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Abstract

Considerable evidence suggests that people acquire artificial grammars incidentally and implicitly, an indispensable
capacity for the acquisition of music or language. However, less research has been devoted to exploring constraints
affecting incidental learning. Within the domain of music, the extent to which Narmour’s (1990) melodic principles affect
implicit learning of melodic structure was experimentally explored. Extending previous research (Rohrmeier, Rebuschat &
Cross, 2011), the identical finite-state grammar is employed having terminals (the alphabet) manipulated so that melodies
generated systematically violated Narmour’s principles. Results indicate that Narmour-inconsistent melodic materials
impede implicit learning. This further constitutes a case in which artificial grammar learning is affected by prior knowledge
or processing constraints.
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Introduction

Implicit learning constitutes the core process for human

enculturation in respect of complex forms of communication such

as music or language [1–4]. Humans need to have access to a large

amount of structural musical knowledge in order to make sense of

the music of their culture. Despite having very little or no explicit

or formal musical training, most members of a community possess

competence of the music of their society [5–7]. Musical

knowledge, like native language knowledge, is largely implicit,

being represented without awareness of its complex structures and

incidentally acquired through long-term interaction with music.

Accordingly, musical competence and knowledge of stylistic

structures is assumed to be acquired during musical interaction

and implicit learning constitutes a central process in musical

enculturation [8–10]. At present empirical evidence is ambiguous

with respect to whether statistical melodic learning in patients,

who suffer amusia, is intact [11] or impaired [12,13].

A number of experimental studies have studied incidental,

statistical or implicit learning of musical structure under different

paradigms (see [8] for a review). Saffran and colleagues studied

statistical learning of ‘‘tone words’’ from a continuous monophonic

and isochronic melodic stream in the context of segmentation [14].

Several studies explored learning of melodic structures generated

by finite-state grammars [15–18]. Other studies used musical

structures of a greater complexity. Kuhn & Dienes used self-similar

melodies employing a bi-conditional grammar (in which the

second half of a stimulus would be the inversion of the first half)

[19,20]. In another study, Dienes and Longuet-Higgins used a 12-

tone serialist paradigm to construct 12-tone rows with a structure

in which the second half of a row would be a serialist

transformation (transposition or inverse retrograde) of the first

half [21]. Rohrmeier and Cross found that complex harmonic

sequences modeled from a recursive context-free grammar were

implicitly learned [22], matching a finding from a comparable set-

up in artificial language learning [23,24].

While these and other studies suggest that knowledge of

different musical features is acquired and represented implicitly,

they mostly focus on various musical features or structural

complexity. However, much research in statistical or implicit

learning (of music) does not investigate constraints or effects of pre-

processing on implicit artificial grammar learning (cf. [25]). The

aim of this study is to explore whether implicit learning of melodic

structure is affected when melodies of identical complexity differ

largely from common structures employed in melodies across

cultures. The results may shed light on effects of pre-processing or

priming and learnability of such melodies with further implications

for music cognition. Moreover, such an exploration further entails

implications for the general field of implicit learning.

Background

A study by Rohrmeier, Rebuschat and Cross [15] found that

participants were able to acquire new melodic patterns with high
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efficiency, when these conformed to common melodic principles.

The materials were generated from a finite-state grammar and its

terminal symbols (i.e. the alphabet used to generate sequences; in this

case, tone pairs as in Fig. 1) were intentionally designed in a way so

that they would produce coherent, acceptable (yet not formally

tonal) melodies for the participants. The purpose of the present

study was to investigate the extent to which the learning of melodic

patterns would be affected when the melodic structures frequently

contravene common and ubiquitous principles of melodic

structure as formalised in the principles proposed by Narmour

[26]. Accordingly, the aim of the experiment was to manipulate

the materials used by Rohrmeier et al. in a systematic way, so that

they would maximally violate the quantified versions of Narmour’s

principles [27,28] of registral direction, registral return, intervallic

difference, proximity, closure and consonance.

Narmour’s Implication-Realization theory (IR, [26,29,30])

describes core properties of melodic structure and extends ideas

by Meyer [31,32]. The basic components of the theory have been

summarised in many places [27,33,34] and will therefore be

described only briefly. The IR theory characterises melodic

expectation with respect to the tendencies with which melodic

implicative intervals proceed to specific subsequent realised intervals.

It postulates a bottom-up and top-down system of melodic

perception, in which the former is assumed to be innate and

universal, and the latter to be learned through interaction with

music. Schellenberg as well as Krumhansl proposed a simplifica-

tion and quantification of Narmour’s theory based on five

principles (see [28], [27], and below). While Narmour argued

the principles below to be universal and innate [26], computa-

tional accounts by Pearce & Wiggins argued that they could be

accounted for on the basis of computational n-gram learning (n-

grams refer to small chunks of the size n) [35].

Registral directon. Small intervals tend to be continued in

the same direction whereas large intervals tend to be continued in

the opposite direction.

Registral return. This principle describes an implication for

a realised interval to return to the same pitch or neighbouring

pitches (+/22 semitones), when it changes the direction of the

implicative interval.

Intervallic difference. Small intervals imply a realised

interval of the same size (+/22 semitones if the direction changes,

+/23 semitones if the direction is the same). Large intervals imply

a realised interval of a smaller size (at least 3 semitones smaller).

Proximity. The interval between any two tones is in general

small (5 or fewer semitones).

Closure. Involves either a change in registral direction, or a

large implicative interval being followed by a smaller interval

(smaller than 3 semitones for the identical registral direction or

smaller than 2 semitones for a different registral direction), and the

realised interval is small.

Consonance. Models whether the interval between two

adjacent notes is consonant, based on an empirically derived

weighting vector for the 12 chromatic intervals in the octave [36].

Whereas [26] had outlined and exemplified his theory with a

large number of musical examples from a wide range of styles and

cultures, a number of empirical studies tested the relevance of the

principles for melody perception. Cuddy and Lunney [37] let

participants rate a large set of 2-interval patterns and found that

responses largely conformed to the quantified version of

Narmour’s principles, particularly with respect to intervallic

difference, registral return and proximity and found no effect of musical

training. Krumhansl [36] carried out a similar study which

employed a larger set of melodic two-interval patterns. Similarly,

she found some support for the features of proximity, registral direction,

registral return, but not intervallic difference nor closure. Another study by

Krumhansl further explored the validity of the theory in terms of

real music fragments (British and Chinese folksongs and Webern

lieder) using a tone continuation paradigm and found support for

all five principles (except intervallic difference for Webern lieder) [27].

In subsequent research Schellenberg [28,34] showed that the

quantification of Narmour’s model was still redundant and could

be further simplified to only two principles: a revised version of

proximity and a principle of pitch reversal combining registral direction

and registral return. This simplified model had no loss in explanatory

Figure 1. The finite-state grammar, terminal tone pairs and the scale used in this study. The grammar is identical to the one used by [15].
doi:10.1371/journal.pone.0066174.g001
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power for the experimental data of Cuddy and Lunney [37] as well

as Krumhansl [27].

Concerning the cross-cultural extension of the principles,

empirical findings are ambiguous to some extent. Eerola and

colleagues [38–40] found that the melodic expectancy of a group

of South-African healers could be well characterised by Narmour’s

principles. Carlsen, however, found cultural differences in terms of

melodic expectation [41]. Two further studies [42,43] questioned

the cross-cultural validity of the (simplified) set of principles and

found that the factors from [36] matched the data better than the

versions by Schellenberg [28,34]. On the contrary, Schellenberg

and colleagues found that the behaviour of adults and infants was

well explained by Schellenberg’s revised model [44].

Despite the theoretical disputes, Narmour’s principles have

been shown to be instantiated empirically in large sets of musical

pieces and to be relevant for (at least Western) perception of

melody. This motivates a study to explore how learning of

melodies is affected when stimuli are used that do not conform to

these core melodic principles.

Materials and Methods

Participants
The experimental protocol was approved by the research

governance procedures of the Centre for Music & Science, Faculty

of Music, University of Cambridge. 31 adults (14 women, 17 men,

mean age 23.0 years) participated in the experiment. All

participants provided informed consent prior to the experiment.

The experimental group had 15 musicians and 16 nonmusicians.

Musician participants all played their instrument(s) actively, had

an average of 13.5 years of music lessons and practised/performed

9.7 hours per week on average. Nonmusician participants did not

play their instrument(s) any more, had never played an instrument

or had only played for a short period. In total, nonmusicians had

an average of 0.7 years of music lessons and practised/performed

0.4 hours per week on average. For the sake of comparability with

our study on learning of Narmour-consistent melodies [15], the

same subject pool was used for the present study. Musician

participants were recruited from the Faculty of Music and

nonmusician participants were recruited on campus, both at the

University of Cambridge. None of the participants had partici-

pated in the prior baseline study [15], which used 11 musicians

and 11 nonmusicians respectively. In that study, musician

participants all played their instrument(s) actively, had an average

of 11.7 years of music lessons and practised/performed 6.2 h per

week on average. All nonmusician participants did not play music

actively (0 h per week), had not practiced an instrument for

2.8 years on average and had stopped practising (if they had

played) for 9.1 years on average.

Materials
The grammatical stimuli consisted of 33 different melodies

between 8 and 30 tones generated from a regular grammar (see

Fig. 1). To investigate whether stimulus learning would derive

from mere sequence memorisation or induction of some under-

lying structure, 17 of these melodies were employed for the

learning and testing phase (‘‘old-grammatical’’) and 16 remaining

melodies were only used for the testing phase (‘‘new-grammat-

ical’’). Five types of ungrammatical stimuli were used. First, error

types 1–3 were intended to test whether participants would detect

different forms of random disorder in the melodic sequences: most

simply, error type 1 consisted of entirely random sequences of the

terminal tone pairs. In contrast, error type 2 sequences employed

correct transitions between terminal tone pairs, but their overall

sequence would be random. Hence, for each ungrammatical

sequence every single transition between two terminal tone pairs

was part of one grammatical sequence but longer sequences of

three or more tone pairs were not. Error type 3 featured correct

subsequences for possible stimulus beginnings and endings

(according to the finite state grammar; ‘‘anchor positions’’) with

random state sequences (like error type 1) in between; in

comparison to error type 1 detecting these structures would

require that participants were attentive to more than just anchor

positions [45,46]. In contrast to error types 1–3, error types 4 and

5 stimuli were intended to be very similar to grammatical

structures. In the case of error type 4, two halves of grammatical

sequences from different pathways were combined, e.g. a stimulus

may begin with a grammatical subsequence of the upper pathway

of the grammar representation (Fig. 1) and continue with a

subsequence of the lower part until the end. Hence, the sequence

would be very similar to a grammatical sequence except for the

position where the two halves connect and the overall organisation

of the sequence. In contrast, error type 5 sequences were intended

to only deviate minimally from grammatical sequences by

swapping two adjacent terminals or deleting a terminal. It was

hypothesised that the numerical ordering of the five error types

would reflect the degree of difficulty of the recognition of the

stimulus. There were 33 ungrammatical stimuli and their lengths

matched the lengths of the grammatical stimuli so that stimulus

length would be no indicator of grammaticality. There were six

structures for each of error types 1 and 2, and seven structures for

each of the remaining error types. Altogether, the testing set

consisted of three types of stimuli: old-grammatical, new-gram-

matical and ungrammatical stimuli (of five different types). This

grammar as well as the set of grammatical state sequences

generated from the grammar and the ungrammatical sequences

are identical with the materials used in the baseline experiment

[15].

As outlined above, the aim of the present study was to

manipulate the terminals in such a way that the melodies

produced by the grammar would frequently violate Narmour’s

principles while the state sequences would be identical to the

baseline study. In order to ensure that the resulting new pitch

structures would not alter the underlying grammar, the changes

were realised as isomorphic one-to-one mappings from the original

set of pitches employed to a new set of pitches (see figure 1). In this

way, grammar and terminal tone pairs would remain identical, but

the actual surface pitch sequences would be different. Hence the

abstract n-gram structure of the two sets of sequences would

remain identical and indistinguishable for a computer (such as a

chunking model). In order to systematically specify a mapping to

generate melodies that frequently violate Narmour’s principles, an

algorithmic method was employed which selected mappings that

were strongly inconsistent with Narmour’s principles using a score

system. In order to ensure that solutions were possible which did

not favour the occurrence of small melodic intervals, the range/

tessitura of the pitches employed was augmented from an octave to

a tenth (Figure 1) which would allow melodies to break the

principles of registral return or registral direction.

For the computational searching of a good one-to-one mapping

for the purpose of the experiment, first, all 5040 one-to-one

mappings were computed. Subsequently, a numerical score of how

well the structures conformed to the quantified form of Narmour’s

principles was computed for each of the melodies in each of the

resulting melody sets. Hence each one-to-one mapping solution

was characterised by the overall score of its set of melodies. The

final solution was selected (manually) from the top ranking

solutions. For the computation of the score for each mapping,

Narmour’s Principles Affect Melodic Learning
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the MIDI Toolbox for MATLAB [47] implementation of the

quantification of Narmour’s principles according to [27,28]

(including the additional consonance factor suggested by [27]

which encodes whether the realised interval is consonant or

dissonant) was employed. Accordingly, the mean (predictability)

score for the factors registral return, proximity, intervallic difference,

closure, revised forms of registral direction [28], and consonance [27]

were computed for the whole set of grammatical and ungram-

matical melodies for each mapping. Each mapping was repre-

sented through a vector of six mean values for the six different

factors. The competitive score of each mapping was computed as

the unweighted sum of the z-scores of each of its six component

factor values (which were each computed in comparison to the

values of all other mapping solutions for the same factor). The

mean z-score for the unchanged baseline set was 0:0002, the mean

z-score for the chosen solution was {0:0075. Figure 1 displays the

old and the new set of terminals. All stimuli were computationally

generated and rendered from MIDI using a synthesised instru-

ment (piano) and applying a 330 ms inter-onset interval per note

and a MIDI velocity (loudness) of 100.

Procedure
For the implicit learning experiment the same procedure was

used as in the baseline study [15] (including the same computers,

headphones and rooms) and is described fully in the following text.

The experiment consisted of a learning phase and a testing phase.

The learning phase was not announced as such. Participants were

exposed to the stimuli under incidental learning conditions by

means of a tone-counting task. Participants were also not informed

that they would be tested afterwards. Participants listened to three

blocks of all 17 old-grammatical melodies in randomised order and

reported the number of tones in each melody. As this task was

difficult for some participants, participants could repeat each of the

51 melodies as often as they wanted. The testing phase presented

all 66 grammatical and ungrammatical stimuli in randomised

order. Participants responded to each stimulus with forced-choice

familiarity ratings (familiar vs. unfamiliar) and subsequent binary

confidence judgments (high vs. low confidence). A post-test

debriefing session required participants to verbalise any rules or

regularities they might have noticed. The instructions emphasised

that the task was not easy and that participants should follow their

intuition.

Data analysis
Each trial was coded for accuracy based on familiarity ratings:

responses for old-grammatical or new-grammatical melodies were

coded as correct when chosen as familiar and ungrammatical

melodies were coded as incorrect when chosen as familiar. Since

the total number of grammatical and ungrammatical stimuli was

identical, the chance level of performance is 50%. Planned

analyses involved comparing the single group performance (in

terms of accuracy) against chance performance for the types of

grammatical and ungrammatical stimuli, as well as comparing the

performance of the present experimental group with the results

from the baseline study with respect to the types of grammatical

and ungrammatical stimuli. For purposes of comparison, this

second analysis was performed in analogy to the baseline analysis

in [15].

Results

Two outlier subjects whose performance differed from the mean

of the group by more than two standard deviations were excluded

from the analyses (Both participants were more than 2 SD above

the mean performance. One participant had reported difficulties

with the tone-counting task and had about 5.5 times the median

amount of exposure. The exposure of the second outlier was above

the median, but there is no clear basis for inferring which factor

may have caused the exceptionally high performance in this latter

case.) The number of stimulus repetitions in the learning phase

had no correlation with performance or confidence levels

(r~:0808, p~n:s: and r~{:106, p~n:s: respectively).

Familiarity judgments
Planned one-sample t tests show that the performance for

familiarity judgments differs significantly from chance for old-

grammatical stimuli, new-grammatical stimuli and ungrammatical

stimuli except error type 5 after applying the sequential Bonferroni

procedure (cf. [48,49]; see Table 1 and Figure 2). The participants

in the present experiment performed worse than the experimental

group from [15] with respect to overall performance, 65:9% vs.

70:9% respectively. A 2-by-2 ANOVA with group (baseline

(experimental group, [15]) vs. experiment 1) and musical training

(musicians vs. nonmusicians) as between-subject variables and

grammaticality (composed of performance for old-grammatical,

new-grammatical and ungrammatical structures) as within-subject

variable found a highly significant effect of group F (1,47)~8:35,

MSE~:053, p~:006, no significant effect of musical training

F (1,47)~1:82, MSE~:012, p~:192, and no significant interac-

tion between group and musical training F(1,47)~0:022,

MSE~:000, p~:883. There were no further significant interac-

tions or within-subjects effects, all pw:2. Tests of simple within-

subjects contrasts found a significant difference with respect to old-

grammatical vs. new-grammatical stimuli, F(1,47)~4:833,

MSE~:094, p~:033.

The new group was able to distinguish grammatical from

ungrammatical stimuli above chance. Crucially, the performance

was significantly lower than the performance for the group in [15].

The contrast further indicated that there was a significant

difference between old-grammatical and new-grammatical stimuli,

which indicates that participants were better for materials that

they had heard before in the training phase.

These findings suggest that the change of the terminal symbols

violating Narmour’s rules affected the overall implicit learning

performance, even though the melodies were still learnable. This

suggests that melodic structures that violate common melodic

principles are harder to learn or to recognise. There was no

significant difference in performance between musicians and

nonmusicians. This indicates that any effect of musical training lies

within the 95% confidence interval ½{:075,{:016� for the

difference in performance. This result suggests that musical

experience (and hence long-term active engagement in listening

to and performing a large repertoire of Narmour-consistent

materials) had little or no impact on the learning outcome.

Error types and type of knowledge
One-sample t tests showed that the present experimental group

performed above chance for error type 1–4 (applying the

sequential Bonferroni procedure, see [48,49]). Table 1 and

Figure 3 represent the results. A 2-by-2 ANOVA with group

(experimental vs. baseline) and musical training (musicians vs.

nonmusicians) as between-subject variables and error-type (com-

posed of the performance for error-type 1, 2, 3, 4, 5) as within-

subject variable found no significant effect of group

F (1,47)~:078, MSE~:002, p~:781, no significant effect of

musical training F (1,47)~:937, MSE~:018,p~:338, and no

significant effect of group and musical training F(1,47)~0:874,

MSE~0:017, p~:355. This suggests that there was no statisti-
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cally significant difference between the performances for ungram-

matical stimuli between both groups. Test of repeated within-

subjects contrasts were significant for error type only (applying the

sequential Bonferroni procedure), in terms of the differences

between error type 1 vs. error type 2, F(1,47)~36:283,

MSE~2:008, p~:0005, and error type 4 vs. error type 5,

F (1,47)~6:400, MSE~:438, p~:015. This suggests that for

both experiments error type 1 was significantly better recognised

than error type 2, and that error type 4 was significantly better

recognised than error type 5.

A subsequent analysis explored the extent to which participants’

endorsements were potentially based on these differences in

fragments for the different stimuli similarly to the methodology

employed by [21]. First we computed the average chunk strength

for each stimulus. Chunk strength is defined as the count of the

number of times each chunk of size n (also referred to as n-gram)

occurred in the training stimuli. The average chunk strength is the

mean chunk strength for a stimulus. For each participant, a

multiple logistic regression using average chunk strength for

different chunk sizes n and grammaticality as predictors for the

participant’s responses for each stimulus was computed for either

pitch or interval sequences. T tests comparing the beta coefficients

of these predictors against 0 (Table 2) found that grammatical

structure proved not to be a significant predictor of participants’

responses in both pitch and interval cases. However, bi- and

trigrams were found to predict responses across participants in the

pitch case. Moreover, 7- and 8-grams were found as predictors in

the interval case. This result suggests that participants mainly

acquired and applied knowledge about the small fragments as well

as larger subsequences for their classification responses. The

findings show that there is no evidence that participants have

Figure 2. Performance for the baseline [15] and Narmour-inconsistent group. The graph displays the mean familiarity judgment accuracy
for old-grammatical sequences (grammatical sequences used in the learning and the testing phase), new- grammatical sequences (grammatical
sequences only used in the testing phase) and ungrammatical sequences.
doi:10.1371/journal.pone.0066174.g002

Table 1. Accuracy results.

Overall accuracy grammatical ungrammatical

(all) old-gram new-gram (all) Error type 1 Error type 2 Error type 3 Error type 4 Error type 5

Mean .659 .648 .675 .619s .670 .874 .707 .645 .601 .557

SD .072 .142 .168 .151 .129 0.159 0.234 0.193 0.207 0.196

t(28) 5.64 4.24 12.70 4.76 4.05 2.63 1.56

Sig. (2-tailed) .000 .000 .0000 .0001 .0004 .014 .131

Performance for the different stimulus types in the present experiment and one-sample t tests against 0.5 chance level.
doi:10.1371/journal.pone.0066174.t001

Narmour’s Principles Affect Melodic Learning

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e66174



acquired a form of rule or grammatical knowledge beyond

fragments in their mental representation of the materials.

Confidence ratings and debriefing
As in [15], confidence ratings were analysed by computing Type

2 d ’ values for proportions of confident correct (hits) and confident

incorrect (false alarm) responses [50]. The mean d ’ values for the

experimental group m~0:5389; SD~0:3656; t(28)~7:94;

pv0:00005; were significantly above zero, indicating that the

participants did possess and apply explicit judgment knowledge

about their familiarity judgments [51]. In the debriefing session no

participant could verbalise any significant rules or regularities in

stimulus structures. Accordingly the findings of this experiment are

analogous to the results of the baseline experiment [15] in which

participants were found to possess in part explicit judgment

knowledge and to know when they were right in their responses.

Altogether, results indicate that the participants became aware of

Figure 3. Performance for the five error types in the baseline [15] and Narmour- inconsistent group. The graph displays the mean
familiarity judgment accuracy of both groups for the five error types.
doi:10.1371/journal.pone.0066174.g003

Table 2. Logistic regression analyses.

Pitch Interval

Mean SD Sig. T(28) Mean SD Sig. T(28)

intercept 4.354 11.207 0.046 2.092 1.495 3.197 0.018 2.518

1-grams 0.032 0.331 0.602 0.528 0.008 0.136 0.748 0.324

2-grams 20.359 0.625 0.005 23.092 20.115 0.390 0.123 21.589

3-grams 0.219 0.555 0.043 2.123 0.024 1.050 0.904 0.122

4-grams 0.207 1.143 0.338 0.974 0.046 2.049 0.904 0.122

5-grams 20.889 2.537 0.070 21.888 0.216 3.666 0.754 0.317

6-grams 0.918 3.573 0.178 1.383 0.732 3.657 0.290 1.078

7-grams 20.987 2.865 0.074 21.855 23.806 6.251 0.003 23.279

8-grams 0.941 2.490 0.052 2.035 3.298 4.217 0.000 4.211

grammatical
structure

20.540 1.479 0.059 21.967 20.526 1.506 0.071 21.881

Results from logistic regression analyses [21] across participants using chunks and grammaticality (coded as 1 for grammatical and 0 for ungrammatical) as predictors
for participant responses for the cases of pitch and interval structure.
doi:10.1371/journal.pone.0066174.t002
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the incidentally acquired knowledge that was guiding their

familiarity judgements.

Discussion

The present results suggest that the change of the melodic

surface structure to violate Narmour’s rules affected the overall

learning performance of the experiment, yet nonetheless the group

still performed above chance. Accordingly, melodic structures

which violate common melodic principles seem to be harder to be

learned or processed than those which do not. This finding raises

several potential explanations and bears consequences with respect

to general artificial grammar learning, musical acquisition and

processing as well as the emergence of musical structures.

The present results link up with further evidence from musical

statistical learning studies [8,52–54]. Using an artificial grammar

with materials generated from the Bohlen-Pierce scale, Loui and

colleagues found that learning is impaired after small intervals are

removed from the melodic structure [55]. Further Loui and

colleagues argued that neural substrates of incidental grammar

acquisition are independent of intelligence, pitch discrimination,

pitch memory, musical training or working memory [56,57].

Another study by Creel et al [58] showed that nonlocal interleaved

tone triplets (of the form AxByCz) could only be learned when

their pitches were separated. This suggests an interaction with

streaming processes [59] that made both substructures be

processed separately.

The lack of significant differences between musicians’ and

nonmusicians’ performance in the present study suggests, similarly

to the findings by Rohrmeier and colleagues and Loui and

colleagues [15,17], that the advantage of intensive training in and

interaction with Western music has little impact once artificial

stimuli which violate common melodic principles are employed,

supporting a view that a core learning mechanism is involved.

Further, the finding that participants knew to some extent when

they were giving right responses suggests that they learned the

structures well enough to possess explicit judgment knowledge and

accords with the findings in the baseline study [15]. This does,

however, not entail that the participants acquired explicit

knowledge of the rules underlying the melodic system. It rather

is analogous to the case in which a native English speaker may be

entirely confident that a probe sentence is ungrammatical, yet may

not be able to give an explicit account of the underlying

grammatical rule that was violated. Hence the present results do

not entail the participants formed explicit notions about the

artificial grammar or other underlying rules.

In general, experimental findings of this study provide a case of

how artificial grammar learning is affected by prior factors and

reinforces the idea that prior entrenched structures are better

learned incidentally than novel irregular structures. There have

been discussions of the possibility that implicit learning could

interact with prior knowledge (e.g. [60–63]). Several accounts of

empirical evidence can be related this this: In their music

experiment with serialist transformations, Dienes and Longuet-

Higgins found that only a highly experienced expert participant

could implicitly acquire serialist melodic transformations whereas

inexperience participants performed at chance [21]. This implies

an interaction between prior experience or prior-established

processing pathways and the learning of novel complex structure.

In an artificial grammar learning experiment, Perruchet and

Peeremans found a marginally significant effect of the letter set

(low vs. high frequencies in the participants’ native language) [64].

Two studies showed effects on constraints of implicit learning with

respect to form-meaning connections: participants could learn a

linguistically meaningful variable (animacy), but not an arbitrary

relation without linguistic relevance (relative size) [65,66]. When

participants had to learn sequences of cities (instead of letters) as

potential travel routes, prior knowledge about the distances

between cities facilitated or inhibited implicit grammar learning

depending on plausible or implausible travel routes [67]. Similarly,

using highly meaningful materials, unlike most other implicit

learning studies, Ziori and Dienes found that prior knowledge

facilitated implicit learning and resulted in a higher performance

than for unrelated materials [60]. Prior knowledge gated learning

performance in the context of category learning (cf. [68,69]).

On the other hand, the impact of processing constraints on

implicit or statistical learning still requires further research. Shukla

and colleagues showed an interaction between statistical structures

and prosodic features: strings of three syllables featuring high

transition probabilities are not identified as words when they

violate prosodic constraints [70]. In addition, Onnis and

colleagues found that phonological features have an impact on

the statistical learning of segmenting continuous speech into words

[71]. However, many computational models of implicit learning

do not incorporate effects of (pre-)processing or prior knowledge

[62,72–76], though there are exceptions such as [77] or [61].

Finally, Altmann showed that pre-training of a Simple Recurrent

Network [78] with similar stimulus materials made it possible to

model infant grammar learning [79] with a SRN although other

modelling attempts had failed [80]. He explained the result in

terms of pre-training as having avoided catastrophic interference

of training items with items learned during the testing.

In the context of this general background, there are several

potential explanations of the findings of the present study. One

explanation is that the small interval fragments that constitute the

building blocks for the stimuli are untypical and infrequent in

common Western melodies. This may impede the ease of their

recognition or priming, which in turn increases the cognitive

processing load involved and consequently may affect their

integration into higher-order chunks and larger sequences (cf.

[76]). Such an explanation would be a counterpart to the finding

by Scott and Dienes that prior familiarity with building blocks

enhances implicit artificial grammar learning [81]. This explana-

tion may be independent of whether such a difference in

processing may be accounted for in terms of chunk probabilities

or Gestalt principles.

Another potential explanation would be interference with

streaming: Through the frequent violation of NarmourJs melodic

principles the materials contain a large number of melodic leaps

and large intervals (although the range is limited to 15 semitones).

Accordingly the processing of these melodies may interfere with

melodic streaming processes (cf. [59,82]) so that the melodic

sequences are not coherently (or not easily) processed as one single

stream. In consequence, processing, recognition and learning of

melodic chunks may be impaired.

Finally, one might explain the impaired performance in terms of

mere statistical learning (e.g. [7,82,83]). First, since the underlying

grammar in both experiments is the same and the surface

sequences have matching n-gram structures, one might not expect

a difference in performance merely in terms of statistical learning.

However, this prediction changes when taking into account

another assumption that the statistical learner comes endowed

with a body of fragment knowledge from large exposure with

common melodies. This knowledge adds a prior to the model that

is likely to have a negative impact on the performance in the

learning experiment since both, grammatical and ungrammatical

stimuli are expected to be processed as unlikely (and less distinct)

when dealing with Narmour-inconsistent materials. Hence mere
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statistical learning may provide another potential explanation of

the current results.

Whether the difference in performance is due to the impedance

of ease of processing, streaming or statistical learning biased by

prior knowledge cannot be immediately answered from the

present data. This therefore raises the question of whether or

not these behavioural results can be accounted for through a

simulation with computational models of statistical and implicit

learning. One may hypothesise that the third explanation based on

statistical learning with prior knowledge is the simplest since it

provides the most simple cognitive assumptions (without additional

assumptions about streaming, Gestalt principles or the like). If such

computational models would fail to explain the challenge of the

present reference results, a more complex underlying cognitive

process need be assumed. This hypothesis remains to be addressed

in future work.

The finding that uncommon melodic structures are less well

learned may raise another point concerning melodic structure and

Narmours principles: Do melodic structures following Narmours

principles in general afford for better learnability or are they just

learned better because they are more common? Melodic structures

are largely found to follow Narmours principles across cultures

and styles. Although the results by Pearce & Wiggins showed that a

series of experimental studies on melodic perception [34,37,84]

could be better explained by corpus-based statistical learning and

processing rather than Narmours principles [35,83], their finding

does not entail why melodies accord with Narmours principles

across cultures. In contrast, from an unbiased statistical learning

perspective one might expect that melodic patterns (of the same

complexity) are learned equally well independently of whether

they accord with Narmours principles since a pure statistical

processor would be indifferent to this distinction.

This cross-cultural convergence as well as the findings of

impaired learning after violating Narmours principles in the

present study as well as by [55] seems to suggest that ease of

processing and learning constitutes a selective pressure for the

(historical) change and emergence of melodic structures. Accord-

ingly, factors of performance (such as preprocessing or streaming)

may affect melodic learning, representation and reproduction and

result in shaping the structures of melodies in larger timescales in a

way analogous to the effect of performative constraints on

grammars in language [85–87]. One may consequently under-

stand implicit learning and its constraints as a bottleneck (grounding

in communicative pressure, cf. [86,88] ) for the learning,

recognition, representation and reproduction of melodic structures

which plays a significant role for the stabilisation and emergence of

melodic structures [7,89–93].
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