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MOLECULAR CHARACTERISATION OF EXPANDED MOUSE 

HAEMATOPOIETIC STEM CELLS USING A NOVEL IN VITRO 

REPORTER STRATEGY 
 

Lok Chi James Che 

Abstract 

Haematopoietic stem cells (HSCs) are responsible for the lifelong maintenance of the blood 

forming system which produces trillions of blood cells daily. They are able to achieve this because 

of two defining properties: 1) they can give rise to progeny which eventually form all of the blood 

cell types in an organism and 2) they can create equally potent daughter cells. This latter property 

of self-renewal has the potential to be harnessed to create unlimited numbers of HSCs outside the 

body, which would be highly beneficial to cellular and gene therapy. As a result, decades of research 

have focused on improving in vitro HSC expansion efficiency with most studies failing to expand 

functional HSCs in sufficiently large quantities. Recent efforts in mouse HSC biology achieved a 

more than 200-fold expansion of functional HSCs; however, single cell cultures in these conditions 

displayed a large amount of heterogeneity. Using a recently generated HSC reporter mouse, I 

devised a novel in vitro reporter strategy capable of reading out functional HSC activity in vitro and 

also discovered a previously unreported population of lymphoid cells marked by the reporter 

(Chapter 3). I showed that the in vitro reporter strategy could be used to screen for molecules that 

promote HSC expansion and could prospectively identify single-cell derived cultures that 

contained large numbers of functional HSCs (Chapter 4). This permitted us to undertake gene 

expression profiling to determine the molecular identity of expanded HSCs using RNA 

sequencing. Comparing the transcriptome of these cells and the secretome of these heterogeneous 

clonal cultures, I identified potentially novel regulators for promoting the expansion of HSCs 

(Chapter 5). 
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1 Introduction 

1.1 Haematopoiesis 

The blood system has two main functions. Firstly, it is vital for transporting nutrients and signalling 

molecules, such as oxygen, carbon dioxide and hormones to and from cells around the body1. 

Secondly, it produces the immune cells that allow the body to ward off infections and mount 

immune responses1. Its main component, blood, is a liquid tissue consisting of aqueous plasma 

and a collection of specialised cells that serve specific functions1. Blood plasma is made up of 

mostly water and contains organic molecules such as proteins, nucleic acids, electrolytes, sugars, 

vitamins and amino acids, which serves as everything the body needs to maintain its function1. 

Amongst the cellular portion, there are two main classes of specialised blood cells – myeloid cells 

(more details in section 1.1.1 below) and lymphoid cells (section 1.1.2 below)2. It has been 

estimated that the body generates between 100 billion to 1 trillion of these diverse blood cells every 

day3. 

 

The process of forming these blood cellular components is known as haematopoiesis (from 

ancient Greek: Haima meaning “blood”; Poiesis meaning “to make”)4. As depicted in Figure 1.1, 

haematopoiesis is considered to be a hierarchical process. At the apex of the hierarchy is a rare 

group of cells residing in the bone marrow (BM) called haematopoietic stem cells (HSCs) that give 

rise to progenitor cells with limited self-renewal ability and potency, which in turn give rise to the 

mature specialised cells with very little to no self-renewal ability3. To provide the billions of blood 

cells required every day, the bulk of the proliferation is done by the progenitor cells5. Under 

homeostatic conditions, HSCs are kept in a quiescent state, also known as G0
6. The reduced 

proliferative burden is thought to protect HSCs from accumulating mutations during DNA 

replication and cell division, increasing their longevity6,7. At the population level, the balance 

between differentiation and self-renewal must be tightly regulated in order to ensure homeostasis5. 

Too much differentiation can lead to exhaustion of the HSC pool; too much self-renewal 

accompanied by lack of maturation can lead to haematological malignancies such as 

myeloproliferative diseases or in more severe cases leukaemia (Figure 1.2)5. 
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Figure 1.1 The haematopoietic hierarchy 
A simplified haematopoietic hierarchy illustrating the concept of stepwise differentiation from HSCs (the 
apex) to stages of lineage-restricted progenitors and finally to specialised mature cell types. Through tight 
regulation, all the mature blood cells required throughout life are produced and replenished from the HSC. 
Illustration by Mairi Shepherd (unpublished). 

 

Historically, to study the various functions of individual cell types, the field has utilised cell surface 

markers to categorize different subsets of cells within this haematopoietic hierarchy, also known 

as immunophenotyping5. This has led to an increasingly refined differentiation tree with increasing 

numbers of immune cell subtypes and consequently increasing functional purity of marked 

populations5. Classical categorisations have presented a stepwise process of differentiation started 

with long-term HSCs (LT-HSCs) to short-term HSCs (ST-HSCs) to multipotent progenitors 

(MPPs)8; the first major branch point in the differentiation tree occurs with lineage restricted 

progenitors such as the common myeloid progenitor (CMP) and common lymphoid progenitor 

(CLP) 8; These oligopotent progenitors give rise to unipotent progenitors and eventually to more 

mature cell types 8. Typically, each step along the hierarchy results in more restricted self-renewal 

and differentiation potential and recent cellular and molecular evidence points towards a 

continuum of differentiation and self-renewal potential (discussed in detail in section 1.3.3 below) 
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8. That said, the broad concept of the hierarchically organised tissue has remained useful for stem 

cell biology.  

 

Figure 1.2 Haematopoietic tissue homeostasis and the balance between HSC self-renewal 
and differentiation 
At the population level, HSCs must balance between differentiation and self-renewal in order to ensure 
proper homeostasis. Too much self-renewal can lead to haematological malignancies like myeloproliferative 
diseases or in more severe cases leukaemia, provided there is a differentiation block; Too much 
differentiation can lead to the depletion if the HSC pool. Illustration adapted from Mairi Shepherd 
(unpublished). 

1.1.1 Myeloid cells 

Generally speaking, the broad classes of myeloid cells include erythrocytes, monocytes, 

macrophages, granulocytes, mast cells, megakaryocytes and thrombocytes1. Each cell lineage has 

specialised jobs that ensure peripheral tissues are supplied with nutrients and are monitored for 

infection1.  

Accounting for about 40-45 percent of the total volume of blood1, erythrocytes, also known as red 

blood cells, are the most abundant cell type in blood and are specialised to carry oxygen around 

the body1. In comparison, the rest of the cellular components (i.e. the white blood cells (WBCs)) 

described below make up about 1 percent of total blood volume1. Megakaryocytes are the largest 

cells in the marrow that break up to form much smaller thrombocytes (or platelets), which are 

technically not cells but fragments of cells1. Thrombocytes play an important role in blood clotting, 

by adhering to each other and onto injured surfaces1. Monocytes give rise the macrophages and 

myeloid dendritic cells. Macrophages are large immune cells capable of phagocytosing pathogens 

as well as infected cells across many tissues in the body9. Similar to macrophages, dendritic cells 

are specialised antigen presenting cells that phagocytose infectious agents and present the antigen 

fragments on its surface for cells of the adaptive immune system to recognise1. Granulocytes, 

Stem cell

Stem cell Differentiated cell 

Aging Cancer Tissue homeostasis  
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characterised by the presence of granules in the cytoplasm, are the most numerous types of WBCs1. 

There are 3 primary subtypes of granulocytes: neutrophils, basophils and eosinophils; which are 

separated by the colour of the granules when the cells are stained by a compound dye. Neutrophils 

and eosinophils are actively phagocytic and respectively function against bacteria and parasites1, 

whereas basophils mainly release the contents of their granules, including histamine and 

leukotrienes1. Mast cells are similar to basophils in terms of morphology, and also contain granules 

loaded with histamine and other compounds10. When activated, mast cells release these immune 

mediators which induce inflammation1. 

1.1.2 Lymphoid cells 

Lymphoid cells, or lymphocytes, constitute about 30-40 percent of WBCs1. Named for their 

abundance in the lymphatic system, which include the lymph nodes, spleen, thymus tonsils and 

lymphoid tissues around the gastrointestinal tract, lymphocytes broadly include 3 classes of cell 

types: B cells, T cells and Innate lymphoid cells, which includes natural killer cells (NK cells)5,11. 

As the name suggests, innate lymphoid cells (ILCs) are innate immune cells that are derived from 

CLPs12. They include 5 subclasses: NK cells, ILC1s, ILC2s, ILC3s and LTi cells12. Of these, the 

most well-known are NK cells, which are cytotoxic cells that kill cancerous or virus-infected cells12. 

All ILCs excrete an array of cytokines which mediate the immune response12. 

Unlike innate immunity, adaptive immunity is highly targeted and specific to antigens. B and T 

cells are important components of adaptive or acquired immunity to foreign cells and antigens1.  

B cells are responsible for producing the antibody-driven adaptive immune response. Upon 

encountering a foreign substance or antigen, B cells differentiate into plasma cells, which secrete 

antibodies to which bind to the antigen and neutralises it. T cells are important for cell-mediated, 

cytotoxic adaptive immune response1. There are two main classes of T cells: T killer and T helper 

cells. Killer cells are responsible for triggering apoptosis in infected cells that it recognises, while 

T helper cells secrete cytokines that facilitate the response of T killer cells1.  

More recently described are a rare group of T cells (0.1% of peripheral blood T cells), known as 

Natural killer T (NKT) cells that share some properties of both T cells and NK cells13. The term 

NKT cell was first described as a subset of T cells that express natural killer cell marker NK1.1 14. 

It is now generally used to describe CD1d+-restricted T cells. They are heterogenous and can 

further be subdivided into 3 classifications summarised by Godfrey et al. in Table 1.1 (below)14. 

Of note, Type 1 NKTs, also known as invariant NKT (iNKT) cells, can be further subdivided into 

iNKT1, iNKT2 and iNKT17. In Chapter 3, I describe a previously unknown subpopulation of 

immune cells marked by expression of Fgd5, which identifies a novel subset of iNKT1 cells. 
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Table 1.1 Classification of NKT and NKT-like cells adapted from Godfrey et al.14 

 Type 1 NKT Type 2 NKT NKT-like 

Other names 

classical NKT  
 

invariant NKT (iNKT) non-classical NKT NK1.1+ T cells 

Vα14i NKT (mouse) diverse NKT CD3+ CD56+ T cells 

Vα24i NKT (human)   

MHC Restriction CD1d CD1d MHC, other? 

α-GalCer reactivity + - - 

T-cell-receptor 
repertoire 

Vα14-Jα18: 

diverse diverse 
Vβ8.2, 7, 2 (mouse) 

Vα24-Jα18: 
Vβ11 (human) 

NK1.1 
+(resting mature) 

+/- - -(immature or post-
activation) 

IL4 production + + - 

IFNγ production + + + 
 

1.1.3 Haematopoietic homeostasis 

Haematopoiesis is a dynamic and responsive process. Over the course of a lifetime, the 

haematopoietic system has to respond to changes in the environment and adapt to stresses such 

as infections15, sudden or chronic losses of blood7, malignant haematopoiesis16 and 

chemotherapy17. A clear demonstration of the responsiveness of HSCs to environmental stress is 

its ability to replenish the haematopoietic system after transplantation into marrow-ablated 

recipients, perhaps most powerfully illustrated by transplantation of single HSCs in experimental 

models18. At each point along the haematopoietic hierarchy, cells have to make one of many 

possible “fate choices”, such as to proliferate, self-renew, differentiate or to initiate apoptosis 

(discussed in more detail throughout later sections)5. These choices are regulated by extrinsic and 

intrinsic cues, providing feedback mechanisms that maintain proper functioning haematopoietic 

homeostasis19. As the source of the majority of haematopoietic cells, HSCs are of particular interest 

and will be the focus of the next section. 

1.2 Haematopoietic stem cells 

Adult stem cells, or tissue-specific stem cells, are cells with the ability to produce specialised cells 

of a given tissue and retain this ability for the lifetime of an organism. HSCs are one of the best 
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studied tissue stem cells and, as mentioned, are ultimately responsible for producing all mature 

blood cell types. They are able to do this because they are multipotent (i.e., they can make the 

multiple different types of mature blood cells) and they can self-renew (i.e. they can generate 

daughter cells with the same properties as the parent cells). Self-renewal is particularly important 

because it gives the HSC the ability to generate one or two equally potent cells upon cell division. 

 

As mentioned, HSCs are usually in a quiescent state. HSCs have also been demonstrated to be in 

a low metabolic state marked by low mitochondrial activity, which is autophagy dependent20,21. 

Several metabolic studies have suggested that HSCs rely mainly on glycolysis instead of oxidative 

phosphorylation22. Unlike senescent cells, however, HSCs can re-enter the cell cycle upon 

stimulation, although they typically return to quiescence6. Contrastingly, haematopoietic 

progenitors are highly proliferative and metabolically active cells that depend on oxidative 

metabolism7,22,23. 

 

In label-retaining studies, the most dormant HSCs, which retain the label over months at steady 

state, have been demonstrated to possess the most robust repopulation potential in transplantation 

assays6,24–27. Additionally, when stimulated, LT-HSCs exit quiescence and enter cell cycle much 

later than ST-HSCs6,28,29. In studies looking at Bromodeoxyuridine (BrdU) retention, LT-HSCs 

have been estimated to divide once every 55-145 days6,24. In stark contrast, ST-HSCs have been 

shown to divide at least 4 times more often. In a later study, Takizawa et al. showed that in steady 

state, HSCs with life-long multilineage repopulation potential are present in cycling (>5 times in 7 

weeks) and quiescent (no divisions in 14 weeks) cells30. However, these studies assume that the 

label can stain all HSCs, and thus it is difficult to ascertain the conclusions. In Tie2Cre-YFP labelled 

HSCs, Busch et al. estimated that 1 in 110 LT-HSCs differentiate into ST-HSCs per day31. 

However, they did find that fluorouracil (5-FU) challenge increased the output of HSCs, showing 

that the division rate is dependent on environmental factors. Controversially, Bernitz et al. had 

reported that using fluorescent Histone 2B fusion protein (H2B-FP) label retaining assays, HSCs 

divide four times before entering quiescence permanently25. A very recent paper by Morcos et al. 

have challenged this, by arguing that there is leaky H2B-FP expression with age and that this 

background expression can be misinterpreted as label retention. They found that HSCs continue 

to cycle at slow rates throughout old age32. 

 

In addition to the reduced proliferative burden which helps prevent accumulation of random DNA 

mutations during cell divisions, HSCs benefit from additional DNA damage protection by 
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expressing high amounts of DNA damage repair and cytoprotective genes such as ABC/MDR 

transporter genes3. Studies have further suggested that quiescence is an actively maintained and 

tightly regulated state, characterised by low levels of protein synthesis and mitochondrial oxidative 

phosphorylation33. Low levels of oxidative metabolism are hypothesised as a protective mechanism 

to generate fewer Reactive Oxygen Species (ROS), which may cause cellular damage34. 

1.2.1 Early evidence for haematopoietic stem cells 

In seminal experiments during the 1960s, James Till and Ernest McCulloch provided the first 

formal evidence for the properties of multi-lineage differentiation and self-renewal to be contained 

within a single cell in the adult haematopoietic system. Building on the discovery that lethally 

irradiated animals could be rescued by injection of BM cells35, they were able to show 

experimentally that these cells form macroscopic colonies in the spleen of irradiated mice in the 

first few weeks after transplantation36. Furthermore, the number of colonies formed on the spleen 

were proportional to the number of BM cells injected. This technique allowed for an 

approximation of the frequency of spleen colony forming units (CFU-S) at 1 in 10,000 BM cells36. 

Within each spleen colony there were cells from multiple lineages and, in a follow up paper, each 

colony was also demonstrated to be clonal, meaning the cells in the colony had derived from a 

single starting cell37. Finally, the discovery that these colonies can form more colonies in 

secondarily transplanted mice proves that such cells are capable of self-renewal38. Thus, the key 

properties of functional HSCs, self-renewal and multipotency, were established. These early 

experiments also gave additional insights about HSCs, including the description of heterogeneity 

in the cell division rates and differentiation potential of different cells capable of making a spleen 

colony – providing the first glimpse into HSC functional heterogeneity discussed later in section 

1.3 below. Furthermore, studies based on tritiated thymidine uptake suggest that CFU-S initiating 

cells are mostly quiescent39. Research over the last decades has revealed that CFU-S are not the 

most primitive haematopoietic subset and there exists a more primitive cell type that has much 

more extensive self-renewal potential, known as the HSC40. 

1.2.2 HSCs in development 

To meet the demands of a growing organism, a natural period of HSC expansion occurs during 

embryonic development. HSCs isolated from developing embryo have markedly different 

properties compared to adult HSCs41, and their consequent cell fate choices are differently 

balanced. During development in mice, haematopoiesis occurs in two separate waves: the primitive 

and definitive wave41. Primitive haematopoiesis first occurs around Embryonic (E) day 7.5 (E17 

in humans) in the yolk sac blood islands. In this wave, erythroid progenitors are formed in order 
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to provide the early embryo with red blood cells and some macrophages that it requires for 

oxygenation41. Because these primitive cells lack self-renewal capacity, the primitive wave is 

transient and transplantable HSCs are not generated11. Definitive haematopoiesis (sometimes 

referred to as adult haematopoiesis) occurs subsequently at E8.25 (E21 in human) in the aorta 

gonad mesonephros (AGM) region and placenta and involves the generation of the first 

transplantable HSCs42–45. At E9.5, erythromyeloid progenitors appear in the extra embryonic yolk 

sac, followed by the placenta. At E9 in mice, the foetal liver (FL) begins to be colonised by 

haematopoietic cells derived from the seeding tissues such as placenta, yolk sac and AGM. Around 

E11 and E12, the FL has already become the main site of definitive haematopoiesis until the BM 

is established just before birth with peak HSC production at approximately E14.5. From then on 

and throughout adulthood, the BM is the primary site of haematopoiesis46.  

 

FL HSCs undergo a massive expansion, increasing in numbers by 10-30 fold within 4 days47. While 

there may still be some seeding of HSCs generated from the placenta43,48,49, most of the increase in 

foetal HSCs is due to their frequent execution of symmetrical self-renewal divisions50,51. This is 

reflected by their faster cycling rates compared to adult HSCs - all foetal HSCs are cycling while 

>75% of adult HSCs are quiescent52. In the early stages after transplantation, FL HSCs repopulate 

recipients more quickly than their adult counterparts and generate more HSCs through symmetric 

self-renewal50,53,54. Around 6 weeks after transplantation, FL HSCs adopt a more adult-like self-

renewal capacity41, resembling the natural transition that occurs between 3 and 4 weeks after birth41. 

While certain genes have been identified to be exclusively important for FL HSCs, such as Sox1755 

and Ezh256; or vice versa in adult HSCs, such as Bmi157,Gfi158,59 and Cebpa60, much remains to be 

discovered about the molecular regulation of the 3-4 week switch. Thus far, the Lin28b-let-7-

Hmga2 axis has been shown to be a key pathway regulating this developmental transition61.  

1.2.3 HSCs in ageing 

It is clear that as humans and mammals age, they are generally less able to perform homeostatic 

functions and one of the hallmarks of ageing that contributes to this is the exhaustion of stem 

cells62; HSCs are no exception. As HSCs age, they gradually lose self-renewal and regenerative 

potential63. Studies have shown that when competed against young HSCs in transplantation 

settings, young HSCs are functionally superior in terms of the number and balance of myeloid and 

lymphoid cells they produce64–66. In both mouse and humans, ageing is associated with an increase 

in myeloid cells and studies have shown that aged HSCs are myeloid-biased or rather lymphoid 

deficient67–69. Interestingly, the absolute numbers of phenotypic HSCs also increases during 

ageing70, which coincides with an increase in heterogeneity of individual HSCs64,65,71,72. 
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This finding is especially interesting in light of the recently described phenomenon of age-related 

clonal haematopoiesis, where the majority of blood cells are derived from a small number of 

clones. This reduced genetic diversity can be observed at the stem cell level and also independently 

in more mature cells63. This could be a result of an outgrowth of a dominant stem cell, or a decrease 

in the total number of stem cells, the latter of which would allow mutations to be detected more 

readily amongst a smaller pool of HSCs. Notably, clonal haematopoiesis occurs in healthy 

individuals and although it is associated with higher risks of malignancy, it is not in and of itself a 

sign of disease63.  

 

There are several cell intrinsic mechanisms that have been reported to contribute to HSC ageing, 

including DNA damage, telomere shortening, epigenetic misregulation and loss of cell polarity73. 

Defects in DNA repair machinery have been linked to premature stem cell ageing in both mice 

and patients74. The decline in stem cell activity can be accelerated upon replicative stresses, due to 

the increased likelihoods of random mutations with each replication74,75. 

 

A secondary mechanism, whereby replication can cause DNA damage is by the shortening of 

telomeres. HSCs express telomerase which should elongate telomeres76, however telomeres still 

shorten during ageing in humans and mice77,78. In both humans and mice, the telomere deficiencies 

are associated with HSC decline77,79,80. However, the overexpression of telomerase in mice does 

not fully rescue functional impairment of HSCs, suggesting that shortening telomeres is not the 

only part of the picture81. Of note, the telomeres in laboratory mice are much longer than mice 

found in the wild, and thus, the manipulations of telomerase expression may not have significant 

observable effects82,83. 

 

In aged HSCs, there are signs of impaired levels of autophagy, which normally functions to recycle 

organelles such as mitochondria20. Mitochondria are found to accumulate in aged HSCs, which 

causes an increase in metabolic stress and reactive oxygen species (ROS) production34,84. The 

accumulation of ROS has been shown to compromise HSC function and the reduction in 

mitochondrial stress can reverse the loss of stem cell function84. One mechanism through which 

ROS was suggested to affect HSCs was by inducing mitochondrial DNA mutations. It was shown 

that mitochondrial DNA mutations accumulate with age and partially drive haematopoietic 

dysfunction, however it was also shown that HSCs are relatively resistant85. 
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Apart from random mutations, clonal haematopoiesis is highly associated with certain somatic 

mutations, including in epigenetic and transcriptional regulator genes such as JAK2, DNMT3A, 

TET2 and ASXL186–90. This suggests a mechanism of selection at play in clonal haematopoiesis, 

whereby cells that acquire certain mutations can outcompete other clones either through expansion 

or increased resilience. However, several papers have also reported coordinated changes to the 

HSC niche (see section 1.2.4 below) during ageing that are associated with clonal haematopoiesis 

or malignancy91–94, suggesting the possibility that selection is induced by a changed 

microenvironment that favours one clone over others. The extent of the role of the ageing niche 

has yet to be fully understood. 

1.2.4 The stem cell niche 

The concept of the HSC ‘niche’, the idea that there are specialised sites within the BM that support 

HSCs, was first proposed by Ray Schofield95. He suggested that the interactions with other cells 

form a unique environment that maintains the self-renewal activity of an HSC. This concept was 

hugely influential in other stem cell fields and there have been many examples described since 

(reviewed by Xie et al.96). A particularly striking demonstration of this idea came when germ stem 

cells (GSCs) in Drosophila melanogaster were found to require direct contact with the cap cells within 

the ovary (Figure 1.3)97,98. It was further demonstrated that this physical contact was mediated by 

drosophila E-cadherin and that cap cells express Dpp, a bone morphogenetic protein (BMP) 

ligand, which is essential for GSC self-renewal98,99. It was subsequently discovered that BMP 

signalling is regulated by binding to collagen IV, which is expressed by plasmatocytes100,101. Thus, 

the concept of a physical stem cell niche was supported and understood at the molecular level, 

which is now referred to as the microenvironment surrounding the stem cell. 
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Figure 1.3 Drosophila germ stem cells require contact with cap cells for their self-renewal. 
GSCs require contact with cap cells that express Dpp in order to maintain their stem cell identity. Once contact 
is removed, they begin to differentiate. Figure adapted from Mairi Shepherd (unpublished). 

 

Postnatally, HSCs primarily reside in the BM, though they are also sometimes found in circulation 

in the blood. Nonetheless, they are extremely rare cells that comprise about 0.003% of the total 

BM cells (1 in every 30,000 cells)102. While all bones support haematopoiesis in mice, in humans 

the major site of haematopoiesis is in the axial skeleton (cranium, sternum, ribs, vertebrae and 

ilium)103. However, most of our knowledge of the BM niche comes from studies of long bones in 

mice104. Notably in humans, apart for the proximal regions, long bones have limited 

haematopoietic activity104. 

 

Many studies have looked at the architecture of the BM to understand what the microenvironment 

around an HSC would be like. As reviewed by Boulais et al. and Pinho et al.104,105, the BM is a 

highly vascularised organ, situated within the cortical bone, which mostly functions mechanically 

as a hard shell. The endosteum lines the inside of the cortical bone, forming the interface between 

the bone and the marrow. Around the endosteum, osteoblasts produce the bone itself and 

osteoclasts are responsible for breaking down bone. 

 Trabecular bone forms the inner bone tissue and is sometimes known as “cancellous” or “spongy 

bone”. Longitudinal arteries and veins run parallel to the long axis of the cortical bone. The central 

artery branches into smaller radial arteries and arterioles, often close to the endosteum. Fluid is 

drained from the marrow through the sinusoidal network, which is distributed throughout the 

Germ stem 
cells

Cap cells

Differentiated cells
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marrow and merges into a central sinusoid forming the venous circulation. Through this network 

of arteries and veins, HSCs and other haematopoietic cells can enter and exit the BM into blood 

circulation around the body. Lastly the BM is interspersed with sympathetic nerves, and 

parasympathetic fibres may also innervate the distal femoral metaphysis. In adult mouse BM, 

arterioles are wrapped by sympathetic nerves and perivascular stromal cells, forming structures 

known as the neuro-reticular complex. These stromal cells are characterised by the expression of 

pericyte marker neural-glial antigen 2 and the type VI intermediate filament protein Nestin (NES). 

 

With regards to the specific components of the HSC BM niche that regulate the maintenance and 

differentiation of HSCs, there has been numerous studies that have interrogated the cell types and 

molecular signals at play. Paradoxically, almost every cellular constituent of the BM has been 

suggested to play a role in HSC biology103,104,106–108. Some groups have suggested that there are 

distinct niches for HSC subpopulations109, although this may be complicated by the fact that HSCs 

are a heterogeneous population with distinct properties and no HSC reporter yet exists with 100% 

specificity. 

 

The anatomical location of HSCs and their proximity to various niche cells therefore remains a 

topic of debate. The earliest investigation of HSC localisation by Lord et al. used a small gauge 

needle to flush out cells from the centre of the femur and showed that CFU-S are more 

concentrated near the bone surface110. In early imaging experiments utilising traditional histological 

and intra-vital microscopy imaging techniques, transplanted Haematopoietic stem and progenitor 

cells (HSPCs) were found to home towards the endosteum of recipient mice111,112. This finding was 

supported by functional changes in HSCs upon genetic ablation of osteoblasts found near the 

endosteum113. However, these studies are limited by the purity of HSCs in question, the extensive 

manipulation during HSC isolation and the perturbed nature of the BM during transplantation and 

irradiation. Many subsequent studies have supported the endosteum being the primary HSC 

niche112,114–119. 

 

However, more recent studies have challenged this view of the endosteal niche. In these studies, 

endogenous HSCs marked using surface markers were located close to endothelial cells, pointing 

towards a perivascular niche120,121. Several studies have pointed to mesenchymal cells, mainly 

wrapped around sinusoids, as important players in the niche122. In particular, it was demonstrated 

that mesenchymal stem and progenitor cells can form ectopic haematopoietic sites when 

transplanted subcutaneously or sub-renally123,124. Important mesenchymal cells found in close 
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proximity to HSCs include Nes-GFP+ perivascular cells120, Leptin receptor-expressing perivascular 

cells125 and CXCL12-abundant reticular cells126,127, which appear to be highly overlapping 

populations. HSCs are known to express high levels of chemokine receptor CXCR4, which bind 

to the chemokine CXCL12 and genetic deletion of CXCR4 severely reduces HSC numbers128. 

Furthermore, many factors known to be important HSC regulatory signals are expressed by 

perivascular cells, including stem cell factor (SCF)102,129,130, osteopontin (OPN)115,116, CXCL12127,128, 

granulocyte colony stimulating factor (G-CSF), interleukin 6 (IL-6), pleiotrophin (PTN)131,132 and 

angiopoietin114,133. Genetic ablation of these cells or their cytokine production causes a reduction 

in HSCs108. Within the perivascular niche, it remains unclear whether HSCs preferentially reside 

closer to sinusoids, or arterioles. Some reports have suggested that HSCs that are more quiescent 

reside closer to arterioles109,134,135. To complicate the matter, even Schwann cells have been 

implicated in the maintenance of HSCs136,137. 

 

Since imaging techniques are limited by the number of fluorophores used and staining is 

particularly difficult in vivo, the development of HSC reporter mice has been particularly 

instrumental in the study of HSC niches in vivo. In a study of Hoxb5 reporter mice, marked HSCs 

were found to be associated with VE-cadherin+ endothelial cells138. Using the α-catulin reporter 

mice, a recent study suggested that HSCs are not associated with arterial vessels but instead 

randomly distributed in the BM in a way that is indistinguishable from randomly generated dots139.  

 

Recently, quiescent HSCs in aged mice were shown to reside predominantly in perisinusoidal 

niches, rather than near arterioles91. Even more recently, a group used a dual genetic strategy to 

create a reporter called MFG mouse, which uses a Flt3cre allele to cut out the GFP coding sequences 

in the Mds1-GFP reporter marking primitive haematopoietic progenitors.140 They showed that this 

subset of HSCs reside almost exclusively next to sinusoids near the endosteal surface, and not 

arterioles. While previous studies have shown the importance of hypoxic environments to the HSC 

niche141–143, this study found that HSCs are not in the deepest hypoxic regions, but rather 

moderately hypoxic environments. 

 

However, as detailed in section 1.2.6, none of these reporters have marked HSCs exclusively. With 

the improvement of in vivo live imaging techniques and more reliable HSC reporter/markers, it 

should be possible to clarify the controversy. The advancement in characterising niche cell 

subtypes, using single cell RNA-sequencing (scRNA-seq) technology, will also be useful144–146. 

Different niches such as the FL niche can also be examined to determine core HSC regulators. 
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Figure 1.4 The bone marrow niche 
The BM is a complex tissue where the HSC resides. It contains arterioles, sinusoids, stromal cells, various 
haematopoietic cells as well as osteoclasts and osteoblasts. Many of these cells have been implicated in the 
regulation of HSC function. Illustration by Mairi Shepherd (unpublished). 

1.2.5 Assays for stem and progenitors 

In vivo HSC transplantation assay 

The first in vivo assay for stem-cell activity was based on the ability of HSCs to rescue lethally 

irradiated recipients by BM transplantation35. As mentioned in section 1.2.1, CFU-S assays were 

used in the early days of the field to track cells that upon transplantation home to the spleen and 

form macroscopic colonies, providing short-term radioprotection to the mouse147. To this day, 

BM transplantation is still used clinically, and it is still the gold standard for testing whether a cell 

population contains HSCs or when transplanted as a single cell, whether that cell is an HSC. 

Inherent in this, from the very start, HSCs were given a functional definition: a cell that, when 

transplanted serially, can sustain long-term multi-lineage engraftment. This has been useful for the 

field but is bound by the nature of retrospective assays and the common need to perturb the 

haematopoietic niche. 
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To track the progeny of HSCs, several groups pioneered the use of random retroviral integration 

sites as clonal markers to track the lineage output of donor cells148–150. This method was largely 

superseded by the CD45 congenic system, which typically involves two different CD45 alleles 

(CD45.1 and CD45.2) on the donor and recipient cells, which can be detected using different 

monoclonal antibodies151. CD45 encodes a surface protein common to all haematopoietic cells 

except erythrocytes and platelets, hence it can detect donor contributions to multiple lineages when 

combined with an antibody panel of other lineage markers, such as B220 (B cell), CD3 (T cell) or 

Mac-1 and Ly6g (granulocyte and macrophages) 151. Recently, the CD45 congenic system has been 

combined with Vwf or Gata1 transgenic system, in order to study five lineage donor contribution 

of platelets and erythrocytes additionally151. Because HSC reconstitution kinetics are slow, 

transplantations are usually accompanied by a dose of helper BM cells that contain haematopoietic 

progenitors with transient reconstituting potential, thereby securing the short-term survival of the 

recipients. Commonly, transplantations are combined with a limiting dilution assay (LDA), which 

allows the number of HSCs to be estimated within the original cell population152. 

 

The most stringent assay for self-renewal division events is the split doublet transplantation assay, 

also known as paired daughter cell transplantation assay19. In this assay, a single HSC is stimulated 

to divide once in vitro, and each daughter cell is then transplanted into different irradiated recipients 

to assay their respective reconstitution potential153. 

 

The definition of an HSC has evolved slightly over the years and typically it is defined as a cell that 

can sustain multi-lineage engraftment for an extended period of time (>16 weeks) upon serial 

transplantation into irradiated recipient mice147. Multilineage engraftment is commonly determined 

by donor blood lineages exceeding thresholds (usually >1%) and the length of engraftment and 

ability to repopulate secondary or tertiary recipients are requirements for its self-renewal 

capacity154. Secondary transplantation is the most rigorous way to test for LT-HSCs because only 

self-renewing LT-HSCs can reconstitute primary recipients and still have their progeny be able to 

do the same19. Cells that can reconstitute primary recipients for only 16 weeks but fail to 

reconstitute secondary recipients are termed ST-HSCs. If secondary reconstitution is only transient 

in nature, the donor cells are termed intermediate-term HSCs (IT-HSCs)155. 

In vitro colony assays 

As the transplantation assay is a time consuming and expensive assay, the field has developed in 

vitro assays that assess the various different functional properties of HSCs. The colony forming cell 

(CFC) assay, also known as the methylcellulose assay, is used to assess a cells ability to form 
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multilineage colonies in semi-solid media (made of agar or methylcellulose mixtures), upon 

cytokine stimulation156,157. To detect more primitive cells, the long-term culture initiating cell (LTC-

IC) assay cells can be used to assess the number of progenitors made in a longer culture period (as 

a surrogate for self-renewal) and myeloid and lymphoid differentiation capacity can be 

assessed158159. In the assay, cells are typically co-cultured with adherent stromal cells for an extended 

period of time (minimum 5 weeks)160–162. After this period, the culture is assayed for the number 

of CFUs present, which represent the progeny of original LTC-ICs, as input CFUs would have 

undergone terminal differentiation at this point. Stromal cells can also be genetically modified, for 

example to express human growth factors to enhance sensitivity of the assay163. Similar to the LTC-

ICs, cobblestone area-forming cell assays can be used to test for more primitive cells157. In this 

assay, stromal feeder layers are also used to support colonies of haematopoietic cells, which adhere 

and form observable “cobblestone areas”157. Because CFU assays tend to be insufficient at 

supporting B and T cell development in vitro, stromal cell lines, such as OP9 and OP9-DL1 (OP9 

cells overexpressing the Delta1 ligand) have been specifically established to expand B and T cell 

progenitors164. However, due to varying stromal cells, interlaboratory variability is often a 

concern147. As a result, liquid media culture assays have succeeded them in recent years for both 

human and murine HSCs28,102,165 (detailed in section 1.4).  

HSC purification strategies 

Multi-parameter fluorescence activated cell sorting (FACS) was a significant breakthrough that 

allowed the purification of single stem and progenitor cells from the BM5. It does this by 

combining the interrogation of fluorescent molecules attached to antibodies specific for surface 

proteins with physical isolation of single cells. Isolated cells can then be tested for their ability to 

contribute to blood cell formation in transplanted recipients for periods of months to years – the 

current functional definition of an HSC2. Steady improvements in the technology and the array of 

cell surface proteins and antibody combinations have led to the isolation of long term self-

renewing HSCs at an ever-increasing purity and these efforts are summarised in this section. 

 

HSCs were first described to not express lineage specific cell surface markers (Lin-), such as Mac-

1, B220, CD3, CD19, TER119 and Gr-1, and have low amounts of cell surface marker Thy1 

(Thy1lowLin-)166. Importantly, this demonstrated that HSCs can be enriched using negative selection 

of cell surface markers. In 1988, a landmark study appeared in Science where Spangrude et al. 

reported that Stem Cell Antigen 1 (Sca-1) could be used as a positive marker to greatly enrich 

HSCs167. Eight years later, the first formal demonstration that a single cell possessed both multi-

lineage reconstitution ability and durable self-renewal was published by Osawa et al. where single 
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Lin-Sca-1+c-Kit+(LSK)CD34- cells reconstituted lethally irradiated mice on their own18. Of these 

CD34-LSK cells, about 21% of single cells were reported to have long-term multilineage 

reconstitution. Subsequently, a number of different strategies using an ever-increasing number of 

cell surface markers were described to better enrich HSCs including CD34-18, CD38+168, CD105+169, 

Flt2/Flt3-170, EPCR+171, CD49b155, SLAM family markers (CD48-, CD150+, CD229-, CD244-)121, 

ESAM172 and others173. Additionally, the ability of HSCs to efflux certain dyes such as Rhodamine-

123-174, Hoechst 33342-175 can also be exploited as an isolation strategy. Interestingly, very few of 

these markers are essential to HSC function5. 

Similar efforts in humans have been hampered by the lack of equivalent functional transplantation 

assays. A major breakthrough came with the use of the severe combined immune-deficient (Scid) 

mouse, which lacks B and T cells176,177. The compromised immune system allowed the mouse to 

be xenotransplanted with human HSCs without complete immune rejection176. The engraftment 

efficiency was further improved by increasing the level of immuno-compromisation, as in the non-

obese diabetic (NOD)-Scid mice, which has added defects in its innate immune system178. As 

reviewed by Goyama et al.179, the best available xenograft model currently uses NOD-Scid-

IL2Rgc−/− (NSG) mice, which has complete T Cell, B cell and NK cell ablation, and express human 

cytokines to make up for mouse cytokines that are not cross-reactive176. However, even with the 

improvement in human xenograft mouse models, the purity of HSCs achieved to date is 

substantially lower than in the mouse system. The highest enrichment to date uses Lin-

CD34+CD38-CD45RA-CD90+CD49f+ cells from umbilical cord blood in a xenograft assay and is 

reported to contain up to 9.5% long term repopulating multi-lineage cells in primary 

transplantation180 (69% could give rise to secondary engraftment). However, this percentage 

decreases substantially in human BM and peripheral blood180,181. Human samples are an outbred 

population and therefore also have the problem of being highly variable176. Moreover, the added 

variability resulting from different lifestyles of individual humans can affect the behaviour and 

activity of HSCs176. Combined with the lack of readily available tissue samples, in the form of BM 

aspirates or cord blood samples, studying self-renewal mechanisms in single human HSCs is 

currently not tractable despite numerous studies which have engaged in their molecular 

profiling182,183. My thesis therefore focuses on the study of mouse HSCs with the vision to apply 

the findings in future to human HSC biology. 

 

Currently, the most advanced mouse HSC isolation strategies have reported purities (defined with 

stringent serial repopulating ability) of >40%5. My thesis largely uses the strategy published in 2015 

involving the ESLAM markers (CD45+CD150+CD48-EPCRhigh) 102,184. This strategy obtains mouse 
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LT-HSCs at >50%, is developmentally stable (e.g., isolates LT-HSCs at high purities from FL 

through to old age184,185), is easy to obtain from primary mouse BM, and is a relatively simple 

strategy of just 4 markers, making it easy to combine with various reporter mice. Addition of Sca-

1bright to this sorting strategy increases enrichment to 67%186, although some HSC subtypes are 

selectively depleted using this strategy and are therefore not appropriate for all assays. 

1.2.6 HSC reporter mice 

While the functional purities of >50% achieved by surface marker isolation strategies is impressive, 

especially considering the HSC population represent 0.003% of BM cells102, one could argue that 

the inability to purify HSCs completely is due to the limitations of only using cell surface markers. 

In recent years, several HSC reporter mice have been developed, spurred by efforts to label and 

study HSCs in the native BM niche. As summarised in Table 1.2 below, several groups have 

developed mouse models using different genes, such as Abcg2187, Fgd5188, Vwf189, Ctnnal1139 and 

Hoxb5138, that are expressed exclusively within the phenotypically defined primitive HSC 

compartment. In particular, reporter mice generated for Ctnnal1, Hoxb5 and Fgd5 have been 

reported to enrich for HSCs in primary transplantation to a frequency of 14.9%, 47.6% (in 

combination with other markers) and 31.2% respectively. Single cell gene expression studies have 

also validated these genes to be highly enriched in the long-term HSC cluster190, though the 

technology is limited by its inability to demonstrate the absence of expression in more mature 

progenies. In the recently developed MFG mouse140 that was mentioned in section 1.2.4, only 11% 

of phenotypic LT-HSCs (SLAM, CD150+CD48−LSK) expressed the GFP marker; and out of the 

total GFP cells, 85% are SLAM HSCs. Limiting dilution analysis of MFG cells suggests the purity 

of serially transplantable HSCs is around 1 in 9 (11%)140. Although still not perfect at labelling 

HSCs, these reporters could present useful tools for labelling cultured HSCs. 

 

For my doctoral studies, I utilised the Fgd5ZsGreen•ZsGreen/+ mouse because the reporter was validated 

across multiple phenotypically defined HSC populations and was functionally tested in multiple 

transplantation settings188. Fgd5 had not previously been studied in HSC biology and encodes a 

protein with Guanosine exchange factor (GEF) activity which has been suggested to act through 

CDC42 in the VEGF activation pathway191,192. Gazit et al. showed that reporter knock-in mice for 

Fgd5 had exclusive labelling of phenotypic HSCs (defined as LSKCD48-CD150+)188. They also 

showed that all HSC activity was confined to the small fraction of Fgd5+ cells in the BM188. Of 

note, homozygous knock-ins are embryonic lethal and thus all reporter mice are heterozygous for 

the gene188. 
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Table 1.2 Table of HSC reporter mice adapted from Pinho et al.105 
Mouse 
strain 

Genetic 
modification 

Specificity within the adult 
haematopoietic compartment Analysis Year 

published Ref 

Hoxb5–Tri-
mCherry Knock-in Specific to long-term HSCs 

• Modified CUBIC clearing and light-sheet microscopy 

2016 138 • Flow cytometry 

• Transplantation 

Ctnnal1–GFP Knock-in 
Restricted to HSPCs; requires KIT 
staining to enrich for HSCs 

• Modified Murray’s clearing, immunostaining and confocal 
and multiphoton microscopy 

2015 139 • Flow cytometry 

• Transplantation 

Fgd5–
mCherry Knock-in 

Restricted to HSCs; low expression in 
haematopoietic progenitors 

• Flow cytometry 
2014 188 

• Transplantation 

Vwf–GFP Transgenic 

Labels platelet-biased and myeloid-
biased HSCs, megakaryocyte 
progenitors, megakaryocytes and 
platelets 

• Flow cytometry 

2013 189 • Transplantation 

• Immunostaining and confocal microscopy 

Msi2–GFP Knock-in Labels haematopoietic progenitors 
• Confocal microscopy 

2016 193 
• Flow cytometry 

Pdzk1ip1–
GFP 

Transgenic 

Enriches for highly purified HSCs but 
also labels a small subpopulation of 
haematopoietic progenitors and 
mature granulocytes 

• Doxycycline chase 

2016 194 • Transplantation 

• Flow cytometry 

Evi1–GFP Knock-in Labels haematopoietic progenitors 
• Flow cytometry 

2011 195 
• Transplantation 

Scl–tTA-H2B–
GFP Transgenic 

H2B–GFPhigh label-retaining cells are 
enriched in quiescent long-term 
HSCs; also labels haematopoietic 
progenitors 

• Doxycycline chase 

2008 6 
• Transplantation 

• Flow cytometry 

• Immunostaining and confocal microscopy 

Krt7–GFP Knock-in Specific to HSCs •Flow cytometry 2017 196 

Continued… 
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Mouse 
strain 

Genetic 
modification 

Specificity within the adult 
haematopoietic compartment Analysis Year 

published Ref 

Tie2–GFP Transgenic 
Enriches for highly purified HSCs but 
also labels haematopoietic 
progenitors 

• Flow cytometry 

2016 197 • Transplantation 

• Immunostaining and whole-mount confocal and multiphoton 
microscopy 

Gprc5c–GFP Transgenic 
Enriches for dormant HSCs but also 
labels haematopoietic progenitors 

• Flow cytometry 
2017 198 

• Transplantation 

Hdc–GFP Transgenic 

Enriches for myeloid-biased HSCs 
but also labels haematopoietic 
progenitors and mature myeloid 
cells 

• Flow cytometry 

2017 199 • Transplantation 

• Immunostaining and confocal microscopy 

Gata2–GFP Knock-in 

Enriches for HSCs and 
haematopoietic progenitors; SCA-1 
or lineage staining is required for 
HSC selectivity 

• Flow cytometry 

2006 200 • Transplantation 

• Immunostaining and microscopy 

Hoxb4–YFP Knock-in Labels haematopoietic progenitors 
• Flow cytometry 

2011 201 
• Transplantation 

Mds1-
GFP/Flt3Cre 
(MFG) 

Knock-in Specific to LT-HSCs 

•Flow cytometry 

2020 140 •Transplantation 

•Immunostaining and microscopy 

Abcg2-YFP Transgenic 
Labels stem cell and progenitors for 
blood, small intestine and testicular 
germ cells. 

•Flow cytometry 
2011 187 

•Lineage tracing 

Flt3Cre/mT/
mG 
(Flkswitch) 

Transgenic Labels LT and some ST-HSCs. 
Flow cytometry 

2011 202 
Transplantation 
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1.3 HSC heterogeneity 

1.3.1 Cellular heterogeneity 

As early as 1964, it was shown that individual CFU-S had highly variable secondary colony forming 

ability140. In later in vitro culture experiments, heterogeneity in colony production and 

differentiation was also observed even though external stimuli were kept the same203. 

Heterogeneity in vivo was further suggested through retroviral marking of HSCs which permitted 

tracking over extended periods of time, thereby mapping different kinetics of functional activity 

in transplantation204,205. However, it was never entirely clear whether the observed heterogeneity 

was due to an inability to purify HSCs to 100%, which might mean the observed heterogeneity 

was due to contaminating non-HSCs. As HSC isolation strategies improved though, it became 

feasible to interrogate cellular heterogeneity through single cell transplantation. Single cell 

transplantation studies have revealed an immense amount of information about HSC 

heterogeneity in terms of differences in self-renewal potential, differentiation potential, 

repopulation kinetics and quiescence148. 

 

The first description of HSC heterogeneity at the single cell level was from Muller-Sieberg et al. 

where it was shown that lineage contributions and repopulation kinetics of two daughter HSCs 

deriving from the same clone were very similar29. Strikingly, the study showed that only a small 

fraction of HSCs had a “balanced” multilineage output with equal contributions to all mature 

blood cell types and the majority of HSCs had a bias towards the cell types they generate, even 

though they produced all cell types measured. This conflicted with the classical model of 

hierarchical haematopoiesis at the time, where each HSC was implicitly assumed to behave 

similarly in generating mature haematopoietic progeny8. Interestingly, this lineage bias was 

conserved even in secondary transplantation, suggesting a cell intrinsic role in lineage biases29,206–

208, though it could be argued that the initial seeding of an HSC in a primary mouse results in 

distinct niches exerting influence on the production of daughter HSCs29,185,206,209. Indeed it was later 

discovered by Benz et al. that some myeloid biased HSCs can produce balanced HSCs and vice 

versa109,135, although the former was far more prevalent. A more intensive characterisation by 

Dykstra et al. revealed that “myeloid-biased” HSCs tended to have similar myeloid output to 

balanced HSCs, and are lymphoid deficient rather than myeloid-biased185. Interestingly, lymphoid 

biased HSCs were found to contain only finite self-renewal (unable to repopulate secondary 

mice)206. While this could suggest that the heterogeneity in lineage outputs and self-renewal ability 

is linked, it could also be explained by the fact that lymphoid cells have a longer lifespan and thus 
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lymphoid cells that are detected at 16 weeks could have been generated weeks before and not 

produced from an actively contributing HSC. Importantly these findings have been supported by 

barcoding experiments, suggesting that lineage biased HSCs exist not just in transplantation 

settings but in native haematopoiesis as well208. Notably, myeloid biased HSCs have been shown 

to be enriched based on high CD150 levels, low CD49b levels or high Hoechst dye efflux ability, 

although not to homogeneity210,211. Based on the categorisation presented by Dykstra et al.206, the 

myeloid biased HSCs are called α-HSCs and are defined with a myeloid to lymphoid ratio, 

measured 16 weeks post-transplant, of >2. Lymphoid biased HSCs, with finite self-renewal, are 

called γ-HSCs or δ-HSCs, with myeloid to lymphoid ratios of <0.25, the difference being δ-HSCs 

have no detectable myeloid outputs. The balanced HSCs lie in-between with ratios between 0.25 

and 265,155. This categorisation will also be adopted in the interpretation of single cell transplantation 

experiments appearing later in this thesis. 

 

Because CD45 is not expressed in erythrocytes and megakaryocytes, these two lineages have not 

been traditionally analysed in the context of HSC lineage biases. Benveniste et al. had previously 

used glucose phosphate isomerase 1 isoforms to track erythrocyte output212. However, the system 

distinguishes the two isoforms by electrophoresis, which is much less convenient than traditional 

flow cytometric methods. Recently the Kusabira Orange transgenic mouse213 and Vwf-

tdTomato/Gata1-eGFP double reporter mouse214 were developed to overcome this limitation, 

allowing for flow cytometric analysis of 5 blood lineage outputs.  

 

Collectively, these mouse models bolstered evidence of a myeloid-restricted stem cell (MySC) 

population, consistent with highly biased α-HSCs. However, a platelet restricted population of 

HSCs (termed P-restricted HSCs) was also discovered that had exclusive and sustained platelet 

reconstitution above 0.1% even up to 44 weeks189. Upon secondary transplantation, these platelet-

restricted HSCs had sustained high levels of platelet production, though some had low levels of 

myeloid and lymphoid lineage reconstitution69. It is important to note, however, detecting even a 

low amount of repopulation is made easier because of how numerous platelets are in the blood. 

P-restricted HSCs isolated from primary and secondary recipients were capable of generating 

myeloid and lymphoid cells in vitro, suggesting they were bona fide multipotent and self-renewing 

HSCs214. Interestingly it has been recently suggested that these distinct HSC subtypes are located 

in different niches within the BM, suggesting a level of extrinsic regulation not previously 

appreciated109. 
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In line with previous reports of lineage coupling, one study identified several classes of progenitors: 

myeloid-restricted repopulating progenitor (MyRPs) cells that only generated platelets, known as 

megakaryocytes repopulating progenitors (MkRPs); platelet-erythrocytes, known as 

megakaryocyte-erythrocytes repopulating progenitors (MERPs); and platelet-erythrocyte-

granulocyte-macrophages, known as common myeloid repopulating progenitors (CMRPs)215. All 

of these progenitors were able to reconstitute primary recipients up to 6 months but were unable 

to repopulate secondary recipients. 

1.3.2 Molecular heterogeneity 

Historically, HSC heterogeneity has been characterised by functional assays, but relatively little 

information about the molecular mechanisms was coupled to the observed heterogeneity, largely 

due to an inability to prospectively isolate HSC subtypes. An understanding of the molecular state 

of HSC subtypes and the mechanisms driving self-renewal and differentiation fate choices would 

lead to improved clinical outcomes through understanding leukemogenesis and expanding or 

producing blood cells outside the body. 

Bulk gene expression studies 

Early knowledge of the molecular programme of HSCs came from early knockout mice studies, 

which examined the roles of nearly 200 genes (reviewed by Rossi et al.216). Several critical self-

renewal genes will be described in detail in section 1.4.6 below, while this section focuses on global 

gene expression studies that have been useful in understanding the HSC-specific molecular state. 

The first global gene expression analysis of HSCs was published by Phillips et al. where subtractive 

hybridization was used to screen for FL HSC-specific genes217. Soon after, the same method was 

applied to adult BM HSCs218. They identified expression of many previously reported genes, but 

also novel genes specific to HSCs, including transcription factors, membrane proteins and secreted 

molecules. Interestingly, there was considerable overlap but also differences between FL-HSCs 

and BM HSCs genes. In an attempt to find a common stem cell signature, several studies compared 

the molecular profiles of HSCs with other stem cell populations, such as ESCs or neural stem 

cells219–221. However, this approach was not particularly successful, as among the 3 studies, only 1 

gene (integrin alpha-6; Itga6) was expressed commonly between stem cell populations. That said, 

these early studies did expand the number of genes known to be associated with HSC molecular 

signatures. 

 

Using microarray gene expression analysis, Venezia et al. looked at the gene expression profile of 

adult HSCs before and after 5-FU stimulation, and also compared them to naturally cycling FL-
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HSCs222. What they found was a distinct molecular profile characterising quiescent and activated 

HSCs. Similar studies have profiled HSCs as well as their various differentiated progeny121,184,223. 

Single-cell PCR assays 

Due to the limitations of gene expression assays at the time, much of the early work described was 

completed using bulk HSPC populations. However, because cell fate decisions are made at the 

single cell level, researchers began pursuing functional and molecular assays at single cell 

resolution, in order to understand the mechanisms. The earliest single-cell quantification of gene 

expression in haematopoietic cells was achieved in 1990 by Brady et al.224,225. Many groups have 

subsequently profiled single cells in the haematopoietic system and found early evidence of 

heterogeneity in gene expression in seemingly homogeneous cell populations224,226–228. These 

studies also established the idea of lineage priming, where multipotent cells express lineage-specific 

genes at low levels8,229,230. However, single cell RT-PCR was still very limited by the small number 

of genes it could assay. 

 

The combination of RT-PCR with microfluidic-based methods expanded the number of genes 

assayable and lead to many subsequent molecular studies of hundreds of single HSPCs. By looking 

at the expression of 43 known haematopoietic genes, Glotzbach et al. reported that phenotypically 

defined LT-HSCs, which were putatively homogeneous, actually contained subpopulations with 

different transcriptional fingerprints231. Consistent with this, Moignard et al. looked at the 

expression of 18 key haematopoietic transcription factors in 596 single primary HSPC and also 

found considerable heterogeneity232. Interestingly some genes were observed to exhibit a bimodal 

expression, allowing for states of high, medium or no expression. Several transcriptional regulatory 

networks were discovered, where certain haematopoietic genes are positively or negatively 

correlated with each other – indicating that different transcriptional programmes are adopted by 

different cells. Examples include inhibitory relationships between transcription factors PU.1 with 

GATA1233, and GFI1 with GFI1B234,235. In a later study, Schütte et al. validated these transcriptional 

programmes and showed that the gene expression patterns were stable over time236.  

 

Apart from regulatory networks, single-cell gene expression profiling has also led to the 

identification of novel progenitor populations and new insights with cellular hierarchies237,238. Guo 

et al. identified surface markers that separate transcriptionally and functionally distinct 

myeloerythroid progenitor populations and provided the early evidences for megakaryocytic 

priming in highly enriched phenotypic HSC populations238. 

 



Introduction 

 
 

25 

Additionally, single cell profiling could be used to identify molecular signatures in cell populations. 

A study by Wilson et al. combining single cell functional assays with gene expression analysis of 

48 genes, using flow cytometric index sorting, found a molecular signature associated with the 

transcriptional overlap between 4 differently defined phenotypic LT-HSC populations (MolO gene 

signature)186. Importantly, this molecular signature can be used to predict HSCs within scRNA-seq 

datasets. Interestingly, a study by Petriv et al. profiling of microRNA across the haematopoietic 

hierarchy found that microRNA profiles could directly infer cell lineages, suggesting that 

microRNA expression is tightly regulated across differentiation239. 

Single-cell RNA-sequencing 

The advent of transcriptome-wide scRNA-seq was a substantial breakthrough. Compared to RT-

PCR methods, which could only quantify the expression of up to 200 genes, scRNA-seq was 

demonstrated to measure up to 10,000 genes in each single cell, offering an unprecedented 

resolution to transcriptional states240. As reviewed by Watcham et al.240, there are two predominant 

methods of scRNA-seq that have their own advantages and disadvantages, thereby influencing the 

possible conclusions that can be drawn. 1) Droplet-based methods, such as Drop-Seq, InDrops 

or 10X genomics, provide a high throughput method to sequence more than 100,000 cells but 

typically only detect between 1000-3000 expressed genes per cell. 2) Plate-based methods, such as 

Smart-Seq2, CelSeq2 or mcSCRB-seq are lower throughput, usually profiling up to 10,000 cells 

but can detect over 5000 genes per cell241–243. 

 

Alongside these technological advances, the past decade has seen an explosion of scRNA-seq 

studies of haematopoietic cells. In the blood system, the earliest studies profiled well-defined 

haematopoietic populations using plate-based methods. The first scRNA-seq profiling of HSCs 

was reported in the above mentioned paper by Wilson et al., in which the MolO gene signature 

was validated186. This was followed by a comprehensive study from Paul et al. analysing myelo-

erythroid progenitors244. This study identified several novel transcription factors involved in lineage 

priming of myeloid differentiation, providing a glimpse of the power of the technique. Soon after, 

Nestorowa et al. published the transcriptome of 1600 phenotypically defined HSPCs, including 

LT-HSCs alongside 10 other progenitor populations190. The study saw dramatic expression 

changes associated with early differentiation, in particular with genes associated with cell cycle and 

metabolism. In later studies, because droplet-based methods require less defined input 

populations, they allowed for less biased profiling of cells, ultimately providing a more holistic 

transcriptional landscape of haematopoiesis that lends itself to more exploration of the 

transcriptional landscape. One of the first studies was by Zheng et al., who profiled more than 
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180,000 peripheral blood mononuclear cells and BM mononuclear cells and demonstrated the 

ability of the technique to identify subpopulations in human acute myeloid leukaemia (AML) 

samples245. Subsequently, Dahlin et al. profiled 44,802 single HSPCs and defined transcriptomic 

maps containing entry points to 8 different blood lineages246.  

 

However, because of aforementioned limitations of read depth with droplet-based RNA-

sequencing (RNA-seq) technologies, there is a need for such global profiling of HSPC with plate-

based methods. A recent paper by Dong et al. presented the single cell transcriptome (using Smart-

seq2) of 28 haematopoietic cell types - the most comprehensive transcriptomic reference to-date247. 

Interestingly, the transcriptomes of HSCs, 7 days after transplantation, was also profiled. The 

authors found little evidence of substantial HSC expansion, rather most of the transplanted 

progeny became cells that resembled multipotent progenitors at the transcriptomic level247 

However, this could be driven by the expression of cell cycling genes. 

 

The emerging view of scRNA-seq studies is that haematopoiesis is a continuous process, which 

differs from the classical view containing distinct homogeneous populations. In this model, HSC 

functional heterogeneity has been linked to transcriptional lineage priming, where immature cells 

exhibit distinct gene expression patterns that are similar to mature cell types which they bias 

towards6,7,52,248,249. Accordingly, the transcriptional landscape portrays a continuum of such low-

primed HSPCs slowly acquiring uni-lineage specificity, without a major multipotent or bipotent 

stage. In support of this model, several recent studies have reported that phenotypically defined 

MPPs actually contain mostly unipotent progenitors of corresponding lineages244,250,251.  

 

There are, however, two related observations that need to be reconciled. One is that distinct 

functional subpopulations of cells can be isolated easily by the use of cell surface markers; and two 

is that these cells reside in a presupposed transitory region within single-cell transcriptomic 

landscapes. As reviewed by Laurenti et al.8, a possible explanation is that RNA and protein levels 

do not correspond well with each other because of additional post transcriptional regulation. 

However transcriptomic and proteomic studies of bulk HSPCs have suggested that, in general, the 

correlation is reasonable252. Another explanation could be that scRNA-seq does not capture certain 

information, such as epigenetic or spatial changes, which can be important in determining cellular 

states. Additionally, there are limitations with ordering scRNA-seq data along pseudotime, as 

reviewed by Weinreb et al253. Detecting jumps in cell states are very difficult with pseudotime 
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modelling, because it assumes that differentiation is a continuous process, which may self-reinforce 

such a conclusion240. 

 
Figure 1.5 The emerging continuum of haematopoietic hierarchy. 
The result of recent scRNA-seq studies point towards a continuum of haematopoietic differentiation. HSCs 
remain at the apex of the hierarchy, but the steps towards their terminal fates are blurred by incremental 
transitional changes in their transcriptome. 

Epigenetics 

At least in the embryonic stem cell (ESC) system, it’s been shown using single cell ChiPseq that 

chromatin states can define different subpopulations. A recent paper by Yu et al. found that HSC 

clonal heterogeneity is associated with different epigenetic patterns211. Using bisulfite sequencing 
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and transposase-accessible chromatin sequencing (ATAC-seq) on individual clones, they found 

that DNA methylation and chromatin accessibility patterns drive differences in HSC function211. 

More recently a study by Florian et al. used single-cell 3D confocal imaging, single-cell 

transplantation, scRNA-seq and single-cell ATAC-seq to show that aged HSCs lose polarity, which 

is controlled by Cdc42254. Apolar HSCs were shown to preferentially divide symmetrically into 

daughter cells with less self-renewal capacity, while young polar HSCs tended to divide 

asymmetrically, maintaining at least one potent daughter HSC254. In particular, the self-renewal 

potential of daughter HSCs was linked to epigenetic mark H4K16ac and the amount of open 

chromatin, suggesting an epigenetic mechanism driving stem cell fates. In a 2014 study, Cabezas-

Wallscheid et al. integrated proteomic, transcriptomic and epigenetic (DNA methylation) analysis 

of HSPCs252. They found that during differentiation, certain differentially methylated regions 

showed continuous gain or loss of methylation. Confirming previous studies, they also found that 

DNA methylation is inversely correlated with gene expression, suggesting that at the very least this 

continuous change in methylation pattern is part of the mechanism regulating differentiation255. 

Combined with the fact that several key HSC genes are epigenetic regulators256,257, it would seem 

future single cell epigenetic studies will be crucial in revealing whether epigenetics is the true driver 

behind HSC heterogeneity and differentiation. 

Proteome 

Because proteomic approaches have traditionally required very large cell numbers (>100,000 cells), 

and HSCs represent such a rare population of cells, most research has focused on transcriptomes 

of HSCs. In the same study by Cabezas-Wallscheid et al. above, the authors find a high 

concordance between transcriptomes and proteomes252. Accordingly, many proteins found to be 

differentially highly expressed in HSCs have been previously identified at the transcriptional level. 

However, because proteomic methods don’t have a 3’ capture bias, there will always be proteins 

that are excluded by transcriptomic analysis258. Future HSC expansion cultures and increased assay 

sensitivity for proteins, may improve current proteomic studies. Already the cell numbers required 

for proteomic studies is decreasing with recent papers reporting using single cells, using tandem 

mass tag (TMT) labelling259,260. However, the number of proteins identified remained low (~1600 

proteins), and the cell types used had high total protein content. 

To reliably achieve single cell protein quantifications, low throughput methods such as CyTOF261 

or single-cell western blot262 are still available. Though both methods require antibodies and known 

targets, reducing the potential new discoveries. Nonetheless, Knapp et al. had used CyTOF to 

quantify the changes in up to 43 markers, including surface markers, transcription factors and 

signalling intermediates, upon stimulation with haematopoietic growth factors263. 



Introduction 

 
 

29 

1.3.3 Haematopoietic hierarchy revised 

As mentioned above, recent molecular studies have challenged the classical hierarchical 

differentiation tree of haematopoietic progenitors. As reviewed by Laurenti et al.8, cellular 

barcoding and lineage tracing studies have challenged the contribution of HSCs to everyday 

haematopoiesis, by showing that that longevity of progenitor cell contributions are vastly under-

estimated due to their inability to engraft. These studies have suggested that under non-

transplantation settings, HSCs contribute minimally to native haematopoiesis and instead the 

majority of blood homeostasis is said to be maintained by MPPs182,229,230,252,264,265. The exception to 

this was the megakaryocytes, half of which appear to be derived directly from the HSC 

compartment still210,266. This also contradicts the classical view of the haematopoietic hierarchy 

because it suggests that HSCs can generate lineage-restricted progenitors directly, bypassing 

multipotent progenitors. 

 

The more that is discovered about the molecular mechanisms underpinning haematopoiesis and 

HSC self-renewal, the closer we will be to achieving regenerative therapies. The next section turns 

to the clinical implications of HSC biology and one of its longstanding goals of ex vivo HSC 

expansion. 

1.4 HSC expansion 

1.4.1 Clinical significance 

HSCs are ideal candidates for the treatment of haematological disorders because of their durable 

self-renewal and multipotency, allowing them to replenish fully a patient’s blood system267. In fact, 

the first successful HSC transplantation (HSCT) was performed more than 60 years ago, and it 

remains the only curative therapy for a number of haematological malignancies and disorders15,210. 

HSCT can be either allogeneic or autologous. Allogeneic HSCT is more common and utilizes 

healthy donor HSCs, that are human leukocyte antigen (HLA) matched. Autologous HSCT utilises 

the patient’s own HSCs to prevent BM aplasia after high dose chemotherapy or radiotherapy or 

as a histocompatible source of cells for gene therapy19. The outcome of the procedure has 

improved considerably over the years, mainly due to better HLA matching, however, the 

availability of HLA matched donors is limited, with no more than 60% of patients finding a suitable 

donor and approximately 37,000 people worldwide still on the waiting list268. Combined with the 

fact that the probability of success for the procedure is largely correlated with the dose of stem 
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cells injected (3-4x106 CD34+ cells/kg of human body weight required)269, there is an immense 

clinical need to expand HSC numbers ex vivo. 

 

Additionally, HSCT can be combined with gene therapy strategies to cure congenital 

haematological illnesses. In gene therapy, targeting HSCs is crucial because it ensures durable 

lifetime supply of gene-corrected blood cell progenies after transplantation270. Gene therapy has 

been successfully demonstrated to treat diseases such as Wiskott–Aldrich syndrome271, 

leukodystrophy272 and recently sickle cell anaemia273. Clinical trials for T cell-corrected 

immunotherapy to treat leukaemia are also hopeful270. However, current gene therapy protocols 

require HSPCs to be cultured ex vivo for 2-4 days, while being exposed to retroviral or lentiviral 

gene correction vectors, therefore the loss of self-renewal potential during culture causes a 

significant decrease in the longevity of the graft274. Current approaches address this problem by 

using a large amount of input cells, to increase the chances of having durable HSCs included in 

the final product270. Thus, ex vivo expansion or efficient maintenance of HSCs can significantly 

improve the gene therapy product delivered to patients. 

 

Apart from the direct transplantation as a curative therapy, it is also possible to use HSCs to 

generate functional mature blood cells in vitro which, when scaled up, could potentially meet the 

transfusion demands of patients. The cell types that have been derived successfully include red 

blood cells275,276, megakaryocytes and platelets181,271,277, neutrophils278,279 and T cells280,281. However 

most of these studies have not yet produced large enough yields to replace current sources282. 

Furthermore, because of limited HSC sources, these studies have largely utilise ESCs or induced 

pluripotent stem cells (iPSCs), which have their own set of limitations (discussed in section 1.4.3 

below). Therefore, having a readily available and expanding source of HSCs in vitro could be very 

useful to scale up production of blood cells. 

 

Because of this immense clinical potential, supply of HSCs often fails to meet the demand of 

patients and researchers. However, despite tremendous efforts, there have been very few 

breakthroughs19. Only very recently, has robust ex vivo expansion of murine HSCs in long-term 

cultures been achieved (detailed in section 1.4.9 below)283. The next section summarises the vast 

literature on HSC self-renewal in vivo and expansion cultures ex vivo, and also why expansion of 

HSCs has been particularly difficult. 
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1.4.2 Difficulties and challenges 

There have been two main barriers that have hampered progress regarding HSC expansion – the 

lack of robust markers for functional stem cells in vitro and the lack of understanding of the 

molecular pathways that support expanding adult HSCs. 

 

As mentioned in section 1.2.5, the gold standard for the functional verification of HSCs still 

requires serial transplantations. This is extremely time consuming and expensive, especially 

considering the number of potential self-renewal factors, factor combinations and different 

concentrations that need to be tested. As a result, many studies utilise in vitro assays, such as with 

phenotypic markers or CFC assays, to assess HSC expansion. However, while surface marker 

isolation strategies can isolate HSCs to about 50% purity in vivo, many surface markers for isolating 

fresh HSCs have been reported to be unreliable markers of HSCs in culture284. For example, Tie-

2 loses its expression in culture, and endoglin and Mpl are only expressed in a portion of cultured 

HSCs284. Similarly, CD49f and CD38 expression changes in cultured human HSCs19. As a result, 

most groups still use LSK as a readout of phenotypic HSCs in vitro. Recently, two papers by Fares 

et al. and Tomellini et al. respectively demonstrated that EPCR and integrin-a3 could be potentially 

reliable markers for human HSCs in culture285,286. However, the purity is still below 5% in both 

cases and it is unclear whether the two markers work for cultured murine HSCs. 

 

Furthermore, although the HSC state is now increasingly well characterised in vivo, there is very 

little known about the molecular state of expanding adult HSCs after they have been cultured ex 

vivo. This would be an important undertaking in order to add to our current understanding of the 

molecular states of HSCs and potentially lead to new surface markers for HSCs expanding ex vivo, 

or the identification of novel molecular pathways that could be targeted to increase expansion 

efficiency. 

1.4.3 HSCs derived from induced pluripotent stem cells or reprogramming 

To circumvent these challenges, groups have attempted to differentiate ES and iPSCs into HSCs 

and mature blood cells in vitro in an efficient manner. There are still two main limitations with using 

iPSCs to derive blood cells for clinical purposes . Traditionally, iPSCs are generated using genetic 

over-expression of the reprogramming factors (e.g., Oct4, Klf4, Sox2 and Myc), which poses a 

translational barrier due to the risk associated with genetic insertions via viral vectors267. Recent 

advances have allowed iPSCs to be generated without viral transduction, using soluble factors; 

however, the reprogramming efficiency using these methods remains very low. The first major 

efforts have therefore focused on generating platelets due to their lack of DNA and safer clinical 
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profile in terms of cancer risks. Secondly, whilst strategies to differentiate IPSCs have been 

successful in generating aforementioned platelets and other haematopoietic cells such as 

erythrocytes176, T cells271, NK cells287 and macrophages288, it has been challenging to generate bona 

fide HSCs that are capable of serial and multi-lineage reconstitution upon transplantation. Recently 

adult mouse endothelial cells were reprogrammed into HSCs via ectopic expression of four 

transcription factors (Fosb, Gfi1, Runx1 and Spi1)289, however methods without genetic 

manipulation are still unavailable. As a result, a majority of groups have focused efforts on 

expanding primary HSCs via stimulating self-renewal programmes in vitro. 

1.4.4 Harnessing endogenous HSC expansion 

Unlike FL HSCs, which expand massively in numbers during development47, the number of adult 

HSCs in mouse BM stays relatively constant, around 1 in every 30,000 (0.003%)288. However, when 

they are transplanted as single cells, they can increase in numbers by approximately 1000-fold290. 

Interestingly, when transplanting a bulk population of HSCs, HSC expansion was inversely 

proportional to the initial number of HSCs transplanted and plateaus at a certain point291. This 

finding was supported by transplantation data of cultured HSCs from a later study by Sekulovic et 

al.292, suggesting that there may be negative feedback mechanisms to limit self-renewal – perhaps 

as a defence mechanism against cancer. HSCs can then be taken from the initially reconstituted 

mice and transplanted again into new irradiated recipients to achieve a further expansion. At least 

four successive transplantations have been done and these indicate that HSCs can undergo at least 

8400-fold increase cumulatively over the initial number of input HSCs70,293. A caveat is that self-

renewal activity is generally reduced after each successive transplantation, and self-renewal ability 

is eventually lost after 6 serial transplantations69. This demonstrates that although adult HSCs seem 

to have a limited self-renewal capacity in this transplantation setting, dictated both by intrinsic and 

extrinsic mechanisms, they are still fundamentally capable of expanding substantially beyond what 

they would be expected to during the course of an organism’s natural lifespan. 

1.4.5 HSC fate choice 

There are many different fate choices that an HSC can make. This is not to imply that HSCs have 

agency, but rather there are many different possible outcomes for an HSC, and it must “decide”, 

based on an array of cell-extrinsic or cell-intrinsic factors, which fate it “chooses”. When 

considering how to expand HSCs, it is imperative to understand these different decisions 

summarised in Figure 1.6 below. The balance between proliferation and quiescence, survival and 

cell death, and self-renewal and differentiation all contribute to the number of HSCs and 

specialised cells in the system – a crucial part of maintaining life-long haematopoiesis5. For 
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example, too much differentiation leads to HSC pool exhaustion, but too much self-renewal can 

lead to oncogenic transformation via a differentiation block. These decisions can be co-ordinated 

by intrinsic molecular regulators (e.g., transcription factors, epigenetic modulators or microRNAs) 

or extrinsic factors that provide appropriate signals to activate intrinsic pathways19,267. Therefore, 

in order to expand HSCs, it becomes important to understand - and subsequently maximise - 

survival, proliferation and self-renewal. In certain cases, cell fate can also be coupled through a 

gradual restriction of cell potential. The next section specifically focuses on the molecular 

regulation of self-renewal. 

 
Figure 1.6 HSC fate choice possibilities. 
Conceptually, there are only a finite number of outcomes that can occur to an individual HSC. Most commonly, 
it stays in quiescence or G0. However, when activated, it can either divide asymmetrically to produce one 
daughter HSC and one differentiated progeny; it can also divide symmetrically to produce two daughter HSCs 
or two differentiated progenies. Finally, it can undergo apoptosis. In order to expand HSCs ex vivo, symmetric 
self-renewal divisions must be achieved in large numbers. 
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1.4.6 HSC intrinsic self-renewal pathways  

Molecular regulators of self-renewal have been extensively explored over the last three decades in 

an effort to inform in vitro expansion efforts. Through genetic manipulation studies, molecules 

critical for HSC self-renewal have been identified, mostly in FL and adult BM HSCs19,267,294. This 

list includes a wide array of transcription factors, epigenetic modifiers, cell cycle regulators and 

microRNAs19. The three major regulators are summarised below.  

Transcription factors 

Transcription factors, resulting from their ability to mediate expression of target genes and activate 

self-renewal programmes, are important regulators of HSC self-renew. A myriad of transcription 

factors have been shown to be essential for HSC self-renewal, including β-catenin53, MYC295, 

CEBPα296, HOXB4131, GATA2297–299, PU.1300, RUNX1301, JUNB302,303, MEIS1304, PBX1305, GFI159, 

EVI1195 and more306. Interestingly, as detailed in section 1.2.2, foetal (actively cycling) and adult 

HSCs (quiescent) appear to have different transcription factor programmes including SOX17 and 

Hmga241,61, which have been shown to be important for FL HSCs, but not for adult HSCs55,307. 

Epigenetic modifiers 

The process of differentiation requires changes in the epigenetic programme of cells. Therefore, it 

is not surprising that many epigenetic modifiers are implicated in HSC self-renewal299. Interestingly, 

DNA methyltransferases (e.g. DNMT3a257,308 and DNMT3b309) and also TET-enzymes (e.g. 

TET2)310,311, which are involved in DNA methylation, are both implicated in self-renewal. As 

mentioned, DNMT3a and TET2 are also commonly mutated in clonal haematopoiesis in humans, 

suggestive of its role in regulating self-renewal in human HSCs63. Chromatin remodelers such as 

the Polycomb group family of proteins also harbour HSC self-renewal regulators such as EZH2, 

BMI1312, Mel-18313 and CBX7314. Loss of function mutation in Bmi1 leads to defective self-renewal 

and accelerated differentiation while overexpression increases self-renewal in HSCs315. 

MicroRNAs 

MicroRNAs have also been implicated in self-renewal regulation in HSCs316. miR125 was shown 

to increase HSC cell numbers by 8 fold317 and overexpression of miR29a causes myeloid 

progenitors to reacquire self-renewal properties318,319.  

Interestingly, transcription factors, epigenetic regulators and microRNAs can interact with each 

other to form self-renewal pathways. A notable example in mouse foetal HSCs involves the 

aforementioned RNA-binding protein LIN28B, the microRNA let7, and high motility group AT-

hook protein 2 (HMGIC, more commonly known as the gene product of Hmga2)61. In FL HSCs, 

LIN28B binds to let7 and prevents it from inhibiting Hmga2 expression61. 
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1.4.7 HSC extrinsic self-renewal regulators 

The intrinsic self-renewal regulators mentioned above are regulated by a number of extrinsic 

factors. Several reviews have highlighted several of these upstream signalling pathways including 

inflammation320–322, hypoxia141–143,323, Wnt signalling267,295,324 and Notch signalling325–327. There are 

less studied extrinsic influences on HSC self-renewal such as diet328–331 and mechanosensing332–334 

of the ECM. In the next section the role of immune cytokines, probably the most well studied 

extrinsic regulators of self-renewal, are highlighted as they are particularly relevant in this thesis. 

Immune cytokines 

Haematopoietic cytokines have been widely studied because of their important role in blood 

lineage development. Some cytokines directly push differentiation towards specific lineages, such 

as G-CSF and Macrophage-colony stimulating factor (M-CSF)335; Others have been implicated in 

self-renewal336. Stem cell factor (SCF) was first discovered as the ligand and activator of KIT, a 

receptor tyrosine kinase expressed by all HSCs337. The importance in HSC function for this tandem 

of proteins has been shown in mutational studies, where mutations in KIT cause defects in HSC 

numbers336,338 and mutations in SCF causes defects in the microenvironment supporting HSCs339. 

Further evidence for the importance of SCF and KIT signalling comes from a recent study of 

sprout-related, EVH1 domain-containing protein 1 (SPRED1)340. SPRED1 is a negative regulator 

of KIT signalling and SPRED1-deficient HSCs show increased self-renewal potential340. 

Interestingly, foetal and adult HSCs seem to have different sensitivity to SCF130. 

 

Thrombopoietin (TPO) is the main cytokine regulating megakaryocyte and platelet development. 

Interestingly, it has also been shown to affect HSC self-renewal341. Knock out mice studies have 

shown that TPO-null mice have decreased numbers of repopulating HSCs342. Similarly, genetic 

deletion of Mpl (the receptor for TPO) also reduces HSC self-renewal potential343. Additionally, 

genetic perturbation of LNK, which is a negative regulator of TPO signalling, has been shown to 

increase HSC-self-renewal344. LNK mainly acts through negatively regulating JAK2, which is a 

receptor tyrosine kinase downstream of many different cytokines, including TPO, IL-6 and IL-

11345. A single LNK-deficient HSC can expand approximately 3000-fold after transplantation290. 

 

GP130 receptor signalling has been known to be important for HSC self-renewal, because GP130 

null mice have reduced numbers of HSCs346. A variety of cytokines are known to stimulate GP130, 

including IL-11, IL-6, Leukaemia inhibitory factor and Oncostatin M341. Although GP130 is 

ubiquitously expressed, its activation depends on the binding to alpha receptors that are specific 

to each of these cytokines. In this way, GP130 is able to exert cytokine specific effects341. Of these, 
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IL-6-deficient mice have HSCs with reduced self-renewal capability347, and IL-11 overexpressing 

HSCs have increased self-renewal capacity in vivo348. 

 

TGF-β has been shown to induce HSC quiescence349. Freshly isolated HSCs have active TGF-β 

signalling and TGF-β receptor deficient HSCs have impaired reconstitution ability and increased 

proliferative activity350. The same study also demonstrated that non-myelinating Schwann cells 

were responsible for the activating of TGF-β in the BM, thus inducing HSC quiescence137. 

Interestingly the effects of TGF-β seems to be HSC subtype dependent265. 

1.4.8 Ex vivo expansion of HSCs 

Cytokine combinations 

As mentioned, cytokines are crucial to HSC function. Experimentally, they also have many 

advantages including their convenience of use, and the fact that they exhibit their effects reversibly, 

without the need for permanent DNA manipulations. As a result, early work in developing HSC 

ex vivo cultures have focused heavily on optimising cytokine conditions. In the 1990s and early 

2000s, an array of studies focused on the in vitro effects of SCF, activators of GP130, TPO and 

Flt-3 ligand (Flt3L), the latter of which was demonstrated to be dispensable for murine HSC self-

renewal337,341,349,351–353. Miller et al. demonstrated that HSCs can be maintained serum-free ex vivo for 

10 days when cultured in combination with SCF, Flt3L and IL-11353. Interestingly SCF in 

combination with Flt3L alone was shown to be sufficient to stimulate HSCs to survive and 

proliferate in culture. However, retention of stem cell activity in culture was shown to further 

require additional activation of gp130 pathway130. In mice, this is often achieved by addition of IL-

11341, whereas in humans IL-6 is typically used354. 

 

In order to systematically optimise and assess the effects of these 4 distinct cytokines, Audet et al. 

performed a two-level factorial analysis, by testing every possible factor combination at two 

different concentrations respectively337. They found that SCF and IL-11 were the most potent 

stimulators of HSC expansion. Additionally, they found that IL-11 has an optimal concentration 

of 20ng/mL with any higher concentrations being detrimental to HSC expansion, whereas SCF 

has no effective maximum concentration. Based on this and the study by Miller et al.353, the group 

concluded that TPO offers no beneficial effect to stem cell expansion. However, other groups 

have published differing results that suggest that TPO is crucial for HSC self-renewal in vitro and 

many groups continue to use TPO alongside SCF342,343,349. An explanation of the differences could 

be that the other media components, including base media and media supplements, have differing 
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effects on cytokine cocktails. Very recently, Wilkinson et al. reported that low SCF (10ng/mL) 

combined with high TPO (100ng/mL) achieves the best expansion results283, although any 

combinations of SCF and TPO above 50ng/mL also performed well (details in section 1.4.9). The 

precise optimal concentration of cytokines remains to be determined; however it is clear from 

these decades of studies that the expansion of functional HSCs occurs largely independently of 

effects on proliferation, and cell number becomes a poor readout for HSC expansion. In fact, 

cytokine conditions that stimulate rapid proliferation and yield high cell numbers often do not 

have the most functional HSCs355. 

 

Until recently, even the best expansion attempts with haematopoietic cytokines have only achieved 

maintenance for a week or two at most136, suggesting that cytokines are limited in their capacity to 

maintain long-term self-renewal. As a result, numerous other strategies were developed in attempts 

to expand HSCs ex vivo, and these are discussed below. 

Transgene overexpression 

The Hox family of transcription factors were one of the first group of genes implicated in HSC 

self-renewal294,302. Thus, they were also the first genes used in overexpression studies to expand 

HSCs ex vivo. Overexpression of Hoxb4 resulted in a 40-fold increase in HSCs with full multilineage 

potential297. HOXB4 can also be transiently delivered into the cell as a TAT-HOXB4 fusion 

protein which was shown to expand HSCs by at least 4-fold298. Other examples include Fbxw7356 

and Dppa5357, which provide 2-fold and 6-fold expansion respectively when overexpressed. 

 

Structural chromosomal rearrangements of the nucleoporin 98 gene (NUP98) is commonly 

associated with haematopoietic malignancies such as AML358. It was discovered that the NUP98-

HOXA9 fusion gene product can induce AML in mice358. Subsequently, the fusion protein was 

also found to increase in vitro self-renewal and proliferation of human HSCs359 as well as in vitro 

self-renewal divisions in mouse HSCs292. 

 

In a comprehensive study, Deneault et al. performed a gain-of-function screen on 104 nuclear 

factors, of which 18 had an effect on HSC activity360. Overexpression of 10 of them, Smarcc1, 

Vps72, Fos, Trim27, Sox4, Klf10, Ski, Prdm16, Erdr1, and Sfpi1, were found to be equivalent or better 

than Hoxb4 at expanding HSCs. These studies were arduous and represented a large body of work, 

and although they were important in elucidating many various HSC self-renewal regulators, there 

is still a missing link with our understanding of upstream signal transduction that upregulates these 
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self-renewal genes. As a result, HSC expansion without genetic modification was still elusive for a 

very long time. 

Supportive co-cultures 

Inspired by the concept of the HSC niche, many studies have cultured HSCs with various feeder 

cells derived from different sources that naturally support HSC expansion such as the AGM103, 

urogenital ridge (UG)361, FL45 and BM362. In particular cell lines, such as AGM-S3, AFT024, UG26-

1B6 (UG26) and EL08-1D2 (EL08), have been shown to support the survival and maintenance 

of HSCs for at least 6 weeks in culture363. Notably, Oostendorp et al. demonstrated that the 

supportive effect of UG26 and EL08 does not require direct cell to cell contact with the HSCs, 

suggesting that secreted factors were sufficient361,364,365. Several studies have also suggested that 

mesenchymal stem and progenitor cells can support HSC activity in co-cultures120,366. 

 

To provide a clinically useful source of expanded HSCs, introducing genetic changes that expand 

HSC numbers could have unknown additional consequences (including development of cancer), 

and co-cultures would introduce another biological product that would require significant 

screening and biosafety regulations. As a result, feeder-free and serum-free methods have now 

superseded these earlier attempts.  

Soluble factors 

Many groups have reported various soluble factors that can expand HSCs when supplemented 

with cytokines, summarised by several excellent reviews267,367,368. The notable conditions are 

summarised in Table 1. 

 

By examining differentially expressed proteins between supportive cell lines, such as UG26 and 

EL08, and other non-supportive cell lines, Buckley et al. identified WNT5A as a key protein 

capable of maintaining HSCs in culture45. Similar strategies have identified several soluble factors 

that can expand HSCs, such as insulin growth factor binding protein (IGFBP)-2325,368–370, 

angiopoietin-like proteins (Angptl)371, PTN132 and nerve growth factor (NGF)133, with reports of 

expansion of up to 48-fold. Insulin-like growth factor (IGF)-2 was isolated from supportive 

CD3+Ter119- FL cells153 and subsequently, Angptl3 was also found to have potent HSC expansion 

ability362. Culturing with Angptl3 and IGF-2 supplemented with SCF, TPO and FGF-1 resulted in 

an 30-fold increase in HSCs133. Adding IGFBP-2, found to be expressed by a tumorigenic cell line, 

to such a cocktail was reported to expand HSCs by 48-fold after 21 days of culture133,284. In support 

of this, deletion of activating transcription factor 4(ATF4) was shown to be detrimental for foetal 
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HSCs and the effect seems to be dependent on its role in inducing Angptl3 expression in 

endothelial and stromal cells within the FL372. From primary human brain endothelial cells 

(HUBECs) that support expansion of human HSCs, Himburg et al. identified PTN as a potent 

regulator of HSC expansion132. Mouse HSCs cultured with PTN for 7 days display a 4-fold increase 

in CRUs132. Wohrer et al. identified NGF and Collagen 1 (Col 1), amongst other factors secreted 

by UG26, that were able to expand HSCs in culture by 4-fold when supplemented with SCF and 

IL-11153. However, upon secondary transplants, it was shown that NGF and Col 1 were only able 

to maintain the number of input HSCs. This highlights the importance of secondary transplants 

to assess true durability in self-renewal. 

 

Many other factors and strategies have also been investigated in the context of HSC expansion. 

As mentioned, Wnt signalling has been implicated in the extrinsic regulation of self-renewal. GSK-

3b is a well-known b-catenin inhibitor, and thus an inhibitor of canonical Wnt signalling373. GSK-

3b inhibitors such as CHIR99021 have been shown to expand murine HSCs when combined with 

rapamycin, an inhibitor of mammalian target of rapamycin (mTOR)373. Interestingly, Wnt 

signalling through b-catenin seems to be dispensable, and over-activation even detrimental in 

vivo374–377. Nuclear receptors have also been investigated for roles in HSC expansion. Stimulation 

of the retinoic acid receptor seems to be beneficial for mouse HSCs198,378, but not for human 

HSCs379,380. Another strategy to expand HSCs involves targeting epigenetic machinery such as by 

inhibiting histone acetylation or deacetylation381–384. Valproic acid (VPA), which is a histone 

deacetylase inhibitor, was shown to increase HSC expansion in both mouse and human382–384. 

Recently, low calcium has also been reported to improve HSC maintenance ex vivo385. However, 

this is contradicted by another report describing high intracellular calcium to be associated with 

quiescence and increased repopulation ability248. 

 

In recent years, there have been several molecules that seem very promising with human HSCs 

expansions. In unbiased screens, StemRegenin1 (SR1) and UM171 have been identified to increase 

human LT-HSCs by 2 and 13-fold respectively, measured by 20-week primary engraftment after 7 

days of culture386,387. Notably, the expansion increases to 30-fold when both molecules are used in 

combination. While SR1 was shown to antagonize the aryl hydrocarbon receptor (AHR), UM171-

mediated expansion was shown to be AHR independent. Interestingly both molecules are 

ineffective at expanding mouse HSCs386, and their detailed mechanisms have yet to be elucidated. 

Prostaglandin E2 (PGE2) is another promising molecule and has been shown to increase multi-

lineage engraftment of cord blood cells388,389. Interestingly PGE2 has been shown to interact with 
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the Wnt signalling pathway by influencing B-catenin breakdown390. In support of Wnt signalling 

playing an important role in human HSC expansion, short-term cultures of human cord blood 

(CB) CD34+ cells with 6-bromoindirubin 3’-oxime (BIO), a GSK-3b inhibitor, were shown to 

enhance engraftment potential391. Notably, Notch stimulation has also been used to expand human 

cord blood CD34+ cells327,392. Targeting the upregulation of glycolytic pathways, Guo et al. used 

peroxisome proliferator-activated receptor-γ antagonist, GW9662, to achieve 4-fold expansion of 

human CB HSC393. Similar to aforementioned VPA, Garcinol is a plant-derived histone 

acetyltransferase (HAT) inhibitor that was shown to expand human HSCs by 2.5-fold381.  

Bioengineering the HSC niche 

It is conceivable that, despite decades of research, the lack of success in HSC ex vivo expansion is 

in part due to the failure of traditional liquid cultures or stromal co-cultures, to satisfy a 3-

dimensional aspect of the stem cell niche. In recent years, there have been attempts to bioengineer 

a mimic of HSC niches, in order to improve expansion efficiencies. Tiwari et al. used MS-5 stromal 

cells to produce extracellular matrices in vitro, which are then used as a scaffold for culturing CD34 

enriched human cord blood cells394. They demonstrated that the acellular scaffolds increased 

phenotypic HSCs and CFUs by 80-fold. Following this, several other studies have reported other 

ways of producing artificial niches, sometimes functionalised with molecules such as CXCL12, to 

improve ex vivo culture395–398. Accompanying this line of research, several studies have also 

investigated the role of ECM proteins such as collagen, fibronectin, dystroglycan, heparin sulfate, 

proteoglycans, osteopontin and laminins115,116,399–401. Some studies have even suggested that 

substrate elasticity can influence HSC self-renewal332,333. 
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Table 1.3 Summary of expansion protocols, modified and updated from Walasek et al.384.       
Fold change 

 

Molecule Species Input cells Supplements Culture 
time Assay Over 

control 
Over 
input Ref 

FGFs M BM   3w HSC frequency  - 402 

IGF-2 M BM SP CD45+Sca-1+ SCF FGF-1 TPO 10d CRU (HSC frequency)  7.8 362 

IGFBP-2 M BM SP Sca-1+ FGF SCF TPO Angplt-3 21d CRU (HSC frequency)  48 371,403 

Angplts (2,3,5,7) M SP CD45+Sca-1+ SCF TPO FGF-1 IGF-2 10d CRU (HSC frequency)  30 133 

Pleiotrophin  
M LSK CD34– SCF Flt3L TPO 7d 

CRU frequency (12 weeks p-tpx) 6 4 
132 % engraftment secondary tpx 10 10 

H Lin-34+38– UCB SCF Flt3L TPO  % engraftment (4 weeks) 3 3 

ATRA M LSK Serum SCF Flt3L IL-6 IL-11 7d Donor reconstitution (per 105cells) 5  378 

TEPA H CD34+ CD133+ UCB TPO Flt3L IL-6  % engraftment   404 

VPA 
M LSK SCF Flt3L TPO IL3 14d % engraftment 2.2  

382 
H UCB HSC SCF Flt3L TPO IL3 14d SRC frequency 6.0  

Chlamydocin H CD34+ MPB SCF Flt3L TPO 24h % engraftment (SRC) 4.0 2.0 405 

5aza and TSA H CD34+ UCB Serum SCF IL-3 Flt3L MGDF 9d SRC frequency 40 9 406 

BIO 

H CD34+ UBC Serum SCF Flt3L TPO 5d Engraftment of expanded cells 2 0 391 

H CD34+ UBC Serum SCF Flt3L TPO 5d 
% engraftment 0  

407 
SRC frequency (6 weeks) 2.5  

SR1 H CD34+ MPB UBC SCF Flt3L TPO IL-6 3–5w 
SRC frequency 14 17 

408 
Secondary SRC frequency 4 12 

PGE2 
M WBM   2h CFU-S (d12) 3  

409 
H LSK    HSC frequency (CRU) 2-4  
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Continued…      Fold change  

Molecule Species Input cells Supplements Culture 
time Assay Over 

control 
Over 
input Ref 

NR-101 H CD34+38– UCB   7d SRC frequency 2.3 2.9 410 

Immobilised 
Delta1 

M LSK 
Serum SCF IL-6 IL-11 Flt3L 
IL7 

28-35d HSC frequency (CRU)   392 

H CD34+CD38– UCB SCF Flt3L IL-6 TPO IL-3 LLP 21d % engraftment (SRC) 5.3  411 

Wnt3a M LSK Thy1Lo Serum 6d % engraftment CRU 5  412 

Wnt5a M Lin- BM cells   3d % engraftment CRU - - 45 

Ssh protein H CD34+ CD38- Lin- SCF, G-CSF Flt3-L IL-3 IL-6 7d % engraftment (SRC) 3  413 

BMP4 H CD34+CD39-Lin- SCF Flt3L G-CSF IL-3 IL-6 6d % engraftment (SRC) -  414 

UM171 H CD34+ SCF Flt3L TPO 12d SRC frequency  13 386 

NGF M ESLAM Col1 SCF IL-11 7d 
HSC frequency  4 

153 
Secondary HSC frequency  0 

GW9662 H UCB CD34+ SCF Flt3L TPO 4d SRC frequency 5 4 393 

FGFs, fibroblast growth factors; IGF-2, insulin growth factors 2; Angplts, angiopoietin-like proteins; ATRA, all-trans retinoic acid; TEPA, tetra-ethylenepentamine; VPA, valproic acid; 
TSA, trichostatin A; 5aza, 5-aza-2ʹ-deoxycytidine; BIO, 6-bromoindirubin-3ʹ-oxime; SR1, StemRegenin1; PGE2, prostaglandin E2; Ssh, sonic hedgehog; BMP4, Bone morphogenic protein; 
NGF, Nerve growth factor; Col1, Collagen 1; M, mouse; H, human; BM, bone marrow; SP, side population; UCB, umbilical cord blood; MPB, mobilized peripheral blood; SCF, stem cell 
factor; TPO, thrombopoietin; Flt3L, Ftl3 ligand; IL, interleukin; LLP, low density lipoprotein; MGDF, megakaryocyte growth and development factor; w, week; d, day; CFU(-S), colony 
forming cell (spleen); CRU, competitive repopulating unit; SRC, NOD/SCID-repopulating cell; 
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Negative feedback control 

HSCs and their progeny secrete many proteins that signal to surrounding cells415. As mentioned, 

some of these molecules positively regulate HSC function and some of them are detrimental. A 

potential way to improve HSC expansion efficiency is to limit the negative feedback that occurs 

within HSC cultures. To address this, Csaszar et al. developed a way to control the amount of 

inhibitory feedback signalling, which they termed “fed-batch” cultures416. In this system, medium 

is constantly fed into the culture, diluting any negative regulators that are secreted. Leading to an 

11-fold increase in functional HSCs after 12 days of culture. The paper also measured and detailed 

the accumulation of several known HSC regulators during the course of the culture, such as TGF-

β, IL-6, CCL2, CCL3 and CCL4416. These factors were also later confirmed to be present in mouse 

HSC cultures283. Both studies used low-throughput antibody-based detection platforms, thus only 

monitoring a limited number of pre-selected secreted factors. Future global secretome analysis of 

HSC cultures could be highly beneficial to determining the positive and negative regulators of HSC 

expansion secreted by HSCs or their progeny. 

1.4.9 Current state of the ex vivo expansion field 

Despite the substantial expansion capacities of the various strategies described above, relatively 

few of these approaches have been widely adopted (or verified) by researchers in subsequent 

studies. This is particularly noticeable when compared to cytokines such as TPO and SCF which 

have stood the test of time and continue to be included in most expansion combinations. Several 

possible explanations for this exist, including the fact that many culture conditions are not fully 

defined, containing serum or bovine serum albumin (BSA) that may have profound batch 

effects417. Although many of them included functional transplants, they needed to have secondary 

transplants and long enough time points to ensure that the donor cells did not come from a durable 

MPPs. Furthermore, purity of input cells was not high for most of the studies, which could cause 

indirect secondary effects through contaminating cells. Although not all studies suffer from these 

potential issues, as observed in chapter 4, where highly purified LT-HSCs were used in 

serum/feeder free conditions, very few of these putative expansion factors have a significant effect 

on expanding HSCs. Even the study by Wohrer et al153, that used highly enriched HSCs and 

performed the appropriate secondary transplantation assays, was not reproducible in our lab418. 

 

A major breakthrough was recently achieved when Wilkinson et al. published a paper describing a 

completely defined, serum-free and albumin-free culture condition that allows 200-900 fold 

increases in functional HSCs over a period of a month283. As detailed in chapter 4 and 5, these 
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findings were reproducible. Interestingly, the system does not require the addition of any extra 

soluble factors apart from SCF and TPO, and it achieves expansion by replacing commonly used 

BSA with poly-vinyl alcohol (PVA). In a previous report, the same authors demonstrated that BSA 

could be replaced by recombinant human serum albumin (HSA), to increase HSC maintenance in 

vitro417. In this study, they showed that contaminants from the production of recombinant HSA 

cause an increased inflammatory response that induces differentiation, and by replacing it with 

fully synthetic PVA, they were able to reduce this response. Although no other soluble factors 

were added to the culture, the authors did show that the use of fibronectin coated plates 

significantly increased expansion. However, it is still unclear whether fibronectin helps with better 

cell adhesion and retention or by active fibronectin signalling pathways. Notably, the system also 

relies on frequent and complete media changes, in order to minimise the effects of negative 

regulators secreted endogenously. Interestingly, clonal cultures under this PVA culture condition 

displayed substantial heterogeneity in terms of differences in repopulation potential as well as 

lineage biases after transplantation. Future studies that elucidate the molecular mechanisms of 

heterogeneity would be important to further improve culture yields and clinical outcomes.  

1.5 Thesis aims 

The field has lacked robust markers for functional HSCs in vitro and this has hampered progress 

in a wide array of investigations. Recent developments in HSC reporter mice provide an exciting 

opportunity to study new, mostly intracellular markers that were previously inaccessible. 

 

HSC ex vivo expansion has been a longstanding goal in the field, yet only very recently has there 

been successful long-term cultures that are capable of robustly expanding HSCs. However, still 

very little is known about the heterogeneity within and between clonal cultures. 

 

The primary aim of this PhD thesis was to develop a novel reporter system to mark functional 

HSCs in vitro. Using this novel reporter system, the second objective was to screen various known 

and novel factors for their ability to expand HSCs in ex vivo cultures. Finally, the reporter system 

was applied to recently published PVA expansion cultures in order to identify HSC-containing 

clones and to molecularly profile the HSCs and non-HSCs from positive and negative single cell-

derived cultures in an effort to determine the molecular regulators of expanding HSCs. 



 

2 Methods 

2.1 Mice 

Fgd5ZsGreen·ZsGeenr/+ knock in/knock out mice were purchased from Jackson Laboratories and wild-

type (WT) mice were either Fgd5+/+ litter mates or CD45.2 C57BL/6 under 1 year of age. All 

transplantation recipients were C57BL/6W41/W41-Ly5.1 (W41). All mice were kept in microisolator 

cages in Central Biomedical Service animal facility of Cambridge University and York University, 

and provided continuously with sterile food, water, and bedding. All mice were kept in specified 

pathogen-free conditions, and all procedures performed according to the United Kingdom Home 

Office regulations, in accordance with the Animal Scientific Procedure Act. 

2.1.1 Genotyping 

Ear biopsies were taken from individual mice and placed in individual Eppendorf tubes. To extract 

the DNA, 50μL alkaline lysis buffer (24.4mM NaOH (Sigma Aldrich, St. Louis, MO, USA (Sigma)) 

and 195μM disodium EDTA (Life Technologies, Carlsbad, CA, USA) in water) was added and the 

tubes were put on a heated shaker at 95°C, 1000rpm for 20 minutes (min). 50μL of neutralizing 

buffer (0.04M Tris-HCL (Sigma) in water) was added and samples were kept in 4°C until PCR 

amplification.  

Briefly, per sample, 12.5μL of Kapa2G mastermix (Kapa biosystems), 10.9μL of nuclease free 

water and 0.6μL of 10μM of primers (WT or Mutant, Table 2.1) were added. After amplification, 

PCR products were run on 1% agarose gel (Biorad) with 1:10000 GelRed Nucleic Acid Gel Stain 

(Biotum). A representative image of a result with a WT, Fgd5ZsGreen·ZsGeenr/+, Water control and 

Fgd5ZsGreen·ZsGeenr/+ control is shown in Figure 2.1. 

Table 2.1 Primer sequences for Fgd5 genotyping. 
Primer Sequence 
Fgd5 MUT reverse GCG GTT GCC GTA CAT GAA G 
Fgd5 WT reverse ATG ACC TCA TTG GGG AAG G 
Fgd5 forward GGA AGC TCC AGA TGA AGA GG 
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Figure 2.1 Representative image of Fgd5ZsGreen·ZsGeenr/+ genotyping experiment. 
Double mutants are embryonic lethal, hence positive mice are heterogenous with both WT and mutant 
bands. 100kb ladder on the left. Wa, water control; + CTRL, Positive control. 

2.2 HSC isolation or BM analysis by flow cytometry 

2.2.1 Bone marrow harvest 

Mice were sacrificed by dislocation of the neck. BM cells were isolated from the tibia, femur and 

sternum of both hind legs, by crushing the bone in PBS2% - 2% Foetal Calf Serum (FCS (Sigma) 

or STEMCELL Technologies (SCT)) in PBS (Phosphate-buffered saline, Sigma). Samples were 

filtered through 20μm sterile filters before further processing. 

2.2.2 Red cell lysis 

Red cell lysis was performed using ammonium chloride (NH4Cl, SCT). The cells were first 

concentrated by spinning down and pelleting at 300g for 5 min. The supernatant was removed 

carefully, and the cells were resuspended in 3mL PBS2%. 5mL of NH4Cl was added and cells were 

incubated for 5 min on ice. After a short vortex to ensure pellet is fully resuspended, cells were 

again incubated for another 5 min on ice. The cells were washed with 12mL of PBS2% (spun down 

at 300g for 5 min, supernatant removed) and then resuspended in 500µl and transferred to a FACS 

tube for lineage depletion. 

+ - +
CTRL

Wa

WT 
band

Mutant 
band
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2.2.3 Lineage depletion 

HSPC were enriched using EasySep Mouse Hematopoietic Progenitor Cell Enrichment Kit (SCT). 

Briefly, the 500μL of cell suspension was incubated with 10μLof EasySep Mouse Hematopoietic 

Progenitor Cell Isolation cocktail for 15 min on ice. 20μL of EasySep Streptavidin Rapid Spheres 

50001 was added for a further 15 min incubation on ice. 2mL of PBS2% was added and the tube 

was placed in the EasySep magnet for an incubation of 3 min at room temperature. Carefully whilst 

still in the magnet, the supernatant was poured out into a new tube and the magnetic step was 

repeated another time. 

2.2.4 Isolating HSCs by FACS 

ESLAM Sca-1+ cells were isolated as described previously184 using CD45 BV421, EPCR PE, 

CD150 PE/Cy7, CD48 APC, Sca-1 BV605 (Table 2.2) and 7-Aminoactinomycin D (7AAD) (Life 

Technologies). The cells were sorted on an Influx (BD) using the following filter sets 530/40 (for 

Fgd5), 585/29 (for PE), 670/30 (for APC), 460/50 (for BV421), 670/30 (for 7AAD) and 610/20 

(for BV605) (Table 2.4). When single HSCs were required, the single-cell deposition unit of the 

sorter was used to place 1 cell into the wells of 96-well plates, each well having been preloaded 

with 50μL or 100μL medium (described below). 

 

In all experiments the ESLAM Sca-1+ gating strategy (Figure 2.2) was used to sort HSCs, otherwise 

where indicated in the text, Fgd5+EPCR+CD45+ cells were sorted instead of ESLAM Sca-1+ cells. 
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Figure 2.2 Representative ESLAM Sca-1+ gating strategy. 
EPCR+ CD45+ CD150+CD48-Sca-1+ HSCs are isolated from lineage depleted BM by fluorescence assisted cell 
sorting. Although not a part of the standard gating strategy, these cells are mostly Fgd5 and c-Kit positive, as 
indicated by the dotted line. 

2.2.5 Lymphoid and peripheral tissue harvest 

Cell suspensions of spleen, mesenteric lymph nodes and thymus were obtained by passing the 

tissues through a 70μm strainer. Lung and liver samples were digested with 750U/mL 

Collagenase I (Life Technologies) and 0.3mg/mL DNAse I (Sigma). Following digestion, liver 

cells were then passed through a 70μm strainer and mononuclear cells were isolated using a 33% 

gradient of Percoll (Merck) at 690g for 12 min with minimal break. Spleen, liver, thymus and lung 

cell suspensions were then treated with NH4Cl (SCT) to remove red blood cells.  

Lin- Fgd5 all ESLAM plate 2_001.fcs
Sca+
62.0

BM cells Single Cells Live

SLAMESLAMESLAM Sca+
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2.2.6 Flow cytometric analysis or FACS isolation of Fgd5+EPCR- cells 

Cell suspensions of BM cells were prepared as above. For sorting of FE- cells, cell suspensions 

were stained with EPCR PE, CD45 BV421, CD5 PE/Cy7, 7AAD and/or CD244 AF647 and/or 

NK1.1 APC/Cy7 and/or Sca-1 BV605 (Table 2.2). For surface marker phenotyping, the additional 

antibodies are listed in Table 2.2. 

2.3 In vitro assays 

2.3.1 Cell culture images 

Cell culture images were taken with an Olympus CKX41microscope and an Olympus SC50 

camera. 

2.3.2 CFU assays 

100 or 200 cells were resuspended in 600μL of semi-solid MethoCult GF M3434 (SCT) and plated 

into two wells in a 6-well SmartDish (SCT). Cells were then cultured for 14 days at 37oC with 5% 

CO2. Colonies were imaged and counted using STEMvision (SCT). 

2.3.3 OP9 assays 

OP9 cells were plated into tissue culture-treated 96-well flat bottom plates (Corning) at 2000 cells 

per well in 100μLof Opti-MEM supplemented with 10% FCS, 1% Penicillin/Streptomycin 

(Sigma) and 0.2% BME. Single HSCs or FE- cells were sorted a day later into each well. 100μLof 

media (of above supplements) was immediately added to give final concentrations of 25ng/mL 

Flt3L, 25ng/mL SCF and 25ng/mL IL-7. Cells were cultured for 14 days with half media change 

after 7 days. At the end of the experiment, clones were harvested and analysed by flow cytometry 

for B220 APC, CD19 PE/Cy7, NK1.1 APC/Cy7, CD45 BV421, Mac-1 BV605 (Table 2.2) and 

7AAD (Life Technologies). Cells were considered clonogenic if CD45+7AAD- cells are present. 

2.3.4 Intracellular flow cytometry 

BM suspensions were prepared as above (section 2.2). Cells were stained with EPCR PE, CD45 

BV421, CD5 BV711 (Table 2.2) and 7AAD (Life Technologies). FE-CD5+ and FE-CD244+ cells 

were sorted separately for stimulation. To stimulate the cells, they were cultured in 96-well 

advanced RPMI supplemented with 10% FCS, 1% Penicillin/Streptomycin (Sigma), 1% L-

Glutamine (L-Glut, Sigma)with 0.2% β-Mercaptoethanol (BME, Life technologies), 500ng/mL 

Phorbol 12-myristate 13-acetate (PMA, Sigma) and 500ng/mL Ionomycin (Sigma) for 4 hours at 

37oC with 5% CO2. 0.6μL of GolgiStop (BD) was also added to each well. As unstimulated control, 
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cells were cultured as above without PMA and Ionomycin. Cells were stained with Zombie Aqua 

(Biolegend) before being fixed with 2% formaldehyde (PFA, Thermo Fisher Scientific (Thermo)) 

and permeabilised with FoxP3 perm buffer (eBiosciences). Cells were stained with IFNγ 

APC/Cy7, IL-5 APC and TNFα PerCP/cy5.5 (Table 2.2). Flow cytometry was performed on an 

LSRFortessa (BD) and all data were analysed using FlowJo v10 (Treestar, Ashland, OR, USA). 

2.3.5 Stemspan (SS) based HSC cultures 

Single or bulk HSCs were cultured in 96 well U-bottom plates (Corning) containing 100μL of 

StemSpan Serum-Free Expansion Medium (SS, SCT) supplemented with 1% 

Penicillin/Streptomycin (Sigma), 1% L-Glut (Sigma), 0.2% BME (Life technologies), 300ng/mL 

of mouse SCF (SCT or Bio-Techne) and 20ng/mL human IL-11 (SCT or Bio-Techne) at 37oC 

with 5% CO2. All SS-based cultures are performed serum-free, apart from the 6-day liquid cultures 

in Section 3.1.2, where the above media makeup is supplemented with 10% FCS (Sigma). Where 

detailed in the text, indicated concentrations of OPN (Sigma), PTN (Bio-Techne), IGFBP2 (Bio-

Techne) and IGFBP4 (Bio-Techne) were added to this media makeup. 

 
Figure 2.3 Representative images of different liquid culture colony sizes. 
Single HSCs are cultured in vitro for 10 days. On day 10, clones are assessed for survival and clone size and 
then harvested for flow cytometric analysis. Scale bar represents 100μm. Figure adapted from Caroline 
Oedekoven418. 
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2.3.6 F12-based 28-day HSC cultures 

F12-based cultures performed as described previously419. Briefly single or bulk HSCs were cultured 

on BioCoat fibronectin 96 well plates (Corning) in 200μL of Ham’s F12 nutrient mix (Thermo) 

supplemented with 1% Insulin-Transferrin-Selenium-Ethanolamine (ITSX, Gibco), 10mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, Gibco), 1% Penicillin/Streptomycin/L-

Glutamate (P/S/G, Gibco), 100ng/mL mouse TPO (Preprotech), 10ng/mL mouse SCF 

(Peprotech) and 0.1% PVA (Sigma) or HSA (Albumin Bioscience) at 37oC with 5% CO2. Where 

indicated, 20ng/mL of human IL-11 (SCT or Bio-Techne) was also used. Complete medium 

changes were made every 2-3 days after the first 5-6 days. 

 

Where indicated, 10% of the cultures were taken out for flow cytometric analysis detailed below. 

2.3.7 F12-based short-term (<10 days) cultures 

For short-term cultures up to 10-days, cells were cultured as above (section 2.3.6), except 96 well 

U-bottom plates (Corning) were used and no media changes were performed. Where indicated, 

varying concentrations of SCF and TPO were used. 

2.3.8 EL08 conditioned media preparation 

EL08 CM was prepared as described previously153. Briefly, EL08 cells were cultured in sterile tissue 

culture flasks (Greiner Bio-One Ltd (Greiner)) in α-MEM supplemented with 10% FCS (sigma), 

10% horse serum (Sigma), 1% Penicillin/Streptomycin (Sigma) and 1% L-Glut (Sigma) until 90% 

confluent. Flasks were then irradiated at 30 Gy and then washed twice carefully with PBS (Sigma) 

and SS would be added. After indicated duration of incubation at 37oC with 5% CO2, CM is 

harvested and filtered through 0.2μm sterile filters and kept at -20°C until further use. 

2.3.9 EL08 CM cultures 

As above, single HSCs were cultured in 96 well U-bottom plates (Corning) containing 100μL of 

EL08 CM supplemented with 1% Penicillin/Streptomycin (Sigma), 1% L-Glut (Sigma), 0.2% 

BME, 300ng/mL of mouse SCF (SCT or Bio-Techne) and 20ng/mL human IL-11 (SCT or Bio-

Techne) at 37oC with 5% CO2. 

2.3.10 Flow cytometric analysis of in vitro cultures 

Cells (cultured from bulk or single clones) were stained with EPCR PE, Sca-1 BV605, Mac-1 APC, 

Gr-1 PE/Cy7, c-Kit APC/Cy7, CD45 BV421 (Table 2.2) and 7AAD (Life Technologies). To 

enumerate cells, a defined number of fluorescent beads (Trucount Control Beads, BD) were added 

to each well and each sample was back calculated to the proportion of the total that were run 
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through the cytometer. Flow cytometry was performed on an LSRFortessa (BD) with a High 

Throughput Sampler (BD) (for single clone analysis) and all data were analysed using FlowJo v10. 

Representative gates for FELSK (Fgd5+EPCR+Lineage-Sca-1+c-Kit+) cells are shown in Figure 2.4. 

 
Figure 2.4 Representative gating strategy for FELSK cells. 

 

To analyse single cell clones, the percentage of phenotypic HSCs (FELSK) is plotted against the 

number of live cells in each clone (Figure 2.5). 

Sample Singlets Live

Lin-LSK

FELSK

Beads
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Figure 2.5 Schematic of clonal analysis interpretation. 
Single clones are analysed by flow cytometry. A defined number of fluorescent count beads are used to back-
calculate the total number of cells in each clone. By plotting against the percentage of phenotypic HSCs 
defined as Fgd5+EPCR+LSK (FELSK) cells. Culture conditions can be compared for their ability to induce 
proliferation and maintain HSC self-renewal. Because technical variations may occur, a control condition (SS 
or F12) is always used in each experiment. 

2.4 Transplantation assays 

All donor cells were obtained from Fgd5ZsGreen·ZsGeenr/+ mice that were between 8 and 16 weeks of 

age. All recipient mice were W41 mice that were at least 8 weeks of age. Recipient mice given a 

sublethal dose of radiation (4 Gy) using a caesium source. After sorting, cells were diluted to 

desired cell doses with PBS. If needed, cells were spun down to ensure that they were suspended 

in the final transplantation volume of 200-300μL. Transplantations were performed by intravenous 

tail vein injection using a 29.5G insulin syringe (Terumo).  

2.4.1 Single cell transplantations 

Single-cell transplantations were performed by tail vein injection of sublethally irradiated W41 mice 

as previously described206. Briefly, single cells were sorted into 100μL of medium in a 96-well U-

bottom plate and spun down at 300g for 1 minute. Wells were visually inspected for the presence 

of a cell. To the wells containing a cell, 100μL of PBS was mixed with the well and all liquid was 

subsequently aspirated into the insulin syringe. After removal of air bubbles, all liquid was injected 

through the tail vein. 

2.4.2 Secondary transplantations 

For secondary transplantations, BM from the primary recipient was harvested from the femur tibia 

and hips by flushing with PBS2%, as above. Red cell lysis was performed as above, and cells were 

immediately frozen in FCS with 10% DMSO (Thermo) or transplanted into W41 mice as 
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recipients. Each recipient mice received an equivalent cell dose of one femur. Secondary mice were 

monitored for at least 16 weeks. 

2.4.3 Peripheral blood analysis 

Peripheral blood samples were collected from the tail vein of all mice every 4 weeks up until 16 

weeks post transplantation. Blood was collected in EDTA coated microvette tubes (Sarstedt AG 

& Co, Nuembrecht, Germany). Red blood cell lysis was performed as before. Samples were stained 

with surface marker antibodies for CD45.1 AF700, CD45.2 APC/Cy7, Mac-1 BV605, B220 APC, 

Ly6G PE/Cy7 and CD3 PE (Table 2.2). As before, 7AAD (Life Technologies) was used as a 

viability dye and samples were analysed on a BD LSR Fortessa flow cytometer. Representative 

gating strategies are shown in Figure 2.6. Briefly, after gating for viable and singlets, donor and 

recipient cells were distinguished by their expression of CD45.1 or CD45.2. B cells are defined as 

B220+ cells, T cells are defined as CD3+ cells and GM cells are defined as Mac-1+ cells. Animals 

with at least 1% donor WBCs at 16 after transplantation were considered to be repopulated with 

long-term reconstituting cells. Animals with at least 1% contribution to all three lineages are 

considered multi-lineage. 
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Figure 2.6 Representative gating layout for peripheral blood chimerism analysis. 
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2.5 Antibodies  

Table 2.2 List of antibodies used, with respective clone numbers and manufacturer. 
Antigen Fluorochrome Clone Manufacturer 
B220 APC RA3-6B2 Biolegend 
CD150 PE/Cy7 TC15-12F12.2 Biolegend 
CD19 PE/Cy7 6D5 Biolegend 
CD1d-PBS57 or 
unloaded 

APC - NIH Tetramer 
Core 

CD244.2 AF647 m2B4 (B6)458.1 Biolegend 
CD25 PerCP/Cy5.5 PC61 Biolegend 
CD3 PE or APC/Cy7 17A2 Biolegend 
CD335 PE/Cy7 29A1.4 Biolegend 
CD4 BV605 RM4-5 BD 
CD45 PB or BV421 30-F11 Biolegend 
CD45.1 AF700 A20 eBioscience 
CD45.2 APC/Cy7 104 Biolegend 
CD48 APC HM48-1 Biolegend 
CD49b BV510 HMa2 BD 
CD5 PE/Cy7 or BV711 53-7.3 Biolegend 
CD5 PE/Cy7 53-7.3 Biolegend 
CD8a BV510 53-6.7 BD 
c-Kit APC/Cy7 2B6 Biolegend 
EPCR PE RMEPCR1560 SCT 
IFN-γ APC/Cy7 XMG1.2 Biolegend 
IL-5 APC TRFK5 Biolegend 
IL-7rα BV785 A7R34 Biolegend 
Ly6C (Gr-1) PE/Cy7 RB6-8C5 Biolegend 
Ly6G PB/BV421 1A8 Biolegend 
Mac-1 BV605 M1/70 Biolegend 
Mouse HSPC cocktail Biotin 145-2C11; M1/70; 6D5; 

RA3-6B2; RB6-8C5; TER-
119 

SCT 

Ncam APC MEM188 Abcam 
NK1.1 APC/Cy7 PK136 Biolegend 
PD1 BV510 29F.1A12 Biolegend 
Sca-1 BV605 or BV421 D7 Biolegend 
Streptavidin BV510 or BV605 - Biolegend 
TCR-β BV785 H57-597 Biolegend 
Ter119 PE/Cy7 Ter119 Biolegend 
TNF-α PerCP/Cy5.5 MP6-XT22 Biolegend 
γδ-TCR PE/Cy7 GL3 Biolegend 

 



Methods 

 
 

57 

2.6 Flow cytometer set up 

Table 2.3 Flow cytometer set up for BD LSR Fortessa. 
Fluorochrome DF/Band-pass filter 
BV421 or PB 405 450/50 
BV510 405 525/50 
BV605 405 610/20 
ZsGreen 488 515/20 
PE 532 586/15 
7AAD 532 710/50 
PE/Cy7 532 780/60 
APC 640 670/14 
AF700 640 730/45 
APC/Cy7 640 780/60 

 

 
Table 2.4 Flow cytometer set up for BD Influx. 

Fluorochrome DF/Band-pass filter 
BV421/PB 405 460/50 
BV605 405 650LP 
ZsGreen 488 530/40 
PE 561 585/29 
7AAD 561 670/30 
PE/Cy7 561 750LP 
APC 640 670/30 

 

2.7 RNA sequencing 

RNA was extracted using the Picopure RNA Isolation Kit (Thermo) according to manufacturer 

protocol. Bulk RNA-seq was carried out at the Genomics core facility of the Cambridge Stem Cell 

Institute upon submission of sample RNA. Briefly, libraries were prepared using the SMARTer 

Stranded Total RNA-seq Kit v2 – Pico Input mammalian (Takara Bio, CA, USA) according to 

manufacturer protocol. Quality control (QC) steps were performed using Qubit RNA HS Assay 

Kit and bioanalyzer. Sequencing was run at the Cancer Research UK Cambridge Institute 

Genomics core, on a Novaseq (Illumina). 

 

RNA-seq data was analysed by Daniel Bode (Kent lab) and John Davey (University of York).  
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2.7.1 RNA-seq analysis 

Pre-processing and batch correction 

Raw counts were processed using edgeR (version 3.28.1)420,421. Firstly, lowly expressed genes were 

excluded from downstream analysis. Here, genes with fewer than two libraries expressing a 

minimum of 1 CPM (counts per million) were considered lowly expressed. Subsequently, read 

counts were normalised using the trimmed mean of M values (TMM) method 422. Where there is 

multiple sequencing runs across an experiment, technical replicates were used to inform batch 

correction, performed with Limma (version 3.42.2)423. With little variation between Batch1 and 

Batch2, batch correction was performed on Batch1 and Batch3, were a significant variation of 

technical replicates was identified (Figure 2.7) Log-transformed and batch corrected values were 

subsequently used for downstream analysis.  

 

Differential gene expression analysis 

Differential expression was performed using a likelihood ratio test approach. For this purpose, a 

negative binomial generalised linear model (GLM) was fitted. Multidimensional scaling (MDS) 

plots were computed using Limma (version 3.42.2). Genes were considered differentially expressed 

when a LogFC >=2 and FDR <0.05.  

 
Figure 2.7 MDS plots of batch corrections performed on bulk RNA-seq samples. 
3 runs of RNA-seq was performed with two separate technical replicates (black and grey). Coloured in by 
groups defined in section 5.2. 
A) Before batch correction, with minor technical noise displayed by the grey replicates. 
B) After batch correction, the technical repeats are virtually in different. 
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GO term analysis 

To compute gene ontology (GO) enrichment, gene symbols were converted to Entrez gene 

identifiers, using the mouse genome annotation database (org.Mm.eg.db, version 3.10.0). GO 

terms were extracted from the GO annotation database (GO.db, version 3.10.0) and GO term 

enrichment was computed using the Limma package (version 3.42.2). Biological process GO terms 

with a p-value < 0.05 were considered enriched.  

Principal component analysis 

Principal component analysis (PCA) was performed using the PCAtools R package (version 1.2.0). 

To ensure a Gaussian distribution of gene expression values for PCA computations, lowly 

expressed genes were removed based on a cumulative cut-off >40CPM across all samples per 

gene. During PCA computation, 10% of the most non-variable genes were excluded from analysis. 

To identify key genes driving separation of principal components, loadings plots were computed 

using the top 15% variable genes. Subsequently, a 0.05 cut-off irrespective of directionality was 

applied to select genes. Pearson correlation coefficients and the respective r2 values were computed 

to determine the correlation of transplantation metadata with principal components.  

MolO score and signature gene score analysis 

A molecular overlap (MolO) gene signature, associated with freshly isolated LT-HSCs was 

previously described 186. MolO signature genes which passed the threshold for expressed genes 

(minimum 1 CPM in at least 2 libraries) were extracted from the dataset. The geometric mean was 

computed on log-transformed expression values for all MolO genes to derive the MolO score for 

each sample. A geometric mean was also computed for a novel repopulation gene signature, 

derived from the loading plots of the PCA. 

SingleR correlation analysis 

To identify dominant cell types of each sample library, the sc RNA-seq-based cell type recognition 

tool SingleR (version 1.0.6) was repurposed and applied to the bulk RNA-seq dataset at hand424. 

Default parameters were used to compute the correlation of each sample against the curated 

ImmGen reference dataset425–427. In particular, subtypes within the broad haematopoietic stem cell 

compartment were used as reference. For NKT subtypes, published datasets were used428. 

Pathway analysis 

Pathway analysis was performed based on the curated Reactome pathway database, using the 

ReactomePA tool (version 1.30.0)429. Entrez gene identifiers for genes of interest were used as 

input. A p-value cut-off <0.05 was applied. 
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Visualisations on scRNA-seq dataset 

Previous scRNA-seq characterisation of the haematopoietic hierarchy revealed distinct molecular 

signature of different cell types 190. The expression of transplantation signature genes was visualised 

in the Nestorowa et al. dataset190. 

2.8 Proteomics 

2.8.1 EL08 CM proteomic screen 

Samples were run by Robin Antrobus from the proteomics core in CIMR. Briefly 10 µl of each 

sample was digested in solution using 500ng trypsin. The resulting peptides were dried down, re-

suspended in 15 µl MS solvent (3 % MeCN, 0.1 % TFA) for analysis on an Orbitrap Q Exactive 

mass spectrometer (Thermo). Peptides were fractionated using a Dionex RSLC nano3000 

(Thermo) with solvent. A comprising 0.1 % formic acid and solvent B comprising 80 % MeCN / 

0.1 % formic acid. Peptides were loaded onto a 50 cm EASYspray PepMap C18 column (Thermo) 

and eluted into the mass spectrometer using a gradient rising from 10 % to 40% solvent B by 55 

min. MS data were acquired in the Orbitrap at 70,000 fwhm between m/z 400 and 1500 with a 

maximum AGC of 1 x 105. Peptides were isolated and fragmented using HCD at 30 % collision 

energy. MSMS spectra were acquired in the ion trap with a maximum AGC of 1 x 104. Raw files 

were processed in Maxquant 1.5.2.8. Heatmap was generated on R. 

2.8.2 F12 PVA culture media proteomic screen 

All media from media changes during 28-day cultures were collected in 96-well PCR plates and 

stored at -20°C. To allow for a temporal comparison and sufficient protein content, the following 

timepoints (in days) were pooled: 9 and 12 (early); 16 and 19 (middle); 23 and 26 (late). These were 

collected from three replicates of repopulating clones and three from non-repopulating clones, 

thus totalling 18 samples. Samples were quantified using a colourimetric peptide assay (Pierce), 

following the manufacturer’s protocol. Sample volumes were extracted to accord to 5μg total 

protein and diluted in 100mM triethylammonium bicarbonate buffer (TEAB). Sample clean-up 

and desalting were performed using SDB-XC and C18 silica filters, manually packaged in tips and 

pre-conditioned. Pre-conditioning of C18 filters was performed using 100% acetonitrile (ACN), 

followed by washes with 80%ACN/0.1% trifluoroacetic acid (TFA) and equilibration with 

0.1%TFA/dH2O. All washes and equilibration were performed in triplicate. Prior to application 

to the filter, the sample was acidified with a final concentration of 0.25% TFA. After application 

to the filter, samples were washed with 0.1%TFA/dH2O (triplicate) and eluted with 

80%ACN/0.1%TFA. A total 5μg total protein was used per sample. A pooled control, comprising 
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samples from repopulating and non-repopulating clones, was prepared. Two separate multiplexing 

sets were setup with a pooled control in both sets. TMT10plex isobaric labelling reagents (Thermo) 

were freshly resuspended in dry ACN and subsequently added to each 10-plex, as indicated above. 

After incubation for 1h, the reaction was quenched using 5% hydroxylamine for 15min and 

subsequently pooled within their respective 10-plex. Samples were dried in a SpeedVac at 45°C 

prior to desalting. SDB-XC filters were washed with 100% ACN, followed by 

77%ACN/0.1%TFA and equilibrated with 0.1%TFA/5%ACN/dH2O. All washes and 

equilibration were performed in triplicate. After application to the filter, samples were desalted 

using 0.1%TFA/5%ACN/dH2O (triplicate) and eluted with 77%ACN/0.1%TFA. Following 

desalting, samples were dried using a SpeedVac at 45°C, resuspended in 0.5% formic acid and 

sonicated for 10 seconds. Liquid chromatography – tandem mass spectrometry (LC-MS/MS) was 

subsequently performed using an Orbitrap Fusion mass spectrometer, coupled with a Dionex 

Ultimate 3000 UHPLC system. Raw data were subject to a database search in Proteome Discoverer 

2.2 using default settings. Sample preparation was performed by Daniel Bode and LC-MS/MS was 

run by Dr Lu Yu, Jyoti Choudhary Lab, Institute of Cancer Research (ICR), London, UK. 

2.9 Statistical analysis 

All ANOVAs, Tukey’s multiple comparisons test, t-Tests, Fisher’s exact tests, Wilcoxon matched-

pairs signed rank tests and Pearson’s correlation statistics were calculated, and graphs were 

generated on Graphpad Prism6 or R. 



 

Results 

3 Identification of a novel immune cell subset in the 

Fgd5ZsGreen•ZsGreen/+ reporter mouse strain 

As mentioned in section 1.4.1, HSC expansion has been a longstanding-goal in the field and 

progress has been partly hampered by the lack of robust in vitro markers. Recent advances in the 

development of HSC reporter mouse strains, spurred by better molecular characterisation of 

HSCs, provide a potential opportunity for novel in vitro markers. As mentioned in more detail in 

section 1.2.6, the Fgd5ZsGreen•ZsGreen/+ reporter mouse was chosen because the original data looked 

most promising. In the original report, Gazit et al. suggested that all phenotypic HSCs defined as 

Lineage-, Flk2-, CD34lo/-, CD150+ were Fgd5+ and vice versa, that the vast majority of Fgd5+ cells 

are Lineage-, c-Kit+, Sca-1+, CD48- and CD150+. As stated, this allowed for a single colour 

identification and purification of HSCs188. Therefore, the Fgd5ZsGreen•ZsGreen/+ reporter mouse was used 

to test whether they can be useful markers of HSCs in vitro. 

3.1 More than 50% of Fgd5+ cells are not phenotypic HSCs 

Upon obtaining the strain, we first undertook experiments to confirm that the Fgd5 reporter 

marked LT-HSCs. Fresh BM was harvested from Fgd5ZsGreen•ZsGreen/+ mice and analysed by flow 

cytometry for phenotypic markers of LT-HSCs (EPCR+CD150+CD48-CD45+, ESLAM, see 

section 1.2.5 for more details). In agreement with the original report, 98.71% ± SD 2.286 of 

ESLAM cells were Fgd5+ in 7 mice tested ( 

Figure 3.1 below). 

 
Figure 3.1 Phenotypic LT-HSCs are Fgd5+. 
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Contrary to the original report, however, we observed that a substantial fraction of cells falling in 

the initial Fgd5+gate was not present in the ESLAM gate (Figure 3.2A). Despite Fgd5 significantly 

enriching for ESLAM cells to 38.37% ± SD 9.058% on its own, there are still a large proportion 

of non-ESLAM cells. Intriguingly, these non-ESLAM cells, comprising 61.63% ± SD 9.058% of 

Fgd5+ cells, clearly form a separate population that are EPCR- and CD45high, henceforth referred to 

as FE- cells (Fgd5+EPCR-). The FE- cells also express high levels of CD48+ and are CD150- (Figure 

3.2), further suggesting they do not have a phenotypic LT-HSC identity. The Fgd5+EPCR+ (FE+) 

cells conversely are predominantly CD150+ and CD48-, demonstrating that FE+ on its own 

represents a considerable enrichment of LT-HSCs with a two-marker strategy. 

 
Figure 3.2 Fgd5+ cells are not uniformly LT-HSCs. 
A) Representative flow plots of cells, pre-gated for Fgd5+ live singlets. Fgd5+ cells can be fractionated into an 
EPCR+ (FE+) and an EPCR-CD45hi (FE-) population.  
B) FE+ cells are mostly phenotypically CD150+CD48- by percentage whereas FE- cells are not. n= 5 paired T-test 
two tailed. **** = p <0.0001. Error bars represent data ± SD. 

3.1.1 Fgd5+ CD48dull ESLAM cells are not significantly different from normal ESLAMs 

Interestingly, the two-marker FE+ strategy identified a population of cells that were CD48dull as 

opposed to the CD48- gate reported in the original SLAM marker paper121. These cells would 

normally be removed in a standard ESLAM gating strategy184, but the co-expression of EPCR and 

Fgd5 suggested that this gate might unfairly exclude some functional HSCs. To investigate whether 

Fgd5 and EPCR alone could be a two-colour alternative to marking LT-HSCs, we assessed the 

CD48dull fraction specifically using single cell transplantations (n=21) (Gating strategy shown in 

Figure 3.3). 
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A) Representative gating strategy for ESLAM cells and Fgd5 expression in Fgd5ZsGreen+ mice and WT littermates. 
B) Percentage of ESLAM cells that are Fgd5+ n=7. Error bars represent data ± SD. 
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Figure 3.3 Representative gating layout for Fgd5+EPCR+CD150+CD48dull cells. 
The left panel shows the two gates for SLAM cells and CD48dull SLAM cells, overlaid on live cells and the right 
panel shows the gates overlaid on FE+ cells. Fgd5+EPCR+CD150+CD45+CD48dull cells represent 0.018% of live 
BM cells, whilst standard Fgd5+ ESLAM cells represent 0.0023% of live BM cells. 

 

7 of 21 single cells had long term (16 weeks) reconstitution in primary mice. 5 of these 7 single 

cells (24% of the total) displayed multi-lineage reconstitution at week 16 after primary 

transplantation, 4 of which had the robust GM-contribution characteristic of an HSC with durable 

self-renewal potential (α and β-HSC subtypes, see section 1.3.1)(Figure 3.4)206. Another 7 out of 

21 clones had transient reconstitution, where chimerism above 1% was detected at one or more 

earlier time points, but not at week 16. This suggests that a substantial number of additional LT-

HSCs could be captured by extending the CD48 gate. However, 24% is lower than the typical 

ESLAM phenotype (56%)184, meaning that extending the gate might not be appropriate for a 

number of assays (e.g., single cell molecular assays). Also, as only 21 mice were assayed resulting 

in a p-value of 0.081 (Fisher’s exact test), it is still formally possible that there is a significant 

difference between the two populations, and this would require additional transplantations to make 

robust conclusions. Together these data demonstrate that Fgd5 and EPCR on their own mark a 

population of cells highly enriched for functional HSC activity and might allow more LT-HSCs to 

be obtained from individual animals. 
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Figure 3.4 The CD48dull ESLAM phenotype contains a high proportion of functional HSCs. 
A) Donor chimerism of singly transplanted CD48dull ESLAM cells (n=21); repopulated >1% at week 16 (black), 

transient >1% at week 4,8 or 12 (grey). The dotted horizontal line represents 1% donor chimerism. 
Recipients with no detectable reconstitution is not shown. 

B) Ratio of lineage contribution of 7 positively-reconstituted donor cells at week 16 and its assigned HSC 
subtype above. Only the α and β-HSCs would be expected to give robust secondary transplantations 
indicative of HSCs with durable self-renewal potential.  

3.1.2 FE- cells are not HSCs 

If Fgd5 were to be used as an HSC marker in vivo, it becomes vital to understand the other cells 

that do not express the traditional HSC markers. This also becomes important for in vitro cultures 

in order to exclude the possibility that Fgd5+ non-HSCs might arise in the culture. The remainder 

of this results chapter focuses on the detailed cellular and molecular characterisation of the FE-

cell population. 

 

In order to characterise FE- cells, we first undertook in vitro stem/progenitor cell assays. Colony 

forming cell (CFC) assays and 10-day single HSC liquid cultures were undertaken as described 

previously165. As shown in Figure 3.5, FE- cells were unable to grow in LT-HSC liquid culture 

conditions and did not form any myeloid haematopoietic colonies in vitro. Since ~70% of FE- cells 

expressed Sca-1, a known stem/progenitor cell marker, we first tested whether they might 

represent non-terminal lymphoid progenitors by undertaking OP9 co-culture assays. Again, FE- 

cells failed to form colonies compared to ESLAM cells, suggesting that they are not lymphoid cell 

progenitors either (Figure 3.6). 
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Figure 3.5 FE- cells do not generate haematopoietic colonies in HSPC assays. 
A) Clonal survival rates of ESLAM vs FE- cells in liquid cultures of SS supplemented with 10% FCS, 300ng/mL 

SCF and 20ng/mL IL-11. (n= 122 FE- cells n=192 ESLAM cells) 
B) CFC assay. ESLAM cells, n = 100 cells plated; FE-, n = 300 cells plated 

 

 
Figure 3.6 FE- cells do not grow in OP9 B cell progenitor assays. 
Single ESLAM or FE- cells were cultured with OP9 stromal cells and analysed for their ability to form colonies 
and produce B220+ cells. 
A) Clonal survival of FE- cells compared to ESLAM cells after 14 days on OP9 cells. 
B) Percentage of B220+ cells in each surviving clone derived from ESLAM or FE- cells.  
ESLAM, n=48; FE-, n=48. 
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3.1.3 FE- cells are of haematopoietic lineage 

To confirm if FE- cells are of haematopoietic origin, recipient BM from primary single cell 

transplantations including the CD48dull experiment detailed in section 3.1.1, were analysed for 

presence of FE- cells. As shown in Figure 3.7, Fgd5+ cells were present in repopulated marrow 

more than 16 weeks post transplantation. Reassuringly, both FE- and FE+ cells were found in the 

BM, proving that single HSCs can give rise to new FE+ and FE- cells. The proportion of FE- and 

FE+ cells was observably different between recipients; some BM samples only had FE- cells and 

vice versa, some only contained FE+ cells. Therefore, the proportions of FE- and FE+ cells were 

correlated with the lineage output of the donor cells. 

 
Figure 3.7 Representative gating strategy for BM cells from repopulated primary 
transplantation recipient. 
BM of recipients of single clone-derived 1-3 cell transplants, 16 weeks post transplantation. Left panel is pre-
gated for live and singlets; Fgd5+ cells exist in BM of recipient. Right panel shows the gating strategy for FE- 
cells and FE+ cells in recipient BM. This particular mouse had cells in both gates, while some recipients do not 
have any Fgd5+ cells or cells in only one gate. 

 

As expected, the percentage of FE+ cells, presumably representing phenotypic LT-HSCs, 

correlates strongly with donor GM lineage contribution (r = 0.7570, p=0.0007), which is typically 

associated with secondary reconstitution capability206. Interestingly, the frequency of FE- cells is 

strongly correlated (r = 0.7857, p=0.0003) with the donor contribution to T cell lineages, but not 

with B cell (p=0.0956) or GM lineages (p=0.1144) (Figure 3.8). This suggests that FE- cells are 

coupled to T lineage fates. 
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Figure 3.8 FE- correlates strongly with T cell output in primary transplantation. 
Analysis of BM of primary recipients of 1-3 fresh or cultured HSCs, 16 weeks post transplantation.  
A) Percentage of donor GM cells correlated to percentage of FE+ cells.  
B-D) Percentage of donor T, B and GM cells correlated with percentage of FE- cells. 
Pearson correlation, ***=p<0.0005, exp=2, n = 16. 

3.1.4 FE- cells do not result from different BM preparation methods 

Next we tried to understand why these cells were not present in the original paper by Gazit et al.188 

Up until this point, all the BM samples were prepared by crushing the bones with a pestle and 

mortar. Since flushing bones with a syringe is another common way to prepare BM cell 

suspensions, we hypothesised that FE- cells might result from the technique of BM crushing. To 

test this, two legs of the mice were prepared independently by crushing and flushing the bones, 

and the cells were stained for Fgd5 and EPCR. As shown in Figure 3.9, FE- cells are present in 

both preparation techniques. 
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Figure 3.9 FE- cells are present in both flushed and crushed bones. 
Percentage of FE- cells in crushed or flushed bones from the same mouse. Showing that FE- cells are present 
and in similar proportions from both preparation methods. Exp = 1 n=1. 

3.2 Gene expression of FE- cells suggests a lymphoid cell identity 

As we have already shown, FE- cells express high levels of CD45 and CD48, both of which are 

found in a wide array of haematopoietic cell types. Because of the ambiguous nature of this cell 

population, we performed bulk RNA-seq on 4415 FE- cells to gain more insights into their identity 

and detected 29876 genes. 

 

As expected, surface markers such as CD45 (Ptprc) and CD48 were highly expressed, validating 

observations by flow cytometry (Table 3.1). Although not at an extremely high level relative to 

other detected genes (5107th out of 29876 genes) Fgd5 is expressed (12.6 CPM) and so was ly6a 

(Sca-1) (2846th highest, 21.7 CPM). HSC marker genes that were not expected to be expressed in 

this population lacking functional HSC activity were indeed lowly expressed, such as c-Kit (Kit) 

(3.6CPM), EPCR(Procr) (2.33 CPM) and CD150 (Slamf9) (4.5 CPM). This adds confidence to the 

veracity of the sequencing data. 

Table 3.1 Expression of cell surface marker genes associated with FE- cells 

Gene name CPM Rank 
Ptprc 444.60897 43 
Cd48 76.5069955 475 
Ly6a 21.7349717 2846 
Fgd5 12.5754137 5106 
Slamf1 4.45091407 11411 
Kit 3.62101417 13255 
Procr 2.32734868 18197 
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As a first broad pass, the top (Cluster of differentiation) CD marker genes were filtered from the 

dataset. Consistent with findings from section 3.1.3 of coupling to T cell lineage, FE- cells highly 

express T lymphocyte markers (Table 3.2), including CD3, CD2, CD6, CD27, CD5 and CD412. 

Several known Natural Killer cell markers (NK cell), such as CD244 and CD226, are also highly 

expressed, though CD244 can also be expressed by monocytes and dendritic cells. Interestingly, 

there are also genes that are associated with monocytes, such as CD68 and CD36. 

Table 3.2 Top 40 Cluster of differentiation genes expressed by FE- cells 
CD genes CPM Rank  CD genes CPM Rank 

Cd52 314.0330746 68  Cd27 40.10012543 1269 
Cd82 169.1285354 148  Cd3d 37.39708161 1381 
Cd68 154.357035 172  Cd300a 37.12284799 1403 
Cd3g 137.738457 206  Cd274 33.23289836 1633 
Cd74 129.3725532 218  Cd40lg 33.16195634 1638 
Cd2 115.8900714 255  Cd300lb 31.20067375 1775 
Cd53 103.0490123 310  Cd244a 30.4359084 1826 
Cd300ld 95.6324585 352  Cd24a 29.16623209 1954 
Cd44 86.936797 401  Cd5l 26.87848233 2185 
Cd48 76.50699551 475  Cd81 24.63688996 2455 
Cd47 74.19312876 503  Cd7 22.05367041 2798 
Cd3e 71.54343145 526  Cd163 19.43293165 3254 
Cd300c2 67.32175138 582  Cd6 18.55928239 3423 
Cd37 65.98612553 607  Cd5 17.28239149 3700 
Cd180 62.46169044 655  Cd96 16.62978885 3862 
Cd300e 61.92829097 671  Cd83 14.93512864 4329 
Cd84 53.91835165 825  Cd4 14.79806235 4374 
Cd9 51.75818646 879  Cd160 14.20456069 4557 
Cd36 50.71924938 913  Cd302 13.89522458 4638 
Cd226 40.19040659 1265  Cd177 12.86234296 4977 

 

 

To gain a broader understanding of the cells, GO term analysis was performed on the top 500 

ranked genes (Table 3.3). Amongst the most significant GO terms, many were associated with 

Immune system processes and T cell responses. Although GO terms are not conclusive, this 

further suggests that FE- cells are T lymphocytes. 

Table 3.3 GO terms associated with top 500 genes expressed in FE- cells 
GO Term P-value FDR 
immune system process 1.01E-16 2.00E-13 
innate immune response 5.74E-10 1.01E-06 
intracellular signal transduction 5.74E-10 1.01E-06 
leukocyte cell-cell adhesion 2.13E-09 3.77E-06 
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adaptive immune response 2.07E-07 3.65E-04 
T cell receptor signalling pathway 2.78E-07 4.92E-04 
cellular response to tumour necrosis factor 1.20E-05 0.02126408 
negative thymic T cell selection 1.25E-05 0.02200169 
positive regulation of T cell proliferation 1.93E-05 0.03416226 
positive regulation of T cell activation 3.63E-05 0.06409375 

 

3.2.1 Surface marker phenotyping confirms lymphoid marker expression 

Next, FE- cells were immunophenotyped for common T cell- lineage markers. Because NK cells 

can also exhibit T cell markers, NK cell markers were also tested; alongside other commonly used 

haematopoietic lineage markers. As shown in Figure 3.10, many of the highly expressed genes for 

surface markers are indeed present on a proportion of FE- cells, including CD3 (46% ± SD 

15.3%), CD5 (40.75 ± SD 9.43%), and CD244 (55.25% ± SD 12.53). Interestingly, NK1.1, which 

is a gene associated with NK cells, was also present in a proportion of cells (30.25% ± 8.958). 

Notably, CD4 was present but in a smaller proportion of FE- cells (21 ± SD 13.54). 

 

As expected, common markers for other lineages, such as B220 (B cell), Ly6g (Granulocytes), and 

Ter119 (Erythrocytes) were negligibly expressed (Figure 3.10). Overall, this supports the 

characterisation that these cells are lymphoid in nature but raises the possibility that they are NKT 

cells. 

 
Figure 3.10 FE- cells express various surface markers characteristic of lymphoid and NK cells. 
Percentage of FE- cells expressing various surface markers grouped by the cell types that they are most 
commonly associated with. Error bars represent data ± SD. 
Sca-1, EPCR, exp=5; c-Kit, CD150, CD48, CD3, CD4, CD5, CD244, NK1.1, CD45, exp=4; IL7Ra, exp=3; CD8, CD19 
exp=2; PD1, GD-TCR, B220, CD335, Ncam, Ly6g, Mac-1, Ter119, CD49b, exp=1.  
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3.2.2 FE- cells do not vary with age and are present in multiple lymphoid tissues. 

Since multiple experiments were done on Fgd5ZsGreen•ZsGreen/+ mice of varying ages, we reanalysed the 

flow cytometry data to look for changes in FE- frequency with age. Because some of the 

experiments had used lineage depleted BM samples, a head-to-head comparison of BM samples 

with or without lineage depletion was performed. Surprisingly, there was no significant difference 

(p=0.0547) before and after lineage depletion (Figure 3.11). This may be explained by the relatively 

low proportion of Fgd5+ cells compared to the overwhelming proportion of lineage positive cells 

that the enrichment kit removes, the vast majority of which would be Fgd5-. As shown in Figure 

3.11, there is a decline in proportion of FE- cells with age, although this is not statistically 

significant. 

 
Figure 3.11 Frequency of FE- cells in mice of different ages. 
A) Percentage of FE- cells out of Fgd5+ cells with or without lineage depletion. Exp=5; n=8. Wilcoxon 

matched-pairs signed rank test (two tailed). 
B) Percentage of FE- cells out of Fgd5+ against different ages. Weeks 8-16, n=24; weeks 17-32, n= 14; weeks 

33-48, n=6. Tukey’s multiple comparisons test (two tailed). Error bars represent data ± SD. 
 

As FE- cells were presumed to be lymphoid cells, various lymphoid and peripheral tissues were 

analysed for the presence of FE- cells. Indeed, FE- cells were found in non-BM lymphoid tissues, 

and in particular there was a significantly increased frequency of FE- cells in the liver (p=0.01), 

lungs (p=0.0003) and thymus (p=0.0276) compared to the BM (Figure 3.12). As expected, the vast 

majority of Fgd5+ cells in these lymphoid tissues are FE- cells (Figure 3.12), reflecting the absence 

of stem cell population in these lymphoid tissues. 
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Figure 3.12 FE- cells in various lymphoid and peripheral tissues. 
A) Frequency of FE- cells in various lymphoid and peripheral tissues compared to BM.  Error bars represent 

data ± SD. 
B) Percentage of FE- cells out of Fgd5+ cells in the same lymphoid and peripheral tissues. 
BM, n=8; LN, Lymph node, n=7; Liver, n = 6; Lung, n=7; Spleen, n=8; Thymus, n=7. Exp=2. Error bars represent 
data ± SD. 

3.2.3 FE- cells can be sub-fractionated with surface markers 

Following the establishment that a proportion of FE- cells express CD3, CD5, CD244 and NK1.1 

individually, these markers were evaluated for co-expression, in order to better understand the cell 

subpopulations within the FE- fraction. As shown in Figure 3.13, FE- cells can be cleanly separated 

into two subpopulations: CD5+ and CD244+. Interestingly, CD5+ cells co-express CD3, NK1.1 

and Sca-1, suggesting that they might be similar to NKT cells. Further characterisation shows that 

the small proportion of CD4+ and IL7Rα+ cells belong to a subfraction of these 

CD5/CD3/NK1.1/Sca-1+ subpopulation (data not shown), henceforth referred to as FE-CD5+ 

cells. The other population will be referred to as FE-CD244+ cells. 
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Figure 3.13 Co-expression of immune surface markers allows FE- cells to be further 
subfractionated. 
A,B) Representative flow cytometric layout of FE- cells and their co-expression of CD5, CD3, NK1.1 and Sca-1. 
C) Deduced hierarchy of marker co-expression in Fgd5+ cells. The area of each circle represents the 

approximate proportion of that population to Fgd5+ cells. 

3.3 Bulk RNA sequencing of CD5+ and CD244+ fractions 

In order to further resolve the identity of the two subpopulations of FE- cells, FE-CD5+ cells 

(11,495 and 12,969 cells) and FE-CD244+ cells (6,814 and 5,666 cells) were sorted and bulk RNA-

seq was performed again. 
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Differential gene expression analysis of the 14,614 detectable genes was performed. 2724 genes 

were significantly upregulated in FE-CD5+ cells, including the genes encoding the surface markers 

already shown to be exclusively expressed in FE-CD5+ cells, such as Cd5, Cd3, Ly6a (Sca-1), Klrb1c 

(NK1.1), Cd4, Il7r. Conversely, 3135 genes were significantly upregulated in FE-CD244+ cells, 

including Cd244a itself. Overall, this lends confidence to the robustness of the sequencing data. 

 

As a broad first pass, we utilised the Immunological Genome Project (ImmGen) to compare our 

data against. ImmGen is a public resource created by immunologists and computational biologists 

containing standardised gene expression data of the entire mouse immune system. Including 

different maturation, tissue localisation and activation states, there are over 250 cell types in the 

resource. Using data mined from ImmGen, our novel cell populations were compared to various 

haematopoietic populations for transcriptome similarities using SingleR424. Single R is a 

computation method developed by Aran et al. that annotates transcriptomes by correlating them 

to reference bulk transcriptomes such as the ImmGen database. 

 

As shown in Figure 3.14, SingleR identified FE-CD5+ cells as NKT cells and FE-CD244+ cells 

as monocytes. To further understand which subtypes of NKT cells they are, FE-CD5+ cells were 

further compared to the bulk and single cell transcriptomes of various iNKT subtypes generated 

by Engel et al.428. As shown in Figure 3.15, FE-CD5+ cells are clearly most similar to iNKT1 cells, 

in both bulk and single cell reference datasets. 

 

To further investigate the identity of FE-CD244+ cells, they were compared to bulk RNA-seq 

datasets of monocytes derived from different mouse tissues430. However, the correlation score was 

low and inconclusive with all the reference datasets compared (data not shown). As monocytes 

can be diverse, and FE-CD244+ cells may not be homogeneous, their identity remains elusive and 

require further investigation. Therefore, the focus shifted towards FE-CD5+ cells. 
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Figure 3.14 SingleR identifies FE-CD5+ cells as NKT cells and FE-CD244+ cells as monocytes. 
SingleR analysis of two technical repeats of bulk FE-CD5+ and FE-CD244+ cells using ImmGen database as 
reference. Correlation scores were scaled to highest (yellow) to lowest (purple). The population with the highest 
correlation is labelled on the top. 
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Figure 3.15 SingleR identifies FE-CD5+ cells as iNKT1 cells. 
A) SingleR analysis of FE-CD5+ cells using bulk RNA-seq dataset of iNKT subtypes as reference428. The reference 
dataset contains 3 replicates each for NKT1, NKT2 and NKT17 cell types. The population with the highest 
correlation is labelled on the top. 
B) SingleR analysis of FE-CD5+ cells using scRNA-seq dataset of iNKT subtypes as reference428. The reference 
dataset contains 203 cells; 45 NKT0, 46 NKT1, 68 NKT2 and 44 NKT17 cells. The population with the highest 
correlation is labelled on the top. 
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3.3.1 α-Galactosylceramide reactivity confirms that FE-CD5+ cells are iNKT cells 

As mentioned in section 1.1.2, iNKT cells are distinguished from other NKT subtypes by their 

ability to bind and react with α-Galactosylceramide (α-GalCer). To test whether these cells were 

indeed iNKT cells, BM and thymus cells were analysed for CD1d-tetramer (CD1d)-PBS57 (an 

analogue to α-GalCer) binding. As shown in Figure 3.16, ~75% of FE-CD5+ cells in both BM 

and thymus were able to bind to Cd1d-PBS57 and express intermediate levels of TCRβ, strongly 

suggesting that they are indeed iNKT cells. As the FE-CD5+ cells co-express NK1.1, which 

distinguishes iNKT1 cells from other iNKT subtypes, it highly suggests that FE-CD5+ cells are 

iNKT1 cells, as SingleR predicted. Interestingly only about 20% of CD1d+, TCRβ+, NK1.1+ cells 

are Fgd5+, suggesting that Fgd5 expression marks a subset of NKT1 cells (Figure 3.16). It remains 

unclear whether the Fgd5+ subset of NKT1 cells have a distinct function to Fgd5- iNKT cells. 

 
Figure 3.16 FE-CD5+ cells are reactive to α-GalCer. 
A) Representative gating layout of Fgd5+ BM cells. Left panel is gated out of live singlets. 
B) Percentage of Fgd5+ cells in CD1d-PBS57/TCRβ+ cells from BM and thymus. Exp=1. n=1. 
C) Representative gating layout of Fgd5+ BM cells. Left panel is gated out of live, singlet, FE- cells 
D) Percentage of CD1d+/TCRβ+ cells in FE-CD5+ cells from BM and thymus. Exp=1. n=1. 

3.3.2 FE-CD5+ cells secrete interferon-γ 

As mentioned in section 1.1.2, iNKT cells are known to secrete specific cytokines upon 

stimulation. In particular NKT1 cells are known to predominantly secrete interferon-γ (IFN-γ). In 

b

b

FE-

Live

BM Thymus
0

10

20

30

%
F

g
d

5+
 o

f C
d

1d
+ 

ce
lls

BM Thymus
0

20

40

60

80

100

%
C

d
1d

+ 
o

f F
E

-C
D

5+
 c

el
ls

 

A B

C D



Results 

 
 

79 

order to access the cytokine profiles of FE-CD5+ cells, intracellular flow cytometry was used to 

assess the expression of IFN-γ and other common immune cytokines, such as tumour necrosis 

factor (TNFα) and interleukin 5 (IL-5). FE-CD5+ cells were sorted and stimulated with PMA and 

ionomycin and then fixed for intracellular antibody staining. 

 

As shown in Figure 3.17 below, FE-CD5+ cells produce IFNγ, TNFα and IL5 after stimulation. 

Overall, this confirms that the FE-CD5+ population belongs to a subset of NKT1 cells. While 

less is known about NKT1 cells and secretion of TNFα and IL-5, further investigation is needed 

to determine if Fgd5- NKT1 cells express them. 

 
Figure 3.17 Intracellular flow cytometry reveals cytokine profile expressed by FE-CD5+ 
cells. 
Percentage of cells expressing IFN-γ, TNFα and IL-5 after 4hr stimulation with 500ng/mL PMA and Ionomycin 
for FE-CD5+ cells Exp=1. 
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4 Fgd5 and EPCR mark HSCs in vivo and in vitro 

As shown in Chapter 3, although Fgd5 expression may not be able to mark HSCs exclusively in 

vivo, it can highly enrich for functional HSCs when combined with EPCR. However, this doesn’t 

necessarily mean that they would be reliable markers of HSCs in vitro. As detailed in section 1.4.2, 

many HSC markers change their expression during culture284. Even though EPCR has been shown 

to mark human HSCs in vitro, this has not been validated in mouse HSCs. Therefore, in this 

chapter, Fgd5 and EPCR will be studied for their ability to mark HSCs in vitro. The reporter system 

will also be validated against published conditions that support HSCs. 

4.1.1 Fgd5 and EPCR positive cells highly enriches LSK cells in vitro 

To test whether Fgd5 and EPCR might identify HSCs in vitro, single ESLAM HSCs were cultured 

in serum-free medium supplemented with 300ng/mL of SCF and 20ng/mL of IL-11 (SS), 

conditions that maintain HSC numbers out to 10 days102,130. At day 10, cells were visually inspected 

and grouped by size (Figure 2.3). Small and medium colonies were then pooled respectively and 

analysed for expression of HSC markers, such as Fgd5, EPCR, Sca-1 and c-Kit and also lineage 

markers, such as Mac-1 and Gr-1 by flow cytometry (Figure 4.1). Large colonies were individually 

analysed but none of them had any Lineage-, Sca-1+ and c-Kit+ (LSK) nor Fgd5 and EPCR positive 

cells remaining (Figure 4.1). As mentioned in section 1.2, previous work has demonstrated an 

inverse relationship between proliferation rate and self-renewal potential. Therefore, as expected, 

smaller colonies retained a higher proportion of LSK cells compared to medium sized clones 

(48.43 ± SD 17.91 vs 19.07% ± SD 8.879, p=0.488) (Figure 4.1). However, whether in small or 

medium colonies, the percentage of LSK cells in the Fgd5high/EPCRhigh (FhiEhi) fraction is 

approximately 50% higher than that from the total clone, demonstrating that FhiEhi cells are 

enriched for LSK cells (Figure 4.1). In contrast, Fgd5low/-/EPCRlow/- (FloElo) cells were almost 

entirely non-LSK (small colonies: 11.55% ± SD 9.542; medium colonies: 5.653% ± SD 4.452), 

indicating that cells lost Fgd5 and EPCR expression when they differentiated and expressed 

markers of mature blood cells. 

 

To further dissect single cell heterogeneity in 10-day cultures, single colonies were analysed 

individually instead of pooled together. The results confirm that the percentage of FE positivity is 

highly correlated with the percentage of LSK cells (r = 0.8779, p<0.0001) (Figure 4.1). 

Interestingly, there were colonies that had high LSK percentages, but low FE+ percentages, 

suggesting that FE+ may be even more selective than LSK in vitro. 
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Figure 4.1 Fgd5 and EPCR enriches for LSK cells in ex vivo cultures. 
A) Schematic of experimental design. Single ESLAM cells were cultured for 10 days in SS with 300ng/mL SCF 

and 20ng/mL IL-11, colonies were then pooled by size and analysed by flow cytometry. 
B) Representative gating layouts for small (left), medium (middle) and large (right) colonies. 
C) Percentage of LSK cells within respective gates of pooled small, medium and large colonies. Tukey’s 

multiple comparisons test. **= p<0.005. Exp =3. Error bars represent mean ± SD. 
D) Percentage of FE+ cells correlated with percentage of LSK cells in individual colonies. Pearson correlation. 

****=p<0.0001. Exp=2; n=90. 
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4.1.2 Fgd5 and EPCR together mark transplantable HSCs in vitro 

While in vitro assays are useful, the robustness of Fgd5 and EPCR as in vitro markers of LT-HSC 

activity requires validation by in vivo functional assays. Therefore, 3018 FE+ cells were isolated and 

cultured in SS for 3 days. By day 3, most cells remained positive for Fgd5 and EPCR although a 

range of expression levels was detectable and on average the levels of Fgd5 correlated well 

(r=0.707) with the expression of EPCR (Figure 4.3). In order to determine which cell fraction 

retained HSC activity, three populations were isolated and transplanted into irradiated recipient 

mice: 1) bulk live cells (152 cells) 2) FhiEhi (582 cells) and 3) FloElo (1512 cells) (Figure 4.2). Overall, 

the FhiEhi fraction represented ~7% and the FloElo fraction represented ~24% of all cultured cells. 

 
Figure 4.2 Schematic of experimental design to test the ability of Fgd5 and EPCR to isolate 
functional HSCs in vitro. 
FE+ cells were cultures for 3 days in serum free conditions, supplemented with 300ng/mL SCF and 20ng/mL 
IL-11. At day 3, cells were resorted for Fgd5hi EPCRhi (FhiEhi) and Fgd5lo EPCRlo (FloElo) cells and transplanted into 
recipients. 3 mice per condition. Live cells were also sorted and transplanted into 2 recipients. 
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All transplanted mice showed reconstitution at 16 weeks post-transplantation; however, the mice 

transplanted with FhiEhi cells showed significantly higher chimerism (Figure 4.3) compared to bulk 

cells (p = 0.0059) and FloElo cells (p = 0.00016). Additionally, all of the mice injected with FhiEhi 

donor cells displayed multilineage reconstitution, defined as having >1% contribution of each GM, 

B cell and T cell lineages. Strikingly, none of the FloElo cells transplanted had multilineage 

reconstitution, all lacking contribution to the GM lineages, which is strongly associated with 

secondary reconstitution ability. This, in combination with the fact that more FloElo cells (~2.5 

fold) were transplanted, indicates that Fgd5 and EPCR expression can robustly identify HSCs in 

short-term in vitro cultures. 

 
Figure 4.3 Fgd5 and EPCR marks functional HSCs ex vivo. 
A) Gating layout for re-sort. Left panel is the unstained sample and right panel is sorted sample (3d cultured 

HSCs). Pearson correlation. 
B) Donor chimerism tracked for 16 weeks. Unpaired t-Test between FhiEhi and FloElo cells. ***=p<0.0005, Exp=1; 

n=3. 
C) Lineage output of donor cells, presented as a percentage of donor cells. 
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Because the bulk live cells should contain FhiEhi cells, it may be seen as slightly unexpected that 

they had significantly lower chimerism than FhiEhi cells. However, this was likely attributable to the 

lower equivalent cell dose of FhiEhi cells that was transplanted (i.e., 582 cells would be an ~8000 

bulk cell starting equivalent as opposed to the 152 transplanted). 

4.1.3 Single positive Fgd5 or EPCR cells contain fewer functional stem cells 

Next, Fgd5 and EPCR were tested as single markers for their ability to enrich for HSCs in culture. 

Single positive Fgd5 or single positive EPCR cells were re-sorted after culture for transplantation 

(Figure 4.4). Notably, a more enriched starting population of ESLAM cells was used to initiate the 

culture, compared to the FE+ cells in the transplantation experiment described previously (Figure 

4.3). In addition, Fgd5+EPCR+CD150- cells (FE+CD150-) were also cultured to validate the two 

markers on a less pure population. Following 3 days of culture in SS, the FE+CD150- fraction 

had reduced Fgd5 and EPCR expression compared to ESLAM cells (Figure 4.5 and Figure 4.4). 

As expected, the composite of these two plots looks similar to the flow plot in Figure 4.3. From 

the cultured ESLAM cells, two fractions were resorted, 1) FhiElo (representing ~9% of the 

population) and 2) FloEhi (representing ~12.6% of the population). These single markerhigh fractions 

were transplanted into 3 mice each. Only one out of the 3 mice injected with the FloEhi cells had 

detectable donor chimerism at 16 weeks (Figure 4.4). Unfortunately, one of the mice injected with 

the FhiElo fraction had to be culled after 8 weeks due to significant weight loss. The donor cells in 

that particular mouse had strong GM contributions at week 8, suggestive that it would also be 

positive at week 16 (Figure 4.4). Even taking this into account, Fgd5 and EPCR as single markers 

would appear to be less robust for isolating HSCs in vitro. 

 
Figure 4.4 Single positive Fgd5 or EPCR cells contain fewer functional stem cells. 
A) Gating layout for single positive Fgd5 and EPCR cells. 
B) Donor chimerism tracked for 16 weeks. The star («) indicates recipient was culled for health reasons. 

Dotted line indicates where chimerism is 1%. Exp=1 n=3 each. 
C) Lineage output of donor cells for the recipients that had above 1% chimerism for their last timepoint. 
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From the cultured CD150- fraction, FhiEhi cells (representing 3% of the cells) were sorted and 

injected into 2 mice to test if Fgd5 and EPCR marked HSCs in a much less pure population of cells 

(Figure 4.5). Interestingly, both mice were positive for donor cells at week 16, and both were 

multilineage (Figure 4.5). This is strong evidence that, regardless of starting population, Fgd5 and 

EPCR together are strong distinguishers of long-term repopulating cells in vitro. Overall, as EPCR 

and Fgd5 expression is highly correlated, it seems possible to use EPCR on WT cells as a surrogate 

readout for Fgd5 expression. However, it still seems beneficial to include Fgd5 to make gating a bit 

easier, as well as remove single positive EPCR cells. 

 
Figure 4.5 Fgd5 and EPCR mark functional stem cells even in cultures with FE+CD150- 
starting cells. 
A) Gating layout for FhiEhi cells in 3-day cultures of FE+CD150- cells. 
B) Donor chimerism tracked for 16 weeks. Dotted line indicates where chimerism is 1%. 
C) Lineage output of donor cells at week 16, as a percentage of donor cells. 
Exp=1 n=2. 

4.2 Fgd5 also marks FL HSCs 

The ESLAM HSC isolation strategy is known to be able to isolate HSCs from all developmental 

stages, including E14.5 FL185. Whilst Fgd5 expression has been shown to mark quiescent adult 

HSCs in the BM, in order for it to be a robust marker ex vivo, it must also mark cycling and 

expanding HSCs. In order to test this, FL HSCs, which are actively cycling (section 1.2.2), were 

analysed for the expression of Fgd5. As shown in Figure 4.6, the FL contains Fgd5+ cells and indeed 

all FL ESLAM HSCs are Fgd5+. Interestingly, there is a significant population of Fgd5+ cells that 

are not EPCR+, resembling the adult BM. Overall this demonstrates that Fgd5 can mark cycling 

HSCs, which is a prerequisite for it being am in vitro marker for expanding HSCs. 
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Figure 4.6 Foetal Liver cycling HSCs are Fgd5+. 
Fgd5 expression levels in WT (left) and Fgd5+ (right) FL cells, clearly showing that all phenotypic HSCs in the 
FL are Fgd5+. Top panel is gated for live cells and bottom panel is gated for ESLAM cells, showing clearly where 
Fgd5 expression begins. Showing concatenated data from 4 FL for each group. 

4.3 Novel reporter strategy validates HSC supportive culture conditions and 

identifies novel targets for supporting HSC expansion 

Having confirmed that Fgd5 and EPCR can both mark cycling HSCs, we next applied this in vitro 

reporter strategy to test existing cell culture conditions for HSC expansion and screen for 

potentially new supportive factors. As mentioned in section 1.4.8, co-culturing HSCs with 

supportive stromal cells has been a promising strategy for maintaining and supporting HSCs. In 

particular, the EL08 cell line has been shown to support HSCs ex vivo, through non-physical 

contact mechanisms335. 

 

We therefore tested conditioned medium (CM) from EL08 for its ability to produce Fgd5+EPCR+ 

HSCs in culture, and for molecules within it that support HSCs. Single LT-HSCs were cultured in 

medium conditioned by EL08 cells for a varying length of time (1, 3, 10 or 14 days). As a control, 
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cells were also cultured in SS (as in section 4.1.2) without any CM added102. We hypothesised that 

the different lengths of conditioning time would support HSCs differently and by comparing the 

secretomes of these varying conditioning times, the individual factors involved in supporting HSC 

expansion might be identified. At day 10 after start of culture, the clones were harvested and 

individually analysed by flow cytometry. Whilst the previous experiments have established that 

Fgd5 and EPCR in combination can provide a robust two-colour isolation strategy for HSCs in vivo 

and in vitro, we also added antibodies for Sca-1, c-Kit and lineage markers (Gr-1 and Mac-1) to 

further enhance our ability to distinguish HSC-containing clones. Defining the HSC phenotype as 

Fgd5+, EPCR+, lineage-, Sca-1+ and c-Kit+ (FELSK), we compared phenotypic HSC content across 

conditions. 

4.3.1 EL08 CM improves survival and increases proliferation of HSCs 

As shown in  

Figure 4.7, HSCs cultured in CM had a significant survival advantage (p=0.0012 for the least 

significant comparison with media conditioned for 14 days) compared to non-conditioned SS 

control irrespective of the length of conditioning time. The average survival rate in SS control 

was 26.33% ± SD 8.083 whereas all of the CM averaged above 80%, with decreasing survival as 

length of conditioning increases. EL08 CM1D (media conditioned for 1 day), had the highest 

survival rates of 96% ± SD 2.828% With respect to proliferation, HSCs cultured in EL08 CM1D 

gave rise to the largest clones and were significantly larger (p=0.026) compared to CM3D ( 

Figure 4.7). However, the difference in clone sizes were not significant in all other comparisons. 

4.3.2 Short-term but not extended conditioning of media with EL08 cells support HSCs 

Consistent with previous findings, when investigating the proportion of FELSK cells compared 

to the respective clone sizes, larger clones had a smaller proportion of phenotypic HSCs (r=-

0.3109, p=0.0124 for SS control) (Figure 4.7). Although survival was high, medium conditioned 

for 10 and 14 days were not significantly different from SS control in terms of average percentage 

of FELSK cells. Of note, the average percentage of phenotypic HSCs was the highest in clones 

cultured in CM3D (40.48% ± SD 36.18). This is significantly higher than all other CM and the SS 

control (p<0.0001). Overall this suggests that the optimal duration for generating EL08 

conditioned medium is 3 days and that prolonged conditioning is actually detrimental to HSC 

maintenance, perhaps due to the accumulation of secreted factors that stimulate proliferation and 

differentiation. 
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Figure 4.7 Duration of conditioning alters beneficial effects of EL08 CM. 
A) Clonal survival at day 10, out of total cells plated. One-way ANOVA. **=p<0.01. ***=p<0.001. 
B) Mean clone sizes of cultures. One-way ANOVA. **=p<0.01. *=p<0.05.  
C) Mean percentage of FELSK in individual clones. One-way ANOVA. ****=p<0.0001. **=p<0.01. *=p<0.05.  
D-G) Clonal outcomes of cells cultured in SS 300S 20IL (n=271); EL08 1D (n= 96); EL08 3D (n=192); EL08 10D 
(n=144); EL0814D (n=144). 
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It is possible that the averaging of the phenotypic HSC content of clones might hide differences 

between individual clones (i.e., it is possible that only clones with the very highest percentages of 

FELSK cells contain HSCs). If so, it would be important to look at the proportion of clones 

generated that are nearly entirely comprised of phenotypic HSCs. As a first pass, we used the 

average %FELSK of 10-day clones with fewer than 500 cells (38.7% in base SS conditions (Figure 

4.7)) as an arbitrary cut-off, since small clones have been previously demonstrated to have the 

most HSC activity. This percentage changes slightly during each experiment because of technical 

variations such as cytometer and gate settings, hence the cut-off point was recalculated for each 

experiment with the control SS conditions. The proportion of clones above this cut-off point was 

then compared by Fisher’s exact test to determine whether the proportion of clones with a high 

proportion of phenotypic HSCs was different compared to the SS control. As expected, 

proportions of phenotypic HSCs created using CM3D was significantly higher than SS control 

(p<0.0001) whilst CM10D and CM14D were not (Table 4.1). Interestingly, although 1-day clones are 

larger in size, there remains a significantly larger proportion of clones above the cut-off compared 

to SS control (p=0.0332) (Table 4.1). Overall, this reaffirms that EL08 CM conditioned for short 

periods of time (1-3 days) supports HSCs and that extended period of conditioning is detrimental. 

 

Table 4.1 Tally of clones above and below FELSK cut-off and Fisher's exact test result.  
SS 300S 20IL EL08 1D EL08 3D EL08 10D EL08 14D 

Above 38.7% 9 27 57 14 12 
Below 38.7% 55 65 62 77 42 
p-value vs SS 

 
0.0332 <0.0001 1 0.3346 

 

 

4.3.3 Proteomic analysis of EL08 CM identifies self-renewal regulators previously 

discovered by gene expression studies and other novel targets 

Whilst previous studies have identified certain genes that are highly expressed in EL08 cells, they 

have used gene expression assays (microarray), which do not actually measure the active functional 

protein that is secreted by the cells. In order to identify the proteins that support HSC 

maintenance, CM from the time course experiment was analysed by mass spectrometry (Label-

free quantification)431. With label-free methods, the presence and absence of proteins may not be 

as reliable because peptide signals may be hidden by the high dynamic range created by media 

proteins such as serum albumin432. Therefore, we focused our analysis on 214 abundant proteins 

identified with high confidence (at least 2 unique peptides) across all samples. As shown by the 

heatmap in Figure 4.8, there is an overall increase in total protein content at the global level as the 
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length of conditioning increases with very few proteins present in higher quantities in earlier 

timepoints compared with later timepoints. Since CMD3 outperformed both an earlier and both 

later timepoints in terms of functional output of phenotypic HSCs, we hypothesised that there 

would be a combination of stimulatory and inhibitory factors of HSC self-renewal. However, since 

the majority of proteins increased in concentration over the course of conditioning, it was difficult 

to pinpoint targets for inhibitory factors. 

 
Figure 4.8 Heatmap of proteins identified within EL08 CM suggests a general increase in 
protein content as conditioning increases. 
Heatmap of 214 proteins identified with more than 1 unique peptide and filtered out potential contaminants. 
Each column represents an EL08 CM sample, technical repeats are displayed alongside each other, marked by 
the brackets. Different batches of EL08 CM3D/10D are denoted by A and B. Key: darker red means higher LFQ 
relative to other, i.e. the colours are scaled by row. The two black boxes are added to highlight the relatively few 
proteins that are more abundant in CM1D/3D (earlier timepoints).  
 

As highlighted by the proteins within the black boxes in Figure 4.8, there were a small cluster of 

proteins that were present in higher quantities in CMD1/D3 compared to CMD10/D14. Most of these 

proteins were of little interest because of their limited ability to be signalling proteins for other 

cells, such as 40S ribosomal protein S20 or beta-actin. Interestingly, haemopexin (Hpx) was one 
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of the proteins that display this quantification pattern (Figure 4.8 and Figure 4.9) and has been 

recently identified to promote HSC maintenance417. Of interest as well is zyxin and caldesmon, 

which both show a similar pattern (Figure 4.8 and Figure 4.9). Zyxin is a zinc binding 

phosphoprotein that concentrates at focal adhesions, with a proline-rich domain that may interact 

with SH3 domains and spur signal transduction433. Caldesmon is a calmodulin binding protein434, 

which may be interesting considering the recent studies implication calcium regulation and HSC 

maintenance385. However, as shown in Figure 4.9, in general these proteins are less abundant 

compared to other proteins, which we turned our focus to. 

 

As detailed in Figure 4.9, many previously reported upregulated genes, identified by microarray 

analysis, are present, including OPN, PTN, IGFBP4, IGFBP6, thrombospondin-1, 

thrombospondin-2 and a disintegrin and metalloproteinase with thrombospondin motifs 1 

(Adamts1)131,335. Also of note are a number of extracellular matrix (ECM) proteins, such as 

Collagen and Nidogen (Figure 4.9). In fact, Collagen α1(I) chain had the highest LFQ value 

consistently across all samples; not to mention the many other collagen chains identified within 

the dataset (data not shown), suggesting a role for ECM proteins that are increasingly becoming 

appreciated in HSC biology435. 

 

OPN has been previously studied as a component of the endosteal niche, and has been implicated 

in HSC localisation as well as negative regulation of HSC proliferation115. PTN has also been 

implicated in multiple studies as a promoter of self-renewal in vitro for both mouse and human 

HSCs131,132,436,437. Whilst IGFBP4 or IGFBP6 has not been studied in the context of HSC self-

renewal, IGFBP2 has been reported in multiple studies to be a supporter of HSC maintenance 

and expansion371,403,438. Therefore, we carried forward with OPN, PTN and IGFBP2 and IGFBP4 

as initial factors to validate for their individual functional effect on promoting HSC growth. 
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Figure 4.9 Label-free quantification of EL08 CM. 
Normalised LFQ of a manually curated list of 12 proteins of interest, over the course of conditioning. The black 
line indicates the mean LFQ of the protein of interest titled in each graph. The grey lines represent the other 11 
proteins in this matrix. Each dot represents the normalised LFQ of each run of CM sample, including technical 
repeats and different batches of CM as in Figure 4.8. 

4.3.4 Recombinant proteins have no effect on the survival and clone sizes of HSCs 

To test their impact on promoting HSC production, single HSCs were cultured in the above SS-

based cultures for 10 days with or without the individual factors. Clones were grown and then 

harvested for flow cytometry analysis to assess the proportion of phenotypic HSCs. The 

concentrations tested were determined through literature searches on previously performed in vitro 

experiments116,371,436 and accompanied by a lower concentration to gain some insight as to whether 
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there was a dose response. For one pair of factors, OPN and PTN, we combined them to 

determine whether there would be any additive or synergistic effects. None of the factors tested, 

at high or low concentrations, offered a significant survival benefit to HSCs in 10-day cultures 

(Figure 4.10A). Interestingly, none of the factors significantly influenced the average clone size 

either (Figure 4.10C), suggesting that other factors in EL08 CM are responsible for the observed 

increases in survival and proliferation. 

4.3.5 Pleiotrophin supports the expansion of phenotypic HSCs at low concentrations 

In terms of the average FELSK content of the individual clones, OPN, IFGBP2 and IGFBP4 

exhibited no effect compared to SS control. However, cultures containing 100ng/mL of PTN 

were significantly better than SS control (vs. 100ng/mL PTN, p=0.0327; vs. 100ng/mL OPN and 

100ng/mL PTN, p=0.0077). Interestingly, the effect was not seen in cultures with 400ng/mL of 

PTN, suggesting that higher concentrations are not beneficial to HSCs. 

 

As in section 4.3.2, the proportions of clones above and below the average FELSK content of SS 

control small clones (recalculated in these experiments to be 53.1%) were compared by Fisher’s 

exact test. As expected, the proportions of clones above this cut-off were significantly higher in 

100ng/mL PTN (p=0.0164) and 100ng/mL OPN/PTN (p=0.0174) (Table 4.2). The proportions 

were significantly lower compared to control when 800ng/mL of OPN and 400ng/mL of PTN 

were added, suggesting that high concentrations of OPN and PTN combined lead to a detrimental 

effect on HSC maintenance. As the overall protein quantities increased during extended 

conditioning (see section 0), this could be one reason why EL08 medium cultured for a longer 

duration is detrimental to HSC maintenance. 

 

Based on these preliminary results, more investigation would be required to fully elucidate the role 

of PTN at low concentrations for HSC maintenance. It is further important to note that some of 

the experiments described here have not been repeated sufficiently to determine if their effects (or 

lack thereof) are reproducible. 
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Figure 4.10 Pleiotrophin increases phenotypic HSCs in 10-day cultures. 
A) Day 10 survival rates of single HSCs cultured in SS with 300ng/mL SCF and 20ng/mL IL-11 supplemented with 
indicated factors and concentrations (ng/mL). One-way ANOVA between conditions with at least two repeats, 
compared to control. 
B) Mean percentage of FELSK in individual clones. One-way ANOVA. **=p<0.01. *=p<0.05.  
C) Mean clone sizes of cultures. One-way ANOVA. Not significant. 
D-H) Clonal outcomes of cells cultured in SS 300S 20IL (n=843); 100 OPN (n=192); 800OPN (n=96); 100PTN 
(n=96); 100 PTN (n=192); 400 PTN (n=96);100 OPN 100PTN (n=96); 800 OPN 400 PTN (n= 192); 100 IGFBP2 
(n=144); 500 IGFBP2 (n=96); 100 IGFBP4 (n=96); 500 IGFBP4 (n=144). 
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Table 4.2 Tally of clones above and below FELSK cut-off and Fisher's exact test result. 
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Above 

53.1% 
39 11 22 16 8 6 10 6 9 10 9 

Below 

53.1% 
82 19 19 12 14 15 47 23 10 20 28 

P-value 

vs SS 
 0.6684 0.0164 0.0174 0.8058 0.8058 0.0482 0.2653 0.2048 1 0.4185 

 

4.4 F12 HSA cultures increase survival but do not support HSCs unless IL-11 is 

added 

As we were performing the above studies, substantial advances were being made in the field of 

murine HSC expansion by the Yamazaki group in Tokyo. The first of these studies reported an all 

recombinant culture system that could replace BSA with recombinant HSA417. As detailed in 

section 1.4.9, the authors argued that contaminants within BSA drive variability in HSC cultures, 

and that this was problematic for the systematic study of HSC self-renewal factors. Instead of 

pressing on with our culture system described above, we initiated a collaboration with the authors 

to utilise our Fgd5 EPCR reporter strategy to study their culture conditions. During this time, they 

had also already begun work that was ultimately published in a landmark study in 2019283 and were 

able to share these conditions with us prior to publication. As mentioned in section 1.4.9, this 

study reported an ~200-900-fold expansion of HSCs by replacing HSA with PVA and titrating the 

amounts of SCF and TPO in the culture condition. During the course of the experiments described 

below, we began with HSA based conditions and eventually evolved into PVA based conditions 

to rapidly adopt the most optimal system for expanding HSCs. 

 

As published in their latter study, in HSA based cultures, low SCF (10ng/mL) was found to 

synergise with high TPO (100ng/mL) to support HSCs in 7-day cultures. Apart from the 

differences in cytokine concentrations, this culture system also utilised a different base media – 

F12 Ham’s nutrient mix (F12), supplemented common media additives such as ITSX, 

Penicillin/Streptomycin and L-glutamine. If F12-based cultures are superior to SS-based cultures 

at maintaining HSCs, it would be important to switch to using it as a base medium for testing self-

renewal factors as above. Therefore, we compared the F12-based culture system to our initial SS 

culture system described above (section 4.3). 
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4.4.1 F12-based cultures have higher survival compared to SS-based cultures  

In order to compare the two conditions, single HSCs were cultured for 10 days in either SS 

(300ng/mL SCF and 20 ng/mL IL-11) or F12 (HSA) with varying SCF and TPO concentrations 

as published. Although Wilkinson et al, has shown that cytokine responsiveness varies depending 

on the batch of BSA used, they did not investigate the effects of IL-11 on cultures with 

recombinant HSA. As mentioned in section 1.4.7, IL-11 has been shown to be crucial for HSC 

self-renewal in SS-based media. Therefore, IL-11 was added to investigate its effect on F12 HSA 

based cultures. First, we compared the survival rates of the cultures. After 10 days, irrespective of 

the cytokine concentration, F12-based cultures had dramatically higher survival rates (p<0.0001) 

compared to SS-based cultures (85.57% ± SD 15.55% vs 25.67% ± SD 5.123%) (Figure 4.11), 

suggesting that HSCs generally favour these conditions.  

4.4.2 F12-based cultures create smaller clones due to lower SCF concentrations 

Next we compared the differences in proliferation between SS and F12-based cultures. In terms 

of the colony sizes at day 10, F12-based cultures in general had smaller colony sizes, though the 

difference was not statistically significant (Figure 4.11B). Adding IL-11 to F12-based cultures had 

no significant effect on clone sizes (Figure 4.11B), which is expected because it is not a known 

mitogen. Rather one would expect that mitogens such as SCF and TPO would have a significant 

effect on the clone sizes. Interestingly the effects of SCF on colony size is seemingly greater than 

the effects of TPO. Within F12-based cultures, cells cultured in 10ng/mL SCF generated 

significantly more small colonies than cells cultured in 100ng/mL SCF, irrespective of the TPO 

concentration (Figure 4.11B). Likewise, the cells cultured in 100ng/mL of SCF generated 

significantly more large colonies at day 10 compared to cells cultured in 10ng/mL of SCF, 

regardless of TPO concentration (Figure 4.11B). In general, because smaller colonies are associated 

with higher self-renewal capability, this would be consistent with the idea that higher SCF 

concentrations are detrimental to HSC self-renewal.  
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Figure 4.11 F12-based cultures increases survival of HSCs in vitro. 
A) Day 10 survival rates of single HSCs cultured in SS-based media (300ng/mL SCF and 20ng/mL IL-11) and F-

12-based media with various cytokine concentrations. One-way ANOVA. ****=p<0.0001. 
B) Colony sizes of single HSCs clones cultured in above conditions at day 10. Colony sizes are categorised as XL 

(Extra large), L (Large), M (Medium), S (Small) and VS (Very small) (Figure 2.3). Two-way ANOVA. Tukey’s 
multiple comparison’s test. *=p<0.05; **=p<0.01. 

SS 300S 20IL, n=864; F12 10S 100T, n=288; F12 10S 100T 20IL, n=960; Rest, n=192. 

4.4.3 F12 HSA cultures do not support phenotypic HSCs unless supplemented with IL-11 

Next, SS-based cultures were compared to F12-based cultures in terms of the FELSK percentages 

of its clones. As before, the clones of 10-day single cell cultures were analysed individually by flow 

cytometry for FELSK content. Interestingly, although not significant in the above categorical clone 

size analysis; when analysed individually, the average clone size in SS-based cultures (5730 ± SD 

5183), was significantly higher than that of F12 cultures with IL-11 (613.5 ± SD 840.3; p<0.0001) 

or without (720 ± SD 1651; p<0.0001) (Figure 4.12). This is not surprising as SS-based cultures 

contain much higher concentrations of SCF. 

 

The average FELSK content of F12 cultures with IL-11 were not different (p=0.9864) compared 

to cultures from SS-based culture (Figure 4.12). However, F12 with IL-11 was significantly higher 

FELSK content (p=0.0094) than cultures without IL-11 (Figure 4.12). As in section 4.3.2, the 

average %FELSK of SS control small clones was recalculated based on these experiments to be 

60%. Using the cut-off to categorise the clones, as expected, the proportion of clones above this 
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cut-off was significantly higher in F12 cultures with IL-11 compared to without IL-11 (p=0.0497) 

(Table 4.3). Interestingly the proportional differences were also significant between SS control and 

F12 cultures without IL-11 (p=0.0156) (Table 4.3). Notably, the SS control was not proportionally 

different compared to F12 with IL-11 (p=0.555) (Table 4.3). This suggests that IL-11, like in SS-

based cultures, is beneficial to HSC self-renewal in F12-based cultures. However, this experiment 

was unable to determine whether F12 cultures with IL-11 would be better than SS-based cultures. 

Considering that F12-based cultures has significantly higher survival, it may represent an 

improvement compared to SS-based cultures. Therefore, to definitively compare SS-based cultures 

with F12-based cultures, transplantation experiments were performed and detailed in the next 

section. 

 
Figure 4.12 F12 cultures supplemented with IL-11 is comparable to SS-based culture. 
Single HSCs cultured in either SS-based media or F12-based media for 10 days. SS-based media is supplemented 
with 300ng/mL SCF and 20ng/mL IL-11. F12-based media is supplemented with 10ng/mL SCF, 100ng/mL TPO 
and with or without 20ng/mL of IL-11 as indicated.  For all conditions: Exp=2 n=192. 
A) 10-day clone sizes. One-way ANOVA. ****=p<0.0001. 
B) Percentage FELSK out of live cells in each clone from each condition. One-way ANOVA. **=p<0.01. 
C-D) Relationship between clone size and percentage FELSK in C) SS vs. F12 w/o IL-11 and D) F12 ± IL-11. Dashed 
line indicates the average FELSK percentage in small colonies derived from SS-based cultures (60%). 
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Table 4.3 Tally of clones above and below FELSK cut-off and Fisher's exact test result. 

 SS Control F12 HSA F12 HSA IL-11 
Above 60% 6 2 8 
Below 60% 34 79 67 
P-value vs SS  0.0156 0.555 
P-value vs F12 HSA   0.0497 

 

 

4.4.4 Only F12-based cultures can maintain HSCs for 28 days 

To fully understand if F12-based cultures retained/produced more HSCs than SS-based cultures, 

the two cultures were tested in a transplantation setting. Previous studies have shown that SS-

based cultures could maintain HSCs up to 10 days and Wilkinson et al. has shown that F12-based 

cultures could maintain HSCs for up to 28 days283. Since the longer culture period has a more 

dramatic expansion of HSC number, we compared sets of 50 HSCs (n=3) cultured for 28 days in 

either F12 (10ng/mL SCF, 100ng/mL TPO and 20ng/mL IL-11) or SS (300ng/mL SCF and 

20ng/mL IL-11). On day 28, the progenies of these cultures were harvested and 90% of the 

content of was transplanted into a recipient with the remaining 10% analysed by flow cytometry 

for FELSK content. 

 

As shown in Figure 4.13A-B, the resulting cultures do not differ dramatically by eye at 28 days 

with respect to cell death and differentiation. Interestingly, the F12-based culture produced 

qualitatively more “large” cells (Figure 4.13B) which we assumed to be megakaryocytes and likely 

the result of TPO addition. When phenotypic HSC content was assessed however, none of the SS 

cultures had any remaining FELSK cells at 28 days compared to consistent proportions of FELSK 

cells in F12 cultures. Upon transplantation, this phenotypic data was verified with no detectable 

stem cell activity left in SS cultures, compared to 2 of 3 F12-based cultures with >1% chimerism 

at week 16. Of note, the culture with the higher FELSK percentage (13.8%) gave rise to the highest 

donor chimerism when transplanted (20.5% at week 16), providing further validation of our novel 

in vitro HSC reporter strategy. While this did not match the level of expansion reported in the 

Wilkinson et al. paper, it did suggest that F12-based cultures were better at maintaining HSCs ex 

vivo and prompted us to replace SS as the base medium for all future experiments. Indeed, with 

technical improvements, such as better media exchanges and the switch from HSA to PVA, the 

expansion level became closer to reported figures. 
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Figure 4.13 F12-based cultures are superior to StemSpan based cultures for long-term HSC 
expansion. 
ESLAM-Sca-1+ HSCs were cultured for 28 days in SS (300ng/mL SCF and 20ng/mL IL-11) or F12 (10ng/mL SCF, 
100ng/mL TPO and 20ng/mL IL-11)-based media with media changes every 2-3 days. 
A-B) Representative light microscopy images of A) SS-based cultures and B) F12-based cultures at day 28. 10x 
magnification. 
C) Day 28 flow cytometric analysis of cultures. Error bars represent mean ± SEM. Unpaired T test. No significance. 
D) Donor chimerism up to 16 weeks post transplantation. Dotted line represents 1% chimerism. Multiple T tests. 
n=3 each. 

4.5 IL-11 is redundant in F12 PVA cultures 

As mentioned above, the 2019 Wilkinson paper demonstrated that F12 cultures could be further 

improved by replacing HSA with PVA and that this affords a 200-900-fold increase in functional 

HSCs after 28-days of culture283. To validate whether PVA could replace HSA, single HSCs were 

again cultured for 10 days in F12 media with either HSA or PVA. As IL-11 was shown to be 

beneficial for cultures with HSA, single HSCs were also cultured with or without 20ng/mL of IL-
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11, to test whether the benefit extends to PVA based cultures. As before, clone size and survival 

were measured, and each clone was analysed individually after 10 days for FELSK content. 

4.5.1 PVA and HSA have comparable survival rates and clone sizes 

Similar to HSA cultures, F12 PVA cultures also have significantly higher survival rates (p=0.01) 

compared to SS-based cultures (79% ± SD 2.83 vs 23.5% ± SD 2.12) (Figure 4.14A). The survival 

rates when IL-11 is added was also not different from just F12 PVA cultures without IL-11 (79% 

± SD 5.657% vs 79% ± SD 2.828%) (Figure 4.14A).  

 

In terms of total clone size, there is considerable clonal heterogeneity in F12-HSA or -PVA 

cultures, which is consistent with published data by Wilkinson et al.283 (Figure 4.14). Consistent 

with previous findings, cells cultured in PVA, with or without IL-11, are significantly smaller 

(p<0.0001) than cells cultured in SS (Figure 4.14).  

4.5.2 PVA is better than HSA at supporting phenotypic HSC expansion 

Consistent with findings from Wilkinson et al., replacing HSA with PVA does indeed increase the 

percentage of FELSK cells, though the effect is only significant when IL-11 is added to PVA 

(p=0.003). Interestingly, although IL-11 significantly improved the mean FELSK percentage in 

F12 HSA cultures, adding IL-11 to F12 PVA cultures does not significantly improve the 

percentage of FELSK cells (p=0.3065) (Figure 4.14), suggesting that the inclusion of PVA replaces 

the need for IL-11 stimulation. Furthermore, F12 PVA cultures were not significantly better 

compared to F12 HSA cultures with IL-11 (p>0.9999) (Figure 4.12). Of note, the % of FELSK 

cells is not significantly different in F12 PVA cultures compared to SS control, suggesting that the 

impact of the F12 medium on HSC phenotype was evidenced in the latter portion of the cell 

culture (days 10-28). 

 

As before, the average %FELSK of small clones derived from SS control was used as a cut-off 

(for these experiments, 60%). When comparing the proportions above and below this cut-off, 

there is a significantly higher proportion of high FELSK clones in F12 PVA cultures compared to 

F12 HSA cultures (p=0.0059) (Table 4.4). As before, there was no significant difference between 

F12 PVA cultures and SS-based cultures (p=1.0) (Table 4.4). Also, there was no significant 

difference between the proportions of phenotypic HSCs in F12 PVA cultures with or without IL-

11 (p=0.5368), reinforcing the lack of benefit that IL-11 affords to F12 PVA cultures. 
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Figure 4.14 HSA vs PVA with or without IL-11 
10-day cultures of single HSCs in SS (300ng/mL SCF and 20ng/mL IL-11) and F12 with HSA or PVA (10ng/mL SCF, 
100ng/mL TPO and ± 20ng/mL IL-11). Exp=2 n=192 each condition. 
A) Survival rate of single cell clones at day 10 of culture in respective conditions. One-way ANOVA. **=p<0.01. 
B) 10-day clone sizes. One-way ANOVA. ****=p<0.0001. 
C) Percentage of FELSK in individual clones. One-way ANOVA. ***=p<0.001. 
D-F) Relationship between clone size and percentage FELSK in (D) F12 HSA vs F12 PVA (10S&100T), (E) SS vs F12 
PVA and (F) F12 PVA ± IL-11. Dashed line indicates the average FELSK percentage in small colonies derived from 
SS-based cultures (60%). 
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Table 4.4 Tally of clones above and below FELSK cut-off and Fisher's exact test result 

 SS Control F12 HSA F12 PVA F12 PVA IL-11 
above 60% 6 2 13 15 
below 60% 34 79 76 65 
P-value vs SS  0.0156 1 0.7996 
P-value vs F12 HSA   0.0059 0.0007 
P-value vs F12 PVA    0.5368 

 

4.5.3 Transplantations confirm that IL-11 has minimal effect on F12-PVA cultures 

To confirm that addition of IL-11 to PVA based cultures has a redundant effect on retaining 

functional HSCs, 50 HSCs were cultured for 28 days in F12 PVA based cultures supplemented 

with or without IL-11, and then transplanted into recipient animals. As shown in Figure 4.15, with 

or without IL-11, all cultures had above 1% chimerism at week 16. 2 of 3 mice transplanted with 

cells in the absence of IL-11 had above 1% donor contribution to GM cells, compared to 1 of 3 

in the presence of IL-11. Since the proportion of GM cells in an engrafted mouse has been 

previously linked to durable HSC self-renewal206 these data suggest that, if anything, IL-11 addition 

slightly impairs HSC expansion and support the conclusion that IL-11 does not dramatically 

improve F12 PVA cultures. 
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Figure 4.15 F12 PVA based cultures with or without IL-11 
Transplantation of the progeny of 50 ESLAM HSCs cultured in F12 PVA supplemented with 10ng/mL SCF and 
100ng/mL TPO, with (Grey dashed) or without IL-11 (Black) for 28 days. Exp=1 n=3. 
A) Percentage donor chimerism. 
B-D) Percentage donor contribution to GM, B and T cells. Straight dotted line indicates where contribution is at 
1%. 

4.5.4 Single HSCs cultured in F12 PVA display clonal heterogeneity 

Single HSC initiated cultures were also transplanted and, consistent with the heterogeneity in 

phenotypic outcomes observed by Wilkinson et al.283 and previous 10-day cultures, clones cultured 

with IL-11 displayed substantial heterogeneity. Compared to Wilkinson et al. where 4 of 14 clones 

(28.5%) displayed long-term multilineage engraftment in the absence of IL-11, clones containing 

IL-11 were capable of long-term reconstitution in 3 of 8 cases (37.5%) (Figure 4.16). This is a 

proportion that is not statistically different as calculated by Fisher’s exact test (p=1.0), which again 

suggests that there is marginal impact in adding IL-11 to these cultures. Based on these data, from 

this point onwards, the base medium was selected to be F12 PVA without IL-11, in order to be 

consistent with published conditions by Wilkinson et al.283 
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Figure 4.16 transplantation of single cell clones cultured with IL-11 for 28 days. 
A) Donor chimerism up until 16 weeks in primary recipients of single clones cultured in F12 PVA 

supplemented with 10ng/mL SCF, 100ng/mL TPO and 20ng/mL IL-11. n=8. 
B) Ratio of donor contribution to GM, B and T cell lineages. Ordered by overall donor chimerism on top of 

each bar. 
 

4.5.5 Transplantation outcome can be retrospectively predicted by reporter strategy 

In order to further validate the FELSK reporter strategy, 10% of the above single cell cultures 

were removed on day 27 and analysed by flow cytometry, allowing transplantation outcomes to be 

correlated with surface marker phenotype in each culture. As shown in Figure 4.17A,B, there is 

large accompanying heterogeneity in the phenotypic outcomes of 28-day clonal cultures. 

Interestingly there is a strong correlation between the phenotypic outcomes and functional 

outcomes. As shown in Figure 4.17F, the percentage of LSK cells in each clone correlates highly 

with its donor chimerism at week 16 (r = 0.86; p=0.0056). As expected, the correlation is slightly 

stronger with percentage of FELSK cells (r=0.92; p=0.0012). Interestingly, there is no significant 

correlation (p=0.9116) between the size of the clone and its repopulating ability, again 

demonstrating a decoupling between proliferation and self-renewal and supporting the need for a 

reporter strategy to isolate functional HSCs in a robust manner. 
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Figure 4.17 Donor chimerism correlates with phenotypic isolation strategy but not cell 
numbers. 
10% of clones from Figure 4.16 were analysed by flow cytometry a day before transplantation. 
A-B) Representative gating layout of FELSK cells (Gated out of LSK gate), in clones with low FELSK% (A) and high 
FELSK% (B). 
C-F) Correlation between donor chimerism and C) number of FELSK cells, D) percentage of FELSK cells out of live, 
E) number of live cells and F) percentage of LSK cells. Pearson correlation. *=p<0.05. **=p<0.01. ns= not 
significant. n=8. 
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Overall, these studies have shown that Fgd5 and EPCR are reliable markers for HSCs in vitro - in 

short-term cultures, the vast majority of repopulation potential is contained within cells expressing 

high amounts of Fgd5 and EPCR; likewise, Fgd5 and EPCR expression is strongly correlated with 

traditional in vitro HSC markers; and can be used altogether in combination as a novel reporter 

strategy to screen HSC supportive conditions. This strategy validated both EL08 CM and F12 

PVA cultures. In the process, PTN was identified as one of the secreted factors in EL08 CM that 

is supporting HSC self-renewal. These experiments also confirmed and demonstrated the clonal 

heterogeneity in long-term HSC expansion cultures, which becomes the focus of next chapter’s 

investigation. 
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5 Molecular characterisation of clonal heterogeneity in F12 

cultures 

The F12 PVA culture system described in 2019 is capable of achieving 200- and 900-fold 

expansion of HSCs over a 28-day period283. Interestingly, when individual clones were selected to 

examine the expansion of single HSCs over the time course, there was substantial heterogeneity 

with only 4 of 14 clones (28.5%) displaying long-term multilineage engraftment. These data suggest 

that the vast majority of HSC expansion present in bulk cultures was achieved by a minority of 

clones. In Chapter 4, I described the utility of our FELSK reporter system for identifying cell 

cultures rich in functional mouse HSCs and Chapter 5 focuses on using this reporter strategy to 

shed light on the molecular basis for the observed clonal heterogeneity.  

5.1 Transplantation of 28-day clones from single cell cultures 

Having also observed significant heterogeneity in the functional outcomes of single HSC derived 

cultures in section 4.5.4, we were interested in whether we could resolve the molecular differences 

by using the in vitro FELSK strategy to identify HSCs. To achieve this, single HSCs were cultured 

for 28-days and then re-sorted for two fractions: phenotypic HSCs (EPCR+ Lineage- Sca-1+ and c-

Kit+ (ELSK)) and all the remaining cells (non-ELSK) (Figure 5.1). For these experiments, Fgd5 

was not used for the gating strategy for two reasons: 1) EPCR and Fgd5 levels correlate strongly 

and 2) Reliance on the reporter mouse decreased the applicability of the method including the 

practical ability to achieve sufficient numbers of starting cells for rapid molecular profiling. HSCs 

were still isolated from Fgd5ZsGreen•ZsGreen/+ mice so the immunophenotypic profiling of individual 

cultures could still be performed. In total, we assessed 20 clones from two independent 

experiments for matched functional and molecular profiling and the overall experimental design 

is illustrated in Figure 5.2. On average, 22382 ± SD 34278 ELSK cells were sorted for each clone 

compared to 90700 ± SD 85383 non-ELSK cells (p=0.0027, paired t-test) (data not shown). 
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Figure 5.1 Representative gating strategy to separate phenotypic HSCs from culture. 
Single HSCs were cultured for 28 days in F12 PVA, supplemented with 10ng/mL SCF and 100ng/mL TPO, with 
media changes. At day 28, single cell clones were each re-sorted for two fractions. Gating strategy for EPCR+ 

Lineage- Sca-1+ and c-Kit+ cells (ELSK) indicated by red gates. Non-ELSK cells are captured by the black gates, 
which are intentionally spaced away from red gates to reduce the chances of ELSK cells being captured. 
 

In order to match the functional outcomes of the clones with their molecular profiles, the re-

sorted ELSK and non-ELSK samples were divided in two halves; One half was stored for later 

bulk RNA-seq, while the other half was transplanted into irradiated mice (Figure 5.2).  

 

Specifically, all ELSK samples, presumed to be the fraction containing HSCs, were transplanted 

into at least one recipient per clone (50% dose), with some (7 clones) being transplanted into two 

recipients at a 45% and 5% dose. Due to limited numbers of recipients available at the time of 

experiment, the non-ELSK cells were pooled into three groups that were each transplanted into a 

single recipient mouse. 

 

In order to analyse secreted factors within the clonal cultures, the medium that was taken out 

during media changes was also stored for proteomic analysis (Figure 5.2). Therefore overall, we 

generated matched datasets for single expanded HSC that contained functional assessment of HSC 

activity, gene expression of phenotypic HSCs and non-HSCs by RNA-seq, and proteomic analysis 

of secreted factors throughout the culture. 

Lin- 
LSK 

EPCR+LSK 

Non-ELSK ELSK 
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Figure 5.2 schematic of experimental design to characterise molecular heterogeneity in 
PVA cultures. 
Single HSCs were cultured for 28 days in F12 PVA cultures supplemented with 10ng/mL SCF and 100ng/mL 
TPO. On day 28, clones were resorted for ELSK and non ELSK cells as shown in Figure 5.1. Resorted samples 
were separated in half; one fraction (or pooled with other clones) was transplanted into recipient mice; the 
other fraction was stored for RNA-seq. 
Media changes were performed every 2-3 days, the media were collected and analysed by mass spectrometry 
for proteins. 

5.1.1 Split dose transplantations confirm bona fide HSC expansion and functional 

heterogeneity 

Consistent with our previous transplantation data and published findings, there was considerable 

clonal heterogeneity in primary transplantation outcome. Compared to the originally reported 

percentage of clones with high level multilineage engraftment (4 of 14, 28.5%) and our initial IL-

ELSK cells 
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11 stimulated cultures (3 of 8, 37.5%), we again observed a similar frequency (8 out of 20, 40%), 

with no statistical difference (p=0.717) (Figure 5.3). Of the 5% doses, all 7 recipients had >1% 

donor chimerism; However, only 2 of 7 clones had robust (>1%) contribution to GM cells, 

confirming at least one self-renewal division in single HSCs. 

 
Figure 5.3 Transplantation of ELSK from single clones cultured in F12 PVA media. 
A) Donor chimerism from primary and secondary transplantation of ELSK cells from single cell clones cultured in 
F12 PVA with 10ng/mL SCF and 100ng/mL TPO for 28 days. Grey line represents 50%/45% cell doses n=20. Black 
line represents 5% cell dose n=7. Exp=2 (2 mice were culled for non-experimental reasons before experimental 
end point). Awaiting 16-week timepoint from secondaries from 2nd experiment, here showing secondaries from 
3 positive primary mice. 
B) Lineage output of positively repopulated clones (>1% chimerism at week 16) from 45 or 50% doses. Ordered 
by percentage donor chimerism. 

5.1.2 ELSK separates functional HSCs from non-HSCs 

Despite transplanting on average 26-fold more cells per mouse and representing multiple clones, 

non-ELSK cells mostly did not have robust multilineage reconstitution (2 of 3 groups had below 

1% contribution to GM) (Figure 5.4). Upon deeper analysis, the group that had successfully 

engrafted was pooled from clones that included 4 out of 8 of the positively repopulating clones, 

including the highly expanded clones with robust chimerism even at the 5% dose, making it not 
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unlikely that a few HSCs may have been mistakenly sorted into the non-ELSK population (Figure 

5.4). Overall, this gives confidence that the ELSK cells can robustly separate functional HSCs from 

non-HSCs. 

 
Figure 5.4 Reconstitution of pooled non-ELSK cells compared to the respective ELSK cells. 
The non-ELSK cells from the same clones transplanted in Figure 5.3 were pooled into 3 separate groups and each 
transplanted into an individual recipient. Two independent transplantations: Group A was from experiment 1, 
n=7; Group B and C were from experiment 2, n=6 and 7 respectively. 
A-C) Donor chimerism of pooled non-ELSK (black) and the ELSK cells (grey) from their respective groups in 
primary transplantations. n=3. 
D) Lineage output of pooled non-ELSK cells. 16-week chimerism is labelled above respective group. 

5.1.3 FELSK correlates highly with functional HSC activity 

From the information generated from the re-sort on the day of transplantation, the percentage of 

donor chimerism can be correlated with the FELSK percentage present in individual clones. As 

shown in Figure 5.5 there was again a high correlation between %FELSK and donor chimerism 

(r=0.9296, p<0.0001). Of note, all of the five clones that were lower than 1% FELSK, were also 

below 1% donor chimerism at week 16. Interestingly, there was a lower but still significant 

correlation between absolute numbers of FELSK cells and donor chimerism.  
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Also, as identified in Chapter 4, there was no significant correlation between the total clone size 

and chimerism (r=-0.098, p=0.6898), again affirming that there is a negative relationship between 

proliferation and HSC self-renewal. A very high correlation (r=0.9383, p<0.0001) was observed 

between %FELSK of the clone and its contribution to GM cells, which as mentioned is a strong 

indicator of robust self-renewal (Figure 5.5). Interestingly, a pattern can be observed that suggests 

that there is a threshold of %FELSK cells, above which contribution to GM would be high. 

 
Figure 5.5 FELSK correlates with chimerism. 
A-D) Clones from transplantations detailed in Figure 5.3 were analysed for their FELSK content and clone size, 
which is correlated with respective chimerism and contributions to GM cells. Pearson Correlation. 
****=p<0.0001. *=p<0.05. ns = not significant. n=19. 

5.2 Repopulating ELSK cells are molecularly distinct from non-repopulating 

cells and resemble freshly isolated HSCs at gene expression level 

To study the molecular state of in vitro expanded HSCs and the potential drivers of “good” versus 

“bad” clones, RNA-seq was performed on 12 clones, representing the first known RNA-seq 

dataset of expanded HSCs. In total, 24 samples were sequenced over three runs including matched 

ELSK and non-ELSK fractions (Table 5.1). Clones were selected for a range of functional output 

and FELSK percentages. To simplify the analysis, the samples were categorised into 4 groups: 1) 

ELSK cells from clones that repopulated mice (PosELSK), 2) ELSK cells from clones that did 
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not repopulate mice (NegELSK), 3) Non-ELSK cells from clones that repopulated mice 

(PosNonELSK), and 4) Non-ELSK cells from clones that did not repopulate mice 

(NegNonELSK). Repopulation was defined as having >1% donor chimerism and >1% 

contribution to GM at 16 weeks. 

Table 5.1 12 clones with matched ELSK and non-ELSK samples were chosen for RNA-seq. 

Clone 
Repop-

ulation 
Fraction Group 

16w Donor 

Chimerism 

16w contribution 

to GM 
QC 

A Y *ELSK *PosELSK 83.50% 97.00%  
Non-ELSK PosNonELSK  

B Y 
ELSK PosELSK 

81.50% 95.40% 
 

Non-ELSK PosNonELSK  

C Y 
*ELSK *PosELSK 

74.20% 97.50% 
 

Non-ELSK PosNonELSK  

D Y 
ELSK PosELSK 

44.60% 85.60% 
 

Non-ELSK PosNonELSK  

E Y 
ELSK PosELSK 

41.80% 26.60% 
 

Non-ELSK PosNonELSK  

F Y 
ELSK PosELSK 

31.80% 87.40% 
 

Non-ELSK PosNonELSK  

G N 
ELSK NegELSK 

0.67% 0.02% 
 

Non-ELSK NegNonELSK  

H N 
ELSK NegELSK 

0.40% 0.02% 
 

Non-ELSK NegNonELSK  

I N 
ELSK NegELSK 

0.22% 0% 
 

*Non-ELSK *NegNonELSK  
J N ELSK NegELSK 0.17% 0.02%  

K N 
ELSK NegELSK 

0.11% 0% 
 

Non-ELSK NegNonELSK  

L N 
ELSK NegELSK 

0% 0% 
Failed 

Non-ELSK NegNonELSK  
* indicates sample was run twice as a technical repeat. 
 

Of the 24 cell fractions, one Neg-ELSK sample failed quality control (Table 5.1). As a control, we 

ran two samples as technical repeats (Table 5.1) in all three sequencing runs to allow us to identify 

any batch variation. As shown in method section 2.7.1, the technical replicate was extremely similar 

in the two runs, which allowed for a simple batch correction. After filtering out low expressing 

genes, there were 16648 genes detected across the 22 unique samples. As visualised in Figure 5.6, 

multiple dimensional scaling (MDS) shows a clear separation between samples originating from 

clones which repopulated mice and clones that did not. Samples could be further resolved by 

whether they were ELSK cells or Non-ELSK cells. Notably, there was an overlap between 
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PosNonELSK cells and NegELSK cells, which suggests that even though NegELSK cells are 

phenotypically more similar to PosELSK cells, they are molecularly more similar to non-ELSK 

cells. As shown in Figure 5.6, the molecular separation within ELSK cells can be further resolved 

by percentage chimerism and GM contribution of the clone. 

 
Figure 5.6 MDS plots show clear separation between repopulating and non-repopulating 
cells. 
A) MDS plots of all 22 unique samples, coloured by the groupings into PosELSK, NegELSK, PosNonELSK and 
NegNonELSK. 
B-D) MDS plots of all 11 ELSK samples coloured by B) whether they can repopulate recipients or not, C) the 
respective 16-week donor chimerism in primary transplantation and D) the respective 16-week contribution 
to GM lineage. Colours are scaled to the samples from highest (yellow) to lowest (purple). 
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As detailed in section 1.3.2, a molecular signature (MolO) for freshly isolated quiescent HSCs from 

mouse BM was developed by Wilson et al.186 Using this molecular signature, our samples were 

scored for their combinatorial expression of the MolO genes. As shown in Figure 5.7, ELSK cells 

have a significantly higher MolO score than non-ELSK cells (p<0.05). Moreover, repopulating 

clones had higher MolO scores compared to non-repopulating clones (p<0.0001) (Figure 5.7). 

Interestingly, there was no significant difference between NegELSK cells and NegNonELSK cells 

(Figure 5.7), suggesting that the MolO signature correlates with actual HSC function rather than 

the ELSK phenotype itself. Of note, amongst the MolO signature genes, several genes were below 

the minimum expression limits in the QC for all the samples (Cldn10, Ramp2, Smtnl1, Sox18 and 

Sqrdl), suggesting that although these genes are expressed in freshly isolated HSCs (and may play 

a biological role there), they are unnecessary for ex vivo cultured HSCs. Overall, this confirms that 

not only can the transcriptomic information separate functionally distinct samples, it also 

demonstrates that expanded HSCs retain a gene expression signature reminiscent of freshly 

isolated HSCs. 

 

 
Figure 5.7 MolO score is significantly higher in repopulating and ELSK cells. 
A) MDS plot of all samples from Table 5.1 with the MolO score of each sample coloured in. Scaled to the samples, 
max (yellow) and min (purple) 
B) MolO score (geometric mean) of the four sample groups. t-Test. *=p<0.05. ns= not significant.  
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5.2.1 Non-HSCs are not mature cells but differentiated progenitors 

Next, in order to achieve a more global comparison of the samples with known haematopoietic 

datasets, the samples were compared to the various cell types on ImmGen, by SingleR analysis. As 

described in section 3.3, ImmGen is a gene expression database containing 253 haematopoietic 

cell types and SingleR is a programme that is designed to compare sample datasets with reference 

cell types. As shown in Figure 5.8, all of the samples, including non-ELSK cells are more similar 

to HSCs and multipotent progenitors than they are to any specific mature cell fraction, suggesting 

that even the clones that no longer contain functional HSC activity are still comprised of relatively 

immature haematopoietic cells. This is also consistent with our previous data and the original data 

from Wilkinson et al. that there are very few lineage positive cells and that mature cells are not 

well-supported in F12, PVA-based cultures. 

 

Of the 22 samples, only two were classified as LTHSCs and both of these were PosELSK clones 

(Figure 5.8). Interestingly, amongst the 7 samples labelled “MLP” (Multipotent lymphoid 

progenitors, Lineage-CD19-IgM-CD43+CD24-AA4.1+CD45R-CD117+IL7R-), all of them were 

NegNonELSK cells, suggesting that even the most differentiated samples are not mature cells 

(Figure 5.8). The remaining samples are most similar to ST-HSCs (CD34+Flk2-LSK cells), 

however, as shown in Figure 5.8, the PosELSK samples are clustered together and contain some 

similarities with LT-HSCs. Overall this confirms previous findings that even though the cells in 

the ELSK fraction have been cultured for 28 days, their transcriptomes still largely resemble their 

freshly isolated counterparts and likely contain the essential transcriptional networks for durable 

HSC activity. 
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Figure 5.8 SingleR identifies PosELSK samples as most similar LTHSCs. 
The 22 samples were compared to ImmGen gene expression database of 253 cell types. The 40 samples with 
the highest correlation score are shown, coloured from highest (yellow) to lowest (blue). The cell type with 
the highest correlation is labelled above the heatmap and the corresponding clone and sample type (detailed 
in Table 5.1) is labelled below. 

5.3 Differential gene expression between ELSK and non-ELSK cells suggest 

early activation in non-ELSK cells 

We next undertook differential gene expression analysis in order to better understand the genes 

that drive the separation between ELSK and non-ELSK cells. Amongst the 16648 genes analysed, 

2398 genes were differentially expressed (Log fold change (LogFC) ≥ 2 and FDR < 0.05) between 

ELSK cells and non-ELSK cells (1158 genes upregulated in ELSK cells and 1250 upregulated in 

non-ELSK cells) (Figure 5.9). 
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Figure 5.9 Volcano plot showing differentially expressed genes between ELSK and non-
ELSK cells. 
LogFC and p-value of all 16648 genes. Red dots represent genes upregulated in ELSK cells (1158 genes) and 
blue dots represent genes upregulated in PosNonELSK cells (1250 genes). Black dots represent non-significant 
genes. Dashed lines represent the cut-offs. 

 

Gene ontology (GO) terms of genes upregulated in ELSK cells suggest an enrichment in genes 

involved in developmental processes and cytoskeletal reorganisation (Table 5.2). Consistent with 

their identity as more differentiated cells, GO terms from non-ELSK upregulated genes suggest 

involvement in immune responses, inflammation and cell activation (Table 5.3). 

Table 5.2 Gene ontology terms based on upregulated genes in ELSK cells compared to 
Non-ELSK cells. 

GO term Genes DE P-value 
developmental process 418 2.61E-27 
anatomical structure development 395 5.41E-26 
localization 390 2.65E-23 
intracellular signal transduction 215 6.23E-23 
cytoskeleton organization 132 2.97E-21 
regulation of signal transduction 215 1.55E-19 
organelle organization 255 8.62E-19 
regulation of response to stimulus 265 6.12E-17 
cell cycle 141 1.96E-16 
cell projection organization 135 1.08E-15 
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Table 5.3 Gene ontology terms based on upregulated genes in Non-ELSK cells compared 
to ELSK cells. 

GO term Genes DE P-value 
immune system process 304 5.51E-54 
localization 463 3.62E-37 
positive regulation of biological process 474 7.81E-37 
regulation of response to stimulus 344 1.17E-36 
intracellular signal transduction 259 1.87E-34 
defense response 189 3.74E-34 
cell activation 149 2.24E-33 
regulation of immune system process 177 7.07E-33 
immune response 188 7.37E-32 
inflammatory response 109 4.85E-30 

 

 

5.3.1 Rho GTPase pathways significantly upregulated in phenotypic HSCs 

To gain a deeper understanding of molecular mechanisms, pathway analysis was also performed 

on the differentially expressed genes between ELSK cell and non-ELSK cells. As shown in Figure 

5.10, signalling by Rho GTPases seem to be particularly involved in ELSK cells. Interestingly, 

several cell cycle pathways have also been identified and is suggested to interact with Rho GTPase 

pathways. Rho GTPases have been previously implicated in HSC function439,440 and in particular, 

Cdc42 has been recently implicated in regulating HSC polarity and self-renewal divisions254. If 

validated, Rho GTPases can potentially represent an attractive therapeutic target pathway to 

increase expansion of HSCs. 
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Figure 5.10 Pathways associated with upregulated genes in ELSK cells compared to non-
ELSK cells. 
Reactome pathway analysis of genes significantly upregulated in ELSK cells compared to non-ELSK cells. Lines 
connect pathways that have shared genes, and pathways are coloured by adjusted p-values from more 
significant (red) to less (blue). The main cluster relates to Rho GTPase activity. 

 

In non-ELSK cells, pathways involved in receptor signalling are overrepresented (Signalling by 

SCF-KIT, Interleukin-3, Interleukin-5 and GM-CSF signalling) (Figure 5.11). As shown in Figure 

5.11, there is also a cluster of pathways involved in ribosomal activity. Overall suggesting an 

increased activation in these cells, which supports conclusions from GO term analysis. 
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Figure 5.11 Pathways associated with genes upregulated in non-ELSK cells compared to 
ELSK cells. 
Reactome pathway analysis of genes significantly upregulated in non-ELSK cells compared to ELSK cells. Lines 
connect pathways that have shared genes, and pathways are coloured by adjusted p-values from more 
significant (red) to less (blue). The two main clusters involve cytokine signalling and ribosomal activity. 

 

5.3.2 Differential gene expression between PosELSK and NegELSK 

The comparison between ELSK cells and non-ELSK cells was useful to establish the broad 

differences between primitive and more differentiated cells in the culture. However, to understand 

the molecular state of functional HSCs in vitro, a more interesting comparison is between PosELSK 

and NegELSK cells. Of the 16648 genes, only 26 genes were upregulated, and 35 genes were 

downregulated in PosELSK cells versus NegELSK cells, suggesting a high degree of molecular 

similarity despite dramatic differences in functional output (Figure 5.12). 
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Figure 5.12 Volcano plot of genes differentially expressed between PosELSK and NegELSK 
cells. 
LogFC and p-values of all 16648 genes. Pink dots represent genes upregulated in NegELSK (35 genes) and light 
blue dots represent genes upregulated in PosELSK cells (26 genes). Black dots represent non-significant genes. 
Dashed lines represent the cut-offs. 

 

The GO terms associated with repopulating ELSKs were also involved in developmental 

processes (Table 5.4). However, interestingly, repopulating ELSKs also seemed to upregulate 

genes involved in cell adhesion (Table 5.4). Again, immune responses are associated with genes 

upregulated in NegELSK cells, and genes involved in myeloid leukocyte differentiation are also 

upregulated (Table 5.5). 

 

Table 5.4 Manually curated gene ontology terms based on upregulated genes in PosELSK 
compared to NegELSK. 

GO term Genes DE P-value 
integrin binding 2 0.00698628 
biological adhesion 5 0.00799701 
anchored component of membrane 2 0.01516967 
developmental process 11 0.02558864 
cell adhesion molecule binding 2 0.02323818 
multicellular organism development 10 0.02393103 
regulation of cellular protein metabolic process 6 0.03034427 
cell surface receptor signalling pathway 6 0.03050336 
cell adhesion 4 0.03616079 
metabolic process 15 0.04267028 
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Table 5.5 Manually curated gene ontology terms based on upregulated genes in NegELSK 
compared to PosELSK. 

GO term Genes DE P-value 
myeloid leukocyte differentiation 5 7.31E-06 
regulation of immune system process 10 8.57E-06 
response to external stimulus 12 3.02E-05 
immune system process 12 5.37E-05 
myeloid cell differentiation 5 0.00014 
cell surface receptor signalling pathway 11 0.000153 
myeloid leukocyte activation 4 0.000153 
response to stress 13 0.000258 
cell cycle phase 2 0.000389 
inflammatory response 5 0.001655 

 

 

 

Because the GO terms are not meant to be used as a guide rather than to form definitive 

conclusions, the differentially expressed genes are listed in Table 5.6 and Table 5.7. 

 

Of the 26 upregulated genes in PosELSK cells, three were predicted genes. Interestingly, Vwf has 

been an extensively studied marker of HSCs184. In fact, a reporter for Vwf has been generated to 

mark putative platelet-primed HSCs109 (section 1.2.6). Pld3 has also been previously identified to 

be upregulated in highly enirched LT-HSCs compared to haematopoietic cells with less self-

renewal capacity184. Lipoprotein lipase (Lpl) has recently been shown to be required for HSPC 

maintenance, by regulating free fatty acids supply441. Lamin A (Lmna) is also interesting as it was 

reported to regulate epigenetic and chromatin architecture upon HSC ageing442, and is important 

for other adult stem cell systems443. Tcf7l1 has been implicated in BCR-ABL acute lymphoblasitc 

leukaemia (ALL)444. 

 

The upregulation of integrin beta5 (Itgb5) is interesting as this particular integrin has not previously 

been associated with HSC function, whereas integrin beta1 for example has been shown to be 

important for HSCs. This suggests that HSCs in culture may require different integrins and 

associated signalling. Similarly, Serpinb6b is a protease that has not been associated with HSCs; The 

main serpin associated in haematopoieis is serpin A. 
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Table 5.6 Significantly upregulated genes in PosELSK vs NegELSK cells. 
Genes logFC logCPM P-value FDR 
Gm53 7.54891634 -0.1565622 8.41E-05 0.0315636 
Ifit3b 7.36482925 -0.1737339 7.73E-05 0.03063083 
Rgmb 6.93313664 -1.2617855 2.04E-05 0.01292519 
Lpl 6.13401797 1.16789263 7.72E-05 0.03063083 
Htra4 5.9367492 -0.8681886 9.82E-05 0.03404528 
Prok1 4.37913488 0.05053911 8.36E-05 0.0315636 
Gm18066 4.26948991 -0.5231257 0.00014398 0.04543924 
Lmna 3.26377273 2.94085242 3.68E-10 3.06E-06 
Tcf7l1 2.95415442 1.55752451 8.86E-05 0.03207164 
Rab3a 2.79958824 0.0901563 6.65E-05 0.02911376 
Gm45033 2.48857355 0.16267108 0.00015428 0.04645133 
Vwf 2.42917114 4.59764933 5.19E-06 0.00618873 
Klhl3 2.27400105 3.09622884 1.10E-05 0.00917956 
Serpinb6b 1.55443811 4.1173494 9.90E-08 0.00041207 
Itgb5 1.2620512 4.81018371 3.70E-05 0.01986446 
Plxnb2 1.19192701 6.57904222 3.63E-05 0.01986446 
Gbp3 1.02659679 3.74272348 7.44E-05 0.03063083 
Pld3 0.95016956 3.88342083 0.00017308 0.04802355 
Fam43a 0.89811432 5.6574484 5.04E-05 0.0246611 
Gpr146 0.82723086 4.16874348 0.00016481 0.04730663 
Glb1l 0.81507663 4.50963369 0.00014739 0.04543924 
Arhgap31 0.80671095 5.62295713 6.18E-06 0.00618873 
Retreg1 0.68237705 5.23711245 7.60E-05 0.03063083 
Aplp2 0.61341178 6.15472426 6.32E-06 0.00618873 
Nfic 0.5890611 6.87835405 2.54E-05 0.0151006 
Ncoa7 0.54166476 6.06302169 0.00012966 0.0440531 

 

 

Of the genes upregulated in NegELSK cells, one of them is a long noncoding RNA (lncRNA), 

6530402F18Rik, and three of them are predicted genes. Of interest, Cebpa is upregulated, which is 

an important haematopoietic transcription factor that regulates myeloid lineage commitment445. 

The upregulation of Myc is also interesting as it’s a well known oncogene involved in cell 

proliferation296. Of note, Cdk6 is also intersting because of it’s role in regulating HSC exit from 

quiescence and has previously been shown to be upregulated in ST-HSCs28. The upregulation of 

Cd69 is also interesting, as it is considered an early activation marker in HSCs and other immune 

cells, and involved in T cell differentiation446. As mentioned before, Cd244 is one of the SLAM 

family surface receptors that is upregulated upon HSC transition to MPPs121, however it is also 

expressed by multiple mature blood cell types. Of note, other genes associated with differentiated 
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cell types include Mpo, which encodes for myloperoxidase expressed highly in neutrophils and 

granulocytes and Cpa3, which encodes for Carboxypeptidase A3 is gene expressed highly in mast 

cells. Interestingly, while Itgb5 is upregulated in PosELSK cells, Itgb3 is upregulated in NegELSK 

cells, suggesting a difference in integrin signalling.  

Table 5.7 Significantly upregulated genes in NegELSK vs PosELSK cells. 
Genes logFC logCPM P-value FDR 
Mdn1 -0.4064294 8.7985989 1.45E-04 0.04543924 
Myc -0.5815024 8.02111435 1.58E-04 0.04645133 
6530402F18Rik -0.7244995 4.96814152 4.06E-05 0.0211374 
Epop -0.7328131 5.14398147 9.06E-06 0.00793693 
Eif2b3 -0.7894685 4.44702733 6.58E-05 0.02911376 
Cdk6 -0.861117 9.59079299 2.10E-05 0.01292519 
Arhgap6 -0.9415149 5.4337907 1.7775E-06 0.00269023 
Ntng2 -1.1088195 4.31091602 8.20E-06 7.58E-03 
Zfp462 -1.134887 4.60539109 1.59E-04 0.04645133 
Cd244a -1.298679 5.17576124 1.60E-05 0.01222766 
Cd69 -1.2999675 6.61899075 5.3148E-06 0.00618873 
Trps1 -1.3953718 5.18779564 1.81E-07 0.00060269 
Slc24a3 -1.7611088 4.20162248 1.42E-06 0.00236132 
Itgb3 -1.8730119 5.43261622 9.91E-07 0.00206229 
Slc39a4 -1.9497932 2.66102158 1.68E-04 0.04745925 
Cpa3 -2.0051984 4.69596414 1.82E-04 0.04954771 
Dtx4 -2.2401976 4.26511532 1.38E-04 0.04543924 
Cst7 -2.2708136 4.90415677 4.7617E-07 0.00119204 
Siglecf -2.6064022 4.26864586 6.11E-06 0.00618873 
Rab44 -2.6456331 7.28881497 1.8507E-05 0.01292519 
Tmem156 -3.031765 2.81119377 4.7656E-05 0.02404159 
Gm34589 -3.1779078 1.19905711 1.44E-04 0.04543924 
Cebpa -3.2290337 6.11901204 1.78E-10 2.9695E-06 
Hsd11b1 -3.3213592 1.31883217 5.77E-05 0.02735447 
Ctsg -3.4840521 6.01169637 8.53E-05 0.0315636 
Rgs1 -3.8061441 3.77574096 2.0526E-05 0.01292519 
Mpo -4.6488139 11.0051616 2.0531E-05 0.01292519 
Ccr1 -5.1952601 1.66837887 2.70E-05 0.01551143 
Rnf43 -5.473591 1.61545879 9.48E-05 0.03356179 
Fcgr3 -5.6082288 3.5186246 6.24E-06 0.00618873 
Gm7967 -6.2207428 3.62027945 5.01E-07 0.00119204 
Gm15581 -6.7281744 0.29748443 1.62E-05 0.01222766 
Hp -6.8432125 3.79517351 1.13E-06 0.00209799 
Hdc -9.1165786 3.82239234 2.8155E-09 1.5624E-05 
Syce1 -9.3790474 1.89716573 5.92E-05 2.74E-02 
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Overall, this confirms the functional outcomes and associated GO terms, that PosELSK cells are 

enriched for HSC genes and that NegELSK cells have a gene expression profile suggestive of 

activated ST-HSCs or more restricted progenitors. In the meantime, many of these differentially 

regulated genes have not been previously associated with HSC function or haematopoiesis in 

general. These novel genes identified could be taken forward in functional validations to see if they 

have essential functions in HSC expansion or used in in vitro qPCR screens for expanding HSCs. 

5.4 Identification of a molecular programme for “expanded” HSCs 

In order to identify the genes that associate most strongly with ex vivo expanded HSCs, the 

samples were first visualised by principal component analysis (PCA). As shown in  

Figure 5.13, the resulting distributions in the PCA are very similar to above MDS plots. 

Importantly, PC1 is responsible for 35.6% of the variances in gene expression and it also correlates 

very significantly with donor chimerism (r2 = 0.27, p<0.05), contribution to GM (r2 = 0.41, 

p<0.01), contribution to T cells (r2 = 0.2, p<0.05), contribution to B cells (r2 = 0.19, p<0.05), 

repopulation (r2 = 0.47, p<0.001) and MolO score (r2 = 0.55, p<0.0001). 

 

 
Figure 5.13 PCA of all samples indicate that PC1 correlates highly with functional outcomes. 
A) PCA of all samples coloured by their respective groups. 
B) Pearson correlation (r2) between each principle component and functional or statistical outcome. Molo, MolO 
signature score; Repopulating, binary yes or no correlation for samples; Donor, Donor chimerism. 
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By using the loading plots for PC1, the genes that drive differences in PC1 can be extracted. As 

listed in Table 5.8, 30 genes were significantly driving (component loading <-0.05) the negative 

PC1 vector. Using these PC1 loading genes, a repopulation signature was created in order to be 

able to predict and/or monitor the functional HSC content of an expansion culture (Table 5.8). 

 

As shown in Figure 5.14, the signature score was significantly higher in repopulating cells 

compared to non-repopulating cells as well as ELSK cells compared to non-ELSK cells. As shown 

by the overlay of the signature score on the MDS plot in Figure 5.14, the signature score can better 

predict repopulation categories compared to MolO score (Figure 5.7). 

 

Unsurprisingly, EPCR (Procr) was on this list, as well as other known HSC cell surface markers 

such as CD150 (Slamf1)121 and ESAM (Esam) (Table 5.8)172. Interestingly, there were 3 other surface 

membrane protein genes, Robo1, Ncam2 and Myof, that had not been implicated with HSC function 

before. These genes could represent potential new markers for monitoring or isolating ex vivo 

expanded HSCs and might serve to replace Fgd5, thereby potentially averting the need for a 

reporter strain. Also, amongst the list are several genes well-accepted to be transcriptional 

regulators of HSC self-renewal, including Mecom447, Hlf and Prdm16, which have also recently been 

shown to be upregulated in expanded human HSCs285. In a separate study, Hlf has also been 

recently reported in a preprint journal to be expressed in expanded human HSCs448. 

Overexpression of Prdm16, also known as Mel1, has been shown to lead to expansion of HSCs 

comparable to that achieved by Hoxb4 overexpression360. 

 

Given that TGF-β has been implicated in HSC biology, it is perhaps not surprising to find on the 

list TGF-β receptor 3 (Tgfbr3)137,449,450. Camk2b, a calcium/calmodulin-dependent protein kinase, is 

interesting because calcium signalling has recently been implicated in HSC maintenance385. Klhl4, 

is the second Kelch family protein to appear in this thesis, with Klhl3 found to be upregulated in 

PosELSK cells vs NegELSK cells in the previous section, suggesting an undiscovered role for this 

Table 5.8 List of 30 genes identified by PC1 loading plot to be signature genes for 
expanding HSCs. 

Epb41l3 Ncam2 Ptk2 Esam Hlf 

Camk2b CCm2l Procr Gm38197 Arx 

Robo1 Slamf1 Klhl4 Nrk Bcam 

Neurl1b Tgfbr3 Myof Zfp532 Palld 

Vill Ryk Sel1l3 Dlg2 Mecom 

Gimap4 Mpdz Tcf15 Prdm16 Prex2 
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protein family. Interestingly, a considerable number of genes have not been previously implicated 

in HSCs or haematopoietic function. 

 
Figure 5.14 Signature gene score is significantly higher in repopulating and ELSK cells. 
A) MDS plot of all samples coloured by their signature gene score. 
B) Geometric mean of signature gene score of the categories. T test. *= p<0.05. 

5.4.1 Single cell HSPC transcriptome displays heterogeneous expression of signature 

genes 

To further explore the role that the 30 signature genes play in HSC function, a single cell HSPC 

transcriptomic dataset generated by Nestorowa et al190 was mined for their expression. Over nine 

HSPC populations (LTHSC, STHSC, MPP1, MPP2, MPP3, CMP, GMP, LMPP and MEP), the 

gene expression of signature genes in individual cells are shown in an array of violin plots (Figure 

5.15). 15 of the genes were below expression limits, perhaps suggestive of the differences between 

fresh and cultured cells. 

 

Consistent with originally published findings, several known HSC markers such as Procr, Slamf1 

and Esam are more highly expressed in phenotypically more primitive HSPC populations. As 

expected, the genes that were not previously associated with HSC function such as Robo1, Ptk2, 

Gimap4 and Mpdz, are lowly expressed across all cell types, reaffirming their limited role in native 

HSPC biology. Whereas genes such as Vill is relatively broadly expressed across the 

haematopoietic compartment. 
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Whether by the surface markers identified here or by using qPCR, these signature genes, when 

validated and proven, might be beneficial for screening ex vivo cultures of HSCs to determine if 

cultures contain large numbers of HSCs or not. 

 
Figure 5.15 Gene expression patterns of signature genes across HSPC subpopulations. 
The expression of 30 signature genes are visualised in the scRNA-seq dataset generated by Nestorowa et al.190. 
Only 15 genes are displayed because 15 genes were not detected in the dataset. The HSPC populations are 
ordered by level of differentiation from lowest (LTHSC) to highest (MEP). 
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5.4.2 MapK signalling pathway overrepresented in signature genes 

Knowing the genes that define expanding HSCs are important and useful for screening cultures, 

however, it does not necessarily provide the knowhow to increase expansion efficiencies. To this 

end, pathway analysis was again used to complement the analysis and provide insights to HSC 

expansion signalling pathways.  

 

As shown in Figure 5.16, only 12 pathways were significantly associated with the 30 signature 

genes. Interestingly, Map Kinase (MapK) signalling pathway seems to be highly associated with 

signature genes. Functional validations by inhibiting or stimulating key players of MapK signalling 

cascade may be interesting to test if the pathway is indeed important for HSC expansion. Of note, 

some pathways typically associated with the neuronal system were also identified, including 

NMDA receptor regulation, protein-protein interactions at the synapses and neurexins and 

neuroligins. It is possible that such pathways that have been historically identified in the neuronal 

system, have a secondary effect in the haematopoietic system. More investigation would be needed 

to tease apart this connection. 

 
Figure 5.16 Pathways associated with signature genes. 
Reactome pathways significantly associated with the list of signature genes in Table 5.8. Lines connect pathways 
that have shared genes, and pathways are coloured by adjusted p-values from more significant (red) to less 
(blue). 
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5.5 Non-ELSKs provide insights to feedback signals 

As mentioned above, in all cultures, the non-ELSK cells vastly outnumber ELSK cells. Even the 

few exceptional clones with very high percentages of ELSK cells, still have a majority (over 50%) 

non-ELSK cells by phenotype. Thus, if negative feedback in cultures is an important aspect of 

HSC expansion, as has been previously suggested416, then it would be crucial to look at non-ELSK 

cells, as they might be expected to produce the majority of feedback signals within the culture, 

whether by secretory proteins or cell-to-cell contact. 

5.5.1 The transcriptomes of Non-ELSK cells correlate with functional outcome of the clone 

An MDS of non-ELSK cells was plotted with the samples coloured in by the respective donor 

chimerism of their ELSK counterparts (Figure 5.17). Interestingly, even within non-ELSK cells, 

there is a separation between repopulating clones and non-repopulating clones.  

 

 
Figure 5.17 PosNonELSK cells separate from NegNonELSK cells and correlate with 
chimerism of the clone. 
MDS plot of just the non-ELSK cells, coloured by their clone’s respective donor chimerism from matched ELSK 
cells. Colours are scaled by donor chimerism, from max (yellow) to lowest (purple). 

 

Max

Min

Clone chimerism



Results 

 
 

133 

 
Figure 5.18 Volcano plot of differentially expressed genes between NegNonELSK and 
PosNonELSK cells. 
LogFC and p-value of all 16648 genes. Dark blue dots represent genes upregulated in NegNonELSK cells (426 
genes) and light blue dots represent genes upregulated in PosNonELSK cells (530 genes). Black dots represent 
non-significant genes. Dashed lines represent the cut-offs. 

 

Of the 16648 genes, 956 were differentially expressed between PosNonELSK cells (530 genes 

upregulated) and NegNonELSK cells (426 genes upregulated) (Figure 5.18). GO term analysis 

suggests that NegNonELSK cells are more differentiated, with GO terms clusters for immune 

activation and cell activation. In contrast, PosNonELSK cells are upregulated for GO terms 

associated with developmental processes, signal transduction, cell localisation and adhesion. 

 

Table 5.9 Gene ontology terms of upregulated genes in PosNonELSK cells vs NegNonELSK 
cells. 

GO term Genes DE P-value 
developmental process 205 1.31E-16 
anatomical structure development 196 1.42E-16 
intracellular signal transduction 113 2.64E-16 
multicellular organism development 183 3.40E-16 
regulation of signal transduction 114 9.44E-15 
regulation of cell communication 128 2.00E-14 
cellular developmental process 154 8.66E-14 
localization 189 1.25E-13 
cell adhesion 63 3.20E-11 
biological adhesion 63 4.68E-11 
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134 

 

Table 5.10 Gene ontology terms of upregulated genes in NegNonELSK cells vs PosNonELSK 
cells. 

GO term Genes DE P-value 
immune system process 111 4.56E-23 
defense response 83 8.33E-23 
response to stress 127 6.46E-20 
regulation of immune system process 72 2.56E-18 
cell migration 70 1.43E-17 
response to external stimulus 96 3.73E-17 
cell motility 73 5.07E-17 
localization of cell 73 5.07E-17 
cell activation 59 6.63E-17 
inflammatory response 46 9.39E-17 

 

5.5.2 ROS associated pathways are upregulated in non-repopulating clones. 

Interestingly, pathways associated with genes upregulated in NegNonELSK suggests that the cells 

are involved in ROS and RNS production in phagocytes and antimicrobial peptides (Figure 5.19). 

This supports the idea that they are more differentiated immune cells that may lead to secretion of 

immune molecules. ROS has also been previously linked to HSC differentiation34, and this may be 

a mechanism by which Non-ELSK cells influence the fate of HSCs within F12 PVA cultures. 
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Figure 5.19 Pathways associated with genes upregulated in NegNonELSK cells vs 
PosNonELSK cells. 
Reacome pathway analysis of genes upregulated in NegNonELSK cells. Lines connect pathways that have shared 
genes, and pathways are coloured by adjusted p-values from more significant (red) to less (blue). The regulation 
of ROS is amonst the interesting pathways identified. 

5.6 Secretome analysis identifies targets for positive and negative regulation 

As mentioned earlier during the explanation of the experimental design, the conditioned media 

was collected during every medium change over the 28 days. The media was analysed by mass 

spectrometry in order to identify the proteins in the media. In the first experiment with 2 runs, 

CM from 6 clones (3 repopulated and 3 non-repopulated) were used, comprising of early, middle 

and late timepoints for a total of 18 samples. Additionally, a pooled control was used in both runs 

to allow for comparisons. 

Due to high variability in the dynamic range between samples, the quantification of protein 

abundances was deemed unreliable. Therefore, the presence and absence of proteins were 

investigated between repopulating clones and non-repopulating clones. A very stringent cut-off 

was used to filter for reliable protein identifications (>3 unique peptide sequence), after which only 

477 proteins were identified. Amongst them, 37 were uniquely identified in repopulating clones 

compared to non-repopulating clones and 40 were uniquely identified in non-repopulating clones 

(Figure 5.20). 

 
Figure 5.20 Venn diagram of proteins identified in the secretome of repopulating and 
non-repopulating clones. 
From two TMT labelled runs, 477 proteins were identified in 18 conditioned media samples; 6 clones with 3 
different timepoints (early, middle and late). 40 were uniquely identified in non-repopulating clones and 37 
were uniquely identified in repopulating clones. Strict cut-offs were used to define reliably identified proteins, 
with a minimum of 3 unique peptide for each protein. 

400 3740

Repopulating 
clones

Non-repopulating 
clones
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As shown in Figure 5.21 and Figure 5.22, only 8 proteins in total, are predicted to be secreted 

extracellular proteins, suggesting that the bulk of the molecules detected might be the result of 

lysed cells. For repopulating clones, the secreted molecules were hepatoma-derived growth factor 

(HDGF), YBX1, FTL1 and HSPH1. For non-repopulating clones, these were platelet-derived 

growth factor associated protein-1 (PDAP1), ANXA2, AIMP1 and KARS1. Of these, HDGF is 

most interesting as it is known to be highly expressed in developing liver451 and was reported to 

promote proliferation in human HSCs452. For non-repopulating clones, PDAP1 has been shown 

to modulate mitogenic activity in ALL. In a paper by Wohrer et al., genes encoding receptors for 

PDAP1 (Pdfgrb), ANXA2 (Grb2) and AIMP1 (Slc20a1) were also found to be expressed on 

activated HSCs153. 

 

 
Figure 5.21 Interaction map of unique proteins in media from repopulating clones. 
37 proteins found to be unique in media from repopulating clones, with at least 3 unique peptides identified. 
Predicted extracellular proteins are highlighted in red. 
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Notably, HPX, which was previously identified within EL08 CM, was also found in this dataset. 

However, further runs will be needed to quantify and compare abundances in repopulating and 

non-repopulating clones. Other notable proteins identified includes TGF-β1, which has been 

previously targeted as a negative regulator of human HSC expansion416; IL-16, an 

immunomodulatory cytokine453 and myeloid derived growth factor (MYDGF), which has no 

known effect on HSCs454. 

 

Although the majority of proteins identified are predicted to be intracellular proteins, it is 

conceptually possible that they can exert an effect on HSCs. However, more samples would have 

to be run in order to find targets with higher confidence. Overall this serves as a proof of principle 

that proteomic approaches can be used to discover novel feedback signals in media of HSCs. 

 
Figure 5.22 Interaction map of unique proteins in media from non-repopulating clones. 
40 proteins found to be unique in media from non-repopulating clones, with at least 3 unique peptides 
identified. Predicted extracellular proteins are highlighted in blue. 



Results 

 
 

138 

Overall, the experiments in this chapter confirm that Fgd5 and EPCR robustly marks HSCs in vitro. 

By using this reporter strategy to separate out repopulating and non-repopulating cells in long-

term cultures, the molecular state of expanded HSCs was characterised. Here, I show that the 

molecular profile of expanded HSCs resembles that of freshly isolated HSCs, but with some 

differences that can provide novel markers for expanding HSCs and insights into self-renewal 

regulation. By looking at the secretome of repopulating clones vs non-repopulating clones, 

potential HSC regulators were also discovered 
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6 DISCUSSION 

6.1 Context of study 

In vitro HSC expansion has been a long-standing goal in the field, with substantial clinical 

implications for improving HSCT, ex vivo production of mature blood cells, and gene therapy. 

Moreover, the increased knowledge of HSC expansion ex vivo may yield clinical insights to how 

HSCs expand pathologically in vivo as in the case of haematological malignancies. Decades of 

research, mostly through gene overexpression studies, have elucidated many intrinsic regulators of 

HSC cell fate in vivo, including Hoxb4297, Fbxw7356, Dppa5357, Prdm16360 amongst others 267,360. 

However, strategies requiring genetic integration have the caveat of risking leukaemic initiation, 

due to undesirable genetic integration or permanent activation of self-renewal programmes. In 

some cases, such as for NUP98-HOX fusion genes, near limitless HSC expansion can be achieved 

in vitro, suggesting that it is possible to culture and expand HSCs for long periods in the absence 

of a haematopoietic niche. Furthermore, numerous extrinsic regulators, especially haematopoietic 

cytokines and growth factors have been investigated for their effects on HSC self-renewal19 with 

various combinations suggesting that HSC maintenance can be achieved in short term cultures 

with some reporting modest expansion. Despite this progress, however, the exact signalling 

mechanisms that link extrinsic signals and intrinsic self-renewal regulators - and ultimately drive 

the HSC self-renewal programmes - remain elusive.  

 

One of the main barriers that has hindered the study of HSC expansion has been the lack of robust 

markers to isolate stem cells. Although HSC isolation strategies have continually improved, it is 

still currently not possible to isolate HSCs to 100% purity, and most gating strategies that achieve 

a high purity (>10%), will also exclude some HSCs121,184,293. Compounding this challenge of 

marking HSCs in vivo, is the added difficulty of marking HSCs in vitro, since many of the surface 

markers change their expression during ex vivo culture284. There is therefore a substantial unmet 

need to develop a larger repertoire of reliable in vitro markers to report for functional HSCs in 

culture. 

 

Another barrier to identifying HSC expansion conditions, is the lack of defined conditions. When 

something as minute as differences in the batch of bovine serum albumin used, can cause drastic 

differences in in vitro outcomes417, it becomes difficult to systematically test additional self-renewal 



Discussion 

 
 

140 

factors. Very recently, a study by Wilkinson et al. demonstrated a culture system with completely 

chemically defined components that is able to expand HSCs by ~200 to 900- fold in a duration of 

28-days283, something that has never been achieved before. Even more surprisingly, the culture 

system only relies on two cytokines, SCF and TPO, without additional self-renewal regulators, 

which sets the stage for it becoming a standardised base culture medium for future investigations 

into additional self-renewal regulators. Even though this represents a significant breakthrough in 

the HSC expansion field, there are still some outstanding questions. For one, single HSCs cultured 

in these conditions display substantial clonal heterogeneity in terms of proliferation and 

transplantation outcomes. The driver(s) of this clonal heterogeneity are still poorly understood. 

For this, it is extremely important to understand the molecular basis behind differences in 

repopulating HSCs and non-repopulating HSCs in expansion cultures, which allows for targeting 

of specific pathways to increase expansion efficiency. Excitingly, the ability to expand HSCs has 

also afforded new opportunities to molecularly characterise HSCs with techniques, such global 

proteomics, gene editing, metabolomics and immunoprecipitation, that were previously not 

possible in the field. In addition, the molecular characterisation of this new culture system would 

have wider implications such as understanding the activation and quiescence re-entry programmes 

that the cells must execute in clinical transplantations.  

 

In this thesis, I focus on developing a novel in vitro HSC reporter system using the 

Fgd5ZsGreen•ZsGreen/+ reporter mouse. Using this tool, my thesis focuses on the identification of key 

molecules which define the expanded HSC state. I showed that, in combination, Fgd5 and EPCR 

expression were reliable markers for functional HSCs both in vivo and in vitro. I further discovered 

through this that Fgd5 expression alone is not sufficient to isolate HSCs in vivo, leading to 

identification and characterisation of a previously unreported population of iNKT1 cells marked 

by Fgd5 expression. In chapter 4, I demonstrated the utility of Fgd5 and EPCR expression for 

screening HSC maintenance culture conditions. Finally, I exploited the reporter strategy to separate 

functional HSCs from non-stem cells in current state-of the-art HSC expansion conditions and 

provided the first molecular characterisation of ex vivo expanding HSCs. 

6.2 Summary of major findings 

In chapter 3, the Fgd5ZsGreen•ZsGreen/+ reporter mouse was investigated for its ability to mark HSCs. 

Consistent with originally published findings188, I showed that nearly 100% of phenotypically 

defined LT-HSCs (ESLAM293), are positive for Fgd5 expression. However, contrary to published 

evidence188, Fgd5+ cells were not all phenotypic HSCs. In fact, ~60% of the cells were discovered 
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to be non-stem cells and were EPCR-, CD48+, CD150- and c-Kit-. These cells were unable to grow 

in standard HSC culturing conditions and were unable to produce cells in a wide range of myeloid 

and lymphoid progenitor cell assays. Further phenotypic characterisation determined that this 

population was not homogeneous and contained at least two fractions of cells: 

CD5+CD3+NK1.1+Sca-1+ cells and CD244+ cells (negative for the other markers). Through 

multiple characterisation experiments, including surface marker phenotyping, gene expression 

profiling and in vitro functional assays, I showed that the first of these fractions represented a subset 

of iNKT1 cells. These cells are reactive to α-GalCer CD1d tetramers and express high levels of 

IFNγ both of which are hallmarks of iNKT1 cells. Interestingly of total phenotypic iNKT1 cells, 

only 20% are Fgd5+, suggesting that Fgd5+ iNKT1 cells might represent a novel subfraction of 

iNKT1 cells. To our knowledge, this is also the first time that Fgd5 has been implicated in NKT 

cell biology. 

 

Chapter 4 looks at the HSC fraction of Fgd5+ cells, where in combination with EPCR, it can be 

used as an effective two-colour strategy to enrich relatively pure HSCs. In vitro, Fgd5 and EPCR 

expression correlated highly with LSK percentages – a traditionally used in vitro measurement of 

HSCs. After culturing, only FhiEhi cells contained multilineage reconstitution ability compared to 

FloElo cells. Even from less pure culture-initiating cells (Fgd5+EPCR+CD150- cells), Fgd5 and EPCR 

were able to mark the stem cells when the vast majority of cells had lost Fgd5 and EPCR 

expression. 

Utilising this novel reporter strategy, I screened EL08 CM, which has been shown to support 

HSCs335,455, and showed that prolonged conditioning is detrimental to its supportive effects. Even 

so, all CM, regardless of length of conditioning afforded a survival benefit to HSCs compared to 

non-conditioned control medium. Interestingly, CM1D increased HSC clone sizes, whilst other CM 

had no significant effects on clone sizes. Having established that shorter conditioning times are 

better at maintaining HSCs, I analysed the various CM using mass spectrometry and identified 

previously reported HSC self-renewal regulators as well as potentially novel ones. This is also the 

first proteomic screen of EL08 CM to be reported. In initial validation experiments, OPN, PTN, 

IGFBP2 and IGFBP4 were tested for their ability to expand HSCs. While none of the factors 

tested, gave a survival benefit to HSCs, compared to control, HSCs cultured in 100ng/mL of PTN 

had higher FELSK content. During this period, a new more powerful protocol was developed for 

mouse HSC expansion283 and the novel reporter system was immediately useful in screening and 

validating the system. I showed that IL-11 is beneficial in HSA cultures but redundant in PVA 
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cultures. Most importantly, functional HSC activity correlated strongly with phenotypic HSCs 

marked by the reporter system. 

Chapter 5 dissects the observed clonal heterogeneity within these HSC expansion cultures. In serial 

transplantation experiments, I showed that the percentage of phenotypic HSCs in 28-day cultures, 

defined by this reporter system, strongly predicts in vivo outcomes in transplantation experiments. 

By using the reporter system to separate repopulating from non-repopulating cells, I present the 

first molecular characterisation of ex vivo expanded HSCs. The molecular states of these cells 

suggest that ex vivo expanding HSCs resemble freshly isolated HSCs, but also contain minor 

differences. I present a molecular gene signature for expanding HSCs, containing previously 

described HSC self-renewal regulator genes as well as novel genes not previously implicated in 

HSC biology. Amongst the genes upregulated in cultured HSCs, Rho GTPase and MapK pathways 

are overrepresented. Finally, I present an initial secretome analysis of repopulating clones 

compared to non-repopulating clones and identified HDGF as a potentially novel self-renewal 

regulator, and PDAP1 as a potential negative self-renewal regulator. 

6.3 Implications and future directions 

6.3.1 Identification of novel iNKT1 and putative monocytes marked by Fgd5 expression 

Amongst the new and exciting HSC reporter mouse strains that are being developed, we chose to 

investigate the Fgd5ZsGreen•ZsGreen/+ reporter mouse because, amongst other reasons, the 

transplantation data validating its robustness was especially promising188. Fgd5 expression was also 

validated in scRNA-seq datasets to be highly enriched in the LT-HSC compartment190. Therefore, 

it is surprising to find that Fgd5 expression also marks a population non-stem cells (FE- cells) that 

was non-existent in the data originally published by Gazit et al188. In our data, these FE- cells 

contain at least two fractions, one of which is an iNKT1 population and the other is most probably 

a CD244+ monocyte population as suggested by its gene expression profile. A potential 

explanation was that these cells arise from different BM preparation methods, however, in my 

data, the cells were present in both crushed and flushed bones. As iNKT1 cells are immune cells, 

differences in mouse facilities could have led to the differences in immune composition of the 

mice and could explain the appearance of these cells. To test this, it would be interesting to look 

for the presence of these cells in multiple mouse facilities and also compare the frequencies of the 

population, especially in lymphoid tissues such as the thymus, liver and lungs where they are 

slightly more abundant. Indeed, in the original paper by Gazit et al., only the BM was surveyed. 

Furthermore, it would also be worthwhile to look for these iNKT1 cells in other reporter mice 
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generated for the Fgd5 gene, such as the Fgd5mCherry/+ reporter mouse, to confirm that this is not a 

phenomenon exclusively associated with the Fgd5ZsGreen•ZsGreen/+ reporter mouse.  

As only about 20% of phenotypic iNKT1 cells are Fgd5+, the biggest outstanding question is 

whether Fgd5+ iNKT1 cells are functionally distinct from Fgd5- iNKT1 cells and represent a unique 

novel immune population. Furthermore, does Fgd5 have an important function for these iNKT1 

cells? The next steps would be to perform more detailed intracellular flow experiments on the two 

fractions of iNKT1 cells to determine the cytokine profiles of each. It would also be interesting to 

challenge the Fgd5ZsGreen•ZsGreen/+ mice with certain pathogens to see how the subsets of iNKT1 cells 

respond. Similarly, as these iNKT1 cells were found in peripheral lymphoid tissues such as the 

spleen, lungs, thymus and liver, it would be interesting to see if the cells from various tissues are 

functionally different compared to each other. Moving forward, knock-out studies could offer 

potential insights into the function of Fgd5 in iNKT1 cells. Even if Fgd5+ iNKT1 cells are not 

functionally different, having a reporter for iNKT1 cells is potentially exciting for future in vivo 

imaging studies in the NKT cell field. 

 

The FE-CD244+ population was transcriptionally most similar to monocytes. However, when 

compared to distinct monocyte transcriptomes, there doesn’t seem to be a strong match with 

distinct subsets. Additionally, not much else is known about them in terms of the surface markers 

they express, thus it is entirely plausible that this population itself is not a homogeneous 

population, or alternatively they don’t belong to any of the monocyte subsets that they were tested 

against. Further characterisation would be needed to narrow down the precise nature of these cells, 

and the first place to start would be to validate the list of surface marker genes that are highly 

expressed. 

 

The discovery of these Fgd5+ immune cells have broader implications in HSC biology. Namely 

that groups should be careful when using these reporter mice in niche imaging studies140,456, and 

be aware that immune cells could potentially contaminate putative HSC populations, especially if 

the mice are housed in different mouse facilities. As HSC expansion cultures would very unlikely 

support NKT cells, it is not a strong concern that some of the Fgd5+ cells within these cultures are 

contaminated. However, this would be a good reason for all experiments to be co-stained for 

EPCR. 

6.3.2 Fgd5 and EPCR: novel markers for HSCs in vitro 

Our results show that Fgd5 and EPCR together are useful for marking HSCs in vivo and in vitro. 

Interestingly, EPCR has been recently shown to mark expanded human HSCs in vitro285 and our 
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results accord with this finding in mouse HSCs. The data collected so far do not clarify whether 

Fgd5 or EPCR is a better single marker. Since their expression is highly correlated, most of the 

Fgd5high cells would also be EPCRhigh. This means that for the lack of Fgd5 reporter mice, EPCR 

can do a good job alone. However, having Fgd5 would make the gating a bit easier. To formally 

assess the markers separately, additional transplantations with more stringent gating and higher 

cell numbers could be performed to quantify the frequency and proportion of HSCs in each 

fraction. In the future, LDAs would also be required to quantify the exact purity of re-sorted cells. 

 

Overall, the addition of two reliable in vitro markers would facilitate the investigation of several 

ambitions such as: screening HSC self-renewal regulators and finding the molecular signature of 

expanding HSCs, both of which were attempted in this thesis. Whilst I applied the reporter system 

to screening recombinant factors, there is no reason why genetic screens such as CRISPR screens 

could not be used with this system. Additionally, this reporter system can potentially act as a quality 

control tool to assess the health of long-term mouse cultures. 

 

In the future, it would definitely be worthwhile to test other reporter mice in the same way that 

we have for the Fgd5ZsGreen•ZsGreen/+ reporter mouse. In particular, the data for the recently publish 

Mds1GFP/+Flt3Cre mice mouse (see section 1.2.6) looks especially promising as well. The authors 

who made this reporter mouse never validated whether the reporter works for ex vivo cultured 

HSCs. However, from a conceptual level, having a Cre-mediated reporter-quenching mechanism 

could be applied to other gene reporters such as Fgd5 to facilitate more selective marking. 

6.3.3 Proteomic analysis of conditioned media provides insights to expansion regulators 

Co-culture with stromal cells has been a common strategy to support and maintain HSCs ex vivo. 

In particular, EL08 cells, isolated from the embryonic liver has been of particular interest due to 

its demonstrated ability to expand HSCs without cell-to-cell contact153. Consistent with 

conditioning lengths used by previous studies on UG26 cell lines153, clones cultured in CM3D had 

significantly higher percentages of phenotypic HSCs (marked by the novel reporter strategy) than 

all other CM or non-conditioned control. In my data, I found that extended conditioning in general 

was detrimental to HSC support. Short conditioning time was also associated with larger clones. 

Whether the increased clone size is due to faster proliferation or better survival of resulting 

progenitors is unclear. However, considering that EL08 cells were derived from the embryonic 

liver, where HSCs are cycling constantly, this finding was not unexpected. As the conditioned 

media was filtered through 0.2μm filters, the effects observed can be fairly certainly attributed to 

soluble factors within the CM. However, to rule out other mechanisms, a possible experiment to 
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perform would be to heat inactivate the CM in order denature any potential self-renewal factors 

within. 

 

Previous studies on supportive stromal cells have used qPCR and microarrays to identify potential 

self-renewal regulators335. Proteomic methods have also been used to profile EL08 cells457. 

However, these methods do not directly measure the proteins present in the supportive media. 

Thus, we decided to complement these studies with proteomic analysis of conditioned media. 

Indeed, many proteins in our proteomic dataset were identified from previous studies. Though 

importantly, novel proteins were also identified. The protocol could definitely be optimised. 

Because media contains such high concentrations of serum albumin, the high dynamic range in 

mass spectrometry data can hide peptides in lower concentrations432. As a result, it is almost certain 

that many proteins of interest were not captured. The overall protein content also generally 

increased as conditioning period was extended, which increases the difficulty of selecting target 

factors that support HSCs. Nonetheless, the screen did identify several putative HSC self-renewal 

regulators, such as PTN, OPN, IGFBP4 and HPX. While PTN and IGFBP4 have been previously 

associated with EL08 cells before335, this is the first time OPN and HPX has been found to be 

expressed by EL08 cells, affirming the utility of having both proteomic and gene expression 

approaches.  

 

The abundance of ECM proteins identified in the CM is particularly interesting as a growing 

number of studies are starting to look at the role of the ECM at regulating HSC self-

renewal400,435,458,459. In particular, collagen has been identified as an HSC supporting factor in a 

recent paper looking at UG26 supportive stromal cells153. A few novel targets such as Nidogen-1 

that have not been implicated in HSC biology previously were also discovered, prompting a need 

for future investigation. 

 

In our initial validation experiments, we tested OPN, PTN, IGFBP2 and IGFBP4 and found that 

100ng/mL of PTN was beneficial for HSC maintenance but not at higher concentrations. This is 

consistent with findings from Himburg et al. who initially discovered PTN as an HSC self-renewal 

regulator132, even though their cultures contained different concentrations of cytokines (20ng/mL 

TPO, 125ng/mL SCF and 50ng/mL Flt-3L) and the addition of serum. This study also used 

CD34-LSK as initiating cells, which, as the authors noted, have a purity of about 1 HSC in 39 cells. 

Further screening will be necessary to narrow down PTN concentrations that are optimal for HSC 

expansion. Furthermore, the result would ideally be validated by transplantation experiments. 
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While PTN alone could not account for all the benefits afforded by EL08 CM, additional factors 

in the proteomic screen could be tested for synergistic effects with PTN. In the future, these 

candidate factors can also be used on new expansion culture system utilising F12 and PVA. A 

limitation of this initial screen and of recombinant protein screens in general is whether they have 

the same functional activity as their physiological counterparts. Some research suggests that for 

many proteins, their function relies on specific post translational modifications such as 

glycosylation that may be lacking in certain recombinant protein expression systems460. Therefore, 

the lack of observed effect from tested factors may not necessarily mean the factors don’t have an 

effect physiologically. Furthermore, it still begs the question of whether these effects observed are 

batch dependent. As mentioned in 1.4.9, in an interesting study by Wilkinson et al., cytokines 

exhibited varying effects when different batches of BSA was used417. This concern is partially 

addressed by the recent development of all recombinant, BSA free culture conditions by Wilkinson 

et al283, which was why we chose to focus our investigation on it. 

 

In the secretome analysis of media from 28-day F12 PVA cultures, we improved previous 

protocols by introducing TMT labelling of peptides, which allowed the increase in detection 

sensitivity by allowing samples to be run in tandem. Combined with the above EL08 CM screen, 

the initial run presented in this thesis is a proof-of-principle experiment that it would be possible 

to identify potential HSC regulators in the media that the cells are grown in. Unsurprisingly, very 

few of the targets identified in EL08 CM were found in this dataset, probably indicative of the vast 

differences in cell types used to condition the media. Of note, HPX was also identified, however 

it was present in media from both repopulating and non-repopulating clones. As this was the first 

run of media samples from only 6 clones, future runs would be needed to strengthen this dataset. 

As it currently stands, the two proteomic datasets generated here are not very comparable. 

 

The majority of studies so far have suggested that the bulk of the signalling generated in ex vivo 

cultures are negative feedback signals283,416,417. Conceptually this also makes sense, as unchecked 

expansion of HSCs in vivo would lead to unwanted leukaemia. However, it cannot be ruled out that 

some positive feedback signalling exists. Here we identify HDGF as a unique protein expressed 

only by clones that are able to repopulate recipient mice. Future work would be needed to validate 

HDGF as a positive regulator of HSC self-renewal, however, reports have demonstrated that it is 

highly expressed in FL451, a site of HSC expansion. In non-repopulating clones, several unique 

proteins were identified including PDAP1. It would be interesting to apply the fed-batch culture 
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system developed by Csaszar et al.416, to automate negative feedback control by specifically 

targeting potential negative regulators, such as PDAP1. 

6.3.4 Validated and fully defined F12 and PVA-based expansion conditions 

As mentioned, the HSC expansion field has overseen incremental improvements in culture 

strategies, from serum-based cultures to stromal co-cultures, which is slightly more defined361; to 

serum-free cultures that can maintain HSCs up to 10 days102; to all recombinant- based cultures 

containing HSA instead of the less defined BSA that maintains HSCs up to 28 days417; ultimately 

now to the breakthrough, fully-defined PVA-based cultures that can fully expand HSCs for more 

than 28 days283. 

 

From my data, F12-based conditions had much higher survival than standard SS cultures. To put 

this into context, SS-based conditions would only achieve similarly high survival if serum is added 

or the media is conditioned by supportive cells such as EL08 cells. Considering these F12-based 

cultures are serum free, just the survival rate alone is quite impressive. It would be interesting to 

understand the specific media formulation differences in F12 that allows HSCs to survive better. 

Higher SCF concentration, rather than TPO concentration, was associated with faster proliferation 

of clones. This also explains why F12-based cultures had lower proliferation rates compared to SS-

based cultures, as the SCF concentration was 30-fold lower. Future scalable strategies of HSC 

expansion would need to balance the proliferation rates and HSC self-renewal, in order to achieve 

the optimal expansion rates. Just from looking at percentage FELSK, there doesn’t seem to be a 

major difference between F12-based conditions and SS-based conditions in 10 days of culture. 

However, 28-day cultures indicate that F12-based cultures are better at maintaining stem cells. 

Alternatively, this would also be consistent with major expansion of HSCs in F12 cultures after 10 

days of culture. 

 

It would be interesting to assess HSC expansion at different timepoints throughout extended F12-

based cultures, as the data so far suggests that expansion is minimal at earlier timepoints. This also 

raises the question of whether F12-based conditions have a direct or indirect effect on HSCs, by 

supporting HSC-supportive, but non-HSC cell types. However, data of both Wilkinson et al. and 

mine would suggest that F12-based culture conditions are not supportive of mature cells. Of note, 

ESLAM Sca-1+ cells were used in this thesis to initiate long-term cultures, which is slightly more 

enriched than the CD34-CD150-LSK cells used by Wilkinson et al283. This would support the idea 

that expansion effects are cell autonomous and not due to non-stem cells in less pure gating 

strategies. However, an alternatively consistent possibility is that SS-based cultures support pro-
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differentiating cells that ultimately cause HSCs to fail beyond 10 days, when such cells are 

generated. 

 

One possible experiment to directly compare the propensity of self-renewal divisions between 

these culture conditions is a paired daughter transplantation experiment. As mentioned in section 

1.2.5, this works by allowing single HSCs to divide in vitro and then transplanting the two daughters 

into two separate recipients.  

Our data suggests that IL-11 has a beneficial effect on HSCs in HSA based cultures, but not in 

PVA-based cultures. It would be interesting to see if PVA has a functional role, and signals through 

pathways that are redundant with IL-11. Currently, PVA is thought to serve a carrier protein 

function, however, as this has been extremely recent, there has been very little knowledge of its 

mechanism of action. As PVA is completely chemically defined, it would be interesting to revaluate 

the effects of cytokines in a systematic way. However, as mentioned, recombinant proteins and 

cytokines could still have batch-dependent differences which would cloud any sort of systematic 

analysis. Future development of chemically synthesised cytokine analogues, such as the TPO 

analogue, butyzamide, may be useful to reduce batch effects of recombinant cytokines461. 

Furthermore, it would be interesting to test the PTN and other factors identified in the EL08 

secretome screen, using F12 with PVA as the base media. In order for this to be translated into 

clinical expansion of HSCs, the recombinant factors would need to be produced by methods 

compatible with animal free and good manufacturing practice. 

6.3.5 Molecular characterisation of ex vivo expanding HSCs 

An interesting observation from Wilkinson et al. was the clonal heterogeneity observed in F12 

cultures283. Single cells cultured in F12 PVA-based expansion cultures seemingly have widely 

different outcomes, from different clone sizes to different lineage outputs upon transplantation. 

However, they didn’t attempt to characterise the expanding HSCs molecularly. Understanding the 

molecular basis for this clonal heterogeneity can potentially help efforts to increase expansion 

efficiency. Can HSCs that fail to expand be nudged towards self-renewal and can expanding HSCs 

expand even more? In order to answer these questions, we need to first understand the molecular 

differences that separate expanding and non-repopulating HSCs. Therefore, in Chapter 5, I 

presented the molecular profile of ex vivo expanded single HSCs. Our data is consistent with data 

from Wilkinson et al., demonstrating that single HSCs can expand in F12 PVA based conditions, 

with extensive clonal heterogeneity in 28-day cultures. 
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In our 28-day single cell cultures, the percentage of phenotypic HSCs, marked by our novel 

reporter strategy, correlated extremely highly with repopulation when assessed retrospectively. To 

consolidate this finding, it would be important to prospectively predict the repopulation ability of 

clones based on the ELSK percentage. Interestingly, total cell numbers did not correlate 

significantly with repopulation, further affirming the negative relationship between HSC self-

renewal and proliferation. As mentioned previously, LDA experiments would be needed in order 

to fully quantify the purity of functional HSCs within phenotypic HSCs. 

 

In the comparisons of the transcriptomes of clones with ranging functional outcomes, it was clear 

that repopulating clones have more similar transcriptomes to each other than non-repopulating 

clones. Consistent with findings by Wilkinson et al. that differentiated cells are less supported in 

F12 PVA cultures283, we found that even in non-phenotypic HSCs, their transcriptomes resembled 

ST-HSCs or MPPs rather than mature cells. Interestingly, based on visual assessment, F12-based 

cultures do seem to induce some level Megakaryocytic differentiation, which was also noted by 

Wilkinson et al419. However, there is not a strong megakaryocytic signature in the transcriptomes 

of non-ELSK cells, possibly due to the low percentage of total cells they represent. 

 

By looking at the genes that drive transcriptomic differences, we generated a signature gene list for 

repopulating ex vivo expanded HSCs. Interestingly, although the MolO genes186, which are 

signature genes for quiescent HSCs in vivo, are upregulated in ex vivo expanded HSCs, they were 

not as strongly upregulated as these new signature genes, which support the idea that although ex 

vivo expanding HSCs largely resemble freshly isolated BM HSCs, they exhibit distinct molecular 

states. Reassuringly, some of the signature genes have already been implicated in HSC self-renewal 

and unsurprisingly includes Procr, which was used to separate repopulating and non-repopulating 

cells. In particular, one of the genes, Prdm16 was shown to expand HSCs in overexpression 

studies360.  

 

Moving forward, extensive functional validation will be required to test signature genes by qPCR 

on new cultures to see if they can predict clonal repopulation. A robust gene signature for 

expanding HSCs can be extremely useful - One can imagine performing a simple qPCR quality 

assessment of the overall HSC content within cultures. Our gene signature also identified several 

cell surface marker genes, such as Robo1, Esam and Ncam2, which should also be tested by flow 

cytometry on new cell cultures. Of note, ESAM has already been validated as an HSC marker in 
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vivo172, but not in vitro. Importantly, if these markers can further subfractionate repopulating cells 

within the phenotypic HSCs, higher purities of expanding HSCs can be potentially enriched.  

 

Interestingly, another set of genes was identified through differential gene expression analysis of 

repopulating phenotypic HSCs vs. non-repopulating phenotypic HSCs. Most notable within this 

list are Vwf and Pld3, both of which have been previously found to be upregulated in highly 

enriched HSCs184. 

 

Of the pathways upregulated in expanding HSCs, Rho GTPase and MapK associated pathways 

seem to play an important role. Future experiments would be important to narrow down the 

specific key players in the signalling pathways, however there is plenty of evidence suggesting the 

importance of Rho GTPases in the haematopoietic system254,439,440. As FGD5 is a RhoGEF 

previously linked to the activation of CDC42 via the VEGF pathway192,462,463, it is particularly 

interesting to speculate whether it plays a functional role in HSC self-renewal. If indeed it does, 

then it would strengthen the case for Fgd5 as a marker for HSCs. However, it would also demand 

more rigorous validations of whether the heterozygous reporter knock in has adverse effects on 

HSC function. Alongside FGD5, in the same study that identified Vwf and Pld3 as HSC associated 

genes, RhoB, which is a Rho GTPase, was also identified184. As Rho GTPases are known to 

moderate signalling from the ECM, it is interesting to speculate whether the upregulated pathway 

is associated with the use of fibronectin coated plates. Indeed, different integrins, which have been 

shown to interact with fibronectin are upregulated in repopulating and non-repopulating cells.  

 

There are of course limitations to our strategy. For a start, an obvious limitation is that although 

our reporter strategy greatly enriches for functional HSCs, they are by no means 100% pure. This 

is demonstrated by the fact that certain clones with small numbers of phenotypic HSCs were not 

able to repopulate mice. However, even with this increased noise in the transcriptomic data, the 

pattern for repopulation is still very clear. 

 

Our strategy also underappreciates any potential cellular heterogeneity in the non-HSC 

populations, by binning many cell phenotypes into a single group. Whilst we chose bulk 

sequencing, because of the increased depth of sequencing as well as the ability to pair the samples 

to their functional outcomes through transplantation, it would be interesting to supplement this 

dataset with scRNA-seq using 10X genomics where we could gain a more complete picture of the 

individual cell identities comprising the non-HSC fraction.  
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6.3.6 Unifying molecular signature of HSCs or distinct molecular signature of HSC subtypes 

Despite our knowledge of HSC self-renewal regulators and the advancement in scRNA-seq 

technologies, the field has still been unable to find a common molecular programme for HSCs. A 

2015 study by Wilson et al. was the best attempt at this question so far186. By profiling HSCs 

isolated from multiple isolating strategies, the authors were able to find the MolO signature genes 

mentioned above. However, even within the highly enriched populations of phenotypic HSCs, 

there is heterogeneity in HSC subtypes, with differing lineage output and self-renewal ability154,206, 

further obfuscating a common “molecular programme” for HSCs. At present, it is impossible to 

prospectively isolate HSC subtypes by surface markers and importantly, it remains uncertain 

whether the different HSC gating strategies enrich for certain subtypes of HSCs464.  

 

The ability to expand HSCs has enabled several new opportunities to tackle this goal. First of all, 

the above molecular study only looked at freshly isolated BM HSCs, which does not sufficiently 

encompass all the diverse molecular states of HSCs. Previous studies have compared murine FL-

HSCs with adult BM HSCs465, however, none so far have used whole transcriptome RNA-seq. 

Very recently, Popescu et al. published a 10X dataset for human FL cells. More of such approaches 

will be necessary in the future in order to decode common molecular programmes. Most 

interestingly, with expanding HSCs now possible and the new discovery of in vitro cultures capable 

of maintaining HSCs in quiescence418, we can now interrogate the common molecular states 

between 4 different HSC populations.  

 

In the future, this could be combined with mathematical modelling methods to understand 

regulatory mechanisms for HSC self-renewal fate choice. Although Wilkinson et al. did not attempt 

this in his seminal paper, the transcriptomic profile of expanded HSCs presented in this thesis may 

be the first step towards this ambition. Previous attempts of modelling HSC self-renewal have 

primarily focused on in vivo divisional kinetics and population dynamics of HSCs and 

progenitors31,466,467; however, it would be interesting to explore similar avenues with in vitro 

expanded HSCs. To this end, it would be useful to generate more HSC profiles under different 

culturing conditions for comparisons, for example with different cytokine concentrations such as 

high SCF or low TPO.  

 

Apart from self-renewal, another outstanding question is whether the intrinsic lineage biases of 

single HSCs are maintained within long-term ex vivo culture, as they are commonly in serial 

transplantation206. If so, we can potentially begin to unravel the molecular differences between 
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myeloid-biased HSCs and lymphoid-biased HSCs by linking functional outcomes of clones to 

other molecular assays such as ATAC-seq, Bisulphite sequencing, CHIP-seq and proteomics, in 

order to analyse their epigenome and proteome for associated molecular differences. As 

mentioned in section 1.3.2, this area may hold crucial information that is missed by the 

differentiation landscapes generated by scRNA-seq. 

6.3.7 Future of ex vivo HSC expansion: translation into human HSCs 

Ultimately, this is an exciting new era for HSC expansion. For the first time, murine HSCs can be 

expanded ex vivo robustly and durably. Ultimately this new culture system will only serve as the 

base in which improvements are made. By adding combinations of self-renewal regulators, or 

integrating fed-batch negative feedback regulation, or even engineering artificial 3D niches with 

ECM proteins and functionalised hydrogels468. In the future, the ultimate goal would be to translate 

these findings into clinically expanding human cells. Importantly, in the signature genes identified 

in this thesis, at least one of them, Hlf, has been reported in a pre-print journal to mark expanded 

human HSCs in culture448. As mentioned, EPCR has also already been shown to mark human 

HSCs in vitro285, suggesting that many of the identified genes have parallel functions in human 

HSCs. Wilkinson et al. had already demonstrated that human HSCs were able to grow in F12 PVA-

based cultures. Already fed-batch systems are being applied with novel small molecules such as 

UM171 and SR1386 to achieve modest levels of expansion. Combining such promising avenues will 

undoubtedly lead to success in future clinical scale human HSC expansion. 

6.4 Concluding remarks 

In this PhD thesis, I showed that the Fgd5ZsGreen•ZsGreen/+ reporter mouse is not only a marker for 

murine HSCs, but also for a subset of iNKT1 cells. When combined with EPCR, the reporter can 

mark HSCs both in vivo and in vitro. This helped identify putative HSC supporting factors in stromal 

conditioned media and validated current state-of-the-art expansion protocols. Finally, the in vitro 

reporter system was used to identify cultures rich in HSCs and provided the molecular 

characterisation of expanding HSCs by isolating HSC-enriched fractions. By comparing HSCs and 

non-HSCs, I present a molecular gene signature that can be used to detect HSC content in ex vivo 

cultures. These findings may have important implications for improving ex vivo cultures of HSCs, 

first by providing a novel set of in vitro markers for HSCs and secondly by providing an increased 

understanding of the molecular pathways and programmes that regulate ex vivo expanding HSCs. 

When translated into human HSCs, the limitless availability of HSCs will benefit clinical 

applications such as stem cell therapies and protocols to produce mature blood cells ex vivo. 
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