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ABSTRACT2

Graph summarisation has received much attention lately, with various works tackling the3
challenge of defining pooling operators on data regions with arbitrary structures. These contrast4
the grid-like ones encountered in image inputs, where techniques such as max-pooling have5
been enough to show empirical success. In this work, we merge the Mapper algorithm with the6
expressive power of graph neural networks to produce topologically-grounded graph summaries.7
We demonstrate the suitability of Mapper as a topological framework for graph pooling by proving8
that Mapper is a generalisation of pooling methods based on soft cluster assignments. Building9
upon this, we show how easy it is to design novel pooling algorithms that obtain competitive10
results with other state-of-the-art methods. Additionally, we use our method to produce GNN-aided11
visualisations of attributed complex networks.12
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1 INTRODUCTION
The abundance of relational information in the real world and the success of deep learning techniques14
have brought renowned interest in learning from graph-structured data. Efforts in this direction have been15
primarily focused on replicating the hierarchy of convolutional filters and pooling operators, which have16
achieved previous success in computer vision Sperduti (1994); Goller and Kuchler (1996); Gori et al.17
(2005); Scarselli et al. (2009); Bruna et al. (2014); Li et al. (2015), within relational data domains. In18
contrast to image processing applications, where the signal is defined on a grid-like structure, designing19
graph coarsening (pooling) operators is a much more difficult problem, due to the arbitrary structure20
typically present in graphs.21

In this work, we introduce Structural Deep Graph Mapper (SDGM)1—an adaptation of Mapper (Singh22
et al., 2007), an algorithm from the field of Topological Data Analysis (TDA) (Chazal and Michel, 2017),23
to graph domains. First, we prove that SDGM is a generalisation of pooling methods based on soft24
cluster assignments, which include state-of-the-art algorithms like minCUT (Bianchi et al., 2019) and25

1 Code to reproduce models and experimental results is available at https://github.com/crisbodnar/dgm.
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Figure 1. A cartoon illustration of Structural Deep Graph Mapper (SDGM) where, for simplicity, a graph
neural network (GNN) approximates a ‘height’ function over the nodes in the plane of the diagram. The
input graph (a) is passed through the GNN, which maps the vertices of the graph to a real number (the
height) (b–c). Given a cover U of the image of the GNN (c), the edge-refined pull back cover Ū is computed
(d–e). The dotted edges in (d) illustrate connections between the node clusters (strucutal connections),
while the dotted boxes show nodes that appear in multiple clusters (semantic connections). The 1-skeleton
of the nerve of the edge-refined pull back cover provides the pooled graph (f).

DiffPool (Ying et al., 2018). Building upon this topological perspective of graph pooling, we propose two26
pooling algorithms leveraging fully-differentiable and fixed PageRank-based ‘lens’ functions, respectively.27
We demonstrate that these operators achieve results competitive with other state-of-the-art pooling methods28
on graph classification benchmarks. Furthermore, we show how our method offers a means to flexibly29
visualise graphs and the complex data living on them through a GNN ‘lens’ function.30

2 RELATED WORK
In this section, we investigate the existing work in the two broad areas that our method is part of—graph31
pooling (also deemed hierarchical representation learning) and network visualisations.32

Graph pooling algorithms have already been considerably explored within GNN frameworks for graph33
classification. Luzhnica et al. (2019) propose a topological approach to pooling, which coarsens the graph34
by aggregating its maximal cliques into new clusters. However, cliques are local topological features,35
whereas our methods leverage a global perspective of the graph during pooling. Two paradigms distinguish36
themselves among learnable pooling layers: Top-k pooling based on a learnable ranking (Gao and Ji,37
2019), and learning the cluster assignment (Ying et al., 2018) with additional entropy and link prediction38
losses for more stable training (DiffPool). Following these two trends, several variants and incremental39
improvements have been proposed. The Top-k approach is explored in conjunction with jumping-knowledge40
networks (Cangea et al., 2018), attention (Lee et al., 2019; Huang et al., 2019) and self-attention for cluster41
assignment (Ranjan et al., 2019). Similarly to DiffPool, the method suggested by Bianchi et al. (2019)42
uses several loss terms to enforce clusters with strongly connected nodes, similar sizes and orthogonal43
assignments. A different approach is also proposed by Ma et al. (2019), who leverage spectral clustering.44

Graph visualisation is a vast topic in network science. We therefore refer the reader to existing surveys,45
for a complete view of the field (Nobre et al., 2019; von Landesberger et al., 2011; Beck et al., 2017), and46
focus here only on methods that, similarly to ours, produce node-link-based visual summaries through47
the aggregation of static graphs. Previous methods rely on grouping nodes into a set of predefined48
motifs (Dunne and Shneiderman, 2013), modules (Dwyer et al., 2013) or clusters with basic topological49
properties (Batagelj et al., 2010). Recent approaches have considered attribute-driven aggregation schemes50
for multivariate networks. For instance, PivotGraph (Wattenberg, 2006) groups the nodes based on51
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categorical attributes, while van den Elzen and van Wijk (2014) propose a more sophisticated method52
using a combination of manually-specified groupings and attribute queries. However, these mechanisms53
are severely constrained by the simple types of node groupings allowed and the limited integration between54
graph topology and attributes. Closest to our work, Mapper-based summaries for graphs have recently55
been considered by Hajij et al. (2018). Despite the advantages provided by Mapper, their approach relies56
on hand-crafted graph-theoretic ‘lenses’, such as the average geodesic distance, graph density functions57
or eigenvectors of the graph Laplacian. Not only are these functions unable to fully adapt to the graph58
of interest, but they are also computationally inefficient and do not take into account the attributes of the59
graph.60

3 BACKGROUND AND FORMAL PROBLEM STATEMENT
Formal problem statement. Consider a dataset whose samples are formed by a graph Gi = (Vi, Ei), a61
d-dimensional signal defined over the nodes of the graph hi : V → Rd and a label yi associated with the62
graph, where i ∈ I , a finite indexing set for the dataset samples. We are interested in the setting where graph63
neural networks are used to classify such graphs using a sequence of (graph) convolutions and pooling64
operators. While convolutional operators act like filters of the graph signal, pooling operators coarsen the65
graph and reduce its spatial resolution. Unlike image processing tasks, where the inputs exhibit a regular66
grid structure, graph domains pose challenges for pooling. In this work, we design topologically-inspired67
pooling operators based on Mapper. As an additional contribution, we also investigate graph pooling as a68
tool for the visualisation of attributed graphs.69

We briefly review the Mapper (Singh et al., 2007) algorithm, with a focus on graph domains (Hajij et al.,70
2018). We first introduce the required mathematical background.71

Definition 3.1. Let X,Z be two topological spaces, f : X → Z, a continuous function, and U = (Ui)i∈I72
a cover of Z. Then, the pull back cover f−1(U) of X induced by (f,U) is the collection of open sets73
f−1(Ui), i ∈ I , for some indexing set I . For each f−1(Ui), let {Ci,j}j∈Ji be a partition of f−1(Ui) indexed74
by Ji. We refer to the elements of these partitions as clusters. The resulting collection of clusters forms75
another cover of X called the refined pull back cover R(f−1(U)) = {Ci,j}i∈I,j∈Ji .76

Definition 3.2. Let X be a topological space with an open cover U = (Ui)i∈I . The 1-skeleton of the77
nerve N (U) of U , which we denote by sk1(N (U)), is the graph with vertices given by (vi)i∈I , where two78
vertices vi, vj are connected if and only if Ui ∩ Uj 6= ∅.79

Mapper. Given a topological space X , a carefully chosen lens function f : X → Z and a cover U of80
Z, Mapper produces a graph representation of the topological space by computing the 1-skeleton of the81
nerve of the refined pull back cover sk1(N (R(f−1(U)))), which we denote byM(f,U). We note that,82
more generally, the skeleton operator might be omitted, in which case the output of the algorithm becomes83
a simplicial complex. However, for the purpose of this work, we are only interested in graph outputs.84
Typically, the input to the Mapper algorithm is a point cloud and the connected components are inferred85
using a statistical clustering algorithm, with the help of a metric defined in the space where the points live.86

Mapper for Graphs. More recently, Hajij et al. (2018) considered the case when the input topological87
space X = G(V,E) is a also a graph with vertices V and edge set E. In a typical point cloud setting, the88
relationships between points are statistically inferred; in a graph setting, the underlying relationships are89
given by the edges of the graph. The adaptation of Mapper for graphs proposed by Hajij et al. (2018) uses a90
lens function f : V → R based on graph-theoretic functions and a cover U formed of open intervals of the91
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real line. Additionally, the connected components {Ci,j}j∈Ji are given by the vertices of the connected92
components of the subgraph induced by f−1(Ui).93

However, the graph version of Mapper described above has two main limitations. Firstly, the graph-94
theoretic functions considered for f are rather limited, not taking into account the signals which are95
typically defined on the graph in signal processing tasks, such as graph classification. Secondly, by using a96
pull back cover only over the graph vertices, as opposed to a cover of the entire graph, the method relies97
exclusively on the lens function to capture the structure of the graph and the edge-connections between the98
clusters. This may end up discarding valuable structural information, as we later show in Section 7.7.99

4 STRUCTURAL DEEP GRAPH MAPPER
Structural Graph Mapper. One of the disadvantages of the graph version of Mapper (described in the100
background section) is that its output does not explicitly capture the connections between the resulting101
collections of clusters. This is primarily because the lens function f is defined only over the set of vertices V102
and, consequently, the resulting pull-back cover only covers V. In contrast, one should aim to obtain a cover103
for the graph G, which automatically includes the edges. While this could be resolved by considering a lens104
function over the geometric realisation of the graph, handling only a finite set of vertices is computationally105
convenient.106

To balance these trade-offs, we add an extra step to the Mapper algorithm. Concretely, we extend107
the refined pull back cover into a cover over both nodes and edges. Given the set of refined clusters108
{Ci,j}i∈I,j∈Ji , we compute a new set of clusters {C ′i,j}i∈I,j∈Ji where each cluster C ′i,j contains the109
elements of Ci,j as well as all the edges incident to the vertices in Ci,j . We useRE (the edge-refined pull110
back cover) to refer to this open cover of the graph G computed from f−1(U). Then, our algorithm can be111
written as sk1(N (RE(f−1(U)))) and we denote it by GM(f,U).112

Remark 1. We note that Structural Mapper, unlike the original Mapper method, encodes two types of113
relationships via the edges of the output graph. The semantic connections highlight a similarity between114
clusters, according to the lens function (that is, two clusters have common nodes—as before), while115
structural connections show how two clusters are connected (namely, two clusters have at least one edge in116
common). This latter type of connection is the result of considering the extended cover over the edges. The117
two types of connections are not mutually exclusive because two clusters might have both nodes and edges118
in common.119

We now broadly outline our proposed method, using the three main degrees of freedom of the Mapper120
algorithm to guide our discussion: the lens function, the cover, and the clustering algorithm.121

The lens is a function f : V → Rd over the vertices, which acts as a filter that emphasises certain features122
of the graph. Typically, d is a small integer—in our case, d ∈ {1, 2}. The choice of f depends on the graph123
properties that should be highlighted by the visualisation. In this work, we leverage the recent progress in124
the field of graph representation learning and propose a parameterised lens function based on graph neural125
networks (GNNs). We thus consider a function fθ(v) = gθ(V,E,X)v, where g is a GNN with parameters θ126
taking as input a graph G = (V,E) with n nodes and node features X ∈ Rn×k. For visualisation purposes,127

we often consider a function composition fθ(v) = (r ◦ gθ)v, where r : Rn×d
′ → Rn×d is a dimensionality128

reduction algorithm like t-SNE (van der Maaten and Hinton, 2008).129

Unlike the traditional graph theoretic lens functions proposed by Hajij et al. (2018), GNNs can naturally130
learn to integrate the features associated with the graph and its topology, while also scaling computationally131
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to large, complex graphs. Additionally, visualisations can be flexibly tuned for the task of interest, by132
adjusting the lens gθ through the loss function of the model.133

The cover U determines the resolution of the output graph. For most purposes, we leverage the usual134
cover choice for Mapper, Rd. When d = 1, we use a set of equally-sized overlapping intervals over the real135
line. When d = 2, this is generalised to a grid of overlapping cells in the real plane. Using more cells will136
produce more detailed visualisations, while higher overlaps between the cells will increase the connectivity137
of the output graph. When chosen suitably, these hyperparameters are a powerful mechanism for obtaining138
multi-scale visualisations.139

Another choice that we employ for designing differentiable pooling algorithms is a set of RBF kernels,140
where the second arguments of kernel functions are distributed over the real line. We introduce this in141
detail in Section 5.2.142

Clustering statistically approximates the (topological) connected components of the cover sets Ui.143
Mapper does not require a particular type of clustering algorithm; however, when the input topological144
spaceX is a graph, a natural choice, also adopted by Hajij et al. (2018), is to take the connected components145
of the subgraphs induced by the vertices f−1(Ui), i ∈ I . Therefore, in principle, there is no need to resort146
to statistical clustering techniques.147

However, relying on the topological connected components introduces certain challenges when the aim148
is to obtained a coarsened graph. Many real-world graphs comprise thousands of connected components,149
which is a lower bound to the number of connected components of the graph produced by GM. In the most150
extreme case, a graph containing only isolated nodes (namely, a point cloud) would never be coarsened by151
this procedure. Therefore, it is preferable to employ statistical techniques where the number of clusters152
can be specified. In our pooling experiments, we draw motivation from the relationship with other pooling153
algorithms and opt to assign all the nodes to the same cluster (which corresponds to no clustering).154

We broadly refer to this instance of Structural Graph Mapper, with the choices described above, as155
Structural Deep Graph Mapper (SDGM). We summarise it step-by-step in the cartoon example in Figure 1156
and encourage the reader to refer to it.157

5 STRUCTURAL GRAPH MAPPER FOR POOLING
We begin this section by introducing several theoretical results, which provide a connection between our158
version of Mapper and other graph pooling algorithms. We then use these results to show how novel pooling159
algorithms can be designed.160
5.1 Relationship to graph pooling methods161

An early suggestion that Mapper could be suitable for graph pooling is given by the fact that it constitutes162
a generalisation of binary spectral clustering, as observed by Hajij et al. (2018). This link is a strong163
indicator that Mapper can compute ‘useful’ clusters for pooling. We formally restate this observation below164
and provide a short proof.165

Proposition 5.1. Let L be the Laplacian of a graph G(V,E) and l2 the eigenvector corresponding to the166
second lowest eigenvalue of L, also known as the Fiedler vector (Fiedler, 1973). Then, for a function167
f : V → R, f(v) = l2(v), outputting the entry in the eigenvector l2 corresponding to node v and a cover168
U = {(−∞, ε), (−ε,+∞)}, Mapper produces a spectral bi-partition of the graph for a sufficiently small169
positive ε.170

Frontiers 5



Bodnar et al. Deep Graph Mapper

PROOF. It is well known that the Fiedler vector can be used to obtain a ‘good’ bi-partition of the graph171
based on the signature of the entries of the vector (i.e. l2(v) > 0 and l2(v) < 0) (please refer to Demmel172
(1995) for a proof). Therefore, by setting ε to a sufficiently small positive number ε < minv |l2(v)|, the173
obtained pull back cover is a spectral bi-partition of the graph.174

The result above indicates that Mapper is a generalisation of spectral clustering. As the latter is strongly175
related to min-cuts (Leskovec, 2016), the proposition also links them to Mapper. We now provide a much176
stronger result in that direction, showing that Structural Mapper is a generalisation of all pooling methods177
based on soft-cluster assignments. Soft cluster assignment pooling methods use a soft cluster assignment178
matrix S ∈ RN×K , where Sij encodes the probability that node i belongs to cluster j, N is the number of179
nodes in the graph and K is the number of clusters. The adjacency matrix of the pooled graph is computed180
via A′ = ST (A + I)S. Below, we prove a helpful result concerning this class of methods.181

Lemma 5.1. The adjacency matrix A′ = ST(A + I)S defines a pooled graph, where the nodes182
corresponding to clusters encoded by S are connected if and only if there is a common edge (including183
self-loops) between them.184

PROOF. Let L = AS. Then, A′ij =
∑N

k S
T
ikLkj = 0 if and only if STik = 0 (node k does not belong to185

cluster i) or Lkj = 0 (node k is not connected to any node belonging to cluster j), for all k. Therefore,186
A′ij 6= 0 if and only if there exists a node k such that k belongs to cluster i and k is connected to a node187
from cluster j. Due to the added self-loops, A′ij 6= 0 also holds if there is a node k belonging to both188
clusters.189

Proposition 5.2. GM(f,U) generalises approaches based on soft-cluster assignments.190

PROOF. Let s : V →4K−1 be a soft cluster assignment function that maps the vertices to the (K − 1)-191
dimensional unit simplex. We denote by sk(v) the probability that vertex v belongs to cluster k ≤ K and192 ∑K

k sk(v) = 1. This function can be completely specified by a cluster assignment matrix S ∈ RN×K with193
Sik = sk(i). This is the soft cluster assignment matrix computed by algorithms like minCut and DiffPool.194
Let U = {Ui}i≤K with Ui = {x ∈ 4K−1|x =

∑
j λjuj ,

∑
j λj = 1 and λi > 0} be an open cover of195

4K−1. Then consider an instance of GM where everything is assigned to a single cluster (i.e. same as no196
clustering). Clearly, there is a one-to-one correspondence between the vertices of GM(s,U) and the soft197
clusters. By Remark 1, the nodes corresponding to the clusters are connected only if the clusters share at198
least one node or at least one edge. Then, by Lemma 5.1 the adjacency between the nodes of GM(s,U)199
are the same as those described by A′ = ST (A + I)S. Thus, the two pooled graphs are isomorphic.200

We hope that this result will enable theoreticians to study pooling operators through the topological and201
statistical properties of Mapper (Carriere et al., 2018; Carrière and Oudot, 2018; Dey et al., 2017). At the202
same time, we encourage practitioners to take advantage of it and design new pooling methods in terms of203
a well-chosen lens function f and cover U for its image. To illustrate this idea and showcase the benefits of204
this new perspective over graph pooling methods, we introduce two Mapper-based operators.205

5.2 Differentiable Mapper Pooling (DMP)206

The main challenge for making pooling via Mapper differentiable is to differentiate through the pull back207
computation. To address this, we replace the cover of n overlapping intervals over the real line, described208

in the previous section, with a cover formed of overlapping RBF kernels φ(x, xi) = exp(−‖x−xi‖
2

δ ),209
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Figure 2. Two covers of RBF kernels with different scales: δ = 0.002 and δ = 0.01. The x-axis
corresponds to the unit interval where the nodes of the graph are mapped. The y-axis represents the value
of the normalised RBF kernels.

evaluated at n fixed locations xi. The overlap between these kernels can be adjusted through the scale δ of210
the kernels. The soft cluster assignment matrix S is given by the normalised kernel values:211

Sij =
φ(σ(fθ(Xl))i, xj)∑n
j=1 φ(σ(fθ(Xl))i, xj)

, (1)

where the lens function fθ is a GNN layer, σ is a sigmoid function ensuring the outputs are in [0, 1], and212
Xl are the node features at layer l. Intuitively, the more closely a node is mapped to a location xi, the213
more it belongs to cluster i. By Proposition 5.2, we can compute the adjacency matrix of the pooled214
graph as ST (A + I)S; the features are given by STX. This method can also be thought as a version of215
DiffPool (Ying et al., 2018), where the low-entropy constraint on the cluster assignment distribution is216
topologically satisfied, since a point cannot be equally close to many other points on a line. Therefore, each217
node will belong only to a few clusters if the scale δ is appropriately set.218

In Figure 2 we show two examples of RBF kernel covers for the output space. The scale of the kernel, δ,219
determines the amount of overlap between the cover elements. At bigger scales, there is a higher overlap220
between the clusters, as shown in the two plots. Because the line is one-dimensional, a point on the unit221
interval can only be part of a small number of clusters (that is, the kernels for which the value is greater222
than zero), assuming the scale δ is not too large. Therefore, DMP can be seen as a DiffPool variant where223
the low-entropy constraint on the cluster assignment is satisfied topologically, rather than by a loss function224
enforcing it.225
5.3 Mapper-based PageRank (MPR) Pooling226

To evaluate the effectiveness of the differentiable pooling operator, we also consider a fixed and scalable227
non-differentiable lens function f : V → R that is given by the normalised PageRank (PR) (Page et al.,228
1999) of the nodes. The PageRank function assigns an importance value to each of the nodes based on their229
connectivity, according to the well-known recurrence relation:230

f(X)i
∆
= PRi =

∑
j∈N(i)

PRj

|N(i)|
, (2)

where N(i) represents the set of neighbours of the i-th node in the graph and the damping factor was231
set to the typical value of d = 0.85. The resulting scores are values in [0, 1] which reflect the probability232
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of a random walk through the graph to end in a given node. Using the previously described overlapping233
intervals cover U , the elements of the pull back cover form a soft cluster assignment matrix S:234

Sij =
Ii∈f−1(Uj)

|{Uk|i ∈ f−1(Uk)}|
(3)

where Un is the n-th cover set in the cover U of [0, 1]. It can be observed that the resulting clusters235
contain nodes with similar PageRank scores. Intuitively, this pooling method merges the (usually few)236
highly-connected nodes in the graph, at the same time clustering the (typically many) dangling nodes that237
have a normalised PageRank score closer to zero. Therefore, this method favours the information attached238
to the most ‘important’ nodes of the graph. The adjacency matrix of the pooled graph and the features are239
computed in the same manner as for DMP.240

5.4 Model241

For the graph classification task, each example G is represented by a tuple (X,A), where X is the node242
feature matrix and A is the adjacency matrix. Both our graph embedding and classification networks243
consist of a sequence of graph convolutional layers (Kipf and Welling, 2016); the l-th layer operates on its244
input feature matrix as follows:245

Xl+1 = σ(D̂−
1
2 ÂD̂−

1
2XlWl), (4)

where Â = A + I is the adjacency matrix with self-loops, D̂ is the normalised node degree matrix, Wl is246
the weight matrix of the l-th layer and σ is the activation function. After E layers, the embedding network247
simply outputs node features XLE

, which are subsequently processed by a pooling layer to coarsen the248
graph. The classification network first takes as input node features of the Mapper-pooled graph2, XMG,249
and passes them through LC graph convolutional layers. Following this, the network computes a graph250
summary given by the feature-wise node average and applies a final linear layer which predicts the class:251

y = softmax
( 1

|MG|

|MG|∑
i=1

XLC
Wf + bf

)
. (5)

We note that either of these pooling operators could readily be adapted to the recently proposed message252
passing simplicial neural networks (MPSNs) (Bodnar et al., 2021) as a tool for coarsening simplicial253
complexes by dropping the 1-skeleton operator after computing the nerve. We leave this endeavour for254
future work. The complete model details can be found in Appendix A.255

5.5 Complexity256

The topology of the output graph can be computed in O(V + E) time when using a cover over the unit257
interval, as described above. The output graph can be computed via (sparse) matrix multiplication given by258
ST(A + I)S, to take advantage of GPU parallelism and compute the coefficients associated with the edges.259

6 POOLING EXPERIMENTS
Tasks. We illustrate the applicability of the Mapper-GNN synthesis within a pooling framework, by260
evaluating DMP and MPR in a variety of settings: social (IMDB-Binary, IMDB-Multi, Reddit-Binary,261
Reddit-Multi-5k), citation networks (Collab) and chemical data (D&D, Mutag, NCI1, Proteins) (Kersting262
et al., 2016).263

2 Note that one or more {embedding → pooling} operations may be sequentially performed in the pipeline.
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Table 1. Results obtained on classification benchmarks. Accuracy measures with 95% confidence intervals
are reported. The highest result is bolded and the second highest is underlined. The first columns four are
molecular graphs, while the others are social graphs. Our models perform competitively with other state of
the art models.

Model D&D Mutag NCI1 Proteins Collab IMDB-B IMDB-M Reddit-B Reddit-5k

DMP (Ours) 77.3± 3.6 84.0± 8.6 70.4± 4.2 75.3± 3.3 81.4± 1.2 73.8± 4.5 50.9± 2.5 86.2± 6.8 51.9± 2.1
MPR (Ours) 78.2± 3.4 80.3± 6.0 69.8± 1.8 75.2± 2.2 81.5± 1.0 73.4± 2.7 50.6± 2.0 86.3± 4.8 52.3± 1.6
Top-k 75.1± 2.2 82.5± 6.8 67.9± 2.3 74.8± 3.0 75.0± 1.1 69.6± 3.8 45.0± 2.8 79.4± 7.4 48.5± 1.1
minCUT 77.6± 3.1 82.9± 6.0 68.8± 2.1 73.5± 2.9 79.9± 0.8 70.7± 3.5 50.6± 2.1 87.2± 5.0 52.9± 1.3
DiffPool 77.9± 2.4 94.7± 7.1 68.1± 2.1 74.2± 0.3 81.3± 0.1 72.4± 3.1 50.3± 1.8 79.0± 1.1 50.4± 1.7
WL 77.4± 2.6 74.5± 6.5 76.4± 2.7 74.7± 3.2 78.5± 1.1 72.1± 3.1 50.7± 2.9 66.7± 10.4 49.2± 1.4
Flat 69.9± 2.2 71.8± 4.3 65.5± 1.7 70.2± 2.6 80.9± 1.4 73.6± 4.2 48.5± 2.4 70.0± 10.8 49.5± 1.7
avg-MLP 63.7± 1.4 69.1± 5.8 55.7± 2.8 61.8± 1.7 74.8± 1.3 71.5± 2.9 49.5± 2.2 53.6± 6.2 45.9± 1.6

Experimental setup. We adopt a 10-fold cross-validation approach to evaluating the graph classification264
performance of DMP, MPR and other competitive state-of-the-art methods. The random seed was set to265
zero for all experiments (with respect to dataset splitting, shuffling and parameter initialisation), in order to266
ensure a fair comparison across architectures. All models were trained on a single Titan Xp GPU, using the267
Adam optimiser (Kingma and Ba, 2014) with early stopping on the validation set, for a maximum of 30268
epochs. We report the classification accuracy using 95% confidence intervals calculated for a population269
size of 10 (the number of folds).270

Baselines. We compare the performance of DMP and MPR to two other pooling methods that we271
identify mathematical connections with: minCUT (Bianchi et al., 2019) and DiffPool (Ying et al., 2018).272
Additionally, we include Graph U-Net (Gao and Ji, 2019) in our evaluation, as it has been shown to yield273
competitive results while performing pooling from the perspective of a learnable node ranking; we denote274
this approach by Top-k in the remainder of this section. The non-pooling baselines evaluated are the275
WL kernel (Shervashidze et al., 2011), a ‘flat’ model (2 MP steps and global average pooling) and an276
average-readout linear classifier.277

We optimise both DMP and MPR with respect to the cover cardinality n, the cover overlap (δ for DMP,278
overlap percentage g for MPR), learning rate and hidden size. The Top-k architecture is evaluated using279
the code provided in the official repository, where separate configurations are defined for each of the280
benchmarks. The minCUT architecture is represented by the sequence of operations described by Bianchi281
et al. (2019): MP(32)-pooling-MP(32)-pooling-MP(32)-GlobalAvgPool, followed by a linear softmax282
classifier. The MP(32) block represents a message-passing operation performed by a graph convolutional283
layer with 32 hidden units:284

X(t+1) = ReLU(ÃX(t)Wm + X(t)Ws), (6)

where Ã = D−
1
2AD−

1
2 is the symmetrically-normalised adjacency matrix and Wm,Ws are learnable285

weight matrices representing the message passing and skip-connection operations within the layer.286
The DiffPool model follows the same sequence of steps. Full details of the model architectures and287
hyperparameters can be found in Appendix A.288

Evaluation Procedure The best procedure for evaluating GNN pooling layers remains a matter of debate289
in the graph machine learning community. One may consider a fixed GNN architecture with a different290
pooling layer for each baseline; alternatively, the whole architecture can be optimised for each type of291
pooling layer. The first option, more akin to the typical procedure for evaluating pooling layers in CNNs on292
image domains, is used in papers like minCUT (Bianchi et al., 2019). The second option is more particular293
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to GNNs and it is employed, for instance, by DiffPool (Ying et al., 2018). In this work, we choose the latter294
option for our evaluation.295

We argue that for non-Euclidean domains, such as graph ones, the relationships between the nodes of296
the pooled graph and the ones of the input graph are semantically different from one pooling method to297
another. This is because pooling layers have different behaviours and may interact in various ways with the298
interleaved convolutional layers. Therefore, evaluating the same architecture with only the pooling layer(s)299
swapped is restrictive and might hide the benefits of certain operators. For example, Top-k pooling (one of300
our baselines) simply drops nodes from the input graph, instead of computing a smaller number of clusters301
from all nodes. Assume we fix the pooled graph to have only one node. Then Top-k would only select one302
node from the original graph. In contrast, DiffPool would combine the information from the entire graph303
in a single node. DiffPool would thus have access to additional information with respect to Top-k, so it304
would be unfair to conclude that one model is better than the other in such a setting. These differences305
implicitly affect the features of the output graph at that layer, which in turn affect the next pooling layer, as306
its computation depends on the features. This can have a cascading effect on the overall performance of307
the model. One might also argue that this procedure makes the evaluated models more homogeneous and,308
therefore, easier to compare. While this is true, the conclusions one can draw from such a comparison are309
much more limited because they are restricted to the particular architecture that was chosen.310

For this reason, we have either run models with hyperparameters as previously reported by the authors,311
or optimised them ourselves end-to-end, where applicable. The best-performing configurations were:312

• MPR—learning rate 5e−4, hidden sizes {128, 128} (except for {64, 64} on IMDB-Binary and {32, 32}313
on IMDB-Multi), interval overlap 25% on Proteins, Reddit-Binary, Mutag, IMDB-Multi and 10%314
otherwise, batch size 32 (except for 128 on Proteins) and:315

• D&D, Collab, Reddit-Binary, Reddit-Multi-5K: cover sizes {20, 5};316

• Proteins, NCI1: cover sizes {8, 2};317

• Mutag, IMDB-Binary, IMDB-Multi: cover sizes {4, 1};318

• DMP—learning rate 5e−4, hidden sizes {128, 128}, δ = 1/(cluster size)2 and:319

• Proteins: cover sizes {8, 2}, batch size 128;320

• Others: cover sizes {20, 5}, batch size 32;321

• Top-k—specific dataset configurations, as provided in the official GitHub repository3;322

• minCUT—learning rate 1e−3, same architecture as reported by the authors in the original work (Bianchi323
et al., 2019);324

• DiffPool—learning rate 1e−3, hidden size 32, two pooling steps, pooling ratio r = 0.1 for D&D,325
Proteins, Collab and Reddit-Binary and r = 0.25 for Mutag, NCI1, IMDB-Binary, IMDB-Multi and326
Reddit-Multi-5K, global average mean readout layer, with the exception of Collab and Reddit-Binary,327
where the hidden size was 128;328

• Flat: hidden size 32.329

Pooling Results. The graph classification performance obtained by these models is reported in Table 1. We330
reveal that MPR ranks either first or second on all social datasets, or achieves accuracy scores within 0.5%331
of the best-performing model. This result confirms that PageRank-based pooling exploits the power-law332
distributions in this domain. The performance of DMP is similar on social data and generally higher on333

3 https://github.com/HongyangGao/Graph-U-Nets/blob/48aa171b16964a2466fceaf4cb06fc940d649294/run_GUNet.sh

https://github.com/HongyangGao/Graph-U-Nets/blob/48aa171b16964a2466fceaf4cb06fc940d649294/run_GUNet.sh
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Figure 3. SDGM visualisation using as a lens function the the GNN-predicted probability of a node in the
network to be Spam. The left plot is coloured with the average predicted spam probability in each cluster,
whereas the right plot is coloured by the proportion of true spammers in each node.

molecular graphs. We attribute this to the fact that all nodes in molecular graphs tend to have a similar334
PageRank score—MPR is therefore likely to assign all nodes to one cluster, effectively performing a335
readout. In this domain, DMP performs particularly well on Mutag, where it is second-best and improves336
by 3.7% over MPR, showing the benefits of having a differentiable lens in challenging data settings.337
Overall, MPR achieves the best accuracy on 2 datasets (D&D, Collab) and the next best result on 3 more338
(Proteins, Reddit-Binary and Reddit-Multi-5k). DMP improves on MPR by less than 1% on NCI1, Proteins,339
IDMB-Binary and IMDB-Multi, showing the perhaps surprising strength of the simple, fixed-lens pooling340
MPR operator.341

7 MAPPER FOR VISUALISATIONS
Graph pooling methods and summarised graph visualisations methods can be seen as two sides of the same342
coin, since both aim to condense the information in the graph. We now turn our attention to the latter.343

7.1 Visualisations in Supervised Learning344

The first application of DGM is in a supervised learning context, where fθ is trained via a cross entropy345
loss function to classify the nodes of the graph. When the classification is binary, fθ : V → [0, 1] outputs346
the probability that a node belongs to the positive class. This probability acts directly as the parameterisation347
of the graph nodes. An example is shown in Figure 3 (left) for a synthetic dataset a network formed of348
spammers and non-spammers. Spammers are highly connected to many other nodes in the network, whereas349
non-spammers generally have fewer neighbours. For the lens function, we use a Graph Convolutional350
Network (GCN) (Kipf and Welling, 2016) with four layers (with 32, 64, 128, 128 hidden units) and ReLU351
activations trained to classify the nodes of the graph. For the spammer graph, the lens is given by the352
predicted spam probability of each node and the cover consists of 10 intervals over [0, 1], with 10% overlap.353

Through the central cluster node, the SDGM visualisation correctly shows how spammers occupy an354
essential place in the network, while non-spammers tend to form many smaller disconnected communities.355
When labels are available, we also produce visualisations augmented with ground-truth information. These356
visualisations can provide a label-driven understanding of the graph. For instance, in Figure 3 (right) we357
colour each node of the SDGM visualisation according to the most frequent class in the corresponding358
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Figure 4. Qualitative comparison between SDGM (first column), Mapper with an RBF graph density
function (Hajij et al., 2018) (second), and Mapper with a PageRank function (Hajij et al., 2018) (third). The
Graphviz visualisation of the graph cores (fourth column) are added for reference. The rows show plots
for Cora, CiteSeer, and PubMed, respectively. The graphs are coloured based on the most frequent class
in each cluster to aid the comparison. SDGM with unsupervised lens implicitly makes all dataset classes
appear in the visualisation more clearly separated. This does not happen in the baseline visualisations,
which mainly focus on the class with the highest number of nodes from each graph.

cluster. This second visualisation, augmented with the ground-truth information, can also be used to359
compare with the model predictions.360
7.2 Visualisation in Unsupervised Learning361

The second application corresponds to an unsupervised learning scenario, where the challenge is obtaining362
a parameterisation of the graph in the absence of labels. This is the typical use case for unsupervised363
graph representation learning models (Chami et al., 2020). The approach we follow is to train a model364
to learn node embeddings in Rd

′
(in our experiments, d′ = 512), which can be reduced, as before, to a365

low-dimensional space via a dimensionality reduction method r. Unsupervised visualisations can be found366
in the qualitative evaluation in Section 7.3.367

7.3 Qualitative Evaluation368

In this section, we qualitatively compare SDGM against the two best-performing graph theoretic lens369
functions proposed by Hajij et al. (2018), on the Cora and CiteSeer (Sen et al., 2008) and PubMed (Yang370
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et al., 2016) citation networks. Namely, we compare against a PageRank (Page et al., 1999) lens function371
and a graph density function f(v) =

∑
u∈V exp(−D(u, v)/δ), where D is the distance matrix of the graph.372

For SDGM, we use a composition of an unsupervised Deep Graph Infomax (DGI) (Veličković et al.,373
2018) model gθ : V → R512 and a dimensionality reduction function r : R512 → R2 based on t-SNE. To374
aid the comparison, we mark the nodes with the colour of the most frequent class in the corresponding375
cluster. Additionally, we include a Graphviz (Gansner and North, 2000) plot of the full graph. We carefully376
fine-tuned the covers for each combination of model and graph.377

As depicted by Figure 4, SDGM successfully summarises many of the properties of the graphs that are378
also reflected by full graph visualisations. For instance, on Cora, Genetic Algorithms (in dark orange) are379
shown to be primarily connected to Reinforcement Learning (orange). At the same time, related classes380
that largely overlap in the full visualisation—Probabilistic Methods and Neural Networks (NNs) on Cora381
or Information Retrieval (IR) and ML on CiteSeer—are connected in the SDGM plot. In contrast, the382
baselines do not have the same level of granularity and fail to capture many such properties. Both PageRank383
and the graph density function tend to focus on the classes with the highest number of nodes, such as the384
IR class on CiteSeer or the NNs class on Cora, while largely de-emphasising other classes.385

Limitations. The proposed visualisations also present certain limitations. In an unsupervised learning386
setting, in the absence of any labels or attributes for colouring the graph, the nodes have to be coloured387
based on a colourmap associated with the abstract embedding space, thus affecting the interpretability388
of the visualisations. In contrast, even though the graph theoretic lens functions produce lower quality389
visualisations, their semantics are clearly understood mathematically. This is, however, a drawback shared390
even by some of the most widely used data visualisation methods, such as t-SNE or UMAP (McInnes et al.,391
2018). In what follows, we present additional visualisations and ablation studies.392

7.4 Ablation study for dimensionality reduction393

We study how the choice of the dimensionality reduction method for the unsupervised visualisations394
affects the output. To test this, we consider the following dimensionality reduction methods: t-SNE (van der395
Maaten and Hinton, 2008), UMAP (McInnes et al., 2018), IsoMap (Tenenbaum et al., 2000) and PCA.396
We use the same model as in Section 7.2 and 81 2D cells for the cover of all models. The overlap was397
set after fine-tuning to 0.2 for t-SNE and UMAP, and to 0.1 for the other two models. Figure 5 displays398
the four visualisations. As expected, t-SNE and UMAP produce more visually-pleasing outputs, due to399
their superior ability to capture variation in the GNN embedding space. However, the features highlighted400
by all visualisations are largely similar, generally indicating the same binary relations between clusters.401
This demonstrates that the GNN embedding space is robust to the choice of the dimensionality reduction402
method.403

7.5 Ablation for the unsupervised lens404

To better understand the impact of GNNs on improving the quality of the Mapper visualisations, we405
perform an ablation study on the type of unsupervised lens functions used within Mapper. The first model406
we consider is simply the identity function taking as input only graph features. The second model is407
a randomly initialised DGI model. Despite the apparent simplicity of a randomly initialised model, it408
was shown that such a method produces reasonably good embeddings, often outperforming other more409
sophisticated baselines (Veličković et al., 2018). Finally, we use our trained DGI model from Section 7.2.410
For all models, we perform a t-SNE reduction of their embedding space to obtain a 2D output space and411
use 81 overlapping cells that cover this space. An overlap of 0.2 is used across all models.412
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Figure 5. Ablation for dimensionality reduction methods; left–right, top–bottom: t-SNE, PCA, Isomap,
UMAP. While t-SNE and UMAP produce slightly better visualisations, the graph features displayed by the
visualisations are roughly consistent across all of the four dimensionality reduction techniques.

The three resulting visualisations are depicted in Figure 6. The identity model and the untrained DGI413
model do not manage to exploit the dataset structure and neither does particularly well. In contrast, the414
trained DGI model emphasises all the classes in the visualisation, together with their main interactions.415

7.6 Hierarchical visualisations416

One of the most powerful features of Mapper is the ability to produce multi-resolution visualisations417
through the flexibility offered by the cover hyperparameters. As described in Section 4, having a higher418
number of cells covering the output space results in more granular visualisations containing more nodes,419
while a higher overlap between these cells results in increased connectivity. We highlight these trade-offs in420
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Figure 6. Ablation for different types of unsupervised lenses (identity, untrained DGI, trained DGI). The
trained DGI model significantly improves the quality of the visualisations.

Figure 7, where we visualise the Cora citation network using 9 combinations of cells and overlaps. These421
kinds of hierarchical visualisations can help one identify the persistent features of the graph. For instance,422
when inspecting the plots that use n = 64 cells, the connections between the light blue class and the423
yellow class persist for all 3 degrees of overlap, which indicates that this is a persistent feature of the graph.424
In contrast, the connection between the red and orange classes is relatively reduced (g = 0.25) or none425
(g = 0.1) for low values of overlap, but it clearly appears at g = 0.35 in the top-right corner, suggesting426
that the semantic similarity between the two classes is very scale-sensitive (that is, less persistent).427
7.7 The importance of capturing structural information428

In this section, we revisit the synthetic spammer dataset to illustrate the importance of capturing structural429
information via the edge-refined pull back cover operator. To that end, we compare SDGM with a version430
using the usual refined pull back cover as in Hajij et al. (2018), while using the same lens function for431
both (a GCN classifier). We refer to the latter as DGM. The visualisations produced by the two models432
are included in Figure 8. We note that while both models capture the large cluster of spammers at the433
center of the network and the smaller communities of non-spammers, DGM does not capture the structural434
relationships between spammers and non spammers since it encodes only semantic relations.435

8 CONCLUSION
We have introduced Deep Graph Mapper, a topologically-grounded method for producing informative436
graph visualisations with the help of GNNs. We have shown these visualisations are not only useful for437
understanding various graph properties, but can also aid in visually identifying classification mistakes.438
Additionally, we have proved that Mapper is a generalisation of soft cluster assignment methods, effectively439
providing a bridge between graph pooling and the TDA literature. Based on this connection, we have440
proposed two Mapper-based pooling operators: a simple one that scores nodes using PageRank and a441
differentiable one that uses RBF kernels to simulate the cover. Our experiments show that both layers yield442
architectures competitive with several state-of-the-art methods on graph classification benchmarks.443
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go topological: Message passing simplicial networks. arXiv preprint arXiv:2103.03212457

Bruna, J., Zaremba, W., Szlam, A., and Lecun, Y. (2014). Spectral networks and locally connected458
networks on graphs. In ICLR459
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A MODEL ARCHITECTURE AND HYPERPARAMETERS
We additionally performed a hyperparameter search for DiffPool on hidden sizes 32, 64, 128 and for DGM,546
over the following sets of possible values:547

• all datasets: cover sizes {[40, 10], [20, 5]}, interval overlap {10%, 25%};548

• D&D: learning rate {5e−4, 1e−3};549

• Proteins: learning rate {2e−4, 5e−4, 1e−3}, cover sizes {[24, 6], [16, 4], [12, 3], [8, 2]}, hidden sizes550
{64, 128}.551
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