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Structural basis of meiotic telomere attachment to
the nuclear envelope by MAJIN-TERB2-TERB1
James M. Dunce1, Amy E. Milburn1, Manickam Gurusaran1, Irene da Cruz2, Lee T. Sen1,

Ricardo Benavente2 & Owen R. Davies 1

Meiotic chromosomes undergo rapid prophase movements, which are thought to facilitate

the formation of inter-homologue recombination intermediates that underlie synapsis,

crossing over and segregation. The meiotic telomere complex (MAJIN, TERB1, TERB2)

tethers telomere ends to the nuclear envelope and transmits cytoskeletal forces via the LINC

complex to drive these rapid movements. Here, we report the molecular architecture of the

meiotic telomere complex through the crystal structure of MAJIN-TERB2, together with light

and X-ray scattering studies of wider complexes. The MAJIN-TERB2 2:2 hetero-tetramer

binds strongly to DNA and is tethered through long flexible linkers to the inner nuclear

membrane and two TRF1-binding 1:1 TERB2-TERB1 complexes. Our complementary structured

illumination microscopy studies and biochemical findings reveal a telomere attachment

mechanism in which MAJIN-TERB2-TERB1 recruits telomere-bound TRF1, which is then

displaced during pachytene, allowing MAJIN-TERB2-TERB1 to bind telomeric DNA and form a

mature attachment plate.
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The establishment of homologous chromosome pairs during
meiotic cell division is achieved through extensive
recombination-mediated homology searches to generate a

series of recombination intermediates, hence physical linkages,
between homologues1,2. This challenging task is accomplished
through a unique chromosomal choreography during meiotic
prophase I3. The telomeric ends of meiotic chromosomes become
physically tethered to the nuclear envelope, where cytoskeletal
forces are transmitted to chromosome ends to drive their rapid
movement throughout the nuclear envelope (Fig. 1a)4,5. These
rapid prophase movements peak during establishment of recom-
bination intermediates in zygotene6,7, when on the basis of studies
in yeast and C. elegans8,9, they are thought to facilitate the
homology search by driving interactions between chromosomes
and disrupting non-homologous contacts. The resultant recombi-
nation intermediates direct assembly of the synaptonemal complex
(SC), a supramolecular protein lattice that provides continuous
synapsis between homologous chromosome axes10–12.
The SC provides the necessary three-dimensional framework
for recombination resolution and crossover formation13,14, with
its structure terminating at synapsed telomere ends through
attachment plates that are physically fused to the inner nuclear
membrane15–18.

In mammals, meiotic telomere attachments are achieved by a
meiosis-specific complex of MAJIN, TERB1 and TERB2 (herein
referred to as the meiotic telomere complex) that repurposes and
integrates the functions of two complexes, LINC and shelterin,
which otherwise perform distinct critical roles outwith meiosis.
The linker of nucleoskeleton and cytoskeleton (LINC) complex
provides the physical connection that mediates cytoskeletal force
transduction from the cytoplasm to the nucleus and is formed
through a peri-nuclear interaction of SUN and KASH domain
proteins19–21. KASH proteins cross the outer nuclear membrane
to interact with the cytoskeleton22–24, whilst SUN proteins cross
the inner nuclear membrane to interact with nuclear lamin A and
emerin25,26. Accordingly, LINC complexes are largely immobile

structures that have universal and essential functions in nuclear
structure and positioning19–21. However, in meiotic prophase I,
the nuclear lamina undergoes an extensive reorganisation27 and
LINC complexes become associated with the meiotic telomere
complex28, thus transmitting cytoskeletal forces to meiotic telo-
mere end assemblies that are freely mobile within the plane of the
nuclear envelope. These movements are achieved by the partially
redundant universally expressed SUN domain proteins SUN1 and
SUN229–31, and a meiosis-specific KASH domain protein,
KASH5, which is essential for meiotic telomere attachments22,32.
KASH5 interacts with microtubules via dynein–dynactin22,32,
accounting for the autonomous movements of chromosome ends
along stationary microtubule tracts that have been visualised in
meiotic prophase mouse spermatocytes6,7.

The shelterin complex, which includes TRF homology domain
proteins TRF1 and TRF2, TIN2, TPP1 and POT1, protects telo-
meric ends from DNA damage response activation and recruits
telomerase to regulate telomere length33–35. TRF1 and TRF2 form
structural homodimers through their TRF homology domains36,
which mediate direct interactions with TIN2, and preferentially
bind telomeric double-stranded DNA through C-terminal MYB
domains37. TIN2 recruits telomerase-binding protein TPP1,
which in turn recruits telomeric single-stranded DNA-binding
protein POT138,39. Short peptide motifs of TIN2 and related
proteins bind to sites near the dimeric cleft of TRF proteins,
providing two possible binding sites per TRF dimer40. However,
the reconstituted shelterin core of TRF2-TIN2-TPP1–POT1 has a
stoichiometry of 2:1:1:1 in vitro41, suggesting that binding events
are limited by steric hindrance within the wider structural
assembly. Shelterin provides a means of telomere recognition for
the meiotic telomere complex, which physically connects it to the
LINC complex, thereby integrating their functions to achieve
cytoskeletal attachments of meiotic telomere ends across the
nuclear envelope.

Meiotic telomere complex components MAJIN, TERB1 and
TERB2 are essential for fertility; their individual disruption in
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Fig. 1 Rapid prophase chromosomal movements through meiotic telomere-nuclear envelope tethering. a Meiotic chromosome telomere ends are tethered
to the nuclear envelope by the meiotic telomere complex, enabling the transmission of cytoskeletal forces from microtubules to chromosome ends through
LINC complexes. This produces rapid prophase chromosomal movements that are thought to facilitate recombination-mediated homology searches to
generate inter-homologue recombination intermediates. The resulting pairings mature into synapsis through synaptonemal complex assembly, leading to
crossover formation and the generation of single end attachment plates between synapsed telomere ends and the nuclear envelope. b Schematic of the
domain structure and sequence conservation of human meiotic telomere complex proteins MAJIN, TERB1 and TERB2, and shelterin component TRF1.
Amino acid conservation is illustrated as black plots in which the plot height represents the per residue conservation score. Sequences are annotated with
their domain structure, interacting regions and oligomer states based on previous reports42–45 and the results presented herein. MAJIN contains an N-
terminal globular core (amino acids 1–112) that interacts with the TERB2 C-terminus (amino acids 168–220). The TERB2 N-terminus (amino acids 1–107)
interacts with the TERB2-binding (T2B) site of TERB1 (amino acids 585–642), which is flanked by a wider TRF1-binding (TRFB) site (amino acids 561–658)
that interacts with the TRF homology (TRFH) domain of TRF1 (amino acids 62–268). MAJIN contains a C-terminal transmembrane (TM) helix, whilst
TERB1 and TRF1 both contain C-terminal DNA-binding MYB domains
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mice leads to meiotic arrest with failure of telomere attachments
and chromosomal movements, failure of DNA double-strand
break repair and impaired synapsis28,42. Their binary interactions
have been mapped by yeast two-hybrid and in vivo interaction
and deletion studies28,42. MAJIN provides the inner nuclear
membrane attachment through a transmembrane helix at its C-
terminus42, whilst TERB1 is proposed to interact with SUN1 and
cohesin components through its N-terminal armadillo repeat
domain and C-terminal MYB domain, respectively (Fig. 1b)28.
MAJIN and TERB1 are physically linked by TERB2, which binds
MAJIN through its C-terminus and TERB1 through its N-
terminus42,43. TERB1 also interacts directly with shelterin com-
ponent TRF1 through a region flanking its TERB2-binding site,
including a peptide interaction that mimics TIN2 binding to the
TRF1 dimeric cleft28,40,44,45. Nevertheless, an interaction of the
meiotic telomere complex with TRF1 appears to be transient in
the cell. MAJIN–TERB2–TERB1 assembles on the nuclear
envelope and undergoes TRF1-dependent recruitment of telo-
mere ends during leptotene and zygotene;42,43 CDK activity then
triggers the displacement of TRF1 to flanking regions in pachy-
tene, with MAJIN–TERB2–TERB1 remaining associated with
telomere ends42. However, we hitherto lack the structural infor-
mation regarding the meiotic telomere complex necessary to
understand the molecular events underlying meiotic telomere
attachment.

Here, we report the crystal structure of the MAJIN–TERB2
complex, revealing a 2:2 heterotetramer in which two TERB2
chains wrap around a core MAJIN globular dimer. This structure
undergoes direct interaction with DNA and scaffolds assembly of
the full 2:2:2 MAJIN–TERB2–TERB1 meiotic telomere complex,
which can recruit two TRF1 dimers. Together, our data lead to a
molecular model, in which a hierarchical series of binding events
achieve meiotic telomere attachment through TRF1-mediated
loading of telomeric DNA to the meiotic telomere complex.

Results
Crystal structure of MAJIN–TERB2. The N-terminal structural
core of MAJIN (amino acids 1–112) was recombinantly co-
expressed with the C-terminus of TERB2 (amino acids 168–220),
yielding a co-purifying equimolar complex (Fig. 1b and Supple-
mentary Fig. 1). The presence of both proteins was essential for
their stability, suggesting that the MAJIN–TERB2 complex is
constitutive. We solved the X-ray crystal structure of
MAJIN–TERB2 at 2.90 Å resolution through single-wavelength
anomalous diffraction of a selenomethionine derivative (Table 1
and Supplementary Fig. 2a). Using this as a model for molecular
replacement, we proceeded to solve the structure of a truncated
complex (MAJIN 1–106 and TERB2 168–207) in an alternative
crystal form at 1.85 Å resolution (Fig. 2, Table 1 and Supple-
mentary Figs. 2b–d and 3). Both structures are essentially the
same (Supplementary Fig. 2c, d) and the subsequent discussion is
based on the latter higher resolution crystal form. The
MAJIN–TERB2 structure demonstrates a 2:2 heterotetrameric
assembly, in which two TERB2 chains wrap around the surface of
a core globular MAJIN dimer (Fig. 2a, b). Size-exclusion chro-
matography multi-angle light scattering (SEC-MALS) confirmed
a 2:2 stoichiometry in solution (Fig. 3a). Size exclusion chroma-
tography small-angle X-ray scattering (SEC-SAXS) revealed
scattering curves and ab initio envelopes that closely match the
heterotetrameric crystal structure for the truncated construct,
with the wider complex demonstrating an elongation consistent
with its additional sequence being largely unstructured in solution
(Fig. 3b–d, Supplementary Fig. 4a–c and Supplementary Table 1).
Thus, the 2:2 oligomer observed in the crystal structure corre-
sponds to the solution state of the MAJIN–TERB2 complex.

The MAJIN protomers adopt a β-grasp fold, in which a β-sheet
grasps around a core α-helix in a β(2)-α-β(3) configuration
(Fig. 2c–e and Supplementary Fig. 3a, b). The five-stranded

grasping β-sheet contains an insertion between β4 and β7 strands,
which forms a two-stranded β-sheet appendage that splays from
the base of the structure. TERB2 chains follow a meandering path
from their N-termini at the MAJIN dimer interface, passing
around the α-helix to complete its closure and providing an
additional short β-strand to the grasping β-sheet, and terminate
by forming a third β-strand of the MAJIN β-sheet appendage
(Fig. 2f, g). This interaction is mediated largely through the
insertion of hydrophobic side-chains of TERB2 into pockets on
the MAJIN molecular surface, in addition to a salt bridge between
MAJIN residue R14 and TERB2 residue D191, and the
aforementioned β-sheet interactions. At its N-terminal end,
TERB2 residue Y176 contributes to the MAJIN dimer interface
that contains a hydrophobic core formed of highly conserved
MAJIN residues P64, F73 and Y75 (Fig. 2h and Supplementary
Fig. 3c, d). Whilst the 2:2 assembly is stable across a range of
concentrations and chemical conditions, with smaller oligomers
never observed in vitro, its disruption through MAJIN mutation
F73E Y75E yielded a stable 1:1 complex with secondary structure
composition matching that of a single MAJIN–TERB2 protomer
(Fig. 3a and Supplementary Fig. 4d, e). Thus, each
MAJIN–TERB2 protomer folds and retains stability independent
of dimerization, raising the question of how dimerization
functions in the wider architecture of the meiotic telomere
complex?

The C-terminus of the MAJIN core, which emanates from the
final β-strand, lies on the upper side of the structure in the
midline, and continues as a poorly conserved sequence of ~120
amino acids that terminates as a well-conserved 19 amino acid
transmembrane helix (Fig. 1b and Supplementary Fig. 1a).
Through SAXS analysis of a complex of C-terminally extended
MAJIN that includes the full sequence apart from the
transmembrane helix (MAJINΔTM; amino acids 1–233), we
modelled the conformation of the MAJIN C-termini with respect
to the crystal structure (Fig. 3b, c, e, Supplementary Fig. 4c and

Table 1 Data collection, phasing and refinement statistics

MAJINCore–TERB2C
selenomethionine
derivative (PDB 6GNX)

MAJINCore–TERB2C
Native (truncated)
(PDB 6GNY)

Data collection
Space group P3221 C2221
Cell dimensions

a, b, c (Å) 59.88 59.88 159.93 59.97 88.39 111.67
α, β, γ (°) 90 90 120 90 90 90

Wavelength 0.9159 Å 0.9763 Å
Resolution (Å) 49.33 – 2.90 (3.08 –

2.90)a
45.35–1.85 (1.89–1.85)a

Rmeas 0.136 (3.015) 0.039 (1.374)
Rpim 0.024 (0.553) 0.014 (0.504)
Completeness (%) 100.0 (100.0) 100.0 (100.0)
I/σ(I) 28.2 (2.3) 23.1 (1.5)
CC1/2 1.000 (0.885) 0.999 (0.744)
Redundancy 56.6 (55.1) 7.3 (7.3)

Refinement
Resolution (Å) 49.33 – 2.90 45.35–1.85
No. of reflections 7865 25690
Rwork/Rfree 0.2542/0.3039 0.1883/0.2072
No. of atoms 2197 2413

Protein 2197 2286
Ligand/ion 0 8
Water 0 119

B factors 130.46 64.58
Protein 130.46 64.72
Ligand/ion N/A 130.48
Water N/A 57.49

R.m.s deviations
Bond lengths (Å) 0.003 0.003
Bond angles (°) 0.539 0.627

aValues in parentheses are for highest-resolution shell
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Supplementary Table 1). In agreement with CD analysis
(Supplementary Fig. 4d), the SAXS scattering data indicate
largely unstructured C-termini that provide flexible linkers of 90
Å in solution (Fig. 3e). Under tension, these linkers could stretch
to provide a separation of up to 400 Å between the
MAJIN–TERB2 structural core and their transmembrane helices
embedded in the inner nuclear membrane.

DNA-binding by MAJIN–TERB2. The MAJIN–TERB2 structure
shows an extensive basic patch on the surface of each protomer,
formed of highly conserved amino acids in the grasping β-sheet of
MAJIN (Fig. 4a, b and Supplementary Fig. 3e), suggesting that it
may mediate direct DNA-binding through electrostatic interac-
tion with the phosphodiester backbone. Accordingly, analysis of
MAJINCore-TERB2C by electrophoretic mobility shift assay

a b

c

TERB2

C

NC

310′

310

MAJIN

TERB2

β1
β2

β8 β4

β7

β6

β1′

β5

β2′

β3α1

N

TERB2

N
N

N N
C C

C

C

MAJIN MAJIN

TERB2

MAJIN

TERB2

MAJIN

C

C

N N

90°

TERB2MAJIN

TERB2 MAJIN
C

N

N

C

β2′ β2′

β2′

β2′

310′

310′

310′
310′

β1′
β1′

β1′
β1′

β1 β2

β8 β4

β2′ β5

β6
β7

α1

310

β1′

β1

β2
β8

β4

β2′
β5

β6

β7

α1

β1′

90°

TERB2

N

N

N

N

C

C

C

C

MAJIN

β3

β2 β8
β4

β3

310′

β1′β1 β2β8β4

β2′
β5

α1β1′

β2′
β5

α1

TERB2310′MAJIN

β1

310

310

TERB2

310′

β1

β1′

β4
β8

β2N

C

N

310

β2′

β5

β6β7

β3

β-grasp
domain

α1

MAJIN

C

TERB2

N Y176

MAJIN

I179

M182

310′

F185

L189 β1′
TERB2

MAJIN

MAJIN MAJINTERB2

β2′

β8 β8β4
β4

Y202

C

Y199

F192

Y176

F73

F73

FF
Y104

β4
Y75

P64

P64

5 Y75

P194

D191

L189F185

310

d e

f g h

TERB2

310′

β1

β1′

β4

β8

β2

N

C

C

N 310

β2′

β5

β6

β7

β3

α1

β-grasp
domain

MAJIN

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07794-7

4 NATURE COMMUNICATIONS |          (2018) 9:5355 | https://doi.org/10.1038/s41467-018-07794-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


(EMSA) confirmed a strong interaction with double-stranded
DNA that shows no overt sequence specificity for telomere
repeats and is retained for single-stranded DNA (Fig. 4c and
Supplementary Fig. 4f). We estimated the apparent KD at 0.55 µM
(random sequence double-stranded DNA) through quantification
of EMSAs performed using 25 nM FAM-labelled DNA (Fig. 4d),
with similar affinities determined for telomeric and single-
stranded DNA substrates (Supplementary Fig. 4g). This is
slightly weaker than DNA-binding of TRF1, which we estimated
at 0.10 µM (Supplementary Fig. 5), in keeping with previous
studies46. MAJINCore-TERB2C DNA complexes were visualised
by electron microscopy (EM), revealing plaques of protein–DNA,
frequently forming circular assemblies of MAJINCore-TERB2C
(dependent on MAJIN dimerization) connected together by DNA
chains in a beads-on-a-string fashion (Fig. 4e).

The C-terminal end of TERB2 includes five highly conserved
basic residues within a seven amino acids stretch (amino acids
214–220); this region is unstructured in the selenomethionine
structure (in which they are included) and is essential for DNA-
binding by MAJIN–TERB2 (Fig. 4a–d). Similarly, MAJIN linkers
include two distinct basic patches located in the half proximal to
the structural core (Fig. 4a, b); their inclusion led to an
enhancement of DNA-binding by MAJIN–TERB2 to an apparent
KD of 0.12 µM (Fig. 4c, d), matching the DNA-binding affinity of
TRF1. The presence of MAJIN linkers also rescued the disruption
of DNA-binding upon C-terminal truncation of TERB2, with an
apparent KD of 0.20 µM (Fig. 4c, d). Furthermore, DNA-binding
of the 1:1 MAJIN–TERB2 complex formed by mutant F73E Y75E
is diminished (Fig. 4c, d), indicating that DNA-binding of the
MAJIN basic surfaces on either side of the 2:2 complex is
cooperative. These findings are consistent with a single
continuous DNA-binding interface encompassing the TERB2
C-termini, MAJIN β-grasp surfaces and MAJIN flexible linkers of
both protomers. To test the role of the MAJIN β-grasp surface in
DNA-binding, we generated a mutant (K24M K26E R28E K31D
R34E R81D; herein referred to as basic surface mutant) that
eliminated its basic charge (Supplementary Fig. 3e, f). Surpris-
ingly, this mutant inhibited MAJIN–TERB2 dimerization,
producing a 1:1 complex (Fig. 3a). Nevertheless, its complete
inhibition of DNA-binding, in comparison with the binding
affinity of the F73E Y75E 1:1 complex, confirms the role of the
MAJIN β-grasp surface in DNA-binding (Fig. 4c, d). Thus, we
propose that telomeric DNA is looped around MAJIN–TERB2
molecules to achieve cooperativity through binding to the basic
interfaces of both protomers (Fig. 4f). In this model, looping
occurs within MAJIN linkers and so their extension under
tension in vivo may facilitate the formation of long telomere
loops that extend into the nuclear lamina towards the inner
nuclear membrane.

Structure of the MAJIN–TERB2–TERB1 meiotic telomere
complex. We next sought to determine the molecular architecture

of the wider MAJIN–TERB2–TERB1 meiotic telomere complex.
Similar to MAJINCore-TERB2C, we observed co-purification of
recombinantly co-expressed complexes between the TERB2 N-
terminal end (amino acids 1–107) and its binding site within
TERB1 (TERB1T2B; amino acids 585–642), and the ternary
complex between MAJINCore, full length TERB2 and TERB1T2B
(Fig. 5a and Supplementary Fig. 6a, b). SEC-MALS analysis
revealed that TERB2N–TERB1T2B is a 1:1 complex, which in
accordance with the MAJINCore–TERB2C 2:2 complex, undergoes
dimerization in the ternary MAJINCore–TERB2–TERB1T2B com-
plex to form an equimolar 2:2:2 hetero-hexamer (Fig. 5b and
Supplementary Fig. 6c). Through circular dichroism (CD) spec-
troscopy and SEC-SAXS analysis, we find that the 1:1
TERB2N–TERB1T2B complex adopts a globular mixed α/β-
structure (Supplementary Figs. 6d, e and 7). Interestingly, both
TERB2N and TERB1T2B (and the wider TERB1TRFB construct)
form large molecular weight aggregates in isolation (Supple-
mentary Fig. 6f), indicating that they depend upon each other for
structural stability and so the 1:1 complex may be constitutive.
The MAJINCore–TERB2C and TERB2N–TERB1T2B structures are
separated by a largely poorly conserved stretch of ~60 amino
acids in the middle of the TERB2 sequence, suggesting the pre-
sence of three separate globular domains within the 2:2:2 ternary
complex.

We utilised SAXS rigid body and linker modelling, coupled
with ab initio modelling to determine the structure and relative
positioning of the components within the meiotic telomere
complex. The MAJINCore–TERB2C crystal structure and SAXS ab
initio models of TERB2N–TERB1T2B were positioned and TERB2
linkers modelled through fitting to TERB2N–TERB1T2B and
MAJINCore–TERB2–TERB1T2B SAXS scattering curves (Fig. 5c, d,
Supplementary Fig. 7 and Supplementary Table 1). The scattering
data are consistent with a central orientation of the
MAJINCore–TERB2C heterotetramer, with flexible linkers within
the middle of TERB2 providing separation from two distinct
TERB2N–TERB1T2B 1:1 complexes (Fig. 5c).

To test our in vitro findings, we analysed the location of
MAJIN, TERB2 and TERB1 within the telomeric ends of
chromosomes spread from zygotene and late pachytene mouse
spermatocytes through structured illumination microscopy (SIM)
(Fig. 5e, f and Supplementary Figs. 8, 9). In zygotene, we observe
MAJINCore foci (antibodies raised against mouse amino acids
18–30) enclosed by flanking TERB2 at the telomeric ends of
SYCP3-stained axial elements (Fig. 5e and Supplementary Fig. 8a).
In late pachytene, the MAJIN foci of paired telomeres partially
coalesce above thickened lateral element ends, with a
TERB2 signal that largely overlaps in the frontal plane but
clearly encircles MAJIN staining when viewed from a lateral-top
orientation (Fig. 5f and Supplementary Figs. 8b, c and 9a, b). In
contrast, TERB2 and TERB1T2B (antibodies raised against full
length and amino acids 525–540, respectively) co-localised when
viewed in multiple orientations (Fig. 5f and Supplementary
Figs. 8d, e and 9c,d); similar co-localisation was observed in

Fig. 2 Crystal structure of MAJINCore-TERB2C. a, b Crystal structure of MAJINCore-TERB2C (sequences truncated to amino acids 1–106 and 168–207)
solved in C2221 spacegroup at 1.85 Å resolution, demonstrating a 2:2 heterotetrameric complex shown as (a) cartoon representation and (b) molecular
surface of MAJIN with cartoon representation of TERB2 chains. MAJIN forms a central globular dimer that is encircled by two TERB2 chains. c, d Cartoon
representations and (e) topology diagram of a single MAJIN–TERB2 protomer. MAJIN adopts a β-grasp fold in which a β-sheet grasps around a central α-
helix in a β(2)-α-β(3) configuration, with an additional two-stranded β-sheet appendage inserted between β4 and β7. The TERB2 chain wraps around the
exposed surface of the α-helix to complete its closure such that it becomes fully encircled by TERB2 and the grasping β-sheet. f, g The MAJIN–TERB2
interface spans an area of approximately 1300 Å2 for each protomer. f The N-terminal end of TERB2C wraps around the central MAJIN α-helix with
aromatic and hydrophobic residues packing into pockets on the MAJIN surface. g The C-terminal end of TERB2C provides a short β-strand extension to the
grasping β-sheet, a salt bridge between D191 (TERB2) and R14 (MAJIN), a structural wedge (formed by F192, P194 and Y199) between the grasping and
appendage β-sheets of MAJIN, and a β-strand extension to the β-sheet appendage. h The MAJIN–TERB2 dimerization interface contains approximately
650 Å2 of buried surface area, formed of largely aromatic and hydrophobic interactions between P64, F73, Y75 and Y104 (MAJIN), and Y176 (TERB2)
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structurally preserved pachytene nuclei (Fig. 5g and Supplemen-
tary Fig. 8f). These staining patterns are consistent with our
structural model of MAJIN–TERB2–TERB1, in which flexible
linkers in the middle of TERB2 are out-stretched, possibly owing
to tension forces within the chromosome-attachment plate axis,
to provide a physical separation between MAJINCore–TERB2C
and TERB2N–TERB1T2B globular domains.

We conclude an architecture for the meiotic telomere complex
in which a central MAJINCore–TERB2C heterotetramer is tethered

on one aspect to the inner nuclear membrane, and on its other
aspect to two separated TERB2N–TERB1T2B hetero-dimers,
through long-flexible linkers within MAJIN and TERB2,
respectively (Fig. 5h).

Structure of the TRF1–TERB1–TERB2 complex. The shelterin
component and telomere-binding protein TRF1 interacts directly
with TERB1 through a TRF1-binding domain (TERB1TRFB;
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amino acids 561–658) that includes and flanks its TERB2-binding
site (Supplementary Fig. 10). We achieved co-purification of the
TRF homology domain of TRF1 (amino acids 62–268) with
TERB1TRFB, and of a ternary complex between TRF1TRFH,
TERB1TRFB and TERB2N, following their recombinant co-
expression (Fig. 6a and Supplementary Figs. 10a and 11a–d).
SEC-MALS confirmed the well-established dimerization of
TRF1TRFH and revealed the recruitment of one TERB1TRFB
molecule by the TRF1TRFH dimer to form a 2:1 complex; in
accordance with the 1:1 TERB2N–TERB1T2B interaction, the
ternary TRF1TRFH–TERB1TRFB–TERB2N complex formed a 2:1:1
heterotetramer (Fig. 6b).

We next determined the molecular architecture of the
TRF1TRFH–TERB1TRFB–TERB2N complex through multi-phase
SEC-SAXS ab initio modelling (Fig. 6c, d, Supplementary
Fig. 11e–h and Supplementary Table 1). The resultant model
demonstrates a V-shaped molecular envelope for TRF1TRFH that
closely matches its known crystal structure, with TERB1TRFB
bound at its cleft (Fig. 6d), in keeping with the recently reported
crystal structures of TRF1TRFH bound to TERB1TBM (amino acids
642–658), a peptide mapping to the C-terminus of
TERB1TRFB44,45. The TERB2N molecular envelope is closely
associated with TERB1TRFB and is distal to the TRF1TRFH-binding
cleft. We conclude a model for TRF1TRFH–TERB1TRFB–TERB2N,
in which a TRF1TRFH dimer binds to a TERB1TRFB–TERB2N 1:1
complex through a single TERB1-binding site within its
dimerization cleft (Fig. 6e).

TRF1 recruitment by MAJIN–TERB2–TERB1. The separate
ternary complexes that we have described raise the question of
how TRF1 may be recruited to the MAJIN–TERB2–TERB1
meiotic telomere complex? We reconstituted a full meiotic telo-
mere recruitment complex through the addition of TRF1TRFH to
purified MAJIN–TERB2–TERB1TRFB complexes (Fig. 7a, b and
Supplementary Fig. 12a, b). SEC-MALS revealed the formation of
a 2:2:2:4 complex (Supplementary Fig. 12c), suggesting the
recruitment of two TRF1TRFH dimers and consistent with the 2:1
TRF1TRFH–TERB1TRFB stoichiometry.

The MAJINCore–TERB2–TERB1TRFB complex retains the DNA-
binding ability of MAJINCore–TERB2C (Fig. 7c, d), with an apparent
KD of 0.46 µM, and forms similar beads-on-a-string and plaque-like
assemblies by EM (Fig. 7e). Remarkably, DNA-binding by
MAJINCore–TERB2–TERB1TRFB is inhibited by TRF1TRFH in a
manner dependent on the presence of the TRF1-binding region of
TERB1 (Fig. 7f–h and Supplementary Fig. 12d), suggesting
competitive inhibition of DNA-binding upon recruitment of
TRF1TRFH by TERB1. Inclusion of MAJIN linker BP1 partly
compensated for this inhibition (Fig. 7h, i and Supplementary

Fig. 12d), reminiscent of its ability to compensate for deletion of
TERB2 C-terminal basic patches in DNA-binding. Accordingly, we
identified a direct interaction between TERB2 C-termini (amino
acids 195–220) and TRF1TRFH that is retained within the
MAJINCore–TERB2C complex (Supplementary Fig. 12e), suggesting
that upon recruitment by TERB1, TRF1TRFH binds and
inhibits TERB2 C-termini, diminishing and altering DNA-binding
by the wider meiotic telomere complex. Importantly,
MAJINCore–TERB2–TERB1TRFB can be recruited to DNA by full
length TRF1 through direct DNA-binding of its C-terminal MYB
domains (Fig. 7j). Furthermore, MAJINΔTM–TERB2–TERB1TRFB
retains its strong interaction with TRF1TRFH even in the presence of
DNA (Fig. 7k and Supplementary Fig. 12f). We suggest that
MAJIN–TERB2–TERB1–TRF1 represents a pre-displacement
attachment complex in which the meiotic telomere complex
interacts with telomere ends indirectly through TRF1, with direct
telomere-binding partially inhibited by the presence of TRF1. This
likely represents the structure present in vivo during zygotene,
following TRF1-mediated attachment and prior to TRF1 displace-
ment, that can be artificially stabilised by CDK inhibition42.

TRF1 displacement following telomere attachment. How is
TRF1 displaced from the meiotic telomere complex following
telomere attachment? TERB1 residue T648 undergoes phos-
phorylation during meiotic prophase I in vivo and has been
proposed to participate in TRF1 displacement by inhibiting its
interaction with TERB128,42,44. Whilst, we confirm that phos-
phomimetic mutation T648E disrupts TRF1TRFH-binding of
TERB1TBM, we find that it is insufficient to disrupt complex
formation when part of the wider TERB1TRFB construct (Sup-
plementary Figs. 10b–e and 13a–d). Furthermore, a MAJINCore

+BP1–TERB2–TERB1TRFB complex harbouring the TERB1 T648E
mutation was able to recruit TRF1TRFH similarly to wild type
(Fig. 7b). To explain this, we estimated relative binding affinities
of TRF1TRFH–TERB1 complexes through analysing dissociation
upon serial dilution by SEC-MALS (Supplementary Fig. 13a–d).
This revealed that TRF1TRFH-binding by TERB1TBM is at least
100-fold weaker than TERB1TRFB, and whilst the T648E mutation
does weaken binding of TERB1TRFB, its affinity remains at least
10-fold higher than wild-type TERB1TBM. Further, we tested the
ability of CDK1-CyclinB phosphorylation to dissociate
TRF1TRFH–TERB1 complexes (Supplementary Fig. 13e–h).
TERB1TBM was readily phosphorylated by CDK1-CyclinB,
inducing dissociation of its complex with TRF1TRFH (Supple-
mentary Fig. 13e, g, h). In contrast, TERB1TRFB was only partially
phosphorylated, suggesting steric hindrance of enzyme access,
with retention of the 2:1 complex (Supplementary Fig. 13f–h).
Thus, isolated phosphorylation of T648 is unlikely to be sufficient

Fig. 3 Solution structure of MAJIN–TERB2. a SEC-MALS analysis; light scattering (LS) and differential refractive index (dRI) profiles are overlaid, with fitted
molecular weights (Mw) plotted as diamonds across elution peaks. Wild type (black, left) and truncated (grey, left) MAJINCore-TERB2C complexes (WT:
1–112, 168–220; Tr: 1–106, 168–207) form 2:2 hetero-tetramers of 43 kDa and 35 kDa, respectively (theoretical 2:2–40 kDa and 35 kDa). MAJIN mutations
F73E Y75E (black, right), and K24M K26E R28E K31D R34E R81D (basic surface mutant; grey, right) block dimerization of MAJINCore-TERB2C, leaving 1:1
complexes of 21 kDa and 20 kDa, respectively (theoretical 1:1–20 kDa). b–e SEC-SAXS analysis. b SAXS scattering curves of MAJINCore-Tr–TERB2C-Tr and
MAJINΔTM–TERB2C-Tr (1–233, 168–207) overlaid with theoretical scattering curves of the crystal structure (red; χ2= 1.62 and 93.0, respectively) and a
CORAL model of the crystal structure with modelled MAJIN C-termini (blue; χ2= 1.24 for MAJINΔTM-TERB2C-Tr). The scattering data points below the
minimum Q-value of the Guinier analysis are shown in grey. c SAXS P(r) distributions of MAJINCore-Tr-TERB2C-Tr (black, solid), MAJINCore–TERB2C (black,
dashed) and MAJINΔTM–TERB2C-Tr (grey), showing maximum dimensions of 80 Å, 120 Å and 155 Å, respectively. Their real space Rg values of 24 Å, 32 Å
and 39 Å closely match their Guinier Rg values of 24 Å, 30 Å and 37 Å (Supplementary Fig. 4a–c), respectively. d SAXS ab initio model of MAJINCore-

Tr–TERB2C-Tr. A filtered averaged model was generated from 30 independent DAMMIF runs, imposing P2 symmetry, with NSD= 0.904 (± 0.115) and
reference model χ2= 1.59, and is displayed as a molecular envelope with the docked crystal structure. e SAXS CORAL model of MAJINΔTM–TERB2C-Tr in
which MAJIN C-termini were modelled onto the MAJINCore-TERB2C crystal structure up to residue 233 through fitting to experimental SAXS data (χ2=
1.24). The model is displayed with a cartoon of C-terminal transmembrane helices inserted in the inner nuclear membrane (INM), highlighting how
unstretched MAJIN C-terminal linkers may provide a separation of approximately 90 Å between the nuclear envelope and MAJIN–TERB2 core
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to displace TRF1 from the meiotic telomere attachment complex.
Instead, additional cellular events may first loosen the
TRF1–TERB1 complex to provide access for CDK1-CyclinB, and
then collaborate with T648 phosphorylation to achieve TRF1
displacement.

We predict that upon TRF1 displacement, inhibition of
MAJIN–TERB2–TERB1 DNA-binding is removed, enabling
direct telomere-binding by the meiotic telomere complex. To
test this, we visualised attachment complexes in chromosomes
spread from mouse zygotene and pachytene-spermatocytes
and structurally preserved pachytene nuclei (Fig. 8a–e and

Supplementary Figs. 14, 15). In zygotene, TRF1 and TERB1 show
partially overlapping distributions at the telomeric ends of
chromosomes (Fig. 8a and Supplementary Fig. 14a). In late
pachytene, they show more distinct staining patterns, with
TERB1 showing clear foci at each telomere end that are
surrounded by TRF1 in a grasp-like distribution orientated
laterally and proximal to the chromosome axis (Fig. 8b, c and
Supplementary Figs. 14c, e, f and 15d). This is consistent with the
reported TRF1 displacement following attachment42, but rather
than a complete exchange, it instead suggests a subtle remodelling
in which TRF1 remains in close proximity of the meiotic telomere
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complex and chromosome axis. In accordance with our model,
MAJIN shows further separation from TRF1, localised distal with
respect to the chromosome axis in spread zygotene and pachytene
chromosomes and in structurally preserved pachytene nuclei
(Fig. 8a, b, d and Supplementary Figs. 14b–d and 15a–c, e).
Importantly, fluorescence in situ hybridisation (FISH) demon-
strated the localisation of telomeric repeat DNA distal to TERB2
relative to the chromosome axis during pachytene (Fig. 8e and
Supplementary Fig. 15f), consistent with it binding to the
MAJIN–TERB2 core and forming extended looping structures
around MAJIN linkers within the nuclear lamina.

On the basis of our combined biochemical and imaging studies,
we propose that meiotic telomere attachment is achieved through
a coordinated hierarchy of events that can be characterised by two
molecularly distinct complexes. Firstly, TRF1 becomes recruited
to the meiotic telomere complex and mediates its interaction with
telomere ends (Fig. 8f). Subsequently, TRF1 is displaced,
removing inhibition of MAJIN–TERB2–TERB1 DNA-binding
and enabling formation of a post-displacement complex, in which
telomere ends are bound directly by the meiotic telomere
complex (Fig. 8g).

Discussion
The MAJIN–TERB2–TERB1 meiotic telomere complex integrates
functions of the LINC and shelterin complexes to physically
connect telomere ends to the cytoskeleton. Here, we report the
crystal structure of MAJIN–TERB2, constituting the architectural
core of the meiotic telomere complex. This 2:2 heterotetramer is
formed of a globular dimer of MAJIN β-grasp domains encircled
by two TERB2 chains. β-grasp folds were first identified in ubi-
quitin and display an unusually high degree of structural and
functional diversity47,48. The topology adopted by MAJIN is to
our knowledge unique, consisting of a five-stranded assemblage
with a two-stranded β-sheet insertion. TERB2 wraps around the
β-grasp fold, completing the closure of the central α-helix and
providing additional β-strands to the grasping and appending β-
sheets. The 2:2 complex is formed through aromatic interactions
in a MAJIN dimerization interface; similar dimer formation has
been observed in other β-grasp proteins, albeit through diverse
means such as domain swap or metal coordination48. MAJIN is
highly unstable in the absence of TERB2, indicating that its
presence is necessary for folding of the β-grasp domain, and thus
the MAJIN–TERB2 complex is likely constitutive in vivo.

MAJIN–TERB2 provides extensive DNA-binding interfaces
that extend from TERB2 C-termini, across MAJIN β-sheet sur-
faces to MAJIN linkers, and demonstrate cooperativity between
interfaces on either side of the molecule. On this basis, we

propose that individual telomeric DNA chains loop around the
top of MAJIN–TERB2 molecules to enable their interaction with
both interfaces. The MAJIN linkers constitute flexible extensions
from the structural core to C-terminal transmembrane helices,
which under tension may stretch up to 400 Å to provide a
separation between the core and the inner nuclear membrane that
spans the nuclear lamina. Whilst a previous study reported that
MAJIN linker basic patches are essential for DNA-binding42, we
find that their inclusion provided an enhancement in DNA-
binding affinity from an apparent KD of 0.55 µM for
MAJINCore–TERB2C to 0.12 µM for MAJINΔTM–TERB2C. A
simple explanation is that the previous study analysed isolated
MAJIN, whereas TERB2 is essential for MAJIN folding, so may
have detected residual binding of basic residues in absence of a
folded core. Nevertheless, their mutation fails to fully rescue
telomere attachment defects of Majin−/− spermatocytes42. Thus,
we suggest that MAJIN linker basic patches may contact and
stabilise telomere loops between MAJIN–TERB2 attachments,
facilitating their extension into the nuclear lamina towards the
inner nuclear membrane. This raises the intriguing possibility
that a three-dimensional assembly incorporating MAJIN linkers
and telomere loops contributes to the mechanism, whereby the
meiosis-specific nuclear lamina enables the rapid and fluid
movement of telomere ends through the nuclear envelope27.

The wider meiotic telomere complex forms a 2:2:2 assembly of
MAJIN–TERB2–TERB1, in which the 2:2 MAJIN–TERB2C struc-
ture core is connected to two globular 1:1 TERB2N–TERB1TRFB
complexes through long-flexible linkers within TERB2. These
TERB2 linkers can stretch to ~200 Å under tension, accounting for
the physical separation observed in mouse pachytene spermatocyte
chromosomes. Each TERB2N–TERB1TRFB complex can recruit one
TRF1 dimer, leading to the formation of a 2:2:2:4 meiotic telomere
recruitment complex of MAJIN–TERB2–TERB1–TRF1. Whilst
crystal structures have shown that a TRF1 dimer is capable of
binding to two interacting peptides from TERB1 (TBM; amino
acids 642–656)44,45, we find that a wider region of TERB1 (TRFB;
amino acids 568–658) is required for stable complex formation in
solution. This likely blocks the second site through steric
hindrance to provide a 2:1:1 TRF1–TERB1–TERB2 stoichiometry,
analogous to the 2:1:1:1 stoichiometry observed for the
TRF1–TIN2–TPP1–POT1 shelterin complex41. This is supported
by our observation that TERB1TRFB exhibits a greater than 100-fold
increased binding affinity for TRF1TRFH than TERB1TBM, and the
previous finding that the TERB1TRFB interaction is mediated by a
single TRF1TRFH–TERB1TBM-binding interface45. Further, previous
studies reported KD values for TRF1TRFH-binding of 5.6 µM and 75
nM for free TERB1TBM and GST–TERB1TBM, respectively44,45. The
higher apparent affinity in the latter case is likely due to the

Fig. 4 DNA-binding by MAJIN–TERB2. a Surface electrostatic potential of the MAJINCore–TERB2C crystal structure (red, electronegative; blue,
electropositive), with SAXS-modelled MAJIN C-terminal extensions in which basic residues are highlighted as blue spheres, and indicating the likely
position of basic TERB2 C-terminal ends. Each MAJIN protomer displays a basic surface, which is continuous with the TERB2 C-terminus and basic patches
towards the N-terminal end of the MAJIN flexible linkers, providing two extended basic interfaces per MAJIN–TERB2 heterotetramer. b Schematic of the
human MAJIN and TERB2 sequences, highlighting the core linker basic patches (BP1 and BP2) and transmembrane helix of MAJIN, and N- and C-terminal
domains and C-terminal basic patch (BP) or TERB2. Principal protein constructs are indicated: MAJIN ΔTM (1–233), Core+ BP1 (1–147) and Core (1–112);
TERB2 C (168–220) and C-Tr (168–207). c EMSA analysing the ability of MAJIN–TERB2 constructs (as indicated) to interact with 0.3 µM (per molecule)
linear double-stranded DNA (dsDNA). Gel images are representative of at least three replicate EMSAs. d Quantification of DNA-binding by MAJIN–TERB2
constructs (ΔTM/C, yellow; ΔTM/C-Tr, green; Core/C, black; Core/C F73E Y75E, blue; Core/C-Tr, red; Core/C basic surface mutant, grey) through
densitometry of EMSAs performed using 25 nM (per molecule) FAM-dsDNA. Plots and apparent KD values were determined by fitting data to the Hill
equation; error bars indicate standard error, n= 3 EMSAs. *Apparent KD was estimated graphically from the concentration at 50% DNA-binding as binding
saturation was not achieved. Source data are provided as a Source Data file. e Electron microscopy analysis of MAJINCore-TERB2C and MAJINCore–TERB2C
F73E Y75E alone and in complex with plasmid dsDNA. Scale bars, 100 nm. The bottom-right panel shows lack of assembly, through absence of structures
of sufficient size for EM visualisation, of MAJINCore–TERB2C F73E Y75E in comparison with wild-type. f Model of the MAJIN–TERB2 complex with dsDNA.
A seamless DNA-binding interface is formed on either side of the MAJIN–TERB2 heterotetramer by the MAJIN surface, TERB2 C-terminus and MAJIN
linker. A single dsDNA molecule may bind to both surfaces cooperatively through looping around the top of the molecule within the MAJIN linker region.
Source data
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cooperativity resulting from simultaneous binding of two peptides
of a GST-induced dimer at both sites within a TRF1TRFH dimer. We
propose that a similar two-site cooperative binding mode may be
exhibited by TERB1TRFB, with an N-terminal sequence (amino
acids 561–585) interacting with a second binding site within the
TRF1TRFH dimer in a manner that may partially mimic TERB1TBM,
thereby restricting the complex to a 2:1 stoichiometry. The
recruitment of two TRF1 dimers by each MAJIN–TERB2–TERB1
complex likely provides the means of telomere recruitment,

bringing telomeric DNA into close proximity that enables its
loading onto MAJIN–TERB2–TERB1 complexes.

TRF1 is displaced proximally towards the chromosome axis
following telomere attachment. CDK phosphorylation site T648
has been identified within the TRF1-binding site of TERB142, and
T648E phosphomimetic mutation blocks the interaction of short
peptide TERB1TBM with TRF144. However, we find that the same
mutation within the context of the full TRF1-interacting region
TERB1TRFB is insufficient to disrupt the complex and simply
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weakens TRF1TRFH-binding to an affinity that is more than 10-
fold stronger than wild-type TERB1TBM. Thus, T648 phosphor-
ylation must be combinatorial with other phosphorylation/bind-
ing events within TERB1 and/or surrounding proteins, coupled
with other signalling mechanisms, to achieve TRF1 displacement,
in keeping with the failure of a T648A mutation to prevent TRF1
displacement in vivo42.

The generation of rapid prophase movements of over 100 nm s−1

necessitates substantial force transmission along the meiotic
telomere-LINC axis6. This is achieved across the nuclear membrane
through a parallel organisation of LINC complexes that contact the
same microtubule via dynein–dynactin, each transmitting small
forces that summate to generate coordinated unidirectional move-
ments6. The parallel forces transmitted along LINC complexes must
converge, but does this occur upon telomere attachment or through
prior integration within the meiotic telomere complex? The former
model involves individual interactions of meiotic telomere com-
plexes with LINC complexes and telomeric DNA that are sum-
mated within chromosomes. The latter model involves a higher
order assembly of meiotic telomere complexes that receives inter-
actions from multiple LINC complexes and forms a single telomere
attachment. Notably, the MAJINCore–TERB2C P3221 crystal lattice
includes contacts between TERB2 C-termini that form continuous
linear chains of MAJIN–TERB2 complexes (Supplementary
Fig. 16a). Whilst not stable in solution, we wonder whether such
contacts may generate large molecular assemblies upon con-
centration on the inner nuclear membrane in vivo (Supplementary
Fig. 16b). In these structures, telomeric DNA may undergo exten-
sive looping around long chains of MAJIN–TERB2 molecules to
achieve single robust attachments that span the width of the axis
and integrate forces transmitted from attached LINC complexes
(Supplementary Fig. 16c). This model may explain the circular
assemblies of MAJINCore–TERB2C observed by electron micro-
scopy, which became thickened and linked together in a beads-on-
a-string fashion upon binding to DNA.

What is the role of shelterin following telomere attachment? A
previous study proposed a cap exchange model in which shelterin
is released from telomeres and remains in close proximity to
enable rebinding upon detachment42. However, an alternative
model is that shelterin is never released but merely displaced to
surrounding unattached telomeric DNA. The length of telomeric
DNA (10–15 kb in humans35) is sufficient to account for this
model and is consistent with the localisation of TRF1 in close
proximity to the chromosome axis by SIM. Indeed, displacement
may represent a remodelling event, in which TRF1/shelterin and
assembled MAJIN–TERB2–TERB1 form interlaced interactions
with telomeric DNA to create cooperative and robust telomere
end attachments.

Upon synapsis, telomere attachments mature into ornate end
attachment plates, in which the synaptonemal complex seamlessly
fuses with the nuclear envelope15–18, raising the question of how
meiotic telomere attachment is integrated with chromosome
structure? A crucial link is found in the C-terminal MYB domain
of TERB1, which recruits cohesins to telomere ends to impose
their structural rigidity28. Similarly, synaptonemal complex pro-
tein SYCP3 is required to form the iconic conical axis thickenings
within attachment plates17. Thus, whilst not participating in tel-
omere attachment per se, meiotic cohesins and axis proteins are
required to impose a chromosomal structure that facilitates
nuclear envelope attachment17,28,49,50. We envisage that meiotic
telomere complex assembly with telomeric DNA may integrate
with meiotic cohesins, axis proteins, and potentially the SC
midline lattice, in addition to LINC and shelterin complexes, to
form an ordered supramolecular complex that achieves the
coordinated attachment of synapsed telomere ends to the nuclear
envelope.

Methods
Recombinant protein expression and purification. Sequences corresponding to
regions of human TERB1, TERB2, MAJIN and TRF1 were cloned into pHAT451,
pMAT1151 or pRSF-Duet1 (Merck Millipore) vectors for expression as TEV-
cleavable His6-, His6-MBP or MBP-fusion proteins, respectively. A list of primers
used for cloning is provided in Supplementary Table 2. Constructs were co-
expressed in BL21 (DE3) cells (Novagen®), in 2xYT media, induced with 0.5 mM
IPTG for 16 h at 15 °C. Cell disruption was achieved by sonication in 20 mM Tris
pH 8.0, 500 mM KCl and cellular debris removed by centrifugation at 40,000 g.
Fusion proteins were purified through consecutive Ni-NTA (Qiagen), amylose
(NEB) and HiTrap Q HP (GE Healthcare) ion exchange chromatography. Ni-NTA
chromatography was performed in lysis buffer, with elution in 20 mM Tris pH 8.0,
500 mM KCl, 200 mM imidazole. Amylose affinity chromatography was performed
in 20 mM Tris pH 8.0, 150 mM KCl, 2 mM DTT, with elution through addition of
30 mM D-maltose. Ion exchange chromatography was performed through a linear
salt gradient of 20 mM Tris pH 8.0, 100–1000 mM KCl, 2 mM DTT. TEV protease
was utilised to remove affinity tags, and cleaved samples were purified through ion
exchange chromatography in 20 mM Tris pH 8.0, 100–1000 mM KCl, 2 mM DTT,
and size exclusion chromatography (HiLoadTM 16/600 Superdex 200, GE
Healthcare) in 20 mM Tris pH 8.0, 250 mM KCl, 2 mM DTT. Protein samples were
concentrated using MicrosepTM Advance Centrifugal Devices 10,000 MWCO
centrifugal filter units (PALL) and were stored at −80 °C following flash-freezing
in liquid nitrogen. Purification of TRF1 and TRF1-containing complexes utilised
the lysis, Ni-NTA, amylose, ion exchange and gel filtration buffers described
above, with the addition of 10% glycerol, and was performed at room temperature
to prevent protein precipitation. Protein samples were analysed by SDS–PAGE
and visualised with Coomassie staining. Concentrations were determined by
UV spectroscopy using a Cary 60 UV spectrophotometer (Agilent) with
extinction coefficients and molecular weights calculated by ProtParam (http://web.
expasy.org/protparam/). The MAJIN basic surface mutant K24M K26E R28E
K31D R34E R81D was designed using the ROSIE Rosetta Sequence Tolerance
Server52.

Fig. 5 Structure of the 2:2:2 MAJIN–TERB2–TERB1 meiotic telomere complex. a Size-exclusion chromatography elution profiles of MAJINCore-TERB2C
(1–112, 168–220), TERB2N-TERB1T2B (1–107, 585–642) and MAJINCore-TERB2–TERB1T2B (1–112, 1–220, 585–642). b SEC-MALS analysis. MAJINCore-TERB2C
is 2:2 (43 kDa; theoretical 2:2 – 40 kDa), TERB2N-TERB1T2B is 1:1 (19 kDa; theoretical 1:1–20 kDa) and MAJINCore-TERB2–TERB1T2B is 2:2:2 (91 kDa;
theoretical 2:2:2–94 kDa). c, d SEC-SAXS analysis of MAJINCore-TERB2–TERB1T2B and TERB2N-TERB1T2B. c SAXS CORAL model of MAJINCore-
TERB2–TERB1T2B constructed by rigid body fitting of the MAJINCore-TERB2C crystal structure and TERB2N-TERB1T2B ab initio models (generated from
TERB2N-TERB1T2B SAXS data; Supplementary Fig. 7b,d,e), with modelling of the linking TERB2 sequence, to experimental SAXS data. d SAXS scattering
data for TERB2N-TERB1T2B and MAJINCore-TERB2–TERB1T2B overlaid with theoretical scattering curves of the ab initio model (red; χ2= 1.40) and CORAL
model (grey; χ2= 1.16), respectively. The scattering data points below the minimum Q-value of the Guinier analysis are shown in grey. e–g Structured
illumination microscopy. Wide field images, plot analyses and additional orientations are shown in Supplementary Figs. 8 and 9. e Spread mouse zygotene
spermatocyte chromosomes stained with anti-SYCP3 (green), anti-TERB2 (cyan) and anti-MAJIN (magenta). Scale bars, 0.3 µm. f Spread mouse
pachytene spermatocyte chromosomes stained with anti-SYCP3 (green), anti-TERB2 (cyan) and anti-MAJIN (left) or anti-TERB1 (right) (magenta). Scale
bars, 0.3 µm. Normalised intensity-distance plots are shown; frontal plots represent averages of multiple images (n= 26, n= 27 telomeres), other
orientation plots represent individual images. Source data are provided as a Source Data file. g Structurally preserved mouse spermatocyte pachytene
nuclei stained with anti-SYCP3 (green), anti-TERB2 (cyan) and anti-TERB1 (magenta). Scale bars, 0.5 µm. h Model of the 2:2:2 MAJIN–TERB2–TERB1
complex. The central MAJIN–TERB2 2:2 core is tethered to the nuclear membrane through long-flexible MAJIN linkers leading to C-terminal
transmembrane helices that are embedded in the inner nuclear membrane. Distally, it is tethered to two distinct TERB2N-TERB1 complexes through long-
flexible linkers within TERB2.Source data
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Recombinant expression and purification of full length TRF1. TRF1 (1–439) was
expressed as described above, and cell lysis was performed in 20 mM Tris pH 8.0,
500 mM KCl, 10% glycerol. Ni-NTA (Qiagen) affinity and HiTrap Q HP (GE
Healthcare) ion exchange chromatography were performed using the same buffer,
the latter with a salt gradient between 0.1–1.0 M KCl. TEV protease was added at a
1:15 ratio and incubated overnight at room temperature. Cleaved TRF1 was further
purified through HiTrap Q HP ion exchange chromatography (salt gradient
0.1–1.0 M KCl) and size exclusion chromatography (HiLoad™ 16/600 Superdex
200, GE Healthcare) in 20 mM Tris pH 8.0, 250 mM KCl, 10% glycerol buffer,
2 mM DTT. TRF1 was concentrated to a final concentration of 15 mgml−1 using
Microsep™ Advance Centrifugal Devices 10,000 MWCO centrifugal filter units
(PALL) at room temperature and stored at −80 °C following flash-freezing in
liquid nitrogen.

Preparation of a MAJIN–TERB2 selenomethionine derivative. Transformed
BL21 (DE3) E. coli were cultured in 2xYT media (Formedium), harvested at an
OD600 of 0.6 and washed in 150mM NaCl before being transferred to M9
media (Formedium) supplemented with trace elements (2.5mg l−1 CoCl2.6H2O, 15
mg l−1 MnCl2.4H2O, 1.5 mg l−1 CuCl2.2H2O, 3mg l−1 H3BO3, 33.8 mg l−1 Zn
(CH3COO)2.2H2O and 14.10mg l−1 TitriplexIII) and 5 μM Zn(OAc)2. Methionine
biosynthesis was inhibited by addition of 100mg l−1 lysine, 100mg l−1 phenylalanine,
100mg l−1 threonine, 50mg l−1 isoleucine, 50mg l−1 leucine, 50mg l−1 valine. After
1 h at 25 °C, 250 rpm, the cultures were supplemented with 50mg l−1 seleno-
methionine. Expression was induced after 30min by 0.5 mM IPTG and incubated
overnight at 15 °C, 250 rpm. Selenomethionine MAJINCore–TERB2C was purified as
described for the native protein.
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Fig. 6 Structure of the 2:1:1 TRF1–TERB1-TERB2 complex. a Size-exclusion chromatography elution profiles of TRF1TRFH (62–268), TRF1TRFH-TERB1TRFB
(62–268, 561–658) and TRF1TRFH-TERB1TRFB-TERB2N (62–268, 561–658, 1-119). A longer TERB2N construct of 1-119 was used for size exclusion
chromatography and SDS–PAGE to provide molecular weight discrimination from TERB1TRFB; all other experiments use a shorter 1–107 construct. Source
data are provided as a Source Data file. b SEC-MALS analysis. TRF1TRFH is a dimer (49 kDa; theoretical dimer – 48 kDa), TRF1TRFH-TERB1TRFB is 2:1 (58 kDa;
theoretical 2:1–59 kDa) and TRF1TRFH-TERB1TRFB-TERB2N is 2:1:1 (84 kDa; theoretical 2:1:1–73 kDa). c, d Multi-phase SAXS ab initio modelling of TRF1TRFH-
TERB1TRFB-TERB2N using MONSA in which experimental data of the complex and its constituents were used to fit their ab initio structures and relative
orientations within the full complex. c SAXS scattering data of TRF1TRFH, TERB2N-TERB1TRFB, TRF1TRFH-TERB1TRFB and TRF1TRFH-TERB1TRFB-TERB2N overlaid
with the theoretical scattering curves of their modelled structures (red; χ2 values of 1.70, 1.42, 1.43 and 1.02, respectively). The scattering data points below
the minimum Q-value of the Guinier analysis are shown in grey. d Multi-phase SAXS model of TRF1TRFH-TERB1TRFB-TERB2N in which TRF1TRFH is shown in
green with its known crystal structure superposed (PDB accession 5WIR45), and TERB1TRFB and TERB2N are shown in red and blue, respectively. eModel of
the 2:1:1 TRF1–TERB1–TERB2 complex. The dimeric cleft of the TRF1 TRFH domains interacts with TERB1 through the TRFB region that includes its binding
site for the globular N-terminus of TERB2. Source data
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Circular dichroism spectroscopy. Far UV circular dichroism (CD) spectroscopy
data were collected on a Jasco J-810 spectropolarimeter (Institute for Cell and
Molecular Biosciences, Newcastle University). Buffer subtracted CD spectra were
recorded using a 0.2 mm pathlength cuvette (Hellma) in 10 mM Na2HPO4/
NaH2PO4 pH 7.5, 250 mM NaF between 260 and 185 nm. Data were collected at
20 nmmin−1 with a pitch of 0.2 nm, smoothed with a response time of 4 s and
plotted as mean residue ellipticity ([θ]) (x1000 deg.cm2.dmol−1.residue−1). The
CDSSTR algorithm of the Dichroweb server (http://dichroweb.cryst.bbk.ac.uk) was
utilised to estimate secondary structure content of analysed samples. Protein sta-
bility was assessed through thermal denaturation in 20 mM Tris pH 8.0, 250 mM
KCl, 2 mM DTT using a 1 mm pathlength quartz cuvette (Hellma). Data were
recorded at 222 nm, between 5 °C and 95 °C at 2 °C per min every 0.5 °C, and were

converted to mean residue ellipticity ([θ222]) and plotted as % unfolded ([θ]222,x–
[θ]222,5)/([θ]222,95–[θ]222,5). Melting temperatures (Tm) were estimated as the
points at which samples are 50% unfolded.

Size-exclusion chromatography multi-angle light scattering. The absolute
molar masses of protein samples and complexes were determined by size-exclusion
chromatography multi-angle light scattering (SEC-MALS). Protein samples at > 1
mgml−1 were loaded onto a Superdex™ 200 Increase 10/300 GL size exclusion
chromatography column (GE Healthcare) in 20 mM Tris pH 8.0, 250 mM KCl, 2
mM DTT, at 0.5 ml min−1 using an ÄKTA™ Pure (GE Healthcare). The column
outlet was fed into a DAWN® HELEOS™ II MALS detector (Wyatt Technology),
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followed by an Optilab® T-rEX™ differential refractometer (Wyatt Technology).
Light scattering and differential refractive index data were collected and analysed
using ASTRA® 6 software (Wyatt Technology). Molecular weights and estimated
errors were calculated across eluted peaks by extrapolation from Zimm plots using
a dn/dc value of 0.1850 ml g−1. SEC-MALS data are presented with light scattering
(LS) and differential refractive index (dRI) profiles, with fitted molecular weights
(MW) plotted across elution peaks.

Size-exclusion chromatography small-angle X-ray scattering. SEC-SAXS
experiments were performed at beamline B21 of the Diamond Light Source syn-
chrotron facility (Oxfordshire, UK). Protein samples at concentrations > 10 mg/ml
were loaded onto a Superdex™ 200 Increase 10/300 GL size exclusion chromato-
graphy column (GE Healthcare) in 20 mM Tris pH 8.0, 250 mM KCl at 0.5 ml min
−1 using an Agilent 1200 HPLC system. The column outlet was fed into the
experimental cell, and SAXS data were recorded at 12.4 keV, detector distance
4.014 m, in 3.0 s frames. The experimental cell and beam dimensions provide an
illuminated volume of 1.8 µl, corresponding to protein exposure for 0.225 s, which
equates to sample exposure to ~20% of the full beam. Data were subtracted using
background frames from the same SEC run either before or after the protein
elution (indicated by a flat region in the plot of the integral of the ratio for each
frame and following their individual inspection), averaged and analysed for Guinier
region Rg using ScÅtter 3.1 (http://www.bioisis.net). In all cases, Guinier regions
were essentially linear, albeit with some fluctuations on either side of the linear fit
dependent on the signal:noise ratio of data collection for individual constructs,
indicating the presence of no more than minor levels of sample aggregation. Data
below the minimum Q-value of the Guinier region, which are affected by proximity
of the beam stop, were excluded from subsequent analysis. Approximate para-
meters for real space analysis were determined using the server www.bayesapp.org,
and P(r) distributions fitted using PRIMUS53. Ab initio modelling was performed
using DAMMIF. Thirty independent runs were performed in P1 or P2 symmetry
(as indicated) and averaged. Crystal structures were docked into DAMFILT
molecular envelopes using SUPCOMB54. Multi-phase SAXS ab initio modelling
was performed using MONSA;55 rigid body and linker modelling was performed
using CORAL56. Crystal structures and models were fitted to experimental data
using CRYSOL57.

Electrophoretic mobility shift assay. To demonstrate overt differences in DNA-
binding capability between complexes, protein complexes were incubated with 0.3
μM (per molecule) 57 or 75 bp linear random sequence dsDNA, 54 bp telomeric
(TTAGGG repeat) hairpin DNA (6 nt linker of CGACGA), 100 nt poly(dT) or 90
nt random sequence ssDNA substrate at concentrations indicated, in 20 mM Tris
pH 8.0, 250 mM KCl for 1 h at 4 °C. For the inhibition of DNA-binding assays, 57
bp random sequence dsDNA was incubated with MAJIN–TERB2–TERB1 for 20
min at 4 °C prior to the addition of TRF1TRFH. In DNA super-shift assays, 57 bp
random sequence dsDNA was incubated with TRF1 for 20 min at 4 °C prior to the
addition of MAJIN–TERB2–TERB1. Glycerol was added at a final concentration of
3%, and samples were analysed by electrophoresis on a 0.5% (w/v) agarose gel in
0.5x TBE pH 8.0 at 20 V for 4 h at 4 °C. DNA was detected by SYBR™ Gold
(ThermoFisher). DNA sequences are provided in Supplementary Table 3.

Apparent KD determination by EMSA. Quantification of DNA-binding was
performed though EMSA (as described above) using 25 nM FAM-labelled 145 bp
random sequence dsDNA, 100 nt poly(dT) or 90 nt random sequence ssDNA at
protein concentrations indicated (referring to the molecular oligomeric species).
DNA was detected by FAM and SYBR™ Gold (ThermoFisher) staining using a
TyphoonTM FLA 9500 (GE Healthcare), with 473 nm laser at excitation wavelength

490 nm and emission wavelength 520 nm, using the LPB filter and a PMT voltage
of 400 V. Gels were analysed using ImageJ software (https://imagej.nih.gov/ij/). The
DNA-bound proportion was plotted against molecular protein concentration and
fitted to the Hill equation (below), with apparent KD determined, using Prism8
(GraphPad). Protein concentrations used for apparent KD estimation are quoted
for the oligomeric species. DNA sequences are provided in Supplementary Table 3.

% boundDNA ¼ Cn

Kn
D þ Cn ð1Þ

Electron microscopy. Electron microscopy (EM) was performed using an FEI
Philips CM100 transmission electron microscope at the Electron Microscopy
Research Services, Newcastle University. Protein samples at 5–10 μM were incu-
bated with 10 μM (per base pair) plasmid double-stranded DNA in 20 mM Tris pH
8.0, 250 mM KCl for 10 min, and applied to carbon-coated EM grids. Negative
staining was performed using 2% (wt/vol) uranyl acetate.

Amylose pulldown assay. MAJINΔTM–MBP–TERB2–TERB1TRFH (2 µM) was
pre-incubated with plasmid dsDNA (20 µM per base pair; 7987 bp) for 30 min at
4 °C, and then with TRF1TRFH (4 µM) for 30 min at 4 °C in 20 mM Tris pH 8.0,
250 mM KCl, 10 mgml−1 BSA (100 µl reaction volume). Reactions were added to
40 µl of pre-equilibrated amylose resin (NEB) and incubated for 1 h at 4 °C. After
centrifugation at 4000 g, the supernatant was discarded and the resin was washed
twice using buffer with BSA present, and a further four times without BSA. 50 µl
1.5x LDS loading buffer (ThermoFisher) was added to resin, incubated at 95 °C for
5 min and samples were analysed by SDS–PAGE.

TRF1TRFH–TERB1 phosphorylation assays. Co-purified complexes between
His6–TRF1TRFH and MBP–TERB1TRFB (9 µM) or MBP–TERB1TBM (130 µM) were
incubated with 9 µM phosphorylated CDK1-CyclinB (prepared as previously
described58) in 40 mM Tris pH 7.5, 250 mM KCl, 20 mM MgCl2, 2 mM ATP pH
7.5, 10 mM DTT for 10 min at 30 °C and a further 50 min at 22 °C. Samples were
analysed by SEC-MALS and SDS–PAGE with staining by Coomassie and ProQ-
Diamond (ThermoFisher), for which imaging was performed using a TyphoonTM

FLA 9500 (GE Healthcare), with 532 nm laser, excitation wavelength 555 nm and
emission wavelength 580 nm, using the LPG filter and a PMT voltage of 400 V.

Structure solution of MAJIN1-112–TERB2168-220. MAJIN1-112–TERB2168-220 sele-
nomethionine derivative protein crystals were obtained through vapour diffusion
in sitting drops, by mixing 100 nl of protein at 16 mgml−1 with 100 nl of crys-
tallisation solution (0.12 M 1,6-hexanediol; 0.12M 1-butanol; 0.12 M 1,2-propa-
nediol (racemic); 0.12M 2-propanol; 0.12 M 1,4-butanediol; 0.12 M 1,3-
propanediol, 55.5 mM MES pH 3.11, 44.5 mM imidazole pH 10.23; 12.5% w/v PEG
1000; 12.5% w/v PEG 3350; 12.5% v/v MPD) and equilibrating at 20 °C. Crystals
grew overnight, were harvested after 1 week and flash frozen in liquid nitrogen. X-
ray diffraction data were collected at 0.9159 Å, 100 K, as three datasets of the same
crystal (at 15° kappa increments), each of 3600 consecutive 0.10° frames of 0.050 s
exposure on a Pilatus 6M detector at beamline I04-1 of the Diamond Light Source
synchrotron facility (Oxfordshire, UK). Data were indexed and integrated in
XDS59, and datasets were scaled together in XSCALE60 and merged in Aimless61.
Crystals belong to trigonal spacegroup P3221 (cell dimensions a= 59.88 Å, b=
59.88 Å, c= 159.93 Å, α= 90°, β= 90°, γ= 120°), with a 2:2 MAJIN–TERB2
heterotetramer in the asymmetric unit. Structure solution was achieved through
SAD experimental phasing utilising the anomalous signal of incorporated selenium
atoms. Heavy atom sites (eight) were identified, and a density-modified

Fig. 7 TRF1 recruitment by MAJIN–TERB2–TERB1. a Schematic of the human TERB1 sequence, highlighting the TRF1/TERB2-interacting region and
phosphorylation site T648, aligned with constructs TRFB (561–658), T2B (585–642) and TBM (642–658). b Size-exclusion chromatography elution
profiles of MAJINCore+BP1-TERB2–TERB1TRFB (1–147, 1–220, 561–658), TRF1TRFH (62–268), and MAJINCore+BP1-TERB2–TERB1TRFB WT and T648E (TERB1)
upon incubation with a stoichiometric amount of TRF1TRFH. c EMSA analysing the ability of MAJINCore-TERB2–TERB1TRFB to interact with linear double-
stranded DNA (dsDNA). Gel images are representative of at least three replicate EMSAs. d Quantification of DNA-binding by MAJINCore-TERB2–TERB1TRFB
(MTTCore, black), TRF1 (green) and TRF1TRFH (purple) through densitometry of EMSAs performed using 25 nM (per molecule) FAM-dsDNA. Plots and
apparent KD values were determined by fitting data to the Hill equation; error bars indicate standard error, n= 3 EMSAs. Source data are provided as a
Source Data file. e Electron microscopy analysis of MAJINCore-TERB2–TERB1TRFB alone and in complex with plasmid dsDNA. Scale bars, 100 nm. f EMSA of
MAJINCore-TERB2–TERB1TRFB upon incubation with TRF1TRFH (top) and TRF1TRFH alone (bottom) with linear double-stranded DNA (dsDNA). g EMSA of
MAJINCore-TERB2–TERB1T2B with linear dsDNA upon incubation with TRF1TRFH. h Quantification of DNA-binding by MAJINCore-TERB2–TERB1TRFB
(MTTCore/TRFB, black), MAJINCore-TERB2–TERB1T2B (MTTCore/T2B, red) and MAJINCore+BP1-TERB2–TERB1TRFB (MTTCore+BP1/TRFB, blue) upon incubation
with TRF1TRFH (at molar ratios indicated) through densitometry of EMSAs; error bars indicate standard error, n= 3 EMSAs. i EMSA of MAJINCore+BP1-
TERB2–TERB1TRFB with linear dsDNA upon incubation with TRF1TRFH. j EMSA of TRF1 (full length) with linear dsDNA upon incubation with MAJINCore-
TERB2–TERB1TRFB. f-j Gel images and plots are representative of at least three replicate EMSAs. k Amylose pulldown of TRF1TRFH using MBP-fusion
MAJINΔTM-TERB2–TERB1TRFB (MBP-MTTΔTM) with or without pre-incubation with plasmid dsDNA (as indicated). The uncropped gel image is shown in
Supplementary Fig. 12f. Source data
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Fig. 8 TRF1-mediated chromosomal attachment to the meiotic telomere complex. a–e Structured illumination microscopy. Wide-field images, plot analyses
and additional orientations are shown in Supplementary Figs. 14 and 15. a Spread mouse zygotene spermatocyte chromosomes stained with anti-SYCP3
(green), anti-TRF1 (cyan) and anti-TERB1 (top) or anti-MAJIN (bottom) (magenta). Scale bars, 0.3 µm. b Structurally preserved mouse spermatocyte
pachytene nuclei stained with anti-SYCP3 (green), anti-TRF1 (cyan) and anti-TERB1 (top) or anti-MAJIN (bottom) (magenta). Scale bars, 0.3 µm.
c–e Spread mouse pachytene spermatocyte chromosomes stained with anti-SYCP3 (green) and (c) anti-TERB1 (magenta) and anti-TRF1 (cyan), (d) anti-
MAJIN (magenta) and anti-TRF1 (cyan), and (e) anti-TERB2 (magenta) in combination with telomere fluorescence in situ hybridisation (cyan; TeloFISH).
Scale bars, 0.3 µm and 0.5 µm. Normalised intensity-distance plots are shown; frontal plots represent averages of multiple images (n= 25 telomeres),
other orientation plots represent individual images. Source data are provided as a Source Data file. f, g Model of meiotic telomere attachment to the
nuclear envelope. f Telomere ends are initially recruited through TRF1, which interacts with the meiotic telomere complex via TERB1, mediating its indirect
interaction with telomeres. g TRF1 is subsequently displaced, allowing the meiotic telomere complex to bind directly to telomeric DNA, with TRF1
associating with surrounding telomeric DNA. Source data
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experimental map was generated by PHENIX Autosol62 utilising the combined
unmerged intensity data. An initial model was built by placing helices and strands
by PHENIX Autobuild62, and was extended and completed through iterative
automated and manual re-building in Coot63. The structure was refined using
PHENIX refine62, using isotropic atomic displacement parameters with eighteen
TLS groups. The structure was refined against 2.90 Å data, to R and Rfree values of
0.2542 and 0.3039 respectively, with 98.40% of residues within the favoured regions
of the Ramachandran plot (0 outliers), clashscore of 0.46 and overall MolProbity
score of 0.66.

Structure solution of MAJIN1-106–TERB2168-207. MAJIN1-106–TERB2168-207 pro-
tein crystals were obtained through vapour diffusion in sitting drops, by mixing
100 nl of protein at 30 mgml−1 with 100 nl of crystallisation solution (0.12 M 1,6-
hexanediol; 0.12M 1-butanol; 0.12 M 1,2-propanediol (racemic); 0.12 M 2-propa-
nol; 0.12M 1,4-butanediol; 0.12 M 1,3-propanediol, 39.1 mM bicine pH 5.03, 60.9
mM Trizma pH 10.83; 12.5% w/v PEG 1000; 12.5% w/v PEG 3350; 12.5% v/v
MPD) and equilibrating at 20 °C. Crystals grew overnight, were harvested after
1 week and flash frozen in liquid nitrogen. X-ray diffraction data were collected at
0.9763 Å, 100 K, as 2000 consecutive 0.10° frames of 0.050 s exposure on a Pilatus
6M detector at beamline I03 of the Diamond Light Source synchrotron facility
(Oxfordshire, UK). Data were indexed and integrated in XDS59, scaled in
XSCALE60 and merged in Aimless61. Crystals belong to orthorhombic spacegroup
C2221 (cell dimensions a= 59.97 Å, b= 88.39 Å, c= 111.67 Å, α= 90°, β= 90°,
γ= 90°), with a 2:2 MAJIN–TERB2 heterotetramer in the asymmetric unit.
Structure solution was achieved through molecular replacement using a single
MAJIN chain of the selenomethionine derivative SAD structure as a search model,
using PHASER64. Model building was performed through iterative re-building by
PHENIX Autobuild62 and manual building in Coot63. The structure was refined
using PHENIX refine62, using isotropic atomic displacement parameters with three
TLS groups per chain. The structure was refined against data to 1.85 Å resolution,
to R and Rfree values of 0.1883 and 0.2072 respectively, with 98.49% of residues
within the favoured regions of the Ramachandran plot (0 outliers), clashscore of
0.22 and overall MolProbity score of 0.58.

Meiotic spreads and nuclei preservation. Primary antibodies used in this study
were as follows: rabbit antibodies against mouse TRF1 (Alpha Diagnostic; TRF12-
A, 1:100), TERB2 (1:100);42 mouse against mouse SYCP3 (Abcam; ab 97672,
1:150); guinea pig against C-terminus rat SYCP2 (Seqlab; Göttingen, Germany;
1:100), against 13-aa (HAGPNVYKFKIRYGN) from mouse N-terminus MAJIN
(Seqlab; Göttingen, Germany; 1:20), against 15-aa (LDKEKTFDQKDSVSQ) from
mouse C-terminus TERB1 (Seqlab; Göttingen, Germany; 1:20) and against 103-aa
from mouse C-terminus TERB1 (1:200)65. Meiotic cell spreading and structural
preservation of meiotic nuclei were performed as previously described66,67, with
minor modifications. Wild-type mouse strain C57BL/6 J (30-day-old) were anes-
thetized and killed with CO2. For chromosome spreading, after decapsulation of
mice testes, seminiferous tubules were suspended in hypotonic buffer (30 mM Tris-
HCL, 17 mM trisodium citrate, 5 mM EDTA, 50 mM sucrose, 5 mM dithiothreitol,
pH 8.2) for 30 min. The resultant swollen tubules were transferred into a drop of
100 mM sucrose on a new slide. The tubules were desegregated with two fine
forceps until cells were suitably suspended. Once a cell suspension was achieved, a
Superfrost Plus™ slide (ThermoFisher Scientific) was immediately dipped into 1%
(w/v) paraformaldehyde (PFA), pH 9.2, 0.15% (v/v) Triton X-100. After allowing
excess solution to drip away, the last droplet was kept in one corner of the slide and
the cell suspension was placed into this droplet. In the preparation of structurally
preserved spermatocyte nuclei, after the decapsulation of mice testes, seminiferous
tubules were disrupted with two razor blades until a cell suspension was achieved
in cold PBS (140 mM NaCl, 2.6 mM KCl, 6.4 mM Na2HPO4, 1.4 mM KH2PO4, pH
7.4). The suspension was filtered through a nylon filter (mesh size 25–30 µm) and
subsequently centrifuged for 10 min at 500 g at 4 °C. The pellet was resuspended
and subsequently incubated in eight-well Nunc™ Lab-Tek™ II Chamber Slide™
System (Thermo Fischer Scientific) for 1 h at room temperature. During this time,
cells sank to the bottom of the chambers and adhered to the surface due to previous
treatment of the chambers well with 0.01% poly-L-lysine in ddH2O (1 h at room
temperature). Cells were fixed with 1% paraformaldehyde in ddH2O for 5 min at
room temperature. Subsequently, cells were permeabilized with 0.1% Triton-X-100
solution, for 10 min at room temperature. Immediately, cells were blocked with 5%
milk powder 5% FCS in PBS, pH 7.4 for > 30 min and then incubated with primary
antibodies at room temperature for > 1 h. Post-incubation, samples were washed
(3 × 5 min) in PBS (0.13 M NaCl, 0.0027M KCl, 0.01 Na2HPO4, 0.018M KH2PO4,
pH 7.4). Prior to a 30 min secondary antibody incubation, slides were again
blocked for 30 min. During the final 10 min of the secondary antibody incubation,
a few drops of Hoechst33258 (1:333 in PBS) were added. Samples were again
washed (3 × 5 min), incubated with PBS and stored at 4 °C.

Structured illumination microscopy and data processing. Image acquisition was
performed as previously described68. 2D and 3D SIM images of prophase I stages
were scanned using Zeiss Elyra S.1 (Carl Zeiss Microscopy GmbH) equipped with a
63x oil/1.4 oil Plan-Apochromat DICM27 and 63 × /1.2W KorrM27 objective
DICIII. The system also included an X-cite (LED) illumination lamp; 405, 488, 592

and 647 nm lasers with five grid rotation, five5 shifts and PCO Edge 5.5 sCMOS
camera. Zeiss immersion oils ranging in refractive index from 1.33 (water) to 1.518
were used, depending on the objective and sample conditions analysed. Colour
channels were carefully aligned using 200 nm TetraSpeckTM microspheres
(Thermo Fischer Scientific, catalogue number: T-7280). Each channel alignment
was processed with the available SIM algorithms in the custom software. Image
reconstruction was performed using the commercial software ZEN 2012 package
(Carl Zeiss Microscopy GmbH) based on previously developed structured illumi-
nation algorithms69. Images were acquired in the form of Z-stacks. Sections were
acquired at 0.1 μm. The range used for the structurally preserved nuclei was 3 µm
and 0.80 µm for chromosomes spreading. Negative values in the reconstruction
process were not discarded comprising the full dynamic range and 16-bit colour
depth. To analyse signal distribution of MTC proteins, late pachytene-
spermatocytes were selected by the marker pair XY chromosomes70. After max-
imum intensity projection for each image were processed, background was sub-
tracted by measuring the average intensity in an ROI position outside the sample
area and subtracting this fixed intensity value from each in the image equally.
Quantification of signal distribution was measured in a constant region with fix
length (1 μm) lines of interested regions by recording the intensity profile for each
channel in Fiji71. Intensity profiles were normalized to their respective maximum
intensity.

Telomere fluorescence in situ hybridization. Telomere fluorescence in situ
hybridization (TeloFISH) was combined with immunofluorescence as described
previously67, with minor modifications. Testis cell spreads were dehydrated in an
alcohol series (70, 80 and 100%) for 5 min. The hybridization solution and both
labelling reactions were pre-heated to 95 °C for ~15 min. Immediately before
hybridization, 6 µl of each of the two labelling reactions was added to 80–100 µL of
the pre-heated hybridization solution mix, and pipetted onto the slides in a
moisture chamber. Note, we found it beneficial to mark a central region on the
slide using a grease pencil to ensure the same region is subjected to the following
immunofluorescence procedure. The chamber was tightly sealed with parafilm to
avoid evaporation. The chamber was immediately placed into an oven pre-heated
to 95 °C and denatured for 20 min. We further note that working quickly and
smoothly during this procedure greatly increases the success of the protocol. After
rinsing for 10 min, mice testis cells were spread in 2x SCC (SSC 0.3 M NaCl, 0.03M
Na-citrate; pH 7.4) and denatured at 95 °C for 20 min, and placed in 40 µl of
hybridization solution (30% formamide, 10% dextran sulphate, 250 µg ml−1 E. coli
DNA in 2 × SSC) supplemented with 10 pmol digoxigenin-labelled (TTAGGG)7/
(CCCTAA)7 oligomers. Hybridization was performed at 37 °C overnight in a
humid chamber. Slides were washed two times in 2 × SSC at 37 °C for 10 min each
and blocked with 0.5% blocking-reagent (Roche, Mannheim, Germany) in TBS
(150 mM NaCl, 10 mM Tris/HCl; pH 7.4). Samples were incubated with mouse
anti-digoxigenin antibodies (Roche, Mannheim, Germany; 1:50) according to the
manufacturer’s protocol and bound antibodies detected with Alexa488 (Thermo
scientific; 1:200) anti-mouse secondary antibodies. Following the TeloFISH pro-
cedure, samples were prepared for immunofluorescence by blocking with 5% (w/v)
milk, 5% (v/v) FCS in PBS, pH 7.4. Slides were incubated with the first primary
antibody overnight, washed two times in PBS for 10 min each and incubated with
the corresponding secondary antibody as described above. Finally, slides were again
washed in PBS before incubating with the second primary antibody. After further
washing in PBS, samples were exposed to the corresponding secondary antibodies.

Protein sequence and structure analysis. The MAJIN sequence and boundaries
utilised in this study relate to the human MAJIN isoform X1 (254 amino acids;
accession number XP_024304215.1), which was chosen as it contains all necessary
domains and most closely matches the canonical isoforms conserved across
mammals. TERB1, TERB2 and TRF1 sequences relate to their canonical human
isoforms (accession numbers Q8NA31, Q8NHR7 and P54274, respectively).
Amino acid conservations were calculated for full length proteins and the
MAJINCore–TERB2C crystal structure by ConSurf (http://consurf.tau.ac.il/).
Structural assemblies were analysed by PISA. Molecular structures images were
generated using the PyMOL Molecular Graphics System, Version 2.0 Schrödinger,
LLC.

Ethics statement. Animal care and experiments were conducted in accordance
with the guidelines provided by the German Animal Welfare Act (German Min-
istry of Agriculture, Health and Economic Cooperation). Animal housing and
breeding was approved by the regulatory agency of the city of Würzburg (Reference
ABD/OA/Tr; according to §11/1 No. 1 of the German Animal Welfare Act).

Data availability
Crystallographic structure factors and atomic co-ordinates have been deposited in
the Protein Data Bank (PDB) under accession numbers 6GNX and 6GNY. A
Reporting Summary for this Article is available as a Supplementary Information
file. The Source Data underlying Figs. 4c,d, 5a,f, 6a, 7b–d, f–k and 8c–e and
Supplementary Figs. 1e–g, 4f, g, 5a, c, d, 6a, b, 10a–c, 11a, b, 12a, b, d–f and 13g, h
are provided as a Source Data file. All other data are available from the corre-
sponding authors upon reasonable request.
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