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Active particles disturb the fluid around them as force dipoles, or stresslets, which govern their
collective dynamics. Unlike swimming speeds, the stresslets of active particles are rarely determined
due to the lack of a suitable theoretical framework for arbitrary geometry. We propose a general
method, based on the reciprocal theorem of Stokes flows, to compute stresslets as integrals of the
velocities on the particle’s surface, which we illustrate for spheroidal chemically-active particles. Our
method will allow tuning the stresslet of artificial swimmers and tailoring their collective motion in
complex environments.

The study of swimming microorganisms could be

hailed as the biophysics ‘poster child’ due to the ability

of classical physics to provide robust quantitative predic-

tions [1, 2]. Mathematical theories developed from first

principles have been able to quantitatively capture the

locomotion of bacteria [3], spermatozoa [4], algae [5] as

well as their collective dynamics [6] and their interactions

with complex chemical environments [7]. In addition,

self-propelling cells and artificial active particles [8, 9]

have provided the soft matter community with model

systems to discover new physics [10, 11].

The primary quantity of interest for a swimming body,

and what most theory work focuses on, is its swimming

speed, U . A wealth of experimental data exists for a

large variety of biological cells [12]. Mathematical meth-

ods have been developed to predict swimming speeds,

in particular resistive-force [13] and slender-body theory

[14]. These solve for the force distribution along an or-

ganism by taking advantage of the linearity of the Stokes

equations for the fluid flow to determine the swimming

kinematics without requiring a full computation of the

flow. With its swimming speed known, a swimmer is

then seen to display long-time e↵ective di↵usion at a rate

D ⇠ U2⌧ where the time scale ⌧ is the relevant one for

loss of orientation, be it thermal noise or cell tumbling

[15].

Beyond the swimming speed, an equally important

characteristic of a self-propelled body is its stresslet.

Since cells and active particles swim without applying net

forces to the surrounding fluid, the flows they induce have

the symmetry of a force dipole and decay spatially as ⇠
1/r2. Formally, the velocity field in the laboratory frame

at a location x away from a swimmer can generically be

written in the far field as u = �3(x ·S ·x)x/8⇡µr5, where
r = |x| and S is the trace-free second rank stresslet ten-

sor which is symmetric when the swimmer does not apply

any net moment [16]. For axisymmetric swimming along

a direction e, then one obtains S = S(ee� 1

3

I), and the

sign of S allows to distinguish between two types of swim-

mers: pusher cells with S < 0 are pushed from behind

and include most flagellated bacteria; in contrast, puller

cells with S > 0 are pulled forward, e.g. the biflagellated

algae Chlamydomonas.

The stresslets of self-propelling cells and active parti-

cles have been the subject of much less attention than

their swimming speeds, but they are no less important.

The magnitudes and signs of stresslets govern pattern

formation and interactions in populations of cells [17],

dictate which type of swimmer suspension is unstable

and displays nonlinear fluctuations [18], and the physics

of collective locomotion [19, 20]. The stresslet also con-

trols the interactions of active organisms with their envi-

ronment [21, 22], enhanced transport through biological

fluids [23, 24] and the rheology of active fluids [25].

If the stresslet of active swimmers is so important, why

do so few studies attempt to determine its value? The

di�culty lies in the fact that, unlike the swimming speed

which is purely a kinematic quantity, the stresslet in-

cludes information about both kinematics and dynamics

as it is formally given by an integral on the surface of

the swimmer of both instantaneous surface velocities and

surface stresses [16]. Solving for both velocities and sur-

face stresses can be done numerically using the boundary

element method [26], but typically not analytically. An

alternative method consists in measuring, or computing,

the flow far from the swimmer and fitting it to the ex-

pected stresslet, but so far this has been done only with

the bacterium E. coli [27] and requires an experimental

apparatus able to distinguish the far field flow from mea-

surement noise.

In this paper, we propose a theoretical method to com-

pute the stresslet induced by active swimmers. Twenty

years ago, Stone & Samuel derived an integral theorem

to determine the swimming speed of any swimmer us-

ing an auxiliary problem of rigid-body motion [28]. This

result relies on the Lorentz Reciprocal Theorem which

has proved popular in the hydrodynamics community to

compute Marangoni, inertial or viscoelastic e↵ects on the

motion of particles, drops and bubbles [29, 30, 31], and

even the flux of boundary-driven channel flows [32]. We

show that a similar approach may be undertaken to de-

termine the value of the stresslet for active particles of
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arbitrary shape. We derive a new integral theorem, in-

volving an auxiliary problem of a passive rigid particle

in a linear flow, allowing the determination of the full

stresslet tensor. After validating it for the classical prob-

lems of swimming of a sphere (squirming) and locomo-

tion of an active rod, we show that the theorem allows

to determine exactly, for the first time, the stresslet in-

duced by ellipsoidal swimmers of any aspect ratio. We

apply our results to phoretic particles and discover how

the pusher-puller transition depends on the geometry of

the particle.

In seminal work, Batchelor [16] showed that the con-

tribution of an active particle of surface @V to the bulk

stress, i.e. the so-called stresslet tensor S, is given by

Sij =

ZZ

@V


1

2

(xj�iknk + xi�jknk) (1)

�1

3

(xk�klnl)�ij � µ(uinj + ujni)

�
dA.

For active particles or cells prescribing a relative surface

velocity u

s
(or swimming gait), the second part of this

integral can be directly evaluated (its value does not de-

pend on the swimming velocity). In contrast, the first

part involves the surface traction, � ·n, which in general

can only be obtained by solving for the flow everywhere.

In order to calculate this first part of the stresslet inte-

gral, we use the reciprocal theorem of Stokes flow written

as [33]

ZZ

@V
ui�̄ijnjdA =

ZZ

@V
ūi�ijnjdA, (2)

where we choose the dual flow field (

¯

u, ¯�), a solution

of Stokes’ equations that decays at infinity, to satisfy

¯

u = E · x on the particle’s boundary where E is a con-

stant, symmetric and traceless second-order tensor, and

the origin of x is chosen so that the particle is force-

and torque-free. The solution (

¯

u, ¯�) is thus the instan-

taneous perturbation flow induced by the presence of the

same active particle when stationary in a linear flow field,

i.e. u = �E · x +

¯

u. The associated stress field can be

formally written as

¯�(x) ⌘ µ⌃(x) : E where ⌃ is a di-

mensionless 4th-order tensor symmetric with respect to

the first two and last two indices (due to the symmetries

of

¯� and E).

After changing indices, the left-hand side of Eq. (2)

becomes

ZZ

@V
ui�̄ijnjdA = µ

✓ZZ

@V
nlu

s
k⌃klijdA

◆
Eij , (3)

whereas the right-hand side is

ZZ

@V
ūi�ijnjdA =

✓ZZ

@V

1

2

(xj�iknk + xi�jknk) dA

◆
Eij ,

(4)

where the term in parenthesis has been replaced by its

symmetric part since E is symmetric. Equating Eqs. (3)

and (4), for any trace-free symmetric tensor E, we obtain

ZZ

@V

1

2

(xj�iknk + xi�jknk) dA = µ

ZZ

@V
nlu

s
k⌃klijdA,

(5)

up to an isotropic second-order tensor. The trace-free

portion of this result is given by

ZZ

@V


1

2

(xj�iknk + xi�jknk)�
1

3

(xk�klnl)�ij

�
dA

= µ

ZZ

@V
nlu

s
k

✓
⌃klij �

1

3

⌃klmm�ij

◆
dA. (6)

Combining Eqs (1) and (6), we finally obtain the

stresslet tensor S as

Sij

µ
=

ZZ

@V
nlu

s
k

✓
⌃klij �

�ij
3

⌃klmm � �ik�jl � �il�jk

◆
dA.

(7)

The result in Eq. (7) is an explicit integral of the pre-

scribed, or measured, surface velocity u

s
, and does not

depend on the swimming velocity of the particle – simi-

larly to Eq. (1). Provided ⌃ can be computed once and

for all for the same geometry (either analytically or nu-

merically), this results allows one to directly compute the

stresslet generated by the active particle or cell for any

surface velocity and without actually solving the associ-

ated flow problem.

This integral formulation can first be used to recover

classical results, starting with the stresslet induced by

a squirming sphere [34]. The dual flow field,

¯

u, for a

sphere of radius a in a linear flow is a classical solution

given by [33]

¯

u = a5
E · x
r5

+

5(x ·E · x)x
2

✓
a3

r5
� a5

r7

◆
, (8)

p̄ = 5a3µ
x ·E · x

r5
, (9)

From this, the tensor

¯� and thus ⌃ may be easily evalu-

ated [35]. Using Eq. (7), the stresslet is obtained as

S = µ

ZZ

@V

✓
5ninjnk � 5

2

(nj�ik + ni�jk) + �ijnk

◆
us
kdA.

(10)

For an axisymmetric squirming sphere [34], the pre-

scribed slip velocity is purely tangential u

s
= us

(⇣)e✓
(⇣ = cos ✓ in spherical polar coordinates). In that case,

the stresslet simplifies to

S = �5µ

2

ZZ

@V
(nu

s
+ u

s
n) dA (11)

and finally

S = 15⇡µa2
✓
ezez �

1

3

I

◆Z
1

�1

us
(⇣)⇣

p
1� ⇣2d⇣. (12)
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This result is equivalent to decomposing the slip veloc-

ity onto the canonical squirming modes, with the second

mode providing the intensity of the stresslet [34, 37, 38].

Another classical model is the active rod. A rod of

length L and unit direction vector p imposes an axisym-

metric slip velocity u

s
= ↵(s)p in its reference frame,

with �L/2  s  L/2 the arc-length measured along the

rod. To determine the stresslet, the force distribution

acting on a rigid rod in a linear flow u = �E · x must be

computed. The integral to calculate in Eq. (7) is

µ

ZZ

@V
nluk⌃klijdA =

Z

L
uk

Z

@VR

µnl⌃lkijdA, (13)

where nl⌃lkij is obtained through the force per unit

length acting on the rigid rod as

¯fk =

✓Z

@VR

µnl⌃klijdA

◆
Eij . (14)

The force density,

¯

f , can be obtained using resistive-force

theory [2, 13] (with x = sp)

¯

f(s, t) = s⇣?

⇣
pp

2

� I

⌘
·E · p, (15)

and thus

Z

@VR

µnl⌃klijdA = s⇣?

⇣pipk
2

� �ik

⌘
pj , (16)

where ⇣? is the perpendicular drag coe�cient for the rod

[2, 13]. Using these results, Eq. (7) becomes finally

S = �
✓
1

2

⇣?U0

Z

L
s↵(s)ds

◆✓
pp� 1

3

I

◆
, (17)

which is identical to the result of a direct calculation [35].

The power of the integral method in Eq. (7) may be

demonstrated on problems where a direct calculation of

S is not tractable analytically. Motivated by recent work

on phoretic swimmers, we illustrate this for an axisym-

metric active spheroidal particle (or swimmer) of axis ez

and semi-axes a and b. In this case, the flow field can

still be computed as a superposition of spheroidal har-

monics [39], but a direct calculation of the tensor S from

a projection of u

s
on the relevant harmonics is much more

di�cult. In contrast, the integral formulation allows to

determine S exactly and explicitly, for an arbitrary u

s
.

Focusing on an axisymmetric distribution of slip veloc-

ity at the boundary, the stresslet S is a trace-less sym-

metric tensor invariant by rotation around ez and must

therefore be of the form S = S
�
ezez � 1

3

I

�
. It is thus

su�cient to use as dual velocity field the axisymmetric

solution of Stokes’ equations decaying at infinity and sat-

isfying

¯

u = E
�
ezez � 1

3

I

�
·x on the spheroid’s boundary

with arbitrary E. Following classical work [40], the dual

velocity field

¯

u and associated fluid force on the particle

¯� · n can be found explicitly. In particular we have

¯� · n = 2µ


2EG(⇠)

9F (⇠)
I+

✓
1� 2

3F (⇠)

◆
E

�
· n, (18)

where ⇠ ⌘ a/b is the aspect ratio and the function F is

F (⇠) =
1

(⇠2 � 1)

2

"
�3⇠2 +

⇠(1 + 2⇠2)p
1� ⇠2

cos

�1 ⇠

#
, (19)

while the function G is not required for what follows [35].

Using our integral formulations, one then easily obtains

S = � 2µ

3F (⇠)

ZZ

@V
(u

s
n+ nu

s
) dA, (20)

with u

s
the prescribed slip velocity at the particle’s

boundary. This new result is valid for both prolate (⇠ �
1) and oblate (⇠  1) spheroids (note that F (1) = 4/15,
agreeing with Eq. 11).

We use spheroidal polar coordinates (⌧, ⇣,�) with

(x, y) = k
p
⌧2 ⌥ 1

p
1� ⇣2(cos�, sin�) (for prolate

and oblate spheroids, respectively), z = k⇣⌧ , k =p
S |⇠2 � 1|/2⇡H(⇠) with S , the surface area of the

spheroid, and

H(⇠) = 1 +

⇠2p
⇠2 � 1

cos

�1

✓
1

⇠

◆
. (21)

The surface of the particle is then defined by ⌧ = ⌧
0

=

⇠/
p
|⇠2 � 1|. For an active particle that prescribes an

axisymmetric slip velocity u

s
= us

(⇣)e⇣ , the strength of

the stresslet is then obtained as the integral

S = � 2S µ

F (⇠)H(⇠)

Z
1

�1

us
(⇣)⇣

s
⇠2(1� ⇣2)

⇣2 + ⇠2(1� ⇣2)
d⇣. (22)

We can now apply this result to an autophoretic

spheroidal particle releasing a solute of di↵usivity D with

fixed flux A(⇣) along its boundary. Interactions between

the particle surface and the solute leads to a phoretic

fluid slip velocity, u = M(⇣)(I�nn) ·rC, induced along

its boundary [41]. When solute advection is negligible,

its concentration, C, is solution to the di↵usive problem

Dr2C = 0, De⌧ · rC|@V = �A(⇣), C(1) = 0.
(23)

With the new integral result above, Eq. (22), we can now

obtain the stresslet generated by the catalytic particle

without solving the actual Stokes flow problem. Since

Laplace’s equation is separable in spheroidal coordinates,

Eq. (23) can be solved explicitly for c as

C(⌧, ⇣) = �
1X

n=0

k(2n+ 1)Cn(⌧)

2DC 0
n(⌧0)

In(⇠)Ln(⇣), (24)

In(⇠) =
Z

1

�1

A(⇣)
p
⇣2 + ⇠2(1� ⇣2)Ln(⇣)d⇣, (25)

where Cn(⌧) = Qn(⌧) or Qn(i⌧) for prolate and oblate

spheroids, respectively, and Ln and Qn are the Legen-

dre polynomials and function of the second kind, respec-

tively. The general expression for the resulting stresslet
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of a spheroid, Eq. (22), can now be evaluated as S =

S
�
ezez � 1

3

I

�
, with strength

S = � µ⇠

DF (⇠)

s
8⇡S
H(⇠)

Z
1

�1

M(⇣)⇣(1� ⇣2)

⇣2 + ⇠2(1� ⇣2)

@c

@⇣
d⇣. (26)

Using Eq. (24), the stresslet intensity S of a catalytic

spheroidal particle of aspect ratio ⇠ is finally obtained as

S =

µS

D

⇠
p

|⇠2 � 1|
F (⇠)H(⇠)

1X

n=1

In(⇠)Jn(⇠)Kn(⇠), (27)

with

Jn(⇠) =

Z
1

�1

⇣(1� ⇣2)M(⇣)L0
n(⇣)

⇣2 + ⇠2(1� ⇣2)
d⇣, (28)

Kn(⇠) =

(2n+ 1)Cn

✓
⇠p

|⇠2�1|

◆

C 0
n

✓
⇠p

|⇠2�1|

◆ · (29)

This new result, impossible to compute directly analyt-

ically otherwise, allows to characterise the role of geom-

etry on the strength of the stresslet for active particles.

For illustration, let us focus on a Janus particle with an

active half (⇣ > 0) of uniform activity and mobility, and

an inert half (⇣ < 0) where both quantities are zero. We

plot in Fig. 1 the strength of the stresslet as a function

of the aspect ration of the Janus particle, showing the

critical role of geometry. For positive activity (i.e. so-

lute release on the surface of the particle) and positive

mobility (i.e. slip velocity in the same direction as the lo-

cal concentration gradient), oblate particles act as push-

ers swimmers (S < 0) while most prolate particles are

pullers (S > 0). The spherical limit (⇠ = 1) corresponds

to a weak pusher swimmer while the pusher-puller tran-

sition occurs for a blunt prolate with aspect ratio ⇠ ⇡ 2

(Fig. 1).

These results can be rationalised physically by inspect-

ing the distribution of solute around the particle (see

Fig. 1, insets). For an oblate or spherical particle, the

highest solute concentrations are found at the active pole.

The slip velocity along the active boundaries is there-

fore oriented from the equator to the pole leading to a

pusher-type signature on the flow. In contrast for a pro-

late phoretic particle, the sharp local curvature near the

active pole results in a local minimum of the concentra-

tion at the pole (chemical solute is e�ciently di↵used

away from that point) and the absolute maximum of the

surface concentration is instead found at an intermediate

position on the active half of the particle. When ⇠ ! 1,

one can show that this local maximum of concentration is

found at a distance z
max

⇡ 0.2a away from the equator.

In that case, the slip velocity is still oriented from the

equator to the pole for 0  z  z
max

but in the reverse

direction for z
max

 z  a, the latter being dominant

and inducing a puller signature.

In summary we outlined in this work a new method,

based on the reciprocal theorem for Stokes flows, to com-

pute the stresslet generated by an active particle. The

method requires knowledge of (i) the instantaneous ge-

ometry of the particle, (ii) the prescribed slip velocity

along its boundary and (iii) a dual Stokes problem of an

identical rigid particle in an linear flow. The main advan-

tage of this approach is that it does not require to solve

for the actual flow field around the active particle. Af-

ter the formal derivation of the method, we verified it for

the classical cases of active spheres and rods for which an

alternative, direct calculation is possible [35]. We then

demonstrated how to use our new integral formulation to

derive a result impossible to obtain directly, namely the

stresslet for spheroidal phoretic particles.

As an extension for future work, we note that when

the particle is not torque-free, the present approach could

easily be generalized to compute the rotlet generated by

the active particle (i.e. the strength of the torque locally

induced by the swimmer) by repeating the analysis pre-

sented in this paper with a dual flow field where the

second-rank tensor E is antisymmetric.

We envision our method to be particularly relevant to

fixed-shape phoretic swimmers where the dual problem

can be solved once and for all. The result of Eq. (27)

could then be directly used to sculpt the strength of

the stresslet as a function of the chemical and geometri-

cal characteristics of the particle, allowing to potentially

tune interactions of active particles with boundaries and

to create active fluids with pre-designed collective or rhe-

ological characteristics.
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I. DIRECT CALCULATION OF THE STRESSLET OF A SQUIRMING SPHERE

In the reference frame of a translating force-free sphere, the velocity field generated by an axisymmetric tangential

slip flow at the sphere’s boundary u(r = a) = u

s

(⇣)e

✓

can be written as a superposition of squirming modes [1, 2].

With ⇣ = cos ✓ in spherical polar coordinates,
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The traction on the boundary of the squirmer (r = a) can also be computed explicitly as
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Using the definition of the stresslet, Eq. (1) in the main article, with n = e

r

and x = ae

r

on the boundary
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or finally
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II. RECIPROCAL CALCULATION OF THE STRESSLET OF A SQUIRMING SPHERE

Using the results presented in this article, the stresslet of the squirming sphere can be directly computed from

the slip velocity distribution provided one is able to find the tensor ⌃ such that the perturbation to the stress field
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introduced by a fixed rigid particle in a linear flow field u = �E · x is defined as

¯� = ⌃ : E. For a given E, the

perturbation flow and pressure field are obtained [3] as
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Taking the symmetric part of the gradient of the flow field, the stress tensor � = �p̄1+µ(r¯
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Therefore, from the definition of ⌃,
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and on the sphere’s surface
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Then, applying the fundamental result of the main article, Eq. (7), the stresslet of a general spherical active particle

is obtained as
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III. DIRECT CALCULATION OF THE STRESSLET OF AN ACTIVE ROD

An active rod of length L and orientation vector p is considered. The rod is slender enough so that resistive force

theory can be used to determine the force density applied on the rod. First we note that the last terms in Eq. (1) of

the main article disappear since
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where A

R

(s) is the circle around the rod at section s. Clearly by symmetry the integral

R
@VR(s) ndAR

(s) = 0 and

thus these terms disappear. Calling f the force per unit length exerted on the swimming rod, the stresslet is given by
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To determine f we need to pay a closer look to the velocity distribution on the rod. We call Up the swimming speed

and write the swimming gait as u(s) = U0↵(s) where U0 is a characteristic velocity and ↵ a dimensionless function

characterising the distribution of velocity. The total velocity relative to the fluid at rest at infinity is

u = U0↵(s)p+ Up, (15)

resulting (resistive force theory) into a force per unit length f given by

f = �⇣k[U0↵(s) + U ]p, (16)
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where ⇣k is the local tangential drag coe�cient along the rod. Inertia is negligible and the rod is force-free, thereforeR
fds = 0 and thus the swimming speed is given by

U = �U0h↵i, (17)

where h↵i = (

R
L

↵(s)ds)/L. The resulting force density is thus

f(s) = �⇣kU0[↵(s)� h↵i]p. (18)

From this result and using x = sp and ⇣k = ⇣?/2 with ⇣? the normal drag coe�cient, the stresslet can be computed

from Eq. (14) above:
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Defining s in [�L/2, L/2], this result is strictly equivalent to the reciprocal calculation presented in the main text,

Eq. (17).

IV. ELLIPSOID

A. Spheroidal coordinates

We consider here a general axisymmetric ellipsoid of axis e

z

, and note a (resp. b) the semi-axis along e

z

(in the plane
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The area of the ellipsoid’s surface can be expressed as
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B. Je↵ery’s solution

Following [4], the solution of Stokes’ equations that decay at infinity and satisfies
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spheroid’s boundary is obtained as
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The force applied on the spheroid’s boundary is then
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C. Reciprocal calculation of the stresslet of an active ellipsoid

Considering now an active spheroid prescribing a slip velocity at its boundary, the approach followed to derive

Eq. (6) in the main text can be adapted to the present axisymmetric setting in order to derive the traction part of

the resulting stresslet as
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and finally
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D. Finding the concentration distribution around an axisymmetric catalytic particle

The previous result can be used to determine the stresslet generated by an active autophoretic (or catalytic) particle

of spheroidal shape whose surface properties are axisymmetric and characterized by a chemical activity (i.e. solute

release rate) A(⇣) and mobility M(⇣). Writing c the concentration of the solute, and neglecting advection, the solute

dynamics is completely described by the following Laplace problem:
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where ± corresponds to oblate and prolate spheroids, respectively. Its general solution is of the form
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with C
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to obtain the concentration distribution
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