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Abstract 

BCAP is a PI3K adaptor protein in TLR, BCR and IL-1R and TCR signalling. In TLR 

signalling, BCAP acts as a negative regulator of inflammatory signalling. Regulation of TLR 

signalling is essential as overstimulation can cause excessive and pathological inflammation, 

which leads to serious illnesses such as sepsis and rheumatoid arthritis. 

Through an N-terminal TIR domain, BCAP interacts with the MAL and MyD88 adaptors 

downstream of TLR activation. BCAP then recruits PI3K and PLC-𝛾2 to the TLR signalosome. 

Although these proteins can facilitate negative regulation of TLRs by endocytosis, the 

mechanism by which BCAP dampens TLR signalling remains elusive. The first aim of this 

thesis is to determine the minimal domain requirements and stoichiometry of BCAP TIR 

domain interactions. The second aim is to characterise and further explore the BCAP 

interactome, in the context of TLR and BCR signalling. Identification of novel interaction 

partners and a more detailed understanding of existing interactions, including PI3K and PLC-

𝛾2, is crucial in understanding the function of BCAP in various signalling pathways. 

An integrated structural and functional approach was used to study the mechanism of BCAP 

TIR domain interactions. Co-immunoprecipitation was used to show that the BCAP TIR 

domain associates with MAL, but does not dampen NF-κB signalling in reporter assays. For 

this negative regulation of TLR signalling, the BCAP DBB domain is essential. A crystal 

structure of the DBB domain in combination with SEC-MALS revealed that the DBB domain 

functions as a dimerisation region. First shown in NF-κB reporter assays, DBB domain 

dimerisation also prevents MAL TIR domain interactions in vitro. These results support a new 

model of steric inhibition of TIR domain interactions, by which BCAP negatively regulates 

TLR signalling. 

An investigation of BCAP post-translational modifications revealed that the tyrosine kinases 

BTK, LYN and SYK, and the serine kinase CSNK2A1 contribute to BCAP 

hyperphosphorylation. A virotrap interaction screen identified a number of proteins including 

Grb2 and CRKL as new adaptor proteins in the BCAP interactome. Subsequent validation in 

mammalian cells via co-immunoprecipitation showed that Grb2 is a direct interaction partner 

of BCAP. Further characterization of all SH2 and SH3 domain-containing proteins in the BCAP 

interactome revealed an extensive network of SH2 and SH3 domain interactions as well as the 

specific interaction sites. In conclusion, these results indicate that BCAP is a complex hub that 

integrates multiple immune signalling pathways.
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1 Introduction 

The B cell adaptor protein (BCAP) is an important adaptor protein in immunity and plays a 

pivotal role in TLR, BCR, IL-R and TCR signalling. BCAP dampens TLR4 signalling by 

recruiting PI3K and PLC-𝛾2, both of which are key enzymes in phosphatidylinositol 

metabolism. The current literature on BCAP mainly describes the cellular and in vivo effects of 

the protein on the immune system. The precise molecular mechanism by which BCAP interacts 

with the TLR signalosome and downstream interaction partners of phosphatidylinositol 

metabolism is not understood. This study pursues an integrated approach drawing upon 

structural, biophysical and cell biological evidence to elucidate the mechanism of BCAP-

mediated TLR regulation. This introduction chapter is divided into two main parts, of which 

the first describes the mechanisms of TLR activation with a focus on the upstream TIR domain-

dependent signalling. The second part provides an overview of the cellular functions of BCAP 

in the immune system. 

1.1 Pattern recognition receptors in innate immunity 

Multicellular organisms have an innate immune system that provides an immediate first line of 

defence against infection by pathogenic micro-organisms. To accomplish this, these organisms 

use a number of pattern recognition receptors (PRRs) that recognise and respond to conserved 

microbial molecules, commonly referred to as pathogen-associated molecular patterns 

(PAMPs). PRRs also respond to endogenous ligands collectively termed damage-associated 

molecular patterns (DAMPs), which are released by damaged or dying cells. 

There are distinct families of PRRs including the toll-like receptor (TLR) family of 

transmembrane receptors, the NOD-like receptors (NLR), the RIG-I-like receptor (RLR) 

family, the PYHIN family, the C-type lectin receptors (CLRs), oligoadenylate synthase (OAS) 

proteins and the related protein cyclic GMP-AMP synthase (cGAS) (Medzhitov, Preston-

Hurlburt et al. 1997, Weis, Taylor et al. 1998, Girardin, Tournebize et al. 2001, Yoneyama, 

Kikuchi et al. 2004, Brehin, Casademont et al. 2009, Hornung, Ablasser et al. 2009, Wu, Sun 

et al. 2013). In response to infections, these receptors exhibit varying levels of functional 

overlap and redundancy to achieve microbial clearance (Monie, Bryant et al. 2009). 
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1.2 The role of Toll-like receptors in innate immunity 

TLRs mediate immune responses to microbial stimuli such as bacterial lipids, lipoproteins and 

non-self nucleic acids. Since the first TLR was discovered, ten human TLR receptors and 

numerous ligands have been described (Medzhitov, Preston-Hurlburt et al. 1997). TLRs can be 

divided into two classes depending on their subcellular localisation. TLR1, TLR2, TLR4, 

TLR5, TLR6 and TLR10 recognise extracellular ligands and signal from the cell surface, while 

TLR3, TLR7, TLR8, and TLR9 recognise their respective ligands in the endosomal 

compartment. 

TLR4 is activated by gram-negative bacterial LPS through the co-receptors MD2 and CD14 

(Shimazu, Akashi et al. 1999). Triacyl and diacyl lipoproteins are recognised by heterodimers 

of TLR2 with TLR1 or TLR6, respectively (Jin, Kim et al. 2007, Kang, Nan et al. 2009). 

Bacterial flagellin protein induced activation and dimerisation of TLR5 (Yoon, Kurnasov et al. 

2012). The most recent addition to the human TLR family, TLR10, is considered an orphan 

receptor. However, it has been shown to dimerise with TLR1 and TLR2 (Hasan, Chaffois et al. 

2005). It is therefore possible that heterodimers containing TLR10 would recognise lipoproteins 

similar to the other TLR2 heterodimers (Hasan, Chaffois et al. 2005). The endosomal TLR9 

responds to DNA with unmethylated CpG nucleotides, whereas TLR7 and TLR8 are activated 

by single-stranded RNA (Hemmi, Takeuchi et al. 2000, Diebold, Kaisho et al. 2004, Heil, 

Hemmi et al. 2004). Double-stranded viral RNA is recognised by TLR3 (Alexopoulou, Holt et 

al. 2001). 

As single pass type I transmembrane receptors, TLRs are comprised of an extracellular leucine-

rich repeat (LRR) domain for ligand detection and a cytoplasmatic TIR domain that initiates 

inflammatory signalling (Gay and Keith 1991). For a subset of TLR receptors, crystallographic 

receptor-ligand complexes revealed a remarkable plasticity of the LRR repeats to interact with 

a vast range PAMPs, with widely varying biophysical properties. TLR1-TLR2 heterodimers 

accommodate the Pam3CSK4 acyl chain in hydrophobic pockets at the top of the LRR 

heterodimer (Jin, Kim et al. 2007). TLR3 LRR dimers recognises dsRNA at multiple contact 

points at the top of the LRR, as well as inside the dimerisation interface (Liu, Botos et al. 2008). 

By contrast, the TLR4 ligand, LPS, has six acyl chains that are accommodated by the MD2 

coreceptor, with limited LRR contacts that mainly interact with the lipid headgroup (Ohto, 

Fukase et al. 2007, Park, Song et al. 2009). 
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Extracellular ligand engagement induces receptor dimerisation and subsequent activation of the 

TIR domains. The activated receptor TIR domains act as a scaffold for the recruitment of the 

TIR domain-containing adaptor proteins, MyD88, MAL, TRIF, TRAM, SARM and BCAP 

(Figure 1) (Horng, Barton et al. 2001, Horng and Medzhitov 2001, Fitzgerald, Rowe et al. 2003, 

Oshiumi, Matsumoto et al. 2003, Couillault, Pujol et al. 2004, Troutman, Hu et al. 2012). TLRs, 

with the exception of TLR3, utilise a MyD88-dependent signalling pathway that relies on the 

recruitment of MAL to activated TLRs (Fitzgerald, Palsson-McDermott et al. 2001, Bonham, 

Orzalli et al. 2014). TLR3 signals through the TRIF adaptor protein, activating the MyD88-

independent pathway (Yamamoto, Sato et al. 2003). This alternative pathway requires the 

endosomal membrane anchored adaptor protein TRAM (Fitzgerald, Rowe et al. 2003). TLR4 

is unique in that it signals through both pathways. The MyD88-dependent pathway is activated 

by LPS stimulation at the cell surface, followed by receptor internalisation that activates the 

MyD88-independent pathway via TRAM and TRIF (Fitzgerald, Rowe et al. 2003). SARM and 

BCAP are negative regulators of TLR activation (Carty, Goodbody et al. 2006, Peng, Yuan et 

al. 2010, Ni, MacFarlane et al. 2012, Troutman, Hu et al. 2012). 

1.3 Toll-like receptor signalling pathways 

Ligand-induced TLR signalling results in the activation of immune cells. However, the precise 

cellular response depends on the combination of ligand and receptor. In innate immune cells 

like macrophages and dendritic cells, TLR signalling enhances bacterial clearance by 

phagocytosis and secretion of pro-inflammatory cytokines and chemokines. These signalling 

proteins encourage the recruitment and activation of additional immune cells. Pro-

inflammatory signals also lead to the activation of the adaptive immune system, with the 

differentiation and activation of naïve T cells that do not express TLRs (Iwasaki and Medzhitov 

2015). However, other cell types in the adaptive immune system do express TLRs. For example, 

B cells express a wide range of TLRs and ligand detection leads to increased proliferation, 

differentiation and expression of co-stimulatory molecules (Rawlings, Schwartz et al. 2012). 

On a molecular level, these widely varying cellular responses are the result of transcription 

factor (TF) activation downstream of TLR signalling. Specifically, NF-κB, AP-1, and IRFs are 

activated downstream of TLR stimulation. 
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Figure 1. Overview of the TLR signalling pathway. 

TLRs are present at the plasma membrane and in endosomal compartments. Upon the detection of microbial cell-wall 

components, non-self nucleic acids or DAMPS, TLRs activate the MyD88-dependent, or MyD88-independent signalling 

pathway. Through a complex signalling network and crosstalk with various other signalling pathways, TLR activation leads to 

the transcription of inflammatory cytokines, chemokines, and type I IFNs. MyD88-dependent myddosome formation activates 

TRAF6 resulting in the activation of NF-κB and MAPK-induced AP-1. The MyD88-independent triffosome activates IRF3 

and IRF7 through TRAF3, and NF-κB via TRAF6. 

In the MyD88-dependent pathway, MAL facilitates the recruitment of MyD88 to activated 

TLRs (Figure 1) (Fitzgerald, Palsson-McDermott et al. 2001). Subsequently, MyD88 will 

interact with the IRAK family proteins IRAK4, IRAK2 and IRAK1 to form the helical 

myddosome complex (Motshwene, Moncrieffe et al. 2009, Lin, Lo et al. 2010). IRAK 

phosphorylation then activates the E3 ubiquitin ligase TRAF6 that drives activation of the 
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NF-κB complex, and MAPKs through TAK1 (Wang, Deng et al. 2001). MAPK signalling 

subsequently leads to the activation of AP-1 (Wang, Deng et al. 2001). 

Similarly, the MyD88-independent pathway is mediated by TIR domain-containing adaptor 

proteins (Figure 1). Recruitment of TRIF downstream of TLR3 and TLR4 promotes pro-

inflammatory NF-κB and AP-1 signalling through TRAF6 (Konno, Yamamoto et al. 2009). 

Alternatively, TRIF and RIPK signalling results in caspase activation, which then leads to 

NF-κB signalling (Meylan, Burns et al. 2004). More distinctly though, the MyD88-independent 

pathway also results in the production of type I interferons following activation of IRF family 

transcription factors. TRIF signalling leads to the activation of TRAF3, subsequently activating 

TBK1 and IKK𝛆 (Hacker, Redecke et al. 2006). This TBK1 and IKK𝛆 complex then leads to 

IFN-β induction via IRF3 activation (Hacker, Tseng et al. 2011). IRF5 and IRF7 can be 

activated downstream of both MyD88-dependent and the MyD88-independent pathways 

through TRAF6 (Fitzgerald, Rowe et al. 2003, Kawai, Sato et al. 2004, Ouyang, Negishi et al. 

2007). 

1.4 Structure and function of TIR domains 

Signalling mediated by TLRs is initially propagated by TIR domain adaptor proteins. TIR 

domain-containing proteins have been characterised in bacteria, plants and animals. In plants 

and animals, TIR domains are often found in multi-domain immune proteins. In bacteria, they 

often function as virulence factors that facilitate host immune evasion (Rana, Zhang et al. 2013). 

In human TLR signalling, six TIR domain-containing adaptor proteins are involved in signal 

transduction. Of these six, MAL, MyD88, TRAM and TRIF are pro-inflammatory adaptor 

proteins that propagate the signal downstream of activated TLR dimers. BCAP and SARM are 

atypical adaptor proteins that negatively regulate inflammatory signalling (Carty, Goodbody et 

al. 2006, Troutman, Hu et al. 2012, Carlsson, Ding et al. 2016). Using x-ray crystallography 

and NMR, several receptor and adaptor TIR domain structures have been determined (Xu, Tao 

et al. 2000, Nyman, Stenmark et al. 2008, Ohnishi, Tochio et al. 2009, Valkov, Stamp et al. 

2011, Enokizono, Kumeta et al. 2013, Snyder, Deredge et al. 2014, Halabi, Sekine et al. 2017). 

TIR domains typically span between 130-200 amino acids. Despite a low level of sequence 

similarity, all TIR domains are comprised of an α/β-fold with five ⍺-helices surrounding a core 

of four or five parallel β-strands (Figure 2). The loops connecting these secondary structures 

have been shown to play a crucial role in signalling. For example, the loop connecting βB-sheet 
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and ⍺B-helix (BB-loop) is crucial for the functioning of TIR domain adaptor proteins and 

receptor specificity (Figure 2) (Toshchakov, Basu et al. 2005). Mutations of critical residues in 

this loop have resulted in a loss-of-function phenotype in various adaptor proteins (Poltorak, 

He et al. 1998, Toshchakov, Basu et al. 2005). In TLR3, a point mutation in the BB-loop can 

even induce a shift from TRIF to MyD88-dependent signalling (Verstak, Arnot et al. 2013). 

In plants, many TIR domains are found in the N-terminus of pathogen resistance proteins. These 

cytoplasmic nucleotide-binding (NB)/LRR resistance proteins recognise PAMPs and trigger a 

defence response known as the hypersensitive response (Dodds and Rathjen 2010). Other 

families of TIR domain-containing plant proteins are TIR-only (TIR-X) and TIR-NB (TIR-N) 

proteins (Meyers, Morgante et al. 2002). While the precise function of these last proteins is 

largely unknown, transient overexpression in N. tabacum and stable transgenics in A. thaliana 

have shown that TIR-X induces cell death and TIR-N enhances pathogen resistance (Nandety, 

Caplan et al. 2013). 

In a wide range of bacterial species, TIR domains can be found as single domain proteins or in 

combination with other domains (Rana, Zhang et al. 2013). Most of the bacterial TIR domain-

containing proteins are poorly characterised, but several instances of immunomodulatory 

functions have been described. TcpB and BTpA from B. melitensis, YpTIR1 from Y. pestis and 

TcpC from uropathogenic E. coli CFT073 suppress TLR signalling by TIR domain interactions 

with host TIR domain-containing proteins, resulting in host immune evasion (Rana, Simpson 

et al. 2011, Waldhuber, Snyder et al. 2016, Nimma, Ve et al. 2017). 

Even though TIR domains have been fairly well characterised with regard to their structural 

features, it remains unclear how various TIR domains activate and regulate inflammatory 

signalling. 

1.5 The molecular mechanism of TIR domain signalling 

Despite these structural insights and extensive mapping of various crucial protein interfaces, 

the mechanism of homotypic and heterotypic TIR domain interactions remains unclear. 

Consequently, the structure, stoichiometry and assembly of the full TLR signalosome is 

unknown. 

Driven by ligand-induced TLR dimerisation and the early observation that MAL and MyD88 

have the ability to self-associate in situ and in vitro, it was proposed that mammalian TIR  
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domains form dimers (Dunne, Ejdeback et al. 2003). These observations fuelled a search for 

TIR domain dimers and their dimerisation interfaces. Frequently, crystal contacts are proposed 

to represent dimerisation interfaces even though all known mammalian TIR domains are 

monomeric in solution (Xu, Tao et al. 2000, Khan, Brint et al. 2004, Nyman, Stenmark et al. 

2008, Ohnishi, Tochio et al. 2009, Valkov, Stamp et al. 2011, Lin, Lu et al. 2012, Jang and Park 

2014, Halabi, Sekine et al. 2017). 

 

Figure 2. TIR domain structure and topology. 

(A) Crystal structure of the BCAP TIR (BCAPTIR domain) (PDB code 5FOR), illustrating the secondary structure features of 

a typical TIR domain with an α/β-fold containing five α-helices (αA-αE) surrounding a core of four or five parallel β-strands 

(βA-βE). (B) Topology diagram of the BCAPTIR domain. 

To date, the only evidence for TIR domain dimerisation has been found in plants and bacteria. 

In A. thaliana, a heterodimer between the TIR domains of the resistance proteins RRS1 and 

RPS4 was crystallised and confirmed to be dimeric in solution (Williams, Sohn et al. 2014). 

Other reports of dimeric plant TIR domain structures and homodimers are either based on 

inconclusive data or represent mere interpretations of crystal contacts that show little 

consistency with regard to dimerisation interfaces (Chan, Mukasa et al. 2010, Bernoux, Ve et 

al. 2011, Hyun, Lee et al. 2016, Zhang, Bernoux et al. 2017). By contrast, the bacterial TIR 

domain proteins YpTIR1 (Y. pestis), BtpA and TcpB (B. melitensis), were shown to form 

dimers in solution (Rana, Simpson et al. 2011, Kaplan-Turkoz, Koelblen et al. 2013, 

Alaidarous, Ve et al. 2014). 

In the absence of evidence for TIR dimerisation of mammalian proteins in solution, several 

extensive mutagenesis studies were conducted in order to map the relevant interface in MyD88, 

MAL, and TLR4 (Ohnishi, Tochio et al. 2009, Lin, Lu et al. 2012, Bovijn, Desmet et al. 2013, 

Loiarro, Volpe et al. 2013, Vyncke, Bovijn et al. 2016). In these studies, loss-of-function 

mutations of MAL and MyD88 are usually grouped in three or four interfaces that disrupt 
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NF-κB signalling and TIR domain oligomerisation. For the MAL TIR domain (MALTIR), three 

important interfaces contain the αC’-helix and DD-loop, the BC-loop and αC’-helix, and the 

DE-loop and αE-helix. Similarly, four important interfaces were identified in the MyD88 TIR 

(MyD88TIR) domain and contained key residues in the BB-loop region, the αD-helix and 

αC-helix, the αE-helix, and DE-loop and EE-loop (Vyncke, Bovijn et al. 2016). 

These loss-of-function mutations cover most of the TIR domain surface of the MAL and 

MyD88. Consequently, this data suggests that these protein interactions are more complex than 

simple homo- or heterodimerisation. However, these interfaces inspired several models of the 

TLR signalosome that are based on in silico docking techniques (Bovijn, Desmet et al. 2013, 

Guven-Maiorov, Keskin et al. 2015, Guven-Maiorov, Keskin et al. 2015, Vyncke, Bovijn et al. 

2016). These models remain highly speculative, since the proposed interfaces are inconsistent 

between different publications and dimerisation of mammalian TIR domains remains a mere 

hypothesis. Moreover, all models fail to bridge stoichiometric mismatch between receptor 

dimerisation and myddosome formation, where MyD88 adopts a helical conformation with 

about four units per turn. 

1.6 Filament formation in innate immune signalling 

In the search for the TLR signalosome structure and TIR domain oligomerisation interfaces, 

the field has pivoted towards the study of larger signalling complexes. Many PRRs tend to 

cluster and form filamentous complexes that subsequently induce activation of downstream 

effector proteins (Hauenstein, Zhang et al. 2015, Vajjhala, Ve et al. 2017). This sequential 

recruitment and oligomerisation of adaptor proteins by activated PRRs often involves a co-

operative assembly mechanism that builds on an initial nucleation event (Lu, Magupalli et al. 

2014, Xu, He et al. 2014, Lu, Li et al. 2016). These phenomena have been observed in NLR 

and PYHIN inflammasomes, MAVS and RLR receptors, and the myddosome and triffosome 

downstream of TLR signalling (Figure 3) (Kagan, Magupalli et al. 2014, Vajjhala, Ve et al. 

2017, Latty, Sakai et al. 2018). 

NLR inflammasome activation initiates the assembly of large specks containing ASC filaments 

and effector caspases (Figure 3) (Lu, Magupalli et al. 2014, Man, Hopkins et al. 2014). NLRP1, 

NLRP3 and NAIP2/NLRC4 are known to form this type of inflammasome through initial 

receptor oligomerisation. NAIP2 and NLRC4 assemble into an oligomeric ring upon ligand 

binding (Hu, Zhou et al. 2015, Zhang, Chen et al. 2015). This results in proximity-induced 
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oligomerisation of receptor CARD domains and subsequent recruitment of the ASC CARD 

domain. ASC is recruited downstream of both CARD and PYD domain-containing NLRs and 

forms large filamentous structures by PYD domain filament formation (Lu, Magupalli et al. 

2014, Sborgi, Ravotti et al. 2015). The ASC PYD domain filaments are thought to be 

crosslinked by ASC CARD domain interactions and activation of effectors caspases. 

Crosslinking drives condensation of the protein complexes and results in the typical 

macromorphological inflammasome speck (Lu, Magupalli et al. 2014, Dick, Sborgi et al. 2016). 

The resulting activation of caspase 1 drives proteolytic activation of IL-1β and gasdermin D, 

which leads to pyroptotic cell death (Shi, Zhao et al. 2015). 

ASC is also involved in the activation of DNA-recognising PRRs. For example, the PHYRIN 

protein family member AIM2 recognises dsDNA via its HIN domain (Figure 3) (Jin, Perry et 

al. 2013). This induces clustering of the AIM2 PYD domain that results in the recruitment of 

ASC and subsequent inflammasome formation with caspase activation (Lu, Magupalli et al. 

2014). 

Another group of filament-forming proteins are the cytosolic RLR family members RIG-I and 

MDA5 that recognise viral RNA (Figure 3) (Andrejeva, Childs et al. 2004, Yoneyama, Kikuchi 

et al. 2004). RIG-I and MDA5 form a ring-like filament around dsRNA, leaving their CARD 

domains to interact with MAVS that then forms CARD domain filaments on the outer 

mitochondrial membrane (Hou, Sun et al. 2011, Jiang, Ramanathan et al. 2011, Kowalinski, 

Lunardi et al. 2011, Reikine, Nguyen et al. 2014, Yu, Qu et al. 2018). Through TRAF2/3 and 

TBK1, the MAVS signalosome activates IRF3 and IRF7, resulting in expression of type I IFNs 

(West, Shadel et al. 2011). Alternatively, TRAF6-dependent activation of RIPK1 can lead to 

NF-κB signalling (West, Shadel et al. 2011). 

TLR3 signalling through TRIF, RIPK1 and caspase 8 involves the formation of TRIF-

containing filaments (triffosome) (Figure 3) (Gentle, McHenry et al. 2017). TRIF filament 

formation is also supported by preliminary data suggesting TRIF filaments can assemble in 

vitro (Unpublished data, Gay group). TRIF oligomerisation is likely driven by the TIR domain 

and the RHIM motif, which is essential for filament formation in RIPK1 and RIPK3 (Li, 

McQuade et al. 2012). RIPK1 and RIPK3 kinases then interact with FADD through DD 

interactions, and induce caspase 8-dependent cell death (Kaiser and Offermann 2005). 
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Figure 3. Overview of filament formation in innate immunity signalosomes. 

Depicted are the well-characterised innate immunity signalosomes that utilise filament formation to amplify inflammatory 

signalling. The figure does not represent the exact stoichiometry or domain arrangements for proteins in each signalosome. 

LPS (not shown) binding to TLR4 through MD2 induces receptor dimerisation that leads to the assembly of the TIR domain-

containing signalosome. Sequential recruiting and activation of MAL and MyD88 leads to myddosome formation through 

MyD88 death domains (DDs), resulting in the recruitment of IRAK kinases that initiate the activation of NF-κB. Engagement 

of RIG-I and MDA5 by dsRNA activates CARD domains that form a nucleation point for MAVS CARD domain 

oligomerisation on the outer mitochondrial membrane. Through TRAF proteins, the MAVS signalosome activates IRF3, IRF7 

and NF-κB. NLRP3 or AIM2 (not shown) inflammasome activation is initiated by DAMPs resulting in a conformational 

rearrangement of the PYR domains that nucleates ASC PYR domain oligomerisation. Subsequent activation of ASC CARD 

domains results in the recruitment of caspase 1 that activates pro-IL-1β through proteolysis. TLR3 recognises dsRNA, inducing 

receptor dimerisation. Subsequent TIR domain activation leads recruitment of TRAM and TRIF adaptor proteins through TIR 

domain interactions. The TRIF adaptor protein can then induce RIPK1 activation via RHIM domain oligomerisation. 

Triffosome activation and signalling via RIPK1 leads to caspase 8-dependent cell death. 

1.7 Filament formation in TLR signalling 

With numerous examples of filament formation and higher-order oligomerisation in other 

PRRs, these concepts are now being adopted in the field of TLR signalling and TIR domain 

adaptor proteins (Latty, Sakai et al. 2018). 

Downstream of TLRs, MyD88-dependent signalling leads to the formation of the myddosome 

via MyD88 DD interactions with IRAK kinases (Motshwene, Moncrieffe et al. 2009). The 

crystal structure of this DD complex reveals an assembly similar to ASC PYD and MAVS 

CARD domain filaments (Lin, Lo et al. 2010). Although the precise mechanism of myddosome 

assembly is unknown, it is likely that MyD88 presents activated DD complexes that act as a 

platform for sequential recruitment of four IRAK4 and four IRAK2 DDs (Unpublished data, 
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Gay group). This brings the IRAK kinase domains in proximity causing activation and cross-

phosphorylation (Ferrao, Zhou et al. 2014). 

The role of TIR domains in the formation of myddosomes remains elusive. However, it was 

recently discovered that MALTIR and MyD88TIR domains can form large filamentous structures 

in vitro (Ve, Vajjhala et al. 2017). The MALTIR domain was shown to form temperature 

reversible filaments composed of twelve protofilaments that associate laterally, each containing 

two parallel strands of TIR domains. The filament forms a hollow tube with an inner diameter 

of 130 Å, which is in contrast to other PRR filaments that tend to contain 3-4 subunits within 

each cross-sectional segment (Ve, Vajjhala et al. 2017). The MALTIR domains contained in the 

filamentous structure were found to have substantial conformational differences compared to 

the NMR and crystal structures, due to participation of flexible regions and loops in the filament 

packing (Valkov, Stamp et al. 2011, Hughes, Lavrencic et al. 2017). 

This large MAL filament represents the first structural evidence of homotypic TIR domain 

interactions, and contains valuable information regarding TIR domain interaction interfaces. 

The intrastrand interactions are comprised of head-to-tail contacts between TIR domains and 

involve the BB-loop residues, called BB-surface, and the EE-surface of the next subunit, 

comprised of the βD- and βE-strands. Herein, the conserved BB-loop residues P125 and G126 

are buried in a pocket of the βE-strand. Each subunit of the protofilament interacts with two 

other subunits of the adjacent strand. These interstrand interactions are composed of the BC-

surface, containing the αB- and αC-helices of one subunit, and the CD-surface with the αD-

helix and the CD-loop of the opposite MALTIR domain subunit. The contacts that make up the 

interfaces between protofilaments primarily consist of salt bridges. Mutations of key residues 

showed that substitution of most interstrand and intrastrand residues abolished MAL filament 

formation in vitro (Ve, Vajjhala et al. 2017). Altogether, the interfaces contained in the MAL 

filament match the results of previous site-directed mutagenesis studies (Lin, Lu et al. 2012, 

Bovijn, Desmet et al. 2013, Ve, Vajjhala et al. 2017). 

Viewing these earlier results from mutagenesis studies in the light of this novel filamentous 

model explains how numerous mutations of residues and interfaces spread throughout the TIR 

domain surface all lead to loss-of-function in signalling assays. Given the conserved structure 

of TIR domains, it is highly probable that all TIR domains form or participate in higher 

oligomeric structures to amplify pro-inflammatory signalling. Moreover, the binding interfaces 

are almost certainly identical among all TIR domains, since it is unlikely that such small 

domains encode for multiple independent ways of oligomerisation. 
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1.8 The role of dimerisation in TIR domain interactions 

Despite the discovery of higher order TIR domain assemblies and the absence of evidence for 

TIR domain dimers, indirect dimerisation still plays an important role in TIR domain signalling. 

In several instances, TIR-adjacent domains play a crucial role in signalling. Ligand-induced 

dimerisation of the TLR ectodomain causes rearrangements and activation of the cytosolic TIR 

domains. Similarly, the MyD88 DD drives dimerisation of the full-length protein, bringing TIR 

domains into close proximity (Ohnishi, Tochio et al. 2009). The atypical TLR adaptor SARM 

is the best-studied example of this indirect dimerisation. Forced dimerisation of SARM TIR 

(SARMTIR) domain in chimeric constructs results in TIR domain activation (Gerdts, Brace et 

al. 2015, Summers, Gibson et al. 2016). In the full-length protein, the TIR domain is followed 

by sterile alpha motif (SAM) domains that drive dimerisation (Gerdts, Summers et al. 2013). 

The SARMTIR domain has been shown to have a unique catalytic activity causing depletion of 

axonal NAD+. This NADase activity leads to pathological axonal degradation, and is dependent 

on protein dimerisation (Gerdts, Summers et al. 2013, Essuman, Summers et al. 2017). The 

products of this enzymatic reaction are ADPR and cyclic ADPR, with variable ratios in different 

species. The glutamic acids residues E596 and E642 are essential to the reaction and were 

proposed as catalytic residues (Summers, Gibson et al. 2016, Essuman, Summers et al. 2017). 

However, as a SARMTIR domain crystal structure is not available, the precise active site remains 

to be determined. The TIR domains of MyD88 and TLR4 did not exhibit such enzymatic 

activity, and SARM is therefore likely unique among TIR domain-containing proteins 

(Essuman, Summers et al. 2017). However, the example of SARM illustrates that induced 

proximity, but not necessarily dimerisation sensu stricto plays an important role in TIR domain 

activation. 

The TLR adaptor protein BCAP contains a TIR domain followed by a DBB and ANK domain 

that have been linked to dimerisation (Battersby, Csiszár et al. 2003, Halabi, Sekine et al. 2017). 

However, the effect of BCAP dimerisation on TIR domain interactions and TLR signalling has 

not been investigated. 

1.9 Negative regulation of TLR signalling 

Signalling pathways require a delicate balance of activation and inhibition. Excessive TLR 

signalling leads to pathological inflammatory signalling that can result in sepsis, where 

detrimental amounts of proinflammatory cytokines pose a life-threatening risk. Cells have 
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evolved a multitude of strategies to regulate TLR signalling, ranging from negative feedback 

loops to ubiquitin-dependent protein degradation, targeting of protein-protein interactions, 

competing signalling pathways and protein sequestration (Liew, Xu et al. 2005, Hamerman, 

Pottle et al. 2016). This regulatory network has a high level of redundancy throughout several 

checkpoints and illustrates the complexity of inflammatory signalling. 

For example, soluble TLR2 and TLR4 isoforms inhibit signalling by blocking ligand binding 

to full-length TLRs (Liew, Xu et al. 2005). Equally, cytosolic TIR domain-containing proteins 

can inhibit TLR signalling by interfering with the TIR domain signalosome. This category of 

proteins includes orphan receptors like SIGIRR, ST2, and IL-17RD, or soluble adaptors, such 

as SARM and BCAP (Brint, Xu et al. 2004, Carty, Goodbody et al. 2006, Troutman, Hu et al. 

2012, Mellett, Atzei et al. 2015). TNFAIP3 and IRAK-M are cytosolic proteins that inhibit key 

signalling steps downstream of the myddosome (Kobayashi, Hernandez et al. 2002, Catrysse, 

Vereecke et al. 2014). Regulation is also provided at the transcriptome level. Examples of which 

are the transcription factors ATF3 and FoxO1, which negatively regulate the transcription of 

proinflammatory genes (Fan, Morinaga et al. 2010, Hamerman, Pottle et al. 2016). Furthermore, 

parallel signalling pathways such as TREM2/DAP12 can inhibit TLR responses by modulating 

the activation of MAPKs by competing for downstream adaptors and transcription factors 

(Guven-Maiorov, Keskin et al. 2015, Hamerman, Pottle et al. 2016). Lastly, the concentration 

of active TLRs is controlled by a complex trafficking network, where a balance of secretion 

and endocytosis cycles cell surface receptors between endosomes and the plasma membrane 

(Gay, Symmons et al. 2014, Liaunardy-Jopeace, Bryant et al. 2014). Endocytosis can also lead 

to receptor degradation in lysosomes (Saitoh 2009). For TLR4 and TLR9, this proteolytic 

degradation is ubiquitin dependent via the E3 ubiquitin-protein ligase Triad3A (Chuang and 

Ulevitch 2004). 

TLR4 internalisation and MyD88-independent signalling have been shown to depend on 

PLC-𝛾2 and degradation of phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2) (Kagan, Su et 

al. 2008, Zanoni, Ostuni et al. 2011, Aksoy, Taboubi et al. 2012). This process of 

PLC-𝛾2-dependent endocytosis also requires CD14 and SYK tyrosine kinase (Zanoni, Ostuni 

et al. 2011). Furthermore, PI3K was also found to induce internalisation of TLR4 by converting 

PI(4,5)P2 into phosphatidylinositol-(3,4,5)-trisphosphate (PI(3,4,5)P3) (Aksoy, Taboubi et al. 

2012). Conversion of PI(4,5)P2 depletes membrane binding sites for MAL, inducing its release 

from the plasma membrane and subsequent degradation (Aksoy, Taboubi et al. 2012). The 

proteases calpain and caspase-1 contribute to MAL degradation (Miggin, Palsson-McDermott 
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et al. 2007, Aksoy, Taboubi et al. 2012). The mechanisms by which PI3K and PLC-𝛾2 are 

recruited to activated TLR signalosomes remain poorly understood. Several PI3K 

overexpression studies claim to have shown that the p85 regulatory subunit of PI3K can bind 

directly to TLR2, TLR3, TLR5, MAL and MyD88 (Arbibe, Mira et al. 2000, Sarkar, Peters et 

al. 2004, Rhee, Kim et al. 2006, Laird, Rhee et al. 2009, Santos-Sierra, Deshmukh et al. 2009). 

However, these experiments should be interpreted with caution, as either the appropriate SH2 

domain binding sites for p85 were not present in these TLRs and adaptor proteins, or the motifs 

were non-essential for the observed PI3K interaction. Therefore, BCAP has been proposed to 

bridge MyD88-dependent TLR signalling to PI3K and PLC-𝛾2 (Halabi, Sekine et al. 2017). 

Since BCAP contains multiple YxxM binding sites for p85 subunit and is known to interact 

with PLC-𝛾2, it provides a credible link between TLR signalling and phosphatidylinositol 

metabolism. 

1.10 The function of BCAP in B lymphocytes 

BCAP is an important negative regulator of inflammatory TLR signalling. BCAP was first 

characterised in chicken B cells. Here, a pull-down assay was performed using p85 N-SH2 

domain as bait, and revealed BCAP as an interaction partner (Okada, Maeda et al. 2000). 

Physiologically, BCAP is recruited to the activated B cell receptor (BCR) complex by the 

adaptor protein Nck (Castello, Gaya et al. 2013). BCR ligation in DT40 cells leads to BCAP 

phosphorylation, which results in the recruitment and activation of PI3K (Okada, Maeda et al. 

2000). BCAP also links PI3K to the BCR co-receptor CD19, in chicken and mouse B cells 

(Inabe and Kurosaki 2002, Aiba, Kameyama et al. 2008). This PI3K activation downstream of 

CD19, was found to be more dependent on the BCAP YxxM motifs than those of CD19 (Inabe 

and Kurosaki 2002). Altogether, these results suggest that BCAP and CD19 have partially 

overlapping functions in BCR-mediated PI3K activation. However, it is unclear how BCAP 

would be recruited to the CD19 co-receptor. 
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Figure 4. Overview of negative regulation of TLR signalling. 

Depicted is a simplified overview of the TLR signalling pathways with a selected points of negative regulation. Extracellularly, 

soluble isoforms of surface TLRs can block ligand binding. Transmembrane receptors like TREM2-DAP12 inhibit TLR 

signalling by reducing MAPK activation. The TIR signalosome can be disrupted by phosphatidylinositol metabolism of PI3K 

and PLC-𝛾2, which results in a loss of MAL anchoring sites and leads to TLR4 endocytosis. IRAK-M and TNFAIP3 block 

signalling steps downstream of the TIR signalosome. At the transcription factor level, ATF3 dampens transcription of 

inflammatory genes through recruitment of histone deacetylases to the promoter region of inflammatory genes. FoxO 

transcription factors are phosphorylated and exported from the nucleus upon PI3K-Akt activation, terminating the transcription 

of inflammatory genes. 

PI3K activity is particularly important for B cell development, activation and differentiation. B 

cells from BCAP-deficient mice show a decreased ability to mature and proliferate, while 

producing less immunoglobulin and being more susceptible to apoptosis (Yamazaki, Takeda et 

al. 2002). The mechanism of these loss-of-function phenotypes is not always clear, as BCAP 

deletion in mice did not lead to altered PI3K activity in B cells. BCAP-deficient B cells also 

exhibit impaired NF-κB activity through reduced expression of the NF-κB family member 
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c-Rel (Yamazaki, Takeda et al. 2002, Yamazaki and Kurosaki 2003). This is somewhat 

unexpected since BCAP is a negative regulator of TLR signalling (Troutman, Hu et al. 2012). 

Furthermore, BCAP-deficient mice exhibited reduced calcium mobilisation, likely due to 

insufficient PLC-𝛾2 activation (Yamazaki, Takeda et al. 2002). This mechanism is supported 

by the finding that PLC-𝛾2 associates with BCAP in HEK293T cells (Halabi, Sekine et al. 

2017). 

In conclusion, BCAP is involved in a wide range of B cell signalling pathways, and BCAP 

deficiency leads to numerous phenotypes, some of which are yet to be explained on a molecular 

level. 

1.11 The role of BCAP in NK cells and T lymphocytes 

After the initial discovery in B cells, BCAP was also found to be crucial in other areas of the 

immune system. For example, BCAP is strongly expressed in natural killer (NK) cells 

(MacFarlane, Yamazaki et al. 2008). NK cells from BCAP-deficient mice exhibited increased 

IFN-𝛾 production, matured faster and were more resistant to apoptosis (MacFarlane, Yamazaki 

et al. 2008). This gain of function phenotype in NK cells is driven by defective PI3K-Akt 

signalling, which is in contrast to the loss-of-function phenotypes described in B cells. 

Although there is little research regarding BCAP in T lymphocytes, PI3K signalling is essential 

for the proper clonal expansion of activated antigen-specific T cells (Shi, Cinek et al. 1997). 

The mechanism underlying this PI3K signalling in T cell activation and proliferation is not fully 

understood. For example, it is not clear whether the YxxM motif of the T cell co-receptor CD28 

is required for PI3K recruitment in vivo, since mutation or deletion of this motif shows little 

effect in vivo (Pagan, Pepper et al. 2012). It was recently observed that BCAP, although not 

expressed in naïve T cells, was rapidly up-regulated in CD8+ T cells upon activation (Singh, Ni 

et al. 2018). BCAP-deficient CD8+ T cells show reduced CD3-dependent PI3K activation, 

which results in impaired clonal expansion and T cell differentiation in vivo (Singh, Ni et al. 

2018). This suggests the BCAP is part of the T cell receptor (TCR) signalosome. This 

hypothesis is supported by a recent study that identified BCAP in a mass spectrometry screen 

of TCR-associated proteins (Unpublished data, Okkenhaug group, Department of Pathology, 

University of Cambridge). 

BCAP was also found to propagate PI3K signalling downstream of IL-1R in T cells (Deason, 

Troutman et al. 2018). BCAP signals downstream of IL-1R and IL-18R in CD4+ T cells, where 



 

 

17 

it is required for optimal differentiation of Th1 and Th17 lineage cells (Deason, Troutman et al. 

2018). This IL-1R association was shown to be TIR domain dependent and might be facilitated 

through MyD88 or the receptor TIR domain. These recent reports illustrate that BCAP is an 

important signalling adaptor in T cells, regulating T cell expansion and activation downstream 

of TCR and the IL-1R family. 

1.12 The function of BCAP in myeloid cells 

After the initial characterisation of BCAP in B cells and adaptive immunity, focus also shifted 

to the role of BCAP in myeloid cells and innate immunity. This was driven by the observation 

that BCAP-deficient B cells exhibit defective c-Rel NF-κB activation (Yamazaki, Takeda et al. 

2002, Yamazaki and Kurosaki 2003). Supporting a role for BCAP in innate immunity, the 

protein is expressed in macrophages, dendritic cells and in hematopoietic progenitor cells 

(Matsumura, Oyama et al. 2010, Song, Chew et al. 2011). In these stem cells, BCAP acts as a 

negative regulator of myeloid cell development (Duggan, Buechler et al. 2017). 

In myeloid cells, BCAP was first shown to be phosphorylated and upregulated upon LPS 

stimulation of mouse macrophages (Matsumura, Oyama et al. 2010, Song, Chew et al. 2011). 

BCAP-deficient mice have a hypersensitive innate immune system, with increased 

inflammation upon infection with S. typhimurium and a more severe form of DSS-induced 

colitis (Troutman, Hu et al. 2012). Mouse macrophages deficient in BCAP also have an 

increased production of the cytokines IL-6, IL-10 and IL-12 in response to TLR2, TLR4 and 

TLR9 stimulation (Matsumura, Oyama et al. 2010, Ni, MacFarlane et al. 2012). (Troutman, Hu 

et al. 2012). Further studies then revealed that BCAP contains a TIR domain that enables 

recruitment to the TLR signalosome where it acts as a negative regulator (Ni, MacFarlane et al. 

2012, Troutman, Hu et al. 2012). The N-terminal TIR domain enables interaction with MAL, 

MyD88, and potentially TLR2 and TLR4 (Troutman, Hu et al. 2012, Halabi, Sekine et al. 2017). 

The molecular mechanism of BCAP-mediated negative regulation of TLR signalling is highly 

contentious. Multiple mechanisms have been proposed, but they fall short of addressing all 

aspects of BCAP signalling. 

A first hypothesis suggests that BCAP facilitates endocytosis of activated TLR4 receptors 

through recruitment of PLC-𝛾2 and PI3K (Halabi, Sekine et al. 2017). TLR4 endocytosis leads 

to a shift from MyD88-dependent NF-κB signalling to anti-inflammatory TRAM-TRIF 

signalling (Figure 5). This mechanism relies on the observation that BCAP interacts with 
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PLC-𝛾2 and PI3K, which both regulate TLR4 endocytosis (Aksoy, Taboubi et al. 2012). 

Although this mechanism fits negative regulation of surface TLRs, it does not address the 

BCAP inhibition of TLR9 (Troutman, Hu et al. 2012). In mouse macrophages, negative 

regulation of TLR9 signalling by BCAP is dependent on PI3K activity as shown by the use of 

wortmannin (Ni, MacFarlane et al. 2012). However, this result is somewhat contradictory and 

wortmannin is a broad inhibitor of PI3K-related protein kinases (De Matteis and Godi 2004). 

Moreover, there is no apparent function for class I PI3Ks in TLR9 endosomes, since these 

compartments are enriched in PI(3)P and PI(3,5)P2 (van Meer, Voelker et al. 2008, Bissig and 

Gruenberg 2013). 

A second hypothesis suggests that BCAP-mediated activation of PI3K leads to an 

Akt-dependent phosphorylation and nuclear export of the FoxO1 transcription factor 

(Eijkelenboom and Burgering 2013). FoxO1 residues T24, S256 and S319 are the targets of 

Akt phosphorylation, and S256 phosphorylation is significantly reduced in BCAP-deficient 

mouse macrophages (Hamerman, Pottle et al. 2016). Nuclear export of FoxO1 could then cause 

the termination of FoxO1-mediated transcription of pro-inflammatory genes such as IL-12, IL-6 

and IL-1β (Su, Coudriet et al. 2009, Fan, Morinaga et al. 2010, Brown, Wang et al. 2011). 

Thirdly, it cannot be ruled out that BCAP might engage in TIR domain-mediated inhibition of 

TLR signalosomes. TIR domains of MAL and MyD88 inhibit TLR signalling in overexpression 

models (Fitzgerald, Palsson-McDermott et al. 2001, Horng and Medzhitov 2001, Yamamoto, 

Sato et al. 2002). Moreover, indirect dimerisation of TIR domains might obstruct the assembly 

of TIR domain filaments by steric hindrance. 

Recent reports have also suggested a novel function for BCAP in plasmacytoid dendritic cells. 

BCAP PI3K activation was found to be an essential link in TLR7 and TLR9-dependent IFN-⍺ 

production (Chu, Ni et al. 2019). In this signalling pathway, BCAP is proposed to be localised 

at the plasma membrane, where its TIR domain interacts with DOCK2 to activate Rac1. Rac1 

is then required for IKK⍺ phosphorylation that drives IRF7-dependent IFN-⍺ transcription. 

Evidence for the BCAP-DOCK2 interaction comes from co-immunoprecipitation experiments 

in HEK293T cells. However, dependence on the BCAPTIR domain suggests that this might be 

an indirect interaction through endosomal TLR signalosomes. 

Given the increasing importance for BCAP in immune signalling with involvement in a wide 

range of pathways and cell types, further research is required to elucidate the mechanism, and 

protein interactions that facilitates this negative regulation of TLR signalling. 
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Figure 5. Displacement of MAL by PI(4,5)P2 depletion drives TLR4 endocytosis. 

Schematic representation of TLR4 endocytosis through BCAP-induced activation of PI3K and PLC-𝛾2. The figure does not 

represent the exact stoichiometry of the proteins involved in this negative regulation of TLR signalling. BCAP is recruited to 

the TLR4 signalosome through TIR domain interactions. Via SH3 and SH2 domain interactions, PI3K and PLC-𝛾2 form a 

complex with BCAP. Activation of PI3K and PLC-𝛾2 leads to a depletion of the PI(4,5)P2 pool required for MAL membrane 

localisation. A loss of MAL membrane association initiates endocytosis and the activation of TRAM and TRIF that induce IRF 

signalling. 

1.13 Structure of BCAP 

The PIK3AP1 gene encodes two variants of BCAP, generated by alternative initiation or 

splicing (Okada, Maeda et al. 2000). The larger isoform corresponds to the full-length protein 

(BCAPL), whereas the shorter isoform lacks the N-terminal TIR domain (BCAPS). Despite the 

expression of only two isoforms, endogenous BCAP from myeloid and lymphoid cells appears 

as four to six bands on western blot (Okada, Maeda et al. 2000, MacFarlane, Yamazaki et al. 

2008, Ni, MacFarlane et al. 2012). The post-translational modifications (PTM) that cause both 

BCAP isoforms to each appear as two or more bands are poorly understood, and might contain 

valuable information towards the function and regulation of BCAP. 

The existence of the N-terminal TIR domain (residues 1-142) was first proposed following the 

observation that BCAP negatively regulates TLR signalling in NF-κB luciferase assays 

(Troutman, Hu et al. 2012). A crystal structure later confirmed the TIR domain fold and 

revealed structural similarity with the TIR domains of TLR2, IL-1RAPL, MAL and TLR10 

despite sequence identities below 20% (Halabi, Sekine et al. 2017). However, in contrast to 

MALTIR, the BCAPTIR domain contains no disulphide bonds and the BB-loop is relatively short 

and well-defined in the crystal structure. 
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A linker of approximately 40 amino acid residues connects the TIR domain to an adjacent 

domain (residues 181-317) that was previously annotated as a transcription factor-Ig (TIG) 

domain followed by a 3-⍺-helix region (Figure 6) (Troutman, Hu et al. 2012). Due to the 

conservation of this region between the D. melanogaster protein Dof, BCAP and BANK1 this 

domain was later named DBB domain (Battersby, Csiszár et al. 2003). TIG domains from 

transcription factors (TIGTF) play an important role in protein dimerisation and DNA binding 

(Muller, Rey et al. 1995, Chen, Glover et al. 1998). Similarly, a yeast two-hybrid screen 

revealed that the BCAP DBB domain drives protein oligomerisation (Battersby, Csiszár et al. 

2003). 

The DBB domain is followed by three ankyrin repeats (ANK) (residues 322-403) referred to as 

ANK domain. Ankyrin repeats are approximately 33 amino acid residues and adopt a helix-

loop-helix fold with antiparallel ⍺-helices followed by a β-hairpin/loop (Mosavi, Cammett et 

al. 2004). Similar to the DBB domain, the ANK domain has been suggested to contribute to 

BCAP dimerisation (Halabi, Sekine et al. 2017). However, for both domains no structural 

information is available. 

The C-terminal half of BCAP is predicted to be unstructured, with the exception of a coiled-

coil motif (residues 605-665). This unstructured region contains several important protein 

binding motifs. For example, three proline-rich regions (residues 530-537, 775-790 and 

797-805) provide binding sites for SH3 domain-containing proteins like Nck (Figure 6) 

(Castello, Gaya et al. 2013). Based on sequence specificity, other proteins including Src 

tyrosine kinases, PLC-𝛾2 and GRB2 SH3 domains were predicted to interact with the BCAP 

proline-rich regions (Sparks, Rider et al. 1996). The C-terminal region also contains a variety 

of tyrosine motifs that enable SH2 domain interactions. Four YxxM motifs provide the putative 

binding sites for PI3K (Figure 6) (Okada, Maeda et al. 2000, Matsumura, Oyama et al. 2010, 

Ni, MacFarlane et al. 2012). 

1.14 BCAP tyrosine phosphorylation 

BCAP-SH2 domain interactions like those with p85 and PLC-𝛾2 require tyrosine 

phosphorylation of BCAP tyrosine binding motifs. The tyrosine kinase c-Abl was shown to 

phosphorylate BCAP at several sites in the C-terminal unstructured region, when co-expressed 

in HEK293T cells (Maruoka, Suzuki et al. 2005). However, the physiological relevance of these 

phosphorylations remains unclear. 
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Figure 6. Domain architecture of human BCAP. 

Depicted are the BCAP domains and other relevant protein sequences. Starting from the N-terminus, the TIR domain is 

followed by a transcription factor-Ig (TIG) domain with three α-helices (⍺). These features form the DBB domain, which is 

followed by the ankyrin repeat domain (ANK). The C-terminal unstructured region contains a coiled-coil motif (CC) and 

several protein interaction sites. The four YxxM motifs and proline-rich regions (Pro) are important binding sites for SH2 and 

SH3 domain interactions. 

In chicken B cells, the kinases SYK and to a lesser extent BTK, were shown to contribute to 

BCAP tyrosine phosphorylation, as determined in knock-out cell lines (Okada, Maeda et al. 

2000). In mouse macrophages however, SYK was not required for BCAP phosphorylation (Ni, 

MacFarlane et al. 2012). In fact, BCAP tyrosine phosphorylation in mouse macrophages is 

increased in the absence of SYK. Similarly, B cells deficient in LYN tyrosine kinase, showed 

increased BCAP phosphorylation (Okada, Maeda et al. 2000). However, LYN was later shown 

to be essential for BCAP phosphorylation downstream of mouse CD19, which was ectopically 

expressed in chicken B cells (Inabe and Kurosaki 2002). Further overexpression studies in 

HEK293T cells suggest that SYK plays a role in phosphorylation of BCAP YxxM motifs 

(Matsumura, Oyama et al. 2010). Similarly, overexpression in HEK293T cells showed that 

BCAP interacts with both SYK and LYN, and provided indications for LYN phosphorylation 

on BCAP (Inabe and Kurosaki 2002, Halabi, Sekine et al. 2017). 

Given these somewhat conflicting findings, it remains unclear which kinases are responsible 

for BCAP tyrosine phosphorylation in various cell types, and a deeper analysis using in vitro 

kinase assays or appropriate inhibitors is required. Moreover, the precise phosphorylation sites 

and redundancies between YxxM motifs are yet to be determined. 

1.15 Structure and function of the BCAP homolog BANK1 

The BCAP homolog BANK1 has a domain arrangement highly similar to BCAP (Troutman, 

Hu et al. 2012). An N-terminal TIR domain shows 33% sequence identity with the BCAPTIR 

domain (Halabi 2015). Like BCAP, the BANK1 TIR domain is followed by DBB and ANK 

domains, as well as an unstructured C-terminal region. The latter, similar to BCAP contains a 
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coiled-coil motif and two proline-rich regions, but lacks the YxxM motifs for PI3K interaction. 

Genome-wide studies have implicated BANK1 in various diseases. For example, several 

BANK1 single nucleotide polymorphisms are associated with a susceptibility to systemic lupus 

erythematosus and systemic sclerosis (Kozyrev, Abelson et al. 2008, Rueda, Gourh et al. 2010, 

Bae, Lee et al. 2017, Martinez-Bueno, Oparina et al. 2018, Jiang, Athanasopoulos et al. 2019). 

Despite the structural similarities with BANK1, BCAP seems to fulfil a somewhat different 

role in immune cells as it has not been linked to pathologies. 

Like BCAP, BANK1 has been associated with BCR and TLR signalling. BANK1 is expressed 

in B cells and tyrosine phosphorylated upon BCR stimulation (Yokoyama, Su Ih et al. 2002). 

BANK1 is also important in BCR-induced calcium mobilisation through interaction with 

PLC-𝛾2 and LYN-mediated tyrosine phosphorylation of the calcium channel inositol-

1,4,5-trisphosphate receptor (Yokoyama, Su Ih et al. 2002, Bernal-Quiros, Wu et al. 2013). The 

tyrosine kinases BLK, SYK and LYN have been associated with this BANK1-mediated 

regulation of calcium signalling and interaction with PLC-𝛾2 in B cells (Bernal-Quiros, Wu et 

al. 2013). In the context of TLR signalling in B cells, BANK1 was shown to control TLR7-

mediated type I interferon (Wu, Kumar et al. 2016). BANK1 was also linked to TLR9, since 

BANK1 deficiency in mice leads to a reduction in p38 phosphorylation and IL-6 secretion (Wu, 

Kumar et al. 2013). Overall, little is known about the role of BANK1 in these signalling 

pathways, but structural and functional similarities with BCAP may contribute to a better 

mechanistic understanding of this multi-domain adaptor protein. 

1.16 PI3K 

Based on structure and substrate specificity, PI3K enzymes have been categorised into three 

classes, denoted class I, II and III. PI3Ks are important in both innate and adaptive immune 

signalling, where they can both activate or regulate inflammation depending on the cell type or 

specific signalling pathway. 

Class I PI3Ks catalyse the phosphorylation of plasma membrane-localised PI(4,5)P2 to 

generate the secondary messenger PI(3,4,5)P3 (Okkenhaug 2013). Class II PI3Ks can 

phosphorylate phosphatidylinositol (PI) and phosphatidylinositol-4-phosphate (PI4P) in vitro, 

and are involved in T cell signalling (Srivastava, Di et al. 2009). The Class III PI3K Vps34 

phosphorylates PI to generate phosphatidylinositol-3-phosphate (PI3P), which is important for 

phagocytosis, autophagy and vesicle trafficking (Engelman, Luo et al. 2006, Okkenhaug 2013). 
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Class I PI3Ks and their downstream pathways are of significant importance to TLR, BCR and 

TCR signalling. This broad link with immunity and the interaction with BCAP makes class I 

PI3Ks of particular interest in this thesis. 

Class I PI3Ks consists of a p110 catalytic subunit that associates with a p85 regulatory subunit 

(Figure 7). The catalytic subunits are further subdivided into class IA (p110α, p110β and p110δ) 

enzymes that associate with a regulatory subunit, and class IB (p110γ) enzymes that function 

as a monomer (Engelman, Luo et al. 2006, Vanhaesebroeck, Guillermet-Guibert et al. 2010). 

The p85 regulatory subunits (p85α, p55α, p50α, p85β and p55) vary in length and domain 

architecture, but all contain SH2 and SH3 domains that regulate the kinase activity of the 

catalytic subunit (Figure 7) (Fruman 2010). 

In resting cells, the catalytic p110 subunit is kept in an inactive state by the regulatory subunit. 

The protein complex is recruited to activated signalling complexes through p85 SH2 domain 

interactions, which interact with phosphorylated YxxM motifs (Fruman 2010). The presence of 

two regulatory SH2 domains leads to a preferential binding of tandem YxxM motifs spaced by 

limited distance of 10-20 residues (Fruman 2010, Burke, Vadas et al. 2011). These SH2 domain 

interactions induce a conformational change in the PI3K complex, resulting in the release of 

kinase inhibition (Yu, Wjasow et al. 1998). The PI(3,4,5)P3 signalling molecule then recruits 

proteins containing pleckstrin homology (PH) domains such as PDK1 and Akt, which results 

in a phosphorylation cascade that ultimately activates downstream effectors including mTOR 

and FoxO transcription factors (Engelman, Luo et al. 2006, Hedrick 2009). 

1.17 PLC-𝛾2 

PLC-𝛾2 is another important protein in phosphoinositide metabolism. PLC-𝛾2 is an enzyme of 

the phospholipase C family that catalyses the hydrolysis of phospholipids to yield 

diacylglycerol (DAG) and inositol-1,4,5-trisphosphate (IP3). The secondary messenger IP3 in 

turn acts on the endoplasmic reticulum-localised IP3 receptor, resulting in a cytosolic influx of 

calcium ions (Baba and Kurosaki 2011). Several members of the PLC family play a role in the 

innate and adaptive immune system. PLC-𝛾2 in particular has been linked to TLR and BCR 

signalling, with an expression pattern limited to immune cells. 
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Figure 7. Domain architecture of human PI3K and PLC-𝛾2. 

(A) The PLC-𝛾2 catalytic activity is driven by a split catalytic domain (X box and Y box), which converts PI(4,5)P2 into 

diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). Catalytic activity is regulated by SH2 and SH3 domains. 

Membrane localisation of PLC-𝛾2 is driven by two pleckstrin homology domains (PH) and a C2 domain. (B) A typical Class I 

PI3K is comprised of a regulatory subunit, as represented by p85⍺, and a second catalytic subunit, represented by p110ẟ. p85 

isoforms have a core domain structure containing two SH2 domains spaced by an inter-SH2 region (iSH2) responsible for p110 

binding. Outside of the core region, p85 contains an SH3 and a Rho-GAP binding domain. The p110 catalytic subunits contain 

an adaptor-binding domain (ABD), a Ras binding domain (RBD), a C2 domain, a PIK helical domain and a catalytic kinase 

domain that converts PI(4,5)P2 into PI(3,4,5)P3. 

PLC-𝛾2 is phosphorylated upon stimulation of TLR9 and induces TNFα secretion (Rao, Liu et 

al. 2013). Similarly, downstream of TLR2 and TLR4, PLC-𝛾2 contributes to IL-6 and TNFα 

expression (Aki, Minoda et al. 2008). PLC-𝛾2 is also crucial for the TLR2 and TLR4-mediated 

calcium flux that leads to IκB-⍺ phosphorylation (Aki, Minoda et al. 2008). These pro-

inflammatory roles of PLC-𝛾2 are contrasted by its role in negative regulation of inflammatory 

TLR4 signalling by endocytosis (Zanoni, Ostuni et al. 2011). The mechanisms by which 

PLC-𝛾2 is recruited to activated TLR signalling complexes are not fully understood. However, 

interactions with BCAP and BANK1 are likely to facilitate some of these functions (Bernal-

Quiros, Wu et al. 2013, Halabi, Sekine et al. 2017). 

PLC-𝛾2 is a multidomain protein with a catalytic domain and several regulatory domains that 

target the enzyme to its substrates and regulate the catalytic activity (Figure 7). The enzymatic 

activity of PLC-𝛾2 is located in a split catalytic triose phosphate isomerase barrel comprised of 
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two halves (X and Y boxes) (Essen, Perisic et al. 1996). In both PLC-𝛾 isozymes (PLC-𝛾1 and 

PLC-𝛾2), an X/Y linker region connecting the catalytic domains contains two SH2 domains 

and one SH3 domain (Gresset, Hicks et al. 2010). These Src homology domains facilitate the 

interaction with proteins in receptor signalling complexes, and regulate the PLC-𝛾2 catalytic 

activity through auto-inhibition, similar to PI3K (Gresset, Hicks et al. 2010). The kinases 

involved in the SH2 domain-dependent activation of PLC-𝛾2 are likely context dependent, but 

SYK and BTK have been associated with PLC-𝛾2 activation in B cells (Kurosaki and Tsukada 

2000, Chiang, Veckman et al. 2012). The N-terminal PH domain targets PLC-𝛾2 to membranes 

containing PI(3,4,5)P3 (Falasca, Logan et al. 1998, Pawelczyk and Matecki 1999). The C2 

domain is another membrane binding domain that recruits the protein to negatively charged 

membranes in a calcium-dependent manner (Murray and Honig 2002). 

In summary, PLC-𝛾2 plays an important role in TLR signalling and BCAP is a likely candidate 

to bridge this interaction. Moreover, the BCAP association with tyrosine kinases and its binding 

sites for SH2 and SH3 domain interactions may facilitate PLC-𝛾2 activation. 
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2 Thesis aims 

Publications on the role of BCAP in TLR signalling suggest that the BCAP DBB domain may 

contribute to the negative regulation of TLR signalling. The first aim of this thesis is to elucidate 

the role of the DBB domain with regard to TIR domain interactions and inhibition of pro-

inflammatory TLR signalling. 

The second aim is to obtain structural information of the DBB and ANK domains, to further 

elucidate the function of these domains and their influence on TIR domain interactions. 

Moreover, a DBB domain structure would allow for the investigation of the intriguing structural 

similarities between the TIG fold of the DBB domain and transcription factors. 

Previous results in the literature also lead to the hypothesis that BCAP hyperphosphorylation 

causes the appearance of multiple bands on western blot. Consequently, the third aim is to 

identify the nature of BCAP post-translation modifications, and to determine the kinases 

responsible for BCAP phosphorylation. 

The fourth aim of this project is to further characterise existing BCAP interactions, and to 

identify novel BCAP interaction partners that could depend on extensive BCAP 

phosphorylation. Additional interaction partners would also enable a more precise mapping of 

BCAP in immune signalling networks and could help to explain the mechanism of TLR 

regulation. 
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3 Results 

3.1 The role of the BCAP DBB domain in TIR domain interactions 

3.1.1 Background 

As mentioned, TIR domain interactions remain poorly characterised despite extensive research. 

Reports of putative mammalian TIR domain homodimers and related oligomerisation interfaces 

are abundant in the literature without direct experimental evidence. The N-terminal BCAPTIR 

domain has been claimed to interact with MAL and MyD88 through TIR domain interactions 

(Troutman, Hu et al. 2012). Through co-immunoprecipitation (Co-IP), these authors were able 

to show that various BCAP constructs interact with MAL and MyD88. BCAPS, lacking the TIR 

domain, failed to interact with MAL and MyD88 under these conditions. NF-κB reporter assays 

gave similar results, suggesting that BCAP constructs containing the TIR domain are able to 

dampen inflammatory NF-κB signalling in HEK293 cells. 

While these results highlight the importance of the BCAPTIR domain, they fail to outline the 

domains required for TIR domain interactions and signalling. Moreover, the authors imply the 

use of a BCAPTIR domain construct in their experiments, while using a construct spanning 

residues 1-321. These domain boundaries include the BCAP TIR and DBB domains. 

Consequently, the DBB domain may play an important role in facilitating TIR domain 

interactions and the negative regulation of TLR signalling. 

Validation of TIR domain interactions and signalling assays as outlined by Troutman et alia 

(Troutman, Hu et al. 2012) should help to elucidate these contradictions. By comparing BCAP 

constructs containing strict TIR domain boundaries to longer constructs containing the DBB 

and ANK domains, the functional importance of these TIR-adjacent domains can be assessed. 

3.1.2 The BCAPTIR domain interacts with MAL but not MyD88 in situ 

A Co-IP experiment was conducted in order to assess the importance of the BCAP TIR and 

DBB domains for heterotypic TIR domain interactions. The FLAG-tagged BCAP constructs 

FLAG-TIR (1-143), FLAG-TIR-TIG2⍺ (1-288) FLAG-TIR-DBB (1-309), FLAG-TIR-

DBB-ANK (1-447), FLAG-tagged BCAPL and FLAG-MyD88 were overexpressed in 

HEK293T cells and probed for interaction with Myc-MAL and Myc-MyD88 by 

immunoprecipitation with anti-FLAG antibody. 
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As previously described, FLAG-BCAP and FLAG-TIR-DBB were able to pull down 

Myc-MAL and Myc-MyD88. However, while FLAG-TIR was able to interact with Myc-MAL, 

a Myc-MyD88 interaction was not detected. These results suggest that the BCAPTIR domain is 

sufficient for MAL interaction, whereas MyD88 association requires the full-length dimeric 

DBB domain as further discussed in Section 3.2.7. 

The BCAPTIR-MAL interaction is unexpected, since the BCAPTIR domain was previously found 

to be monomeric and therefore inactive in solution (Halabi, Sekine et al. 2017). Moreover, these 

results do not align with the widespread assumption that dimers are the functional units of TIR 

domain interactions. Instead, given recent reports on TIR domain filaments (Ve, Vajjhala et al. 

2017), it is likely that the BCAPTIR domain interacts with MALTIR and MyD88TIR filaments. 

 

Figure 8. Co-immunoprecipitation reveals that the BCAPTIR domain interacts with MAL. 

HEK293T cells were transiently transfected with FLAG-TIR (1-143), FLAG-TIR-TIG2⍺ (1-288), FLAG-TIR-DBB (1-309), 

FLAG-TIR-DBB-ANK (1-447), FLAG-MyD88 and (A) Myc-MAL or (B) Myc-MyD88. At 24 h post-transfection, cells were 

lysed and subjected to immunoprecipitation with anti-FLAG antibody. Precipitates were split and assayed for precipitation of 

FLAG-tagged BCAP constructs or co-precipitation of Myc-tagged MAL and MyD88 by western blotting. 

3.1.3 The BCAP DBB domain is required for TIR domain signalling 

Since there might be a disconnect between TIR domain interactions and negative regulation of 

TLR signalling, an NF-κB reporter assays was used to evaluate the functional contribution of 

the DBB domain. Despite the caveats of studying TLR signalling in non-immune cells such as 

HEK293T cells, this type of NF-κB reporter assay based on overexpression of adaptor proteins 

has been well-established (Fitzgerald, Palsson-McDermott et al. 2001, Bin, Xu et al. 2003, 

Fitzgerald, Rowe et al. 2003, Troutman, Hu et al. 2012). 

Similar to the Co-IP in HEK293T cells (Figure 8), BCAP constructs of various lengths were 

tested for their ability to dampen MAL and MyD88 overexpression-induced NF-κB signalling. 
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Myc-BCAPL (1-805), Myc-TIR-DBB-ANK (1-447) and Myc-TIR-DBB (1-309) constructs 

were able to dampen MAL inflammatory NF-κB signalling (Figure 9A). This is in agreement 

with previously published results (Troutman, Hu et al. 2012). However, Myc-TIR (1-143), and 

FLAG-TIR-TIG2α (1-288) were unable to dampen inflammatory signalling. In fact, a 

significant increase in NF-κB signalling was observed when Myc-TIR and Myc-MAL were co-

transfected. 

Whereas MAL overexpression resulted in a 10-fold increase in NF-κB signalling, MyD88 

overexpression consistently resulted in a >100-fold induction (Figure 9). This MyD88-induced 

NF-κB signalling was inhibited by Myc-BCAPL, Myc-TIR-DBB, Myc-TIR-DBB-ANK and 

Myc-TIR-TIG2α (Figure 9B). Unexpectedly, Myc-TIR again induced a large increase in NF-κB 

signalling (Figure 9B). 

The different degree of NF-κB induction upon MyD88 and MAL expression has been observed 

in previous studies (Troutman, Hu et al. 2012), and may be caused by the fact that MAL 

overexpression relies on endogenous MyD88 for myddosome formation and subsequent NF-κB 

activation. MyD88 overexpression on the other hand should directly increase the rate of 

myddosome formation, leading to higher NF-κB signalling. 

Altogether, these results illustrate that the BCAPTIR domain is unable to negatively regulate 

TLR signalling. These results also suggest that the DBB domain plays a crucial role in these 

experiments. The presence of both the BCAP TIR and DBB domains seems to dampen 

inflammatory NF-κB signalling in these experiments. Removal of the last DBB ⍺-helix in the 

TIR-TIG2α construct may suggest a for dimerisation in the context of MAL-induced NF-κB 

signalling, as further discussed in Section 3.2.7. Though somewhat preliminary, these results 

may also explain why previous studies included the DBB domain in constructs that were 

annotated as TIR domains (Troutman, Hu et al. 2012). Although the interaction between the 

BCAPTIR domain and MAL is independent of the DBB domain, it is essential for negative 

regulation of NF-κB signalling. 

The increase of MAL and MyD88-induced NF-κB signalling in the presence of the BCAPTIR 

domain is an unexpected observation. Western blot analysis of Myc-MAL and Myc-MyD88 

expression shows that the increase in NF-κB signalling is not caused by higher expression of 

MAL or MyD88 (Figure 9C). It can there be hypothesised that the BCAPTIR domain is able to 

maximise the competency of MyD88 autoactivation and myddosome formation. This 
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observation may contribute to the mechanistic understanding of the TLR signalosome as further 

discussed in section 4.1. 

 

Figure 9. The BCAP DBB domain is required for negative regulation of TLR signalling. 

HEK293T cells were transiently transfected with pNF-κB-luc (NF-κB inducible firefly luciferase reporter), phRG-TK 

(constitutive Renilla luciferase reporter) and a combination of, Myc-TIR, FLAG-TIR-TIG2α, Myc-TIR-DBB and Myc-TIR-

DBB-ANK, Myc-BCAPL and (A) Myc-MAL or (B) Myc-MyD88 as indicated. At 24 h post-transfection, cells were lysed and 

the NF-κB-induced luciferase activity was measured via a luminescence read-out. Relative NF-κB activation represents the 

ratio of firefly luciferase over Renilla luciferase activity. Data is represented as mean ±SD of five technical repeats and the 

images shown represent three independent experiments. (C) Immunoblotting of (A) and (B) NF-κB reporter assay conditions. 
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3.1.4 Dimeric BCAPL prevents MAL filament formation in vitro 

In order to better understand the interplay of BCAPTIR domain with MAL filaments, an in vitro 

interaction assay was conducted. Observations from an in vitro system may contribute to our 

understanding of TIR domain interactions, and help elucidate the apparent disconnect between 

BCAPTIR domain interactions and negatively regulating the TLR signalosome. 

In this experiment, the MALTIR domain (residues 79-221) was cloned, expressed in E. coli and 

purified as described in Sections 5.3.1 and 5.4. This construct can be purified as a monomeric 

and soluble TIR domain, but has the ability to form temperature reversible filaments (Ve, 

Vajjhala et al. 2017).  

BCAP constructs with various domain boundaries were expressed in E. coli and purified as 

further described in section 3.2.4 and 3.2.7. BCAPL (residues 2-805) was expressed in 

Expi293F cells as described in section 5.3.2. Purified TIR-TIG2α (7-288), TIG2a (179-288), 

DBB-ANK and BCAPL were then combined with the MALTIR domain to evaluate filament 

formation. Filament formation was detected by localising the MALTIR domain in the soluble 

supernatant or insoluble pellet fractions after incubation at 30 °C (Figure 10). 

In the negative control, the MALTIR domain is exclusively located in the insoluble pellet fraction 

after incubation. Addition of the TIG2α, TIR-TIG2α or DBB-ANK constructs did not influence 

filament formation. Interestingly, each of these BCAP constructs was also present in the pellet 

fraction, suggesting an interaction with the MALTIR domain filaments. However, this was 

independent of the presence of the BCAPTIR domain in these constructs, indicative of an 

unspecific interaction. Upon the addition of dimeric BCAPL to MALTIR domains, no filament 

formation could be observed. This implies that dimeric BCAPL is able to inhibit MALTIR 

domain filament formation in vitro. The functional difference between monomeric TIR-TIG2α 

and dimeric BCAPL further suggests that dimerisation is an important property for BCAP-MAL 

interactions as discussed in section 3.2.7. 

In order to further characterise the interaction between BCAPL and the MALTIR domain, the 

samples were analysed by analytical gel filtration. This resulted in two separate peaks 

corresponding to monomeric MALTIR domain and dimeric BCAPL (Figure 11). Moreover, the 

BCAP peak did not shift to a higher molecular weight compared to the control that only 

contained BCAP, indicating that no complex formation was present under these conditions. 

The absence of complex formation on gel filtration suggests a low-affinity interaction, an 

interaction with a fast off rate, or the absence of a BCAP-MAL interaction altogether. The fact 
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that BCAP prevents MAL interactions at a 1:10 sub-stoichiometric ratio suggests that some 

level of interaction is taking place. In comparison to the HEK293T Co-IP (Figure 8), these 

results suggest that in situ other proteins are necessary to stabilise BCAP-MAL interactions. 

Since BCAP is also known to interact with MyD88, it may be possible that simultaneous 

interaction with endogenous MyD88 stabilises BCAP-MAL interactions. 

 

Figure 10. Dimeric BCAP prevents MAL filament formation in vitro. 

Purified MALTIR domain and various BCAP constructs (TIG2⍺, TIR-TIG2⍺, DBB-ANK, BCAPL) were mixed in a 10:1 molar 

ration and incubated at 30 °C for 30 min to induce MAL filament formation. Soluble (supernatant, SN) and insoluble fraction 

(pellet, P) were separated by centrifugation and analysed by SDS-PAGE. 

3.1.5 Limitations to the interpretation of the BCAP DBB domain function 

Collectively, the results presented in this chapter support the hypothesis that the DBB domain 

plays an important role in BCAPTIR domain signalling. On the other hand, the results from some 

individual experiments are somewhat preliminary. Results from the NF-κB reporter assay have 

to be interpreted with caution, since it is difficult to conclude a significant reduction in NF-κB 

signalling for TIR-TIG2α and TIR-DBB based on the current data. Statistical tests such as a 

student T-test shows a significant reduction of MAL-induced NF-κB signalling by Myc-TIR-

DBB, however, since only five technical repeats can be compared, these tests have little 

meaning. 

To further validate the role of the DBB domain in NF-κB reporter assay, the amount of 

TIR-TIG2α and TIR-DBB construct DNA could be systematically increased in this 
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experimental setup. A concentration dependent reduction of NF-κB signalling, or the absence 

thereof, would then give more confidence to the conclusion that TIR-TIG2α or TIR-DBB 

negatively regulate inflammatory signalling. 

3.2 Structural analysis of the BCAP DBB and ANK domains 

3.2.1 Background 

The aim of this section was to express and purify recombinant protein to milligram quantities 

for biophysical and structural studies. Chapter 3.1 described how the BCAP DBB domain plays 

an important role in negative regulation of TLR signalling. A structural model of the DBB and 

ANK domains would provide valuable information to understand the mechanisms through 

which the DBB domain acts on TIR interactions. Moreover, a structural model and further 

biophysical characterisation would provide valuable insight into the BCAP dimerisation 

regions. 

Despite the definition of DBB domain characteristics by Battersby et alia (Battersby, Csiszár 

et al. 2003), no structural information is available to date. However, based on the initial domain 

characterisation of BCAP and secondary structure predictions, the DBB domain is expected to 

be comprised of a TIG fold followed by three ⍺-helices. 

 

Figure 11. BCAPL and MALTIR domain do not form a stable complex during gel filtration. 

Analytical size exclusion chromatography of purified MALTIR domain and BCAPL as indicated. BCAPL and to MALTIR domain 

were mixed in a molar ratio of 1:10. Samples were incubated at 30 °C for 1 h before analysis on a Superdex 200 10/300 GL 

column. 
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3.2.2 Expression and purification on the BCAP DBB and ANK domains 

Based on secondary structure predictions, BCAP constructs of various lengths were designed 

and cloned into a pMCSG7 vector resulting in an N-terminal His-tag followed by a TEV 

protease cleavage site (Figure 12). Initial constructs used the BCAPS start codon as N-terminal 

boundary, whereas various C-terminal boundaries were selected (Table 4). The C-termini were 

located at the end of annotated domains, and were systematically moved by several amino acids 

to allow for potential mistakes in domain annotations. 

All resulting DBB and DBB-ANK constructs were expressed in E. coli cells as described in 

section 5.3.1. After overnight expression, all constructs showed a clear overexpression band on 

SDS-PAGE (Figure 13). With the goal to evaluate the stability of various constructs, each 

construct was purified by nickel affinity purification, followed by gel filtration. 

3.2.3 DBB domain purification revealed protein degradation 

Initial nickel IMAC resulted in significant amounts of target protein with few bacterial 

contaminants (Figure 14A-B). On SDS-PAGE, however, the His-tagged DBB constructs 

appeared as multiple bands that were not evident in the lysate fraction. Subsequent gel filtration 

(Figure 14C) or anion exchange (not shown) did not result in homogeneous samples, as 

contamination bands at a higher and lower molecular weight (MW) were persistent (Figure 

14D). Since all DBB constructs behaved identically to the DBB313 purification shown in 

Figure 14, they did not meet the requirements for crystallisation trials. 

 

Figure 12. Overview of DBB and DBB-ANK construct domain boundaries. 

(A) PSIPRED (Buchan and Jones 2019) schematic representation of the BCAP DBB and ANK domains with their respective 

secondary structure features. Black lines indicate initial N- and C-terminal boundaries for the DBB and ANK constructs. Blue 

lines indicate C-terminal domain boundaries that were later derived from the initial set by limited proteolysis. 
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Figure 13. Test expression of DBB and DBB-ANK constructs. 

Samples from the Rosetta2(DE3) test expression of DBB and DBB-ANK constructs as referred to by their C-terminal residue 

number. Bacterial cultures for test expression were grown in auto-induction medium at 37 °C for 4 h after which the temperature 

was reduced to 20 °C for protein expression overnight. Samples were lysed and the soluble fractions were analysed on SDS-

PAGE. 

 

Figure 14. Purification of DBB constructs via nickel affinity chromatography and gel filtration. 

(A) Nickel IMAC elution profile of DBB313 from a 1 ml Chelating HP column. (B) SDS-PAGE was used to analyse the lysate 

(LYS), supernatant (SN), flowthrough (FT), wash (W) and elution fractions from the DBB313 nickel IMAC purification. (C) 

Size exclusion chromatography of DBB313 using a HiLoad 16/600 Superdex 200 column. (D) SDS-PAGE analysis of peak 

elution fractions from DBB313 gel filtration. M indicates the marker. 

3.2.4 DBB-ANK domain purification yielded pure and stable protein  

Given the poor stability of the DBB domain constructs, efforts were focused on larger DBB-

ANK constructs. All DBB-ANK constructs with C-terminal residues 396-404 were processed 
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with an initial nickel IMAC purification, followed by TEV protease cleavage and a second 

nickel IMAC purification step to remove the His-tagged TEV protease and uncut protein. 

Subsequently, gel filtration was used as a buffer exchange and final purification step. 

All DBB-ANK constructs behaved identically during purification. With DBB-ANK396 as an 

example, nickel IMAC (Figure 15A) resulted in a relatively pure sample on SDS-PAGE that 

ran as one band without visible contaminants (Figure 15B). IMAC elution fractions were then 

pooled and treated with TEV protease. Subsequently, samples were passed over a second nickel 

IMAC column, and the resulting flowthrough was concentrated and loaded onto a Superdex 

200 16/60 column. Gel filtration resulted in a symmetric peak, with negligible amounts of 

impurities on SDS-PAGE (Figure 15C-D). 

Similarly to all shorter DBB-ANK constructs, the DBB-ANK404 purification resulted in a 

symmetric peak on gel filtration (Figure 16A), without any visible contaminants on SDS-PAGE 

(Figure 16B). Fractions from gel filtration were pooled for further analysis. On native-PAGE, 

the protein migrated as a single band, indicative of a monodisperse sample (Figure 16C). 

 
Figure 15. Purification of DBB-ANK constructs via nickel affinity chromatography and gel filtration. 

Purification strategy of DBB-ANK396 representative of the purification of all DBB-ANK constructs. (A) Nickel IMAC elution 

profile of DBB-ANK396 from a 1 ml Chelating HP column. (B) SDS-PAGE was used to analyse the lysate (LYS), supernatant 

(SN), flowthrough (FT), wash (W) and elution fractions from the DBB-ANK396 nickel IMAC purification. (C) Size exclusion 

chromatography of DBB-ANK396 using a HiLoad 16/600 Superdex 200 column. (D) SDS-PAGE analysis of DBB-ANK396 

gel filtration peak elution fractions. M indicates the marker. 
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Figure 16. Assessment of DBB-ANK404 purity after gel filtration. 

(A) HiLoad 16/600 Superdex 200 size exclusion chromatography of DBB-ANK404 following nickel IMAC purification and 

TEV cleavage. (B) SDS-PAGE analysis of DBB-ANK404 gel filtration peak elution fractions. (C) Native-PAGE analysis of 

DBB-ANK404 after gel filtration. Volumes refer to the amount of sample loaded in each lane. 

Crystallisation of DBB-ANK constructs 

Starting with the DBB-ANK396, several commercial crystallisation screens were set up at 

protein concentrations ranging from 6-10 mg/ml as described in section 5.6.1. No crystallisation 

hits nor phase separation, or otherwise interesting precipitation were observed after drop 

equilibration. 

With the DBB-ANK404 construct, another set of commercial crystallisation screens was set up 

at a concentration of 9 mg/ml as described in Section 5.6.1. Crystals appeared overnight in 

conditions containing the organic acids malonate (1.1 M malonate, 0.5% jeffamine ED-2003 

and 0.1 M HEPES pH 7.5), citrate (1 M Na citrate, 0.1 M HEPES pH 7.0) and tartrate 

(1.2 M Na/K tartrate, 0.1 M TRIS pH 8.0) (Figure 17A). The crystals were subjected to 

UV-imaging to confirm protein crystallisation (Figure 17B). The rod-shaped crystals did absorb 

UV light, but they exhibited a faint signal due to the absence of tryptophan residues in the DBB 

and ANK domains. Crystals from all three crystallisation conditions were cryo-protected using 

20% (v/v) glycerol and screened for diffraction using the in-house Icarus (Bruker) X-ray source. 

After 60 s exposure no diffraction was detected. 

In order to improve the crystal diffraction properties, an extensive set of optimisation screens 

was conducted based on the malonate-containing crystallisation condition. Two-dimensional 

screens were prepared, in which the malonate (0.8-1.3 M) and jeffamine (0.3-0.5%) 

concentrations were systematically varied over 96 wells, while keeping the HEPES buffer 

concentration constant. Using this setup, the initial crystallisation condition was reproducible 

and small crystals appeared overnight, independent of the jeffamine concentration. Crystals 

from this screen again showed no diffraction on the inhouse X-ray source, but did diffract up 
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to 30 Å with synchrotron radiation (Diamond Light Source i04). Similarly, optimisation screens 

that varied the pH (pH 6.0-9.0) did not improve diffraction, nor change the crystal morphology. 

 

Figure 17. DBB-ANK404 crystallisation in the presence of malonate. 

(A) Crystals in the shape of monoclinic styloids appeared overnight in the presence of 1.1 M malonate, 0.5% jeffamine ED-

2003 and 0.1 M HEPES pH 7.5. (B) UV absorbance of (A). (C) Upon the addition of 10 mM TCEP to the original malonate-

containing crystallisation condition, flat hexagonal crystals appeared overnight. 

To screen a wider range of compounds, an additive screen was conducted with the initial 

malonate-containing hit. In 18 of 96 conditions, crystals of varying size appeared after one to 

three days (Table 1). Notably, crystals grown in the presence of the reducing agent TCEP had 

a flat hexagonal shape (Figure 17C). A manual optimisation screen with a hanging drop setup 

was used to increase the drop volume in order to enhance the size of the hexagonal crystals. 

Selected crystals (grown in 1.1 M malonate, 0.5% jeffamine ED-2003, 0.1 M HEPES, 10 mM 

TCEP pH 7.0) were cryo-protected in 20% glycerol before freezing in liquid nitrogen. Since 

the presence of glycerol significantly slowed down crystal growth, another hanging drop screen 

was conducted with increasing concentrations of glycerol (3-20%). Crystals appeared in up to 

16% glycerol, and were directly frozen for diffraction testing. 

Diffraction screening on the in-house X-ray source revealed that only rod-shaped crystals 

grown in the presence of glycerol diffracted up to about 9 Å. Crystals grown in identical 

conditions were later screened using synchrotron radiation (i02, Diamond Light Source), where 

diffraction did not exceed 7 Å. Based on test images at this resolution, the space group was 

determined to be P4 with predicted lattice dimensions of 222.54 × 222.54 × 461.66 Å, and 

angles of 90.00°. 

An optimisation screen where increasing amounts of glycerol (3-20%) were added to the initial 

hits containing citrate and tartrate resulted in crystals that diffracted up to 10 Å (Diamond Light 

Source i04). Similar to malonate-containing screens, manual pH optimisation (pH 6.0-9.0) did 

not improve crystal diffraction. In the presence of up to 10 mM TCEP, hexagonal crystal forms 
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were observed in tartrate and citrate-containing conditions but these crystals did not diffract 

with synchrotron radiation (Diamond Light Source i04). 

Table 1. Crystallisation conditions in the DBB-ANK404 additive screen. 

 

3.2.5 Further optimisation of DBB-ANK crystallisation 

One strategy to improve protein crystallisation or diffraction is the reduction of surface entropy. 

In practice this can be accomplished by site-directed mutagenesis of flexible surface residues 

such as lysine or glutamate, or by chemical modification (Walter, Meier et al. 2006). The latter 

is less laborious and does not perturb the protein fold. Lysine dimethylation is one such 

technique that was successfully used to crystallise TLR adaptor proteins in the past (Snyder, 

Deredge et al. 2014, Halabi, Sekine et al. 2017). DBB-ANK404 was lysine methylated using  

formaldehyde and dimethylamine-borane complex as described in Section 5.5.1. Subsequent 

gel filtration resulted in a slight shift in retention volume indicative of a successful chemical 

modification (Figure 18). Crystallisation trials with methylated DBB-ANK404 did not result in 

positive hits, including the previous crystallisation conditions containing organic acids. 

A second approach to obtain structural information on the DBB-ANK domain was to design 

new constructs leveraging the stable C-terminal domain boundary. For this purpose, a 

TIR-DBB-ANK404 construct (residues 7-404) was cloned into pMCSG7. Additionally, a 

DBB-ANK (residues 179-405) construct of the mouse BCAP protein (Mm404) was cloned into 

pMCSG7, using domain boundaries equivalent to the DBB-ANK404 construct. Both 

Additive Crystal morphology* Day of appearance

0.1 M Barium chloride dihydrate 3 2

0.1 M Strontium chloride hexahydrate 3 2

0.1 M Yttrium(III) chloride hexahydrate 1 2

1.0 M Ammonium sulphate 3 2

2.0 M Sodium chloride 1 2

0.5 M Sodium fluoride 3 2

1.0 M Potassium sodium tartrate tetrahydrate 2 2

1.0 M Sodium citrate tribasic dihydrate 1 2

1.0 M Sodium malonate pH 7.0 2 1

30% w/v 6-Aminohexanoic acid 3 2

30% w/v 1,5-Diaminopentane dihydrochloride 3 2

0.1 M TCEP hydrochloride 3 2

30% w/v Dextran sulphate sodium salt (Mr 5000) 2 2

30% w/v D-Sorbitol 2 1

30% v/v Glycerol 3 3

2.0 M NDSB-211 3 2

0.15 mM CYMAL®-7 3 2

30% w/v Trimethylamine N-oxide dihydrate 2 1

* Crystal morphology score

1 - Shower

2 - Microcrystals

3 - Macrocrystals
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TIR-DBB-ANK404 (Figure 19) and Mm404 (Figure 20) were purified as described for human 

DBB-ANK404 and resulted in pure and monodisperse protein. 

Crystallisation trials of TIR-DBB-ANK404 did not result in positive hits. However, Mm404 

produced spherulites in a condition containing 2.5 M NaCl, 0.1 M imidazole and 0.2 M zinc 

acetate pH 8.0 (Figure 20E). Unfortunately, these spherulites were not reproducible in further 

optimisation screens. 

 

Figure 18. Lysine methylation of DBB-ANK396 results in a noticeable shift on gel filtration. 

Before and after lysine methylation, DBB-ANK396 was analysed by gel filtration using a HiLoad 16/600 Superdex 200 

column. 

 

Figure 19. Purification of TIR-DBB-ANK404 construct via gel filtration. 

(A) HiLoad 16/600 Superdex 200 size exclusion chromatography of TIR-DBB-ANK404 following nickel IMAC purification 

and TEV cleavage. (B) SDS-PAGE analysis of TIR-DBB-ANK404 gel filtration peak elution fractions. 
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Figure 20. Purification of Mm404 constructs via nickel affinity chromatography and gel filtration leading to spherulites 

in crystallisation trials. 

(A) Nickel IMAC elution profile of Mm404 from a 1 ml Chelating HP column. (B) SDS-PAGE was used to analyse the lysate 

(LYS), supernatant (SN), flowthrough (FT), wash (W) and elution fractions from the Mm404 nickel IMAC purification. 

(C) Size exclusion chromatography of Mm404 using a HiLoad 16/600 Superdex 200 column. (D) SDS-PAGE analysis of 

Mm404 gel filtration peak elution fractions. (E) Spherulites observed in crystallisation condition containing 2.5 M NaCl, 0.1 

M imidazole and 0.2 M zinc acetate pH 8.0. M indicates the marker. 

3.2.6 Optimisation of the DBB-ANK constructs using limited proteolysis 

Due to the unsuccessful attempts to improve the diffraction of DBB-ANK404 crystals, the 

protein was subjected to limited proteolysis, to remove potentially flexible regions and identify 

a rigid core that may allow for better crystal packing and diffraction. DBB-ANK404 was 

seperately incubated with different concentrations of sequence-grade trypsin (Promega) and 

sequence-grade chymotrypsin (Promega) (Figure 21A-B). Minutes after exposure to protease, 

two bands above 20 kDa appeared on SDS-PAGE. Both proteases also revealed a fragment of 

approximately 12 kDa that was stable for up to 3 h. The three major degradation products of 

trypsin proteolysis were subjected to MALDI peptide mass fingerprinting (Figure 21C). With 

the full-length DBB-ANK404 as a reference with 89% coverage, mass spectrometry revealed 

that the top-most degradation band had been subject to C-terminal cleavage at K370. The 

second degradation band contained an N-terminal cleavage site around R221 or K225. Lastly, 

the most stable degradation product around 12 kDa was a DBB domain fragment cleaved at 

K288. 
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Constructs containing the new C-terminal domain boundaries (DBB-ANK370 containing 

residues 179-370 and DBB288 containing residues 179-288) were cloned into pMCSG7 vectors 

and expressed as described in Section 5.1 and Section 5.3.1, respectively. Purification of DBB-

ANK370 resulted in relatively pure and stable protein similar to previous DBB-ANK constructs 

(Section 3.2.4). Although slight degradation was visible on SDS-PAGE (Figure 22), 

crystallisation trials were performed. However, no positive hits were obtained after drop 

equilibration in these screens. 

 

Figure 21. Limited proteolysis of DBB-ANK404 results in multiple stable fragments. 

(A) Trypsin limited proteolysis of DBB-ANK404, with the protease dilution and time of digestion as indicated. (B) 

Chymotrypsin limited proteolysis of DBB-ANK404. (C) MALDI peptide mass fingerprinting of the full-length DBB-ANK as 

reference. Underlined amino acids represent theoretical trypsin cleavage sites. Residues marked in red were part of peptides 

that were detected during the analysis. M Indicates the marker. 
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Figure 22. Purification of DBB-ANK370 construct via gel filtration. 

(A) HiLoad 16/600 Superdex 200 size exclusion chromatography of DBB-ANK370 following nickel IMAC purification and 

TEV cleavage. (B) SDS-PAGE analysis of DBB-ANK370 gel filtration peak elution fractions. 

3.2.7 Purification and characterisation of the DBB domain 

The DBB288 construct was expressed in E. coli as described in Section 5.3.1. Purification was 

analogous to the DBB-ANK protocol with an initial nickel IMAC step, followed by TEV 

protease digestion and a second nickel IMAC step. Nickel IMAC yielded large amounts of 

protein with limited degradation indicated by a band around 12 kDa (Figure 23A-B). 

The final gel filtration purification step resulted in a pure protein as assessed by SDS-PAGE, 

with minute higher MW contaminants (Figure 23D). However, the protein eluted as an 

asymmetrical peak with a longer trailing edge (Figure 23C). Protein fractions were pooled to 

avoid the trailing edge, and concentrated to 2 mg/ml for further biophysical analysis. 

The BCAP DBB domain has previously been associated with BCAP oligomerisation 

(Battersby, Csiszár et al. 2003, Halabi, Sekine et al. 2017). In order to assess the oligomerisation 

propensity of DBB288 compared to DBB-ANK404, and to determine a possible contribution 

of the ANK domain to BCAP dimerisation, purified proteins were analysed with SEC-MALS 

as described in Section 5.6.3. 

To obtain a purified ANK domain required for this experiment, DNA coding for BCAP residues 

333-467 was cloned into pMCSG7. Following expression and cell lysis as described in sections 

5.3.1 and 5.3.3, no soluble protein expression was obtained. An MBP-tag was chosen to 

enhance expression and solubility, since MBP is a stable monomeric protein that should not 

interfere with SEC-MALS measurements (Reuten, Nikodemus et al. 2016). DNA coding for 

the ANK domain was cloned into a pMCSG9 His-MBP-tagged expression vector and again 

expressed in E. coli. Nickel IMAC purification yielded plenty of protein that was further 

purified via gel filtration without removing the MBP-tag (Figure 24A-B). Gel filtration resulted 

in a two separate elution peaks that both contained pure MBP-ANK with a slight contaminant 
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around the MW of the MBP-tag (Figure 24C-D). The elution peak around 85 ml corresponds 

to monomeric or dimeric protein, whereas the peak around 60 ml likely represents aggregates 

(>300 kDa), since this peak was not observed during subsequent SEC-MALS. 

Using SEC-MALS, DBB-ANK404 was determined to be dimeric in solution with a measured 

molecular weight of 47.9 kDa (Figure 25A). This measurement falls within the expected 

experimental error for a theoretical dimeric MW of 51.1 kDa. The MW of the DBB288 

construct was determined to be 13.22 kDa and is consistent with a monomeric DBB288 domain, 

which has a predicted MW of 12.4 kDa (Figure 25B). Consequently, this measurement reveals 

that DBB288 is monomeric in solution at the given concentration of 2 ml/mg before injection. 

MBP-ANK measurements were inconsistent and the measured MW strongly varied along an 

asymmetrical elution peak (Figure 25C). The leading-edge shoulder was not observed during 

the purification process, and was likely hidden by the lower resolution of the HiLoad 16/600 

Superdex 200 column. The average MW over the peak was about 90 kDa. With a predicted 

monomeric and dimeric MWs of 56.7 and 113.4 kDa, respectively, the oligomerisation state of 

MBP-ANK in solution could not be robustly identified. 

Previous results showed that the full-length DBB domain, which contains all three C-terminal 

⍺-helices, is dimeric in solution (Halabi, Sekine et al. 2017). Removal of the last DBB α-helix 

(DBB288) in this experiment now shows the importance of the last DBB α-helix for 

dimerisation. Independent of the ANK domain contribution to BCAP dimerisation, the 

C-terminal ⍺-helix is the driver of BCAP dimerisation.  

These results also have implications for the previous NF-κB reporter assays described in 

Section 3.1.3. This assay showed that only constructs containing both the TIR and full DBB 

domains can dampen MAL-induced inflammatory signalling. Removal of the last α-helix 

results in loss-of-function with regard to signalling. It can therefore be concluded that the DBB 

domain facilitates TIR domain signalling through dimerisation. 
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Figure 23. Purification of DBB288 constructs via nickel affinity chromatography and gel filtration. 

(A) Nickel IMAC elution profile of DBB288 from a 1 ml Chelating HP column. (B) SDS-PAGE was used to analyse the lysate 

(LYS), supernatant (SN), flowthrough (FT), wash (W) and elution fractions from the DBB288 nickel IMAC purification. (C) 

Size exclusion chromatography of DBB288 using a HiLoad 16/600 Superdex 75 clomun. (D) SDS-PAGE analysis of peak 

elution fractions from the DBB288 gel filtration. M indicates the marker. 

 

Figure 24. Purification of the BCAP ANK domain via nickel affinity chromatography and gel filtration. 

(A) Nickel IMAC elution profile of MBP-ANK from a 1 ml Chelating HP column. (B) SDS-PAGE was used to analyse the 

lysate (LYS), supernatant (SN), flowthrough (FT) and elution fractions from the MBP-ANK nickel IMAC purification. (C) Size 

exclusion chromatography of MBP-ANK using a HiLoad 16/600 Superdex 200. (D) SDS-PAGE analysis of MBP-ANK elution 

fractions from both gel filtration peaks. M indicates the marker. 
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Figure 25. SEC-MALS analysis of DBB-ANK404 and DBB288. 

Size exclusion chromatography in combination with multi-angle light scattering (SEC-MALS) of DBB-ANK404 (A), DBB288 

(B) and MBP-ANK (C). Samples were loaded onto a Superdex 200 Increase 10/300 GL column at a concentration of 2 mg/ml. 

Plots show normalised refractive index and weight-averaged molecular weight variation across the peaks. 

3.2.8 Crystallisation of the DBB domain 

Commercial crystallisation screens were set up for DBB288 at 5.5 mg/ml as described in 

Section 5.6.1. Crystals appeared overnight in three conditions of the Wizard 1 & 2 screen that 

contained phosphate buffers (Figure 26). Selected crystals were cryo-protected with 20% (v/v) 

glycerol and tested for diffraction using synchrotron radiation (Diamond Light Source, i04), 

where crystals diffracted up to 3.5 Å. Subsequently, this crystallisation condition was further 

optimised with gradients of NaH2PO4 (0.5-1.3 M) and K2HPO4 (0.5-1.5 M) that were 

systematically varied over a 96-well plate. The concentration of acetate buffer was kept 

constant at 0.1 M and pH 4.5. Crystals were reproducible, and conditions with large crystals 

were further optimised in a manual hanging drop screen, where the concentrations of NaH2PO4 

(0.7-1.3 M) and K2HPO4 (0.7-1.3 M) were further refined. A crystal from a condition containing 

1.3 M NaH2PO4, 0.7 M K2HPO4 and 0.1 M sodium acetate pH 4.5 was cryo-protected in 25% 

(v/v) glycerol and a full dataset was collected at a resolution of 3 Å (ID30A-3, ESRF). Data 

collection statistics are summarised in Table 2. 

 
Figure 26. DBB288 crystallises in several condition containing phosphate buffers. 

(A) DBB288 crystals appeared overnight in a condition containing (A) 1.2 M NaH2PO4, 0.8 M K2HPO4, 0.2 M LiSO4 and 

0.1 M CAPS pH 10.5, (B) 0.4 M NaH2PO4, 1.6 M K2HPO4, 0.2 M NaCl and 0.1 M imidazole pH 8, and (C) 0.8 M NaH2PO4, 

1.2 M KH2PO4 and 0.1 M Na acetate pH 4.5. Drops contained a total volume of 400 nl before equilibration. 



 

 

47 

3.2.9 Experimental phasing of the BCAP DBB domain 

Due to the low sequence similarity between the BCAP DBB domain and other TIG domains 

(<15%), no homologous model was available for phasing. In an attempt to use single-

wavelength anomalous diffraction (SAD) phasing, DBB288 was co-crystallised in the presence 

of 5-Amino-2,4,6-triiodoisophthalic acid (I3C). At a wavelength of 0.987 Å, diffraction varied 

between 3-3.5 Å, but the anomalous signal was limited to 10 Å (ERSF ID30A-3). As I3C co-

crystallisation relies on hydrogen bonds rather than covalent binding, like various heavy metals 

used for phasing, low I3C occupancy was likely contributing to this low-resolution anomalous 

signal. 

In order to increase the anomalous scattering signal, selenomethionine-containing DBB288 was 

produced. DBB288 was expressed in minimal medium supplemented with selenomethionine as 

described in Section 5.3.1. Purification and crystallisation were identical to the native protein. 

Crystals grown in 0.9 M NaH2PO4, 0.9 M KH2PO4 and 0.1 M sodium acetate pH 4.5 were 

cryoprotected in 25% (v/v) glycerol for data collection. From these crystals, a 4 Å SAD dataset 

was collected (Proxima 2A, Soleil) with the kind help of Allister Crow (Department of 

Pathology, University of Cambridge). Data collection statistics are summarised in Table 2. 

Selenomethionine-containing and native crystals exhibited identical unit cell parameters. 

The precise resolution of the native and SAD datasets was determined by a cut-off at I/σ > 2 

and R-meas < 0.7. Initially, the three space groups P41 2 2, P43 2 2, and P43 21 2 fit the data and 

were processed in parallel. Model building and refinement later revealed that P43 2 2 gave the 

best refinement statistics. 
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Table 2. Crystallography data collection and refinement statistics. 

 

Using the 4 Å SAD dataset, a phase estimate was obtained for an initial model of the 3 Å native 

dataset (Figure 27A). Despite successful phasing, automated model building at this low 

resolution proved challenging and had to be repeated manually. A carbon backbone skeleton 

model was built into long tubular sections of electron density. Large aromatic sidechains were 

then used as reference points in further iterative model building and refinement (Figure 27B). 

After numerous rounds of refinement, 97% of the DBB288 sequence could be mapped to the 

electron density. A few residues at the C-terminal helix of one chain could not be modelled, 

Native Anomalous

Data collection Statistics

   Beamline ERSF ID30A-3 SOLEIL PROXIMA 2A

   Wavelength 0.9677 0.979

   Resolution range 29.96  - 3.0 (3.107  - 3.0) 19.97  - 4.0 (4.142  - 4.0)

   Space group P 43 2 2 P 43 2 2

   Unit cell 87.169 87.169 234.075 90 90 90 86.728 86.728 232.968 90 90 90

   Total reflections 155114 (15856) 284327 (27827)

   Unique reflections 18777 (1823) 8008 (788)

   Multiplicity 8.3 (8.7) 35.5 (35.3)

   Completeness (%) 99 (100) 99 (100)

   Mean I/sigma(I) 17.80 (2.28) 31.31 (8.24)

   Wilson B-factor 94.35 136.98

   R-merge 0.0728 (0.8961) 0.1252 (0.6221)

   R-meas 0.07764 (0.9538) 0.127 (0.6311)

   CC1/2 0.999 (0.747) 1 (0.979)

   CC*  1 (0.925)   1 (0.995)

Refinement

   Reflections used in refinement 18773 (1823)

   Reflections used for R-free 1876 (182)

   R-work 0.1849 (0.3637)

   R-free 0.2451 (0.4048)

   CC(work) 0.957 (0.714)

   CC(free) 0.945 (0.431)

   Number of non-hydrogen atoms 4160

   Protein residues 541

   RMS(bonds) 0.009

   RMS(angles) 1.22

   Ramachandran favored (%) 88

   Ramachandran allowed (%) 8.8

   Ramachandran outliers (%) 3.2

   Rotamer outliers (%) 1

   Clashscore 9.1

   Average B-factor 104.57
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and a large electron density could not be accounted for (Figure 27C). The resulting refinement 

statistics are summarised in Table 2. 

 

Figure 27. Features of the DBB288 electron density map. 

(A) Electron density of the anomalous signal from selenomethionine residues matched to location of methionine residues in 

the DBB288 model. (B) Representative view of the 3 Å DBB288 electron density map, where large aromatic sidechains were 

used as anchoring points during early model building. (C) Electron density map around the C-terminal ⍺-helix, with electron 

density that could not be accounted for in the final DBB288 model. 

3.2.10  Structure of the BCAP DBB domain 

The BCAP DBB domain adopts a typical TIG fold (TIGBCAP) followed by three α-helices, two 

of which are contained in this structure (Figure 28A). The TIGBCAP is comprised of seven β-

strands (βA-βH) that make up a C-type Ig fold (Figure 28B). Structurally, TIGBCAP exhibits 

striking similarity with a number of TIGTF domains (Figure 30). TIGBCAP shares an identical 

A B

C
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topology with NF-κB p50, NFAT, CAMTA1 and Ebf1 TIG domains, with C⍺ RMSD values 

down to 1.6 Å. This similarity is striking since the DBB288 structure was obtained using 

experimental phases that are independent of the TIGTF structures. 

The DBB α-helices make contacts with α-helices from adjacent chains, and form a hypothetical 

dimer (Figure 28A). Herein, the first α-helix (αA) provides the largest contribution as it makes 

lateral contacts with the αA from the closest adjacent protomer. The second α-helix (αB) makes 

contacts with several symmetry-related units. These αB interactions are likely defined by 

crystal packing and may not reflect a physiological dimer. 

The asymmetric unit of the DBB288 protein contains five copies of the DBB domain, two of 

which share substantial interactions between the TIGBCAP and 3α regions (interface 1, 946 Å2) 

(Figure 29). The remaining three subunits contact this hypothetical DBB dimer through 

TIGBCAP loop interactions (interface 2, 566 Å2 and interface 3, 617 Å2) or αA (interface 4, 

419 Å2) (Figure 29). Even though the DBB288 construct was determined to be monomeric in 

solution (Figure 25), interface 1 between the TIGBCAP and 3α regions likely represents a 

biologically relevant dimer. The interactions are comprised of residues from βA2, βB, βE and 

βD (ABED β-sheet) that interact with the other subunit as a dyad via a 2-fold rotational axis 

(Figure 28A). The interface consists of a hydrophobic centre surrounded by extensive polar 

interactions. Comparable ABED β-sheet dimerisation interfaces are found in NFAT5, 

NF-κB p50 and Ebf1 TIG domain structures (Ghosh, van Duyne et al. 1995, Stroud, Lopez-

Rodriguez et al. 2002, Treiber, Treiber et al. 2010) (Figure 31). Moreover, structural 

comparison between the hypothetical interface 1 and TIGTF domains reveals RMSD values as 

low as 2.2 Å. The size of these TIGTF ABED β-sheet interfaces varies between 460-680 Å2 

(Table 3). 

Similar to the BCAP DBB domain, Ebf1 dimerisation is driven by the α-helical region 

containing three α-helices located at the C-terminus of the TIG domain (Figure 32) (Hagman, 

Gutch et al. 1995, Treiber, Treiber et al. 2010). This supports previous SEC-MALS results that 

emphasise the importance of the α-helical region for DBB dimerisation (Figure 25). Overall, 

the conformational similarity to TIGTF dimers and the importance of the α-helical region in 

Ebf1 suggest that interface 1 represents a physiological relevant DBB domain dimer. 
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Figure 28. Crystallographic structure of the BCAP DBB domain. 

(A) Crystallographic model of the BCAP DBB domain (DBB288). The structure is comprised of a core TIG fold, followed by 

two C-terminal ⍺-helices. (B) Topology diagram of the BCAP DBB domain structure, depicting a C-type Ig fold with a broken 

βA strand. 

 

Figure 29. Asymmetric unit of the DBB288 structure. 

The asymmetric unit of the DBB288 crystal contains five protomers that make contacts via four main interfaces as indicated. 

The pair with the largest dimerisation interface is shown in colours. Protomers participating in smaller interfaces are coloured 

in grey. 
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Figure 30. Structural comparison of BCAP TIGTF domain monomers. 

(A) Overview of TIGTF domains with similar domain topology as TIGBCAP domain (green). (B) Structural alignment of various 

TIGTF domains with the TIGBCAP domain (green): Ebf1 (teal, PDB:3MLP), CAMTA1 (pink, PDB:2CXK), NFAT1 (orange, 

PDB:1A02), NFAT5 (grey, PDB:1IMH), NF-κB p50 (yellow, PDB:1NFK). 

Table 3. Overview of structural similarities between BCAP DBB288 and TIGTF domains. 

 

 

 

Figure 31. Structural comparison of BCAP and TIGTF domain dimers. 

Structural alignment of various TIGTF domain dimers with the BCAP DBB domain (green): Ebf1 (teal, PDB:3MLP), CAMTA1 

(pink, PDB:2CXK), NFAT5 (grey, PDB:1IMH), NF-κB p50 (yellow, PDB:1NFK). 

PDB Code BCAP Sequence I dentity(%) Monomer RMSD (Å) Dimer RMSD (Å) Dimer I nterface (Å
2
)

Transcription factors

NFAT5 (dimer) 1IMH 13.2 2.2 2.3 596

NFAT1 1A02 8.6 2.1

p50 NF-κB (dimer) 1NFK 13.4 2.4 3.3 683

Ebf1 (dimer) 3MLP 14.8 2.8 3.6 463

CAMTA1 (putative dimer) 2CXK 12.8 1.6 2.2 598
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Figure 32. Comparison of the TIG-adjacent α-helical region in BCAP and Ebf1. 

(A) Crystal structure of the TIGBCAP dimer followed by 2 of 3 DBB α-helices. (B) Ebf1 TIG domain followed by its ‘helix-

loop-helix’ motif. 

3.2.11  Functional similarities between the DBB and TIGTF domains 

The striking structural similarities between the BCAP DBB domain and TIGTF domains could 

indicate a certain level of functional conservation. In NF-κB and NFAT transcription factors, 

TIG domains fulfil the dual role of dimerisation and unspecific DNA binding (Ghosh, van 

Duyne et al. 1995, Stroud, Lopez-Rodriguez et al. 2002). In these structures, the TIG domain 

stabilises the interaction between DNA and the sequence specific DNA binding domains. TIGTF 

domains make contact with the DNA phosphate backbone through two or three positively 

charged lysine and arginine residues located at the N-terminal TIGTF loop region (Muller, Rey 

et al. 1995, Chen, Glover et al. 1998, Stroud, Lopez-Rodriguez et al. 2002). 

The BCAP DBB domain similarly contains lysine and arginine residues in the BC-loop (Figure 

33A). As these DNA binding residues are not conserved among TIGTF domains, their functional 

relevance was further investigated. 

The first step of this investigation was to confirm the cellular localisation of BCAP. Although 

characterised as cytosolic adaptor protein in DT40 cells, one study has shown nuclear 

localisation in HEK293 and U-2 osteosarcoma cells via immunofluorescence microscopy 

(Okada, Maeda et al. 2000, Thul, Akesson et al. 2017). In order to determine the subcellular 

localisation of BCAP in human  
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cells, THP-1 macrophages and Ramos B cells were fixed and analysed via immunofluorescence 

microscopy. Results indicate a clear cytosolic localisation of BCAP, independent of LPS 

stimulation in THP-1 cells or BCR stimulation in Ramos B cells (Figure 34). Cytosolic 

localisation of BCAP reduces the likelihood that BCAP interacts with genomic DNA in a 

physiological context. 

 

Figure 33. The BCAP DBB domain contains lysine and arginine residues that may participate in DNA binding. 

(A) DBB288 structure with positively charged residues in the BC-loop highlighted as indicated. (B) Electrostatic charge 

representation of the DBB288 surface. Positively charged areas are coloured in blue, negatively charges areas in red. 
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Figure 34. BCAP is an exclusively cytosolic protein in THP-1 and Ramos B cells. 

Representative images of fixed (A) THP-1 cells analysed by confocal fluorescence microscopy. Cells were stimulated with 100 

ng/ml LPS for 30 min. Images were obtained with the kind help of Helena Rannikmae (Department of Biochemistry, University 

of Cambridge). (B) Ramos B cell analysed by epifluorescence microscopy. Cells were stimulated with 5 μg/ml ⍺-IgM for 15 

min. (A) and (B) Nuclei strained with DAPI are represented in blue, endogenous BCAP immunostained with ⍺-BCAP antibody 

is shown in green. Scale bar corresponds to 100 μm.  
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3.3 The BCAP interactome and the role of phosphorylation 

3.3.1 Background 

BCAP has been characterised in a number of cell types and species including chicken, mouse, 

and human. Across species, BCAP persistently appears as multiple bands on western blots 

(Okada, Maeda et al. 2000, MacFarlane, Yamazaki et al. 2008, Troutman, Hu et al. 2012). The 

bands corresponding to BCAPL migrate above the expected MW at 100 kDa and 110 kDa. 

Similarly, BCAPS migrates at 70 kDa and 80 kDa. Similar band shifts have not been observed 

upon BCAP expression in bacterial cells, suggesting that PTMs contribute to this phenomenon 

(Halabi 2015). This hypothesis is supported by the observation that BCAP is tyrosine 

phosphorylated in vivo, albeit on all four bands visible on western blot (Okada, Maeda et al. 

2000, MacFarlane, Yamazaki et al. 2008, Troutman, Hu et al. 2012). 

3.3.2 BCAP is hyperphosphorylated in mammalian cells 

To investigate whether phosphorylation lies at the basis of this unusual migration pattern, 

endogenous BCAP from human macrophages and B cells was dephosphorylated. 

Λ-phosphatase treatment resulted in the elimination of the higher MW bands for both BCAPL 

and BCAPS (Figure 35B). Consequently, hyperphosphorylation is responsible for the upward 

shift of both BCAP isoforms. Further analysis of the phosphorylation sites by mass 

spectrometry was not feasible due to the low amounts of endogenous BCAP that could be 

isolated from human THP-1 macrophages (Figure 35A). 

In order to increase the amount of BCAP available for further analysis, overexpression in 

Expi293F cells was used as a model system. Expression of BCAPL in Expi293F cells was 

conducted as described in Section 5.3.2. The purification strategy was identical to that of 

proteins expressed in E. coli with an initial nickel IMAC step, followed by TEV protease 

cleavage and gel filtration. During cell lysis and nickel IMAC, all buffers were supplemented 

with phosphatase inhibitors to preserve any phosphorylation present. Nickel IMAC resulted in 

a heterogeneous sample with multiple bands on SDS-PAGE (Figure 36A-B). However, further 

purification resulted in a relatively pure BCAP with two bands around 100 kDa and one 

contaminant around 70 kDa (Figure 36C-D), which was determined to be a degradation product 

by mass fingerprinting (data not shown). 

Λ-phosphatase treatment of the purified BCAPL confirmed the presence of 

hyperphosphorylation in this expression system. Moreover, probing with antibodies on western 
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blot revealed the presence of phosphotyrosine and phosphoserine residues (Figure 35C). This 

demonstrates that BCAP expressed in Expi293F cells is a suitable proxy for endogenous BCAP 

from immune cells. 

 

Figure 35. BCAP is hyperphosphorylated in B cell, macrophages and Expi293F cells. 

(A) THP-1 macrophages were stimulated with 100 ng/ml LPS for 30 min. Following cell lysis, BCAP was immunoprecipitated 

using ⍺-BCAP antibody and the resulting pulldown was analysed by SDS-PAGE. Samples were stained with Instant Blue 

Coomassie (left) and silver stain (right). (B) Lysates from THP-1 and Ramos cells were dephosphorylated with λ-phosphatase. 

(C) λ-phosphatase treatment of purified BCAPL overexpressed in Expi293F cells. 

Further in-depth characterisation of the BCAPL phosphorylation pattern was conducted by mass 

spectrometry. Purified BCAPL was digested with various proteases and analysed by 

phosphopeptide mapping. A large abundance of phosphoserine residues was detected, with only 

few phosphothreonine and no phosphotyrosine residues (Figure 37). This is remarkable as 

western blot analysis clearly indicated the presence of tyrosine phosphorylation. In silico 

digestion with trypsin and chymotrypsin indicates that most tyrosine motifs in the C-terminal 

half of BCAP, including YxxM motifs, are part of very long peptides that are unlikely to be 

ionised. Therefore, the lack of tyrosine phosphorylation in this analysis might be a reflection of 

poor digestion patterns and inefficient ionisation. Unfortunately, alternative digestion with 

proteases Asp-N and Glu-C did not result in the detection of phosphotyrosine modifications. 

The abundance of serine and threonine phosphorylation suggests that these PTMs are the main 

contributor to BCAP hyperphosphorylation and the resulting band shift on SDS-PAGE. 
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Figure 36. Purification of BCAPL via nickel affinity chromatography and gel filtration. 

(A) Nickel IMAC elution profile of BCAPL from a 1 ml Chelating HP column. (B) SDS-PAGE was used to analyse the lysate 

(LYS), supernatant (SN), flowthrough (FT) and elution fractions from the BCAPL nickel IMAC purification. (C) Size exclusion 

chromatography of BCAPL using a HiLoad 16/600 Superdex 200. (D) SDS-PAGE analysis of BCAPL gel filtration peak elution 

fractions. M Indicates the marker. 

 

Figure 37. Phosphopeptide mapping reveals numerous BCAP phosphorylation sites. 

Schematic depiction of BCAP containing all known phosphorylation sites determined by phosphopeptide mapping. Residues 

on top of the diagram represent phosphorylations that were discovered in this thesis. BCAP expressed in Expi293F cells was 

run on SDS-PAGE and separately digested with Asp-N, Glu-C, trypsin and chymotrypsin before mass spectrometry analysis. 

Grey residues below the diagram display previous results from our laboratory (Halabi 2015). BCAP was overexpressed in 

HEK293T cells and digested with both trypsin and chymotrypsin for analysis by mass spectrometry. 
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3.3.3 BCAP is phosphorylated by BTK and to a lesser extend SYK and LYN 

As discussed in Section 1.14, the tyrosine kinases SYK, LYN and BTK have been suggested to 

phosphorylate BCAP. In order to resolve conflicting reports about these kinases, an in vitro 

kinase assay was conducted. 

Purified BCAPL was dephosphorylated with λ-phosphatase and incubated with various non-

receptor tyrosine kinases as described in Section 5.5.5. SYK, LYN and BTK were able to 

phosphorylate BCAP (Figure 38). BTK is the most efficient kinase, causing a significant shift 

in BCAP migration on western blot. Relative to BTK, phosphorylation by SYK and LYN was 

substantially lower. However, LYN phosphorylation of BCAP still resulted in a partial band 

shift when probed for tyrosine phosphorylation. In order to validate the specificity of the assay, 

other kinases were included in the experiments. TYK2 and ITK, a member of the TEC kinase 

family, were not able to phosphorylate BCAP under these conditions (Figure 38). Myelin basic 

protein (MyBP) was used to control for kinase catalytic activity (Figure 38). 

 

Figure 38. BCAP is phosphorylated by BTK, LYN and SYK. 

(A) In vitro kinase assay of λ-phosphatase treated BCAPL (λ-BCAP) with 60 pmol SYK, LYN, BTK, TYK2 and ITK. Samples 

were incubated at 20 °C for 30 min. To control for kinase activity, myelin basic protein (MyBP) was similarly incubated with 

SYK, LYN, BTK, TYK2 and ITK. All samples were analysed by western blot for the presence of BCAP and phosphotyrosine 

modifications. 

3.3.4 Virotrap screen reveals extensive nature of the BCAP interactome 

In immune and Expi293F cells, hyperphosphorylation of BCAP may enable a multitude of 

interactions beyond the currently small BCAP interactome. In order to find novel BCAP 

interaction partners including potential serine kinases, a virotrap interaction screen was 

performed. The virotrap system takes advantage of the lentiviral budding machinery, where the 

viral p55 GAG protein is sufficient for budding and formation of virus-like particles (VLPs) 
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(Gheysen, Jacobs et al. 1989). When fusing a bait protein with GAG, the resulting VLPs can 

be used to co-purify bait protein interaction partners (Eyckerman, Titeca et al. 2016). This novel 

method preserves weak protein interactions by elimination of harsh lysis and washing steps. A 

virotrap interaction screen can therefore preserve and detect protein interactions that are not 

visible in other methods, although the use of HEK293T cells only presents a fraction of the total 

BCAP interactome in immune cells. 

A BCAP virotrap experiment was conducted and the resulting hits were compared against a 

negative control containing E. coli dihydrofolate reductase protein (eDHFR). Analysis revealed 

numerous potential interaction partners listed in Figure 39A. The virotrap hits can roughly be 

divided into three groups. The first group contains SH2 and SH3 domain-containing proteins. 

The PI3K regulatory subunits p85⍺ and p85β, Nck1 and Nck2 are known interaction partners 

of BCAP that interact via SH2 and SH3 domains (Figure 39A) (Okada, Maeda et al. 2000, 

Castello, Gaya et al. 2013). GRB2 and CRKL are novel SH2 and SH3 domain-containing 

adaptors proteins that play a role in immunity and B cells signalling (Sattler M. 1998, Engels, 

Konig et al. 2009). The SH2 domain of GRB2 has previously been predicted to interact with 

BCAP based on sequence specificity (Okada, Maeda et al. 2000). More specifically, the GRB2 

SH2 domain recognises phosphorylated YxNx motifs such as BCAP 374YPNT (Huang, Li et al. 

2008). Additionally, previous mass spectrometry-based interaction studies found BCAP in a 

GRB2 interaction screen, suggesting an SH3 domain-dependent association (Bisson, James et 

al. 2011). 

A second group of virotrap hits consists of proteins that were not previously linked to BCAP, 

BCR or TLR signalling. These include Annexin A6, CSNK1, CSNK2, PLSCR1, TOM1 and 

UEVLD (Figure 39A). Annexin A6 is a member of the annexin family of proteins that have 

been shown to play a role in the glucocorticoid-mediated innate immune response (Gerke and 

Moss 2002). Annexins are comprised of numerous annexin repeats that associate with and bend 

membranes in a calcium-dependent manner (Gerke and Moss 2002). Annexin A6 does not 

contain protein interaction domains that would enable a direct interaction with BCAP. 

However, other Annexin family proteins have been shown to interact with GRB2, and a similar 

association might take place in this virotrap screen (Alldridge and Bryant 2003). 

Casein kinases, like CSNK1A1 and CSNK2A1 are ubiquitous serine and threonine kinases 

involved in numerous cellular functions including cell cycle progression, apoptosis, 

transcription, and viral infections (Venerando, Ruzzene et al. 2014). Casein kinases 
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phosphorylate substrates containing acidic residues in the vicinity of the target serine or 

threonine residue (Venerando, Ruzzene et al. 2014). BCAP contains numerous matching 

motifs, suggesting that BCAP may be a substrate of casein kinases (Appendix Table 1). 

The phospholipid scramblase PLSCR1 was previously linked to IFN signalling, where it 

enhances the antiviral response (Dong, Zhou et al. 2004). Although no clear mechanism could 

be established for this link, PLSCR1 associates with DOCK2 in yeast two-hybrid assays, which 

may link the scramblase to the BCAP interactome (Rolland, Tasan et al. 2014). TOM1 is a 

membrane-associated protein that interacts with TOLLIP, which is a regulator of TLR 

signalling (Katoh, Imakagura et al. 2006). UEVLD is a poorly characterised protein that is 

proposed to function as a negative regulator of polyubiquitination (Kloor, Bork et al. 2002). 

For both proteins, no studies suggest a direct link to BCAP or other BCAP interaction partners. 

The third group of virotrap hits contains many of the least significantly enriched proteins. 

Several proteins are part of the ESCRT-III complex and cytoskeleton associated proteins 

(Figure 39A). Since proteins of the ESCRT-III complex have previously been identified in 

virotrap screens and due to their role in viral budding, they are most likely artefacts and 

therefore are not further analysed (Hurley and Hanson 2010, Eyckerman, Titeca et al. 2016). 

This initial virotrap setup compares BCAP overexpression to eDHFR control and represents 

the BCAP interactome in the absence of a stimulus. In order to increase the chance of detecting 

interaction partners that are activated by inflammatory signalling, a second virotrap screen was 

conducted, in which TLR4 signalling was induced. To this end, a constitutively active truncated 

TLR4 receptor (tTLR4, residues 569-839) was co-transfected with the GAG-BCAP bait 

construct (Figure 39B). A list of enriched proteins was obtained by comparing the relative 

enrichment of BCAP + tTLR4 to an eDHFR + tTLR4 control. Once again, a number of known 

interaction partners including p85 and NCK were significantly enriched in the BCAP-

containing VLPs (Figure 39C-D). The potentially new interaction partners GRB2, CRKL and 

CSNKs were also enriched. The remaining proteins enriched in this virotrap screen are ESCRT-

III complex associated proteins or ribosomal and nuclear proteins. 

The enrichment of ribosomal and nuclear proteins may be an indication of cell death through 

excessive TLR4 signalling or cell stress. Cell death would result in the release of nuclear 

proteins into the medium, where they coat VLPs through unspecific interactions. And even 

though the ranked significance of adaptor proteins and CSNKs varied from the first virotrap 

screen, the quantitative difference in enrichment is not higher than in the initial experiment. 
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Overall, activation of NF-κB signalling in this virotrap screen did not result in the identification 

of additional interaction partners. 

 

Figure 39. Virotrap interaction screen reveals novel BCAP interaction partners. 

HEK293T cells were transfected with a GAG-BCAP fusion construct, tTLR4 and a pMD2.G - pcDNA3-FLAG-VSV-G mix 

to generate FLAG-VSV-G coated virus-like particles (VLPs). After purification and tryptic digest, the VLP contents were 

analysed by mass spectrometry. (A) Volcano plot of significant hits from the BCAP virotrap screen compared to the eDHFR 

control. (C) Volcano plot of virotrap his obtained by comparing BCAP + tTLR4 to eDHFR + tTLR4. (A) and (C) False 

discovery rates (FDR) = 0.05 and S0 = 1. (B) and (D) Overview of virotrap hits sorted according to their relative difference to 

the eDHFR control. 
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3.3.5 The role of casein kinases in BCAP phosphorylation 

In order to test whether BCAP is a substrate of CSNK1A1 and CSNK2A1, an in vitro kinase 

assay was performed. The assay assessed the ability of CSNK1A1 and CSNK2A1 to 

phosphorylate BCAP in comparison to the serine kinase GSK-3. The results show that 

CSNK2A1 but not CSNK1A1 or GSK-3 phosphorylate BCAP (Figure 40). It is therefore likely 

that CSNK2A1 contributes to the abundance of serine and threonine phosphorylation on BCAP. 

The role of these phosphoserine and phosphothreonine modifications remains unknown and 

further research is required to elucidate any related potential mechanism of regulation. 

 

Figure 40. BCAP is phosphorylated by CSNK2A1 but not CSNK1A1.  

(A) In vitro kinase assay of λ-phosphatase treated BCAPL (λ-BCAP) with 60 pmol CSNK1A1, CSNK2A1, and GSK-3. 

Samples were incubated at 20 °C for 30 min. (B) To control for kinase activity, myelin basic protein (MyBP) was similarly 

incubated with CSNK1A1, CSNK2A1, and GSK-3. All samples were analysed by western blot for the presence of BCAP and 

phosphoserine modifications. 

3.3.6 Validation of the virotrap hits GRB2 and CRKL 

Virotrap interaction screens are an unbiased method to discover novel protein-protein 

interaction. However, since the technique relies on the co-purification of proteins, virotrap hits 

can represent both direct and indirect protein interactions. In order to confirm that GRB2 and 

CRKL interact with BCAP directly, a Co-IP was performed. FLAG-GRB2, FLAG-CRKL and 

Myc-BCAPL constructs were transiently overexpressed in HEK293T cell. The results show that 

FLAG-GRB2 but not FLAG-CRKL was able to pull down Myc-BCAPL (Figure 41A). 

Moreover, BCAP Y374F mutation did not prevent this interaction. This result indicates that the 

374YPNT motif does not interact with the GRB2 SH2 domain, as previously proposed based on 

sequence specificity (Okada, Maeda et al. 2000). A Phyre2 model (Kelley, Mezulis et al. 2015) 
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of the BCAP ANK domain also illustrates how the 374YPTN motif is an unlikely binding site 

for the GRB2 SH2 domain (Figure 41B). Even though the Y374 is exposed at the surface of the 

protein, and potentially available for phosphorylation, the remaining residues of the motif are 

buried within the ANK fold. The 374YPTN motif is therefore not immediately available for SH2 

domain interactions, which require accessibility of all residues within the motif. 

Overall these results suggest that the GRB2-BCAP association is a direct interaction, whereas 

the CRKL association is indirect. This hypothesis seems plausible given that CRKL has been 

reported to interact with p85 (Hartman, Wilson-Weekes et al. 2006, Liu, Chen et al. 2013). 

However, the BCAP-GRB2 interaction could not be validated in stimulated THP-1 

macrophages and Ramos B cells (Figure 42). These results suggest that this interaction is not 

constitutive in these immune cells, and that it cannot be induced by TLR4 or BCR stimulation. 

 

Figure 41. Co-immunoprecipitation in HEK293T cells reveals that GRB2 but not CRKL interacts with BCAP. 

HEK293T cells were transiently transfected with Myc-BCAPL, FLAG-GRB2, FLAG-CRKL, FLAG-BCAPL, and Myc-CRKL. 

24 h post-transfection, cells were lysed and subjected to immunoprecipitation with anti-FLAG antibody. Precipitates were split 

and assayed for precipitation of FLAG-tagged constructs or co-precipitation of Myc-tagged BCAP and CRKL by western blot. 

(B) Structural model of the BCAP ANK domain (Phyre2 model). Residues of the 374YPNT motif are highlighted in teal and 

represented as sticks. 
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Figure 42. Co-immunoprecipitation in THP-1 and Ramos cells did not confirm the BCAP-GRB2 interaction. 

(A) THP-1 cells were stimulated with 100 ng/ml LPS for 15 or 30 min. (B) Ramos cells were stimulated with 100 ng/ml LPS 

for 15 min or 5 μg/ml ⍺-IgM for 10 min. (A) and (B) After lysis, lysates were subjected to a pulldown with ⍺-GRB2 or a 

control IgG and subsequently probed for a BCAP interactions. 

In order to obtain domain-level resolution of new and previously known interactions between 

BCAP and the SH domain-containing proteins GRB2, CRKL, p85 and PLC-𝛾2, an in vitro 

pulldown assay was performed. Purified GST-tagged bait proteins were purified by GST 

affinity purification and gel filtration as described in Section 5.4. GST fusion proteins were 

then immobilised on glutathione resin and purified BCAP was applied to the resin to probe for 

interactions. Full length GRB2, but not the GRB2 SH2 domain was able to pull down BCAP, 

independent of its phosphorylation state (Figure 43A). Consequently, the BCAP-GRB2 

interaction is mediated by SH3 domains. This discovery supports the previous Co-IP results 

that ruled out 374YPNT as a possible SH2 domain binding site. 

A pulldown between BCAP and the p85 SH domains revealed an SH3 domain interaction in 

addition to a N-SH2 interaction (Figure 43B). Notably, a C-SH2 domain interaction could not 

be detected. The presence of the N-SH2 domain interaction was expected as BCAP was initially 

characterised as N-SH2 domain substrate (Okada, Maeda et al. 2000). The lack of a C-SH2 

domain interaction could be attributed to missing phosphorylation of YxxM motifs, or a lower 

binding affinity of this domain. The C-SH2 domain has previously been shown to have a lower 

affinity for certain phosphotyrosine motifs than the N-SH2 domain (O'Brien, Rugman et al. 

2000). In vivo, this lower C-SH2 domain affinity could be compensated for by avidity, through 

prior binding of SH3 and N-SH2 domains. The presence of an SH3 domain interaction between 

BCAP and PI3K is surprising, as several studies have shown that the in situ BCAP-p85 
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interaction relies on YxxM motifs (Aiba, Kameyama et al. 2008, Matsumura, Oyama et al. 

2010). This paradox might be explained by SH3 domain regulation and competition between 

several SH3 domain interactions to occupy the BCAP proline-rich regions. 

PLC-𝛾2 revealed a similar interaction mechanism to p85, with a robust SH3 domain interaction, 

an N-SH2 domain interaction and a weaker C-SH2 domain binding (Figure 43C). These 

extensive interactions suggest that BCAP and PLC-𝛾2 form a stable complex under 

physiological conditions. The presence of several PLC-𝛾2 and p85 SH2 domain interactions 

with BCAP in these assays also corroborates previous results suggesting that BCAPL contains 

tyrosine phosphorylation, even though this could not be confirmed by phosphopeptide 

mapping. 

 

Figure 43. In vitro pulldown reveals novel SH3 domain interactions with BCAP. 

Purified GST-tagged (A) GRB2, GRB2 SH2, CRKL, (B) p85 N-SH2, p85 cSH3, p85 SH3, (C) PLC-𝛾2 N-SH2, PLC-𝛾2 

C-SH2, and PLC-𝛾2 SH3 were immobilised on glutathione resin. Purified BCAPL and dephosphorylated BCAPL were 

subsequently applied to the resin. After several wash steps, GST-tagged bait proteins were eluted from the resin and the eluent 

was probed for the presence of BCAPL on SDS-PAGE. (D) Schematic domain overview of SH2 and SH3 domain-containing 

proteins used in this pulldown experiment. 
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3.3.7 Limitations of the in vitro pulldown assay 

The results presented in section 3.3.6 illustrate the in vitro capacity of various SH3 and SH3 

domains to interact with BCAP. The results are in line with expected behaviour of 

phosphorylation-dependent SH2 domain binding and phosphorylation-independent SH3 

domain binding. However, for the p85 SH3 domain interaction, the amounts of phosphorylated 

and de-phosphorylated BCAP varies significantly (Figure 43B). Although the SH3 domain 

interaction is not expected to be influenced by BCAP phosphorylation, such a decrease was not 

observed for the other SH3 domain interactions tested (Figure 43). Therefore, it cannot be ruled 

out that BCAP phosphorylation promotes p85 SH3 domain interactions with BCAP. In the 

absence of additional repeats of the experiment and without further investigation of this 

inconsistency, the results should be interpreted with caution. 

3.3.8 Analysis of SH2 domain binding specificity via peptide arrays 

While in vitro pulldowns revealed the SH2 and SH3 domain interactions, the precise binding 

sites on BCAP remain elusive. In order to analyse the SH2 domain interactions on a sequence 

specific level, a peptide array was used to identify relevant tyrosine motifs. Purified GST-

tagged SH2 domains or full-length proteins were analysed for their affinity with peptides 

containing phosphorylated BCAP tyrosine motifs (Appendix Figure 1). 

For the p85 SH2 domains, the peptide array showed a broader specificity than suggested by the 

literature. Next to interactions with YxxM motifs, numerous other motifs were bound by p85 

(Figure 44A-B). This apparent broad specificity in peptide arrays has been previously described 

(Huang, Li et al. 2008), and is somewhat expected since secondary and tertiary structures are 

not accounted for in this technique. However, direct comparison between the four YxxM motifs 

reveals both p85 SH2 domains interact with the 459YVEM peptide. Furthermore, the N-SH2 

domain preferentially binds the 444YESM motif, whereas the C-SH2 domain favours the 

263YTDM and 419YESM motifs (Figure 44A). 
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Figure 44. Peptide arrays reveals binding sites for the p85 SH2 domains and other BCAP interaction partners. 

Binding of SH2 domains to an array of 15-residue peptides containing unmodified and phosphorylated BCAP tyrosine motifs. 

(A) Binding of p85 SH2 domains to BCAP YxxM motifs. Phosphotyrosine containing peptides are indicated as full grey circles. 

(B) Binding of p85, GRB2, CRKL and PLC-𝛾2 SH2 domains to all tyrosine motifs in BCAP (excluding the TIR domain). 

Motifs with that have previously been shown to be phosphorylated are indicated in blue. (*) Indicates motifs are buried in the 

protein domain fold.  
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4 Discussion 

4.1 An updated model of BCAP TLR signalling 

The results from this thesis provide the first direct evidence for a human TIR domain interaction 

between BCAPTIR domain and MAL (Figure 8A). Previous studies made similar assertions 

while using TIR-DBB domains to show an interaction with MAL and MyD88 via co-

immunoprecipitation (Troutman, Hu et al. 2012). Previous results in our laboratory indicated 

that human BCAPL interacts with MAL and MyD88 in a similar experimental setup (Halabi 

2015). The BCAPTIR domain as a minimal requirement for heterotypic TIR domain interaction 

with MAL but not MyD88 (Figure 8) was unexpected since the BCAPTIR domain, like many 

TIR domains, was determined to be monomeric in solution (Xu, Tao et al. 2000, Khan, Brint et 

al. 2004, Nyman, Stenmark et al. 2008, Ohnishi, Tochio et al. 2009, Valkov, Stamp et al. 2011, 

Lin, Lu et al. 2012, Jang and Park 2014, Halabi, Sekine et al. 2017). It has been notoriously 

difficult to reconstitute TIR domain interactions in vitro using these monomeric TIR domains. 

Only recently, the nature of TIR domain interactions was revealed by Ve et alia (Ve, Vajjhala 

et al. 2017). Using Cryo-EM, they were able to show that the MALTIR and MyD88TIR domains 

form large filamentous structures. Although the physiological relevance of these large filaments 

is debatable, overexpression studies of MAL, MyD88 and ASC have shown that these filaments 

can assemble in situ (Avbelj, Wolz et al. 2014, Dick, Sborgi et al. 2016, Ve, Vajjhala et al. 

2017). It is therefore likely that overexpression of MAL and MyD88 in HEK293T cells leads 

to the formation of TIR domain filaments. Consequently, the BCAPTIR domain is expected to 

be incorporated into MAL, but not MyD88 filaments (Figure 45A). 

In order to further determine the domains required for BCAP signalling, various BCAP domain 

boundaries were tested for their ability to dampen TLR signalling using an NF-κB reporter 

assay. This type of NF-κB reporter assay is widely recognised as the gold standard to evaluate 

in situ NF-κB activation of TLR adaptor proteins including MAL, MyD88 and BCAP 

(Medzhitov, Preston-Hurlburt et al. 1998, Fitzgerald, Palsson-McDermott et al. 2001, 

Troutman, Hu et al. 2012).  

However, the results from these NF-κB reporter assays should be interpreted with caution, since 

the physiological phenomenon underlying NF-κB activation in these assays is not fully 

understood. It is likely that MALTIR and MyD88TIR domain filaments are nucleation points for 

myddosome formation that eventually leads to NF-κB activation. When functionally evaluating 
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BCAP constructs with this assay, it is unlikely that the observed inhibition of NF-κB signalling 

is dependent on PI3K activation. PI3K-Akt signalling requires phosphorylated YxxM motifs, 

of which only one is present in the DBB domain of TIR-DBB constructs. Moreover, BCAP 

negative regulation of MAL NF-κB signalling is dependent on dimerisation through the third 

DBB ⍺-helix, which does not affect the YxxM motif. It can therefore be concluded that BCAP 

NF-κB reporter assays measure the degree of steric inhibition of MALTIR and MyD88TIR 

domain filaments, rather than PI3K-dependent inhibition. 

Results from the reporter assay suggest that the BCAPTIR domain does not inhibit MAL or 

MyD88-induced NF-κB signalling (Figure 9). In fact, the BCAPTIR domain strongly increases 

NF-κB signalling in both experiments. Inhibition of inflammatory signalling requires the full-

length DBB domain in the context of MAL overexpression, and the TIR-TIG2⍺ domains for 

MyD88 overexpression (Figure 9). This indicates that inhibition of MAL filaments requires 

DBB domain dimerisation, whereas disruption of MyD88 filaments only requires TIG2⍺ 

domain association. Again, these findings are in contrast to a previous study that used similar 

TIR-DBB domains and BCAPS to conclude that the BCAPTIR domain is sufficient for the 

inhibition of inflammatory TLR signalling (Troutman, Hu et al. 2012). Despite slight 

differences in the minimal requirements for negative regulation of MAL and MyD88-induced 

NF-κB signalling, the results from Section 3.1 illustrate the crucial importance of the DBB 

domain. 

The importance of DBB domain dimerisation was also reflected by in vitro experiments, where 

only dimeric BCAP constructs were able to inhibit MAL filament formation (Figure 11). 

Interestingly, BCAP was able to disrupt MALTIR domain oligomerisation at a 1:10 molar ratio, 

and in the absence of a stable complex during gel filtration. This could indicate that dimeric 

BCAP destabilises MAL oligomers in a transient manner. 

The increase in NF-κB activity associated with BCAPTIR domain is inconsistent with the current 

understanding of BCAP as a negative regulator of TLR signalling (Figure 9). This phenomenon 

could be explained by the aforementioned incorporation in MALTIR domain filaments, where 

monomeric BCAPTIR domains act as neutral building blocks that increase total filament size 

and downstream myddosome formation (Figure 45A). Since the BCAPTIR domain does not 

associate with MyD88, the increase in MyD88-induced NF-κB signalling may be driven by an 

increase in MyD88 autoactivation. In this scenario, monomeric BCAPTIR domain engages in 
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transient TIR domain interactions with MyD88, which result in the release of MyD88TIR domain 

auto-inhibition and therefore more efficient myddosome formation. 

Together, these results suggest that the physiological phenomenon of BCAP negative regulation 

of TLR signalling is at least in part driven by steric inhibition of TIR signalosomes. BCAP 

would therefore play a pivotal role in controlling and regulating TIR domain filament formation 

in the context of TLR signalling (Figure 45B). This type of physical inhibition would take place 

in addition to the phosphoinositide metabolism and possible regulation by FoxO transcription 

factors (Aksoy, Taboubi et al. 2012, Ni, MacFarlane et al. 2012, Hamerman, Pottle et al. 2016). 

Moreover, this model of physical inhibition is the only mechanism to address BCAP negative 

regulation of endosomal TLR signalling, where PI3K activity has no apparent function. 

The BCAPTIR domain also plays an important role outside TLR signalling. Downstream of 

IL-1R and IL-18R in CD4+ T cells, BCAP engages in TIR domain interactions to activate the 

PI3K–mTOR pathway, which enhances Th17 and Th1 cell responses (Deason, Troutman et al. 

2018). IL-1R signalling does not require MAL, but MyD88 myddosome formation drives 

downstream NF-κB activation (Slack, Schooley et al. 2000). In these IL-1R signalosomes, 

BCAPTIR domain interaction with MyD88 would most likely rely on DBB domain dimerisation. 

 

Figure 45. Dimeric BCAP regulates TIR domain signalosomes. 

Schematic representation of the TLR4 signalosome. LPS binding (not shown) induces TLR4 dimerisation, resulting in the 

assembly of the TIR domain signalosome. Initial MAL and subsequently MyD88 recruitment lead to myddosome formation 

and downstream NF-κB signalling. (A) Monomeric BCAPTIR domains (blue) interact with MAL without inhibiting TLR 

signalling. BCAPTIR domains are incorporated in TIR signalosome, contributing to the overall size of the filament, leading to 

an increase in myddosome activation and downstream NF-κB signalling. (B) BCAP Dimerisation induces a conformational 
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shift and the TIR domains will counteract the assembly of the TIR signalosome, resulting in negative regulation of TLR 

signalling by steric inhibition. 

This novel model for BCAPTIR domain interactions relies on a mechanism of indirect 

dimerisation. Although homotypic TIR domain dimerisation has never been observed for 

animal TIR domains, similar forms of indirect dimerisation have been described for other TLR 

adaptor proteins like SARM. The SARM domain architecture exhibits strong similarities to 

BCAP, with a C-terminal TIR domain preceded by two SAM oligomerisation domains (Carty, 

Goodbody et al. 2006). The N-terminal half of SARM contains two armadillo motifs, analogous 

to the BCAP ANK domain (Carty, Goodbody et al. 2006). In a physiological context, 

dimerisation by the TIR domain-adjacent SAM motifs induces TIR domain-dependent axonal 

degeneration (Gerdts, Summers et al. 2013). 

Interestingly, SARM constructs lacking the TIR domain retain the ability to dimerise, but 

exhibit a dominant negative effect on axonal degeneration by full-length SARM (Gerdts, 

Summers et al. 2013). This is another point of similarity between BCAP and SARM, since 

BCAPL and BCAPS isoforms are present under physiological conditions. For BCAP however, 

indirect DBB domain dimerisation is based on the exclusive use of BCAPL. Under 

physiological conditions, both BCAP isoforms have been shown to associate in Co-IP 

experiments (Halabi 2015), suggesting that BCAP forms heterodimers similar to SARM. These 

heterodimers can be expected to activate PI3K signalling and engage in MALTIR domain 

interactions without disrupting filament formation. Since BCAPL and BCAPS are expressed in 

similar quantities and given dimerisation is random, one can expect three distinct dimer 

populations that include BCAPL and BCAPS homodimers, as well as mixed heterodimers. Only 

BCAPL homodimers will disrupt TLR signalosomes, whereas heterodimers would act as neutral 

building blocks, similar to the BCAPTIR domain in MAL NF-κB reporter assays. BCAPS dimers 

lack the TIR domains required for association with TLR signalling. 

The functional characterisation of the DBB domain has implications for related proteins. BCAP 

shares a high degree of sequence and structural similarity with the homolog BANK1 and the 

D. melanogaster protein Dof (Battersby, Csiszár et al. 2003). Secondary structure alignments 

exhibit an identical domain arrangement between the structured regions of BCAP and BANK1 

(Appendix Figure 2). Based on this high level of sequence similarity, the N-terminal BANK1 

domain has been suggested to represent an unannotated TIR domain (Halabi 2015). This is 

corroborated by the role of BANK1 in TLR7-mediated type I interferon production and TLR9-

mediated IL-6 production (Wu, Kumar et al. 2013, Wu, Kumar et al. 2016). Therefore, BANK1 
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is likely involved in endosomal TLR signalling through TIR domain interactions. Given the 

functional characterisation of the BCAP DBB domain, it can be hypothesised that TIRBANK1 

domain signalling is equally driven by DBB domain dimerisation. Dof is more distantly related 

to BCAP (16% sequence identity) and BANK1 (13.5% sequence identity). However, since the 

structure and therefore function of proteins is more conserved than the amino acid sequence, 

the conserved DBB domain likely functions as a dimerisation region in Dof fibroblast growth 

factor signalling. 

4.2 Structure of the BCAP DBB domain 

The work described in this thesis led to the determination of the first DBB domain crystal 

structure. Based on trypsin limited proteolysis of a larger DBB-ANK construct, DBB domain 

boundaries containing residues 179-288 were crystallised and a structure was solved at 3 Å 

(Figure 28). The structure revealed a TIG fold followed by two ⍺-helices. Initially, the absence 

of the third DBB ⍺-helix was concerning, since this ⍺-helix drives BCAP dimerisation. 

However, structural similarity to other dimeric TIGTF domains including NF-κB, NFAT and 

Ebf1 revealed that crystal contacts present in the DBB domain structure represent a 

physiological DBB dimer (Figure 31). The dimerisation interface includes the ABED β-sheet 

of the TIG fold, and the three C-terminal DBB ⍺-helices. Structural alignments with TIGTF 

domains reveal an unexpectedly high degree of structural similarity with RMSD values as low 

as 1.6 Å for TIG monomers and 2.3 Å to TIG dimers (Table 3). Given the DBB domain structure 

was solved with experimental phases, these low RMSD values are not biased by existing TIG 

structures. Comparison to other TIGTF-like domains such as plexin family receptor-Ig domains 

did not yield meaningful alignments. 

Besides the identification of a common dimerisation interface, further functional conservation 

was considered. TIGTF domains assist sequence-specific DNA binding domains (DBDs) by 

making unspecific DNA backbone contacts via positively charged residues in the N-terminal 

TIG loops (Aravind and Koonin 1999). In this conformation, TIGTF dimers have been described 

to ‘sit on top’ or ‘hang above’ the DNA helix (Stroud, Lopez-Rodriguez et al. 2002). The DNA-

binding residues are not conserved among TFs, making it difficult to map this feature onto DBB 

domains. The BCAP DBB domain contains two positively charged residues (K201 and R205) 

that potentially enable DNA interactions. Since BCAP does not exhibit a nuclear localisation 

in macrophages and B cells, binding to nuclear DNA is unlikely. However, theoretically it 

remains a possibility that BCAP binds cytosolic viral DNA. 
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The combination of structural and functional approaches revealed the role of the BCAP DBB 

domain. This represents a significant step towards the full characterisation of BCAP. However, 

the structure and function of the C-terminal half of the protein remain largely unknown. As 

discussed in section 4.3, the C-terminal unstructured region of BCAP acts as a signalling 

platform for other protein interactions through SH2 and SH3 domain interactions. The ANK 

domain and coiled-coil region remain elusive structural features with no apparent function. It 

was proposed that the ANK domain might be involved in BCAP dimerisation (Halabi, Sekine 

et al. 2017), but experiments in this thesis show that the DBB ⍺-helices are sufficient for self-

association. ANK repeats can engage in protein interactions in multiple ways, and are involved 

in a wide range of functions such as signalling, cytoskeleton integrity, transcription and 

inflammatory responses (Mosavi, Cammett et al. 2004). This makes it nearly impossible to 

predict the BCAP ANK domain function, even though structure predictions like the Phyre2 

model in Figure 41 provide a starting point for further structural analysis. The structure and 

function of the BCAP coiled-coil region conserved among Dof, BANK1 and BCAP remain 

equally uncharacterised. Yeast two-hybrid experiments suggested self-association properties, 

but this could not be confirmed using other methods (Battersby, Csiszár et al. 2003). 

4.3 The downstream BCAP interactome 

In immune cells, endogenous BCAP exhibits an unusual migration pattern on SDS-PAGE. 

Firstly, BCAP isoforms each appear as two or three bands upwards of the expected molecular 

weight (Okada, Maeda et al. 2000). Secondly, the lower band of BCAPL migrates around 

100 kDa, instead of the theoretical molecular weight of 90 kDa. The latter shift in migration is 

likely caused by the acidic nature of the protein (BCAPL pI 5.25; TIR domain pI 4.85). Protein 

acidity has previously been described to prevent saturation with SDS detergent molecules 

during SDS-PAGE (Matagne, Joris et al. 1991). The appearance of multiple protein bands on 

SDS-PAGE has been rarely discussed in previous studies. However, PTMs and the high proline 

content of BCAP have been suggested to contribute to this behaviour (Halabi 2015). Results 

from this thesis definitively show that this phenomenon is caused by phosphorylation 

(Figure 35). Similar to the reduced binding of SDS onto acidic proteins, the addition of 

numerous phosphate modifications likely limits SDS binding, resulting in a reduced total charge 

during SDS-PAGE. During the discovery of BCAP, the presence of tyrosine phosphorylation 

was shown by immunoblotting. However, since phosphotyrosines were present on all four 

BCAP bands, it could not be concluded that phosphorylation was causing the unusual band 
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pattern (Okada, Maeda et al. 2000). The new mass spectrometry data from BCAP expressed in 

Expi293F cells now reveals an enrichment of serine and threonine phosphorylation in the top-

most band of BCAP (Figure 37). This suggests that serine and threonine phosphorylation is the 

major contributor to BCAP hyperphosphorylation, with only a minor role for tyrosine 

modifications. 

The virotrap interaction screen contributed to the identification of a kinase responsible for part 

the hyperphosphorylation. Casein kinases were significantly enriched in the virotrap 

experiments and subsequent validation using in vitro kinase assays confirmed that CSNK2A1 

is a BCAP kinase (Figure 40). The precise modification sites of CSNK2A1 phosphorylation 

remain elusive, and further research is required to investigate the regulatory functions of these 

phosphorylations. 

Due to the importance of tyrosine phosphorylation for immune signalling, extensive 

phosphopeptide mapping was conducted with the aim of characterising BCAP tyrosine 

phosphorylation. Immunoblotting and in vitro binding of SH2 domains confirmed the presence 

of phosphotyrosine residues on BCAP expressed in Expi293F cells. However, protease 

digestion patterns and technical limitations of phosphoproteomics prevented the identification 

of any phosphorylation outside serine and threonine residues. A previous study in our 

laboratory had identified tyrosine phosphorylation by mass spectrometry and has shown that 

195YVIV, 230YTIS, 374YPNT, 570YVSS, 594YDPF, 694YESG were phosphorylated in HEK293T 

cells (Figure 37) (Halabi 2015). And while HEK293T cells do not express tyrosine kinases like 

BTK (Thul, Akesson et al. 2017), this dataset provides a preliminary assessment of BCAP 

tyrosine phosphorylation. 

To further investigate the kinases responsible for BCAP tyrosine phosphorylation, an in vitro 

kinase assay was used to compare the relative potential of LYN, SYK and BTK to 

phosphorylate BCAP. Conflicting reports have linked all three kinases to BCAP 

phosphorylation (Okada, Maeda et al. 2000, Inabe and Kurosaki 2002, Matsumura, Oyama et 

al. 2010, Halabi, Sekine et al. 2017). The in vitro kinase assay revealed that BCAP is more 

readily phosphorylated by BTK than LYN or SYK (Figure 38). Although inherent kinase 

activity cannot be fully accounted for in this experimental setup, the data clearly suggests that 

BTK plays a central role in BCAP hyperphosphorylation. LYN and SYK may still play a role 

in more specific BCAP phosphorylation, including phosphorylation of YxxM motifs. Overall 

these results confirm that BCAP is a substrate of numerous kinases, including the previously 

characterised c-Abl (Maruoka, Suzuki et al. 2005). The precise phosphorylation pattern likely 
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depends on context, for example, cell type, species and the local signalling environment that 

may differ between TLR, BCR and IL-1R signalling. 

In order to discover novel BCAP interaction partners that may rely on BCAP 

hyperphosphorylation, a virotrap interaction screen was performed and a substantial list of 

potential interaction partners was obtained (Figure 39). Among the most significant hits were 

several known BCAP interaction partners, demonstrating the robust nature of the virotrap 

method. However, other important BCAP interaction partners were absent in this screen, 

including TIR domain adaptor proteins and PLC-𝛾2. TIR domain interactions might be affected 

by the N-terminal GAG-BCAP fusion used in this method. In tightly packed VLPs with lateral 

assembly of GAG fusion proteins, N-terminal TIR domain interactions are likely excluded 

during VLP budding. PLC-𝛾2 and other immune adaptors are absent due to the use of HEK293T 

cells, where expression of these proteins is limited or absent. 

Validation through Co-IP in HEK293T cells and in vitro pulldown assays using purified 

proteins revealed that GRB2, but not CRKL, interacts with BCAP directly (Figure 41). The 

GRB2-BCAP interaction is SH3 domain-dependent, and does not involve SH2 domain 

interactions as previously hypothesised (Okada, Maeda et al. 2000). However, in THP-1 

macrophages and Ramos B cells, this interaction was not constitutive (Figure 42). For the 

known interaction partners p85 and PLC-𝛾2, the in vitro pulldown revealed a combination of 

SH2 and SH3 domain interactions (Figure 43). Contrary to SH2 domains, SH3 domains do not 

require phosphorylation of the target sequence. Therefore, the p85 and PLC-𝛾2 SH3 domain 

interactions with BCAP may be constitutive. This suggestion may explain the strong interaction 

between BCAP and PLC-𝛾2 in HEK293T cells, and the constitutive association with p85 in 

macrophages and B cells (Aiba, Kameyama et al. 2008, Ni, MacFarlane et al. 2012, Halabi 

2015). 

These insights suggest a new model for BCAP interactions with p85 and PLC-𝛾2. Constitutive 

SH3 domain interactions may drive the formation of pre-formed but inactive complexes (Figure 

46). Upon engagement in TLR or BCR signalosomes, BCAP tyrosine phosphorylation will 

induce rapid SH2 domain binding within the pre-formed complex. Initial N-SH2 domain 

interactions may further facilitate weaker C-SH2 domain binding. For p85, the peptide array 

data suggests that the N-SH2 domain preferentially binds the 444YESM and 459YVEM motifs, 

leaving the 419YESM motif at an ideal distance for C-SH2 domain interactions (Fruman 2010). 

This sequential SH2 domain binding results in the release of auto-inhibition and activation of 
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p85 and PLC-𝛾2 (Yu, Wjasow et al. 1998, Gresset, Hicks et al. 2010, Burke, Vadas et al. 2011) 

(Figure 46). 

 

Figure 46. Constitutive SH3 domain interactions facilitate rapid SH2 domain binding upon BCAP tyrosine 

phosphorylation. 

Stepwise binding model for the SH2 and SH3 domain-containing BCAP interaction partners p85 and PLC-𝛾2. The PI3K p85 

or PLC-𝛾2 SH3 domains constitutively interact with BCAP proline-rich regions (Pro). The preformed complex can then rapidly 

engage in N-SH2 domain interaction upon BCAP tyrosine phosphorylation. High-affinity N-SH2 interactions facilitate the 

binding of lower-affinity C-SH2 domain interaction resulting in full activation of PI3K and PLC-𝛾2. 

BCAP peptide array data provides an additional level of granularity by locating the specific 

tyrosine motifs involved in BCAP-SH2 domain interactions (Figure 44). TIR domain tyrosine 

motifs were not considered SH2 domain binding sites since previous studies have shown that 

BCAPS interacts with p85 (Okada, Maeda et al. 2000). Moreover, TIR domains engage in 

oligomeric TIR domain interactions and are therefore unlikely to be accessible for SH2 domain 

interactions. This in vitro binding assay showed a multitude of interaction motifs for p85, 

PLC-𝛾2, GRB2 and CRKL. Many of the interactions go beyond the SH2 domain specificity 

that was previously attributed to these domains (Huang, Li et al. 2008). And while these in vitro 

binding results do represent the physical binding potential of SH2 domains, the physiological 

relevance of these interactions is not obvious. Secondary and tertiary protein structure, as well 

as tyrosine phosphorylation has to be taken into account. 

The central requirement for SH2 domain interactions is tyrosine phosphorylation. Existing data 

gives some evidence to suggest that 195YVIV, 230YTIS, 374YPNT, 419YESM, 444YESM, 

459YVEM, 513YHTV, 553YIFK, 570YVSS, 594YDPF and 694YESG can be phosphorylated in situ 

(Maruoka, Suzuki et al. 2005, Halabi 2015). The second requirement for physiological 

BCAP-SH2 domain interactions is surface accessibility of the full tyrosine motif (Songyang, 

Shoelson et al. 1993). The DBB domain structure sheds some light on the position of certain 

tyrosine motifs. The 263YTDM motif is fully accessible in a short turn between the TIG domain 
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and first ⍺-helix. The 195YVIV and 230YTIS motifs are buried in the ABED dimerisation β-

sheet, while the tyrosine residues are exposed. Similar predictions can be made for an in silico 

structural model of the ANK domain. The 374YPNT motif is buried in the ⍺-helical core, while 

the tyrosine residue points outwards resulting in surface accessibility. However, the 346YGLK, 

365YVSA and 394YVET motifs are accessible at the protein surface of the ANK domain model. 

These structure predictions reduce the total amount of potential tyrosine interaction motifs. The 

resulting SH2 domain interaction network with p85, PLC-𝛾2 and other adaptor proteins is likely 

highly dynamic and context dependent. Additional results from the Co-IP and in vitro 

pulldowns add multiple, possibly competing, SH3 domain interactions to the BCAP 

interactome. Further phosphopeptide mapping or other characterisation of tyrosine 

phosphorylation upon TLR, BCR and IL-1R receptor stimulation would be required to identify 

the role of specific motifs during signalling events. 

Combined with previously characterised BCAP interactions, this virotrap screen and 

subsequent validation experiments substantially expand the BCAP interactome, revealing an 

extensive SH2 and SH3 domain network (Figure 47). 

 

Figure 47. Overview of the BCAP SH2 and SH3 domain interactome. 

(A) Overview of the SH2 and SH3 domain-containing interaction partners of BCAP as described in the literature. (B) Updated 

BCAP interactome representing novel GRB2 and CRKL associations and detailing individual SH2 and SH3 domains 

interactions on BCAP. The model also includes kinases responsible for serine phosphorylation and tyrosine phosphorylation, 

which is required for SH2 domain interactions. 
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4.4 The limitations of HEK293T cells for the study of immune adaptors. 

HEK293-derived cell types like HEK293T and Expi293F cells are used in numerous 

experiments throughout this thesis, due to their robustness, easy maintenance and ease of 

transfections. However, as a model system for hematopoietic cells, where BCAP is 

predominantly found, HEK293 cells have important limitations. Specifically, the absence of 

potential interaction partners and the differences in BCAP phosphorylation have to be taken 

into account. 

For the characterisation of BCAP interactions with TIR domain-containing adaptor proteins 

such as MAL and MyD88, HEK293T cells are commonly used as a model system since they 

contain an intact NF-κB signalling pathway. Therefore, overexpression of TLRs or the adaptors 

MAL, MyD88 and TRIF is sufficient to generate inflammatory signalling (Medzhitov, Preston-

Hurlburt et al. 1998, Fitzgerald, Palsson-McDermott et al. 2001, Yamamoto, Sato et al. 2002). 

This makes HEK293T cells a suitable model system for studying the mechanism of TLR 

signalling including the TIR signalosome. 

During the study of the wider BCAP interactome, the use of HEK293-derived cells is more 

limiting since their protein expression pattern is not representative for that of hematopoietic 

cells. For example, important tyrosine kinases like BTK, and to a lesser extent SYK and LYN, 

as well as known BCAP interaction partners like PLC-𝛾2 are not expressed in HEK293T cells. 

It can therefore not be assumed that the BCAP hyperphosphorylation pattern found in HEK 

cells is identical to that in macrophages or B cells. Since the virotrap technique is currently 

restricted to the use of HEK293T cells, the resulting findings can only be a subset of the BCAP 

interactome found in immune cells. Moreover, in order to make definitive statements about the 

role and mechanism of novel BCAP interaction partners such as GRB2, it is important to 

validate these interactions in HEK293 cells as well as macrophages and B cells as attempted in 

section 3.3.6. 

4.5 Future directions 

4.5.1 The role of BCAP in the TLR signalosome 

The functional data set out in this thesis provides a novel model for the regulation of TLR 

signalling. However, the mechanism for BCAPTIR domain interactions with MAL and MyD88 

could not be determined. Further biophysical and structural studies are required to characterise 

the incorporation of BCAPTIR domains into MAL and MyD88 filaments, and to unravel the 
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mechanism of steric inhibition. As described by Ve et alia, Cryo-EM and turbidity assays are 

powerful tools to characterise filament formation (Ve, Vajjhala et al. 2017). These tools could 

be relied upon when characterising these outstanding mechanisms. 

Structural characterisation of the DBB domain revealed a strong conservation between TIGTF 

domains and the BCAP DBB domain. A subsequent functional conservation could not be 

completely ruled out, and future investigation into the functional similarities between these two 

domains should include in vitro sequence-unspecific DNA binding assays that can definitively 

test the hypothesis of functional conservation. 

4.5.2 Cryo-EM of BCAP and downstream protein complexes 

This thesis sheds light on the function of the DBB domain, and the role of dimerisation in 

negative regulation of TLR signalling. DBB domain dimerisation likely induces conformational 

restraints on the relative orientation of BCAPTIR domains, resulting in disruption of MAL and 

MyD88 filaments. However, results in this study provide no structural data that could inform a 

precise mechanism for the model of indirect TIR domain dimerisation. 

Efforts to crystallise dimeric BCAP constructs containing the TIR domain were not successful. 

BCAP remains a challenging target for further crystallisation studies due to its unstructured 

region and TIR domains that may adopt various conformations due to the long DBB linker 

region. 

With recent advancements in cryo-EM (Cheng 2015), it is now conceivable to obtain a 

structural model of full-length BCAP including the C-terminal unstructured region. Such a 

model may capture several TIR domain conformations that could provide clues in search of a 

structural model for TIR signalosome regulation. Moreover, a cryo-EM model of BCAP would 

also provide a structure of the ANK domain and coiled-coil region, possibly revealing 

functional characteristics of these domains. 

Since small proteins are more difficult targets for cryo-EM structure determination, it is not 

obvious that BCAP would be a suitable target from which an atomic model could be derived. 

The unstructured C-terminal region might not adopt a stable conformation, which would de 

facto reduce the protein region suitable for model building to an equivalent molecular weight 

of less than 150 kDa for a dimer. However, even a cryo-EM map with a resolution unsuitable 

for de novo model building could still provide valuable information as 3D structures are now 

available for the TIR, DBB and ANK domains of BCAP. 
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In order to determine whether dimeric full-length BCAP is a suitable target for future cryo-EM 

studies, preliminary data was collected using purified BCAP from Expi293F cells (Figure 48). 

While the quality of these images is not sufficient to obtain high quality 2D class averages 

required for a 3D model, these images demonstrate that BCAP can be imaged using cryo-EM. 

A thorough optimisation of buffer conditions and subsequent freezing in combination with 

high-end 300 kV cryo-EM equipment will likely lead to a model in which the existing domain 

structures can be fitted. 

 
Figure 48. Preliminary cryo-EM images provide a proof of principle for future structural studies. 

Purified BCAPL from Expi293F spotted onto graphene oxide grids at a concentration of 0.1 mg/ml before flash freezing in 

liquid ethane. Images were collected on a 150 kV JEM 1400+ (JEOL) cryo-EM. Samples preparation and data collection were 

conducted in collaboration with Sander Van der Verren (VIB/VUB Brussels, Belgium). Arrows highlight individual BCAP 

dimers. Scale bar corresponds to 80 nm. 

Larger BCAP-PI3K and BCAP-PLC-𝛾2 complexes would be equally attractive targets for 

future cryo-EM studies, due to the medical relevance of these enzymes and the progress made 

in this thesis. Improvement in the production of phosphorylated BCAPL and structural models 

for the DBB and ANK domains make PI3K and PLC-𝛾2 complexes feasible targets. BCAP is 

increasingly being linked to signalling pathways outside of BCR and TLR signalling, making 

it an ever more important immune adaptor and a crucial regulator of enzymes like PI3K and 

PLC-𝛾2. Structures of these BCAP complexes would provide valuable insights into the precise 

regulation and activation of these enzymes. 
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Existing structures of PI3K again provide a reference for model building of these complexes 

(Huang, Mandelker et al. 2007). Preliminary results suggest that p85 can be successfully 

expressed in E. Coli as N-terminal GST fusion protein (data not shown). Moreover, full-length 

PI3K and PLC-𝛾2 are commercially available in quantities suitable for cryo-EM. 

Structural studies of these complexes could be complemented with functional activity assays of 

PI3K and PLC-𝛾2 (Aksoy, Taboubi et al. 2012) in the presence of BCAP, to test the model of 

sequential SH domain binding proposed in this thesis. In particular, comparing the effect of 

phosphorylated and dephosphorylated BCAP on enzyme activity would be a possible avenue 

to verify the order and importance of SH2 and SH3 domain interactions. 

4.5.3 Further characterisation of the BCAP interactome and phosphorylation. 

The virotrap experiment conducted in this thesis marks an important step towards further 

characterisation of the BCAP interactome. However, as it was not possible to identify the 

physiological context in which the BCAP interactions with GRB2 and CRKL take place, further 

experiments are required to determine the precise signalling pathways and cellular context of 

these interactions. BCAP has recently been linked to IFN-⍺ production and inflammasome 

activation through numerous previously unrelated adaptor proteins (Carpentier, Ni et al. 2019, 

Chu, Ni et al. 2019), suggesting that BCAP is a more versatile adaptor protein than previously 

conceived. In this context, the other hits from the virotrap screen that were not further validated 

in this thesis, including ANXA6 and PLSCR1, may turn out to be important links between 

seemingly unrelated pathways. 

The initial characterisation of BCAP phosphorylation in this thesis is a starting point for further 

analysis of this important PTM. A combination of inhibitors and phosphopeptide mapping 

could help reveal precise phosphorylated tyrosine motifs and the role of serine phosphorylation 

in the context of BCR, TCR or TLR stimulation. Given the incomplete phosphopeptide 

mapping in this thesis, more specialised tools and protocols like titanium dioxide or antibody 

enrichment for delicate tyrosine phosphorylations should be considered. 
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5 Methods 

5.1 Cloning 

5.1.1 Primer oligonucleotides 

Forward and reverse primer oligonucleotides for ligation-independent cloning (LIC) and 

restriction enzyme (RE) cloning were designed using the Crystallisation Construct Designer 2 

tool (Mooij, Mitsiki et al. 2009). Unless stated otherwise, primers used have a melting 

temperature of 65 °C. Primers were ordered from Sigma-Aldrich, and were purified by de-

salting. Primers larger than 100 bp were purified using HPLC. Table 4 provides an overview of 

the primers used in this project. 

Table 4. List of Primers used for cloning. 

 

5.1.2 PCR for LIC and RE cloning 

Gene amplification from plasmid DNA was performed using Vent DNA polymerase (NEB). 

PCR reactions contained the following reagents in a total volume of 50 µl: 100 ng template 

plasmid DNA, 0.5 μM forward and reverse primers, 200 μM dNTPs, 6 mM MgSO4, 5% (v/v) 
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DMSO, 10X thermoPol reaction buffer (NEB) and 2 U Vent DNA polymerase (NEB). The 

thermocycler protocol is shown in Table 5. After PCR amplification, the PCR fragment was 

purified on agarose gel. These 1% agarose gels were cast with TEA buffer (40 mM TRIS, 

20 mM acetic acid, 1 mM EDTA pH 8.3) and SYBR Safe DNA Gel Stain (Thermo Fisher 

Scientific), and subsequently run in TAE buffer at 100 V for 1 h. PCR products were extracted 

from the agarose gel using the QIAquick Extraction Kit (Qiagen). 

Table 5. Thermocycler protocol for LIC and RE cloning. 

 

5.1.3 Site-directed mutagenesis PCR 

In order to substitute individual amino acids or to delete a region from a plasmid vector, the 

Quikchange II protocol (Agilent) was followed. Primers were designed using the Quikchange 

Primer Design tool (Agilent) and contained the appropriate overlap for base changes or 

deletions. A total reaction volume of 50 µl contained 10 ng template plasmid DNA, 125 ng 

forward and reverse primers, 100 μM dNTPs, 10X PfuUltra reaction buffer (Agilent) and 2.5 U 

PfuUltra HF DNA polymerase (Agilent). The thermocycler protocol used is shown in Table 6. 

Table 6. Thermocycler protocol for site-directed mutagenesis. 

 

5.1.4 Colony PCR 

In order to confirm the presence of desired inserts in a newly cloned plasmid, a DreamTaq 

(Thermo Fisher Scientific) colony PCR protocol was used. Each PCR reaction comprised the 

following reagents in a total volume of 25 µl: material from a bacterial colony, 2X DreamTaq 

DNA Polymerase PCR Master Mix (Thermo Fisher Scientific) containing 1.25 U DreamTaq 

DNA Polymerase and 1 μM forward and reverse primers used in the cloning of the plasmid. 

The thermocycler protocol is shown in Table 7. PCR fragments were visualised on a 1% agarose 

gel. 

98 °C 30 s

98 °C 30 s

65 °C 30 s   30 x

72 °C 1 min / kb

72 °C 5 min

95 °C 30 s

95 °C 30 s

55 °C 1 min   16 x

68 °C 1 min / kb
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Table 7. Thermocycler protocol for colony PCR. 

 

Ligation-independent cloning (LIC) 

LIC compatible pMCSG7, pMCSG9 and pMCSG10 vectors were used for protein expression 

in E. coli. These vector contain a N-terminal His-TEVcs and His-GST-TEVcs tags, respectively. 

The vectors were linearised by SspI (NEB) digestion according to the manufacturer’s 

recommendation. The linearised vectors, and PCR fragments containing ‘LIC overhang 

sequences’ (Eschenfeldt, Lucy et al. 2009), were digested with T4 DNA polymerase to generate 

LIC overhangs. For each DNA sequence, a 50 µl digest contained 250 ng linearised vector or 

PCR fragment, 10X NEB buffer 2 (NEB), 2.5 mM dGTP (vector) or dCTP (PCR fragment), 

5 mM DTT and 1 U/μl of T4 DNA polymerase (NEB). The reaction mixture was incubated at 

room temperature for 30 min followed by heat inactivation at 75 °C for 20 min. For a typical 

LIC ligation, 2 µl treated vector and PCR fragment were mixed and incubated at room 

temperature for 20 min prior to transformation into E. coli cells as described in section 5.1.6. 

5.1.5 Restriction enzyme cloning 

Constructs used for overexpression in mammalian cells were cloned using restriction enzymes. 

Primers were designed to overlap with a specific region of the gene of interest and to contain a 

restriction site that is compatible with the target plasmid. Depending on the use of the construct, 

various N-terminal and C-terminal epitope tags were included in the primer sequences (Table 

4). 

Vector and PCR fragment were purified on a 1% agarose gel as describe in section 5.1.2, after 

which they were digested with the appropriate restriction enzymes in a double digest. A typical 

20 µl reaction contained 1 µg fragment of vector DNA, 10X CutSmart buffer (NEB) and 10 U 

of each restriction enzyme (NEB). Following another agarose gel purification and gel extraction 

step, the PCR fragment and vector were ligated using T4 DNA ligase (NEB) and transformed 

into E. coli cells as described in section 5.1.6. 

95 °C 30 s

95 °C 30 s

65 °C 30 s   30 x

72 °C 1 min / kb

72 °C 10 min
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5.1.6 Transformation of bacterial cells 

To transform plasmid DNA into bacterial cells, 100 ng plasmid DNA was incubated with 50 μl 

chemically competent DH5⍺ or Rosetta2(DE3) cells on ice for 5 min. The cells were 

subsequently subjected to a heat shock treatment at 42 °C for 60 s, followed by incubation on 

ice for 5 min. The cells were then supplemented with 350 μl SOC medium for recovery and 

incubated at 37 °C for 1 h with shaking. After recovery in SOC medium, transformed cells were 

spread onto agar plates (containing a combination of antibiotics at a final concentration of 100 

mg/ml ampicillin, 350 mg/ml chloramphenicol, 50 mg/ml kanamycin or 50 μg/ml 

spectinomycin) for selection and incubated overnight at 37 °C. 

For sequencing and plasmid DNA amplification, transformed bacterial cells were grown in 5 ml 

LB overnight at 37 °C. Cell were then harvested and plasmid DNA was extracted using the 

QIAprep Spin Miniprep Kit (Qiagen). For protein expression, a 5 ml culture was used to 

inoculate 1 l of main culture as described in section 5.3.1. 

5.2 Cell biology techniques 

5.2.1 Cells and routine cell culture 

Mammalian cell tissue culture handling was conducted in a containment level 1 laboratory in a 

sterile tissue culture flow hood, with appropriate measures to ensure sterile conditions. 

Human embryonic kidney 293 (HEK293) and HEK293 cell containing the viral SV40 

T-antigen (HEK293T) were used for co-immunoprecipitation and NF-κB luciferase assays. The 

cell lines were obtained from the American Type Culture Collection (ATCC, USA), and were 

maintained in high-glucose Dulbecco’s modified Eagle’s medium (DMEM) (Sigma-Aldrich) 

supplemented with 2 mM glutamine, 100 U/ml penicillin, 100 μg/mL streptomycin and 10% 

(v/v) heat-inactivated foetal calf serum (FCS) at 37 °C with 5% CO2. Passaging took place 

around 80-90% confluency, and cells were diluted no further than 4x104 cells/ml before seeding 

in a new flask. 

Expi293F suspension cells were made available by AstraZeneca (Cambridge, UK), for the 

purpose of BCAPL protein expression. Cells were maintained in vented 850 cm2 roller bottles 

with Expi293 Medium (Gibco) at 140 rpm, 37 °C and 8% CO2. In order to facilitate aeration, 

the culture volume in roller bottles did not exceed 1/3 of the total volume. Passaging took place 

every second day, and cells were seeded at a density of 5x105 cells/ml. 



 

 

87 

THP-1 cells were obtained from Iain Fraser (National Institute for Allergy and Infectious 

Diseases, USA). Cells were maintained in RPMI 1640 medium (Invitrogen) supplemented with 

10% FCS, L-glutamine, 100 U/ml penicillin and 100 mg/ml streptomycin at 37 °C and 5% CO2. 

Cells were passaged every second day and diluted to 2x105 cells/ml. Monocytic THP-1 cells 

were differentiated into macrophages using 10 ng/ml phorbol 12-myristate 13-acetate (PMA) 

(Sigma-Aldrich) for 12 h followed by 24 h in normal culturing conditions. 

Ramos B cells were obtained from the American Type Culture Collection (ATCC) and cultured 

in RPMI medium (Invitrogen) supplemented with 10% FCS, L-glutamine, 100 U/ml penicillin 

and 100 mg/ml streptomycin at 37 °C and 5% CO2. Cells were passaged every second day and 

diluted to 2x105 cells/ml. 

5.2.2 Co-immunoprecipitation of endogenous proteins 

Ten million differentiated THP-1 macrophages or Ramos B cells were resuspended in HEPES 

lysis buffer (50 mM HEPES 150 mM NaCl, 2 mM EDTA, 10% glycerol, 0.5% NP-40 pH 7.5) 

supplemented with 5 mM sodium orthovanadate, 50 mM sodium fluoride, 60 mM 

β-glycerophosphate and 100X protease inhibitor cocktail (Calbiochem). In this buffer, the cells 

were lysed at 4 °C for 30 min while rotating. The lysate was subsequently cleared by 

centrifugation at 16000 × g for 10 min at 4 °C. 

The lysate supernatant was pre-cleared with 20 µl protein A/G agarose beads (Santa Cruz 

Biotech) equilibrated in HEPES lysis buffer and incubated at 4 °C for 2 h while rotating. Then, 

1-2 mg primary antibody was added to the lysates for overnight incubation at 4 °C. The next 

day, 25 µl protein A/G agarose beads equilibrated in HEPES lysis buffer, were added to the 

sample and incubated at 4 °C for 3 h while rotating. Samples were washed three times with 

1 ml HEPES lysis buffer before boiling in the presence of 4X SDS-loading buffer. The samples 

were loaded onto SDS-PAGE for western blot analysis. 

5.2.3 Co-immunoprecipitation of overexpressed proteins 

HEK293T cells were seeded into 6-well plates at a density of 2x105 per well. At 70-80% 

confluency 3 µg plasmid DNA was transiently transfected into each well with JetPEI (Polyplus 

Transfection SA) according to the manufacturer’s recommendation. At 24 h post-transfection, 

cells were washed with PBS and lysed with 300 µl of HEPES lysis buffer (50 mM HEPES, 150 

mM NaCl, 2 mM EDTA, 10% glycerol, 0.5% NP-40 pH 7.5), supplemented with 50 mM NaF, 

5 mM orthovanadate, 60 mM β-glycerophoaphate and 100X protease inhibitor cocktail 
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(Calbiochem). Cells were lysed at 4 °C for 30 min while rotating, and the lysate was 

subsequently cleared by centrifugation at 16000 × g for 10 min at 4 °C. 

Immunoprecipitation of overexpressed FLAG-tagged proteins was conducted by the addition 

of 10 µl EZview Red FLAG M2 beads (Sigma-Aldrich), equilibrated in HEPES lysis buffer. 

Samples were then incubated at 4 °C for 2 h while rotating. After three washes with 1 ml HEPES 

lysis buffer, samples were boiled in the presence of 4X SDS-loading buffer and loaded onto 

SDS-PAGE for western blot analysis. 

5.2.4 NF-κB reporter assay 

HEK293T cells were seeded into a 96-well plate at 1.5x104 cells per well. At a confluency of 

80%, JetPEI (Polyplus Transfection SA) was used to transiently transfect cells with the NF-κB 

reporter vector pBIIX-luc, pCMV-Renilla-luc, Myc-MAL, Myc-MyD88 and various BCAP 

constructs, totalling 100 ng DNA per well. At 24 h post-transfection, cells were lysed in 50 μl 

passive lysis buffer (Promega). The lysates were assayed for luciferase activity using the Dual-

Glo luciferase kit (Promega) on a PHERAstar FS (BMG Labtech) plate reader with the kind 

help of Michael Scherm. Luciferase activity is represented as firefly luciferase signal relative 

to Renilla luciferase signal and normalised to cells transfected with empty vectors. 

5.2.5 Fluorescence microscopy 

THP-1 monocytes were seeded onto Falcon CultureSlides (Corning) and differentiated into 

macrophages as described in section 5.2.1. After 24 h, THP-1 macrophages were stimulated 

with 100 ng/ml LPS for 30 min and subsequently washed with PBS. Ramos B cells were 

stimulated with α-IgM for 10 min, pelleted by centrifugation at 1500 × g for 5 min and 

resuspended in PBS. 

Immunostaining of THP-1 macrophages took place on the coverslips, whereas the Ramos cell 

were stained in suspension and spun down before applying subsequent buffer solutions. 

Immunostaining of both cell types was carried out at room temperature. Cells were fixed using 

3.7% paraformaldehyde in PBS for 15 min, after which the cells were permeabilised with 0.1% 

triton x-100 in PBS for 5 min. After washing with PBS, cells were blocked in 0.25% (w/v) BSA 

in PBS for 30 min. Cell were immunostained with polyclonal α-BCAP antibody (diluted 1/200 

in 2.5% (w/v) BSA in PBS) for 1 h. After washing twice with PBS, cells were incubated with 

Alexa Fluor-conjugated secondary antibody (diluted 1/2000 in 0.25% (w/v) BSA in PBS) for 1 

h. After a final wash with PBS, 15 μl of DAPI-containing mounting medium (Vector Shield, 

H-1200) was applied to the cells before the coverslip with THP-1 cells was inversely mounted 
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onto a glass SuperFrost Plus glass slide (VWR International). Ramos B cells were resuspended 

in mounting medium and equally applied to a glass slide and covered with a coverslip. Glass 

slides were sealed with nail varnish and samples were dried away from daylight before imaging 

with on an EVOS M5000 (Invitrogen) epifluorescence microscope. 

5.2.6 Western blotting 

Proteins separated by SDS-PAGE were transferred to Hybond-C Nitrocellulose membrane 

(GE Healthcare) using the Bolt Mini Blot Module (Life Technologies). Transfer was conducted 

in transfer buffer (25 mM Tris, 192 mM glycine, 20% v/v methanol) at 12 V for 90 min. The 

nitrocellulose membrane was then blocked in 5% (w/v) BSA in TBS supplemented with 0.05% 

tween 20 (TBST) for a minimum of 45 min at room temperature. Overnight, membranes were 

incubated with primary antibodies diluted in blocking buffer containing 2.5% (w/v) in BSA 

TBST at 4 °C. Before and after incubation with secondary antibody, membranes were washed 

three times with TBST for 5 min. Blots were incubated with horseradish peroxidase-conjugated 

secondary antibody diluted in 2.5% (w/v) BSA TBST for 1 h at room temperature. Primary and 

secondary antibodies were diluted according to the manufacturer’s recommendation. Protein 

bands were visualised using ECL reagent (GE Healthcare) and visualised on Hyperfilm ECL 

(GE Healthcare) using a mini-medical series developer (AFP Imaging). 

5.3 Protein expression 

5.3.1 Protein expression in E. coli 

Rosetta2(DE3) cells were transformed with a plasmid containing the protein of interest as 

described in section 5.1.6. Overnight, 5 ml precultures were grown in LB medium with 

appropriate antibiotics. These precultures were used to inoculate 1 l auto-induction medium as 

described by (Studier 2005). Inoculated main cultures were grown at 37 °C with shaking 

(140 rpm) for 4 h, after which the temperature was reduced to 20 °C for protein expression 

overnight. 

For selenomethionine incorporation during protein expression, precultures were grown 

overnight in LB medium, spun down and resuspended in M9 minimal medium. Precultures 

were then each used to inoculate 1 l of M9 minimal medium supplemented with 0.05 g 

selenomethionine (Sigma-Aldrich), 0.1 g lysine (Sigma-Aldrich), 0.1 g threonine (Sigma-

Aldrich), 0.1 g phenylalanine (Sigma-Aldrich), 0.05 g leucine (Sigma-Aldrich), 0.05 g 

isoleucine (Sigma-Aldrich) and 0.05 g valine (Sigma-Aldrich). Main cultures were grown at 
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37 °C with shaking (140 rpm). At and OD600 0.6-0.7, cultures were induced with 1 mM IPTG 

and the temperature was reduced to 20 °C for protein expression overnight. 

5.3.2 Protein expression in mammalian cells 

A total volume of 225 ml Expi293F cells was seeded at a density of 2x105 cells/ml. After 

reaching a density of 4.0x106 cells/ml the following day, cells were transiently transfected with 

His-Avi-TEVcs-BCAP. For each 225 ml culture bottle, 375 μg of plasmid DNA and 1.5 ml of 

1 mg/ml PEI (Polysciences) were separately diluted in 12.5 ml of Expi293 Medium (Gibco), 

and subsequently mixed for 15 min at room temperature before adding to the cell culture. At 

24 h post-transfection, fresh medium was added to increase the culture volume to 500 ml. Three 

days post-transfection, cells were harvested and pelleted as described in section 5.3.3. 

5.3.3 Cell pellet harvesting and lysis 

Bacterial and mammalian cell cultures were pelleted at 4000 rpm for 10 min at room 

temperature in a JLA8.100 rotor (Beckman Coulter). After discarding the supernatant, the 

resulting pellets were flash frozen in liquid nitrogen and stored at -80 °C. 

For cell lysis, pellets were resuspended in 30 ml GST lysis buffer (PBS supplemented with 

100X protease inhibitor cocktail (Calbiochem)) or nickel-NTA lysis buffer (50 mM TRIS, 

250 mM NaCl, 30 mM Imidazole, 1 mM TCEP pH 7.5, supplemented with 100X protease 

inhibitor cocktail (Calbiochem)), according to the purification strategy. Lysis was performed 

on ice using a Vibra-Cell VCX130 ultra-sonicator (Sonics & Materials Inc) with an amplitude 

of 60% for a total of 1-2 min using an appropriate pulse cycle to limit heat generation. The cell 

lysate was cleared by centrifugation at 20000 × g and 4 °C for 30 min. The supernatant was 

captured and filtered using a 0.2 μm syringe filter. 

5.4 Protein purification 

5.4.1 Nickel affinity purification 

Soluble His-tagged proteins extracted from bacterial or mammalian cultures were cleared as 

described in section 5.3.3 and loaded onto a 1 ml Chelating HP column (GE Healthcare) 

equilibrated in nickel-NTA buffer (50 mM TRIS, 250 mM NaCl, 30 mM imidazole, 1 mM 

TCEP pH 7.5). During the purification of BCAPL expressed in mammalian cells, all buffers 

were supplemented with 50 mM NaF, 5 mM orthovanadate and 60 mM β-glycerophoaphate to 

inhibit endogenous phosphatases. The column was washed with 5 column volumes of nickel-

NTA washing buffer (50 mM TRIS, 1000 mM NaCl, 30 mM imidazole, 1 mM TCEP pH 7.5) 
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and subsequently eluted on an ÄKTA FPLC system (GE Healthcare). Elution was performed 

with a linear gradient of 20 column volumes from nickel-NTA binding buffer to nickel-NTA 

elution buffer (50 mM TRIS, 250 mM NaCl, 500 mM imidazole, 1 mM TCEP pH 7.5). 

For TEV protease cleavage, the eluted His-tagged protein fractions were pooled and the volume 

was doubled using SEC buffer (20 mM TRIS, 100 mM NaCl, 1 mM TCEP pH 7.5) to reduce 

the imidazole concentration. Depending on the protein concentration, 1-5 μg of purified TEV 

protease was added to the His-tagged protein and incubated at 4 °C for 3 h. After TEV cleavage, 

the protease digest was cleared using a 0.2 μm syringe filter and the sample was loaded onto a 

5 ml Chelating HP column (GE Healthcare) equilibrated in SEC buffer (20 mM TRIS, 100 mM 

NaCl, 1 mM TCEP pH 7.5). The flowthrough was collected for subsequent size exclusion 

chromatography. 

5.4.2 GST affinity purification 

Soluble GST fusion proteins were extracted from bacterial cells and cleared as described in 

section 5.3.3, before loading onto 2ml of Glutathione Sepharose 4B (GE Healthcare) 

equilibrated in PBS. The resin was washed using 10 column volumes of PBS and thereafter 

eluted using GST elution buffer (50 mM TRIS, 10 mM glutathione, 1 mM TCEP pH 8.0). 

Where required, TEV protease cleavage was performed as described in section 5.4.1. After 

elution from the Glutathione Sepharose 4B or TEV protease cleavage, protein samples were 

pooled for size exclusion chromatography. 

5.4.3 Anion exchange chromatography 

Samples were concentrated using a Vivaspin concentrator (Sartorius) to reduce the volume for 

subsequent ten-fold dilution in anion exchange loading buffer (50 mM TRIS, 20 mM NaCl, 

2 mM DTT pH 8.0). The diluted sample was then loaded onto a 1 ml Q HP column (GE 

Healthcare) equilibrated in anion exchange loading buffer, followed by a 10 column volumes 

wash with anion exchange loading buffer. The protein was eluted on an ÄKTA FPLC system 

(GE Healthcare) using a 20 column volumes linear gradient of anion exchange elution buffer 

(50 mM TRIS, 1000 mM NaCl, 2 mM DTT pH 8.0). 

5.4.4 Size exclusion chromatography 

Pooled fractions from previous purification steps were concentrated using appropriate Vivaspin 

concentrators (Sartorius) to reduce the volume to less than 3% of the size exclusion column 

volume. The samples were subsequently cleared by centrifugation at 16000 × g for 10 min at 4 

°C. Unless stated otherwise, samples were loaded onto a HiLoad 16/600 Superdex 200 prep 
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grade (GE Healthcare) equilibrated with SEC buffer (20 mM TRIS, 100 mM NaCl, 1 mM TCEP 

pH 7.5). For BCAPL, the SEC buffer was supplemented with 5% glycerol. The gel filtration 

was performed using an ÄKTA FPLC system (GE Healthcare) at 1 ml/min. Relevant elution 

fractions were analysed on SDS-PAGE. 

5.5 Protein biochemical analysis 

5.5.1 SDS-PAGE 

Proteins were analysed by 8-15% SDS-PAGE polyacrylamide gels (Table 8). Protein samples 

for SDS-PAGE were denatured in 4X SDS-loading buffer (10% (w/v) SDS, 20% (v/v) glycerol, 

200 mM TRIS, 0.05% (w/v) bromophenol blue, 700 mM β-mercapto-ethanol pH 6.8) and 

boiled for 5 min prior to loading. Electrophoresis was performed at 200 V for 1 h in running 

buffer (25 mM Tris, 192 mM Glycine, 0.1% (w/v) SDS pH 8.3). Gels were stained using Instant 

Blue Coomassie (Expedeon) where no western blot analysis was conducted. 

Table 8. Materials to cast SDS-PAGE gels. 

 

5.5.2 Native-PAGE 

For native-PAGE, 6% acrylamide gels were cast using TRIS CAPS running buffer (30 mM 

TRIS, 10 mM CAPS pH 9.4). Samples were mixed with 5X native-PAGE sample buffer 

(30 mM TRIS, 10 mM CAPS, 50% glycerol, 0.01% bromophenol blue pH 9.4) before loading. 

Gels were run in TRIS CAPS running buffer at 100 V for 2 h. 

5.5.3 Lysine methylation 

Proteins for lysine methylation were dialysed in HEPES buffer (20 mM HEPES, 100 mM NaCl, 

1 mM TCEP pH 7.5) overnight to avoid the presence of free TRIS buffer amines. At a protein 

concentration of 1 mg/ml, 20 μl of 1M Borane dimethylamine complex and 40 μl of 1M 

formaldehyde were added per ml of protein solution. After 2 h incubation at 4 °C, another 10 μl 

of 1 M Borane dimethylamine complex was added for each ml of protein solution and incubated 

overnight at 4 °C. The methylation was terminated by buffer exchange via gel filtration on a 

Reagent (per gel) 8-15% Resolving gel Stacking gel 

40 % Acrylamide 1 - 1.9 ml 250 μl 

MilliQ water 1.75 - 2.65 ml 1.45 ml 

1.0 M Tris-HCl, pH 6.8 - 250 μl

1.5 M Tris-HCl, pH 8.8 1.25 ml -

10% SDS 50 μl 20 μl 

10% Ammonium persulfate 50 μl 20 μl 

TEMED 2μl 2μl 
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HiLoad 16/600 Superdex 200 prep grade (GE Healthcare) equilibrated with SEC buffer (20 

mM TRIS, 100 mM NaCl, 1 mM TCEP pH 7.5). 

5.5.4 GST pull-down assay 

GST-tagged proteins were expressed in E. coli and purified as described in section 5.3.1 and 

section 5.4. For each pull-down 100 µl of Glutathione Sepharose 4B (GE Healthcare) was 

equilibrated in PBS. A total of 100 µg purified GST-GRB2, GST-CRKL, GST-GRB2-SH2, 

GS-p85-N-SH2, GST-p85-C-SH2, GST-p85-SH3, GST-PLC-𝛾2-SH2-1 and GST-

PLC-𝛾2-SH3 were loaded onto the GST resin. After washing the columns with 300 µl PBS, 50 

µg BCAPL and dephosphorylated BCAPL were applied to the columns and again washed with 

300 µl PBS. This was followed by three further wash steps using 500 µl PBS. The samples 

were eluted from the GST resin with 100 µl GST elution buffer (50 mM TRIS, 10 mM 

glutathione, 1 mM TCEP pH 8.0), after which the samples were analysed by SDS-PAGE. 

5.5.5 In vitro kinase assay 

For in vitro kinase assays, 2 µg dephosphorylated BCAPL or 100 µg dephosphorylated myelin 

basic protein (Active Motif) was diluted in 500 µl kinase buffer (50 mM HEPES, 10 mM 

MgCl2, 0.01% BRIJ35, 1 mM EGTA, 150 µM ATP pH 7.5). After adding 60 pmol SYK 

(Thermo Fisher Scientific), LYN (Thermo Fisher Scientific), BTK (Thermo Fisher Scientific), 

TYK2 (Thermo Fisher Scientific), ITK (Thermo Fisher Scientific), CSNK1A1 (Thermo Fisher 

Scientific) or CSNK2A1 (Thermo Fisher Scientific), the samples were incubated at 30 °C for 

30 min. The reaction was stopped using SDS-loading buffer and samples were analysed on 

western blot. 

5.5.6 Filament formation assay 

The MALTIR domain was expressed and purified as described in section 5.3.1 and 5.3, 

respectively. Starting from a stock concentration of 10 µM, MAL and various BCAP constructs 

were mixed at a molar ration of 1:10. The protein mixture was then incubated at 30 °C for 1 h 

to induce filament formation of the MALTIR domain. Soluble and insoluble fractions were 

separated by centrifugation at 16000 × g for 10 min, and subsequently analysed by SDS-PAGE. 

5.5.7 Virotrap interaction screen 

For the BCAP and eDHFR bait constructs, a T75 flask was seeded with 1x107 HEK293T cells. 

The next day, each flask was transiently transfected with 15 µg bait plasmid DNA using PEI 

(Polysciences). To ensure correct bait and VSV-G expression, 7.5 µg GAG-BCAP, 5.4 µg 

mock vector, and 2.1 µg of a 1/2 pMD2.G - pcDNA3-FLAG-VSV-G mix, were combined with 
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37.5 µg PEI for transfection. After 32 h, the cellular supernatant was harvested and cleared by 

centrifugation at 16000 × g for 10 min. The tagged VLPs were captured by adding a total of 

100 µl MyOne Streptavidin T1 beads (Thermo Fisher Scientific) pre-loaded with 10 µl anti-

FLAG BioM2-Biotin antibody (Sigma-Aldrich). After 2 h incubation, the bead-particle 

complexes were washed with virotrap washing buffer (20 mM Tris-HCl, 150 mM NaCl pH 7.5) 

and were eluted with 200 µg/ml FLAG peptide (Sigma-Aldrich) in virotrap washing buffer for 

30 min at 37 °C. VLPs were lysed by addition of SDS at a final concentration of 0.1%. After 5 

min, SDS was removed using HiPPR Detergent Removal Spin Columns (Thermo Fisher 

Scientific) followed by boiling and digestion with sequence-grade trypsin (Promega). After 

acidification through the addition of 1 µl of 10% trifluoroacetic acid, peptides were separated 

by nano-LC and directly analysed with a Q Exactive instrument (Thermo Scientific) operating 

in MS/MS mode as described before (Stes, Laga et al. 2014). Peptide MS Searches were 

performed using MaxQuant (Cox and Mann 2008) against human SWISSPROT database, 

which was complemented with the HIV-1, EGFP, VSV-G and FLAG-VSV-G protein 

sequences. FDR rates were obtained as described before (Eyckerman, Titeca et al. 2016). 

5.5.8 Peptide arrays binding assay 

PepSPOT array membranes (JPT) were briefly washed in methanol, followed a wash with TBS. 

Membranes were blocked with 5% (w/v) BSA in TBS buffer supplemented with 0.05% 

tween 20 (TBST) for 3 h at room temperature. After blocking, the membrane was incubated 

with 1-5 µg of recombinant SH2 domain protein in 5% (w/v) TBST at room temperature 

overnight. After a brief wash with TBST, the peptide array was blotted onto a PVDF membrane 

in a sequential semi-dry blotting process according to the manufacturer’s recommendation. 

PVDF membranes were then visualised by western blotting. 

Membranes were regenerated by three washing steps with regeneration buffer (62.5 mM TRIS, 

2% (w/v) SDS, 100 mM 2-mercaptoethanol pH 6.7) for 30 min at 50 °C. This was followed by 

three 20 min washes with 10X PBS, three 20 min washes with TBST and three 10 min washes 

with TBS after which the blotting and western blot analysis were repeated to confirm full 

regeneration of the peptide array. 
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5.6 Protein biophysical analysis 

5.6.1 Protein crystallisation 

Commercial crystallisation screens were set up using a Mosquito crystallisation robot (TTP 

Labtech). In a sitting drop format using 96-well 2-drop MRC plates (Swissci), each well 

contained 200 nl protein solution and 100 or 200 nl of the crystallisation condition. Plates were 

stored at 19 °C in a Rock Imager (Formulatrix) for daily imaging and on demand UV 

absorbance imaging. Table 9 provides an overview of the commercial crystallisation screens 

used for various constructs. 

Table 9. Overview of commercial crystallisation screens. 

 

Manual crystallisation screens were performed in 24-well VXD plates (Hampton Research). 

Each well contained 500 µl of the crystallisation solution and two hanging drop crystallisation 

conditions. Each drop contained 1 µl protein solution and 1 or 2 µl of the respective 

crystallisation condition. Drops were inspected daily. 

For x-ray diffraction, protein crystals were fished using CryoLoops (Hampton Research) and 

briefly soaked in a droplet of cryoprotectant (crystallisation condition + 25% (v/v) glycerol, 

unless stated otherwise) before flash freezing in liquid nitrogen. 

5.6.2 Crystallographic data processing and structure determination 

Both the native and anomalous datasets were indexed and scaled using XDS (Kabsch 2010). 

Aimless (Evans 2011) was used to convert files into the mtz binary file format. Phases from the 

4 Å SAD dataset were used by the Phaser SAD pipeline (McCoy, Grosse-Kunstleve et al. 2007) 
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to generate initial phases for the 3 Å native dataset. The initial automated model building was 

followed up by extensive manual modelling in Coot (Emsley, Lohkamp et al. 2010), with 

iterative refinement in Phenix.refine (Afonine, Grosse-Kunstleve et al. 2012). 

Structural protein alignments between TIGBCAP and TFs were performed using secondary-

structure matching (SSM) (Krissinel and Henrick 2004). 

5.6.3 SEC-MALS 

At a concentration of 2 mg/ml, samples were injected onto a Superdex 200 Increase 10/300 GL 

column (GE Healthcare) equilibrated in SEC buffer (20 mM TRIS, 100 mM NaCl, 1 mM TCEP 

pH 7.5). At a constant flow rate of 0.5 ml/min, the gel filtration was in-line with a DAWN8+ 

(Wyatt technology) and an Optilab T-rEX (Wyatt technology) equipped with a multi-angle 

static light scattering (MALS) detector and refractometer, respectively. Data analysis was 

performed using ASTRA (V6.1) (Wyatt technology), using a refractive index increment value 

(dn/dc) of 0.185 ml/g. Protein concentrations and molecular mass determination was performed 

relative to a known 2 ml/ml BSA solution standard (Thermo Fisher Scientific). 

5.6.4 Mass spectrometry 

For mass fingerprinting, samples were run on SDS-PAGE and stained with Instant Blue 

Coomassie (Expedeon). Protein bands were then cut out and stored in a 5% methanol solution 

for further tryptic digest and MALDI-TOF mass fingerprinting at the CCPcore mass 

spectrometry facility (University of Cambridge, Department of Biochemistry). 

Purified BCAPL for phosphopeptide mapping and digestion with trypsin and Asp-N was 

similarly separated on SDS-PAGE and stored in a 5% methanol solution before protease 

digestion of the phosphorylated band. LC-MS/MS and data analysis were performed at the 

CCPcore mass spectrometry facility (University of Cambridge, Department of Biochemistry). 

BCAPL for protease digestion with Glu-C, trypsin and chymotrypsin was separated on SDS-

PAGE after which both the phosphorylated and dephosphorylated bands were excised from the 

gel and frozen at -20 °C. These samples were analysed by LC-MS/MS at the VIB Proteomics 

Core (VIB, Ghent). 

5.6.5 Cryo-electron microscopy 

BCAPL was expressed in EXPI293F cells and purified as described in sections 5.3.2 and 5.4, 

respectively. Purified BCAPL was buffer exchanged into SEC buffer (20 mM TRIS, 100 mM 

NaCl, 1 mM TCEP pH 7.5) and diluted to 0.1 mg/ml. Of this protein solution, 3 μl was blotted 
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onto graphene oxide-coated R2/1 QuantiFoil grids (Electron Microscopy Sciences) for manual 

back blotting and flash freezing in liquid ethane on a CP3 plunger (Gatan). Images were 

collected on a 150 kV JEM 1400+ (JEOL) cryo-EM. Cryo-EM sample preparation and imaging 

were performed in collaboration with Sander Van der Verren (VIB/VUB Brussels, Belgium). 

5.7 Plasmids and antibodies 

The following plasmids used for cloning and protein overexpression were generated outside 

our laboratory. pGEX-2T CRKL was a gift from Nora Heisterkamp (Childrens Hospital of Los 

Angles, USA). pGEX GRB2 SH2-SH3 was a gift from Bruce Mayer (University of Connecticut 

Health Center, USA). PLC-γ2-V5 was a kind gift from Marta Alarcón Riquelme (University of 

Granada, Spain). pMET7-GAG was obtained from, Sven Eyckerman (VIB, Belgium). tTLR4 

was a gift from Roman Jerala (University of Ljubljana, Slovenia). Myc-p85α was a gift from 

David Fruman (University of California, USA). 

Table 10. List of antibodies. 

 

  

Antibody Product Number Vendor

Anti-FLAG-tag F1804 Sigma-Aldrich

Anti-FLAG BioM2-Biotin  F9291 Sigma-Aldrich

Anti-Myc-tag 2276 Cell Signaling Technology

Anti-His-tag 552565 BD Bioscience

Anti-GST-tag MA4-004 Thermo Fisher Scientific

Anti-BCAP AF4857 R&D Systems

Anti-beta-actin ab8226 Abcam

Anti-phosphotyrosine ab179530 Abcam

Anti-phosphoserine ab9332 Abcam

Anti-IgM 109-006-129 Jackson ImmunoResearch

Anti-rabbit-HRP A0545 Sigma-Aldrich

Anti-goat-HRP A5720 Sigma-Aldrich

Anti-mouse-HRP IgG A9044 Sigma-Aldrich

Alexa Fluor-conjugated 

secondary antibody
ab150129 Abcam



 

 

98 

6 References 

Afonine, P. V., R. W. Grosse-Kunstleve, N. Echols, J. J. Headd, N. W. Moriarty, M. Mustyakimov, T. C. Terwilliger, A. 
Urzhumtsev, P. H. Zwart and P. D. Adams (2012). "Towards automated crystallographic structure refinement with 
phenix.refine." Acta Crystallogr D Biol Crystallogr 68(Pt 4): 352-367. 

Aiba, Y., M. Kameyama, T. Yamazaki, T. F. Tedder and T. Kurosaki (2008). "Regulation of B-cell development by BCAP and 
CD19 through their binding to phosphoinositide 3-kinase." Blood 111(3): 1497-1503. 

Aki, D., Y. Minoda, H. Yoshida, S. Watanabe, R. Yoshida, G. Takaesu, T. Chinen, T. Inaba, M. Hikida, T. Kurosaki, K. Saeki and 
A. Yoshimura (2008). "Peptidoglycan and lipopolysaccharide activate PLCgamma2, leading to enhanced cytokine production 
in macrophages and dendritic cells." Genes Cells 13(2): 199-208. 

Aksoy, E., S. Taboubi, D. Torres, S. Delbauve, A. Hachani, M. A. Whitehead, W. P. Pearce, I. M. Berenjeno, G. Nock, A. Filloux, 
R. Beyaert, V. Flamand and B. Vanhaesebroeck (2012). "The p110delta isoform of the kinase PI(3)K controls the subcellular 
compartmentalization of TLR4 signaling and protects from endotoxic shock." Nat Immunol 13(11): 1045-1054. 

Alaidarous, M., T. Ve, L. W. Casey, E. Valkov, D. J. Ericsson, M. O. Ullah, M. A. Schembri, A. Mansell, M. J. Sweet and B. Kobe 
(2014). "Mechanism of bacterial interference with TLR4 signaling by Brucella Toll/interleukin-1 receptor domain-containing 
protein TcpB." J Biol Chem 289(2): 654-668. 

Alexopoulou, L., A. C. Holt, R. Medzhitov and R. A. Flavell (2001). "Recognition of double-stranded RNA and activation of NF-
kappaB by Toll-like receptor 3." Nature 413(6857): 732-738. 

Alldridge, L. C. and C. E. Bryant (2003). "Annexin 1 regulates cell proliferation by disruption of cell morphology and inhibition 
of cyclin D1 expression through sustained activation of the ERK1/2 MAPK signal." Experimental Cell Research 290(1): 93-107. 

Andrejeva, J., K. S. Childs, D. F. Young, T. S. Carlos, N. Stock, S. Goodbourn and R. E. Randall (2004). "The V proteins of 
paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter." Proc Natl 
Acad Sci U S A 101(49): 17264-17269. 

Aravind, L. and E. V. Koonin (1999). "Gleaning non-trivial structural, functional and evolutionary information about proteins 
by iterative database searches." J Mol Biol 287(5): 1023-1040. 

Arbibe, L., J. P. Mira, N. Teusch, L. Kline, M. Guha, N. Mackman, P. J. Godowski, R. J. Ulevitch and U. G. Knaus (2000). "Toll-
like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway." Nat Immunol 1(6): 533-540. 

Avbelj, M., O. O. Wolz, O. Fekonja, M. Bencina, M. Repic, J. Mavri, J. Kruger, C. Scharfe, M. Delmiro Garcia, G. Panter, O. 
Kohlbacher, A. N. Weber and R. Jerala (2014). "Activation of lymphoma-associated MyD88 mutations via allostery-induced 
TIR-domain oligomerization." Blood 124(26): 3896-3904. 

Baba, Y. and T. Kurosaki (2011). "Impact of Ca2+ signaling on B cell function." Trends Immunol 32(12): 589-594. 

Bae, Y. S., H. Y. Lee, Y. S. Jung, M. Lee and P. G. Suh (2017). "Phospholipase Cgamma in Toll-like receptor-mediated 
inflammation and innate immunity." Adv Biol Regul 63: 92-97. 

Battersby, A., A. Csiszár, M. Leptin and R. Wilson (2003). "Isolation of Proteins that Interact with the Signal Transduction 
Molecule Dof and Identification of a Functional Domain Conserved between Dof and Vertebrate BCAP." Journal of Molecular 
Biology 329(3): 479-493. 

Bernal-Quiros, M., Y. Y. Wu, M. E. Alarcon-Riquelme and C. Castillejo-Lopez (2013). "BANK1 and BLK act through 
phospholipase C gamma 2 in B-cell signaling." PLoS One 8(3): e59842. 

Bernoux, M., T. Ve, S. Williams, C. Warren, D. Hatters, E. Valkov, X. Zhang, J. G. Ellis, B. Kobe and P. N. Dodds (2011). "Structural 
and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and 
autoregulation." Cell Host Microbe 9(3): 200-211. 

Bin, L. H., L. G. Xu and H. B. Shu (2003). "TIRP, a novel Toll/interleukin-1 receptor (TIR) domain-containing adapter protein 
involved in TIR signaling." J Biol Chem 278(27): 24526-24532. 



 

 

99 

Bissig, C. and J. Gruenberg (2013). "Lipid sorting and multivesicular endosome biogenesis." Cold Spring Harb Perspect Biol 
5(10): a016816. 

Bisson, N., D. A. James, G. Ivosev, S. A. Tate, R. Bonner, L. Taylor and T. Pawson (2011). "Selected reaction monitoring mass 
spectrometry reveals the dynamics of signaling through the GRB2 adaptor." Nat Biotechnol 29(7): 653-658. 

Bonham, K. S., M. H. Orzalli, K. Hayashi, A. I. Wolf, C. Glanemann, W. Weninger, A. Iwasaki, D. M. Knipe and J. C. Kagan (2014). 
"A promiscuous lipid-binding protein diversifies the subcellular sites of toll-like receptor signal transduction." Cell 156(4): 
705-716. 

Bovijn, C., A. S. Desmet, I. Uyttendaele, T. Van Acker, J. Tavernier and F. Peelman (2013). "Identification of binding sites for 
myeloid differentiation primary response gene 88 (MyD88) and Toll-like receptor 4 in MyD88 adapter-like (Mal)." J Biol Chem 
288(17): 12054-12066. 

Brehin, A. C., I. Casademont, M. P. Frenkiel, C. Julier, A. Sakuntabhai and P. Despres (2009). "The large form of human 2',5'-
Oligoadenylate Synthetase (OAS3) exerts antiviral effect against Chikungunya virus." Virology 384(1): 216-222. 

Brint, E. K., D. Xu, H. Liu, A. Dunne, A. N. McKenzie, L. A. O'Neill and F. Y. Liew (2004). "ST2 is an inhibitor of interleukin 1 
receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance." Nat Immunol 5(4): 373-379. 

Brown, J., H. Wang, J. Suttles, D. T. Graves and M. Martin (2011). "Mammalian target of rapamycin complex 2 (mTORC2) 
negatively regulates Toll-like receptor 4-mediated inflammatory response via FoxO1." J Biol Chem 286(52): 44295-44305. 

Buchan, D. W. A. and D. T. Jones (2019). "The PSIPRED Protein Analysis Workbench: 20 years on." Nucleic Acids Research. 

Burke, J. E., O. Vadas, A. Berndt, T. Finegan, O. Perisic and R. L. Williams (2011). "Dynamics of the phosphoinositide 3-kinase 
p110delta interaction with p85alpha and membranes reveals aspects of regulation distinct from p110alpha." Structure 19(8): 
1127-1137. 

Carlsson, E., J. L. Ding and B. Byrne (2016). "SARM modulates MyD88-mediated TLR activation through BB-loop dependent 
TIR-TIR interactions." Biochim Biophys Acta 1863(2): 244-253. 

Carpentier, S. J., M. Ni, J. M. Duggan, R. G. James, B. T. Cookson and J. A. Hamerman (2019). "The signaling adaptor BCAP 
inhibits NLRP3 and NLRC4 inflammasome activation in macrophages through interactions with Flightless-1." Sci Signal 
12(581). 

Carty, M., R. Goodbody, M. Schroder, J. Stack, P. N. Moynagh and A. G. Bowie (2006). "The human adaptor SARM negatively 
regulates adaptor protein TRIF-dependent Toll-like receptor signaling." Nat Immunol 7(10): 1074-1081. 

Castello, A., M. Gaya, J. Tucholski, T. Oellerich, K. H. Lu, A. Tafuri, T. Pawson, J. Wienands, M. Engelke and F. D. Batista (2013). 
"Nck-mediated recruitment of BCAP to the BCR regulates the PI(3)K-Akt pathway in B cells." Nat Immunol 14(9): 966-975. 

Catrysse, L., L. Vereecke, R. Beyaert and G. van Loo (2014). "A20 in inflammation and autoimmunity." Trends Immunol 35(1): 
22-31. 

Chan, S. L., T. Mukasa, E. Santelli, L. Y. Low and J. Pascual (2010). "The crystal structure of a TIR domain from Arabidopsis 
thaliana reveals a conserved helical region unique to plants." Protein Sci 19(1): 155-161. 

Chen, L., J. N. Glover, P. G. Hogan, A. Rao and S. C. Harrison (1998). "Structure of the DNA-binding domains from NFAT, Fos 
and Jun bound specifically to DNA." Nature 392(6671): 42-48. 

Cheng, Y. (2015). "Single-Particle Cryo-EM at Crystallographic Resolution." Cell 161(3): 450-457. 

Chiang, C. Y., V. Veckman, K. Limmer and M. David (2012). "Phospholipase Cgamma-2 and intracellular calcium are required 
for lipopolysaccharide-induced Toll-like receptor 4 (TLR4) endocytosis and interferon regulatory factor 3 (IRF3) activation." J 
Biol Chem 287(6): 3704-3709. 

Chu, T., M. Ni, C. Chen, S. Akilesh and J. A. Hamerman (2019). "Cutting Edge: BCAP Promotes Lupus-like Disease and TLR-
Mediated Type I IFN Induction in Plasmacytoid Dendritic Cells." J Immunol 202(9): 2529-2534. 



 

 

100 

Chuang, T. H. and R. J. Ulevitch (2004). "Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors." Nat Immunol 
5(5): 495-502. 

Couillault, C., N. Pujol, J. Reboul, L. Sabatier, J. F. Guichou, Y. Kohara and J. J. Ewbank (2004). "TLR-independent control of 
innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM." Nat 
Immunol 5(5): 488-494. 

Cox, J. and M. Mann (2008). "MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies 
and proteome-wide protein quantification." Nat Biotechnol 26(12): 1367-1372. 

De Matteis, M. A. and A. Godi (2004). "PI-loting membrane traffic." Nat Cell Biol 6(6): 487-492. 

Deason, K., T. D. Troutman, A. Jain, D. K. Challa, R. Mandraju, T. Brewer, E. S. Ward and C. Pasare (2018). "BCAP links IL-1R to 
the PI3K-mTOR pathway and regulates pathogenic Th17 cell differentiation." J Exp Med 215(9): 2413-2428. 

Dick, M. S., L. Sborgi, S. Ruhl, S. Hiller and P. Broz (2016). "ASC filament formation serves as a signal amplification mechanism 
for inflammasomes." Nat Commun 7: 11929. 

Diebold, S. S., T. Kaisho, H. Hemmi, S. Akira and C. Reis e Sousa (2004). "Innate antiviral responses by means of TLR7-mediated 
recognition of single-stranded RNA." Science 303(5663): 1529-1531. 

Dodds, P. N. and J. P. Rathjen (2010). "Plant immunity: towards an integrated view of plant-pathogen interactions." Nat Rev 
Genet 11(8): 539-548. 

Dong, B., Q. Zhou, J. Zhao, A. Zhou, R. N. Harty, S. Bose, A. Banerjee, R. Slee, J. Guenther, B. R. Williams, T. Wiedmer, P. J. Sims 
and R. H. Silverman (2004). "Phospholipid scramblase 1 potentiates the antiviral activity of interferon." J Virol 78(17): 8983-
8993. 

Duggan, J. M., M. B. Buechler, R. M. Olson, T. M. Hohl and J. A. Hamerman (2017). "BCAP inhibits proliferation and 
differentiation of myeloid progenitors in the steady state and during demand situations." Blood 129(11): 1503-1513. 

Dunne, A., M. Ejdeback, P. L. Ludidi, L. A. O'Neill and N. J. Gay (2003). "Structural complementarity of Toll/interleukin-1 
receptor domains in Toll-like receptors and the adaptors Mal and MyD88." J Biol Chem 278(42): 41443-41451. 

Eijkelenboom, A. and B. M. Burgering (2013). "FOXOs: signalling integrators for homeostasis maintenance." Nat Rev Mol Cell 
Biol 14(2): 83-97. 

Emsley, P., B. Lohkamp, W. G. Scott and K. Cowtan (2010). "Features and development of Coot." Acta Crystallogr D Biol 
Crystallogr 66(Pt 4): 486-501. 

Engelman, J. A., J. Luo and L. C. Cantley (2006). "The evolution of phosphatidylinositol 3-kinases as regulators of growth and 
metabolism." Nat Rev Genet 7(8): 606-619. 

Engels, N., L. M. Konig, C. Heemann, J. Lutz, T. Tsubata, S. Griep, V. Schrader and J. Wienands (2009). "Recruitment of the 
cytoplasmic adaptor Grb2 to surface IgG and IgE provides antigen receptor-intrinsic costimulation to class-switched B cells." 
Nat Immunol 10(9): 1018-1025. 

Enokizono, Y., H. Kumeta, K. Funami, M. Horiuchi, J. Sarmiento, K. Yamashita, D. M. Standley, M. Matsumoto, T. Seya and F. 
Inagaki (2013). "Structures and interface mapping of the TIR domain-containing adaptor molecules involved in interferon 
signaling." Proc Natl Acad Sci U S A 110(49): 19908-19913. 

Eschenfeldt, W. H., S. Lucy, C. S. Millard, A. Joachimiak and I. D. Mark (2009). "A family of LIC vectors for high-throughput 
cloning and purification of proteins." Methods Mol Biol 498: 105-115. 

Essen, L. O., O. Perisic, R. Cheung, M. Katan and R. L. Williams (1996). "Crystal structure of a mammalian phosphoinositide-
specific phospholipase C delta." Nature 380(6575): 595-602. 

Essuman, K., D. W. Summers, Y. Sasaki, X. Mao, A. DiAntonio and J. Milbrandt (2017). "The SARM1 Toll/Interleukin-1 Receptor 
Domain Possesses Intrinsic NAD(+) Cleavage Activity that Promotes Pathological Axonal Degeneration." Neuron 93(6): 1334-
1343 e1335. 



 

 

101 

Evans, P. R. (2011). "An introduction to data reduction: space-group determination, scaling and intensity statistics." Acta 
Crystallogr D Biol Crystallogr 67(Pt 4): 282-292. 

Eyckerman, S., K. Titeca, E. Van Quickelberghe, E. Cloots, A. Verhee, N. Samyn, L. De Ceuninck, E. Timmerman, D. De Sutter, 
S. Lievens, S. Van Calenbergh, K. Gevaert and J. Tavernier (2016). "Trapping mammalian protein complexes in viral particles." 
Nat Commun 7: 11416. 

Falasca, M., S. K. Logan, V. P. Lehto, G. Baccante, M. A. Lemmon and J. Schlessinger (1998). "Activation of phospholipase C 
gamma by PI 3-kinase-induced PH domain-mediated membrane targeting." EMBO J 17(2): 414-422. 

Fan, W., H. Morinaga, J. J. Kim, E. Bae, N. J. Spann, S. Heinz, C. K. Glass and J. M. Olefsky (2010). "FoxO1 regulates Tlr4 
inflammatory pathway signalling in macrophages." EMBO J 29(24): 4223-4236. 

Ferrao, R., H. Zhou, Y. Shan, Q. Liu, Q. Li, D. E. Shaw, X. Li and H. Wu (2014). "IRAK4 dimerization and trans-
autophosphorylation are induced by Myddosome assembly." Mol Cell 55(6): 891-903. 

Fitzgerald, K. A., E. M. Palsson-McDermott, A. G. Bowie, C. A. Jefferies, A. S. Mansell, G. Brady, E. Brint, A. Dunne, P. Gray, M. 
T. Harte, D. McMurray, D. E. Smith, J. E. Sims, T. A. Bird and L. A. O'Neill (2001). "Mal (MyD88-adapter-like) is required for 
Toll-like receptor-4 signal transduction." Nature 413(6851): 78-83. 

Fitzgerald, K. A., D. C. Rowe, B. J. Barnes, D. R. Caffrey, A. Visintin, E. Latz, B. Monks, P. M. Pitha and D. T. Golenbock (2003). 
"LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF." J Exp Med 198(7): 1043-1055. 

Fruman, D. A. (2010). "Regulatory subunits of class IA PI3K." Curr Top Microbiol Immunol 346: 225-244. 

Gay, N. J. and F. J. Keith (1991). "Drosophila Toll and IL-1 receptor." Nature 351(6325): 355-356. 

Gay, N. J., M. F. Symmons, M. Gangloff and C. E. Bryant (2014). "Assembly and localization of Toll-like receptor signalling 
complexes." Nat Rev Immunol 14(8): 546-558. 

Gentle, I. E., K. T. McHenry, A. Weber, A. Metz, O. Kretz, D. Porter and G. Hacker (2017). "TIR-domain-containing adapter-
inducing interferon-beta (TRIF) forms filamentous structures, whose pro-apoptotic signalling is terminated by autophagy." 
FEBS J 284(13): 1987-2003. 

Gerdts, J., E. J. Brace, Y. Sasaki, A. DiAntonio and J. Milbrandt (2015). "SARM1 activation triggers axon degeneration locally 
via NAD(+) destruction." Science 348(6233): 453-457. 

Gerdts, J., D. W. Summers, Y. Sasaki, A. DiAntonio and J. Milbrandt (2013). "Sarm1-mediated axon degeneration requires both 
SAM and TIR interactions." J Neurosci 33(33): 13569-13580. 

Gerke, V. and S. E. Moss (2002). "Annexins: from structure to function." Physiol Rev 82(2): 331-371. 

Gheysen, D., E. Jacobs, F. de Foresta, C. Thiriart, M. Francotte, D. Thines and M. De Wilde (1989). "Assembly and release of 
HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells." Cell 59(1): 103-112. 

Ghosh, G., G. van Duyne, S. Ghosh and P. B. Sigler (1995). "Structure of NF-kappa B p50 homodimer bound to a kappa B site." 
Nature 373(6512): 303-310. 

Girardin, S. E., R. Tournebize, M. Mavris, A. L. Page, X. Li, G. R. Stark, J. Bertin, P. S. DiStefano, M. Yaniv, P. J. Sansonetti and 
D. J. Philpott (2001). "CARD4/Nod1 mediates NF-kappaB and JNK activation by invasive Shigella flexneri." EMBO Rep 2(8): 
736-742. 

Gresset, A., S. N. Hicks, T. K. Harden and J. Sondek (2010). "Mechanism of phosphorylation-induced activation of 
phospholipase C-gamma isozymes." J Biol Chem 285(46): 35836-35847. 

Guven-Maiorov, E., O. Keskin, A. Gursoy and R. Nussinov (2015). "A Structural View of Negative Regulation of the Toll-like 
Receptor-Mediated Inflammatory Pathway." Biophys J 109(6): 1214-1226. 

Guven-Maiorov, E., O. Keskin, A. Gursoy, C. VanWaes, Z. Chen, C. J. Tsai and R. Nussinov (2015). "The Architecture of the TIR 
Domain Signalosome in the Toll-like Receptor-4 Signaling Pathway." Sci Rep 5: 13128. 



 

 

102 

Hacker, H., V. Redecke, B. Blagoev, I. Kratchmarova, L. C. Hsu, G. G. Wang, M. P. Kamps, E. Raz, H. Wagner, G. Hacker, M. 
Mann and M. Karin (2006). "Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6." 
Nature 439(7073): 204-207. 

Hacker, H., P. H. Tseng and M. Karin (2011). "Expanding TRAF function: TRAF3 as a tri-faced immune regulator." Nat Rev 
Immunol 11(7): 457-468. 

Hagman, J., M. J. Gutch, H. Lin and R. Grosschedl (1995). "EBF contains a novel zinc coordination motif and multiple 
dimerization and transcriptional activation domains." EMBO J 14(12): 2907-2916. 

Halabi, S. (2015). Involvement of B-cell adaptor for phosphoinositide 3-kinase in modulating crosstalk between the 
phosphoinositide 3-kinase, toll-like receptor, and phosphoilipase C[gamma]2 signalling pathways / Samer Halabi, 2015. 

Halabi, S., E. Sekine, B. Verstak, N. J. Gay and M. C. Moncrieffe (2017). "Structure of the Toll/Interleukin-1 Receptor (TIR) 
Domain of the B-cell Adaptor That Links Phosphoinositide Metabolism with the Negative Regulation of the Toll-like Receptor 
(TLR) Signalosome." J Biol Chem 292(2): 652-660. 

Hamerman, J. A., J. Pottle, M. Ni, Y. He, Z. Y. Zhang and J. H. Buckner (2016). "Negative regulation of TLR signaling in myeloid 
cells--implications for autoimmune diseases." Immunol Rev 269(1): 212-227. 

Hartman, A. D., A. Wilson-Weekes, A. Suvannasankha, G. S. Burgess, C. A. Phillips, K. J. Hincher, L. D. Cripe and H. S. Boswell 
(2006). "Constitutive c-jun N-terminal kinase activity in acute myeloid leukemia derives from Flt3 and affects survival and 
proliferation." Exp Hematol 34(10): 1360-1376. 

Hasan, U., C. Chaffois, C. Gaillard, V. Saulnier, E. Merck, S. Tancredi, C. Guiet, F. Briere, J. Vlach, S. Lebecque, G. Trinchieri and 
E. E. M. Bates (2005). "Human TLR10 Is a Functional Receptor, Expressed by B Cells and Plasmacytoid Dendritic Cells, Which 
Activates Gene Transcription through MyD88." The Journal of Immunology 174(5): 2942-2950. 

Hauenstein, A. V., L. Zhang and H. Wu (2015). "The hierarchical structural architecture of inflammasomes, supramolecular 
inflammatory machines." Curr Opin Struct Biol 31: 75-83. 

Hedrick, S. M. (2009). "The cunning little vixen: Foxo and the cycle of life and death." Nat Immunol 10(10): 1057-1063. 

Heil, F., H. Hemmi, H. Hochrein, F. Ampenberger, C. Kirschning, S. Akira, G. Lipford, H. Wagner and S. Bauer (2004). "Species-
specific recognition of single-stranded RNA via toll-like receptor 7 and 8." Science 303(5663): 1526-1529. 

Hemmi, H., O. Takeuchi, T. Kawai, T. Kaisho, S. Sato, H. Sanjo, M. Matsumoto, K. Hoshino, H. Wagner, K. Takeda and S. Akira 
(2000). "A Toll-like receptor recognizes bacterial DNA." Nature 408(6813): 740-745. 

Horng, T., G. M. Barton and R. Medzhitov (2001). "TIRAP: an adapter molecule in the Toll signaling pathway." Nat Immunol 
2(9): 835-841. 

Horng, T. and R. Medzhitov (2001). "Drosophila MyD88 is an adapter in the Toll signaling pathway." Proc Natl Acad Sci U S A 
98(22): 12654-12658. 

Hornung, V., A. Ablasser, M. Charrel-Dennis, F. Bauernfeind, G. Horvath, D. R. Caffrey, E. Latz and K. A. Fitzgerald (2009). 
"AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC." Nature 458(7237): 514-518. 

Hou, F., L. Sun, H. Zheng, B. Skaug, Q. X. Jiang and Z. J. Chen (2011). "MAVS forms functional prion-like aggregates to activate 
and propagate antiviral innate immune response." Cell 146(3): 448-461. 

Hu, Z., Q. Zhou, C. Zhang, S. Fan, W. Cheng, Y. Zhao, F. Shao, H. W. Wang, S. F. Sui and J. Chai (2015). "Structural and 
biochemical basis for induced self-propagation of NLRC4." Science 350(6259): 399-404. 

Huang, C. H., D. Mandelker, O. Schmidt-Kittler, Y. Samuels, V. E. Velculescu, K. W. Kinzler, B. Vogelstein, S. B. Gabelli and L. 
M. Amzel (2007). "The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha 
mutations." Science 318(5857): 1744-1748. 

Huang, H., L. Li, C. Wu, D. Schibli, K. Colwill, S. Ma, C. Li, P. Roy, K. Ho, Z. Songyang, T. Pawson, Y. Gao and S. S. Li (2008). 
"Defining the specificity space of the human SRC homology 2 domain." Mol Cell Proteomics 7(4): 768-784. 



 

 

103 

Hughes, M. M., P. Lavrencic, R. C. Coll, T. Ve, D. G. Ryan, N. C. Williams, D. Menon, A. Mansell, P. G. Board, M. Mobli, B. Kobe 
and L. A. J. O'Neill (2017). "Solution structure of the TLR adaptor MAL/TIRAP reveals an intact BB loop and supports MAL 
Cys91 glutathionylation for signaling." Proc Natl Acad Sci U S A 114(32): E6480-E6489. 

Hurley, J. H. and P. I. Hanson (2010). "Membrane budding and scission by the ESCRT machinery: it's all in the neck." Nat Rev 
Mol Cell Biol 11(8): 556-566. 

Hyun, K. G., Y. Lee, J. Yoon, H. Yi and J. J. Song (2016). "Crystal structure of Arabidopsis thaliana SNC1 TIR domain." Biochem 
Biophys Res Commun 481(1-2): 146-152. 

Inabe, K. and T. Kurosaki (2002). "Tyrosine phosphorylation of B-cell adaptor for phosphoinositide 3-kinase is required for Akt 
activation in response to CD19 engagement." Blood 99(2): 584-589. 

Iwasaki, A. and R. Medzhitov (2015). "Control of adaptive immunity by the innate immune system." Nat Immunol 16(4): 343-
353. 

Jang, T. H. and H. H. Park (2014). "Crystal structure of TIR domain of TLR6 reveals novel dimeric interface of TIR-TIR interaction 
for toll-like receptor signaling pathway." J Mol Biol 426(19): 3305-3313. 

Jiang, F., A. Ramanathan, M. T. Miller, G. Q. Tang, M. Gale, Jr., S. S. Patel and J. Marcotrigiano (2011). "Structural basis of RNA 
recognition and activation by innate immune receptor RIG-I." Nature 479(7373): 423-427. 

Jiang, S. H., V. Athanasopoulos, J. I. Ellyard, A. Chuah, J. Cappello, A. Cook, S. B. Prabhu, J. Cardenas, J. Gu, M. Stanley, J. A. 
Roco, I. Papa, M. Yabas, G. D. Walters, G. Burgio, K. McKeon, J. M. Byers, C. Burrin, A. Enders, L. A. Miosge, P. F. Canete, M. 
Jelusic, V. Tasic, A. C. Lungu, S. I. Alexander, A. R. Kitching, D. A. Fulcher, N. Shen, T. Arsov, P. A. Gatenby, J. J. Babon, D. F. 
Mallon, C. de Lucas Collantes, E. A. Stone, P. Wu, M. A. Field, T. D. Andrews, E. Cho, V. Pascual, M. C. Cook and C. G. Vinuesa 
(2019). "Functional rare and low frequency variants in BLK and BANK1 contribute to human lupus." Nat Commun 10(1): 2201. 

Jin, M. S., S. E. Kim, J. Y. Heo, M. E. Lee, H. M. Kim, S. G. Paik, H. Lee and J. O. Lee (2007). "Crystal structure of the TLR1-TLR2 
heterodimer induced by binding of a tri-acylated lipopeptide." Cell 130(6): 1071-1082. 

Jin, T., A. Perry, P. Smith, J. Jiang and T. S. Xiao (2013). "Structure of the absent in melanoma 2 (AIM2) pyrin domain provides 
insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly." J Biol Chem 288(19): 13225-13235. 

Kabsch, W. (2010). "Integration, scaling, space-group assignment and post-refinement." Acta Crystallogr D Biol Crystallogr 
66(Pt 2): 133-144. 

Kagan, J. C., V. G. Magupalli and H. Wu (2014). "SMOCs: supramolecular organizing centres that control innate immunity." 
Nat Rev Immunol 14(12): 821-826. 

Kagan, J. C., T. Su, T. Horng, A. Chow, S. Akira and R. Medzhitov (2008). "TRAM couples endocytosis of Toll-like receptor 4 to 
the induction of interferon-beta." Nat Immunol 9(4): 361-368. 

Kaiser, W. J. and M. K. Offermann (2005). "Apoptosis Induced by the Toll-Like Receptor Adaptor TRIF Is Dependent on Its 
Receptor Interacting Protein Homotypic Interaction Motif." The Journal of Immunology 174(8): 4942-4952. 

Kang, J. Y., X. Nan, M. S. Jin, S. J. Youn, Y. H. Ryu, S. Mah, S. H. Han, H. Lee, S. G. Paik and J. O. Lee (2009). "Recognition of 
lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer." Immunity 31(6): 873-884. 

Kaplan-Turkoz, B., T. Koelblen, C. Felix, M. P. Candusso, D. O'Callaghan, A. C. Vergunst and L. Terradot (2013). "Structure of 
the Toll/interleukin 1 receptor (TIR) domain of the immunosuppressive Brucella effector BtpA/Btp1/TcpB." FEBS Lett 587(21): 
3412-3416. 

Katoh, Y., H. Imakagura, M. Futatsumori and K. Nakayama (2006). "Recruitment of clathrin onto endosomes by the Tom1-
Tollip complex." Biochem Biophys Res Commun 341(1): 143-149. 

Kawai, T., S. Sato, K. J. Ishii, C. Coban, H. Hemmi, M. Yamamoto, K. Terai, M. Matsuda, J. Inoue, S. Uematsu, O. Takeuchi and 
S. Akira (2004). "Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and 
TRAF6." Nat Immunol 5(10): 1061-1068. 



 

 

104 

Kelley, L. A., S. Mezulis, C. M. Yates, M. N. Wass and M. J. Sternberg (2015). "The Phyre2 web portal for protein modeling, 
prediction and analysis." Nat Protoc 10(6): 845-858. 

Khan, J. A., E. K. Brint, L. A. O'Neill and L. Tong (2004). "Crystal structure of the Toll/interleukin-1 receptor domain of human 
IL-1RAPL." J Biol Chem 279(30): 31664-31670. 

Kloor, M., P. Bork, A. Duwe, R. Klaes, M. von Knebel Doeberitz and R. Ridder (2002). "Identification and characterization of 
UEV3, a human cDNA with similarities to inactive E2 ubiquitin-conjugating enzymes." Biochim Biophys Acta 1579(2-3): 219-
224. 

Kobayashi, K., L. D. Hernandez, J. E. Galan, C. A. Janeway, Jr., R. Medzhitov and R. A. Flavell (2002). "IRAK-M is a negative 
regulator of Toll-like receptor signaling." Cell 110(2): 191-202. 

Konno, H., T. Yamamoto, K. Yamazaki, J. Gohda, T. Akiyama, K. Semba, H. Goto, A. Kato, T. Yujiri, T. Imai, Y. Kawaguchi, B. Su, 
O. Takeuchi, S. Akira, Y. Tsunetsugu-Yokota and J. Inoue (2009). "TRAF6 establishes innate immune responses by activating 
NF-kappaB and IRF7 upon sensing cytosolic viral RNA and DNA." PLoS One 4(5): e5674. 

Kowalinski, E., T. Lunardi, A. A. McCarthy, J. Louber, J. Brunel, B. Grigorov, D. Gerlier and S. Cusack (2011). "Structural basis 
for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA." Cell 147(2): 423-435. 

Kozyrev, S. V., A. K. Abelson, J. Wojcik, A. Zaghlool, M. V. Linga Reddy, E. Sanchez, I. Gunnarsson, E. Svenungsson, G. Sturfelt, 
A. Jonsen, L. Truedsson, B. A. Pons-Estel, T. Witte, S. D'Alfonso, N. Barizzone, M. G. Danieli, C. Gutierrez, A. Suarez, P. Junker, 
H. Laustrup, M. F. Gonzalez-Escribano, J. Martin, H. Abderrahim and M. E. Alarcon-Riquelme (2008). "Functional variants in 
the B-cell gene BANK1 are associated with systemic lupus erythematosus." Nat Genet 40(2): 211-216. 

Krissinel, E. and K. Henrick (2004). "Secondary-structure matching (SSM), a new tool for fast protein structure alignment in 
three dimensions." Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1): 2256-2268. 

Kurosaki, T. and S. Tsukada (2000). "BLNK: connecting Syk and Btk to calcium signals." Immunity 12(1): 1-5. 

Laird, M. H., S. H. Rhee, D. J. Perkins, A. E. Medvedev, W. Piao, M. J. Fenton and S. N. Vogel (2009). "TLR4/MyD88/PI3K 
interactions regulate TLR4 signaling." J Leukoc Biol 85(6): 966-977. 

Latty, S. L., J. Sakai, L. Hopkins, B. Verstak, T. Paramo, N. A. Berglund, E. Cammarota, P. Cicuta, N. J. Gay, P. J. Bond, D. 
Klenerman and C. E. Bryant (2018). "Activation of Toll-like receptors nucleates assembly of the MyDDosome signaling hub." 
Elife 7. 

Li, J., T. McQuade, A. B. Siemer, J. Napetschnig, K. Moriwaki, Y. S. Hsiao, E. Damko, D. Moquin, T. Walz, A. McDermott, F. K. 
Chan and H. Wu (2012). "The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed 
necrosis." Cell 150(2): 339-350. 

Liaunardy-Jopeace, A., C. E. Bryant and N. J. Gay (2014). "The COP II adaptor protein TMED7 is required to initiate and mediate 
the delivery of TLR4 to the plasma membrane." Sci Signal 7(336): ra70. 

Liew, F. Y., D. Xu, E. K. Brint and L. A. O'Neill (2005). "Negative regulation of toll-like receptor-mediated immune responses." 
Nat Rev Immunol 5(6): 446-458. 

Lin, S. C., Y. C. Lo and H. Wu (2010). "Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling." Nature 
465(7300): 885-890. 

Lin, Z., J. Lu, W. Zhou and Y. Shen (2012). "Structural insights into TIR domain specificity of the bridging adaptor Mal in TLR4 
signaling." PLoS One 7(4): e34202. 

Liu, C. H., T. C. Chen, C. H. Chen, C. Y. Kao and C. Y. Huang (2013). "Differential network biology reveals a positive correlation 
between a novel protein-protein interaction and cancer cells migration." Conf Proc IEEE Eng Med Biol Soc 2013: 2700-2703. 

Liu, L., I. Botos, Y. Wang, J. N. Leonard, J. Shiloach, D. M. Segal and D. R. Davies (2008). "Structural basis of toll-like receptor 
3 signaling with double-stranded RNA." Science 320(5874): 379-381. 



 

 

105 

Loiarro, M., E. Volpe, V. Ruggiero, G. Gallo, R. Furlan, C. Maiorino, L. Battistini and C. Sette (2013). "Mutational analysis 
identifies residues crucial for homodimerization of myeloid differentiation factor 88 (MyD88) and for its function in immune 
cells." J Biol Chem 288(42): 30210-30222. 

Lu, A., Y. Li, F. I. Schmidt, Q. Yin, S. Chen, T. M. Fu, A. B. Tong, H. L. Ploegh, Y. Mao and H. Wu (2016). "Molecular basis of 
caspase-1 polymerization and its inhibition by a new capping mechanism." Nat Struct Mol Biol 23(5): 416-425. 

Lu, A., V. G. Magupalli, J. Ruan, Q. Yin, M. K. Atianand, M. R. Vos, G. F. Schroder, K. A. Fitzgerald, H. Wu and E. H. Egelman 
(2014). "Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes." Cell 156(6): 1193-1206. 

MacFarlane, A. W. t., T. Yamazaki, M. Fang, L. J. Sigal, T. Kurosaki and K. S. Campbell (2008). "Enhanced NK-cell development 
and function in BCAP-deficient mice." Blood 112(1): 131-140. 

Man, S. M., L. J. Hopkins, E. Nugent, S. Cox, I. M. Gluck, P. Tourlomousis, J. A. Wright, P. Cicuta, T. P. Monie and C. E. Bryant 
(2014). "Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex." Proc 
Natl Acad Sci U S A 111(20): 7403-7408. 

Martinez-Bueno, M., N. Oparina, M. G. Dozmorov, M. C. Marion, M. E. Comeau, G. Gilkeson, D. Kamen, M. Weisman, J. 
Salmon, J. W. McCune, J. B. Harley, R. Kimberly, J. A. James, J. Merrill, C. Montgomery, C. D. Langefeld and M. E. Alarcon-
Riquelme (2018). "Trans-Ethnic Mapping of BANK1 Identifies Two Independent SLE-Risk Linkage Groups Enriched for Co-
Transcriptional Splicing Marks." Int J Mol Sci 19(8). 

Maruoka, M., J. Suzuki, S. Kawata, K. Yoshida, N. Hirao, S. Sato, S. P. Goff, T. Takeya, K. Tani and T. Shishido (2005). 
"Identification of B cell adaptor for PI3-kinase (BCAP) as an Abl interactor 1-regulated substrate of Abl kinases." FEBS Lett 
579(14): 2986-2990. 

Matagne, A., B. Joris and J. M. Frere (1991). "Anomalous behaviour of a protein during SDS/PAGE corrected by chemical 
modification of carboxylic groups." Biochem J 280 ( Pt 2): 553-556. 

Matsumura, T., M. Oyama, H. Kozuka-Hata, K. Ishikawa, T. Inoue, T. Muta, K. Semba and J. Inoue (2010). "Identification of 
BCAP-(L) as a negative regulator of the TLR signaling-induced production of IL-6 and IL-10 in macrophages by tyrosine 
phosphoproteomics." Biochem Biophys Res Commun 400(2): 265-270. 

McCoy, A. J., R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni and R. J. Read (2007). "Phaser crystallographic 
software." J Appl Crystallogr 40(Pt 4): 658-674. 

Medzhitov, R., P. Preston-Hurlburt and C. A. Janeway, Jr. (1997). "A human homologue of the Drosophila Toll protein signals 
activation of adaptive immunity." Nature 388(6640): 394-397. 

Medzhitov, R., P. Preston-Hurlburt, E. Kopp, A. Stadlen, C. Chen, S. Ghosh and C. A. Janeway, Jr. (1998). "MyD88 is an adaptor 
protein in the hToll/IL-1 receptor family signaling pathways." Mol Cell 2(2): 253-258. 

Mellett, M., P. Atzei, R. Bergin, A. Horgan, T. Floss, W. Wurst, J. J. Callanan and P. N. Moynagh (2015). "Orphan receptor IL-
17RD regulates Toll-like receptor signalling via SEFIR/TIR interactions." Nat Commun 6: 6669. 

Meyers, B. C., M. Morgante and R. W. Michelmore (2002). "TIR-X and TIR-NBS proteins: two new families related to disease 
resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes." Plant J 32(1): 77-92. 

Meylan, E., K. Burns, K. Hofmann, V. Blancheteau, F. Martinon, M. Kelliher and J. Tschopp (2004). "RIP1 is an essential 
mediator of Toll-like receptor 3-induced NF-kappa B activation." Nat Immunol 5(5): 503-507. 

Miggin, S. M., E. Palsson-McDermott, A. Dunne, C. Jefferies, E. Pinteaux, K. Banahan, C. Murphy, P. Moynagh, M. Yamamoto, 
S. Akira, N. Rothwell, D. Golenbock, K. A. Fitzgerald and L. A. O'Neill (2007). "NF-kappaB activation by the Toll-IL-1 receptor 
domain protein MyD88 adapter-like is regulated by caspase-1." Proc Natl Acad Sci U S A 104(9): 3372-3377. 

Monie, T. P., C. E. Bryant and N. J. Gay (2009). "Activating immunity: lessons from the TLRs and NLRs." Trends Biochem Sci 
34(11): 553-561. 

Mooij, W. T., E. Mitsiki and A. Perrakis (2009). "ProteinCCD: enabling the design of protein truncation constructs for 
expression and crystallization experiments." Nucleic Acids Res 37(Web Server issue): W402-405. 



 

 

106 

Mosavi, L. K., T. J. Cammett, D. C. Desrosiers and Z. Y. Peng (2004). "The ankyrin repeat as molecular architecture for protein 
recognition." Protein Sci 13(6): 1435-1448. 

Motshwene, P. G., M. C. Moncrieffe, J. G. Grossmann, C. Kao, M. Ayaluru, A. M. Sandercock, C. V. Robinson, E. Latz and N. J. 
Gay (2009). "An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4." J Biol 
Chem 284(37): 25404-25411. 

Muller, C. W., F. A. Rey, M. Sodeoka, G. L. Verdine and S. C. Harrison (1995). "Structure of the NF-kappa B p50 homodimer 
bound to DNA." Nature 373(6512): 311-317. 

Murray, D. and B. Honig (2002). "Electrostatic control of the membrane targeting of C2 domains." Mol Cell 9(1): 145-154. 

Nandety, R. S., J. L. Caplan, K. Cavanaugh, B. Perroud, T. Wroblewski, R. W. Michelmore and B. C. Meyers (2013). "The role of 
TIR-NBS and TIR-X proteins in plant basal defense responses." Plant Physiol 162(3): 1459-1472. 

Ni, M., A. W. t. MacFarlane, M. Toft, C. A. Lowell, K. S. Campbell and J. A. Hamerman (2012). "B-cell adaptor for PI3K (BCAP) 
negatively regulates Toll-like receptor signaling through activation of PI3K." Proc Natl Acad Sci U S A 109(1): 267-272. 

Nimma, S., T. Ve, S. J. Williams and B. Kobe (2017). "Towards the structure of the TIR-domain signalosome." Curr Opin Struct 
Biol 43: 122-130. 

Nyman, T., P. Stenmark, S. Flodin, I. Johansson, M. Hammarstrom and P. Nordlund (2008). "The crystal structure of the human 
toll-like receptor 10 cytoplasmic domain reveals a putative signaling dimer." J Biol Chem 283(18): 11861-11865. 

O'Brien, R., P. Rugman, D. Renzoni, M. Layton, R. Handa, K. Hilyard, M. D. Waterfield, P. C. Driscoll and J. E. Ladbury (2000). 
"Alternative modes of binding of proteins with tandem SH2 domains." Protein Sci 9(3): 570-579. 

Ohnishi, H., H. Tochio, Z. Kato, K. E. Orii, A. Li, T. Kimura, H. Hiroaki, N. Kondo and M. Shirakawa (2009). "Structural basis for 
the multiple interactions of the MyD88 TIR domain in TLR4 signaling." Proc Natl Acad Sci U S A 106(25): 10260-10265. 

Ohto, U., K. Fukase, K. Miyake and Y. Satow (2007). "Crystal structures of human MD-2 and its complex with antiendotoxic 
lipid IVa." Science 316(5831): 1632-1634. 

Okada, T., A. Maeda, A. Iwamatsu, K. Gotoh and T. Kurosaki (2000). "BCAP: the tyrosine kinase substrate that connects B cell 
receptor to phosphoinositide 3-kinase activation." Immunity 13(6): 817-827. 

Okkenhaug, K. (2013). "Signaling by the phosphoinositide 3-kinase family in immune cells." Annu Rev Immunol 31: 675-704. 

Oshiumi, H., M. Matsumoto, K. Funami, T. Akazawa and T. Seya (2003). "TICAM-1, an adaptor molecule that participates in 
Toll-like receptor 3-mediated interferon-beta induction." Nat Immunol 4(2): 161-167. 

Ouyang, X., H. Negishi, R. Takeda, Y. Fujita, T. Taniguchi and K. Honda (2007). "Cooperation between MyD88 and TRIF 
pathways in TLR synergy via IRF5 activation." Biochem Biophys Res Commun 354(4): 1045-1051. 

Pagan, A. J., M. Pepper, H. H. Chu, J. M. Green and M. K. Jenkins (2012). "CD28 promotes CD4+ T cell clonal expansion during 
infection independently of its YMNM and PYAP motifs." J Immunol 189(6): 2909-2917. 

Park, B. S., D. H. Song, H. M. Kim, B. S. Choi, H. Lee and J. O. Lee (2009). "The structural basis of lipopolysaccharide recognition 
by the TLR4-MD-2 complex." Nature 458(7242): 1191-1195. 

Pawelczyk, T. and A. Matecki (1999). "Phospholipase C-delta3 binds with high specificity to phosphatidylinositol 4,5-
bisphosphate and phosphatidic acid in bilayer membranes." Eur J Biochem 262(2): 291-298. 

Pei, J., B. H. Kim and N. V. Grishin (2008). "PROMALS3D: a tool for multiple protein sequence and structure alignments." 
Nucleic Acids Res 36(7): 2295-2300. 

Peng, J., Q. Yuan, B. Lin, P. Panneerselvam, X. Wang, X. L. Luan, S. K. Lim, B. P. Leung, B. Ho and J. L. Ding (2010). "SARM 
inhibits both TRIF- and MyD88-mediated AP-1 activation." Eur J Immunol 40(6): 1738-1747. 



 

 

107 

Poltorak, A., X. He, I. Smirnova, M. Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. Freudenberg, P. 
Ricciardi-Castagnoli, B. Layton and B. Beutler (1998). "Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations 
in Tlr4 gene." Science 282(5396): 2085-2088. 

Rana, R. R., P. Simpson, M. Zhang, M. Jennions, C. Ukegbu, A. M. Spear, Y. Alguel, S. J. Matthews, H. S. Atkins and B. Byrne 
(2011). "Yersinia pestis TIR-domain protein forms dimers that interact with the human adaptor protein MyD88." Microb 
Pathog 51(3): 89-95. 

Rana, R. R., M. Zhang, A. M. Spear, H. S. Atkins and B. Byrne (2013). "Bacterial TIR-containing proteins and host innate immune 
system evasion." Med Microbiol Immunol 202(1): 1-10. 

Rao, S., X. Liu, B. D. Freedman and E. M. Behrens (2013). "Spleen tyrosine kinase (Syk)-dependent calcium signals mediate 
efficient CpG-induced exocytosis of tumor necrosis factor alpha (TNFalpha) in innate immune cells." J Biol Chem 288(18): 
12448-12458. 

Rawlings, D. J., M. A. Schwartz, S. W. Jackson and A. Meyer-Bahlburg (2012). "Integration of B cell responses through Toll-like 
receptors and antigen receptors." Nat Rev Immunol 12(4): 282-294. 

Reikine, S., J. B. Nguyen and Y. Modis (2014). "Pattern Recognition and Signaling Mechanisms of RIG-I and MDA5." Front 
Immunol 5: 342. 

Reuten, R., D. Nikodemus, M. B. Oliveira, T. R. Patel, B. Brachvogel, I. Breloy, J. Stetefeld and M. Koch (2016). "Maltose-Binding 
Protein (MBP), a Secretion-Enhancing Tag for Mammalian Protein Expression Systems." PLoS One 11(3): e0152386. 

Rhee, S. H., H. Kim, M. P. Moyer and C. Pothoulakis (2006). "Role of MyD88 in phosphatidylinositol 3-kinase activation by 
flagellin/toll-like receptor 5 engagement in colonic epithelial cells." J Biol Chem 281(27): 18560-18568. 

Rolland, T., M. Tasan, B. Charloteaux, S. J. Pevzner, Q. Zhong, N. Sahni, S. Yi, I. Lemmens, C. Fontanillo, R. Mosca, A. Kamburov, 
S. D. Ghiassian, X. Yang, L. Ghamsari, D. Balcha, B. E. Begg, P. Braun, M. Brehme, M. P. Broly, A. R. Carvunis, D. Convery-Zupan, 
R. Corominas, J. Coulombe-Huntington, E. Dann, M. Dreze, A. Dricot, C. Fan, E. Franzosa, F. Gebreab, B. J. Gutierrez, M. F. 
Hardy, M. Jin, S. Kang, R. Kiros, G. N. Lin, K. Luck, A. MacWilliams, J. Menche, R. R. Murray, A. Palagi, M. M. Poulin, X. Rambout, 
J. Rasla, P. Reichert, V. Romero, E. Ruyssinck, J. M. Sahalie, A. Scholz, A. A. Shah, A. Sharma, Y. Shen, K. Spirohn, S. Tam, A. O. 
Tejeda, S. A. Trigg, J. C. Twizere, K. Vega, J. Walsh, M. E. Cusick, Y. Xia, A. L. Barabasi, L. M. Iakoucheva, P. Aloy, J. De Las Rivas, 
J. Tavernier, M. A. Calderwood, D. E. Hill, T. Hao, F. P. Roth and M. Vidal (2014). "A proteome-scale map of the human 
interactome network." Cell 159(5): 1212-1226. 

Rueda, B., P. Gourh, J. Broen, S. K. Agarwal, C. Simeon, N. Ortego-Centeno, M. C. Vonk, M. Coenen, G. Riemekasten, N. 
Hunzelmann, R. Hesselstrand, F. K. Tan, J. D. Reveille, S. Assassi, F. J. Garcia-Hernandez, P. Carreira, M. Camps, A. Fernandez-
Nebro, P. Garcia de la Pena, T. Nearney, D. Hilda, M. A. Gonzalez-Gay, P. Airo, L. Beretta, R. Scorza, T. R. Radstake, M. D. 
Mayes, F. C. Arnett and J. Martin (2010). "BANK1 functional variants are associated with susceptibility to diffuse systemic 
sclerosis in Caucasians."  69(4): 700-705. 

Saitoh, S. (2009). "Chaperones and transport proteins regulate TLR4 trafficking and activation." Immunobiology 214(7): 594-
600. 

Santos-Sierra, S., S. D. Deshmukh, J. Kalnitski, P. Kuenzi, M. P. Wymann, D. T. Golenbock and P. Henneke (2009). "Mal connects 
TLR2 to PI3Kinase activation and phagocyte polarization." EMBO J 28(14): 2018-2027. 

Sarkar, S. N., K. L. Peters, C. P. Elco, S. Sakamoto, S. Pal and G. C. Sen (2004). "Novel roles of TLR3 tyrosine phosphorylation 
and PI3 kinase in double-stranded RNA signaling." Nat Struct Mol Biol 11(11): 1060-1067. 

Sattler M., S. R. (1998). "Role of the adapter protein CRKL in signal transduction of normal hematopoietic and BCR/ABL-
transformed cells." Leukemia 12(5): 637-644. 

Sborgi, L., F. Ravotti, V. P. Dandey, M. S. Dick, A. Mazur, S. Reckel, M. Chami, S. Scherer, M. Huber, A. Bockmann, E. H. Egelman, 
H. Stahlberg, P. Broz, B. H. Meier and S. Hiller (2015). "Structure and assembly of the mouse ASC inflammasome by combined 
NMR spectroscopy and cryo-electron microscopy." Proc Natl Acad Sci U S A 112(43): 13237-13242. 

Shi, J., T. Cinek, K. E. Truitt and J. B. Imboden (1997). "Wortmannin, a phosphatidylinositol 3-kinase inhibitor, blocks antigen-
mediated, but not CD3 monoclonal antibody-induced, activation of murine CD4+ T cells." J Immunol 158(10): 4688-4695. 



 

 

108 

Shi, J., Y. Zhao, K. Wang, X. Shi, Y. Wang, H. Huang, Y. Zhuang, T. Cai, F. Wang and F. Shao (2015). "Cleavage of GSDMD by 
inflammatory caspases determines pyroptotic cell death." Nature 526(7575): 660-665. 

Shimazu, R., S. Akashi, H. Ogata, Y. Nagai, K. Fukudome, K. Miyake and M. Kimoto (1999). "MD-2, a molecule that confers 
lipopolysaccharide responsiveness on Toll-like receptor 4." J Exp Med 189(11): 1777-1782. 

Singh, M. D., M. Ni, J. M. Sullivan, J. A. Hamerman and D. J. Campbell (2018). "B cell adaptor for PI3-kinase (BCAP) modulates 
CD8(+) effector and memory T cell differentiation." J Exp Med 215(9): 2429-2443. 

Slack, J. L., K. Schooley, T. P. Bonnert, J. L. Mitcham, E. E. Qwarnstrom, J. E. Sims and S. K. Dower (2000). "Identification of two 
major sites in the type I interleukin-1 receptor cytoplasmic region responsible for coupling to pro-inflammatory signaling 
pathways." J Biol Chem 275(7): 4670-4678. 

Snyder, G. A., D. Deredge, A. Waldhuber, T. Fresquez, D. Z. Wilkins, P. T. Smith, S. Durr, C. Cirl, J. Jiang, W. Jennings, T. Luchetti, 
N. Snyder, E. J. Sundberg, P. Wintrode, T. Miethke and T. S. Xiao (2014). "Crystal structures of the Toll/Interleukin-1 receptor 
(TIR) domains from the Brucella protein TcpB and host adaptor TIRAP reveal mechanisms of molecular mimicry." J Biol Chem 
289(2): 669-679. 

Song, S., C. Chew, B. M. Dale, D. Traum, J. Peacock, T. Yamazaki, R. Clynes, T. Kurosaki and S. Greenberg (2011). "A requirement 
for the p85 PI3K adapter protein BCAP in the protection of macrophages from apoptosis induced by endoplasmic reticulum 
stress." J Immunol 187(2): 619-625. 

Songyang, Z., S. E. Shoelson, M. Chaudhuri, G. Gish, T. Pawson, W. G. Haser, F. King, T. Roberts, S. Ratnofsky, R. J. Lechleider 
and et al. (1993). "SH2 domains recognize specific phosphopeptide sequences." Cell 72(5): 767-778. 

Sparks, A. B., J. E. Rider, N. G. Hoffman, D. M. Fowlkes, L. A. Quillam and B. K. Kay (1996). "Distinct ligand preferences of Src 
homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLCgamma, Crk, and Grb2." Proc Natl Acad Sci U S A 93(4): 1540-
1544. 

Srivastava, S., L. Di, O. Zhdanova, Z. Li, S. Vardhana, Q. Wan, Y. Yan, R. Varma, J. Backer, H. Wulff, M. L. Dustin and E. Y. Skolnik 
(2009). "The class II phosphatidylinositol 3 kinase C2beta is required for the activation of the K+ channel KCa3.1 and CD4 T-
cells." Mol Biol Cell 20(17): 3783-3791. 

Stes, E., M. Laga, A. Walton, N. Samyn, E. Timmerman, I. De Smet, S. Goormachtig and K. Gevaert (2014). "A COFRADIC 
protocol to study protein ubiquitination." J Proteome Res 13(6): 3107-3113. 

Stroud, J. C., C. Lopez-Rodriguez, A. Rao and L. Chen (2002). "Structure of a TonEBP-DNA complex reveals DNA encircled by a 
transcription factor." Nat Struct Biol 9(2): 90-94. 

Studier, F. W. (2005). "Protein production by auto-induction in high-density shaking cultures." Protein Expression and 
Purification 41(1): 207-234. 

Su, D., G. M. Coudriet, D. Hyun Kim, Y. Lu, G. Perdomo, S. Qu, S. Slusher, H. M. Tse, J. Piganelli, N. Giannoukakis, J. Zhang and 
H. H. Dong (2009). "FoxO1 links insulin resistance to proinflammatory cytokine IL-1beta production in macrophages." 
Diabetes 58(11): 2624-2633. 

Summers, D. W., D. A. Gibson, A. DiAntonio and J. Milbrandt (2016). "SARM1-specific motifs in the TIR domain enable NAD+ 
loss and regulate injury-induced SARM1 activation." Proc Natl Acad Sci U S A 113(41): E6271-E6280. 

Thul, P. J., L. Akesson, M. Wiking, D. Mahdessian, A. Geladaki, H. Ait Blal, T. Alm, A. Asplund, L. Bjork, L. M. Breckels, A. 
Backstrom, F. Danielsson, L. Fagerberg, J. Fall, L. Gatto, C. Gnann, S. Hober, M. Hjelmare, F. Johansson, S. Lee, C. Lindskog, J. 
Mulder, C. M. Mulvey, P. Nilsson, P. Oksvold, J. Rockberg, R. Schutten, J. M. Schwenk, A. Sivertsson, E. Sjostedt, M. Skogs, C. 
Stadler, D. P. Sullivan, H. Tegel, C. Winsnes, C. Zhang, M. Zwahlen, A. Mardinoglu, F. Ponten, K. von Feilitzen, K. S. Lilley, M. 
Uhlen and E. Lundberg (2017). "A subcellular map of the human proteome." Science 356(6340). 

Toshchakov, V. U., S. Basu, M. J. Fenton and S. N. Vogel (2005). "Differential Involvement of BB Loops of Toll-IL-1 Resistance 
(TIR) Domain-Containing Adapter Proteins in TLR4- versus TLR2-Mediated Signal Transduction." The Journal of Immunology 
175(1): 494-500. 

Treiber, N., T. Treiber, G. Zocher and R. Grosschedl (2010). "Structure of an Ebf1:DNA complex reveals unusual DNA 
recognition and structural homology with Rel proteins." Genes Dev 24(20): 2270-2275. 



 

 

109 

Troutman, T. D., W. Hu, S. Fulenchek, T. Yamazaki, T. Kurosaki, J. F. Bazan and C. Pasare (2012). "Role for B-cell adapter for 
PI3K (BCAP) as a signaling adapter linking Toll-like receptors (TLRs) to serine/threonine kinases PI3K/Akt." Proc Natl Acad Sci 
U S A 109(1): 273-278. 

Vajjhala, P. R., T. Ve, A. Bentham, K. J. Stacey and B. Kobe (2017). "The molecular mechanisms of signaling by cooperative 
assembly formation in innate immunity pathways." Mol Immunol 86: 23-37. 

Valkov, E., A. Stamp, F. Dimaio, D. Baker, B. Verstak, P. Roversi, S. Kellie, M. J. Sweet, A. Mansell, N. J. Gay, J. L. Martin and B. 
Kobe (2011). "Crystal structure of Toll-like receptor adaptor MAL/TIRAP reveals the molecular basis for signal transduction 
and disease protection." Proc Natl Acad Sci U S A 108(36): 14879-14884. 

van Meer, G., D. R. Voelker and G. W. Feigenson (2008). "Membrane lipids: where they are and how they behave." Nat Rev 
Mol Cell Biol 9(2): 112-124. 

Vanhaesebroeck, B., J. Guillermet-Guibert, M. Graupera and B. Bilanges (2010). "The emerging mechanisms of isoform-
specific PI3K signalling." Nat Rev Mol Cell Biol 11(5): 329-341. 

Ve, T., P. R. Vajjhala, A. Hedger, T. Croll, F. DiMaio, S. Horsefield, X. Yu, P. Lavrencic, Z. Hassan, G. P. Morgan, A. Mansell, M. 
Mobli, A. O'Carroll, B. Chauvin, Y. Gambin, E. Sierecki, M. J. Landsberg, K. J. Stacey, E. H. Egelman and B. Kobe (2017). 
"Structural basis of TIR-domain-assembly formation in MAL- and MyD88-dependent TLR4 signaling." Nat Struct Mol Biol 24(9): 
743-751. 

Venerando, A., M. Ruzzene and L. A. Pinna (2014). "Casein kinase: the triple meaning of a misnomer." Biochem J 460(2): 141-
156. 

Verstak, B., C. J. Arnot and N. J. Gay (2013). "An alanine-to-proline mutation in the BB-loop of TLR3 Toll/IL-1R domain switches 
signalling adaptor specificity from TRIF to MyD88." J Immunol 191(12): 6101-6109. 

Vyncke, L., C. Bovijn, E. Pauwels, T. Van Acker, E. Ruyssinck, E. Burg, J. Tavernier and F. Peelman (2016). "Reconstructing the 
TIR Side of the Myddosome: a Paradigm for TIR-TIR Interactions." Structure 24(3): 437-447. 

Waldhuber, A., G. A. Snyder, F. Rommler, C. Cirl, T. Muller, T. S. Xiao, C. Svanborg and T. Miethke (2016). "A Comparative 
Analysis of the Mechanism of Toll-Like Receptor-Disruption by TIR-Containing Protein C from Uropathogenic Escherichia coli." 
Pathogens 5(1). 

Walter, T. S., C. Meier, R. Assenberg, K. F. Au, J. Ren, A. Verma, J. E. Nettleship, R. J. Owens, D. I. Stuart and J. M. Grimes 
(2006). "Lysine methylation as a routine rescue strategy for protein crystallization." Structure 14(11): 1617-1622. 

Wang, C., L. Deng, M. Hong, G. R. Akkaraju, J. Inoue and Z. J. Chen (2001). "TAK1 is a ubiquitin-dependent kinase of MKK and 
IKK." Nature 412(6844): 346-351. 

Weis, W. I., M. E. Taylor and K. Drickamer (1998). "The C-type lectin superfamily in the immune system." Immunol Rev 163: 
19-34. 

West, A. P., G. S. Shadel and S. Ghosh (2011). "Mitochondria in innate immune responses." Nat Rev Immunol 11(6): 389-402. 

Williams, S. J., K. H. Sohn, L. Wan, M. Bernoux, P. F. Sarris, C. Segonzac, T. Ve, Y. Ma, S. B. Saucet, D. J. Ericsson, L. W. Casey, 
T. Lonhienne, D. J. Winzor, X. Zhang, A. Coerdt, J. E. Parker, P. N. Dodds, B. Kobe and J. D. Jones (2014). "Structural basis for 
assembly and function of a heterodimeric plant immune receptor." Science 344(6181): 299-303. 

Wong, Y. H., T. Y. Lee, H. K. Liang, C. M. Huang, T. Y. Wang, Y. H. Yang, C. H. Chu, H. D. Huang, M. T. Ko and J. K. Hwang (2007). 
"KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling 
patterns." Nucleic Acids Res 35(Web Server issue): W588-594. 

Wu, J., L. Sun, X. Chen, F. Du, H. Shi, C. Chen and Z. J. Chen (2013). "Cyclic GMP-AMP is an endogenous second messenger in 
innate immune signaling by cytosolic DNA." Science 339(6121): 826-830. 

Wu, Y. Y., R. Kumar, M. S. Haque, C. Castillejo-Lopez and M. E. Alarcon-Riquelme (2013). "BANK1 controls CpG-induced IL-6 
secretion via a p38 and MNK1/2/eIF4E translation initiation pathway." J Immunol 191(12): 6110-6116. 



 

 

110 

Wu, Y. Y., R. Kumar, R. Iida, H. Bagavant and M. E. Alarcon-Riquelme (2016). "BANK1 Regulates IgG Production in a Lupus 
Model by Controlling TLR7-Dependent STAT1 Activation." PLoS One 11(5): e0156302. 

Xu, H., X. He, H. Zheng, L. J. Huang, F. Hou, Z. Yu, M. J. de la Cruz, B. Borkowski, X. Zhang, Z. J. Chen and Q. X. Jiang (2014). 
"Structural basis for the prion-like MAVS filaments in antiviral innate immunity." Elife 3: e01489. 

Xu, Y., X. Tao, B. Shen, T. Horng, R. Medzhitov, J. L. Manley and L. Tong (2000). "Structural basis for signal transduction by the 
Toll/interleukin-1 receptor domains." Nature 408(6808): 111-115. 

Yamamoto, M., S. Sato, H. Hemmi, S. Uematsu, K. Hoshino, T. Kaisho, O. Takeuchi, K. Takeda and S. Akira (2003). "TRAM is 
specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway." Nat Immunol 4(11): 1144-
1150. 

Yamamoto, M., S. Sato, K. Mori, K. Hoshino, O. Takeuchi, K. Takeda and S. Akira (2002). "Cutting Edge: A Novel Toll/IL-1 
Receptor Domain-Containing Adapter That Preferentially Activates the IFN-  Promoter in the Toll-Like Receptor Signaling." 
The Journal of Immunology 169(12): 6668-6672. 

Yamazaki, T. and T. Kurosaki (2003). "Contribution of BCAP to maintenance of mature B cells through c-Rel." Nat Immunol 
4(8): 780-786. 

Yamazaki, T., K. Takeda, K. Gotoh, H. Takeshima, S. Akira and T. Kurosaki (2002). "Essential immunoregulatory role for BCAP 
in B cell development and function." J Exp Med 195(5): 535-545. 

Yokoyama, K., I. H. Su Ih, T. Tezuka, T. Yasuda, K. Mikoshiba, A. Tarakhovsky and T. Yamamoto (2002). "BANK regulates BCR-
induced calcium mobilization by promoting tyrosine phosphorylation of IP(3) receptor." EMBO J 21(1-2): 83-92. 

Yoneyama, M., M. Kikuchi, T. Natsukawa, N. Shinobu, T. Imaizumi, M. Miyagishi, K. Taira, S. Akira and T. Fujita (2004). "The 
RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses." Nat Immunol 5(7): 
730-737. 

Yoon, S. I., O. Kurnasov, V. Natarajan, M. Hong, A. V. Gudkov, A. L. Osterman and I. A. Wilson (2012). "Structural basis of TLR5-
flagellin recognition and signaling." Science 335(6070): 859-864. 

Yu, J., C. Wjasow and J. M. Backer (1998). "Regulation of the p85/p110alpha phosphatidylinositol 3'-kinase. Distinct roles for 
the n-terminal and c-terminal SH2 domains." J Biol Chem 273(46): 30199-30203. 

Yu, Q., K. Qu and Y. Modis (2018). "Cryo-EM Structures of MDA5-dsRNA Filaments at Different Stages of ATP Hydrolysis." Mol 
Cell 72(6): 999-1012 e1016. 

Zanoni, I., R. Ostuni, L. R. Marek, S. Barresi, R. Barbalat, G. M. Barton, F. Granucci and J. C. Kagan (2011). "CD14 controls the 
LPS-induced endocytosis of Toll-like receptor 4." Cell 147(4): 868-880. 

Zhang, L., S. Chen, J. Ruan, J. Wu, A. B. Tong, Q. Yin, Y. Li, L. David, A. Lu, W. L. Wang, C. Marks, Q. Ouyang, X. Zhang, Y. Mao 
and H. Wu (2015). "Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization." 
Science 350(6259): 404-409. 

Zhang, X., M. Bernoux, A. R. Bentham, T. E. Newman, T. Ve, L. W. Casey, T. M. Raaymakers, J. Hu, T. I. Croll, K. J. Schreiber, B. 
J. Staskawicz, P. A. Anderson, K. H. Sohn, S. J. Williams, P. N. Dodds and B. Kobe (2017). "Multiple functional self-association 
interfaces in plant TIR domains." Proc Natl Acad Sci U S A 114(10): E2046-E2052. 
  



 

 

111 

7 Acknowledgements 

 

I am thankful to AstraZeneca for the generous PhD studentship and the excellent scientific 

support from Jon Read and David Fisher. 

 

I would like to thank Nick for giving me all the space and scientific freedom I could have 

hoped for. 

 

Thanks to the members of the lab for helping with numerous experiments and scientific 

discussions. 

 

But most of all, thanks to Amanda for believing in me, and making the last few years one big 

exciting adventure. 

  



 

 

112 

8 Appendix 

Appendix Table 1. KinasePhos CSNK2 prediction BCAP of phosphorylation. (Wong, Lee et al. 2007) 

 

 

Position Target Residue Kinase Sequence SVM score

52 S CSNK2 GPEASFSAE 0.562

54 S CSNK2 EASFSAEDL 0.879

72 S CSNK2 VVLLSAELV 0.549

149 S CSNK2 SGCDSVTDT 0.586

213 S CSNK2 EAEFSPEDS 0.887

592 S CSNK2 RPQSSIYDP 0.730

720 S CSNK2 TDSTSSTAS 0.653

740 S CSNK2 LSVSSGMEG 0.895
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Appendix Figure 1. Overview of peptide array results. 

(A) Peptide arrays were incubated with 1-5 µg of recombinant SH2 domain protein as indicated. Protein binding was visualised 

by immunoblotting with ANTI-GST antibody. (B) Sequence overview of peptide arrays used in (A). 

A

B
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Appendix Figure 2. Secondary structure-based sequence alignment of BCAP and BANK1 illustrates a similar domain 

architecture. 

PROMALS3D (Pei, Kim et al. 2008) secondary structure alignment of BCAP and BANK1. ⍺-Helix and β-strand signatures 

are coloured in red and blue, respectively. Conserved secondary structure elements are indicated by a ‘e’ for β-strands and ‘h’ 

for ⍺-helices. Amino acids conservation is indicated by a range of symbols ranging from a ‘.’ for no conservation to capitalised 

and bold letters for sequence identity. 

 

 

 


