Given a vector x ∈ QV that is
δ-close to F for some δ ≥ 0, the folded vector [x]σ ∈ Qk is
also δ-close to the folded set [F]σ .

Proof. Let x = f + d, where f ∈ F is some point in the set
F , and d the difference vector with ‖d‖ ≤ δ. By the definition
of folding, we then have [x]σ = [f]σ+[d]σ , where [f]σ is now
a point in the folded set [F]σ . We can bound the norm of [d]σ

by

‖[d]σ‖ =

√√√√√∑
i∈[k]

(
1

|Vi|
∑
v∈Vi

dv

)2

≤
√∑
i∈[k]

(max
v∈Vi

dv)2

≤
√∑
v∈V

d2
v = ‖d‖.

Since ‖d‖ ≤ δ, we have ‖[d]σ‖ ≤ δ.

Proposition 18. Let F ⊆ QV be a convex set, and let σ :
V → [k] be an index map. Given vectors s, y ∈ QV where s
agrees with σ, and 〈s, y〉+ δ > max{〈s, x〉 | x ∈ F}, it holds
that 〈[s]σ, [y]σ〉+ δ > max{〈[s]σ, x〉 | x ∈ [F]σ}.

Proof. Let x ∈ F be a point in F such that 〈s, x〉 is maximal.
It follows from Proposition 14 that [x]σ is also a maximal
point in [F]σ with respect to 〈[s]σ, [x]σ〉. We then have

〈[s]σ, [x]σ〉 − 〈[s]σ, [y]σ〉 = 〈[s]σ, [x− y]σ〉
≤ 〈s, x− y〉
≤ 〈s, x〉 − 〈s, y〉 < δ.

For the first equality we use the fact that [x − y]σ = [x]σ −
[y]σ , and for the first inequality we use Proposition 14 to get
〈[s]σ, [x]σ〉 ≤ 〈[s]σ̃, [x]〉 = 〈s, x〉.

Assume we are given a convex set F ⊆ QV by means of
a corresponding weak separation oracle, and some index map
σ : V → [k]. Proposition 17 ensures that whenever the oracle
accepts some input (y, δ), then the folded vector [y]σ is also
δ-close to the folded set [F]σ . Likewise, by Proposition 18
we know that whenever the oracle for F outputs a separation
normal s that agrees with σ, then the folded vector [s]σ is also
a δ-weak separation normal that separates [y]σ from [F]σ .

This leads us to a simple algorithm for the weak separation
problem for [F]σ: On some input ŷ ∈ Qk and δ ≥ 0, we
simply give the input [ŷ]−σ and δ to the oracle for F . If
the oracle accepts, or returns a separation normal that agrees
with σ, we are done. In the other cases, the oracle returns a
separation normal that does not agree with our current index
map σ, in which case we can use that output to further refine
the underlying equivalence relation. After at most |V | such
refinements we obtain a correct weak separation oracle for
[F]σ .

The overall algorithm works as described in [3], and we
substitute their blackbox for a separation oracle by the one
we obtain from SectionIV-A. Together with the result from
Section IV-A that the weak separation oracle for the feasible
region of an explicitly given SDP can be defined in FPC,
this now almost establishes Theorem 6. A small technicality
still remains: We assume as a condition in Theorem 6 that
the feasible region of the given SDP instance is bounded
and non-empty, while the original reduction given in Theo-
rem 1 assumes the region to be bounded and full-dimensional.
However, any non-empty region can be turned into a full-
dimensional one in a simple pre-processing step, by adding
some slack to the constraints.

This concludes the proof of Theorem 6. Note that the condi-
tions on the feasible region of the definable SDP instances are
readily satisfied for instance by those arising from finite-valued
CSPs: The variables only range in [0, 1], and there always
exists a feasible solution. In fact, any (even non-optimal)
assignment in the VCSP gives rise to a feasible solution of
the 0–1 LP instance.

V. LASSERRE LOWER BOUNDS

We now apply the definability result on SDPs obtained in
Theorem 6 to prove Lemma 9.

The following proposition allows us to translate approx-
imate solutions to exact ones. It quantifies the quality of
approximation needed so that we can obtain the exact optimum
of the original 0–1 problem by rounding an approximate
optimum of its Lasserre SDP.

Proposition 19. Let I = (A, b, c) be a 0–1 linear program
whose optimal solution is integral. Its feasible region is given
by K = {x ∈ QV | Ax ≥ b} ∩ {0, 1}V with an objective
vector c ∈ QV . Furthermore let Lasπt (K) = K∗ for some
t, and let s ∈ Q be the value of a 1/(4 max{1, ‖c‖})-close
and 1/(4 max{1, ‖c‖})-maximal solution to Last(K) under
the objective c. Then, by rounding s, we obtain the exact
optimal value for I .

Proof. Let s∗ be the exact optimal value of Last(K), and by
assumption, also the optimal value for I . We argue that |s −
s∗| ≤ 1/4, and hence rounding s yields s∗, since s∗ ∈ Z.

First, note that the condition that s is 1/(4 max{1, ‖c‖})-
maximal means that s + 1/(4 max{1, ‖c‖}) ≥
maxx∈K〈c, x〉 = s∗. Hence, we have the lower bound
s ≥ s∗ − 1/4.

The other direction follows from the fact that s is the value
of a close solution, say, s = 〈c, y〉 for some y ∈ QV . Since y
is 1/(4 max{1, ‖c‖})-close to K∗, it can be decomposed into
y = x+ e where x ∈ K∗ and ‖e‖ ≤ 1/(4 max{1, ‖c‖}). The
value of y is then bounded by s = 〈c, y〉 ≤ maxx∈K〈c, x〉 +
〈c, e〉 ≤ s∗ + 1/4.

Next, we show that it is possible in FPC to define the t-th
level of the Lasserre hierarchy for any explicitly given 0–1
program using only O(t) variables.

Lemma 20. There is an FPC-interpretation from τLP to τSDP

that for a given 0–1 linear program expresses the t-th level
Lasserre hierarchy, using O(t) variables.

Proof. Let an instance I of a 0–1 program be given by a
matrix A ∈ QU×V , and vectors b ∈ QU , c ∈ QV . In order
to show that we can define the t-th level Lasserre relaxation
from I , it suffices to show that we can define the matrices
Mt(y) and Sut (y) from I for any y ∈ Q℘2t+1(V), u ∈ U .
In particular, we represent Mt(y) as a sequence of ma-
trices (M̂t,q)q∈Q where Q := ℘2t+1(V) ∪ {0}, such that
Mt(y) = M̂t,0 +

∑
q∈Q\{0} yqM̂t,q , and show that these

matrices are definable. We represent Sut (y) in an analogous
way as Sut (y) = Ŝut,0 +

∑
q∈Q\{0} yqŜ

u
t,q . Hence, here it

suffices to argue that the matrices (M̂t,q)q∈Q and (Ŝut,q)q∈Q
are definable from I within FPC.

Observe that for the t-th level Lasserre relaxation the
matrices Mt(y) and Sut (y) are indexed by powersets ℘t(V),
and the feasible region itself lies in a vector space indexed by
℘2t+1(V). As we need these index sets in our interpretation,
we first describe how to define the powersets ℘k(V) for some
fixed k. Namely, we encode a set S ∈ ℘k(V) by a k-ary
tuple T ∈ (V ∪ {0})k that contains each of the elements in S
once, and where the symbol 0 fills the rest of the positions.
As there are up to k! many tuples encoding the same set, we
additionally define an equivalence relation =̃k on k-tuples that
identifies two tuples if they are just permutations of each other.
This can be defined by the following first order formulas.

δ℘k(x1, . . . , xk) :=
∧
i∈[k]

(xi = 0 ∨ xi ∈ V)

∧
i,j∈[k]

(xi = 0 ∨ xi 6= xj),

=̃k(x1, . . . , xk, y1, . . . , yk) :=
∨

π∈Sym(k)

∧
i∈[k]

xi = yπ(i),

where δ℘k defines the set of tuples encoding some element in
℘k(V), and =̃k defines a binary equivalence relation between
those tuples. We use Sym(k) to denote the set of permutations

on [k]. From these definitions it is not hard to define basic set
operations on the elements of ℘k(V). For instance, we can
define a 4k-ary relation unionk that encodes the union of two
sets S, T ∈ ℘k(V).

unionk(x, s, t) =
∧
i∈[2k]

xi = 0
∨
j∈[k]

xi = sj ∨ xi = tj


∧
i∈[k]

∨
j∈[2k]

si = xj
∧
i∈[k]

∨
j∈[2k]

ti = xj ,

where x ∈ δ℘2k
, and s, t ∈ δ℘k . Since unionk(x, s, t) simply

encodes (x = s∪t), we continue using the latter more familiar
notation for set operations. One point to note here is that all
formulas so far are all defined using O(k) many variables.

Now we can turn to the definition of the matrices (M̂t,q)q∈Q
and (Ŝut,q)q∈Q. Each matrix M̂t,q and Ŝut,q is indexed over the
set δ℘t × δ℘t . For x, y ∈ δ℘t and q ∈ δ℘2t+1

, their entries are
given by

M̂t(q, x, y) =

{
1 if x ∪ y = q

0 otherwise,

and

Ŝut (q, x, y) =


Au,v if ∃v ∈ V : x ∪ y ∪ {v} = q

−bu if x ∪ y = q

0 otherwise.

By the above expressions (M̂t,q)q∈Q and (Ŝut,q)q∈Q are de-
finable in FPC using only O(t) variables. From this, we
obtain the full SDP in inequality standard form by merging
the constraints Mt(y) � 0 and Sut (y) � 0 into one single
constraint of the form Z � 0.

Lemma 21. Let D be a domain, and Γ a finite-valued
constraint language. There is an FPC-interpretation of constant
width from τΓ to τLP that defines for a given instance I of
VCSP(D,Γ) its corresponding 0–1 linear program.

Proof. The 0–1 program that encodes a VCSP instance is
given in Section II-B. It has been shown in [9] that this LP
is definable in FPC. The construction there also only uses a
constant number of variables.

Finally, we are now ready to prove Lemma 9.

Proof of Lemma 9. For the proof we fix a domain D and a
finite-valued constraint language Γ. For better legibility, we
write LΓ for LVCSP(D,Γ), νΓ for νVCSP(D,Γ), and τΓ for the
vocabulary τVCSP(Γ).

The proof idea is as follows. The argument is by contradic-
tion. Suppose that LΓ(n) ∈ o(νΓ(n)). However, by composing
the interpretations from Lemmas 21 and 20 and Theorem 6
we can define a formula φ that decides membership for the
decision version of VCSP(D,Γ) for instances of size n using
only o(νΓ(n)) many variables, which violates the assumed
counting width bound of ν(n).

To be more precise, let Θt be the composition of the
interpretations from Lemmas 21 and 20. That is, Θt is an
interpretation of τSDP in τΓ that defines for a given VCSP
instance I = (V,C,w) the SDP of the t-th level of the Lasserre
relaxation of the corresponding 0–1 linear program. Note that
Θt is of width O(t).

Note that the 0–1 linear programs corresponding to VCSP
instances are always feasible, bounded in the 0–1 hypercube,
and their optimum is always integral.

Suppose now LΓ(n) ∈ o(νΓ(n)), i.e. every instance I =
(V,C,w) of VCSP(D,Γ) could be captured by some Lasserre
relaxation of level t ∈ o(νΓ(|V |)). Hence, Θt(I) defines a
Lasserre relaxation whose optimal value is exactly the optimal
value to I .

Then, by Theorem 6 there is an interpretation Σ of τvec
in τSDP ∪̇ τQ that defines δ-close and δ-maximal solutions to
Θt(I). Using Proposition 19, setting δ as δ = 1/4|C| allows us
to obtain the exact optimal value for Θt(I) (and equivalently,
for I) by means of rounding. Both defining the value for δ as
well as the rounding can be done in FPC. Hence composing
Θt and Σ, we obtain an interpretation Φ of width O(t) that
defines for a given instance of VCSP(D,Γ) its optimal value.

Finally, using Φ it is not difficult to construct an FPC-
formula φ using at most O(t) many variables that decides
membership for the decision version of VCSP(D,Γ): For
an instance (I, t) we simply compare Φ(I) to t. Since we
assumed t ∈ o(νΓ(|V |)), φ also uses only o(νΓ(|V |)) many
variables. This is a contradiction to the definition of νΓ.

VI. COUNTING WIDTH OF FINITE-VALUED CSPS

In this section we aim to provide a proof for Lemma 10.
The main pieces of the argument are known results from the
literature, and we simply lay out how they together imply the
claim.

We aim to show a linear lower bound for the counting width
of those VCSPs that are not solved by the BLP relaxation.
This aligns with the dichotomy result of Thapper and Živný
(Theorem 2). That is, if VCSP(D,Γ) is not solved by the BLP
relaxation, we know that MAXCUT reduces to it. Our strategy
is to show that (i) MAXCUT has linear counting width; and
(ii) there is a linear size FPC-reduction from MAXCUT to
VCSP(D,Γ), if it is not solved by its BLP relaxation. By
Proposition 4 this suffices to prove our claim.

For (i), we consider the problem 3LIN: An instance of 3LIN
consists of a set of variables V , and two sets of equations, E0

and E1. Each equation in E0 has the form a⊕b⊕c = 0, where
⊕ denotes addition modulo 2, and a, b, c ∈ V . Similarly, each
equation in E1 has the form a⊕b⊕c = 1. The problem is then
to determine whether there is an assignment h : V → {0, 1}
such that all equations are satisfied.

Lemma 22. ν3LIN(n) ∈ Ω(n).

Proof. In [5] Atserias et al. show a lower bound of for the
counting width of the problem 3LIN that is proportional to
the tree-width of the instance. More precisely, they show a
construction that transforms any given graph G = (V,E) with

tree-width t into a pair of 3LIN instances (I, I ′), each having
O(|V |) variables, such that I is satisfiable, but I ′ is not, and
no Ck formula of at most t variables distinguishes between
them.

The claim then follows by picking a class of graphs that
have linear tree-width. Such graphs exist, for instance in the
class of 3-regular expander graphs [1]. (A similar argument
using graphs with linear-size balanced separators was already
present in [6]).

As a direct consequence, we obtain that 3SAT also has
linear counting width, since 3LIN can be interpreted as a
special case of 3SAT.

Lemma 23. ν3SAT(n) ∈ Ω(n).

We continue the reduction to MAXCUT.

Lemma 24. νMAXCUT(n) ∈ Ω(n).

Proof. In [9], we find an explicit construction of an FPC-
reduction from 3SAT to MAXCUT. This reduction is also
linear size.

Finally, the reduction from MAXCUT to those
VCSP(D,Γ) that are not solved by their BLP relaxation has
already been explicitly constructed in [9]. It is not difficult to
confirm that these reductions are in fact linear in size. This
chain of reductions then concludes the proof of Lemma 10.

VII. CONCLUSION

We have established that the problem of determining the
optimal value of an explicitly given SDP can be solved in
fixed-point logic with counting. As an application of this
result, we examined the power of the Lasserre relaxation
hierarchy in the context of finite-valued constraint satisfaction
problems. Here, we established a dichotomy result, showing
that every finite-valued CSP that is not solvable by its basic
linear programming relaxation (and this includes all constraint
maximization problems that are known to be NP-hard) requires
a linear number of levels of the Lasserre hierarchy to solve ex-
actly. Such linear lower bounds on the number of levels of the
Lasserre hierarchy were known previously for specific CSPs.
Our result shows that these are part of a sweepingly general
pattern. This is established by considering the definability of
semidefinite programs in logic, and using a measure of logical
complexity, that we call counting width, to classify CSPs. This
suggests some directions for further investigation.

A central motivating interest in semidefinite programming
in general and Lasserre hierarchies in particular comes from
their use in approximation algorithms. It would be interesting
to extend our methods to show lower bounds on the levels
required to approximate a solution, as well as to obtain exact
solutions. A potential direction is to define a measure of
counting width, not just for a class of structures C but based
on the number of variables to separate two classes C1 and
C2. We could then seek to establish lower bounds on these
numbers where C1 is a collection of instances of a VCSP
with high optimum values and C2 contains only instances with

low optima. This would show that instances with high optima
cannot be separated from those with low optima by means of
a small number of levels the Lasserre hierarchy.

Definability in FPC is closely linked to symmetric com-
putation (see [2], [8]). In other words, algorithms that can
be translated to this logic are symmetric in a precise sense.
This suggests that many of our best approximation algorithms
for constraint satisfaction, such as the Lasserre semidefinite
programs are encountering a “symmetry barrier”. Breaking
through this barrier, and coming up with algorithms that break
symmetries, may be crucial to more effective approximation
algorithms.

REFERENCES

[1] M. Ajtai. Recursive construction for 3-regular expanders. Combinator-
ica, 14(4):379–416, 1994.

[2] M. Anderson and A. Dawar. On symmetric circuits and fixed-point
logics. Theory of Computing Systems, 2016.

[3] M. Anderson, A. Dawar, and B. Holm. Maximum matching and linear
programming in fixed-point logic with counting. In Proceedings of
the 28th Annual ACM/IEEE Symposium on Logic in Computer Science,
pages 173–182, 2013.

[4] M. Anderson, A. Dawar, and B. Holm. Solving linear programs without
breaking abstractions. J. ACM, 62(6):48:1–48:26, 2015.

[5] A. Atserias, A. Bulatov, and A. Dawar. Affine systems of equations and
counting infinitary logic. Theoretical Computer Science, 410(18):1666
– 1683, 2009.

[6] J-Y. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the
number of variables for graph identification. Combinatorica, 12(4):389–
410, 1992.

[7] E. Chlamtac and M. Tulsiani. Convex relaxations and integrality
gaps. In F. Miguel Anjos and B. Jean Lasserre, editors, Handbook
on Semidefinite, Conic and Polynomial Optimization, pages 139–169.
Springer US, Boston, MA, 2012.

[8] A. Dawar. The nature and power of fixed-point logic with counting.
SIGLOG News, 2(1):8–21, 2015.

[9] A. Dawar and P. Wang. A definability dichotomy for finite valued CSPs.
In 24th EACSL Annual Conference on Computer Science Logic, CSL
2015, pages 60–77, 2015.

[10] H-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2nd
edition, 1999.

[11] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2 of Algorithms and Combina-
torics. Springer, 1988.

[12] B. Holm. Descriptive Complexity Of Linear Algebra. PhD thesis,
University of Cambridge, 2010.

[13] J. B. Lasserre. An explicit exact SDP relaxation for nonlinear 0–
1 programs. In Karen Aardal and Bert Gerards, editors, Integer
Programming and Combinatorial Optimization, volume 2081 of Lecture
Notes in Computer Science, pages 293–303. Springer Berlin Heidelberg,
2001.

[14] L. Lovász and A. Schrijver. Cones of matrices and set-functions and
0—1 optimization. SIAM Journal on Optimization, 1(2):166–190, 1991.

[15] M. Otto. Bounded Variable Logics and Counting — A Study in Finite
Models, volume 9 of Lecture Notes in Logic. Springer-Verlag, 1997.

[16] T. Rothvoß. The Lasserre hierarchy in approximation algorithms. In
Lecture Notes for the MAPSP 2013 Tutorial, 2013.

[17] G. Schoenebeck. Linear level lasserre lower bounds for certain k-
CSPs. In Proceedings of the 2008 49th Annual IEEE Symposium on
Foundations of Computer Science, pages 593–602, 2008.

[18] H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the
continuous and convex hull representations for zero-one programming
problems. SIAM Journal on Discrete Mathematics, 3(3):411–430, 1990.

[19] J. Thapper and S. Živný. The complexity of finite-valued CSPs. In
Proceedings of the 45th ACM Symposium on the Theory of Computing,
STOC ’13, pages 695–704, 2013.

[20] J. Thapper and S. Živný. The limits of SDP relaxations for general-
valued CSPs. CoRR, abs/1612.01147, 2016.

	Introduction
	Background
	Semidefinite Optimization
	Constraint Satisfaction Programs
	Lasserre Hierarchy
	Logic
	Fixed-point Logic with Counting
	Interpretations
	Representation

	Main result
	Expressing semidefinite programs
	Separation Oracle
	Reducing Optimization to Separation

	Lasserre lower bounds
	Counting width of finite-valued CSPs
	Conclusion
	References

