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Abstract

Phase II clinical trials are a critical aspect of the drug development process. With drug
development costs ever increasing, novel designs that can improve the efficiency of phase I1
trials are extremely valuable.

Phase II clinical trials for cancer treatments often measure a binary outcome. The final
trial decision is generally to continue or cease development. When this decision is based
solely on the result of a hypothesis test, the result may be known with certainty before
the planned end of the trial. Unfortunately though, there is often no opportunity for early
stopping when this occurs.

Some existing designs do permit early stopping in this case, accordingly reducing the
required sample size and potentially speeding up drug development. However, more improve-
ments can be achieved by stopping early when the final trial decision is very likely, rather
than certain, known as stochastic curtailment. While some authors have proposed approaches
of this form, these approaches have limitations, such as relying on simulation, consider-
ing relatively few possible designs and not permitting early stopping when a treatment is
promising.

In this thesis we address these limitations by proposing design approaches for single-arm
and two-arm phase II binary outcome trials. We use exact distributions, avoiding simulation,
consider a wider range of possible designs and permit early stopping for promising treatments.
As aresult, we are able to obtain trial designs that have considerably reduced sample sizes

on average.
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Following this, we switch attention to consider the fact that clinical trials often measure
multiple outcomes of interest. Existing multi-outcome designs focus almost entirely on
evaluating whether all outcomes show evidence of efficacy or whether at least one outcome
shows evidence of efficacy. While a small number of authors have provided multi-outcome
designs that evaluate when a general number of outcomes show promise, these designs have
been single-stage in nature only. We therefore propose two designs, of group-sequential
and drop the loser form, that provide this design characteristic in a multi-stage setting.
Previous such multi-outcome multi-stage designs have allowed only for a maximum of two
outcomes; our designs thus also extend previous related proposals by permitting any number

of outcomes.
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Chapter 1

Introduction

A clinical trial is an evaluation of one or more treatments for a medical condition. Such
treatments may take a wide range of forms, from surgery to using a mobile phone application.
The main purpose of a clinical trial may depend on what is already known about a treatment,
and is often determined by the “phase” of the trial. In human trials there are four phases,
and typically the main purpose of each trial phase is as follows: phase I focuses on safety,
toxicity and finding the optimum dose; phase II focuses on determining if there is evidence
that the treatment has the intended effect on the condition; phase III is similar to phase II, but
on a larger scale and in comparison to an existing treatment; phase IV trials are larger still,
and seek to identify side effects normally too rare to be found in smaller trials. However,
a new treatment may be developed without strict adherence to the above concept of four
separate phases (and associated trials). Whatever the purpose of a particular clinical trial,

clinical trials in general are the means through which new treatments are evaluated.



2 Introduction

1.1 Single-arm binary outcome designs

1.1.1 Motivation

Most novel treatments are found to be inefficacious, which makes the average development
cost associated with each successful treatment extremely high [1]. Furthermore, trials
themselves are expensive to run [2], and the nature of evaluating treatment response in
oncology trials means that results are not immediately available, meaning that trials can take
substantial time to complete. This makes novel designs that can improve the efficiency of
clinical research extremely valuable.

Phase II clinical trials for cancer treatments often have a binary primary outcome, based
on change in tumour size as measured by the RECIST criteria [3], and typically contain only
a single arm. The aim of such a phase II trial is to gain enough information to decide whether
a treatment should be carried forward for further testing (a go decision) or abandoned (a
no go decision). In general, if a sufficient number of (positive) responses are observed, a
go decision is made and some corresponding null hypothesis is rejected, otherwise a no go
decision is made and the corresponding null hypothesis is not rejected. The most simple
design to evaluate a treatment with a binary outcome is the single-stage design, described by
A’Hern [4]. In a single-stage design, a fixed number of participants are recruited and once
the trial is completed, a go or no go decision is made based on the number of responses. A
single-stage design can be characterised by just two numbers: the number of participants to
recruit and the number of responses required to make a go decision. When using a single-
stage design, there is no opportunity to reduce the sample size, even if the final (go or no go)
decision is known with certainty long before the planned end of the trial.

A number of designs have been proposed that can reduce the expected sample size (ESS)
of a single-arm binary outcome trial compared to a single-stage design. Some the designs

most relevant to this thesis are described below.
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1.1.2 Existing designs
1.1.2.1 Simon

Simon’s design [5] is the most frequently used phase II design amongst UK Clinical Trials
Units, and with the exception of the standard single-stage trial, is the most frequently used
phase II oncology trial design across the world [6, 7]. Simon’s design is a two-stage design,
meaning that in addition to the final analysis, it also contains one interim analysis. At a trial
interim analysis, the current trial results are noted and some decision is made with respect
to the trial. In this thesis, the only decision we consider is whether a trial should stop (to
make either a go or no go decision) or continue. In Simon’s design, the interim analysis takes
place once a specified number of results are available. At this point, the trial stops for a no go
decision if the number of responses is not greater than some specified value, otherwise the
trial continues, recruiting the remaining participants and continuing until results are available
for all participants. A go decision is permitted only if the trial continues to this second stage,
and after all results are available. Compared to the single-stage design, two further values are
required to describe Simon’s design: the number of participants at which the interim analysis
takes place, and the number of responses required at the interim analysis to continue the trial.
The possibility of making a no go decision at this interim point, before the end of the trial,

has the effect of reducing the ESS compared to a single-stage design [5].

1.1.2.2 Mander and Thompson

The design of Mander and Thompson [8], like Simon’s design, contains a single interim
analysis at which point the trial may end. However, at the interim analysis, Mander and
Thompson not only allow stopping to make a no go decision, but also stopping to make a
go decision if a specified number of responses (or more) has been observed. The number of
responses required to make a go decision at the interim is greater than the number required to

avoid a no go decision. This design retains the positive aspects of Simon’s design [5] while
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decreasing the ESS in the case that the treatment is efficacious. This design is characterised
using one additional value compared to Simon’s design: the number of responses required at

the the interim analysis to make a go decision.

1.1.2.3 Chi and Chen

The design proposed by Chi and Chen [9] also consists of two stages. Like Simon’s design,
this design can also be described using four values: the final number of participants and
required responses and an interim number of participants and required responses. The design
differs from Simon’s and Mander and Thompson’s designs in the following aspects: the
trial will end early to make a no go decision during the first stage as soon as it not possible
to reach the number of responses required to continue at the interim analysis. That is, the
design permits stopping in advance of the interim analysis. During the second stage, the
trial will also end early to make a no go decision as soon as it is not possible to reach the
final number of responses required (to make a go decision) at the end of the trial. That is,
the design permits stopping between the interim and final analyses. Conversely, as soon as
the observed number of responses reaches the number required at the interim analysis, a
decision to proceed to the second stage will be made. Furthermore, the trial will end for a go
decision as soon as the final number of required responses is reached. A distinction between
this design compared to that of Mander and Thompson is that this design does not have a
separate interim number of responses for stopping to make a go decision. Stopping a trial as
soon as a specified number of responses can or can not be reached, used in this design, is
known as non-stochastic curtailment (NSC). Consequently, we will refer to this design as

the “NSC” design.
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1.1.2.4 Stochastic curtailment and conditional power

It is possible to end a trial early not only when a go decision is either certain or no longer
possible, as in NSC above, but also when a go decision is either likely or unlikely. This is
known as stochastic curtailment (SC). A number of approaches are available for SC, three
of which are described by Jennison and Turnbull [10]. One such approach is based on the
concept of conditional power (CP). Conditional power (or “assumed conditional power” [11])
is the probability of rejecting some null hypothesis (and making a go decision), conditional
on an anticipated treatment effect and the current number of participants and responses. The
idea of CP can be used in conjunction with SC in the following way: if the CP is below
some specified lower threshold, or exceeds some specified upper threshold, then a trial will
end for a no go or go decision respectively. In this way, NSC can be seen as a special case
of SC, where the lower threshold is equal to zero for stopping for a no go decision and, if
permitted, the upper threshold is equal to one for stopping for a go decision. Two designs

that incorporate SC using CP are described below.

1.1.2.5 Ayanlowo and Redden

Ayanlowo and Redden [12] propose an approach that is a direct extension of the single-stage
design and Simon’s design. Indeed, they describe their work as “examin[ing] the benefit of
incorporating SC in... Simon’s minimax and optimal designs”. In common with Simon’s
design, the design does not permit stopping before the interim analysis and permits stopping
only to make a no go decision. The design uses SC in the second stage, allowing a no go
decision to be made if the CP of the trial decreases below a specified threshold. Ayanlowo
and Redden examine two choices for this threshold, 0.05 and 0.10. A limitation of this
approach is that the designs are found by obtaining either a single-stage or Simon design
with a suitable type-I error-rate and power, then allowing early stopping due to SC. No

other possible values for maximum sample size nor the interim or final required number of
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responses is explored. This also means that these values are not altered to account for the
possibility of early stopping. This can result in a decrease in both the type-I error-rate and
power [12]. Ayanlowo and Redden obtain the ESS using simulations of size 1000, under the
null hypothesis only. The CP is calculated solely on the probability of reaching the required
number of responses at the end of the trial, and does not account for the increased probability

of the trial ending early due to SC.

1.1.2.6 Kunz and Kieser

Kunz and Kieser [13] present a similar proposal to Ayanlowo and Redden [12]; that of
incorporating SC to an existing design, either Simon’s design or the NSC design. Again,
SC is simply “added” to an existing design; the maximum sample size and interim and
final required number of responses are not altered to account for the consequent increased
probability of early stopping. Kunz and Kieser obtain the ESS using simulations of size
10,000. The approach of Kunz and Kieser is more general than Ayanlowo and Redden, for
two reasons: firstly, SC is permitted at any point in the trial, rather than in the second stage
only. Secondly, a uniform range {0,0.01,...,1} of lower thresholds for CP is examined,

rather than just 0.05 and 0.10.

1.1.2.7 Further designs of interest

There are two additional design approaches worth categorising further, the characteristics of
which will be used mostly in order to explain some aspect of the design search, the process by
which designs are found. The first is the aforementioned single-stage work of A’Hern [4]. In
particular, A’Hern provides both a range within which the final number of required responses
of such a trial must exist, and also an equation for approximating the value itself. Further

details are given in the relevant Methods section in Chapter 2.



1.1 Single-arm binary outcome designs 7

The second design used to explain some aspect of the design search is the sequential
probability ratio test (SPRT) of Wald [14]. This design contains upper and lower stopping
boundaries for every possible number of participants, with accompanying equations for
prescribing these provided. These upper and lower boundaries do not converge as the number
of participants increases, and consequently the design has no maximum sample size. Again,

further details are given in Chapter 2.

1.1.3 Continuous monitoring and informal curtailment

NSC and SC are typically described in terms of continuous monitoring, where the data are
analysed after each participant’s results become available. This may be considered a special
case of sequential monitoring, which describes any trial in which interim results are analysed.
Sequential analysis is methodologically well established [10, 15]. Continuous monitoring
has been proposed not only in the single-arm approaches of Chi and Chen, Ayanlowo and
Redden (second stage) and Kunz and Kieser, but also in designs for randomised binary
outcome trials [16, 17]. In terms of practicality, continuous monitoring may be easier when
a trial’s recruitment rate is low [18], which is often the case in application: in a review of
122 trials, Campbell et al. [19] found that early participant recruitment was slower than
expected in 77 (63%) of reviewed trials, and a review of 151 randomised controlled trials
by Walters et al. [20] reported a median recruitment rate of 0.92 participants per centre per
month. Furthermore, Campbell et al. [19] found that only 38 (31%) of 122 trials reached their
intended sample size and 66 (54%) requested a trial extension. As such, trial recruitment rates
are generally lower than anticipated, and may in some instances be low enough to facilitate
continuous monitoring, especially when all stopping boundaries are obtained in advance and
no additional statistical analysis is required to make a decision. Including interim analyses,
and in particular continuous monitoring, in a clinical trial comes at an administrative and

logistical cost [18], and for large trials, the potential savings in sample size may not outweigh
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this cost. However, for small trials, continuous monitoring is attainable, as shown in the

examples immediately below.

1.1.3.1 Continuous monitoring and informal curtailment: examples

Continuous monitoring may be expected to be specified at the trial design stage; see for
example, Todd et al. [21] and McCabe et al. [22]. However, continuous monitoring and
subsequent curtailment may also take place in trials where no such monitoring is specified in
advance. In particular, authors may acknowledge the use of curtailment (and thus continuous
monitoring) in a trial without using such terms in the corresponding manuscript. For example,
Santana et al. [23] planned to follow a Simon design, but as soon as trial success was not
possible, a no go decision was made. This resulted in a sample size saving of 33% (n =15)
compared to the planned Simon design. Necchi et al. [24] made a similar sample size
saving (33%, n = 7) by using NSC before their interim analysis. Mego et al. [25] ended an
optimal Simon design to make a no go decision, resulting in a sample size saving of 17%
(n = 3), stating that “the study was terminated prematurely, because even if there were to
be an objective response in the last 3 patients, the primary end point could not be reached”.
Furthermore, in the first stage of a Simon design, Wagner et al. [26] chose not to replace a
patient who became inevaluable because it was not possible to reach the number of responses
required to proceed to the second stage.

Informal curtailment is not restricted to stopping due to a lack of response. Stein et
al. [27] conducted single-arm trials to test a treatment in two strata, using two Simon designs.
Both trials were ended early because it was certain in both cases that the trials would end in
success: “Informal analysis of these data (readily available to the lead investigator) indicated
sufficient activity including complete responses to encourage further exploration of this
regimen in either stratum.” The total sample size saving was 27% (n = 14). Yu et al. [28]

ended a planned Simon design early to make a go decision after 25 participants out of a
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planned total of 55, less than halfway through. Moskwitz et al. [29] and Yoon et al. [30] also
ended planned Simon designs early to make go decisions.

Informal curtailment may take place even when the response time is of considerable
length. Using a primary endpoint of progression-free survival at 6 months, Sepulveda-
Sanchez et al. [31] stopped a Simon design early to make a no go decision, stating, “the study
was closed at this point when the goal... could not be reached in the second stage”. The
sample size saving was 6% (n = 2). Similarly, Pedersen et al. [32] used a primary endpoint of
overall survival at 6 months and ended their trial early “as the endpoint could not be reached”,
with a sample size saving of 20% (n = 5).

SC has also been used without being specified in advance. Odia et al. [33] conducted
two concurrent trials, one of which required 4 responses out of 19. This trial was ended
after observing 1 response out of 12 participants, “due to poor enrollment and therapeutic
futility”, clarifying in the discussion that “it is unlikely to find 3 objective responses among
the remaining 7 patients”. Thus the authors used SC, however informally. The sample size
saving compared to the planned design was 37% (n =17).

Together, these examples show that curtailment through continuous monitoring is viable
in practice, rather than purely theoretical, and thus methods that use continuous monitoring

are valuable.

1.1.4 Inference

The above examples also suggest that continuous monitoring and subsequent curtailment is
more common than citations of the associated methodological literature indicates. Whilst
this is an important observation for motivating further design work in this area, an important
additional consequence of unplanned monitoring that should be noted is that any resulting
inference, such as that undertaken in the above examples, may result in biased point estimates

and confidence intervals with low coverage [34, 35]. Accordingly, by not anticipating and
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accounting for continuous monitoring and curtailment at the design stage, investigators are
taking inferential risks. This lack of planning also has costs in terms of the ability to report
accurate ESSs and trial duration at the design stage, which may directly affect expected
financial costs and/or the ability to act quickly upon making a go or no go decision. These

issues are amplified in the case of SC, where the ESS can be greatly reduced.

1.1.5 Single and multiple optimality criteria

A design realisation is a particular instance of a design, for example, a single-stage design
where a go decision will be made if more than five responses are observed from a total of 20
participants. Changing either of these values would represent a different realisation. When
choosing between a selection of design realisations, a method is required for choosing which
is the “best”. Typically this is done using an optimality criterion. Designs can be compared
using a number of different optimality criteria, including their maximum sample size, ESS
under certain anticipated response rates and ESS under certain anticipated response rates
within the subset of designs that minimise the maximum sample size. A design realisation
must also be feasible, that is, it must satisfy some chosen type-I error-rate and power. A
feasible design that is the best-performing design realisation with respect to some single
optimality criterion is known as the optimal design realisation for that criterion. The optimal
design may differ depending on the criterion used and the design approach(es) considered.
In the setting of multiple optimality criteria, Jung et al. [36] determined the “best” design
realisations by creating a loss function that was a weighted combination of two optimality
criteria: maximum sample size and ESS under some null hypothesis. The authors describe a
design realisation as admissible if it has the smallest expected loss of all considered design
realisations, that is, it is superior to all other considered design realisations, for some weighted
combination of optimality criteria. A particular design may be an admissible design for a

range of combinations of weights. Our interest generally lies in finding the collection of
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design realisations that comprise the admissible designs across all combinations of weights.
A feasible design realisation that is not admissible, that is, not superior to any other feasible
design realisations for any weighted combination of optimality criteria, is denoted dominated.

Mander et al. [37] extend the concept of the loss function and admissible designs by
incorporating a third component to the loss function: ESS under an alternative hypothesis.
Using a maximum of three weights means that all possible combinations of weights can
be expressed in a triangle-shaped region, where the (x,y) co-ordinates represent two of the
weights. The third weight is the complement of the sum of the first two weights. The triangle
can then be divided into a grid of points. Each point on the triangle is given a colour, with the
colour representing the design realisation with the lowest loss score, that is, the admissible
design, for that particular combination of weights. This results in a set of admissible designs,

each with its own region, covering all combinations of weights.

1.2 Randomised binary outcome designs

1.2.1 Motivation

Single-arm binary outcome phase II trials require fewer participants than equivalent ran-
domised two-arm trials, making single-arm trials a pragmatic choice in many instances.
The data from single-arm binary outcome trials are typically compared to a pre-specified
historical control response rate. However, this comparison may not be valid [38—40]. For
example, a systematic review of phase II oncology trials found that 46% (N = 70) of reviewed
trials that used a historical response rate did not cite a source for the historical response rate
used [38]. Two-arm randomised trials directly compare the responses of two groups from
the same population, where one group has been allocated to treatment and the other group
has been allocated to control, using randomisation. This is preferable to a non-randomised

trial comparing the responses from a contemporary population to those from a historical
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population, which may differ in characteristics. Although single-arm trials are more common
in small populations and in rare disease settings, randomised designs should still be preferred
when at all possible, as using historical information may provide less robust evidence [41, 42].
Thus, it has been argued that in almost all instances, two-arm randomised trials should be
preferred to single-arm trials, with two-arm randomised trials considered to be the gold
standard in trial design [43, 44]. Nevertheless, single-arm trials remain popular in phase 11
oncology, accounting for 57% of trials in a recent review of 557 trials [45]. It is therefore
of interest to reduce sample sizes in two-arm phase II binary outcome trials, so that it may
become possible to use two-arm designs when previously only a single-arm design would be
considered, either due to cost or recruitment difficulties. For further details on the choice of

single-arm or randomised designs, see Grayling et al. [39].

1.2.2 Existing two-arm designs
1.2.2.1 Jung

As discussed above, one approach to reducing sample size is to allow early stopping in the
form of interim analyses. In the area of single-arm trials, the most frequently implemented
such design is by Simon [5], as described in Section 1.1.2.1, where at a single interim
analysis, the trial may stop early due to a lack of response. An analogous two-arm design
has been proposed by Jung [46]; as with Simon’s design, there is a single interim analysis
and the trial may end at this point due to a lack of response. In this case, a lack of response
entails observing a low response rate on the experimental treatment arm compared to the

control arm.

1.2.2.2 Carsten and Chen

Further sample size savings can be made by allowing a trial to stop as soon as the final trial

decision is certain, that is, by including NSC, with respect to either a positive effect or lack
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of positive effect on the treatment arm compared to the control arm. This can be incorporated
as an extension of Jung’s design [46], by additionally allowing the trial to stop immediately
if the response rates are such that the final go or no go decision is known with certainty,
either at the interim (no go decision only) or by the end (go or no go decision). Equally,
such a design may be understood as a two-arm extension of Chi and Chen’s single-arm
design [9]. This approach was first proposed by Carsten and Chen [17]. Their proposed
design allows stopping after every pair of participants, where each pair is allocated evenly
to the experimental treatment and control, therefore assuming perfect balance. As in Jung’s
design [46], an interim stopping boundary is used, which allows stopping only for a lack
of response. “Success” is determined for every (balanced) pair of results, where success
is defined as a pair of results where response on treatment and non-response on control is
observed; all other combinations of results are treated equally, as a non-success. The test
statistic is then the total number of such successes. The trial stops as soon as a pre-specified
required number of successes is observed, or as soon as the number of successes required

(either at the interim or at the end of the trial) cannot be reached.

1.2.2.3 Chen et al.

The incorporation of NSC into Jung’s design is also proposed by Chen et al. [16], where the
proposed design allows stopping after every patient. In this design, success is determined for
each patient, and is defined as a response for a participant on treatment or a non-response
for a participant on control. The test statistic in this case is the difference in the number
of responses between the treatment and control arms; the same test statistic as is used by
Jung [46]. The trial stops as soon as the required difference in the number of successes is
guaranteed to be reached, or cannot be reached (again, either at the interim or by the end
of the trial). Thus the designs of Carsten and Chen and Chen et al. require continuous

monitoring [16, 17].
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1.3 Multi-outcome multi-stage designs

In Chapter 4 we will consider single-arm trials where there are multiple key outcomes to
account for, rather than one as in Chapter 2 and the designs outlined in Section 1.1. This is
important as a clinical trial will typically measure many outcomes of interest. This may be
done for a number of reasons. For example, investigators may plan to conduct a phase III trial
using the outcome that will show the strongest evidence of treatment efficacy, and a multiple
outcome trial in phase II will help identify this candidate outcome. Alternatively, investigators
may wish to measure multiple outcomes in a phase III trial with the intention of declaring trial
success where a promising treatment effect is observed on one of the outcomes. Furthermore,
some disease conditions are typically assessed in a multi-dimensional manner, for example
respiratory health [47]. There may also exist a core outcome set for the condition of interest,
detailing a set of outcomes that should be measured when evaluating a treatment for that
condition [48]. In general, there may simply be interest in observing a novel treatment’s

effects on a range of relevant endpoints.

1.3.1 Existing designs
1.3.1.1 Multi-outcome single-stage trials

A trial with multiple outcomes may be designed to evaluate whether a positive effect is
observed on at least one of several key outcomes. Outcomes of this type are known as
“multiple primary" outcomes [49]. The presence of multiple primary outcomes means that
additional testing must be accounted for compared to the standard single-arm trials discussed
in Chapter 2. Specifically, in the case of multiple primary outcomes, we must consider the
family-wise error-rate, the probability of at least one type-I error occurring. For example, to
control this as desired, we might apply a multiple testing correction such as the Bonferroni

procedure.
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In contrast to multiple primary outcomes, a multiple outcome trial may be designed to
evaluate whether a positive effect is observed for all outcomes in some specified set. In this
case, the outcomes are described as “co-primary"” [49]. Sozu et al. have examined multiple
outcome trials in detail, providing design approaches for both multiple and co-primary
outcome trials [49].

A multi-outcome trial may be treated as having multiple null hypotheses, each of which
may or may not correspond to a single outcome. Such trials may organise these hypotheses
in a hierarchical manner. Furthermore, the type-I error-rate may be divided among these
hypotheses and propagated from one to another or “spent” as hypotheses are rejected or not
rejected. Maurer and Bretz describe such trials and extend this concept by introducing the
idea of “memory”, whereby the order of propagation or spending of the type-I error-rate is

taken into account [50]. Such approaches are beyond the scope of this work.

1.3.1.2 Group sequential trials

Group sequential trials, also known as multi-stage trials, include multiple interim analyses.
Such trials may permit early stopping at these interim analyses if the current estimate of the
treatment effect is greater than some upper boundary only, less than some lower boundary
only, or either, where such boundaries are specified in advance [10]. Group sequential trials
improve upon single-stage trials by permitting such early stopping at each interim analysis;
typically this means that the expected (or average) sample size required by a multi-stage trial

is below that required by the corresponding single-stage trial.

1.3.1.3 Multi-arm drop the loser trials

If more than one experimental treatment exists for a given condition of interest, then an
improvement on undertaking a series of single-arm or two-arm trials is to use a multi-

arm design. Multi-arm trials allow multiple experimental treatments to be simultaneously
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compared to a common control treatment, reducing the required sample size compared to
conducting a series of trials each with a single experimental treatment arm. The concepts of
multi-arm and multi-stage trials can be combined to create a trial design containing multiple
experimental treatment arms, tested over multiple interim analyses, or stages. Such trials are
known as multi-arm multi-stage or MAMS trials.

In MAMS trials, where multiple experiment treatment arms are evaluated simultaneously,
the number of arms may be reduced over the duration of the trial. This is typically undertaken
by ceasing recruitment on an arm or arms, based on current results. This is known as
“dropping” an arm (or arms). This provides a statistical advantage, as more participants
can subsequently be recruited to the remaining, better-performing arms, providing more
information about those arms. A disadvantage to dropping arms in general is that the required
sample size is not fixed: a trial consisting of mostly well-performing treatments may have
little or no dropping of arms. Conversely, a trial consisting of mostly poorly-performing
treatments may drop many arms in the early stages. This makes the certain practical aspects
of the design, such as trial duration and cost, uncertain.

One approach to dropping treatment arms is the “drop the loser” (DtL) design, where
exactly one treatment arm is dropped at each stage or the number of arms at each stage
is otherwise pre-determined [51]. As a result, the number of stages required for the best-
performing treatment (or treatments) to reach some required number of participants is fixed
and known in advance, even if the identity of that treatment (or those treatments) is not
known in advance. This aspect of the DtL design allows MAMS trials to be planned with

more certainty than other MAMS designs that do not have this property.

1.3.1.4 Dropping outcomes

Multi-outcome trials may continue to measure all planned outcomes even when some of

the outcomes have a low probability of contributing to trial success, either in the multiple
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primary or multiple co-primary outcome setting. If some outcomes are particularly expensive,
invasive or time-consuming to measure, it may be valuable to use a trial design that stops
measuring outcomes that are performing poorly. We describe this action as dropping an

outcome, similar to the dropping of arms in the multi-arm setting.

1.3.1.5 Multi-outcome multi-stage trials

The approach of Sozu et al. to multiple primary and co-primary outcomes in clinical trials
focuses on single-stage, two-arm designs, and they describe this work as a foundation for
other design features, including group sequential trials [49]. A review by Hamasaki et al.
of clinical trial designs that use co-primary endpoints describes numerous approaches to
multi-outcome design, including multi-stage designs [52]. Among these are designs that
include early stopping for a go decision only or for either a go or no go decision, for either
two outcomes or two or more outcomes. These designs are classified in Table 1.1. In all
cases, the designs use co-primary endpoints, and thus promising results must be observed on
every endpoint for the null hypothesis to be rejected. There is no framework to test if some

subset of outcomes show promising effects.

Author ‘ Early stopping permitted Number of outcomes
Ando et al.[53, 54] Go decision only 2
Asakura et al.[55] Go decision only 2
Cheng et al.[56] Go decision only 2
Hamasaki et al.[57] Go decision only >2
Cook and Farewell [58] Go or no go decision 2
Jennison and Turnbull [59] | Go or no go decision 2
Schuler et al [60] Go or no go decision 2
Asakura et al.[61] Go or no go decision >2

Table 1.1 Summary of group sequential designs for co-primary outcomes by Hamasaki et al.

Other multi-outcome multi-stage designs exist beyond this summary, many of which

relate to the specific sub-case of a single efficacy and single safety outcome. For example, in
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the context of binary outcome trials, Conaway and Petroni present a single-arm, two-outcome,
multi-stage design with co-primary outcomes, with the expectation that one outcome is an
efficacy outcome and the other outcome is a safety outcome [62]. In this design, there are
two type-I error-rates, one for each outcome, which may be set independently. Conaway
and Petroni have also presented a similar two-stage design that incorporates a trade-off
between efficacy and toxicity, allowing trial success for a lower than anticipated response
rate if toxicity is low, and vice versa [63]. This approach is conceptually similar to the
loss functions of Jung et al. and Mander et al. [36, 37]. Ristl et al. have proposed a multi-
outcome design for two-arm binary outcome trials that allows rejection regions that have few
constraints in terms of shape and that are optimal, where the definition of “optimal” may
be specified [64]. In the area of multi-arm multi-stage trials, Jaki and Hampson propose
a design whereby a single treatment arm is selected at the first interim analysis [65]. This
treatment is selected based on a trade-off of one efficacy outcome and one safety outcome,
both normally distributed, in addition to some minimum safety requirement. Thall and Cheng
present a two-stage, two-outcome design, where trial success is based on a trade-off of the
two outcome, again with the idea that one outcome pertains to efficacy and the other outcome
to safety [66]. This design may be generalised to an arbitrary number of stages. Regarding
efficacy and safety as binary outcomes, Bryant and Day propose a Simon-style two-outcome,
two-stage design where a trial may end only for futility at the interim, when either the number

of efficacy responses is low or the number of participants experiencing toxicity is high [67].

1.3.1.6 Separate vs. simultaneous stopping

Outside the case of multiple primary endpoints, where only a single outcome must show
promise for the trial to be a success, a decision must be made regarding when to conclude
that the necessary number of outcomes show promise. It is possible to conclude that an

outcome is promising as soon as its test statistic is found to exceed a corresponding efficacy
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stopping boundary. The outcome may cease to be measured at this point, which we describe
as dropping an outcome, as described above (Section 1.3.1.4). Conversely, one may choose
not to make conclusions regarding every outcome separately, but instead deem the trial a
success only if enough outcome test statistics exceed their corresponding efficacy stopping
boundaries simultaneously. In the multi-outcome case, this choice has been discussed
previously [55, 57, 68]. This can be viewed as related to the two options for stopping MAMS
trials, known as separate versus simultaneous stopping [69, 70]. In the area of MAMS, this
choice is generalised by Grayling et al. [71], to permit stopping after a specified number of

arm-specific null hypotheses have been rejected.

1.3.1.7 Number of outcomes required to show promise for trial success

The review of multi-outcome designs by Hamasaki et al. [52] covers co-primary endpoints
only, where the trial is a success only if a certain degree of efficacy is shown on all measured
outcomes. Sozu et al. [49] describe designs for co-primary endpoints and for multiple primary
endpoints, where trial success is declared if a promising treatment effect is observed for
any measured outcome. Historically, the focus of multi-outcome design is on co-primary
endpoints and multiple primary endpoints. In contrast, Delorme et al. [72] describe a
generalised power approach, a multi-outcome single-stage design where trial success is
declared if some specified number of outcomes (or more), out of a larger set of outcomes,
show promise. Mielke et al. have recently proposed two testing procedures for claiming trial
success in this more general context, again in a single-stage trial, and allow outcomes of any
type [73]. Mielke et al. use multiple hypotheses, one for each outcome. If some specified
number of hypotheses (or more) are rejected, the trial is declared a success. The approaches
we propose in Chapter 4 are also centred on this idea of declaring success if at least some

specified number of outcomes, out of a larger set of outcomes, show promise.
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1.3.1.8 Multi-arm multi-stage trials with generalised error-rates

In addition to Delorme et al.’s generalised power approach [72], Grayling et al. [71] present
an approach to MAMS (rather than multi-outcome single-stage) trials that allows trials to
be powered to find any specified number of efficacious arms. This design also features a
generalised approach to stopping, permitting stopping as soon as any specified number of

separate hypotheses are rejected.

1.3.1.9 Composite outcome trials

When multiple outcomes are to be measured, a choice must be made regarding whether
or not to combine the measurements into a single composite outcome. Testing a single,
composite measurement is statistically simpler, and may be appropriate when the outcomes
are deemed suitable to combine [10]. However, both determining how to appropriately
combine outcome measurements and interpreting the resulting composite outcome may still
be difficult. Consequently, the multiple-outcome design may be preferred in the case that
creating a composite outcome is either inappropriate or otherwise challenging. Composite

designs may have multiple stages, and such a design will be examined in Chapter 4.

1.4 Thesis aims

The focus of this thesis is to present novel approaches to clinical trial design and in doing
so, fill gaps in the literature. While the approaches are novel and have some practical
or logistical burden with regards to implementation, these burdens do not exceed those
of existing approaches that are described in this thesis. For example, SC and continuous
monitoring has been proposed in single-arm binary outcome trials. In Chapter 2, we present
an approach to SC that is novel: stopping for a go decision is permitted; the design search

is more wide-ranging and exact distributions are used rather than simulation. While non-
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stochastic curtailment has been previously proposed in randomised binary outcome trials,
SC has not. In Chapter 3, we focus on a design approach that uses SC, and permits varied
frequency of monitoring depending on the practical needs of the individual trial. In multi-
stage trials with multiple outcomes, the existing literature focuses mostly on two-outcome
trials and on declaring trial success only when promising effects are observed on at least one
outcome or on all outcomes. Chapter 4 proposes two novel designs for multi-stage trials with
multiple outcomes: one that permits any number of stages and one containing two stages
and allows outcome measurement to cease at the interim analysis. Both designs allow any
number of outcomes and permit allow specification of the number of promising effects that
must be observed for trial success to be declared. The advantages and limitations of the

designs are summarised, in Chapter 5, where recommendations for their use are also given.

1.5 Code

All original code to undertake this work has been written in R [74] and can be accessed

online [75, 76].






Chapter 2

Novel stochastically curtailed designs for
single-arm binary outcome phase 11

trials

This work is based on a paper by Law et al. [77], which has undergone peer review twice.
In both reviews, the work was acknowledged as statistically sound but impractical. Conse-

quently, we have increased our focus on the practical aspects of the work.

2.1 Methods

In this chapter, we present a novel generalised approach to SC in single-arm binary outcome
trials. Two designs are proposed. One is a Simon-type design that allows SC after each
participants’ results, for either a go or no go decision, and contains an interim analysis in the
design to which SC is added. The other design also allows SC after each participants’ results,
again for a go or no go decision, but has no interim analysis in the design to which SC is

added. That is, it is an extension of the single-stage design described by A’Hern [4]. The
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latter design will also be shown to be alterable to allow analyses that are less frequent than
continuous monitoring, while still reducing the ESS.

Throughout the chapter, the experimental treatment is assumed to have a true response rate
p € [0, 1], that is, each patient outcome is assumed to be Bernoulli distributed with parameter
p, Bern(p). The sum of n independent and identically distributed Bernoulli random variables
with parameter p follows a binomial distribution, Binom(n, p). We test the null hypothesis
Hy : p < po against the alternative hypothesis Hj : p > po. For all designs, we use the notation
S(m) to denote the number of responses observed after m participants and (S(m),m) to denote
the point in a trial where S(m) responses have been observed after m participants. We assume
that results from participants are independent and identically distributed. Consequently, the
number of responses observed at each stage are also independent. At any analysis in any trial
described in this chapter, conducted using the first m participants data, the test statistic used to
undertake the hypothesis test is the current number of responses S(m). All single-arm binary
outcome designs discussed here can be considered as simply a set of pairs of boundaries to
be compared to this test statistic at certain points in the trial, with the boundaries themselves
chosen to provide specified operating characteristics.

The trial is powered to a level 1 — 8 under p = p1, and the type-I error-rate is controlled
to a when p = pg. Available results [78] on the monotonicity of the power function in
designs of the type considered here means that the type-I error-rate is then controlled to o
over all of Hy (i.e., for all p < pg) and power is at least 1 — 8 for all p > p;. Commonly,
the value of pg is chosen to be the greatest response rate that is deemed typical for standard
of care, while p; is chosen to be the smallest response rate that is large enough to warrant

further study.
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2.1.1 Brief review of existing designs

For single-arm trials with a binary outcome, the most simple trial design is the single-stage
trial described by A’Hern [4], which is comprised of N participants. This is deemed a success
if the final number of responses S(N) exceeds a specified boundary r.

Extending this approach, Simon’s design [5] adds an interim analysis after n| participants,
at which point the trial proceeds to recruit a further N — n participants only if the number of
responses is greater than a pre-specified ry, otherwise it stops for a no go decision.

Mander and Thompson [8] proposed an extension to Simon’s design, where the trial may
additionally stop for a go decision after n| participants if the number of responses exceeds
some upper boundary e.

For both single-stage and Simon’s design, it is likely that the final go or no go decision is
known before the termination of the trial: if the final number of required responses is reached
after m participants, that is, S(m) > r, then the trial will be declared successful regardless of
the data from the remaining participants. Conversely, if it is no longer possible to reach the
final number of required responses after m participants, that is, r+ 1 — S(m) > N — m, then
the trial will be declared a failure, again regardless of the data from the remaining N —m
participants. Chi and Chen therefore extended Simon’s design by permitting early stopping
for a no go decision if it is certain that the required number of responses will not be reached;
that is if r; + 1 — S(m) > n; —m, m < n| in the first stage or r+ 1 — S(m) > N —m, m > n,
in the second stage. Furthermore, and unlike Simon’s design, the trial permits stopping early
for a go decision. The trial stops early for a go decision as soon as the final required number
of responses is reached, that is, S(m) > r. That is, the design uses NSC.

Ayanlowo and Redden and Kunz and Kieser [12, 13] took the concept of early stopping
further, by allowing early stopping for a no go decision if the CP is below some lower
threshold, that is, by allowing SC. Denote this lower threshold 6r. Then, the specific values

of Or examined by Ayanlowo and Redden and Kunz and Kieser were fixed (Ayanlowo and
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Redden: 67 € {0.05,0.10}, Kunz and Kieser: 6 € {0,0.01,0.02,...,1}). We discuss later

exactly how the CP is calculated, in Section 2.1.7.

2.1.2 Limitations of existing designs

Some aspects of the above curtailed designs have scope for improvement. Firstly, the
operating characteristics of curtailed designs have often been estimated using simulation.
However, such estimates are subject to simulation error, with the exact distribution of each
trial’s possible outcomes remaining unknown.

Secondly, the approaches of Ayanlowo and Redden and Kunz and Kieser use fixed or
uniformly distributed thresholds for CP, which may reduce the number of meaningful design
realisations searched over.

Thirdly, in both Ayanlowo and Redden and Kunz and Kieser [12, 13], rather than taking
curtailment into account when searching for the optimal design (for some definition of
“optimal”), the optimal non-curtailed design is found and then SC is applied to it. This again
means that a narrower range of possible designs is examined. Permitting SC only for a no go
decision means that the probability of rejecting the null hypothesis decreases. The type-1
error-rate and power are defined as the probability of rejecting the null hypothesis conditional
on certain response rates, as described above. Thus a second consequence of the approach
of Ayanlowo and Redden and Kunz and Kieser of applying SC for a no go decision only is
that both the type-I error-rate and power may decrease relative to chosen design. This further
reduces the number of possible design realisations, as many will not reach the required type-I
error-rate and power once curtailment has been applied. Moreover, the design approaches
of Ayanlowo and Redden and Kunz and Kieser give equations for evaluating CP, but these
equations do not fully account for the early stopping caused by SC.

Finally, the designs detailed above do not have a generalised approach regarding the

number of points at which early stopping is permitted: early stopping is permitted at a single
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point, at any point during the the second stage or at any point for the duration of the trial. As
a result, it may not be possible for an investigator to choose the degree of monitoring most

appropriate for a given trial.

2.1.3 Proposed designs

We propose two designs where the trial may stop not only for a no go decision if the CP is
below some lower threshold, that is, CP < 6 but also for a go decision if the CP is greater
than some upper threshold denoted O, that is, CP > Og. The first design we propose is a
new type of stochastically curtailed two-stage design. This will be referred to as the “SC”
design. The second design we propose can be understood as an otherwise single-stage design
that allows stopping if a go decision becomes likely or unlikely. This will be referred to as
the “m-stage” design.

Note that it will ultimately be possible for all go and no go decisions to be concatenated
into N-length vectors of stopping boundaries e = (e, ez,...,ex) and £ = (f1, f2,..., /)
respectively. To fix the length of the vectors, regardless of the actual allowed timing of
analyses, we may use ¢; = o and f; = —co at any points i € [1,N]| where stopping is not
permitted/possible. Thus, while we typically use different sets of terms to define each
type of design, for example {ry,ej,n;,r,N} or {r,N, g, Or }, and the values of these terms
characterise a particular realisation of that design type, it is possible to characterise a
realisation of any design type using e and f only. This is useful to recognise as it demonstrates
why the comparisons that will be conducted between designs are fair: both previous and
our newly proposed designs amount to methodologies for specifying e and f. Viewed from
this angle, our work focuses on enabling these boundaries to be chosen in a more flexible,
efficient and logical manner than previous works.

The above fact regarding e and f is also useful as it means that for any single-arm design,

all possible combinations of number of participants and responses so far can be represented
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in an easy-to-understand grid. Examples of this are shown in Figure 2.1, for the following
designs: single-stage, Simon, Mander and Thompson, NSC, SC and m-stage. Here, all
possible points, that is, all possible participant and response combinations, and whether at
each point the trial will continue or stop for a go or no go decision, are shown. This figure
shows how these designs are related. It also shows in a practical sense how the incorporation
of stochastic and non-stochastic curtailment can reduce the ESS by decreasing the number of

points (S(m),m) that can be reached.

2.1.4 Objections to curtailment

An objection to curtailment for a go decision could be that one would wish to obtain more
data if a treatment appears promising. However, the current abundance of possible treatments
to be tested among relatively few participants makes this argument less compelling than in
the past.

There may be some objections to SC in particular, as it allows for the termination of a
trial at a point where, under another design, the final decision is not yet certain. The primary
rebuttal to this is to make it clear that the designs that will be proposed, in contrast to those
of Ayanlowo and Redden and Kunz and Kieser, will retain the desired type-I error-rate and
power; nothing is lost by using our approach to SC.

A more practical counterargument to objections to curtailment is that incorporating early
stopping into Simon’s design, using SC, is fundamentally no different incorporating early
stopping in Simon’s design compared to A’Hern’s single-stage design. Furthermore, in
Section 2.2, we use the example of a trial reported by Sharma et al. [79], who used Simon’s
design with ry =4,n; = 19,r =15, N = 54. CP is described more fully in Section 2.1.7 below,
but briefly, the CP of a single-stage trial is CP(p1,S(m),m) = P(S(N) > r|py,S(m),m), with
p1 = 0.4 in this example. Consider a single-stage trial with the same sample size and final

rejection boundary, r = 15, N = 54. At the points in the trial where Simon’s design would
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Fig. 2.1 Illustrative diagrams of different trial designs, showing potential paths where the
study would end, known as terminal points. m: Number of participant results so far. S(m):
Number of responses so far. All trials have N = 8,r =4, with r| = 1 in the two-stage designs
and e; = 3 in Mander and Thompson’s design. We may assume that (6r, 6g) in the SC design

are such that (es, eg,e7,e3) = (5,5,5,5), (f2, f1, f6, f7, fs) = (0,1,2,3,4) and that (6, 6 ) in

the m-stage design are such that (es, es, e7,e5) = (4,4,5,5), (f2, f3. fo. f1, f5) = (0,1,2,3,4).
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stop early, S(19) € {0,1,2,3,4}, the CP of the single-stage trial is 0.30, 0.43, 0.56, 0.69
and 0.80 respectively. That is to say, if the trial reached the point (S(m) = 4,m = 19), the
conditional probability of rejecting Hy would still be 0.80 for a treatment with response
rate p = p; in the single-stage design, yet reaching this point requires stopping for a no go

decision under Simon’s design:

CP(p1 = 0.4,5(m) = 4,m = 19) = P(S(54) > 15|p = 0.4,5(19) = 4)
=P(S(N—ny) >r—S8(n)|p=0.4)
= P(S(35) > 11|p = 0.4)
— f (3;) 0.41(1—0.4)>"
=12

=0.80, to 2 d.p.

Thus any acceptance of Simon’s design is a tacit acceptance of ending a trial where, if a

simpler design was employed, the final decision would not yet be certain.

2.1.5 Delayed responses

The trials we describe progress theoretically, and often practically, one participant result
at a time, where each result is a response or non-response and each participant’s result is
known prior to any further enrollment. Such a trial is ideal in terms of minimising ESS.
However, while a trial’s recruitment rate may be low enough that participants are enrolled
one at a time, it would be unusual for the results of all enrolled participants to be available
prior to enrolling subsequent participants. The combination of recruitment rate and endpoint
length, the length of time it takes to obtain a participant’s result, has a direct effect on a trial’s

ESS. If indeed the endpoint length is short enough that the results of all currently enrolled



2.1 Methods 31

participants are always known before further enrollment, then the actual ESS will not differ
from the calculated ESS. However, if, as expected in practice, the endpoint length is such that
some results from currently enrolled participants are not known before further enrollment,
then the actual ESS will be greater than the calculated ESS. The extent of this inflation of
ESS will again depend on the combination of recruitment rate and endpoint length. If almost
all results of enrolled participants are known at the point of further enrollment, the increase
will be small. Conversely, if a low proportion of results of enrolled participants are known at
the point of further enrollment, this increase may be considerable [80]. This is true of all
designs using interim analyses of any kind, including curtailment. In our work, we assume
that all participants’ results are known before further recruitment, while acknowledging that
inflation of ESS may occur in practice. Beyond a simple inflation in sample size, it may be
the case that a decision is made based on currently available results but that such a decision
is then contradicted by subsequent results. For example, current trial results may result
in stopping early for a no go decision, but when combined with the subsequent results of
currently enrolled participants, results indicate that the trial should continue. Such effects are

beyond the scope of this work, though we acknowledge their gravity.

2.1.6 Obtaining exact distributions

There is a finite determinable number of possible sequences of participant results that lead
to a point (S(m),m); we consider each possibility as a “path” of a trial. As an example, see
Figure 2.2: this example shows a possible path of a single-stage trial with no early stopping.
This path may be described as S(m) =0,1,1,1,2,2,3,3 form = 1,...,N. Note that a path
may end at a point with m < N if early stopping is permitted.

For a single-stage trial where no early stopping is allowed, the number of possible paths

is 2. Recording the probabilities of all possible paths would allow the exact distribution of
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Fig. 2.2 Example of a path for a single-stage trial with N = 8.

the trial outcomes to be known. Even for a trial of moderate size, say N = 30, the number of
paths (23 > 10) would make this computationally intensive.

However, to obtain the exact distribution of a trial, the probability of each path is not
required: firstly, for any design, there are a number of points (S(m),m) at which the trial
would stop. Define these points “terminal points”, and .7 as the set of all such points. The
terminal points can be determined using the CP at each point in the trial. Secondly, it is not
necessary to calculate the probability of reaching a given terminal point via each path, as
many such paths have identical probabilities, reducing the computational burden of finding
the probability of reaching a given terminal point.

The ESS for response rate p can then be obtained by multiplying the number of partici-

pants m at each terminal point by the probability of reaching that point:

N m
ESS(p)= B 3. 1S} € T 1m0 (S(e) i) @.1)
m=1 S(m)=0



2.1 Methods 33

where U (S(m),m|p) denotes the probability of reaching the point (S(m),m) in a particular
trial given true response rate p and vectors of stopping boundaries e and f. Thus for any type
of design, all that is required to find the ESS is the probability of reaching each terminal
point in 7.

The sample size of a trial can also be described in terms of quantiles, including the
median, in the following way: sort the sample sizes of the terminal points, that is, each m in
each {S(m),m} € .7, in ascending order. The corresponding probabilities U (S(m),m|p,e,f)
then comprise the cumulative density function, which can be used to calculate quantiles of
the required sample size.

The type-I error-rate and power can also be obtained by summing the probabilities of
reaching only the terminal points that result in a go decision under the assumptions p = p

and p = p; respectively. For example, power would be given by:

m

N
)
m=1

I[{S(m),m} € TI{S(m) > e,,} U(S(m),m|p,e,f).
S(m)=0

Moreover, it is possible to obtain the CP of a trial at any point (S(m),m), as detailed
below. Being able to obtain this information means that the exact distribution of the trial
outcomes is known. In turn, the operating characteristics of the trial outcomes are known
without recourse to simulation. This is valuable when searching for optimal designs, as
simulation error could result in a sub-optimal design being chosen, whilst conducting a large

number of simulations can also be time consuming.

2.1.7 Conditional Power

We define conditional probability CP(p,S,m) as the probability of rejecting Hy conditional
on being at point (S(m),m), when the true response rate is p. Setting p = p; gives the
conditional power CP(p1,S,m). From here we refer only to conditional power rather than

conditional probability and reiterate that “CP” is used to refer to conditional power. No
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sample size re-estimation takes place. Strictly speaking, this is the “assumed conditional
power”. This is in contrast to the “observed conditional power”, where the probability of
rejecting the null hypothesis is conditioned on the maximum-likelihood estimate of the
response rate using the current data. These two approaches are compared by Kunzmann et
al. [11], who find assumed conditional power superior in terms of bias, mean absolute error
and mean squared error when the true response rate is close to p;, and conclude that the
observed conditional power is “hard to justify theoretically”. Ayanlowo and Redden and
Kunz and Kieser [12, 13] also use the assumed conditional power, and previously provided
equations for calculating CP, but these equations did not account for all early stopping due to
SC.

For the NSC design, that is, stopping only when S(m) > r is certain or no longer possible,

we have derived the following equation for calculating CP(py,S(m),m) exactly:

0, itm—S(@m)>N—r—1or

nj—m—1 N—(j+m+1)—1
Z A(j,n) Z A(i,r)|, ifm—8(m)<n —ri—1andm<n
CP(p1,S(m),m) =< j=r—S(m) i=r—S(m)
N—m—1
Z A(i,r) ifm—S(m) <N—r—1andm > n
i=r—S(m)
1, if S(m) > r
\
(2.2)
where

_ o y=S(m)+1 ey \x—{y—=S(m)}

The exact CP for the NSC design can also be written recursively as

(m—S8S(m)>n;—r;—1andm <ny)
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0, ifm—S(m)>N—-r—1

or (m—S(m)>n;—r;—1landm < ny)

CP(p1,S(m),m) =1 D, ifm—S(m)<N—r—1 . (23)

or (m—S(m)<n;—r;—1landm < ny)

1, ifS(m)>r

where

D= p,CP(p1,S(m+1),m+1)+ (1 —p;)CP(py,S(m),m+1).

For a single-stage trial incorporating NSC, the CP can be obtained using these equations
by omitting the conditions relating to r; and n;. In its recursive form, it can be seen that
the CP at any point in a trial is a function of the CP at points with at least the same number
of responses and more participants, among such points that are possible in the trial. By
“possible”, we simply mean combinations of S(m) and m that may occur given the design
parameters of a specific trial.

Consider a grid of CP values for an NSC design based on the number of responses S(m)
as rows and the number of participants m as columns, as in Figure 2.1. As an example, let
the maximum sample size be N = 8 and the rejection boundary be r = 4, as in Figure 2.1d.
The CP at the point (S(m) = 3,m = 4), that is, CP(p1,3,4), is a function of CP(p1,3,5) and
CP(p1,4,5), which in turn are functions of CP(p;,3,6) and CP(p;,4,6), and CP(p;,4,6)
and CP(p1,5,6) respectively. As an example, Figure 2.3 is a reproduction of Figure 2.1d

with the CP at each point added, for response rate p; = 0.4.
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Fig. 2.3 Tllustrative diagram of NSC designs, including CP at each point, for response rate
pP1 = 0.4.

2.1.7.1 Accounting for early stopping due to stochastic curtailment

For designs that incorporate NSC, the trial stops and a no go decision is taken if CP = 0. The
trial stops and a go decision is taken if CP = 1. The CP at any point can be obtained using
Equation (2.2) directly. For designs that incorporate SC, the trial will additionally end at
any point where 0 < CP < 6 or 6g < CP < 1, for some specified 6, 0 € [0,1],0r < 6.
As the CP is a function of later points in the trial, the predetermined decision to end a trial
at any point where 0 < CP < Of causes the CP of such points to become zero. Conversely,
points where g < CP < 1 then have a CP of one. This in turn affects the CP of earlier points
in trial. As such, when incorporating SC, it is logical to calculate CP at each point using
a recursive equation, one value at a time, starting at the point (S = r,m = N — 1), where
CP(p1,r,N — 1) = p; by definition. All “earlier” points in the trial, i.e., points such that
m < N — 1, are either a function of CP(p;,r,N — 1) or are terminal points. For points with
more responses or more participants, CP(p1,a,N) =0if a <r,a € Z°", and CP(p,a,b) = 1
for any a > r and any b > a,b < N. Thus for the SC design, the CP at each point can be

obtained using the following equation:
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0, ifD<6porm—S(m)>N—r—1or
(m—S8(m)>n;—r;—land m <ny)
CP(p1,8(m),m)=< D, if 6p <D < 6 and

m—S(m)>N—r—1or(m—S(m)>n;—ri—1landm <ny)

1, if D> 6gorS(m)>r )
(2.4)

Similarly to the equations for the NSC design, Equation (2.4) can also be used to obtain
the CP for the m-stage design, which is a single-stage design that incorporates SC, by omitting

the conditions relating to r; and ny:

0, ifD<6porm—S(m)>N—r—1

CP(p1,S(m),m) =< D, ifOp <D<Ogand {m—S(m)>N—-r—1} - (2.5)

1, if D> 6gorS(m)>r

2.1.8 Constructing stopping boundaries

Once the CP is obtained for each point in the trial, the terminal points .7 are found. These

points consist of all lower and upper stopping boundaries, which can be obtained as follows:

max [S(m)I(CP(p1,S(m),m) =0)] if ﬁ I[CP(p1,S(m),m)=0] > 1
Jn = S(m)=0 (2.6)

—o0 otherwise
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min [S(m)I (CP(p1,S(m),m) =1)] if . f)oﬂ[cp(pl,S(m),m) —1]>1

em—

(2.7)

I~ otherwise

The vectors of stopping boundaries are then £ = (f1, f2,..., fv). € = (e1,€2,...,en). The
set of terminal points .7 can be considered to be the union of the points in f and e that do not

equal +oo, and their corresponding number of participants:

T ={(f1,1),(£2,2).., (fn,N) : B € Z} U {(e1,1), (€2,2),...,(en,N) : €¥ € Z} (2.8)

2.1.9 Choosing thresholds 6 and 6g

We seek a set of values from which ordered pairs of 6r and Or will be created and searched
over to find optimal or admissible design realisations, for single optimality criteria or weighted
multiple optimality criteria respectively. One could use a uniformly distributed set of possible
thresholds to some specified degree of coarseness. By choosing a uniform, coarse set of
values to search over, the design search can be fast, though some designs with good operating
characteristics may be missed. Conversely, undertaking a search over a fine uniform grid
may take far longer and still result in missing potential efficient designs. This is because
the effect of a chosen threshold 6 or g on a trial’s operating characteristics depends on
the CP at each possible point in the trial. Consider for example, the NSC design shown in
Figure 2.1d: for each possible combination of participants so far, m, and number of responses,
S(m), there exists some CP, CP(p;,S(m),m). At the points where the trial stops for a go
or no go decision, the CP is equal to one or zero respectively, and is strictly between these

values at all other points. In trials of this type, the CP values are not uniformly distributed;
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instead, most of the mass is close to zero or one. This is shown for three example trials in

Figure 2.4.

CDF of conditional power
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Fig. 2.4 Cumulative distribution function of unique CP values for NSC designs (format
{r1/n1,r/N}) with po =0.1 p; = 0.3, r = {Npo,N(po+ p1)/2,Np;} for N = {40,60,80}
respectively, r; =r/2,n; = N/2.

To account for the lack of a uniform distribution, we propose searching over a set of
thresholds chosen based on the CP at each point in each possible trial. We obtain every
possible value of CP(py,S(m),m), including zero and one, for a given combination of {r, N}
(m-stage) or {ry,n;,r,N} (SC design). Suppose we allow an upper and lower limit for 6

and O respectively, termed 6, ,,, and O,,,,. Then, without loss of generality, a trial-specific
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set of thresholds can be defined as

0 ={CP(p1,S(m),m):S(m)=0,....,m=1,....N:{rnN} € Z,CP < 6p,,,|CP > 6g,,;» },
(2.9)

where # is the family containing all possible sets {r,N} (or {ry,n;,r,N}).

2.1.10 Constraining 0

As stated directly above, we allow an upper and lower limit for 8¢ and 6 respectively, termed
Or,,.x and Og,,,,, for example setting Of,,,, = 1 to allow a go decision when CP=1 only. Such
limits can be readily incorporated and may be desired, for example, for statistical reasons
or to reduce computation time, though our goal is to find the optimal design realisation
regardless of Or and O values. If a trial using SC reaches m = N — 1 participants without
a decision being made, then the go or no go decision will depend on the final participant.
Specifically, the trial will result in a go decision if the final participant responds and a no go
decision if the final participant does not respond. The CP at this point, CP(p1,r,N — 1), is
equal to p;. Under SC, a trial stops for a no go decision if CP < 6. However, if the true
response rate is great enough to warrant further study, then the probability of a go decision at
this point is p > py, and so the trial should not be curtailed for a no go decision at the point
(r,N—1). As such, we suggest setting 60f,,,, = p1.

In Section 2.2, optimal design realisations are found for a range of optimality criteria and
design parameters. In all such design realisations, for both the SC design and the m-stage
design, the upper threshold is greater than 0.97, that is, 8 > 0.97, despite there being no
restriction on O in the design search. This suggests that most, if not all, optimal designs may
use an upper threshold in the range 0 € [0.97,1.00]. As such, we suggest a conservative

lower bound for the upper threshold of 6g,,,, = 0.95.
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2.1.10.1 Effect of constraining 67 and 6g

For a single-stage design incorporating NSC, the maximum number of possible CP values

(as some values may be repeated), including zero and one, is given by

6] = (r+ (N =r)+1,

where |0)| is the cardinality of the set 8 and which is a quadratic equation that reaches a
maximum at r = (N — 1) /2. The number of possible CP values increases linearly with N.
A’Hern [4] states that the final rejection boundary for a single-stage trial with no curtailment

will be approximately

r=N(po+[(za/(za +21-8)) X (P1 — Po)])- (2.10)

For a single-stage trial with N = 40 and design parameters (a,f,po,p1) =
(0.05,0.20,0.10,0.30), the approximate stopping boundary given by Equation (2.10) is
r =9.5967. Setting r equal to the smallest integer greater than this, 10, such a trial would
have 331 possible CP values, resulting in 54,615 ordered pairs (6, O ) such that 6 < 6.
For a two-stage design incorporating NSC, the number of possible CP values (including zero

and one) is given by

0= (ri+1)(ny—r))+(r—r)(N—r)+1.

Adding an interim analysis at the midpoint of the example trial (n; = 20), with an interim
stopping boundary of one half of the example trial final rejection boundary (r; = 5), results
in 241 possible CP values, from which 28,920 ordered pairs (0r, Og) such that O < Og can
be created.

Examining the actual CP values for a single-stage trial with design parameters o =

0.05,8 =0.2, po =0.1, p; = 0.3, there are 330 unique values, from which 54,285 ordered



42 Novel stochastically curtailed designs for single-arm binary outcome phase II trials

pairs (6, O0g) : O < O are possible. Introducing (only) the constraint 6 < p; reduces the
the number of possible ordered pairs in this example to 30,414. Further constraining the
search to O > 0.95 reduces the number of ordered pairs to 8,325. This is comparable to the
number of ordered pairs that would be produced when searching over the uniform sequence
{0, 0.01, ... 1}, which is 5,050. Yet, it should more accurately capture the performance of

possible designs.

2.1.11 Controlling maximum length/cardinality of 0

The number of ordered pairs (6, 6g) within a set 6 is w

. Given how quickly the
number of ordered pairs increases with |0, we sought to place an upper limit on the cardinal-
ity of all such sets. We denote this upper limit by ®. Once 0 has been obtained for a given
{r,N} or {ri,n;,r,N} € %, 0 is constrained to contain only CP values less than or equal to
OF,,,, or greater than or equal to Og,,,,. Then |0] is checked against ©. If |6] > O, its values
are placed in order then every other element of 0 (excluding zero and one) is removed. This
procedure is repeated until |6| < ©.

In the design searches for which results are presented later, ® was set to 10°, resulting in a
maximum number of ordered pairs of approximately 5 x 10!! for each set in . In the results
that follow, the above thinning procedure was used on the set 0 prior to applying constraints
0 < 6f,,, or 8 > Og,,,. However, the accompanying code has since been updated, and the
thinning procedure is now undertaken after applying the above constraints as described. This

means that thinning is less likely to take place, and when it does take place, fewer CP values

of interest will be discarded.

2.1.12 Range for final rejection boundary r

The computational intensity of searching for admissible designs for all % increases as |Z|

increases. In particular, each possible final rejection boundary r included in a search will
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result in additional sets of trials {r, N} (or {ri,n1,r,N}) to search over, each with its own
set of of CP values, which may considerably increase computational intensity. For example,
consider the constraint r € [|[Npo|, [Np1]] for each N € [Ny, Nyax|, where [Naysin, Nyax]
is the range of maximum sample sizes searched over. This constraint is justified directly
below, in Section 2.1.13. Taking a typical set of response rates pg = 0.1, p; = 0.3 and range of
N € [Nyin = 10, Nyax = 50, the total number of possible ordered pairs (6f, O ) for a single-
stage design with NSC is 9.13 x 10°. Increasing the range of r to r € [[Npo|, [Np1]+1]
increases the number of possible ordered pairs to 10.84 x 10°. This issue is exacerbated in
the SC design, as each possible r included in a search will result in the above increase in
computation, multiplied by all possible interim design parameters ry,n;, ri < min(r,n;). It
is therefore of interest to apply sensible constraints to r.

Unconstrained, the final rejection boundary may take any value r € N < N. Two ap-
proaches to constraining r were investigated: one based on the work of A’Hern [4] and one
based on the work of Wald [14]. A’Hern states without proof that for a single-stage design
without curtailment, the final rejection boundary r lies in the interval [Npo,Npi| [4]; as
such, r was constrained to the rounded interval [|[Npo|, [Np;]] in the design search. As an
alternative, constraining r to the boundaries of Wald’s SPRT [14] was also examined. This
is a design with no maximum sample size N: the trial simply continues until a stopping

boundary is reached. Wald derives lower and upper stopping boundaries for the SPRT to be

B 1—po
=1 1 G
JwaLp(m) (Og g Tmlog —p )@

1— 1—po
eWALD(m) = (log OCB +m log 1 _§1> G.

where
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1_ _1
G:(log&—log pl) ,
Po 1—po

after m participants. The constraint applied r was then r € [| fiyarp(N) |, [ewarp(N) 1],
calculated for each N € [Nyn, Nyax |-

Note that Wald’s SPRT results in a lower ESS under p = pg, which we denote ESS(po),
and ESS under p = p;, which we denote ESS(p;), than any other design with the same
type-I error-rate and power [14, 81]. As such, it is worthwhile to compare how close the ESS
of a given design is to the ESS obtained using Wald’s SPRT. For Wald’s design, the ESS
under p = pg is

(1—a) log b+« log =5

ESS(po) = o -

po log B+ (1= po) log =2

The ESS under p = p; is

Blog 2.+ (1-B)log 12£
ESS(pl) = Pl —p;
pilog 5+ (1—p1) log =5

2.1.13 Design search
2.1.13.1 Previous design searches

Our design search is considerably different to that of Ayanlowo and Redden or Kunz and
Kieser [12, 13]. In the approach of Kunz and Kieser, the authors obtain the optimal Simon’s
design, equivalent to a single trial combination {rj,n;,r, N}, and then examine the effect
of SC in the form of 6 € {0,0.01,0.02,...,1.00}, with no 6 [13]. Ayanlowo and Redden
do likewise, but not only for the optimal Simon’s design, but also the minimax Simon’s
design and A’Hern’s single-stage design [4, 12]. Ayanlowo and Redden use the thresholds
0r € {0.05,0.10}, again with no 6.
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We do not calculate the type-I error-rate and power of particular combinations {r, N}
or {ry,ny,r,N} prior to adding curtailment, as a design that is feasible under SC may not
be feasible before the incorporation of SC. Consequently, if such designs were discarded in
advance, they therefore would be missed.

As an example, take the design parameters (a, 3, po, p1) = (0.05,0.2,0.1,0.4). The
single-stage design {r,N} = {4,21} for (po,p1) = (0.1,0.4) has operating characteris-
tics (a*,1 — B*) = (0.052,0.963) (rounded to 3 d.p.), which would not be feasible if
we required a type-I error-rate o < 0.05 and power 1 — 3 > 0.85. However, applying
SC by using the thresholds (67, 60r) = (0.31744,0.99190) results in the operating char-
acteristics (a*,1 — B*) = (0.048,0.859) (rounded to 3 d.p.), which is feasible and has
ESS(po) =7.5,ESS(p1) = 7.6 (rounded to 1 d.p.). In their results, Ayanlowo and Redden
and Kunz and Kieser [12, 13] both show that applying SC to an optimal uncurtailed design

can result in a decrease in type-I error-rate and power.

2.1.13.2 Proposed design search, in general

For the proposed designs, possible design realisations are found by first setting the desired
error-rates o and 3, po, p1 and a range for N, [Nyyy,Nyax]. For each N € [Nyn, Nyax]
included in the search, a range for r is chosen. The range used in our searches was
[[Npo|,[Np1|]. However, any range is permitted, and details are provided with regard
to this choice in Section 2.1.12.

The sets of {r,N} (or {r;,n;,r, N} in the case of the SC design) are stored as the family
of sets Z (Section 2.1.9). For each set in Z, the CP of each point in that trial is obtained
using Equation (2.4) or (2.5) as appropriate. Once constrained such that all CP values satisfy
either CP < 6f,,,, or CP > 6, , these CPs form the trial-specific set of thresholds 0, that is,
0 ={CP(p1,S(m),m),S(m)=0,...,nrm=1,....N : (rhN) € Z,CP < 6, |CP > O, }

(Section 2.1.9). 6 may be reduced in size if large (see Section 2.1.11). Within each set
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{r,N} (or {ry,n1,r,N}), the error-rates o* and B*, ESS(po) and ESS(p;) are found for
ordered pairs (0, 0) € 0 : O < Og. Each {r,N,0F,0g} (or {r;,n1,r,N,6F,0r}) describe
a particular realisation of a given design, with its own operating characteristics. Among
the design realisations obtained, the design realisations that are dominated are discarded.
What remains is a collection of admissible designs. The designs that minimise ESS(po) and
ESS(p1) respectively are termed the po- and p;-optimal designs. The designs that minimise
ESS(po) and ESS(p1) respectively among the subset of designs that minimise N are termed
the pp- and pj-minimax designs. These terms are analogous to the terms Hy- and H;-optimal
and Hp- and H;-minimax used by Mander and Thompson [8]. The ESSs of the pg- and
p1-optimal and pg- and p;-minimax admissible designs of the proposed designs will be
compared to those of Simon’s design, Mander and Thompson and the NSC design, and
additionally to those of the designs found using the SPRT of Wald [14] in the case of the pg-

and pj-optimal criteria.

2.1.14 Design search, in detail

With the caveats in regards to constraining r (Section 2.1.12), |0| (Section 2.1.11) and 6F and
O (Section 2.1.9) in place, the search procedure for finding designs can be explained in more
detail. This is described in words directly below, and more formally using pseudocode in
Algorithm 1. Note that here and in subsequent algorithms and descriptions, some functions
are called within a loop for the sake of simplicity, but in the actual code they are vectorised.
That is, a function call is simultaneously applied to either every element of a vector or every
row or column of a matrix (rather than separately). Other minor aspects of design searches

have also been omitted to increase clarity. The design search is as follows:
* Find all sets {r,N} (or {ry,n;,r,N})in Z.

* For each set {r,N} (or {ry,n;,r,N})in Z,
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Find all CP values.
Constrain CP values: CP < 6f,,,, |CP > 6,,,,. This is the set 6.
If |6] > ©, remove elements as described above, until |6 < ©.

Find all ordered pairs of 6.

— Group the ordered pairs by 08¢ and order each group, resulting in one (ordered,

ascending) vector of O values for each unique 6.

— Sort the unique Og values from largest to smallest.

— For each 6g and corresponding vector of O values:

* Use the binary search algorithm to find the smallest 8r that gives a type-I

error-rate less than or equal to . In general, the binary search algorithm is a
method that finds a target value within a sorted array: in this case, the target
value is the smallest element of the current 8¢ vector that results in a type-I
error-rate less than o. It is similar to the bisection method, as it bisects the
possible values at each iteration. If the type-I error-rate is greater than o,
increase Of, or else if the type-I error-rate is less than «, decrease 6. The
bisecting of this vector continues until we find the smallest O that gives a

type-I error-rate less than o.

From this 6r and for each subsequent 8 value in the vector, record the
design realisation’s type-I error-rate, power, ESS(po) and ESS(p;), as all
remaining O values will have the correct type-I error-rate. As O increases,
power decreases, therefore stop as soon as power drops below the required

power.

— Remove dominated design realisations.
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Algorithm 1: Search procedure for a single %

for each % do
k+1;
6 < call obtainCPvalues(r,N) ;
0 < call constrainWRTthetaFmaxthetaEmin(0, 6f,,, ., Og,,y) ;
while length (6) > © do

| 6 < call halveThetaLength(6);
end
ordered.pairs.matrix < call findOrderedPairs(60);
thetaE.vals <— call unique(ordered.pairs.matrix[,2]);
thetaE.vals < call sortDecreasing(thetaE.vals);
no.thetaE.vals < call length(thetaE.vals);

for i = 1 to no.thetaE.vals do // for each unique Of, obtain a corresponding
vector of O values from the ordered pairs matrix:
je 1

for row = 1 to nrow(ordered.pairs.matrix) do

if ordered.pairs.matrix[row, 2] = thetaE.vals[i] then

current.thetaF.vec[j] <— ordered.pairs.matrix[row, 1];
i+

end
end
// begin binary search, bisecting the current vector of Or values:

if type-I error-rate >, increase Or, otherwise decrease Of.
a+1;
b < nrow(current.thetaF.vec);
d < ceiling((b-a)/2);
while (b-a)>1 do
output < call findOCs(r, N, Or=current.thetaF.vec[d], Og=thetaE.vals[i]);
type.lerr <— call findAlpha(output);
if type.Lerr < o then

| b«d;
else
‘ a<+d;

end
d < a + floor((b-a)/2);

end
// We can now proceed moving sequentially from index==b (or break).
output <— call findOCs(r, N, Op=current.thetaF.vec[b], Og=thetaE.vals[i]);
type.Lerr < call findAlpha(output);
pwr  call findPower(output);
if type.lerr < a & pwr > power then
while pwr > power & b < nrow(current.thetaF.vec) do
designOCs.matrix[k, ] <— findOCs(r, N, Or=current.thetaF.vec[b],
Og=thetaE.vals[i]);
pwr < call findPower(designOCs.matrix[k, ]);
k + k+1;
b < b+1;
end

else
| break

end

end
designOCs.matrix <— call discardDominatedDesigns(designOCs.matrix)

end
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2.1.15 Comparison of existing and proposed designs (1): design prop-

erties

Key differences between existing designs (Simon, Mander and Thompson, NSC, Kunz and
Kieser and Ayanlowo and Redden) and our proposed designs are shown in Table 2.1, and in
a taxonomy of possible two-stage designs in Table 2.2. In summary, The SC and m-stage
designs allow stopping at any point in the trial, not only when the final go decision is certain
or not possible, but also likely or unlikely, therefore using SC; a different set of thresholds
are examined for each possible trial and exact distributions are used to obtain operating

characteristics that are free from simulation error.

| Simon  MT KK AR NSC | SC m-stage

Allows stopping for go decision

Exact results (i.e., no simulation)
Allows stopping after each observation
Allows NSC

Allows SC for no go decision

Allows SC for go decision
Trial-specific 0’s investigated — —

Table 2.1 Comparison of methods. MT: Mander and Thompson; KK: Kunz and Kieser; AR:
Ayanlowo and Redden.

ZzZz~<2Z
ZzZz~<~
ZzZ~<K<K<KZZ
Zz~<K~<Z2zZ2Z
ZZ K<<
KR KKK
KKK KKK

2.1.16 The loss function

Jung et al. [36] introduced the concept of choosing a design based not on a single optimality
criterion, but instead on a combination of two optimality criteria, weighted in importance by
an investigator. This was extended by Mander et al. [37] to an expected loss function with
weights on three optimality criteria: ESS(po), ESS(p1) and maximum sample size N. The

expected loss function is

L =woESS(po) + w1ESS(p1)+ (1 —wo —w1)N,
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Two-stage design

Simon

NA

Simon + AR*¥
NA

NA

Simon + KK**¥
MT

NA

NSC+AR*+

NA

NA

NSC

SC, NSC+KK**¥

Table 2.2 Taxonomy of two-stage methods. KK: Kunz and Kieser; AR: Ayanlowo and
Redden. MT: Mander and Thompson. *The approach of Ayanlowo and Redden uses
Or € {0.05,0.10}. **The approach of Kunz and Kieser uses 6 € {0,0.01,...,1}. ¥ SC for
no go decision only. NA: Design not possible. Dash: Design possible.

K<< K<< Z 272 2 Z 'z Z | Allows stopping for go and no go

K<< Z 2 Z 2 < < =< <z Z Z 'z | Allows stopping at any point

KKZZ< K Z22Z2<K<2Z2Z~<~<2Z2Z| Allows NSC
KZRKZRKZRZKZ<KZ~<Z<Z| Allows SC

<<
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where wo,w; € [0, 1] and wo+w; < 1. In Mander et al., the admissible design, previously
defined as the design realisation with the smallest expected loss for a given set of weights, was
plotted on a grid of all possible combinations of weights. We extend this concept to allow the
comparison of design realisations across differing design approaches: for each combination
of weights, the design realisation with the lowest loss, L, across all design approaches (Simon,
Mander and Thompson, SC, m-stage, etc.) is found, and this design realisation is termed
the omni-admissible design realisation for that combination of weights. Across a grid of
possible combinations of weights, the design approach to which each omni-admissible design
belongs is plotted. In addition, the difference between the expected loss of admissible design
realisations at each set of weights is quantified, for certain pairs of design types. The values
have no intrinsic meaning; their only purpose is to facilitate the comparison of designs, with
a small difference indicating that the compared design realisations perform similarly. For
brevity, the admissible design realisations for each design are plotted for the first scenario
only. The remainder are given in the Appendix. From these plots, the number of admissible
design realisations, and the range of weights for which each admissible design realisation

has the lowest loss, can be seen.

2.1.17 Inference: estimation of response rate

The most important aspect of a phase II trial is to decide if a treatment is worth further
study. However, it is also important to undertake inference using the trial data, to help make
decisions about possible future trials. In particular, one may estimate the response rate of
the treatment. The MLE of the response rate is the observed response rate, p = S(m)/m,
where m represents the number of participants after which the trial stopped. This estimator is
biased in trials that allow stopping at an interim analysis, and this may be a source of concern
for investigators with a strong interest in point estimation. However, there are a range of

estimators available that aim to reduce this bias. In general, such estimators have only been
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previously presented for two-stage designs, with the notable exceptions of Girshick et al. [82]
and Jung and Kim [83]. To address possible concerns regarding point estimation in curtailed
designs, we therefore examine estimates of the response rate across existing and novel designs,
for five estimators, extended here to the multi-stage case: the naive estimator, that is, the
MLE above; the bias-adjusted estimator [84]; the simplified bias subtraction estimator [85];
the median unbiased estimator (MUE) [86] and the uniformly minimum-variance unbiased
estimator (UMVUE) [83]. A range of estimators are considered as there is no single estimator

that performs best in all situations. We evalaute the bias, Bias(p|p) = E(p|p) — p, and the

root mean square error (RMSE). The RMSE, RMSE (p|p) = +/(Bias(p|p))? + Var(p|p),
where Var(p|p) = E(p*|p) — E(p|p)?, is equivalent to taking the square root of the weighted
average of the squared distances between each possible point estimate and the true value.

The results are shown for the pg-optimal admissible designs of each design approach.

2.1.17.1 Point estimators for multi-stage trials

The bias-subtracted and bias-adjusted estimators are described in terms of the expected value
of the response rate and its bias. The expected estimate of the response rate, p, can be
obtained by taking the product of the observed response rate for each possible terminal point

and its probability given some true p, and summing across all possible terminal points:

~

j

p|p,e fn Z] Z) {S n]) n]} < ‘7] ( ( ) nj)U(S(nj),nj|p,e,f,n),
J=15(n})=0

where p(S(nj),n;) is the observed response rate p at the point (S(n;),n;), e =
(e1,e2,...,e5) and £ = (f1, f2,..., fs) are the vectors of stopping boundaries for go and
no go decisions respectively at each stage, and n = (ny,n,,...,ny) is the vector of sample

sizes in each stage. For continuous monitoring, n;y = np, = --- = ny = 1. The bias, variance



2.1 Methods 53

and RMSE are as follows:

Bias(p|p,e.f.n) =E(p|p,e,f,n) —p

Var(p|p,e,f,n) = E(p*|p,e,f,n) —E(p|p,e,f,n)?

RMSE(p|p.e.f,n) = /Bias(p|p.e.£,)2 + Var(p|p.e.f,n)

As stated above, the naive estimator for p is simply pjqive = S(m)/m. The bias-subtracted

estimator is then

pAbiasfsub - ﬁnaive - Bias(ﬁnaive‘ﬁnaivey €, f; Il)

The bias-adjusted estimator is the numerical solution to

Pbias—adj = Pnaive — Bias(Praive| Phias—ad j» €, f,n)

The median unbiased estimator, pyy g is obtained by numerically searching for the value

of p that would make the p-value equal to 0.5:

p-val(S(m),m|pyye) = 0.5,

where the p-value is computed as the sum of the probability of possible outcomes with a
larger value of the UMVUE. The UMVUE for a single-arm multi-stage binomial outcome

trial was derived by Jung and Kim [83]. At some point (S(m),m), the UMVUE is

pumvue = E(p"|S(m),m),

the expected value of the response rate after some m; participants, denoting the first point
at which a decision may be made. That is, m; = min(i) : e; # oo\ f; # —oo. The estimates

for all estimators are obtained using the R package singlearm [87].
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2.1.18 Less frequent monitoring

Continuous monitoring, that is, undertaking an interim analysis after every participant,
maximises the potential benefit of using SC. However, continuous monitoring may not be
possible in practice. This may be because the trial recruitment rate is expected to be high,
because of the manner in which the results are expected to be reported, or for some other
reason. In such instances, less frequent monitoring may be planned. This can be described as
sequential monitoring. We describe a design approach for SC using sequential monitoring in
terms of specified block sizes B, though it is also possible to specify the number of stages
instead. An interim analysis is undertaken after every block of B participants, at which
point the number of responses is compared to corresponding lower and upper stopping
boundaries. If the number of responses is less than the lower boundary, the trial stops for a
no go decision. If it exceeds the upper boundary, the trial stops for a go decision. Otherwise,
the trial continues.

The recursive equation used to calculate CP, Equation (2.4), may still be used, with D

now generalised to handle blocks of size B:

B
DB) =Y pi(1—p1)*'CP(p1,S(m+i),m+B).
i=0

With this generalisation, Equation (2.4) can now be used to obtain CP for every possi-
ble number of responses for n € {B,2B,...,N} participants, from which lower and upper
stopping boundaries can be obtained. The idea is that lower and upper stopping bound-
aries exist only at these interim analyses. The resulting design search proceeds in the
same manner as for continuous monitoring, but only recording the CP values at the interim
analyses. A consequence of this is that the number of CP values |6| is reduced for each

{r,N}. The number of possible maximum sample sizes to search over is also reduced, to
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N € {Nyin,Nymin + B, Nyin + 2B, . .. ,Nyax }- As a result, the computational intensity of the

design search is greatly reduced.

2.1.19 Comparison of existing and proposed designs (2): results

In Section 2.2 we present one real data example and three scenarios, comparing the proposed
designs to existing designs in a variety of ways.

Using the real data example, we compare designs in terms of ESS(po), ESS(p;) and
N. Also using this example, Simon’s design is compared to the m-stage design in terms of
median sample size and other quantiles, and for both continuous and less frequent monitoring,
in the manner described in Section 2.1.6.

For the m-stage design, we compare the final rejection boundaries of the admissible design
realisations to the ranges created by following the equations of A’Hern and Wald [4, 14].

The design parameters for the three considered scenarios are identical to those used by
Jung et al. [36]. For all scenarios, existing designs are compared to the proposed designs by
finding the design realisations for each design type that satisfy each of the single optimality
criteria pp-optimal, pj-optimal, pgp-minimax and p;-minimax. In order to compare designs
across multiple criteria simultaneously, ESS(po), ESS(p;) and N are combined using the
loss function of Mander et al. [37], which assigns a weight to each criterion. We compare the
admissible design realisations of each design type across a grid of possible combinations of
weights, and produce plots showing the design approach that contains the omni-admissible
design realisation for each combination of weights.

The effect of reducing monitoring frequency is examined, allowing flexibility between a
single interim analysis and continuous monitoring.

We compare design realisations in terms of estimates of response rate, for a range of

estimators.
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2.2 Results

2.2.1 Real data example

Kunz and Kieser [13] present a real data example from Sharma et al. [79]. In this trial, the
following design parameters were chosen: a = 0.05,8 = 0.1, pg = 0.2, p; = 0.4. Kunz and
Kieser compare the following combinations of designs to the (pg-)optimal Simon design,

with SC permitted for a no go decision only:
* “Simon + AR”: NSC for no go only, SC in stage 2 only;
* “Simon + KK”: NSC for no go only, SC in both stages;
* “CC + AR”: NSC for go and no go, SC in stage 2 only;
* “CC + KK”: NSC for go and no go, SC in both stages,

where AR is the design of Ayanlowo and Redden, KK is the design of Kunz and Kieser
and CC is the design of Chi and Chen. The results for threshold 6 = 0.4 from Kunz and
Kieser [13] are reported here, as the authors report ESS(pg) for only 6 = 0.4 and 6 = 0.6
and state that trials using 6r = 0.6 do not achieve adequate power. Table 2.3 contains the

operating characteristics for these designs to as great an extent as possible, and additionally:
* Simon: pg-optimal Simon’s design;
* CC: The NSC design of Chi and Chen;

» SCj: arealisation of the SC design chosen for its resemblance to the other compared

trials in terms of maximum sample size N;
* SC;: the pp-optimal SC design;

* m-stage;: arealisation of the m-stage design chosen for its resemblance to the other

compared trials in terms of maximum sample size N;
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* m-stage,: the po-optimal m-stage design;
* Wald: Wald’s SPRT.

The operating characteristics of Simon+AR, Simon+KK, CC+AR and CC+KK were
obtained from the results of Kunz and Kieser [13] and from Stata using the simontwostage
package [88]. The maximum N searched over for the SC and m-stage designs respectively is
N =58 and N = 94, due to computational intensity, with the range of r chosen based on the

boundaries of Wald’s SPRT [14].

Design rr np r N o 1-B* ESS(po) ESS(p1) ©Or Ok

Simon 4 19 15 54 0.048 0.904 30.4 51.6 - -
CC 4 19 15 54 0.048 0.904 28.2 37.6 0.000 1.000
Simon+ AR 4 19 15 54 - 0.882* 26.6 - 0.400 1.000
Simon+ KK 4 19 15 54 0.038 0.857* 21.2 - 0.400 1.000
CC+ AR 4 19 15 54 - 0.882* 25.4 - 0.400 1.000
CC+KK 4 19 15 54 - 0.857* 21.0 - 0.400 1.000
SCy 2 14 15 54 0.050 0.901 23.0 26.6 0.164 0.998
SC, 4 21 16 58 0.050 0.900 22.6 25.5 0.199 0.998
m-stage| - — 15 52 0.049 0.909 25.3 25.8 0.135 0.996
m-stage, - = 26 94 0.049 0.902 22.1 23.3 0.228 0.998

Wald - — = = 0.050 0.900 21.8 22.7 - -

Table 2.3 Comparison of designs, with design parameters (a,f,po,p1)
= (0.05,0.10,0.20,0.40). CC: Chi and Chen. AR: Ayanloyo and Redden. KK:
Kunz and Kieser. Blanks in o* and ESS(p;) due to data not being included in Kunz and
Kieser and not being reproducible using the Stata package simontwostage. *Median values,
from simulation.

It can be seen from Table 2.3 that with the exception of Wald, the designs with the lowest
ESS(po) are Simon+KK and CC+KK, which use a threshold of 6z = 0.4 and allow stopping
at any point. However, these designs both have power 1 — B* =0.857 < 1 — 3 =0.9. The
designs Simon+AR and CC+AR also have power less than 1 — 3 = 0.9. This is due to the
nature of the design search, whereby an optimal (or minimax) Simon design is obtained

that satisfies some (o, 1 — 8) requirement, then some form of curtailment is applied, which



58 Novel stochastically curtailed designs for single-arm binary outcome phase II trials

decreases both the type-I error-rate and power when the curtailment is stochastic and for a go
no decision only.

The four design realisations obtained using an approach from one of the two proposed
designs achieve a lower ESS(py) than all feasible design realisations with the exception
of Wald, while achieving the necessary type-I error-rate and power. They also have lower
thresholds for stopping for a no go decision compared to other designs that use SC, with a
maximum of 6 = 0.228 compared to O = 0.4. Furthermore, the first m-stage design has a
lower maximum sample size than all other designs.

The study by Sharma et al. [79] ended at the first stage, with zero responses out of 19
participants. Using NSC only, the study would have ended after 15 participants. However,
using the m-stage design optimised for ESS(py), m-stage; in Table 2.3, the study would have
ended after 8 participants. Under the design m-stage; in Table 2.3, the study would have
ended after 11 participants. The latter result is shows in Figure 2.5, which shows go and no
go decision boundaries for Simon’s optimal design (Figure 2.5a) and the first m-stage design
(Figure 2.5b) in Table 2.3 (m-stage;). These figures show all possible decisions that may be
made within the first 19 participant responses, which represents the first stage of Simon’s
design. Simon’s design was used in the trial of Sharma et al. [79], while the m-stage design
realisation is an example of a design that uses SC and satisfies the required type-I error-rate

and power.

2.2.2 [Example trials: three scenarios

Three sets of design parameters, or scenarios, were used to compare five design approaches:
Simon’s design; Mander and Thompson’s design; the NSC design; the SC design and the
m-stage design. For each scenario and design type, optimal design realisations were obtained
that satisfy each of four single optimality criteria. Also for each scenario and design type, a

set of admissible design realisations were obtained with regard to the loss function specified
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(a) Simon design used in the trial of Sharma et al.[79]: r| =4,n; = 19,r = 15, N = 54, first stage
only.
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(b) m-stage design with properties r = 15,N = 52,0 = 0.135, 0 = 0.996, first 19 participants
only

Fig. 2.5 Visualisation of two design realisations satisfying the design parameters of Sharma
etal. (& =0.05,/beta=0.1,py =0.2,p; =0.4).
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by Mander et al. [37] (Section 2.1.16). For Simon’s and Mander and Thompson’s design, the
maximum sample size searched over was 20% greater than the maximum sample size of the
po-optimal design, as in Mander et al. [37]. For the NSC and m-stage designs, the maximum
sample size searched over was set to 80, approximately 2-3 times greater than the maximum
sample size for the optimal Simon design’s under the pg-optimal and pp-minimax criteria.
For the SC design, the maximum sample size was 43 to 47 depending on the scenario, due to
computational intensity. For the proposed designs, the range of » was chosen based on the
bounds of A’"Hern [4] [[Npo |, [Npi]], though the final sets of admissible designs contained
only values of r that were also within the (generally stricter) bounds of Wald’s SPRT [14].
This is discussed in Section 2.2.3.3. Also reported is ESS(pg) and ESS(p;) from Wald’s
SPRT. As Wald’s SPRT seeks to minimise ESS and has no maximum sample size, the ESSs

from this test will be compared to those obtained under the po- and p;-optimality criteria.

2.2.3 Scenario 1: design  parameters («,f,po,p1)

(0.05,0.15,0.1,0.3)

Table 2.4 shows the optimal design realisation for each design approach, for four optimality
criteria: pg-optimal, pi-optimal, pg-minimax and pj;-minimax. For all four optimality
criteria, the optimal design realisations of the proposed designs outperform those of the
existing designs, and use thresholds of 6r < 0.23 and 6g > 0.98 in each case. The ESSs
using Wald’s SPRT are ESS(pg) = 13.9,ESS(p1) = 13.9, comparable to those of the m-
stage design, ESS(pg) = 14.1 under py-optimality, ESS(po) = 14.3 under p;-optimality and
ESS(p1) = 14.4 under both py- and p;-optimality. Note that for this scenario, under both
po- and pi-minimax criteria, the SC design realisation happens to be the m-stage design
realisation with the addition of an interim analysis. Furthermore, all five design types have pg-
and pi-minimax design realisations with the same maximum sample size and final rejection

boundary (r =5,N = 27). As such, all differences in operating characteristics between these
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design realisations are due to the existence/choice of interim analysis, corresponding interim

stopping boundary and the use of curtailment (stochastic, non-stochastic or neither).

r el ni r N ESS(po) %Spo ESS(pl) %Sp1 GF GE

Do-optimal
Simon 1 - 11 6 35 18.3 1.00 323 1.00 - -
MT 1 4 11 6 35 18.2 1.00 272 0.84 - -
NSC 1 - 13 5 28 17.6 0.97 18.5 0.57 0.000 1.000
SC 4 - 27 7 41 14.3 0.78 15.0 046 0.186 0.993
m-stage — - — 13 80 14.1 0.77 14.4 045 0226 0.997
Ppp-optimal
Simon 2 - 18 5 27 20.4 1.00 26.5 1.00 - -
MT 0 3 13 6 30 25.1 1.23 20.0 0.76 - -
NSC 1 - 13 5 28 17.6 0.87 18.5 0.70  0.000 1.000
SC 4 - 24 8 43 15.5 0.76 14.6 0.55 0.126 0.984
m-stage - — - 12 66 14.3 0.70 14.4 0.54 0.189 0.990
Wald’s SPRT - - - - - 13.9 0.68 13.9 0.52 - -
Po-minimax
Simon 2 - 18 5 27 20.4 1.00 26.5 1.00 - -
MT 1 4 14 5 27 19.3 0.95 21.0 0.79 - -
NSC 2 - 18 5 27 19.3 0.95 18.7 0.71  0.000 1.000
sc 0 - 10 5 27 17.1 0.84 16.3 0.62 0.070 0.990
m-stage - — - 5 27 18.7 0.92 16.6 0.63 0.084 0.990
p1-minimax
Simon 2 - 18 5 27 204 1.00 26.5 1.00 - -
MT 1 4 15 5 27 20.3 0.99 20.8 0.78 - -
NSC 2 - 18 5 27 19.3 0.95 18.7 0.71  0.000 1.000
SC 4 - 24 5 27 18.8 0.92 15.8 0.60 0.050 0.986

m-stage - - — 5 27 18.7 0.92 16.6 0.63 0.084 0.990

Table 2.4 Optimal design realisations for each design type, Scenario 1: (a,f,po,p1) =
(0.05,0.15,0.10,0.30). For all designs, the requisite type-I error-rate and power is achieved.
Columns %S, and %S, show ESS as a proportion of Simon’s design under p = p( and
p = pj respectively. MT: Mander and Thompson.

Figure 2.6 (left) shows the design approach to which the omni-admissible design reali-
sation belongs, for each combination of weights. The omni-admissible design belongs to
either the SC design or the m-stage design. The difference in expected loss between the

SC and m-stage admissible design realisations for each combination of weights is shown in
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Figure 2.6 (right). It shows that the admissible m-stage design realisations have a slightly
lower loss score than those of the SC design realisations near the triangle’s hypotenuse,
that is, when there is low weight on maximum sample size N. For much of the surface of
weight combinations, the difference in loss score is in favour of the SC design but negligible,
including where both wg and w; are close to zero and the weight of N is close to one. The
maximum difference in loss score between a superior SC design and inferior m-stage design
is 3.0. The range of loss score across all admissible design realisations of all design types is

(14.1,79.4), with median 23.1 (IQR [19.2, 26.6]).

Admissible designs (scenario 1) Difference in loss scores (scenario 1)

1.00 1.00

loss

0.0
-05

0.75 0.75 I-l-o
-15
Wo0.50 W 0.50
0.25 0.25
0.00 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Wq W1

Fig. 2.6 Type of design to which the omni-admissible design realisation belongs and dif-
ference in loss scores between the SC and m-stage admissible design realisations (positive
favours m-stage), scenario 1 (a, 8, po, p1) = (0.05,0.15,0.10,0.30).

2.2.3.1 Admissible design realisations by design type, scenario 1 only

In Figure 2.7, the scenario 1 admissible design realisations are shown for each design type and
combination of weights. For completeness, corresponding figures are shown for scenarios
2 and 3 in the Appendix. The plots of admissible design realisations for the Simon and

Mander and Thompson’s designs, Figure 2.7 (top), match those obtained by Mander et al.,
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as do the corresponding plots in the Appendix [37]. The overall results are similar across
all three scenarios: the proposed designs generally contain a greater number of admissible
design realisations across the combinations of weights examined than the existing designs.
This is expected as including SC thresholds necessarily results in an increased number of
possible design realisations. For the proposed designs, the admissible design regions often
contain slopes parallel to the hypotenuse, suggesting that the admissible design may be
more dependent on the weight of N than ESS(pg) or ESS(p;) separately. In some cases,
this is manifested in long, thin regions near the hypotenuse. At the hypotenuse, where the
weight of maximum sample size is zero, the admissible design realisations have the greatest
maximum sample size of all admissible design realisations. Conversely, maximum sample
size decreases as the weight of N increases (that is, towards the bottom left corners), as would
be expected. When the weight of N is not close to one, the proposed designs often have a

maximum sample size similar to those that do not employ curtailment.

2.2.3.2 Expected loss, scenario 1 only

Heat maps of expected loss for the admissible design realisations of each design type are
shown in Figure 2.8 for scenario 1. The proposed designs have a lower expected loss in
general. The proposed designs seem most superior in regions where N is weighted close
to zero, and where wy is close to zero (that is, where the weight of ESS(po) ~ 0). Again,
analogous plots for scenarios 2 and 3 are provided in the Appendix (Figures A.1 and A.2).
To give more context to the loss function values, more expected loss values are given
in Table 2.5. Here, we show the expected loss, by component, for admissible design
realisations of each design type for a selection of weights. Some of these weights correspond
to the single optimality criteria used in Table 2.4. We have already covered which design
types can be considered superior for each combination of weights through Figure 2.6 and

for single optimality criteria in Table 2.4, and so here we focus on differences in loss
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Fig. 2.7 Admissible design realisations for scenario 1 (a, 8, po, p1) = (0.05,0.15,0.10,0.30).
Format of design realisations: Simon, NSC: {r;/n;,r/N}; Mander and Thompson:

{(r1 el)/nl,r/N}; SC: {rl/nl,r/N, eF/OE}; m-stage: {r/N, GF/GE}
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Expected loss: Simon, Scenario 1

Expected loss: MT, Scenario 1
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Fig. 2.8 Expected loss for obtained admissible design realisations of each design type, for
scenario 1 (o, 3, po, p1) = (0.05,0.15,0.10,0.30).
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scores. The first set of weights, (wg = 1,w; = 0), corresponds to pp-optimality, as it
focuses only on minimising ESS(pg). There is little difference between the NSC design
and the uncurtailed designs, while the two proposed designs have similar loss scores. The
second set of weights, (wg = 0,wg = 1), corresponds to p;-optimality, as it focuses only on
minimising ESS(p). Again the two proposed designs have similar results, while the Mander
and Thompson and NSC designs considerably outperform Simon’s design. The third set
of weights, (wp = 0.01,wy = 0), corresponds to pp-minimax, as it essentially focuses on
minimising N (1 —wg —w; = 0.99) while allowing ties to be broken by using a nominal
weight of wg = 0.01 on ESS(po). The discrete nature of maximum sample size means that,
as all design realisations have the same minimum maximum sample size, the differences
between the loss scores are entirely due to ESS(pg). The weighted differences between the
design realisations in terms of ESS(pg) are small, with the total loss scores identical after
rounding to 1 d.p.. The final set of weights, (wo = 1/3,w; = 1/3), places equal weight on
ESS(po), ESS(p1) and N. The two proposed design types have similar (but superior) loss
scores to the NSC design, which in turn has a similar loss score to the Mander and Thompson

design. Simon’s design performs relatively poorly compared to the proposed designs.

2.2.3.3 Comparison of boundaries used by Wald and A’Hern to final rejection bound-

aries of m-stage designs

Each design search was undertaken for a range of maximum sample sizes N € [Nyn, Nyax |-
A number of admissible design realisations were obtained during each search. This is the set
of design realisations for which the expected loss was obtained. For each N € [Ny1n, Nyax]
in the design search, the final rejection boundary r was constrained in order to decrease
computation time. We chose r € [|[Npo|, [Np1]], as A’Hern [4] states that for single-stage
designs, the final rejection boundary must lie within the interval [Npg,Np;]. Therefore

each N in the design search was accompanied by a corresponding interval of final stopping
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ESS(po)  woESS(po)  ESS(p1) wiESS(p1) N (1—wo—wi)N EL) E(L)—min(E(L))

(wo =1,w1 =0)
Simon 18.3 18.3 323 0.0 35 0.0 18.3 4.1
MT 18.2 18.2 272 0.0 35 0.0 18.2 4.1
NSC 17.6 17.6 18.5 0.0 28 0.0 17.6 35
SC 14.3 14.3 15.0 0.0 41 0.0 14.3 0.2
m-stage 14.1 14.1 14.4 0.0 80 0.0 14.1 0.0
(Wo = 0,W1 = 1)
Simon 20.4 0.0 26.5 26.5 27 0.0 26.5 12.1
MT 25.1 0.0 20.0 20.0 30 0.0 20.0 5.6
NSC 17.6 0.0 18.5 18.5 28 0.0 18.5 4.1
SC 15.5 0.0 14.6 14.6 43 0.0 14.6 0.2
m-stage 14.3 0.0 14.4 14.4 66 0.0 14.4 0.0
(Wo = 0.01,W1 = 0)
Simon 20.4 0.2 26.5 0.0 27 26.7 26.9 <0.1
MT 19.3 0.2 21.0 0.0 27 26.7 26.9 <0.1
NSC 19.3 0.2 18.7 0.0 27 26.7 26.9 <0.1
SC 17.1 0.2 16.3 0.0 27 26.7 26.9 0.0
m-stage 18.7 0.2 16.6 0.0 27 26.7 26.9 <0.1
(wo =1/3, w1 =1/3)
Simon 18.7 6.2 27.0 9.0 28 9.3 24.6 4.5
MT 19.3 6.4 21.0 7.0 27 9.0 224 2.3
NSC 17.6 59 18.5 6.2 28 9.3 214 1.3
SC 15.7 52 16.6 5.5 28 9.3 20.1 0.0
m-stage 18.7 6.2 16.6 5.5 27 9.0 20.8 0.7

Table 2.5 Weighted loss function components woESS(po), w1 ESS(p1) and (1 —wg —w;)N
for a selection of weights (wp,w), for admissible design realisations for Scenario 1:
(a,B,po,p1) = (0.05,0.15,0.10,0.30). All values are rounded to 1 d.p.. MT: Mander
and Thompson.
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boundaries. However, the values of r searched over can be specified in any manner. For
example, for the most complete search possible, the values of r searched over may be set
to r € [0,N — 1], though this would involve searching over many design realisations with
unacceptable operating characteristics. Another approach to constraining r is to consider
Wald’s SPRT [14]. This test has no maximum sample size N. Instead, it continues until
either an upper or lower boundary is reached, at which point the trial ends for a go or no
go decision respectively. These boundaries may be used as a range for r. The subject of
constraining r is discussed in more detail in Section 2.1.12.

Figure 2.9 shows the final rejection boundaries for all admissible m-stage design re-
alisations found in the design searches, alongside the range of boundaries suggested by
A’Hern for single-stage designs and the lower and upper stopping boundaries for the SPRT
proposed by Wald [4, 14], for each possible maximum sample size N € [Nyn, Nyax|. As
boundaries must be discrete, the lower and upper values are rounded down and up respec-
tively. The boundaries of A’"Hern and Wald have both been considered as guides for the
final rejection boundary in order to reduce computation time. The range of boundaries of
Wald is constant for a given set of design parameters, while that of A’Hern increases with
maximum sample size N. Consequently, Wald’s range is the wider range when N is low
and the narrower range when N is large. In these scenarios, A’Hern and Wald’s ranges
are approximately equal in size at N = 20(po = 0.1, py = 0.3 (scenarios 1 and 2)) and at
N =30(po=0.2,p; = 0.4 (scenario 3)). All admissible m-stage design realisations have N
great enough that Wald’s range is narrower than A’Hern’s. Furthermore, the final rejection
boundaries of all admissible m-stage designs are within Wald’s (narrow) range. As such,
Wald’s range is recommended as a guide for searching for final rejection boundaries as it is
generally narrower than A’Hern’s and therefore faster, and no admissible design realisations

are likely to be missed.
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Fig. 2.9 Possible stopping boundaries for single-stage designs by A’Hern; lower and upper
stopping boundaries for the SPRT by Wald; final rejection boundaries for admissible m-stage
design realisations.
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2.2.4 Scenario 2: design parameters (a, 3, po, p1) = (0.05,0.2,0.1,0.3)

Scenario 2 decreases the required power by 0.05 to 1 — 8 =0.80 compared to scenario 1.
Table 2.6 shows the optimal design realisation for each design approach across the four
specified optimality criteria. The two proposed designs outperform the existing designs
under pg- and p;-optimality. Under the po- and p;-minimax criteria, the optimal Mander and
Thompson designs have a lower maximum sample size (N = 24 vs N = 25 for all others),
though ESS(po) and ESS(p;) are lower for the proposed designs. Under all four optimality
criteria, ESS(po) and ESS(p;) of the proposed designs are lower than those of the existing
designs, and the thresholds satisfy O < 0.22 and 6g > 0.97. Again, the ESSs of Wald’s
SPRT are comparable to those of the m-stage design, and again the SC design happens to be
the m-stage design with the addition of an explicit interim analysis.

The design approach to which the omni-admissible design realisation belongs for each
combination of weights is shown in Figure 2.10 (top left). The omni-admissible design
realisation is an SC design for most combinations of weights, with exceptions where the
weight of N is either close to one (as the Mander and Thompson design has the lowest N of
any design) or close to zero (where m-stage is superior). The remaining plots in Figure 2.10
show the differences in loss scores between the Mander and Thompson, SC and m-stage
admissible design realisations. Figures 2.10 (top right, bottom left) show that even in the
region where the Mander and Thompson design is superior, the loss scores of the proposed
designs are similar and as such, should be considered comparable in terms of optimality. The
maximum difference in loss score in favour of the Mander and Thompson designs compared
to both the SC and m-stage designs is 1.0. In Figure 2.10 (bottom right), the difference in
expected loss between the admissible SC and m-stage design realisations is less than 0.9
at all points, while the range of loss scores across all admissible designs in this scenario is

(11.7,75.4), with median 20.4 (IQR [17.3, 23.2]).



2.2 Results 71

ry (4] ni r N ESS(p()) %SPO ESS(pl) %Sp1 6F GE

Po-optimal
Simon 1 - 10 5 29 15.0 1.00 26.2 1.00 - -
MT 1 4 10 5 29 15.0 1.00 23.3 0.89 - -
NSC 1T - 10 5 29 14.1 0.94 17.1 0.66 0.000 1.000
SC 5 - 33 7 43 11.7 0.78 13.3 051 0216 0.994
m-stage - - — 9 53 11.7 0.78 12.9 049 0216 0.991
p1-optimal
Simon 2 - 18 5 25 19.9 1.00 24.6 1.00 - -
MT 0 3 13 5 24 20.8 1.05 17.5 0.71 - -
NSC 1 - 10 5 29 14.1 0.71 17.1 0.70  0.000 1.000
sC 3 - 19 8 43 12.5 0.63 13.0 0.53 0.163 0.980
m-stage - - - 13 76 11.7 0.59 12.8 0.52 0219 0.992
Wad - - - - - 11.5 0.58 12.4 0.50 - -
Po-minimax
Simon 1 - 15 5 25 19.5 1.00 24.6 1.00 - -
MT 2 4 19 5 24 20.3 1.04 20.2 0.82 - -
NSC 1 - 15 5 25 18.4 0.94 18.4 0.75 0.000 1.000
sc 0 - 9 5 25 15.3 0.79 14.6 0.59 0.058 0.973
m-stage - - — 5 25 15.5 0.79 14.6 0.59 0.090 0.972
p1-minimax
Simon 2 - 18 5 25 19.9 1.00 24.6 1.00 - -
MT 0 3 13 5 24 20.8 1.05 17.5 0.71 - -
NSC 2 - 18 5 25 18.8 0.95 18.4 0.75 0.000 1.000
scC 0 - 9 5 25 15.3 0.77 14.6 0.59 0.058 0.973

m-stage - - — 5 25 15.5 0.78 14.6 0.60 0.090 0.972

Table 2.6 Optimal design realisations for each design type, Scenario 2: (a,f3,po,p1) =
(0.05,0.20,0.10,0.30). For all designs, the requisite type-I error-rate and power is achieved.
Columns %S, and %S ,, show ESS as a proportion of Simon’s design under p = p( and
p = pj respectively.
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Fig. 2.10 Type of design to which the omni-admissible design realisation belongs and
difference in loss scores between the following pairs of admissible design realisations:
Mander and Thompson and SC (positive favours SC), Mander and Thompson and m-stage
(positive favours m-stage) and SC and m-stage (positive favours m-stage). Scenario 2
(o, B, po,p1) = (0.05,0.20,0.10,0.30).
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2.2.5 Scenario 3: design parameters (a, 3, po, p1) = (0.05,0.2,0.2,0.4)

Scenario 3 increases both pg and pj by 0.1 compared to scenarios 1 and 2, resulting in the
design parameters (a, B, po, p1) = (0.05,0.2,0.2,0.4). Table 2.7 shows the optimal design
realisations for the four optimality criteria. The proposed designs outperform the existing
designs under all four criteria. In particular, the maximum sample sizes of the p(,;-minimax
proposed design realisations are lower than those of Simon’s design and the NSC design.
The optimal m-stage designs under po- and pj-optimal have comparable ESSs to that of
Wald, under both p = pg and p = p;. For each design type, the admissible design realisations
for pp- and p;-minimax are identical. The CP thresholds of the proposed designs satisfy
O > 0.98 and O < 0.23 for all designs.

The design approach to which the omni-admissible design realisation belongs is shown in
Figure 2.11 (left). The figure shows that each omni-admissible design realisation across the
range of possible weights again belongs to either the SC or m-stage designs. The difference
in expected loss between the SC and m-stage designs is shown in Figure 2.11 (right). The
difference is less than 1.1 at all points, compared to the range of loss scores across all
admissible designs in this scenario (15.0, 64.5), with median 26.4 (IQR [22.7, 30.4]). More

context regarding relative loss scores is given in Section 2.2.3.2.

2.2.6 Effect of reduced monitoring frequency

If continuous monitoring is expected to be impractical, due to high recruitment rate, long
endpoint length or for some other reason, a design permitting (stochastic) curtailment only
after every block of B participants may be considered (Section 2.1.18). Such an approach
can still produce savings in ESS.

Figure 2.12 shows the median, 10% and 90% quantiles for sample size as the true
response rate p varies, for three design realisations. The solid lines show the median sample

size, while the wide lighter ribbons show the interval of the 10th to the 90th percentile. The
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r (4] ni r N ESS(p()) %Sp0 ESS(pl) ‘%)Sp1 GF OE

Po-optimal
Simon 3 - 13 12 43 20.6 1.00 37.9 1.00 - -
MT 3 7 13 12 43 20.5 1.00 35.0 0.92 - -
NSC 3 - 13 12 43 18.8 0.91 27.8 0.73  0.000 1.000
SC 9 - 35 13 47 15.1 0.73 20.5 0.54 0.222 0.996
m-stage - - — 17 60 15.0 0.73 18.9 0.50 0.219 0.993
Ppp-optimal
Simon 4 - 18 10 33 223 1.00 31.6 1.00 - -
MT 3 6 16 11 35 23.1 1.04 24.8 0.78 - -
NSC 4 - 18 10 33 20.4 0.92 25.1 0.80 0.000 1.000
SC 13 - 44 14 47 15.8 0.71 19.1 0.60 0.146 0.986
m-stage - — — 19 65 15.1 0.68 18.7 0.59 0.209 0.990
Wwad - - - - - 14.7 0.66 18.2 0.58 - -
Po/1-minimax
Simon 4 - 18 10 33 223 1.00 31.6 1.00 - -
MT 2 6 15 10 32 24.9 1.12 249 0.79 - -
NSC 4 - 18 10 33 20.4 0.92 25.1 0.80 0.000 1.000
scC o0 - 11 10 32 21.3 0.96 20.9 0.66 0.050 0.985

m-stage - - — 10 32 21.5 0.96 20.9 0.66 0.050 0.985

Table 2.7 Optimal design realisations for each design type, Scenario 3: (o, 3, po,p1) =
(0.05,0.20,0.20,0.40). For all designs, the requisite type-I error-rate and power is achieved.
Columns %S, and %S, show ESS as a proportion of Simon’s design under p = p and
p = p1 respectively. pp— and p;—minimax designs are identical for this set of design
parameters, and have been combined. MT: Mander and Thompson.
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Admissible designs (scenario 3) Difference in loss scores (scenario 3)
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Fig. 2.11 Type of design to which the omni-admissible design realisation belongs and
difference in loss scores between SC and m-stage designs (positive favours m-stage), scenario

3 (a, B, po, p1) = (0.05,0.20,0.20,0.40).

design realisations examined are again Simon’s design used in Sharma et al. [79], with an
interim analysis at n; = 19 and maximum sample size N = 54, and two m-stage designs that
satisfy the same type-I error-rate and power requirements under the same design parameters,
that is (o = 0.05, /beta = 0.1,py = 0.2,p; = 0.4). One m-stage design uses continuous
monitoring and was compared to Simon’s design in Table 2.3 as “m-stage,;”. The median
sample size is lower than Simon’s design at most points, and considerably so for p > 0.25.
The second m-stage design realisation examined uses considerably less frequent monitoring,
with an interim analysis made after every 16 participants only. With maximum sample size
N =48, this design realisation requires a maximum of three analyses. However, the median
sample size remains lower than that of Simon’s design at most points, p < 0.10, p > 0.26.
As a further example, Table 2.8 shows optimal design realisations using blocks of size
four and eight, that is, permitting SC after every four or eight participants respectively, for the
first scenario (a, B, po, p1) = (0.05,0.15,0.10,0.30). These are shown alongside the optimal

design realisations for Simon’s design and the m-stage design. The m-stage design may be
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ESS: Median, 10 and 90 percentile
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Fig. 2.12 ESS(p) for design realisations satisfying (& = 0.05, /beta = 0.1,p9 = 0.2, p; =
0.4). Design realisations: Simon: r;/n; =4/19,r/N = 15/54; m-stage (B=1): r/N =
15/52,6F = 0.135,0g = 0.996; m-stage (B =16): r/N = 14/48, 0 = 0.396, 6 = 0.991.

considered to be equivalent to using blocks of size one. Under the po- and p;-optimality
criteria, the design realisations with block sizes four and eight produce considerable savings
in ESS compared to using Simon’s design. Under the po- and p;-minimax criteria, which are
combined in the table as the optimal design realisations are identical in this instance, savings

in ESS are again made, with the single exception of ESS(po) when using block size eight.

2.2.7 Estimation (scenario 1, selected)

Bias and RMSE in the response rate estimates are shown in Figures 2.13 and 2.14 for
po-optimal design realisations for scenario 1 («, 3, po, p1) = (0.05,0.15,0.10,0.30), with
the maximum absolute bias and RMSE shown in Table 2.9. In Simon’s design and the
Mander and Thompson design, the bias is close to zero for all estimators (Figure 2.13, left).
For designs that employ curtailment, the bias adjusted, bias subtracted MUE and UMVUE
estimators have a bias consistently close to zero, while the naive estimator gives more biased

estimates (Figure 2.13, bottom left, Figure 2.14, left). Overall, bias and RMSE is only slightly
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ri. nmg r n ESS(po) %S, ESS(p1) %S, 6O Ok

Po-optimal
Simon 1 11 6 35 18.3 1.00 323 1.00 - -
m-stage — — 13 80 14.1 0.77 14.4 045 0.226 0.997
Block size4 - - 10 56 14.5 0.79 16.3 0.50 0.534 0.988
Block size8§ - - 12 72 16.1 0.88 19.4 0.60 0.691 0.991
pp-optimal
Simon 2 18 5 27 20.4 1.00 26.5 1.00 - -
m-stage - — 12 66 14.3 0.70 14.4 0.54 0.189 0.990
Block size4 - - 11 64 14.7 0.72 16.1 0.61 0.550 0.991
Blocksize8 - - 16 80 16.8 0.82 18.2 0.69 0.559 0.974

Po/1-minimax

Simon 2 18 5 27 20.4 1.00 26.5 1.00 - -
m-stage - — 5 27 18.7 0.92 16.6 0.63 0.084 0.990
Block size4 - - 6 32 18.8 0.92 18.7 0.71 0.194 0.984

Block size8 - - 6 32 21.3 1.04 21.7 0.82 0.340 0.988

Table 2.8 Selection of optimal design realisations, including stochastically curtailed designs
with stopping permitted after every four and eight participants, for scenario 1: (¢, 8, po, p1) =
(0.05,0.15,0.10,0.30). For all design realisations, requisite type-I error-rate and power is
reached. Columns %S, and %S, show ESS as a proportion of Simon’s design under p = pg
and p = p| respectively.
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poorer among the proposed designs than the existing designs when p < p;. For greater p,
the poorer estimates among the proposed designs are a result of the trial being curtailed with
fewer participants compared to the existing designs. The maximum absolute bias is similar
across designs, with the exception of somewhat greater bias among the proposed designs

under the naive estimator (Table 2.9).
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Fig. 2.13 Bias, RMSE for pg-optimal designs, scenario 1 (a,f,po,p1) =

Simon, {1/11, 6/35}

Bias adjusted == Naive == UMVUE

== Bjas subtracted= MUE

(0.05,0.15,0.10,0.30).

Simon {1/11, 6/35}

Bias adjusted == Naive == UMVUE

== Bjas subtracted= MUE
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SC, {0/10, 5/27, 0.070/0.990}

SC {0/10, 5/27, 0.070/0.990}
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Fig. 2.14 Bias, RMSE for pg-optimal designs, scenario 1 (a,f,po,p1) =
(0.05,0.15,0.10,0.30), continued.
Bias (absolute) RMSE
Bias adj. Bias subt. Naive MUE UMVUE \ Bias adj. Biassubt. Naive MUE UMVUE
Simon 0.008 0.009 0.031 0.032 4.44x10716 0.097 0.098 0.104 0.106 0.101
MT 0.010 0.010 0.029 0.049 222x10716 0.147 0.147 0.138 0.146 0.150
NSC 0.009 0.010 0.041 0.030 3.33x10°16 0.165 0.165 0.161 0.159 0.166
SC 0.022 0.025 0.090 0.030 3.05x10716 0.232 0.235 0.223 0.224 0.236
m-stage 0.025 0.024 0.094 0.024 3.33x10716 0.232 0.236 0.231 0.232 0.246

Table 2.9 Maximum absolute bias and RMSE for various point estimators of pg-optimal
designs, scenario 1: (¢ =0.05,8 =0.15,pp = 0.1, p = 0.3). MT: Mander and Thompson.
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The RMSE of the estimates gradually increases as the degree of permitted curtailment
increases, with Simon’s design having the lowest RMSE and the proposed designs the greatest

(Table 2.9). RMSE decreases sharply to zero as the response rate approaches one.

2.3 Discussion

In this chapter, we have introduced two new designs for binary outcome, single-arm phase II
clinical trials, one based on Simon’s design and one based on a single-stage design. These
designs propose allowing early stopping to make a go or no go decision before the final
decision would otherwise be certain.

As part of these proposed designs, this work also introduces five approaches to improving
a search for an optimal or admissible design realisation that uses SC: firstly, the exact
distribution of the trial outcomes is obtained, allowing the trial’s operating characteristics to
be known without simulation error. Secondly, a new approach is proposed for finding relevant
CP thresholds when using SC, based on the CP at each point in each possible set {r,N} or
{r1,n1,r,N}, allowing more potential design realisations to be evaluated. Thirdly, the CP at
each point in each potential design realisation is calculated taking the possibility of SC into
account; it is not calculated based on an approximation that does not account for stopping due
to SC. Furthermore, in the design search, type-I error-rate and power are only calculated after
taking curtailment into account; no designs are discarded in advance for not achieving the
required type-I error-rate and power in their uncurtailed form. Finally, the design search is
undertaken using wide ranges for maximum sample size and final rejection boundary, rather
than being restricted to, say, a single realisation of Simon’s design. While this more expansive
search could lead to extreme computation times if done in a naive way, we present sensible
heuristic constraints to reduce computational intensity. Between them, these five concepts
serve dual purposes: to allow more potential designs to be examined without excessive

computational intensity, and to increase the accuracy of the reported operating characteristics
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of such designs. This should result in investigators being able to make a more efficient choice
of design for any potential study.

The proposed designs were compared to a number of existing designs. They were
compared in a real data example, where they were shown to be able to reduce the trial sample
size, from 19 to 8 in one instance, and also across three scenarios with regard to the following
optimality criteria: minimising ESS under p = pg or p = p; (po-optimal, p;-optimal) and
minimising ESS under p = pg or p = p; among designs that minimise N (po-minimax and
p1-minimax). With the exception of the py/p;-minimax criteria in one scenario, where
the proposed designs had a maximum sample size of 25 compared to 24 in an existing
design, the proposed designs were superior across all criteria and scenarios. For the proposed
designs, the ESSs under the pg-optimality and p;-optimality criteria were comparable to
those obtained using Wald’s SPRT [14], generally with a difference of less than a single
participant in favour of Wald’s SPRT. However, while Wald’s SPRT may result in favourable
ESSs, a design with no maximum sample size would be impractical for clinical trials, where
a maximum sample size is necessary due to limited resources, population size and so on.

The proposed designs were also compared to existing designs across a combination of
multiple criteria, using a weighted loss function. Employing Mander et al.’s expected loss
function [37], admissible design realisations were obtained for each design approach over a
grid of combinations of weights for the criteria of ESS under p = pg, ESS under p = p; and
maximum sample size. For each possible combination of weights, the design realisation that
had the lowest expected loss across all admissible design realisations was recorded, and the
type of design to which it belonged was recorded. This design realisation has been termed
the omni-admissible design realisation.

Plotting the design type to which each omni-admissible design realisation belongs, for
each possible combination of weights, it is shown that the proposed designs are almost

always better in terms of expected loss. While the two-stage SC design can be superior to
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the m-stage design, the difference is generally slight. However, we accept that increasing
the maximum N searched over is likely to find design realisations with lower ESS, and the
disparity between the SC and m-stage design searches in terms of maximum N searched over
may be the reason why the omni-admissible design is an m-stage rather than an SC design
for some combinations of weights.

We recommend that investigators focus on the m-stage design due to the decreased run
time for finding admissible designs using this approach: searching for m-stage admissible
designs is approximately two orders of magnitude faster than for the SC design, with a full
search able to be conducted in under 60 minutes for N € [20,80].

The effect of reducing the frequency of monitoring, was examined. It was shown that
considerable savings in ESS can still be made even when employing designs with less
frequent monitoring.

There may be some apprehension regarding ending a trial before the final decision is
certain compared to a different design. However, the trials are powered taking this into
account, in the same way that Simon’s design meets the required type-I error-rate and power
despite allowing stopping before the final decision is certain compared to a single-stage trial.
Indeed, we have shown that Simon’s designs may end for a no go decision even when the
probability of success for an effective treatment is as high as 0.80. There may be particular
apprehension regarding stopping to make a go decision before the final trial decision is
certain compared to a single-stage or Simon’s design. However, across all optimal design
realisations obtained from the proposed designs in the single criterion comparisons, the
threshold for stopping for a go decision was 8 > 0.97, where O = 1 means permitting
stopping for a go decision only if the final rejection boundary is reached. Furthermore, if
desired, it is possible to allow the specification of bounds to the thresholds 6 and 6g to

ranges that are acceptable to the investigator, including 6 = 1.
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In summary, this work proposes two designs for phase II, single-arm, binary outcome
clinical trials, argues for using a number of approaches for finding better designs, and for
using exact distributions so that the designs’ operating characteristics can be obtained without
simulation error. These designs have been shown to be superior to existing designs, both
when considering a single optimality criterion and when considering a weighted combination

of multiple criteria.






Chapter 3

Randomised binary outcome phase II

trials

3.1 Methods

We present a design approach that produces randomised two-arm trials with ESSs that are far
smaller than those of typical randomised two-arm trials. This design permits early stopping
of a trial not only when reaching or failing to reach the required difference in the number of
responses is certain, but also when it is very likely. That is, like Chapter 2, it utilises SC. The
frequency of monitoring is generalised, permitting anything from a single interim analysis to
monitoring that is almost continuous.

The work in this chapter is based on the paper “A stochastically curtailed two-arm
randomised phase II trial design for binary outcomes” by Law et al. [89].

For a two-arm trial, let the true response rate on the control and treatment arms be p¢
and pr respectively. Our null hypothesis is as follows: Hy : pr < pc. Denote by P(reject
Hy|pc, pr) the probability that Hy is rejected given response rates pc and pr. The nature of
hypothesis testing requires us to consider what difference in treatment effect between the two

arms is worth further study. To this end, we let pg and p; be response rates in the control and
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treatment arms respectively, such that the treatment difference p; — pg is a clinically relevant
difference. Define P(reject Hy|pc, pr) as the probability of rejecting Hy given response rates
of pc on the control arm and pr on the treatment arm. Then our design will guarantee
P(reject Hy|po, po) < a and P(reject Hy|po, p1) > 1 — B for specified error rates o and f3.
Let the ESS for response rates pc and pr on control and treatment arms respectively be
ESS(pc,pr)- Let N be the maximum total sample size and let the number of participants so
far on the control and treatment arms be m¢ and my respectively. Let X¢(m) and X7 (m) be
the number of (binary) responses on the control and treatment arms after m participants on

each arm.

3.1.1 Brief review of existing two-arm designs

Jung [46] created a design that is a two-arm analogue to Simon’s design [S]. The design has
a maximum sample size of N € 2Z participants (N /2 per arm). An interim analysis takes
place after n; € 27 participants (n; /2 per arm). At this point the trial may stop for a no go
decision based on the test statistic X7 (n;/2) — Xc(n1/2), which is compared to an interim
stopping boundary a;. If Xr(n;/2) —Xc(n1/2) < a, the trial stops for a no go decision,
otherwise it continues until the maximum N participants have been recruited. At this point,
the null hypothesis is rejected if X7(N/2) — Xc(N/2) > a, for some final rejection boundary
a, otherwise it is not rejected. Type-I error-rate, power and ESS(po, po) can be calculated
exactly, without requiring simulation. Note that here and below, the number of participant
results in an interim analysis is given by n; rather than m as above. This is to distinguish the
explicit, Simon-type interim analysis in a trial from the more general interim analyses that
come from sequential monitoring.

Carsten and Chen [17] proposed a design that is based on the two-stage, single-arm
design of Chi and Chen [9], which uses NSC and is described in Chapter 2. Similarly

to Jung’s design directly above, Carsten and Chen’s design has a maximum sample size
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of N € 27 participants (N/2 per arm) and an interim analysis takes place after n; € 27
participants (n; /2 per arm). Participant results are observed in pairs, with one participant
on the treatment arm and one on the control arm. The participants in each pair are matched
based on some defining characteristics [17]. Each pair of results is taken together, with a
“success” defined as a pair of results {X7,,Xc, } such that X7, — Xc. = 1, that is, a response is
observed on the treatment arm and a no response is observed on the control arm for some
pairi,i € {1,2,...,N/2}. The number of successes ) ;[[X7, — X¢, = 1], or equivalently, the
number of non-successes, is the test statistic upon which each decision to reject the null
hypothesis is based. By defining success in this way, the authors make no distinction between
pairs of results where a response is observed on both arms, no response is observed on both
arms and a response is observed on the control arm and not the treatment arm. Results
for each pair are observed consecutively. After every pair in the first stage, the number of
successes so far is noted. If it becomes impossible to reach some interim number of successes
a1 by ny /2 pairs of results, that is, if the number of non-successes reaches n; /2 —a; + 1, the
trial ends for a no go decision. If the number of success reaches a; by the end of stage 1, that
is, Y., I[X7, — Xc, = 1] > ay, the trial proceeds to the second stage. Similarly, if it becomes
impossible to reach some final number of successes r; by the end of the trial, that is, if the
number of non-successes reaches N/2 — ry + 1, the trial ends and a no go decision is made.
If the number of successes reaches ry, that is, Y, 1[X7, — X¢, = 1] > r», the trial stops for a go
decision.

Chen et al. [16] also suggest a two-arm design that uses NSC. The design uses continuous
monitoring, meaning that a decision regarding whether to end the trial may be taken after
every participant. One consequence of this is that there is no need for any “balancing” —
simple randomisation can be used in the first stage, though the stage two randomisation must
be such that the final number of participants on each arm must be equal if the trial proceeds

to analyse the maximum number of N participants. Success is defined as a response for a
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participant on the treatment arm or a non-response for a participant on the control arm. An
interim analysis is specified after n; participants. An interim stopping boundary for number
of successes, aj, and a final rejection boundary for number of successes, r,, is specified. In
the first stage, if it becomes impossible for the number of successes to reach a; by n; results,
that is, if the number of non-successes my — Xz (mr) +Xc(me) > ny /2 —ay + 1, the trial ends
for a no go decision. If it becomes certain that the number of successes will reach the interim
stopping boundary after n; participants, that is, X7 (m7) +mc — Xc(mc) > ny /2+ay, the trial
continues to the second stage. In the second stage, if it becomes impossible to reach the final
stopping boundary r; by the end of the trial, that is, if my — X7 (m7) +Xc(mc) > N/2—rp + 1,
the trial ends and a no go decision is made. If the number of successes is certain to reach
ry, that is, if X7 (mr) +mc — Xc(me) > N /2 + rp, the trial stops for a go decision. Chen et
al. [16] also examine a single-stage version of the above design, with the interim analysis
and stopping boundary omitted. Their results show that the two-stage design is superior in

terms of ESS, for all comparisons made.

3.1.2 Limitations of existing designs

Jung’s design [46], being a two-arm analogue of Simon’s design, suffers from the same
issues as Simon’s design. For example, while useful for minimising ESS for inefficacious
treatments, there is little saving in ESS for promising treatments. Secondly, trials continue to
recruit participants even when the final go or no go decision is known with certainty.
Carsten and Chen [17] treat all three types of non-success pairs equally, that is, response
on both arms, non-response on both arms and response on control arm paired with non-
response on treatment arm. This is inefficient, discarding information that could otherwise
contribute to the analysis. The authors also sort participants into pairs based on certain
characteristics. This suggests that investigators may hope to recruit all possible participants

before the trial may begin, or recruit all possible participants for the first stage before



3.1 Methods 89

beginning, then pausing the trial at the interim analysis to recruit all remaining participants.
The authors also match the pairs of participants based on some defining characteristics. They
admit that “it can be difficult” to have matching participants available at the same time, and
suggest giving both treatments to all participants, so that they may serve as their own control.
However, such an approach is similar to a crossover design, which is an unsuitable design for
conditions that are not chronic and which has distinct disadvantages such as treatment-period
interaction [44].

Carsten and Chen [17] and Chen et al. [16] use NSC, where the trial will end once it is
certain that a specified number of successes will or will not be reached, and the final go or
no go decision is known. However, at many possible points in binary outcome trials, such a
decision may not be certain but very likely (Section 2.1.8). Allowing the trial to end at such
points, in other words, using SC, could considerably reduce ESS.

The designs of Jung, Carsten and Chen and Chen et al. [46, 17, 16] use a set degree of
monitoring: Jung and Chen et al. allow a decision to be made after every participant, while
Carsten and Chen do so after every pair of participant results. There is no framework allowing
the degree of monitoring to change based on the particular needs of a trial. These three
papers find design realisations that are optimal for a single criterion, either ESS(po, po) (po-
optimal) or ESS(pg, po) among realisations that minimise N (po-minimax designs). There is
no evaluation of the design realisations that anticipates that the treatment being tested shows
promise. There is no evaluation of the design realisations that considers multiple optimality

criteria.

3.1.3 Proposed two-arm design

At each interim analysis, there are three possible courses of action: stop the trial to make a
go decision and reject the null hypothesis; stop the trial to make a no go decision and do not

reject the null hypothesis, or continue recruitment. Define success as observing a response
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on the treatment arm or a non-response on the control arm, as Chen et al. [16], with the
number of successes in a trial so far defined as S(m) := X7 (m) +m — Xc(m). Thus we use
S(m) in this chapter to denote the number of successes from m participants on each arm.
We use S to denote the number of successes in general, and where the fact that S = S(m)
is clear. The course of action taken is determined by comparing the number of successes
so far to some specified lower and upper boundaries, the calculation of which is described
below. For the final analysis, it is not possible to continue the trial further, therefore either a
go or no go decision is made and only a single boundary is required. Let this final stopping
boundary be r. A go decision, that is, a decision to reject Hp, is made at an interim analysis
if the final difference in number of responses is guaranteed to be r or greater in favour of the
treatment arm. For a trial with maximum sample size N, this occurs at the end of the trial
if X7 (N/2) — Xc(N/2) > r or before the end of a trial if X7 (m) +m —Xc(m) > N/2+r. A
no go decision, that is, a decision to not reject Hyp, is made as soon as the final difference
in responses is guaranteed to not be r or greater in favour of the treatment arm; this occurs
before the end of a trial if m — X7 (m) + Xc(m) > N/2 — r+ 1. These decision rules are the
NSC boundaries used by Chen et al. [16], though we relax their requirement for continuous
monitoring. Jung, Carsten and Chen and Chen et al. [46, 17, 16] also include an explicit
interim analysis, that is, an interim analysis at which point a go/no go decision is made
regardless of whether or not the final pre-specified stopping boundary may be reached.
However, in the single-arm case such an approach may result in a no go decision even
when there is a high probability of correctly identifying that the null hypothesis is false
(Section 2.1.4). In this chapter, Hy is rejected if the final difference in the number of responses
is greater than or equal to r, rather than strictly greater than r as in Chapter 2. This is done
to align with the approaches and corresponding methods in randomised phase II trials to
which we are comparing our method, in particular, Jung, Carsten and Chen and Chen et

al. [46, 17, 16].
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For the proposed approach, a balanced allocation between treatment and control, i.e., 1:1
randomisation, is required. The design involves frequent interim analyses, at most after every
pair of observed results (one each on the control and treatment arms).

Participants are allocated to arms using block randomisation. In block randomisation,
a block size is chosen and randomisation takes place within blocks such that allocation is
equal between the experimental treatment and control arms. This places an upper bound
on the degree of allocation imbalance that may occur [44]. Using randomised blocks
and undertaking an interim analysis only at the end of each block ensures balance across
the two arms at each analysis. As such, set the number of participants so far on each
arm, m, to be m = B,2B,...,N/2, where 2B is the number of participants in each block.
Within each block, the number of responses on each arm follows the binomial distributions
Xc(B) ~ Binom(B, p¢) and X7 (B) ~ Binom(B, pr), for a fixed number of participants B per
block per arm. Stopping is permitted after each block. Permitting stopping after each block
is a sensible approach to early stopping, allowing trials to end early but without the need
to make a decision after every participant or pair of participants, which may be impractical
in large randomised two-arm trials. Furthermore, the block size may be chosen to suit the
resources of the trial, with smaller block sizes allowing decisions to be made earlier and
larger block sizes requiring fewer early stopping decisions. It may be possible to undertake
continuous monitoring and update a trial design after each participant [21]. However, in
some circumstances this is not possible, and the proposed design does not require such a
degree of monitoring. Requiring continuous monitoring may increase the occurrence of
delayed responses, described in Section 2.1.5 and suggested as future work (Section 5.4).
The flexible framework permits a wide range of degrees of monitoring, from a small number
of interim analyses to monitoring that is almost continuous.

The test statistic we will use to determine whether to reject the null hypothesis is the

difference in the number of responses between the arms, X7 (m) — X¢(m), though other valid
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test statistics exist. In particular, the decision of whether to study a treatment further may
depend not solely on rejection of the null hypothesis, but also on other factors. For example,
a design may explicitly require a minimum effect size estimate before permitting further
study [90-92]. Some such methods involve sculpting of the rejection region. However, the
true response rates pc and pr may not be equal to the specified response rates pg and pj.
If so, sculpting the rejection region can lead to underestimating the type-I error-rate [93].
Sensitivity to such deviations will be examined in the Section 3.2.3 and we discuss this issue
further in the Discussion (Section 5.3). Moreover, it is usually possible to design a trial by
specifying the improvement in response rate that would be clinically worthwhile [44].

We present a design approach that permits early stopping of a trial not only when reaching
or failing to reach the required difference in the number of responses is certain, but also when
it is very likely, that is, using SC. SC has previously been applied to single-arm binary trials
as detailed in Chapter 2 [13, 12]. However, SC has not previously been applied to two-arm
binary outcome trials. Another clinical trial characteristic that is utilised in our approach is
block randomisation.

We note that other two-arm approaches have been proposed [94-99]. However, it
is impractical to compare all randomised two-arm designs, and so our approach will be
compared only to Jung’s design [46], as this is the two-arm analogue to the popular Simon
design, and Carsten and Chen and Chen et al.’s designs [17, 16], as these designs use
curtailment and as such are similar to our approach. Table 3.1 shows the main differences
between the designs to be compared. As can be seen, our approach uses a test statistic that
has been used in other approaches, allows both stochastic and non-stochastic curtailment,
allows early stopping based on how likely trial success is, and allows a flexible number of

interim analyses.
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Early stopping Early stopping No. stopping

Approach | NSC = SC for go decision w/out curtailment decisions

Test statistic

Jung | No No No Yes 2 X —Xc

Carsten and Chen | Yes No Yes Yes N/2 Y7 I(Xri = 1,Xc; = 0)
Chenetal. | Yes No Yes Yes N Xr —Xc¢
Block design | Yes  Yes Yes No N/2B Xr—Xc

Table 3.1 Characteristics of the two-arm designs to be compared. m: number of participants
per arm so far; B: number of participants per arm per block.

3.1.4 Conditional power in the two-arm setting

For a two-arm design, define the conditional probability, CP(pc, pr,S(m),m), as the proba-
bility of rejecting Hy conditional on observing S(m) successes after m participants on each
arm assuming some response rates pc and pr, with r and N fixed. Setting pc = po, pr = p1
gives the conditional power CP(py, p1,S(m),m). For the purposes of the proposed approach,
the only conditional probability of interest is the conditional power, and so in this chapter
CP(S(m),m) will refer solely to conditional power CP(py, p1,S(m),m), while the abbrevia-
tion CP will refer to conditional power in general. CP(S(m),m) is calculated using po and py,
that is, there is no re-estimation of response rates. SC in this design is based on CP, though

we acknowledge that other approaches are available [10].

3.1.4.1 Calculating conditional power under NSC

When m — X7 (m) 4+ Xc(m) > N/2 —r+ 1, it is no longer possible for the null hypothesis to
be rejected, and so CP(S(m), m) is equal to zero. Conversely, when X7 (m) +m — X¢(m) >
N/2+ r, rejection of the null hypothesis is guaranteed, and so CP(S(m), m) is equal to one.
For a block design with no explicit interim analysis and using NSC but not SC, CP(S(m),m)

can be written recursively as
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0, ifm—Xr(m)+Xc(m)>N/2—r+1

D. ifm—X X, N/2 — 1
Cr(smym = | TR X < NRmre L G3.1)

and X7 (m) +m—Xc(m) <N/2+r

, ifXr(m)+m—Xc(m)>N/2+r
where
2B
D =Y P(i,B|po,p1)CP(S+i,m+B)
i=0
and P(luB|pC7pT) :P<S(B) = i|pC7pT) :P(XT(B)+B_XC(B) = i|pC7pT) ’ the prObabﬂ_

ity of observing i successes from a block containing B participants on each arm, given

response rates pc and pr. CP(S(N),N) = 1 for S(N) > r, 0 otherwise.

3.1.4.2 Calculating conditional power under SC

SC entails ending a trial not only at any point where CP is equal to zero or one, but also for a
no go decision at any point where 0 < CP(S(m),m) < 6f or for a go decision at any point
where 0 < CP(S(m),m) < 1, for fixed thresholds (6, 6g) € [0, 1] such that O < 6.

To incorporate SC, only slight changes to Equation (3.1) are required:

( )

0, ifm—Xr(m)+Xc(m)>N/2—r+1o0rD< 6f

D, ifm—Xr(m)+Xc(m)<N/2—r+1
CP(S(m),m) = and X7 (m) +m—Xc(m) < N/2+r , (3.2)

and O <D < 6g

|1, if Xp(m)+m—Xc(m)>N/2+ror D> 6



3.1 Methods 95

Equations (3.1) and (3.2) are recursive as the CP at a given point, CP(S(m), m) say, is
dependent on the CP at “future” points CP(S+i,m+B),i =0,1...,2B. Under SC (Equation
(3.2)), CP values lower than OF are set to zero and CP values greater than Og are set to one,
as early stopping occurs at such points. These equations are analogous to the calculation of
CP in single-arm trials introduced in Section 2.1.7.1 (Equations (2.3) and (2.5)). Calculating
CP in this manner accounts for the possibility of early stopping due to SC. Thus it ensures
that the operating characteristics are known exactly, and that any decision to continue the
trial is done so knowing exactly what degree of uncertainty remains about whether to reject
Hy. By calculating the CP at each point (S(m),m),m = B,2B,...,N/2,S=0,1,...,2m, the
stopping boundaries for the conclusion of each block are obtained. Knowing in advance
which points will, if reached, result in early stopping means that the exact distribution of the
trial’s outcomes are known. Furthermore, calculating CP without error at each point, rather
than using an approximation, prevents decisions being made based on a CP with unknown
error.

Let any particular example of a trial created using our approach be characterised by
{r,N,B,6F,0r}, and denote any such example to be a “realisation” of our design. Each
design realisation has explicit lower and upper limits for CP, 7 and 6, one of which must be
reached before the trial may end. For existing design approaches that permit early stopping to
reject Hy under NSC only, such as Carsten and Chen and Chen et al. [17, 16], the equivalent
lower and upper limits for stopping the trial are 6 = 0 and 8 = 1 respectively, and cannot
be altered. That is, the CP must equal zero for a no go decision to be made and must equal

one for a go decision to be made.

3.1.5 Design search

The paramount requirements of a design realisation are that the desired type-I error-rate

o and power 1 — B are satisfied, that is, a* = P(reject Hy|po,po) < @ and 1 — * =
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P(reject Hy|po, p1) > 1 — B. Asin the single-arm case, designs that satisfy these requirements
are denoted feasible. We wish to consider only feasible designs. It is worthwhile to compare
the ESS of feasible design realisations. ESS for a given design is obtained by finding all
possible points at which the trial will end, then multiplying the number of participants so
far at those points by the probability of reaching such points. For response rates pc on the
control arm and p7 on the treatment arm, this is

N/2B2jB

ESS(pc,pr) =Y. Y 2jB P(i,jB|pc, pr)I(CP(i, jB) € {0,1}).
=1 i=0

Our interest lies in ESS under pc = pr = po, ESS(po, po) and ESS under pc = po, pr =
1, ESS(po, p1)-Again as in the single-arm case, design realisations that are superior to all
others for any combination of multiple optimality criteria are described as admissible. The
term “admissible” has previously been used with respect to two-arm designs [46, 37], and
these design realisations are our subject of interest. It is the admissible design realisations of
our proposed approach that will be compared, both to one another and to admissible design
realisations of other approaches.

In order to find admissible design realisations, a search of possible designs is undertaken.
The block size 2B, desired type-I error-rate o and power 1 — 3 are specified in advance, as
is an upper limit for maximum sample size, Ny4x, as may a range for the final rejection
boundary r. Choice of r is discussed in the single-arm case (Section 2.2.3.3). Also specified
in advance are a maximum lower limit and minimum upper limit for CP, denoted 6f,,,, and
Ok,,,x» SO that the design search takes place only over combinations {r,N,B, 6,0} that
satisfy 6 < 6p,,, and 6 > 6O, . For all results that follow, 6f,,,, was set equal to py,
that is, a trial’s CP threshold for ending for a no go decision may not be greater than the
anticipated response rate on treatment, or O < p;. This is a pragmatic choice: it is a sensible
constraint to not consider a no-go decision if the current conditional probability of trial

success is greater than the probability of observing a response in a single participant allocated
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to a treatment with response rate p;. A fixed value of 0.7 was chosen for 6,,,,, meaning that
a trial’s CP threshold for ending for a go decision may not be less than 0.7, that is, 6 > 0.7.
This value was considered a reasonable minimum probability for making a go decision,
though in practice this value may be determined in collaboration with investigators. If an
investigator wishes to allow early stopping for a go decision only when CP is high, then this
may be set to, for example 6g,,,, = 0.95, or even 6g,,,,, = 1 if an investigator wishes to permit
early stopping for a go decision only when reaching the final stopping boundary r is certain.
The final value that may be specified is the maximum number of (6, 6g) combinations to be
tested per unique {r, N'}. This is further explained below.

Searches were undertaken for two block sizes, 2B € {2,8}, and for five values of control
arm response rate, po € {0.1,0.2,0.3,0.4,0.5}, with p; = po+ 0.2 in each instance. This
resulted in ten searches overall. These block sizes were chosen to examine to what extent the
operating characteristics change when the degree of monitoring is reduced considerably. The
searches had the following parameters: Nyax = 120, r € {0,1,...,[Np;|}, ¢ =0.15,8 =
0.2 (as in Table 1 of Jung [46]), 6F,,,x = P1,OE),;y = 0.7 and maximum number of (6, O)
combinations 10°. The maximum sample size, CP limits and maximum number of (6, 6)
combinations were pragmatic choices, balancing the desire to search over as many design
realisations as possible against computational intensity. Each trial, with design parameters

{r,N,B, 6,0}, was evaluated to obtain a*,1 — *, ESS(po, po) and ESS(po, p1)-

3.1.5.1 Searching over CP thresholds 6r and 6¢

For any given set {r, N, B}, each possible combination of successes, S, and participants so far,
2m, has an associated CP. As Or and Og vary, the operating characteristics of a trial are only
certain to change when Or or O become greater than or less than one of the possible CP
values in the trial. As such, we have chosen to vary Or and O over the trial-specific CP values

rather than searching over uniform distributions of 6r and 6, as in the proposed single-arm
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designs. That is, (6F,0) € {CP(S(m),m),m =B,2B,...,N/2,8S=0,...,r: 0p < 0g,0p <
GFMAX76E > 9EM1N}~

For large sample sizes, the number of unique CP values and consequently, the number of
possible (6, 6g) combinations to be searched over may be great. However, certain aspects
of our design approach can ameliorate this to some degree. Firstly, in many cases, the CP
is equal to zero or one. Secondly, by only permitting stopping after every 2B participants,
we need only consider the CP values that occur at the conclusion of each block, that is, after
B,2B,...,N/2 participants on each arm. Finally, there are the user-defined limits set above:
Or < Og,,,v» O > Og,,,. These three aspects reduce the number of unique CP values for
each trial design. Nevertheless, the number of possible (6, ) combinations still increases
rapidly with N (Section 2.1.11). In the single-arm case, we specified an upper bound ® for
the number of CP values |6|. Here, this has been superseded by a more direct approach and
we specify a maximum number of ordered pairs (6r, 6¢) that may be examined per {r,N,B}.
As stated above, the limit chosen was 100, meaning that for each {r, N, B} combination, at
most 10® combinations of (6, 8g) are examined. When there are more than 10° possible
combinations, the (unique) CP values are ordered from smallest to greatest, then every other
value is removed, excluding zero and one. This thinning is repeated until the number of
possible combinations remaining is not greater than 10°. As the number of CP values |6)|
becomes large, the resulting number of ordered pairs is approximately equal to |@|? /2, which
allows simple comparison between maximum number of CP values ® and maximum number
of ordered pairs. Thus, this is a greater restriction than used in the single-arm case, where
the maximum number of CP values was 10°. As the distribution of CP values in a trial is
not uniform (Section 2.1.8), this approach is less likely to miss potential designs than simply

searching over a uniform distribution of CP values.
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3.1.5.2 Design search: algorithms/pseudocode

We now describe the design search in detail, first in words and then using pseudocode. The
design search is similar to the single-arm design search at a high level: a family & of sets
containing all {r, N, B} are found then CP values are obtained for each {r,N,B}, from which
ordered pairs (0, 6g) are used to find design realisations. However, the functions used
at many steps must be altered to account for two-arm data. Moreover, the procedure for
finding (6, Of) is more complex. In the single-arm case, stopping decisions are based
on the number of responses S(m) observed after m participants. A particular point in an
uncurtailed single-arm trial (S(m), m) may be reached via many different paths. However,
all paths are equally likely, having probability pS(™) (1— p)m’s(m), with total probability
( S(':’n)) pStm) (1— p)m_s(’") for some response rate p. In contrast, in the two-arm case, stopping
decisions are based on the number of successes after m participants per arm, that is, S(m) =
Xr(m/2)+m/2 — Xc(m/2). A given number of successes can be reached via paths of
differing probabilities. For example, two successes after four participants may be due to
observing any of three different possibilities: two responses on the treatment arm and two
responses on the control arm (X7 (2) = 2,Xc(2) = 2), with probability p%p2; one response
on the treatment arm and one response on the control arm (X7(2) = 1,X¢(2) = 1), with
probability pr (1 — pr)pc(1— pc); zero responses on the treatment arm and zero responses on
the control arm (X7(2) = 0,X¢(2) = 0), with probability (1 — p7)?(1 — pc)?. Consequently,
finding the operating characteristics of two-arm trials is slower than in single-arm trials. This,
combined with the larger sample size required in two-arm trials compared to single-arm
trials, means that reducing computational intensity is important. In addition to restricting
the range of r for each N searched over and placing constraints on both the total number
of ordered pairs (6f, 6¢) and the values themselves (6 < 6F,,,,, O > O,y ). We may also
restrict how the design search explores the possible (6r, 0g) ordered pairs. In particular,

we provide two options for exploring this space, one of which examines all ordered pairs
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that produce feasible design realisations at the expense of speed, while the other examines
fewer ordered pairs but is quicker. Given the similarity of the design search to the single-arm
case otherwise, it is only necessary to provide details of this aspect of the search, shown in

Algorithms 2 and 3.

Algorithm 2: Slow search over CP values 0 for a single {r,N,B} € #
k+1;
ordered.pairs.matrix < call findOrderedPairs(0);
thetaE.vals < call unique(ordered.pairs.matrix[,2]);
thetaE.vals < call sortDecreasing(thetaE.vals);
no.thetaE.vals < call length(thetaE.vals);

for i = 1 to no.thetaE.vals do // for each unique O, obtain a
corresponding vector of Or values from the ordered pairs matrix:
i< L

for row = 1 to nrow(ordered.pairs.matrix) do

if ordered.pairs.matrix[row, 2] = thetaE.vals[i] then
current.thetaF.vec[j] <— ordered.pairs.matrix[row, 1];
j L

end

end

for g = 1 to length(current.thetaF.vec) do
design.OCs.matrix[k,] < call findOCs(r, N, B, Op=current.thetaF.vec[q],

Op=thetaE.vals][i], ...);
pwr < call findPower(design.OCs.matrix[k,]);
k < k+1;

if pwr < power then
| break

end

end

end

output <— call discardDominatedDesigns(design.OCs.matrix)

For increased clarity, the faster method for exploring the ordered pairs can first be

described in words as follows:
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* Create two vectors O and @ from the CP values 0, satistfying O : 6 < 6f,,,, and

0 :60>0g,,.

* Bisect Or and Of to find the central value of each, and find the design operating

characteristics using these values.

* If this design realisation is not feasible, bisect the vectors again, between the minimum
and current values of @ g, that is, decreasing 6r, and between the current and maximum
values of O, that is, increasing O, and find the design operating characteristics for
using these values. Continue bisecting until either (6 = 0,6 = 1) or a feasible design

1s found.

* If no feasible design is found by (6 = 0,6r = 1), end and move on to the next set

{r,N,B}.
¢ If a feasible design is found for some (6, 6 ):

— Define 6,,,, as the current value of 6.

— Find design operating characteristics for (6, 6g,,,, ), using sequentially increas-
ing values in Or € O, stopping when either a non-feasible design is reached or
OF = 0F,,,x -

— Upon stopping, define Of,,,, as the current value of 6

— Find design operating characteristics for every (6, Og) such that 6, < 6 <

OFMAX and GEMIN <O < GEMAX’ Or € ep, O € OE

Justification for such a procedure can be seen in Figure 3.1, which shows plots of (6, OF),
ESS(po, po) and ESS(po, p1) for all feasible designs found with specified design parameters.
The Figures show how both ESS(pg, po) decreases as O increases and conversely ESS(pg, p1)
decreases with Og, for a fixed N. Furthermore, most feasible designs exist at extreme values

of Or (low) and Og (high). With this in mind, avoiding searching at these extremes should



102 Randomised binary outcome phase II trials

Algorithm 3: Fast search over CP values for a single {r,N,B} € #

O < call subset(6, max=6p,,,, );

O < call subset(6, min=6g,,,, );

apg < 1;

by < length(0F);

dp < ceiling((bg — ap)/2);

a; + 1;

by < length(0F);

dy < ceiling((b; —ay)/2);

feasible «+— FALSE;

k<1,

while byp —ap > 1 and b1 —a; > 1 and feasible=FALSE do
temp.output <— call findDesignOCs(OFr[dy], Og[di],...);
feasible <— call feasibleT1.Power(temp.output);

if feasible=FALSE then

by < dp;

do < ap+ ceiling((bo —ap)/2);

a) < dy;

dy < ay + ceiling((b; —ay)/2);
else

GEMAX — 6g [dl];
while dy < length(@F) and feasible=TRUE do
do < dy+1;
design.OCs.matrix[k, ] < call findDesignOCs(0F[do], O,y - --);
feasible <— call feasibleT1.Power(design.OCs.matrix[k, ]);
k< k+1;
end
GFMIN — OF[dO - 1];

end
end
if exists(6f,,,,) then
O < call subset(0, min=6p,,,, max=6f,,, . );
0 < call subset(0, min=06g,,,,, max=60g,,,, );
foriin 1 to length(6F) do
for jin 1 to length(6 ) do
design.OCs.matrix[k, ] < call findDesignOCs(0Fr|i], O[], .. );
k< k+1;
end
end
end
output <— call discardDominatedDesigns(design.OCs.matrix)
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speed up the design search while still finding design realisations with favourable ESS(pg, po)
and ESS(pg, p1). In these examples, this search method is approximately one order of
magnitude faster than the more simple search when allowing a maximum of 10° ordered
pairs (6 seconds vs. 53 seconds for {r = 3,N = 40,B = 2}, 35 seconds vs. 500 seconds
for {r =5,N = 60,B = 2}). In both examples, the same best design realisation was found
(as each example contained a design single realisation that minimised both ESS(pg, po) and

ESS(po, p1)), though this is not guaranteed in general.

Or, B and ESS(pg, po) for all feasible designs OF, Bg and ESS(py, p,) for all feasible designs
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(c) ESS(po, po) for {r=5,N=60,B=1}  (d) ESS(po, p1) for {r=5N=60,B=1}

Fig. 3.1 Plots showing (6, 0 ), ESS(po, po) and ESS(po, p1) for all feasible designs with
o=0.15,8=0.2, pc =0.1, pr =0.4, B=1, for two selected sets of {r,N,B}.
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3.1.5.3 Design search: existing designs

Regarding searches using existing designs, admissible designs for Jung’s design [46] were
found using the R package ph2rand [74, 100]. Admissible designs for the designs of Carsten
and Chen and Chen et al. [17, 16] were found using simulation as suitable code was not
available: all design combinations {ry,n;,r,N} such that N € [10,200], with restrictions
r1 < ny, r; < r, were obtained, where r; denotes the interim stopping boundary that must
be reached after n; participants for the trial to continue. For each design, a* and B* were
initially estimated using 100 simulated datasets. Designs with o* > 0.25 (that is, ot +0.1) or
B* > 0.3 (that is, B +0.1) were discarded. For the remaining designs, a*, B*, ESS(po, po)
and ESS(po, p1) were estimated using 10,000 simulated datasets. Designs with o* > 0.15 or
B* > 0.2 were discarded, as were dominated designs, leaving a set of admissible designs for
both approaches. To avoid confusion, the design of Carsten and Chen [17] will be described

in the Results section as “Carsten”.

3.1.6 The loss function

The concept of using a loss score in the form of a weighted sum of optimality criteria
to compare trial designs was used to compare designs in Chapter 2, and has been used
previously [46, 37]. We use the approach of Mander et al. [37], extended to the two-arm case.

The loss score of a two-arm design realisation is defined as

L =woESS(po, po) +w1ESS(po,p1) + (1 —wo—wi)N,

where wo,w; € [0, 1] and wo +wy < 1. For all combinations of weights wy and w1, the
loss score is compared across admissible design realisations from different approaches. To
further compare admissible design realisations produced by different approaches, we note

the design realisation with the lowest loss score for each combination of weights (among all



3.2 Results 105

design approaches). This design is termed the omni-admissible design, as in the single-arm
case. The omni-admissible design is deemed to be the best-performing design realisation for
that combination of weights. The design type of each omni-admissible design is obtained for
each combination of weights. The results are plotted, to visualise what approach performs

best for each weighting of optimality criteria.

3.1.7 Comparison of proposed and existing designs: summary

We compare our proposed design, using blocks of size two and size eight, to existing designs
using the weighted combination of multiple optimality criteria described above. Optimal
design realisations for a number of single optimality criteria are found both a series of
response rates (po, p1) and for a real-life example. We examine the effect of the true response

rates pc, pr deviating from the specified values of pg, p1.

3.2 Results

3.2.1 Comparing design approaches using multiple criteria

All results are based on the operating characteristics (¢, ) = (0.15,0.20), as used in Table 1
of Jung [46], and the range po = {0.1,...,0.5}, p1 = po +0.2. To address the case of greater
response rates, a real-life example is investigated where py = 0.70, p; = 0.85 [101].

Figure 3.2 shows the design approach to which the omni-admissible design belongs,
that is, the design realisation with the lowest loss score among those compared, for all
combinations of weights (wg,w;). For pg = 0.1 and pg = 0.2, Carsten’s design is superior
in almost all instances (100% of weights for pg = 0.1, 99% for py = 0.2). For pg = 0.3,
the omni-admissible design is either a Carsten design (73%) or a block design with block
size two (27%). The region where the proposed design is superior is where wo + wy is close

to one, that is, where almost all weight is on ESS(pq, po) and ESS(pg, p1). For pg = 0.4
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and po = 0.5, the omni-admissible design is either a block design with block size two or
Chen’s design (85% vs 15% for pg = 0.4, 95% vs 5% for py = 0.5). For both pg = 0.4 and
po = 0.5, the region where the proposed design is not superior to Chen’s design is where
(1 —wo —wy) is close to one, that is, where almost all weight is on N. There are no regions
for which the omni-admissible design belongs to Jung’s design [46], as the approach of Chen
et al. [16] can be considered to produce design realisations encompassing all possible Jung
design realisations but with the addition of NSC. There are also no regions for which the
omni-admissible design belongs to our approach with block size eight, however this may
be expected as any design using blocks of size eight will generally be outperformed by the
equivalent design with blocks of size two.

Figure 3.3 shows the difference in loss scores between the block design using block size
two, existing designs and block size eight, again for all possible weights. The difference
is taken between the design realisations with the lowest loss scores for a given weight
combination, ensuring that the best design realisation for each design approach is being
compared. The loss scores have no interpretation other than as a comparison between design
realisations. As with Figure 3.2, the plots show that while Carsten’s design [17] is superior to
the block approach for low values of pg, it performs comparatively less well as pg increases
(top row to bottom row). This result was also found by Chen et al. [16], and can be seen
particularly on the bottom row of plots in Figure 3.3, where Carsten’s designs perform poorly
in comparison to the other designs. The rightmost column of plots compares block size two to
block size eight, and is white or near-white at all points, indicating that the difference between
the designs is always close to zero in terms of loss score. The maximum difference in loss
score in favour of block size two compared to block size eight is 6 across all combinations of
weights, compared to 61 for block size two compared to Carsten, 25 compared to Chen et al.

and 35 compared to Jung.
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Omni—admissible design type
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Fig. 3.2 Omni-admissible design: the approach to which the design realisation with the lowest
loss score belongs, for (¢, ) = (0.15,0.2), po = {0.1,0.2,0.3,0.4,0.5}, p1 = po+0.2.
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Difference in loss scores:

Approach with block size 2 compared to others, for p,=0.1,...,0.5
Carsten Chen Jung Block 8
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Fig. 3.3 Difference in loss scores for block design of size two versus other approaches, for
po=0.1,...,0.5. Negative values (in red) favour the proposed design with blocks of size
two.
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An equivalent set of plots, comparing block size eight to existing designs, is shown
in Figure 3.4, and shows similar results: both plots show the superiority of the proposed
approach compared to existing designs when py > 0.4, even when monitoring is reduced to
conducting an interim analysis only after each block of eight participants.

Table 3.2 shows the optimal design realisations, for the two-arm designs plus Si-
mon’s design for ESS comparison, for the set of design parameters (o,f,po,p1) =
(0.15,0.20,0.30,0.50), pp = 0.3 being the midpoint of the five values chosen for pg. The ta-
ble shows the design realisations for four optimality criteria: those that minimise ESS(po, po)
and ESS(po, p1) (the po- and p;j-optimal designs respectively), and those that minimise
ESS(po,po) and ESS(po,p1) among the subset of design realisations with the minimum
maximum sample size N (the po- and p;-minimax designs respectively). In this instance,
the po- and p;-minimax designs are identical for all designs considered. All designs that
use curtailment are superior to Jung’s design in each of the four criteria of interest (po- and
pr-optimal and po- and pj-minimax).

For the po-optimal designs, the block designs achieve lower ESS(po, po) than the existing
randomised designs (47.3, 49.2 vs 64.9, 51.3, 60.1) at the expense of greater maximum
sample size N (116, 112 vs 92, 88, 90). This is also the case for the p;-optimal designs with
regards to ESS(po, p1) (45.4,49.3 vs 80.8, 52.6, 67.3 and N=112, 112 vs 82, 92, 76).

For the design parameters in Table 3.2, a standard two-arm trial with a one-sided hy-
pothesis test and no early stopping has sample size N = 84, while the equivalent single-arm
trial has sample size N = 21. As such, ESS(po, po) and ESS(po, p1) for both block designs
are closer to those of the single-arm design than the two-arm sample size under the po- and
p1-optimality criteria.

The cases where existing two-arm designs are superior to the proposed block designs for
a single optimality criterion are the Carsten and Chen et al. designs under pg,;-minimax,

where these designs achieve a lower maximum sample size compared to the block designs
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Difference in loss scores:

Approach with block size 8§ compared to others, for p,=0.1,...,0.5
Carsten Chen Jung
1.0-
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Fig. 3.4 Difference in loss scores for block design of size eight versus other approaches, for
po=0.1,...,0.5. Negative values (in red) favour the proposed design with blocks of size
eight.



3.2 Results 111

ri.nr Nem N ESS(po,po) ESS(po,p1)  OF O
Po-optimal
Simon 2 8§ 10 28 28 17.0 25.1 — —
Jung 0 44 5 46 92 64.9 86.7 — —
Carsten 5 38 12 44 88 51.3 60.3 0.0000 1.0000
Chen 0 32 5 45 90 60.1 76.9 0.0000 1.0000
Block2 — — 5 58 116 47.3 47.2 0.1348 0.9831
Block8 — — 5 56 112 49.2 49.3 0.3005 0.9700
p1-optimal
Simon 3 13 8 21 21 17.6 20.6 — —
Jung -1 56 5 41 82 70.5 80.8 — —
Carsten 9 60 10 46 92 55.0 52.6 0.0000 1.0000
Chen 4 70 4 38 76 63.3 67.3 0.0000 1.0000
Block2 — — 6 56 112 47.9 45.4 0.1072  0.9740
Block8§ — — 5 56 112 49.2 493 0.3005 0.9700
Po/1-minimax
Simon 3 13 8 21 21 17.6 20.6 — —
Jung -1 56 5 41 82 70.5 80.8 — —
Carsten 4 40 10 34 68 533 52.9 0.0000 1.0000
Chen 4 70 4 38 76 63.3 67.3 0.0000 1.0000
Block2 — — 4 40 80 57.3 52.7 0.0428 0.9842
Block8 — — 4 40 80 62.2 57.1 0.0609 0.9752
Table 3.2  pg-optimal, pr-optimal  and  pg,-minimax  designs, for

(a, B, po, p1)=(0.15,0.20,0.30,0.50). Ny, number of participants per arm.
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(68, 76 vs 80, 80). However, the block design with block size eight requires less monitoring
than the existing designs, with a maximum of 10 decisions compared to 34 decisions for
Carsten and 76 for Chen et al.[17, 16]. These results are reflected in the left-hand plots of the
third row of Figure 3.3, where the triangle is red near the hypotenuse, indicating superiority
of the block design when minimising ESS is of greatest value, and the triangle is blue near
the lower left corner, indicating superiority of Carsten’s and Chen et al.’s designs when
minimising maximum sample size is of greatest value.

To address possible concerns regarding very early stopping, the minimum possible
number of participants was obtained for the p/; —optimal and p(,; —minimax block designs
for po = {0.1,0.2,0.3,0.4,0.5}, p; = po+0.2. Across all combinations of optimality criteria
and response rates, the minimum number of participants for block size two has median
9(IQR[7.5,10]) and the minimum number of participants for block size eight has median
8(IQR][8,16]). The possibility of stopping after a small number of participants is addressed

in the Discussion section.

3.2.2 Comparison to group sequential design

Our proposed design would function similarly in practice to a group sequential design with
many stages. As a comparison, it is possible to find group sequential designs of up to 10
stages using the rpact [102] package in R [74]. This software was used to find a design
with the maximum number of stages (10) and with the design parameters as specified as
Table 3.2. The design used binding stopping rules for futility and O’Brien and Fleming type
alpha and beta spending. The stopping boundaries are determined by the observed difference
in response rates and are shown in Table 3.3 and Figure 3.5.

The design found using rpact has ESS(po, po) = 55.1, ESS(po,p1) = 58.4 and N =
97. These results may be compared to the proposed approach using blocks of size eight

(Table 3.2), which finds a pg-optimal design with ESS(po, po) = 49.2 (reduction of 11%), a
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Stage 1 2 3 4 5 6 7 8 9 10

No go decision * -0.29 -0.15 -0.07 -0.02 0.02 0.04 0.06 0.08 0.10
Go decision * 0.66 045 033 026 0.21 0.18 0.15 0.13 0.10

Table 3.3 Stopping boundaries for design found using package rpact, in terms of difference
in observed response rates. *No values returned by package for stage 1 in terms of response
rate: z-values were -3.246 (no go), 4.404 (go).

Boundaries Effect Scale
Nmax =97, pi» =0.3, HO: risk difference =0, allocation ratio =1

— Critical value (treatment effect scale)
— Futility bound (treatment effect scale)
0.50 —

0.25— —~—

Rate Difference
[ ]

L]
0.00— —

e /

I I I I I I I I
19.392 29.088 38.784 48.480 58.176 67.872 77.568 87.264 96.960
Sample Size

Fig. 3.5 Stopping boundaries and sample size for design found using package rpact, in
terms of difference in observed response rates.
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pi-optimal design with ESS(po, p1) = 49.3 (reduction of 16%) and a minimax design with
N = 80 (reduction of 18%). The maximum number of stages in the pg- and pi-optimal
cases would be 14 and in the minimax case would be 10, while using larger block sizes
would result in fewer stages. The pg/;-minimax design found using the proposed design with
block size eight is shown in Figure 3.6. This visualisation was created using the R package
curtailment [75], and shows at a glance the stopping boundaries for discrete numbers of

participants.

Stopping boundaries
Max no. of analyses: 10. Max(N): 80. ESS(po): 62.2. ESS(p;):57.1
50

40

Analysis
No
30
B -

Decision

Continue

. Go decision

No go decision

20

10

Number of responses on treatment + non-responses on control

8 16 24 32 40 48 56 64 72 80
Number of participants

Fig. 3.6 Stopping boundaries and sample size for proposed design with block size eight from
Table 3.2, py/;-minimax.



3.2 Results 115

3.2.3 Changing true response rates

When the true response rates (pc, pr) differ from those specified, this can lead to a probability
of rejecting Hy that is considerably greater or lower than expected. The consequences of
such deviation may depend on the design approach used.

Figure 3.7 shows the probability of rejecting Hy when the true response rates are not equal
to the specified response rates (po, p1), for the pp-optimal Carsten design and block design
with block size two under (o, 3, po, p1) = (0.15,0.20,0.10,0.30). The Carsten design has
been chosen as the comparison design as it was superior to the proposed designs more often
than other existing designs in Section 3.2.1. The probability of rejecting Hy when pr > pc
is given in the lower right triangles, while the probability of rejecting Hy when pr < pc is
given in the upper left triangles. The probability of rejecting Hy when pr = pc is given by

the remaining diagonal.

P(reject H), Hy—optimal design for 0.1, p;=0.3

Block size 2 Carsten
0 001 003 0.06 011 02 0.34 0.01 0.06 0.15 0.27 0.4 0.52
0.6 0 0.2 006 012 022 037 056 0.02 012 027 044 06

P(reject K

0.01 0.05 0.11 0.22 0.38 0.04 019 04 0.6

0.57 0.06 0.27 0.52

0.4- 0.02 0.08 0.2 037

True

0.04 0.15 0.56 0.09 0.36
0.2- 0.07 0.28 0.12 0.44
0.14 052 0.15  0.52
0.2 0.4 0.6 0.2 0.4 0.6
True pr

Fig. 3.7 Probability of rejecting Hp, for the pg-optimal block size two design
(r,N,6F,0g) = (3,62,0.128,0.932) and the Carsten design (r,n;,r,N) = (1,14,3,64) un-
der (o, B, po, p1) = (0.15,0.2,0.1,0.3).
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Figure 3.8 shows the probability of rejecting Hy for the pg-optimal Carsten design
and block design with block size two under (a, 3, po, p1) = (0.15,0.20,0.20,0.40). The
probabilities were obtained using simulations of size 10,000. In all instances, the probability
of rejecting Hy is greater using the Carsten design than the block design with block size two.
This difference is considerable for a number of plausible pairs of response rates. For example,
in Figure 3.7, where the anticipated response rates are (pg, p1) = (0.1,0.3), P(reject Hy)=0.64
using the Carsten design (vs 0.34 using the block design) when (pc, pr) = (0.3,0.3) and
P(reject Hyp)=0.36 (vs 0.15) when (pc,pr) = (0.3,0.2). Similarly, in Figure 3.8, where
the anticipated response rates are (po, p1) = (0.2,0.4), P(reject Hy)=0.39 (vs 0.22) when
(pc,pr) = (0.3,0.3) , and P(reject Hp)=0.51 (vs 0.25) when (pc, pr) = (0.4,0.4). When
using Carsten’s designs, if there is no difference between the treatment and control arms,
and even if the treatment arm has a poorer response rate than the control arm, there may still
be a substantially increased probability of rejecting Hy and concluding that the difference
in response rate is of clinical interest. This is of particular concern as a key advantage of
randomised trials over single-arm trials is greater accounting for such deviations from the

specified response rates [43].

3.2.4 Comparison of decision space

Given the difference in test statistics used by our design and Carsten and Chen [17], it is
worthwhile to compare the decision spaces of these approaches. Using design parameters
(a,B,po,p1) = (0.15,0.2,0.3,0.5) as per Table 3.2, in Figure 3.9 we show the decision
spaces of the pg,/;-minimax design realisations for these two designs. In the block design
(with block size two), the region indicating that the trial will continue is a long, thin line
that narrows to a point as N is reached. This bears some resemblance to continuation region

of Wald’s SPRT [14], though that region does not narrow. The shape shows how stopping
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P(reject H), Ho—optimal design for g=0.2, p=0.4
Block size 2 Carsten
0 0 0 0.02 0.03 0.09 022 0 0 001 005 013 0.25 0.39
0.6- 0 0 0.02 004 0.12 0.25 0 0 0.17 0.33
P(reject K
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Fig. 3.8 Probability of rejecting Hp, for the pg-optimal block size two design
(r,N,6F,0g) = (5,96,0.115,0.964) and the Carsten design (ry,n;,r,N) = (2,20,7,116) un-

der (@, B, po, p1) = (0.15,0.2,0.2,0.4).

decisions can be made earlier than for the Carsten design, where the corresponding region

for continuation is wider throughout.
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(a) Block design: {r =4,N =80, B=1, 6y =
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(b) Carsten design: {r; =4,n; =40,N =68}.

Fig. 3.9 Decision spaces for pg,-minimax design realisations, (&,f,po,p1) =

(0.15,0.2,0.3,0.5).
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3.2.5 Real data example

A trial that has been used previously as an example in comparing two-arm binary out-
come trial designs is CALGB 50502, a randomized phase II trial for the treatment of
Hodgkin Lymphoma [97, 99, 101]. The design parameters of the trial are (a, 8, po, p1) =
(0.15,0.20,0.70,0.85). Optimal designs for this set of design parameters were sought for the
designs of Jung, Carsten and Chen, Chen et al. [46, 17, 16] and the block designs, using the
same methods as for the main comparisons. The maximum sample size searched over was
200, with the exception of the Carsten and Chen design, where the maximum sample size
was 400. However, no feasible designs were found using the Carsten and Chen design. This
is not surprising, as Chen et al. [16] showed that the maximum and expected sample size of
the Carsten and Chen design increases rapidly with pg, reaching N = 278, ESS(po, po)=162
for design parameters (o = 0.05,8 = 0.1, pg = 0.6, p; =0.9). Table 3.4 shows the py- and
p1-optimal and po- and p;-minimax designs for the remaining designs. The po-minimax and
p1-minimax designs were again identical. The po- and p;-optimal block designs reduce ESS
by approximately one third compared to the existing designs, at the expense of increased
maximum sample size. The maximum sample size for the pj/;-minimax designs are sim-
ilar across all four two-arm designs, in the range [122,128], though here ESS(po, po) and
ESS(po, p1) are superior for the block designs compared to the existing designs.

For the design parameters in this example, a standard two-arm trial with a one-sided
hypothesis test and no early stopping has sample size N = 108, while the equivalent single
has sample size N = 31. As such, ESS(po, po) for both block designs are closer to the single-
stage single-arm sample size than the two-arm sample size under the pgy- and p;-optimality

criteria.
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ri ny r Narm N ESS(po,p()) ESS(pQ,pl) GF GE
Single-stage — — — 54 108 108 108 — —
po-optimal
Simon 10 14 25 33 33 20.7 30.2 — —
Jung -1 54 6 73 146 94.6 135.1 — —
Chen 0 46 6 72 144 93.8 124.6 0.0000 1.0000
Block2 — — 6 99 198 61.1 79.4 0.1108 0.9928
Block8 — — 4 88 176 64.4 87.7 0.3391  0.9965
p1-optimal
Simon 4 7 23 30 30 219 28.3 — —
Jung 3 112 5 62 124 114.1 121.8 — —
Chen 1 98 6 61 122 102.9 113.2 0.0000 1.0000
Block2 — — 6 99 198 61.1 79.4 0.1108 0.9928
Block8§ — — 6 92 184 66.4 83.5 0.2730 0.9866
Po/1-minimax
Simon 20 26 22 29 29 26.5 28.4 — —
Jung 3 112 5 62 124 114.1 121.8 — —
Chen 0 92 6 61 122 102.1 1134 0.0000 1.0000
Block2 — — 5 62 124 96.4 95.9 0.0064  0.9960
Block8§ — — 5 64 128 80.1 91.7 0.1304 0.9887
Table 3.4  pg-optimal, pr-optimal  and  pg,-minimax  designs, for

(o, B, po. p1)=(0.15,0.20,0.70,0.85).

Narm: number of participants per arm.
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3.3 Discussion

This chapter introduces a new design for two-arm phase II binary outcome clinical trials.
While sequential monitoring has previously been used in conjunction with NSC, this design
is novel as it uses SC to reduce ESS. Curtailment may occur due to observing either a high
or low response rate on the treatment arm compared to the control arm. Participants are
allocated in randomised blocks, and trial results are noted after each block and compared to
specified stopping boundaries. The trial will end if the required final difference between the
arm response rates is either certain to be reached or certain to not be reached. Additionally,
the trial will end if the CP is either greater than some upper threshold g or less than some
lower threshold, 6. These thresholds, in combination with the maximum sample size N, the
required final difference in treatment arm response rates r and desired type-I error-rate and
power determine the stopping boundaries.

The probability of rejecting the null hypothesis is controlled be at most & when pc =
pr = po and at least 1 — B when pc = po, pr = p1. However, if the true response rates differ
from the specified response rates, the probability of rejecting the null hypothesis may be
affected. This has been addressed in Section 3.2.3. For the proposed designs, the type-I
error-rate is maximised at pc = pr = 0.5, and so this error rate could be controlled over
the interval [0, 1] by setting po = 0.5. However, this choice may not accurately reflect an
investigator’s belief regarding the anticipated response rates.

The proposed block design was compared to three existing designs, described in Jung,
Carsten and Chen and Chen et al. [46, 17, 16]. All three designs include an interim analysis,
while the designs of Carsten and Chen and Chen et al. also use NSC. A comparison between
the proposed design and the three existing designs was undertaken using a loss function, a
weighted sum of three optimality criteria. The type-I error-rate was set to @ = 0.15 and power
to 1 — B =0.8, as in Table 1 of Jung [46]. Five sets of response rates (po, p1) were examined.

For low values of pg, only the Carsten and Chen design was superior to the proposed block
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design. The superior performance of the Carsten and Chen design for low values of pg has
been previously noted by Chen et al. [16]. However, not discussed by Carsten and Chen nor
Chen et al. is sensitivity of the Carsten and Chen design to deviations from the specified
response rates. Such deviations can lead to a considerable increase in the probability of
rejecting Hy when the treatment is not sufficiently superior to control. For greater values of
Po, the block design is superior to the compared designs for most combinations of weights,
in terms of expected and maximum sample size, even when using blocks of size eight. Under
the given requirements for type-I error-rate and power, the ESS of the design with block size
eight is likely to be less than or approximately equal to that obtained using the designs of
Carsten and Chen or Chen et al. for py > 0.3, and with the degree of monitoring reduced by
a factor of four or eight respectively.

The designs were also compared using a real-life example, used previously to compare
two-arm designs [46, 99, 101]. When minimising ESS under either pc = pr = pg or
Pc = po, PT = P1, the reduction in ESS for the proposed block designs was considerable
compared to existing designs. When minimising maximum sample size, the proposed block
designs had comparable maximum sample size and smaller ESS compared to existing designs,
again with monitoring frequency reduced considerably when using blocks of size eight.

The designs of Carsten and Chen and Chen et al. [17, 16] are examples of continuous
monitoring, where, in contrast to the two-stage designs of Simon [5] and Jung [46], the data
are subject to more frequent interim analyses. When continuous monitoring is used in a
clinical trial, the actual sample size is dependent on the number of participants’ responses
available at each interim analysis. Monitoring may take place after every participant or
less frequently [21]. Continuous monitoring is of greatest value when endpoint length is
short, for example if, in oncology, tumour response is measured over short periods of time,
though it is possible to use curtailment and continuous monitoring for endpoint lengths

that may be considered long [32]. Given the low recruitment rate of randomised controlled
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trials, for example, the median rate of 0.92 participants per centre per month reported in a
review by Walters et al. [20], the effect of any lag on observed sample size is likely to be
small. Furthermore, trial recruitment rates are generally lower than expected, favouring more
frequent monitoring [19].

The designs of Jung, Carsten and Chen and Chen et al. [46, 17, 16] use what are known
as binding stopping rules, whereby stopping is mandatory when any pre-specified stopping
boundary is reached. This is in contrast to non-binding stopping rules, where, despite
reaching a stopping boundary, a trial may continue for other reasons, for example, to gain
more information regarding adverse events [103]. Despite binding stopping rules being
present, some trials have disregarded the planned stopping rules in practice using the same
rationale as NSC, that is, the final decision is known with certainty due to the results so far.
Such curtailment has been used both due to low and high observed response rates, and can
only have been done by reviewing the results frequently. Numerous examples of this were
described in Section 1.1.3.1. As such, continuous monitoring is being used in some trials
where none is specified.

An advantage of using the block design over existing curtailed designs is that fewer
interim analyses may be required. While Carsten and Chen’s design [17] requires monitoring
after every pair of participants and Chen et al.’s design [16] after every single participant, the
degree of monitoring required for the block design depends on the block size used, and may
be specified by the investigator. Furthermore, use of larger blocks reduces computational
burden with regards to the search for design realisations, with only a small increase in ESS.

This chapter shows the benefit of using the proposed approach, which combines SC,
randomised blocks and other features in a novel way. It provides the exact distribution of a
trial’s outcomes, meaning that its operating characteristics are known without sampling error.
Compared to other existing two-arm designs, the proposed approach considerably reduces

ESS.



Chapter 4

Multi-outcome trials with a generalised

number of efficacious outcomes

4.1 Brief description of existing multi-outcome multi-stage
designs

The main limitation of existing work is that current multi-outcome multi-stage designs focus
almost entirely on evaluating if all outcomes show evidence of efficacy or if at least one
outcome shows evidence of efficacy. While Delorme et al. [72] and Mielke et al. [73] provide
multi-outcome designs that evaluate when a general number of outcomes show promise,
these designs are single-stage only. Using a single-stage design means that there are no
interim analyses and no decisions made until the end of trial. In single-stage multi-outcome
trials, the sample size is fixed and every outcome is measured for every participant. We
propose two designs that provide this design characteristic in a multi-stage setting. Beyond
this, many multi-outcome multi-stage designs allow only a maximum of two outcomes, while
the proposed designs permit any number of outcomes. Finally, one of the two proposed

designs permits ceasing measurement of an outcome that is performing poorly. While this
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design characteristic is not novel on its own, we believe that this property has not been
implemented in a design that evaluates multiple outcomes powered under the condition of a

general number of outcomes showing promise.

4.2 Proposed designs

In both proposed designs, we subsume the concepts of co-primary and multiple primary
outcomes into a general framework of single-arm designs that permit rejection of a null
hypothesis Hy when promising effects are observed on some specified m out of K outcomes.
We apply this concept to multi-outcome multi-stage design, allowing the trial to end at
any stage, for either a go decision (reject Hp) or a no go decision (do not reject Hy). The
first proposed design permits any number of stages J. This design will be compared to a
multi-stage composite design, where again the trial may end at any stage, for a go or no go
decision, and a single, composite outcome is evaluated at each stage. The second proposed
design limits the number of stages to two, and permits dropping poorly-performing outcomes
at the interim analysis while still allowing the trial to end at this point for a go decision or no
go decision. This design is compared to a multi-outcome single-stage design that, like both
proposed designs, rejects the null hypothesis when promising effects are observed on m out

of K outcomes.

4.3 Methods: Multi-outcome multi-stage design with gen-
eral number of required efficacious outcomes

Let K be the total number of (continuous) outcomes that will be measured in the trial. Let
J be the maximum number of allowed stages of the design. The number of participants in

each stage of the trial is denoted by n. The maximum sample size is then N = Jn. We let
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Xir,i=1,...,Jn,k=1,...,K be the response in participant i for outcome k. The responses

are assumed to have the following multivariate normal distribution:

2
Xi1 M1 Oj P120102 ... P1kO10Kk
X; 0,0 c? 0,0,
i2 2%) P21020] 5 ... P2K020K
~ MV Nk ,
2
Xik Uk Pk10kO1 PK20KO2 ... Ok

As noted, we assume that interest lies in whether m or more outcomes show promise.

Using a single hypothesis approach, the null and alternative hypotheses are
K K
Hy: Y I(ue > 0) <m, Hy: ) I(y>0) >m. 4.1)
k=1 k=1
After each stage j, an interim analysis is undertaken at which point the trial may stop
for either a go decision or no go decision. The lower and upper stopping boundaries at
stage j are denoted f; and e; respectively. The test statistic for outcome k at stage j is
Zik = Tix/ I = Ty /jn/sz, where £, = Z{leik/jn is the observed effect for outcome
k at analysis j. The trial will end and the null hypothesis will be rejected if m of the test

statistics Zj;, simultaneously exceed upper stopping boundary ej, i.e. if

K
Z I(Zjx > ej) > m,for any j.
k=1

Conversely, a trial will end and the null hypothesis will not be rejected if K —m + 1

outcomes are simultaneously lower than lower stopping boundary f;, i.e. if
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K
Z]I(ij < fj) > K—m+1,for any j.
k=1

This is a simultaneous multi-stage approach. This is in contrast to a separate multi-stage
approach, where there are K separate hypotheses, one for each outcome, each of which
may be rejected (or not) independently of one another [57, 68]. In a separate approach, a
decision to reject or not reject some hypothesis Hy, k = 1,...,K is permitted at any stage,
and occurs when the corresponding test statistic crosses an upper or lower stopping boundary.
Once a decision has been made regarding Hj, measurement of outcome k will end. This
reduces the number of outcome measurements made. Reducing the expected number of
measurements (ENM) may be of particular interest if there are some outcomes that we
desire to minimise, either due to cost or otherwise [104], and using the separate multi-stage
approach is one way of doing this. A visual comparison is provided in Figure 4.1, where
we show an example design with J = 4 stages, K = 3 outcomes and number of outcomes
required to show promise m = 2. In this example, and for the first proposed design, we use
stopping boundaries of the form proposed by Wang and Tsiatis [105], for which the stopping
boundaries can be characterised by scalars C and A: e¢; =C A0S j=1,....J. Similarly
fi=—-CjA % for j=1,...,J—1and f; = e, for j = J to ensure a decision is reached by
the final stage. This is a generalisation of the boundaries proposed by Pocock [106] and
by O’Brien and Fleming [107], which are special cases equivalent to A= 0.5 and A =0
respectively. Outcome-specific boundaries Cy, k = 1,. .., K, could theoretically be obtained
through K-dimensional optimisation. However, given the definition of type-I error-rate used,
detailed in Section 4.3.2, there are potentially infinite sets of K constants that satisfy any
required type-I error-rate. Therefore, we do not consider this possibility further. Figure 4.1a
shows the separate approach: at stage 2, outcome 1 crosses the upper boundary and is
no longer measured; at stage 3, a second outcome cross the upper boundary, meaning

that m = 2 outcomes have separately shown promise, and the trial ends. In Figures 4.1b
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and 4.1c, the same initial data are shown, but in a simultaneous approach. Now, having
a single outcome cross the upper boundary at stage 2 (or any stage) has no effect on the
subsequent number of outcomes measured — all outcomes continue to be measured until
either m outcomes simultaneously cross the upper boundary or K —m+ 1 = 2 outcomes cross
the lower boundary. In the example in Figure 4.1b, outcome 1 crosses back over the upper
boundary at stage 3, and the trial continues. At stage 4, K —m + 1 outcomes simultaneously
cross the lower boundary and consequently a no go decision is made. In the example in
Figure 4.1c, outcome 1 remains above the upper boundary at stage 3, and so m outcomes

have simultaneously crossed the upper boundary, and consequently a go decision is made.

Example: separate stopping (go decision) Example: simultaneous stopping (no go decision)
o 27 o 21
2 Outcome k] Outcome
8 0- 1 E 04 1
‘U)_' - -2 E/_,) = -2
7] 3 7] 3
Q Q
[ 24 = 5

1 2 3 4 1 2 3 4
Stage

Stage

(a) Example of separate stopping approach. Go (b) Example of simultaneous stopping approach.

decision at stage 3. No go decision at stage 4.

Example: simultaneous stopping (go decision)

o 27
=]
o Outcome
T
& 0] = o3
@ 3
Q
E o,

1 2 3 4

Stage

(c) Example of simultaneous stopping approach.
Go decision at stage 3.

Fig. 4.1 Examples of separate and simultaneous stopping approaches, K = 3,m = 2.

4.3.1 Covariance structure

The covariance structure must be derived for the multivariate normal distribution of the test

statistics across differing stages and outcomes. Although the proposed designs have sample
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size jn at stage j, that is, with an equal number of participants at each stage, for the sake of
generality we derive the covariance matrix for a general number of participants at each stage.
Define nj, j=1,...,J to be the sample size at stage j, and N; to be the total sample size at
stage j, thatis, Nj=n;+ny+---+n;= Z{:l n;. For a single outcome k, the covariance of

two test statistics at stages ja, jB, jp > ja 1S

coV(Zj, ks Zjgk) = (\/ /A > ks \/ ngk)
— JA JB COV k
ot \| of
.]A JB 1 f 1 Z
= COV | — sz: sz
Gk Gk Nj, Nj, -

Nj, N;j
_ JA ﬁ__ cov (Zsza ZXlk)

Gk Gk NJANJB

1 i
- Z COV zka lk
]Bl

_ [N (4.2)

For a single stage j, the correlation coefficient between two test statistics for outcomes

ki,ky, ki # ky is py,k,. The covariance cov(Zj,,Zj,) is then
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cov(Zjk,, Zjk,) = cov

U, Ui,
9
2 . 2 .
\/le/nl \/Gk /nj
n; n;
J J
= —5 Cov ;u“kl ) .u'kz)
G
ky kz

j
e E WL 3N
O-kl sz j i=1

1

= 5 ——cCcov Z’X,k1 , Zszz
”j”lesz i=1

1 o
T Z cov (Xik, » Xik,)
I’lﬂ /le sz i=1

1

=) 1Pk, k; Ok, Ok,
n; \/ o-kl sz

= Prkks (4.3)

The covariance of two test statistics for stages ja, jp, jg > ja and outcomes ky, ka2, k| # ko,

18
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N
JA JB n
Cov (ZjAkl 7ZjBk2) = (H ‘uJAkl’ \/ G_anujBkz>
k1 ko
_ JA JB (A ' A
— o R cov (@ i)
2 2 JAK1 7 ]BR2
O-kl sz
JA i COov ZXlkl s ZXlkz
Gk] sz ]A i= JB i=
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= —— ——— COoV X; X;
le N N Z lk]?Z ik

1 Nig
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1
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\/ O, % NialNjs
N.
= 1\,—;/;Pk1k2 (4.4)

Combining Equations (4.2), (4.3) and (4.4), the covariance cov(Z iakisZ jBkz) for any

JA,JB, jJB = ja and ki, k; can be stated as

( 3\
1 ifjA:jBandk1:k2
Pkiky if j4 = jpand k; #£ ky
COV(Zjski Zinka) =4 [y ' . 4.5)
e if j4 # jpand k; = kp
i
N; e . .
Puky\| e ifja # jpand ki # ko
\ Vs

This allows the construction of a covariance matrix for test statistics, for any number of
stages J and outcomes K. This covariance matrix is necessary to describe the multivariate

normal distribution of the test statistics, shown in Equation (4.6) directly below. Note: in this
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equation, each element of the covariance matrix cov(Zj,Zj) is presented simply as jk, jk to

save space.
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4.3.2 Type-I error-rate and power

Define R([|K,m,J,C,A) as the probability of rejecting the null hypothesis when the true out-
come effects are equal to i = (U, U, ..., Uk ), for some design realisation characterised by
K,m,J,C and A. The probability R(u|K,m,J,C,A) can be readily evaluated using simulation

(described in Section 4.3.3). We define type-I error-rate as

o' = R(p = 0|K,m,J,C,A).

That is, we control the type-I error-rate under the scenario where g = 0. Cook and
Farewell [58] have previously used this manner of type-I error control in a multiple outcome
setting. This is in contrast to Lehmann and Romano [108], who treat each hypothesis
separately and describe controlling the probability of rejecting k true hypotheses as the
k-familywise error rate (where k = m here). Dmitrienko et al. [109] refer to this as the
generalized familywise error rate while Grayling et al. [71] describe this as the a-generalised
type-I familywise error rate. The familywise error-rate is the probability of rejecting at
least one true null hypothesis, with the understanding that this error-rate increases as the
number of hypotheses increases. Our focus is on the probability of making a certain decision,
specifically, of rejecting the null hypothesis, as the design is framed using a single null
hypothesis, rather than a separate null hypothesis for each outcome. This makes direct
comparison with weak and strong control of the familywise error-rate difficult. While weak
control of the familywise error-rate at some level o ensures that the familywise error-rate is
less than or equal to & when all null hypotheses are true and strong control ensures this for
all configurations of null hypothesis, our design ensures that the probability of concluding
that at least m outcomes are efficacious when all outcomes have effect size zero is less than
or equal to «. In the absence of separate hypotheses, this definition of type-I error-rate

controls addresses the same underlying issue as familywise error-rate, that is, making an
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incorrect conclusion. Weak control is somewhat analogous to controlling type-I error-rate
under a specific set of outcome effects (for example, g = 0) while strong control is somewhat
analogous to controlling type-I error-rate at every set of outcome effects such that Hy is true.

We define power as
1-B*=R(pn=38p|K,mJ,CA),

for some vector of effect sizes 85 = (8p;,8p2,.-.,0px) for which we would like to
control the probability of rejecting Hy.

Let the required type I and type II errors be o and 3. We require designs that satisfy the
conditions o* = R (i = 0|K,m,J,C,A) < ocand 1 — B* =R (u = 8g|K,m,J,C,A) > 1—B.
The stopping boundaries f;,e; are then determined by one-dimensional optimisation to find
the value of C that minimises (o — a*)?. With a* obtained and C fixed, 1 — B* is found for
some small initial n, which is increased until the required power is reached.

Though we choose to control type-I error-rate and power at one particular point each,
R(u|K,m,J,C,A) < o and R(n|K,m,J,C,A) > 1— B for (two different) K-dimensional
regions. One may be interested in not only controlling type-I error-rate and power at a single
point, but across certain regions. This idea is explored further in Section 4.4.1.

With regards to powering the trial for a certain point & g, we specify anticipated lower and
greater effect sizes for each outcome, 8¢ = (81, 602, - - -, %k ) and 81 = (811, 612, .., 01k).
We then set 5[3 = (811, O1m, Bo(m+1)s--+» Ook )- That is, exactly m outcomes are equal to
their greater anticipated effect &y, while K —m outcomes are equal to their lower anticipated
effect 8or. This is analogous to the least favourable configuration (LFC) described by Thall
et al. [110] in the context of multi-arm trials. In such trials, the probability of correctly
concluding not only that a promising treatment exists, but also identifying that treatment, is
of obvious importance. However, in the context of a single-arm trial with multiple outcomes,

we place prime importance on the probability of correctly concluding that some subset of m
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or more outcomes show promise, rather than additionally correctly identifying the outcomes
in this subset. In some situations, it may be of great importance to correctly identify the
outcomes that show promise. If so, we can redefine power as the probability of both rejecting
the null hypothesis when at least m outcomes have a promising effect size and correctly
identifying m of those outcomes.

Above, the m “working” outcomes are taken to be simply the first m outcomes, without
loss of generality. They may alternatively be set to be the m smallest standardised outcome
effects d1x/or,k = 1,...,K. This may be of use when the anticipated outcome effects, or
anticipated variances, differ. In such a case, it would be desirable to power a trial to correctly
conclude that m outcomes show promise when such promising outcomes have the m smallest
standardised anticipated effects; in single-outcome trials, identifying small effects requires
a larger sample size than identifying large effects, and so power is minimised when the m

promising outcomes are those with the m smallest standardised effect sizes.

4.3.3 Integration vs. simulation

For both multi-outcome approaches, simulation rather than integration is used to obtain design
realisations and their operating characteristics. Grayling et al. [71] present the following
notation that fully characterises the progress and conclusion of a MAMS design based on
K outcome-specific hypotheses Hy, 1,...K: ¥ = (¥, %¥,,...,Pk), @ = (@1, m,...,0k),
where W = 1 if H; is rejected, Wy = 0 otherwise and Q; = j where j is either the stage at
which H, is rejected or not rejected or where the trial is stopped. In our multi-outcome multi-
stage approach, the test statistics of all outcomes at stage j must considered simultaneously.
There are no outcome-specific hypotheses that may be rejected independently of others. It
is not sufficient to know that an outcome has crossed a boundary: an outcome may cross a
boundary and no trial decision is taken. It is necessary to know the state of each outcome’s

test statistic, that is, which boundary it has crossed (if any), at every stage. As such, it is not
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possible in this approach to characterise a trial’s progress using two K-length vectors. What

is required is J K-length vectors or a J X K matrix, for example:

1 12 1K 1 iijk>ej
‘{121 T .
P=1 . | where Wi =190 ife;>Zy>
W Wik |1 i Z < S

In this matrix, each row represents a single stage. As in Grayling et al. [71], the probability
of a particular instance of trial progress can be found through a JK-dimensional integration.
Each W j; = {—1,0, 1} as defined above has three possible states, and so there are a maximum
of 3/K possibilities for the progress of the trial, akin to the “paths” of binary outcome trials
described in Chapter 2, and the probability of each can be calculated using the corresponding
JK-dimensional integration. The number of possibilities of interest, and so the number of
JK integrations required, can be reduced from 3/X. For example, the probability that a trial
will end at the first stage need only consider possible states at stage 1. Other reductions
are possible, but the degree of reductions required may need to be considerable to manage
even a modest trial of of J = 3 stages and K = 3 outcomes (3° = 19683 multiple integrals).
Conversely, on a computer with an 17-3770 processor and 16GB RAM with no parallelisation,
it is possible to simulate 10° multi-outcome multi-stage trials of our approach in under 10

seconds.

4.3.4 Design search

We seek to obtain the design realisation that minimises N while satisfying the required type-I
error-rate and power. As stated above, the design search for this approach uses simulation.
Specifically, we simulate aggregated trial results by simulating JK test statistics, representing

the test statistic at each stage j and for each outcome k. We simulate from a multivariate
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normal distribution consisting of a mean that is a null vector of length JK and the covariance
matrix in Equation (4.6). This approach was suggested by Wason and Jaki [111].

The remaining components of the design search for this approach are described using
pseudocode below. Briefly, an optimiser is used in conjunction with Algorithm 4 to find the
constant C and corresponding set of lower and upper boundaries that minimise (o — ot*)?.
This means that the final design will have a type-I error-rate a* =~ . To strictly ensure
a* < o, one might choose to find boundaries by minimising the discontinuous function
(a—o*)?if o* < a, 1if a* > a. With a* obtained and C fixed, 1 — B* is found for some
small initial n, which is increased until the required power is reached. This is shown in

Algorithm 5.

4.3.5 Composite outcome design

A simple composite outcome can be created at each stage j by summing the K test statistics
Z k. Let the composite test statistic at stage j be Z; = kfl Z k. Each Zj; has been standardised
(see Section 4.3), therefore each Z; is standardised. By taking the sum of the outcomes, all
outcomes are being weighted equally. An investigator may choose to apply unequal weights
to the outcomes. We undertake a design search analogous to the multi-outcome design
search described above, again to find the design realisation that satisfies type-I error-rate
and power while minimising N. The same simulated data is used, with the test statistics
for each outcome summed to create a composite test statistic for each stage j as described.
Again an optimiser is used in conjunction with Algorithm 4 to find some constant Ccopp
and corresponding stopping boundaries that result in an acceptable type-I error-rate, that is,
o < o. The procedure in Algorithm 5 is then used to find the smallest sample size N that

will result in an acceptable power, thatis, 1 — * > 1 — 3.
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Algorithm 4: Function pReject: for finding R() and expected number of stages.
Input: C,J,K, m,A, o, TS (matrix of test statistics)
lower.bounds < call findLowerBounds(C,J,A);
upper.bounds <« call findUpperBounds(C,J,A);
nsims < nrow(7S) ;
for each i in 1 to nsims do
for each jin 1 to J do
TS.current.stage <— call findCurrentTSStage(TS,i,J,K);
if sum(TS.current.stage > upper.bounds[j]) > m then
goli, jl1 < 1;
nogoli, j] + 0;
else
if sum(TS.current.stage < lower.bounds[j]) > K —m+ 1 then

nogoli, j] < 1;
goli, j] < 0;

else
goli, j1 < 0;
nogoli, j] < 0;

end

end
end

go.nogo.decision[i] < call findEarliestDecision(gol[i, |, nogo[i, ]) ;
stop.stage|[i] <— call findStageOfEarliestDecision(go[i, ], nogol[i, ]);

end
go.decision.count <— sum(go.nogo.decision)==“go” ;
p.reject.null <— go.decision.count/nsims ;
expected.stages.count <— sum(stop.stage)/nsims;
if exists(a) then

‘ value.to.minimise < (p.reject.null —a)%;
end
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Algorithm 5: Find optimal C for type-I error-rate control, then find smallest value
of N that satisfies 1 — 8* > 1 — B. Input: J,K,m,A,a,TS,8g, 3,0, nmin.
C < call optimise(pReject(J,K,m,A, a, TS));
typelerror <— call pReject(C,J,K,m,A, o, TS);
H < 85 // mu can be set to any vector, if another definition of

power is desired;
pow < 0;
n.current < nmin-1;
while pow < 1 —f3 do
n.current <— n.current+1;
# + call findInformation(current.n, ©);
T < call findEffects(u, .%);
TS.current < call addEffectsToTS(7,7S);
pow < call pReject(C, n.current, TS.current, 1 — f3)
end

4.3.6 Comparing multi-outcome and composite designs

The multi-outcome and composite approaches were compared by obtaining design realisa-
tions that satisfied the required type-I error-rate and power, set at & = 0.025 and 1 — § = 0.8.
These o and 1 — B were chosen to align with those used in Sozu et al. [49]. The anticipated
outcome effect sizes were setas &gy = 0pp ==k =090 =0.2and 8 =01 =---=S1x =
01 = 0.4, again in alignment with Sozu et al., and 8[; =(011,---,O1m, 50(,”“), ...,00K). as
described in Section 4.3.2. For simplicity, the variance of each outcome is fixed and equal
to one, that is, sz =0?= 1,Vk. A =0 is used in the calculation of stopping boundaries,
equivalent to the stopping boundaries proposed by O’Brien and Fleming [107]. The reported
operating characteristics are the probability of rejecting the null hypothesis and ESS under
the LFC.

We firstly compare rejection regions for single-stage multi-outcome and composite
designs. This is followed by comparing design realisations for varying values of correlation
p. Correlation py x, = p, k1 # k» between all outcomes was equal, and the values examined

were p € {0,0.1,...,0.8}.



140 Multi-outcome trials with a generalised number of efficacious outcomes

It is also of interest to examine the consequences of specifying different true outcome
effects, given some anticipated outcome effects & g- When the true effect sizes differ from
the effect sizes anticipated in the designs, the performance of both designs will be affected.
While we may anticipate which approach may perform better under certain conditions, we
wish to quantify these relative changes in performance. We therefore search for design
realisations as described above, for both multi-outcome and composite approaches, and note
the effect of changing the true outcome effects . The required type-I error-rate and power
and anticipated outcome effect sizes specified above (a, 8, 8, 61,6 ) were also used here,

with a shared correlation pyx, = p = 0.3, k1 # k».

4.4 Results: Multi-outcome multi-stage design with gen-

eral number of required efficacious outcomes

4.4.1 Comparison of single-stage rejection regions

The multi-outcome and composite design approaches lead to different rejection regions.
An example of this is shown in Figure 4.2, where a design realisation for each approach
has been obtained and the final rejection regions overlaid. The outcome design parameters
were {K =2,m = 1,J = 1}, that is, single-stage designs. For a composite design, let the
lower and upper stopping boundaries for a trial of j stages be f¢) = ( fl(c), fz(c), s fj(c))
and el¢) = ( gc)’egc) ,...,esc)) respectively. For this particular composite design, where
K = 2,J =1, the null hypothesis will be rejected at the end of the trial iff the sum of the test
statistics Z1,Z1, is greater than some corresponding efficacy boundary egc), or in general,
(ZkK: 1 Z. Jk) > egc). For this particular multi-outcome design, the null hypothesis will be
rejected at the end of the trial iff either test statistic exceeds some corresponding efficacy

boundary e1, or in general, (Zszl [(Zy > e J)) > m. Thus for a general number of outcomes

K, rejection of the null hypothesis using the composite design is dependent on all K outcome
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test statistics, while rejection of the null hypothesis using the multiple-outcome design occurs

if the test statistics of any m outcomes show sufficient response.

Rejection regions

Design
Comp
MO

|
[N

Fig. 4.2 Comparison of final rejection regions for multi-outcome design (blue) and composite
design (red), for {K =2,m=1,J = 1}.

The true effect sizes of the outcomes may differ from those specified in the design, and
the nature of these differences may affect the performance of the designs in different ways.
For example, we expect the multi-outcome approach to outperform the composite approach
when some outcomes have a harmful (u; < 0) effect, as these outcome effects will dilute any
positive effects observed on the remaining outcomes. The opposite effect may occur when

more than m outcomes have some moderate effect. In this case, these moderate effects may
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combine under the composite design to increase the probability of rejecting null hypothesis
compared to the multi-outcome design. We also expect the multi-outcome approach to
perform better than the composite approach when fewer than m outcomes have large effect
sizes, as the additive aspect of the composite design may cause these outcomes’ effects to
outweigh the lack of effects in the remaining outcomes, again increasing the probability of
rejecting null hypothesis compared to the multi-outcome design. Conversely, we expect the
composite approach to perform better when more than m outcomes true effect sizes at least
as great as those anticipated, for the same reason. In this case, the outcomes’ large effects

would make correct rejection of the null hypothesis more likely.

4.4.2 Varying correlation

Figure 4.3 compares the multi-outcome design to the composite design in terms of ESS under
the LFC. Define ESS);o and ESS.,,,, as the ESS under the LFC for the multi-outcome and
composite designs respectively. The ESS ratio ESSy0/ ESScomp under the LFC is shown
as correlation p varies (p € {0,0.1,...,0.8}). The number of stages was J = 3, with the
following sets of {K,m}: {K=2m=1},{K=4,m=2} {K=6m=1},{K=6m=
3},{K =10,m =5} . A value of less than 1 means that the ESS under LFC is smaller for
the multi-outcome design compared to the composite design. Also of interest is the ENM for
a given design. In these two approaches, all K outcomes are measured for n participants at
each stage j that takes place. As such, ENM in both approaches is simply K x ESS, and so
ESSyo/ ESScomp = ENMyo / ENM_opp. ESS ratio decreases as correlation increases. This
means that when correlation is low, ESS is relatively poorer on the multi-outcome design,
while when correlation is high, ESS is relatively better on the multi-outcome design. The
change in ESS ratio as correlation varies is overwhelmingly due to the change in ESS.,,,,, as
correlation increases. While ESS increases with correlation for both approaches (Figure 4.3,

right), the increase is greater for the composite design. For the composite designs found, as
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correlation increases, so too does the constant C that determines the stopping boundaries. The
boundaries are chosen to ensure the correct type-I error-rate. As the composite test statistic
1s the sum of the outcome test statistics, increased correlation between outcomes makes
type-I errors more likely. Using more extreme upper boundaries counteracts this to ensure
an appropriate type-I error-rate. However, using the boundaries of Wang and Tsiatis [105]
means that extreme upper boundaries are accompanied by extreme lower boundaries. Two
contrasting examples are shown in Figure 4.4, using A = 0 as for all design searches in this
chapter. The maximum sample size N chosen is the smallest N that results in adequate power.
However, with high upper boundaries resulting from having highly correlated outcome test

statistics, N must be increased to ensure the design has adequate power.

ESS ratio under LFC ESS under LFC
100 4
2.0-
8 K, m
- 754 K=10, m=5
= K=2, m=1
£ %) — K=4, m=2
S 5 — K=6, m=1
7 a o K=6, m=3
w w >07:
O
= \ D .
% 10- ) esign
T 254 — Composite
~ -- MO
0.5 : : : : ! ! ! ! !
00 02 04 06 08 00 02 04 06 08
Correlation Correlation

Fig. 4.3 Change in ESSy0/ESScomp as correlation varies. Required error-rates o = 0.025,
B = 0.2, design parameters J = 3,8¢ = 0.2, 8 = 0.4. Simulations: 10°.

The disparity in ESS between the methods is greatest when K = 6,m = 1, the only
instance where m/K < 0.5. The improvement in ESS under the multi-outcome design
compared to the composite design as correlation increases is similar for the remaining
combinations, where m/K = 0.5. Among these combinations, those with a smaller number

of outcomes K appear to benefit more from using a multi-outcome approach compared to
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Fig. 4.4 Examples of Wang and Tsiatis boundaries for three-stage trials, using A=0 and
C={2,10}.

a composite approach. For these composite designs, stopping boundaries are independent
of m, as type-I error-rate (which is driven by the stopping boundaries) is calculated under
the global null. Therefore the boundaries for, say, {K = 6,m = 1} and {K = 6,m = 3} differ
only due to simulation error. However, power is calculated under the LFC, u = & B As such,
the observed outcome effects are greater as m increases. When m /K is small, for example,
when {K = 6,m = 1}, rejecting H is less likely, and so N increases to compensate for the
lack of power. This explains the larger sample size for the composite design using design
parameters {K = 6,m = 1}. Furthermore, when correlation is high, the K —m null effects are
less likely to contribute enough to the composite test statistic to increase power, exacerbating

the need for a larger sample size.

4.4.3 Varying true outcome effects

In Figure 4.5, the ESS ratio is compared for a range of different true effects, for a single
design realisation of each approach with {K = 2,m = 1,J = 3}. In this case, the ESS

ratio was obtained for every combination of true effect sizes u, up € {—0.2,—0.1,...,0.4},
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with anticipated effect sizes & g = (0.4,0.2) and design parameters @ = 0.025, = 0.2,
Pk, =P = 0.3, k1 # ko, sz = 62 =1, Vk. Using K = 2 allows a grid of results to be plotted.
Correlation p = 0.3 is the point in Figure 4.3 at which ESS ratio is close to one for {K =
2,m = 1}. The design realisations are {N = 57,C = 2.256490} for the multi-outcome design
and {N = 60,C = 3.240066} for the composite design. Across all (i1, 1z) combinations in
Figure 4.5, ESS is generally relatively lower when using the multi-outcome design, including
the case where the true effect sizes are as anticipated (u; = 0.4, up, = 0.2), though at this
point the ESS ratio is close to one. The only regions where ESS is greater using the multi-
outcome design is when the “non-working” outcome has a greater than anticipated effect size
(42 > 0.2) and when both outcomes are particularly harmful (u; = —0.2, up = —0.2). In the
former case, the composite design is more likely to reject Hy sooner as the design combines
the positive observed effects of both outcomes. Similarly, in the latter case, the two negative
observed effects combine, resulting in a test statistic that causes a trial to end for a no go
decision sooner than the corresponding multi-outcome design.

Figure 4.6 shows the how the probability of rejecting Hy changes for different true effects,
for the same multi-outcome and composite design realisations as Figure 4.5. When using
the multi-outcome design, P(reject Hy) remains at least close to the required power when
either outcome has true effect u = 0.4, while when using the composite design, P(reject
Hp) decreases below the required power when one outcome has true effect 4t = 0.4 and the
other has some true effect less than 0.2. As above, the combining of outcome effects on
the composite design is responsible for this, with the lower-than-anticipated observed effect
“cancelling out” the positive observed effect to some extent. This can be seen in Figure 4.2,
where a low value for test statistic Z;; (or Zj) means that a greater test statistic Zj, (or Z11)
is required to reject Hy under the composite design but not the multi-outcome design.

Table 4.1 also compares the two approaches in terms of a single design realisation

for each approach, for a range of different true effects. In this case, the total number of
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ESSMmo/ESScomp, powered for
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Fig. 4.5 Change in ESSy0/ESScomp as true outcome effect sizes vary. Required error-rates
a =0.025, B = 0.2, design parameters {K =2,m =1,/ =3},0p; = 0.4,08, = 0.2,p = 0.3.
Simulations: 10°.
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Fig. 4.6 R(1 = 1, Up) as true outcome effect sizes vary. Required error-rates o = 0.025,
B = 0.2, design parameters {K =2,m =1,/ =3}, 65 = (0.4,0.2). Simulations: 10°.
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outcomes is increased to K = 3 while the remaining design parameters are unchanged.
The design realisations are {N = 60,C = 2.394350} for the multi-outcome design and
{N = 63,C = 4.387731} for the composite design. The ESS ratio is examined again, as
is the probability of rejecting the null hypothesis, for a range of scenarios. The ESS ratio
is greater than or equal to 1, i.e. ESS is poorer under the multi-outcome design, when
all outcomes have equal non-zero true effects. Here, the composite design benefits from
combining the observed effects. The ESS ratio is less than 1 otherwise, favouring the multi-
outcome design. The relative difference in favour of the multi-outcome design is at its
greatest when the “non-working” outcomes have a zero or harmful true effect, where the
composite design either does not benefit or is even harmed by combining outcome effects.
As in Figure 4.6, under the multi-outcome design P(reject Hp) is close to the nominal power
(or greater) when at least one outcome has a true effect equal to the anticipated effect, while
under the composite design P(reject Hy) decreases as the true effect sizes of the “non-working”
outcomes decrease, even if one outcome has a true effect equal to the anticipated effect.
When all three outcomes have some true effect that is lower than dy, e.g. tU; = Up = 3 =0.3
or U = Uy = u3 = 0.2, rejecting the null hypothesis is more likely under the composite
design than the multi-outcome design. Again, the multi-outcome design will only reject the
null upon observing effects of a particular size on m outcomes only, while the composite

design may reach the rejection region by combining these smaller observed effects.

Ui H2 M3 R(”)MO R(”)comp ESSMO/comp Description
04 04 04 0.96 0.99 1.13 All outcomes have effect 0,
04 02 02 0.81 0.82 0.99 Effects as anticipated (power)
04 00 0.0 0.76 0.30 0.87 Two outcomes have no effect
04 -02 -02 0.76 0.02 0.84 Two outcomes are harmful
00 00 0.0 0.02 0.02 0.96 Global null (type-I error)
03 03 03 0.78 0.90 1.07 All have some effect < 0;
02 02 02 0.44 0.58 1.00 All outcomes have effect 0y

Table 4.1 R(u = py, Uy, U3) and expected sample size ratios for MO design and composite
design, where K = 3,m =1,/ = 3,85 = (0.4,0.2,0.2).
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The idea that multi-outcome designs have rejection regions or spaces was introduced in
Section 4.3.2. We compare the different rejection regions of the multi-outcome multi-stage
design with the composite design for {K =2,m =1,/ =3} and {K =3,m =2,/ =3}. In
Figure 4.7, we show R(u;, ltz), the probability of rejecting Hy given true outcome effects
U1, 2. The required error-rates were o = 0.025, 8 = 0.2, with the designs powered for
outcome effect sizes yu; = 0.4, u, = 0.2. Suitable design realisations were obtained for
N = 57 (19 per stage) in the multi-outcome design and N = 60 (20 per stage) for the
composite design (as above). For this comparison, we wanted N to be equal for the design
realisations of both designs. Requiring N = 60 for the multi-outcome design meant that
power was increased, hence the power is greater than may be expected (1 — * = 0.827,
black dot on Figure 4.7a). The black dots, representing the points for which the designs are
powered, are do not lie exactly on a contour. Beyond the explanation for the increased power
of the multi-outcome design above, this is due to the discrete nature of sample size: for these
designs, sample size is increased until the required power is reached. The type-I error-rate
is determined by the stopping boundary constant C, which may take any continuous value.
Consequently, the white dots, indicating the point at which the type-I error-rate must be
satisfied, both lie exactly on a contour.

The shapes of the regions largely reflect those in Figures 4.2 and 4.6: the group of
regions within which the probability of rejection is low is approximately square for the
multi-outcome design and triangular for the composite design. The reasoning remains the
same: the multi-outcome design does not penalise a negative effect size, unlike the composite
design. In general, the additive nature of the composite design plays a strong role in the
differences between the regions.

Figure 4.8 shows rejection regions for three outcomes, powered to find two promising
outcomes 6 = (0.4,0.4,0.2) and with three stages, that is, {K = 3,m = 2,J = 3}. The

sample size on the composite design was increased so that sample size was equal across
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Fig. 4.7 Probability of rejecting Hy as true effect sizes vary. Powered for effect sizes
6p = (0.4,0.2). Design parameters K =2,m = 1,J = 3,00 =0.025, = 0.2, p;s, = p =
0.3, k1 # kp, sz =0’ = 1, Vk. White dot indicates global null g = 0, black dot indicates
point for which design is powered, g = 8 B-
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both design realisations, N = 42 (14 per stage). Again, the black dots indicating power
do not lie exactly on a contour, in contrast with the white dots indicating type-I error-rate
which do lie exactly on a contour. For us € {0.5,0.6}, rejection regions are similar to
Figure 4.7 (and again Figures 4.2 and 4.6). For non-positive values of u3, the low probability
of rejecting Hy in the composite design can be seen, even when the remaining outcomes
have considerable effect sizes. Conversely, for the corresponding plots on for multi-outcome
design, non-positive values of p3 have little effect on the size of the rejection regions. This
again shows the nature of the difference between an additive and non-additive test statistic.
As U3 increases, the rejection regions of the composite design seem to shift linearly and
without changing shape. However, in the multi-outcome design the regions corresponding to
high probability of rejection change shape as sz increases, from a small square to a large
inverted “L” shape. Conversely, the region corresponding to low probability of rejection
changes shape in the opposite way. This is because when 3 is low, there is little chance
of this outcome contributing to a rejection of Hy. As U3 increases closer to the value for
which the promising outcomes are powered, this probability increases. When u3 is much
greater than this, it is almost certain to contribute to the rejection of Hy (by exceeding its
stopping boundary). As such, only one of the two remaining outcomes pi;, t, are additionally
required to show promise for Hy to be rejected. Therefore Hy is likely to be rejected when
either one of U, u, shows promise. Furthermore, as rejection of Hy is dependent on only
(any) two outcomes showing an effect, there is little “benefit” from all three outcomes having
large effect sizes. Indeed, for this design realisation, the probability of rejecting Hy when
any Ly = oo, li; = 0 for k € {1,2,3}, j # k, is approximately 0.12, while this probability is

necessarily equal to one for any composite design realisation.
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4.5 Methods: Drop the loser approach based on condi-
tional probability, two-stage

The multi-outcome multi-stage approach may be combined with a DtL-type component, that
is, dropping an outcome (or outcomes) before the end of trial, with the aim of reducing ENM.
This approach to reducing the number of measurements in a trial is an alternative to using
separate stopping rules, as described in Section 4.3.

Again, let K be the number of outcomes and m be the number of outcomes required to
show promise in order to reject the null hypothesis. Fix the number of stages to be equal
to 2. The shared final rejection boundary is given by r. If an outcome k is not dropped
at the interim analysis, that is, it is still being measured at the end of the trial, its test
statistic Zp; will be compared against this final rejection boundary r. We again specify
lower and greater anticipated treatment effects for each outcome, 8¢ = (o1, 002, - -, Ok )
and 81 = (611,012, ---,01k). Let the true outcome effects again be g = (U, Uz, ..., Uk)-

The number of outcomes dropped at the interim analysis may be fixed in advance or
determined by the interim data. In either case, some approach must be used to determine the
“losers”, the poorest-performing outcomes. The approach we have chosen is to use conditional
power (CP) [52, 10]. Here, we define CP; as the probability of outcome k exceeding the
final rejection boundary r, conditional on the data for outcome k observed so far and an
anticipated outcome effect 8. For a general number of stages j, j = 1,...,J, the conditional
power of outcome k at stage j is then CPjx(61x) = P(Zjx > r|Zjx, 61x). The calculation for
the conditional power of outcome k at the single interim analysis, given current data and

anticipated outcome effect 0y, is

4.7)

CPi(61x) =@ (Z”“/z_ I+ (S f1)5lk>
(S =) '
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Equation (4.7) is merely a special case of the equation for a general number of stages j
provided by Jennison and Turnbull [10]. As in Section 4.3, using a single shared boundary

avoids a K-dimensional optimisation problem with infinite solutions.

4.5.1 Conditional power-based stopping (and dropping) boundaries

CP is used in this multi-outcome multi-stage design, rather than comparing test statistics
to boundaries directly as may be expected in the multi-arm setting. However, multi-arm
trials are generally used to evaluate if any treatment has some single effect size of interest.
In contrast, outcomes may have different anticipated effect sizes. As such, absolute values
of test statistics may not give an accurate indication of the relative interim performance of
outcomes. For example, among two interim test statistics, one test statistic (Z;; say) may
be lower than another (Z;7) while being closer to its anticipated standardised effect size,

e. (011/01) —Z11 < (812/02) —Z12, (811/01) < Z11, (812/02) < Z1». In this case, the
outcome with the lower test statistic may be the outcome that is more likely to exceed the
final rejection boundary, and should not necessarily be the outcome that is dropped.

We specifty lower and upper interim stopping boundaries in terms of some conditional
probabilities CP;, and CPy. Our approach to dropping outcomes and to stopping the trial are
as follows: if the CP of the test statistic of some outcome £ is less than CP;, at the interim,
that is, CP.(01x) < CPp, it is dropped from the trial and not measured nor evaluated at the
final stage. If K —m+ 1 or more outcomes are dropped, the trial ends early for a no-go
decision. If the CPs of the test statistics of m or more outcomes are greater than CFPy at the
interim, that is, if Zle [(CP(81x) > CPy) > m, the trial ends early for a go decision. If the
trial does not end early, it proceeds to a second stage. The number of outcomes retained for

stage 2 is

I [V]w

K> = min ( maxs CPk 51k > CPL)>
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for some fixed K, < K. The value of K, determines the maximum possible number
of outcomes that may be measured in stage 2, and thus also determines the maximum number
of outcome measurements obtained in this design approach.

The null hypothesis is unchanged compared to the previous multi-outcome multi-stage
approach, given by Equation (4.1). The null hypothesis is rejected if either the trial continues
to stage 2 and at least m retained outcomes exceed the final stopping boundary r, or if at least

m CP values exceed CFy; at the interim, that is if

K K
<Z CP.(61x) > CPLN1(Zy > I’)) >m and Z I(CP(81x) > CPy) <m
=1 =1

or f I(CP(61x) > CPy) > m.
k=1
As with the first proposed multi-outcome approach, we define the probability of reject-
ing the null hypothesis for outcome effects p, but for this approach the design parame-
ters are K, Kyuqx, m,CPr, CPy. We define type-I error-rate as the probability of rejecting
the null hypothesis under the global null, o* = R(t = 0|K, Kyyqx,m,CP,CPy) and the
power as the probability of rejecting the null hypothesis under the LFC, 1 — * = R(u =

03|K, Kyax,m,CPL,CPy) similar to Section 4.3.

4.5.2 Design search

To search for designs, sets of 2K test statistics are simulated under the global null hypothesis
U = 0. A search is undertaken to find a design that fulfils the required type-I error-rate o and
power 1 — . The interim boundaries CP;, CPy and anticipated effects 8¢, 8 are fixed and
specified in advance. The operating characteristics of a trial therefore depend on the final
rejection boundary r and the per-stage sample size n. A shared rejection boundary r is found

that minimises (o — a*)? for some initial per-stage n. Using these boundaries and n, 1 — *
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is obtained. If 1 — 3* is less than the required power 1 — 3, then the process of finding r and
power is repeated with increased n. Conversely if 1 — B* is greater than the required power
1 — B3, the process is repeated with decreased n. Thus the per-stage sample size n is altered
to find the smallest value that satisfies the required power. Some nsims number of trials are
simulated as in Section 4.3.4. The rest of the design search is described in Algorithms 6, 7

and 8.

Algorithm 6: findCPs: find conditional power at stage 1, for a vector of outcomes.
Input: TSrow (one row of K simulated interim test statistics), .#1, %, 81, 7.

numerator <— TSrowy/ 9] —rv/ % + (S — #1)81 ;

denominator < /(% — .#1) ;

cp < call normalCDF(numerator/denominator);

4.6 Results: drop the loser approach based on conditional

probability, 2-stage

4.6.1 Varying correlation

The multiple outcome DtL approach was compared to a multiple outcome single-stage ap-
proach in terms of ESS and ENM ratios (denoted ESSpyz./ESSingle and ENMp; / ENMjingie)
under the LFC as correlation varied (p = {0,0.1,...,0.8}). Design realisations were found
for {K,m} = {2,1},{6,1},{6,3} and K,,ux = {K — 1,K/2} (see Table 4.2). Other design
parameters were as the previous approach (Section 4.3.6): o = 0.025,8 = 0.2,y = 8p2 =
=8k =6=02,011=0p=-- =8k =06 = 0.4,c7k2 = 1, Vk. The lower and upper
conditional power thresholds were set to CP, = 0.3 and CPy = 0.95 respectively. In Chap-
ters 2 and 3, the maximum lower threshold for CP was set equal to the response rate for
which the trial was powered. Here, there is no such obvious association to be made between

CP threshold, a probability and effect size, a continuous value. In the absence of sugges-
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Algorithm 7: Function pRejectDTL: for finding type-I error-rate or power, ex-
pected number of stages and ENM for DtL approach. Input: r, K, K, n.per.stage
(current n per stage), m,8¢, 8;,CP., CPy,02, o, TS (matrix of test statistics),
typelerr.or.power (whether finding type-I error-rate or power)

71 + call findInformation(n.per.stage, 62, K);
#, + call findInformation(2*n.per.stage, 0'2,K);
if typel.err.or.power=="power” then

8p + call findDeltaBeta(8o, 81);

7 < call findEffects(8 g, .71,.%2);

TS « call addEffectsToTS(TS, 7);
end
TS.stagel < TSI, 1:K];
TS.stage2 <— TS[, (K+ 1):2K];
nsims < nrow(TS);
for i in 1 to nsims do
CPsli, | + call findCPs(TS.stagell[i, ], .#1,.%3,1,81);
if sum(CPs[i, ] < CP.) > K —m+ 1 then
no.go.decision.stagel[i] <— 1 ;
go.decision.stagel[i] < 0 ;

else
if sum(CPs[i, ] > CPy) > m then
no.go.decision.stagel[i] + 0 ;
go.decision.stagel[i] < 1 ;
else

no.go.decision.stagel[i] <— 0 ;
go.decision.stagel[i] <— 0 ;

end
end

end
stop.early < no.go.decision.stagel + go.decision.stagel ;
continue < !stop.early ;
TS.continue <— call subsetToContinuingTrials(TS.stage2, continue);
CPs.continue < call subsetToContinuingTrials(CPs, continue);
nrows.continue <— sum(continue);
for i in 1 to nrows.continue do
CPs.ranked < call rankCPs(CPs.continue[Z, ]);
retained.outcomes[i] + call retainGreatestCPs(CPs.ranked, K;,,,CP.);
retained.TSs < call subsetToRetainedTSs(TS.continuel[, ], retained.outcomes|[i]);
if sum(retained.TSs > r) > m then

‘ go.decision.stage2[i] <+ 1 ;
else

| go.decision.stage2[i] < 0 ;
end

end

no.measurements.stage2 <— sum(retained.outcomes) ;

prob.reject <— go.decision.stagel + go.decision.stage2 ;

PET < sum(stop.early)/nsims ;

ENM < K + no.measurements.stage2/nsims ;

if typel.err.or.power=="typelerror”’ then
minimise.prob < (prob.reject — &)? ;

end
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Algorithm 8: findDtL.Design: find DtL design realisation that satisfies required
type-1 error-rate and power. Input: TS, nmin, nmax, m,K,Ky., a,1 —f3,
91,9,60,01, CPL,CPU,O'z.

n.vec < nmin:nmax ;

a<+1;

b <+ length(n.vec);

d < ceiling((b-a)/2);

while b —a > 1do
r.current <— call optimise(pRejectDTL, typelerror.or.power="“typelerror”,

n.per.stage=n.vec[d], ...);
pow <— call pRejectDTL(r.current, typelerror.or.power="power”,
n.per.stage=n.vec[d], ...);

if pow < power then

a<+d,;

d < ceiling(a+ (b—a)/2);
else

b+ d;

d < ceiling(a+ (b—a)/2);
end

end

n.final < n.vec[d];

r.final < call optimise(pRejectDTL(n.per.stage=n.final,
typelerror.or.power="typelerror”));

typelerr.output <— call pRejectDTL(r.final, typelerror.or.power="typelerror”,
n.per.stage=n.final, ...);

power.output <— call pRejectDTL(r.final, typelerror.or.power="“power”,
n.per.stage=n.final, ...);

o < call selectPReject(typelerr.output);

pow <— call selectPReject(power.output);

N < 2*n.final;

ESS( < call selectPET(typelerr.output)*n.final + (1-selectPET(typelerr.output))*N;

ESS| < call selectPET(power.output)*n.final + (1-selectPET(power.output))*N;

ENM < call selectENM(typelerr.output)*n.final;

ENM, < call selectENM(power.output)*n.final;
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tions in the literature, the thresholds CP;, = 0.3,CPy = 0.95 were chosen. The admissible
single-stage designs of Chapter 2 often have similar thresholds, though we acknowledge the
difference in the design approaches. At the trial planning stage, we recommend undertaking
a sensitivity analysis of the interim thresholds, to more fully understand how the choice
may affect a particular set of design parameters. Note that setting CP, = 0 is equivalent
to permitting early stopping for a go decision only, while setting CPy = 1 is equivalent to

permitting early stopping for a no go decision only.

Kmax

m

1 1 (Kpax=K—1,K/2)
1 3 Kpax = K/2)
1

3

5 (Kmax =K-— 1)
3 (Kmax :K/Z)
3 5Kpax=K-—1)

Table 4.2 Sets of design parameters {K,m, K4, } used in comparison of proposed DtL design
and single-stage design.

(o e e Mo N ST -

The results are shown in Figure 4.9. Values below 1 indicate superiority of the proposed
DtL approach over the single stage approach. Similarly to the previous results, ESS ratio
decreases as correlation p increases. However, in this comparison, the ESS ratio is less than
1 in almost all cases, and in all but one case when p > 0, though the ESS ratio is generally
closer to 1 compared to the results in Figure 4.3. ESS ratio appears to be greater when m > 1,
though this difference seems to decrease as p increases. The ENM ratio also decreases as p
increases. The ENM ratio is less than 1 in every case, meaning that fewer measurements are
expected over both stages of the DtL design than in the single stage design. The ENM ratio
is considerably greater under {K = 2,m = 1} compared to the other combinations of {K,m}
examined. Using K,,,x = K /2 resulted in a lower ENM ratio than using K,,;x = K — 1. This

may be expected, as fewer outcomes are permitted to be retained for the second stage.
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ESS ratio under LFC
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Fig. 4.9 Changes in ESSp;1./ESSgingie and ENMpy1,/ ENMgj,g. for various designs as corre-
lation p is varied. Note: for {K =2,m=1},K—1=K/2.
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4.6.2 Varying true outcome effects
4.6.2.1 Two outcomes

The changes in ESS and ENM ratio for single design realisations as true outcome effects
vary over Uy, Uy € {—0.2,—0.1,...,0.4} are shown in Figure 4.10. Design parameters are
{K =2,Kpax = 1,m=1},8g = (0.4,0.2). The design realisations are {r = 2.273714,N =
64} for the DtL design and {r = 2.221584,N = 56} for the single-stage design.

As in Figure 4.9, ESS ratio is generally less than 1, with ESS being lower in the single
stage design in just three out of 49 cases. This occurs when both p, i ~ g, = 0.2. The
greatest disparity in ESS is when y; = yp = —0.2, the minimum effect size examined. When
the true effect sizes are low, or even harmful, the conditional power will be low and the
possibility of early stopping increases. The ENM ratio shows similar results, with the lowest
values (and greatest benefit of the DtL design) observed when the true outcome effects are at
their lowest with either trial ending or dropping an outcome at the interim. The ENM ratio is
less than 1 in all cases.

For the same design realisations, the probability of rejecting Hy under each approach is
shown for py, up € {—0.2,—0.1,...,0.4} in Figure 4.11. Both approaches show increases
as one or both effect sizes increase. For all cases such that one outcome has the anticipated
effect size 0.4 while the other has an effect size of 0.1 or lower, the DtL design reports a
probability of rejecting Hy slightly greater than nominal [0.80,0.82], possibly due to a slightly
increased probability of dropping the poorly-performing outcome over the better-performing
outcome compared to having effect sizes of g = (0.4,0.2). For the same cases, the single
stage design reports a probability slightly lower than nominal [0.78,0.79], possibly due to a

slightly decreased probability of of rejecting Hy due to the poorly-performing outcome.
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Fig. 4.10 Changes in ESSpy1./ESSingie and ENMp;1./ ENMjjyg. for fixed design with {K =
2, Knax = 1,m = 1} and design is powered for outcome effects 8 = (0.4,0.2).
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Fig. 4.11 Changes in the probability of rejecting Hy for the DtL and single-stage designs
with {K = 2, Kjex = 1,m = 1} and design is powered for outcome effects g = (0.4,0.2).



164 Multi-outcome trials with a generalised number of efficacious outcomes

4.6.2.2 Three outcomes

In the case of K = 3,K,,,,x = 1,m = 1, probability of rejecting Hy, ESS ratio and ENM
ratio are examined for a selection of true effect sizes {u, Uy, 13} in Table 4.3. The design
realisations are {r = 2.435647,N = 72} for the DtL design and {r = 2.380403,N = 59} for
the single-stage design. The results are in agreement with the K = 2 case: probability of
rejecting Hy is similar for both approaches for most featured cases and slightly lower for the
single stage approach when one outcome has true effect as anticipated and the remaining
outcomes have zero or harmful true effects. ESS ratio is greater than 1, i.e., favouring the
single stage design, only when all outcomes have effects equal to &). Again the ENM ratio is

less than 1 in all cases.

i M2 M3 plrej. Ho)p  p(rej. Ho)ss  ESSpiyss ENMp ss  Description

04 04 04 0.95 0.96 0.80 0.47  All outcomes have effect &,
04 02 02 0.81 0.80 0.95 0.52  Effects as anticipated (power)
04 00 0.0 0.82 0.76 0.97 0.53  One outcome has no effect
04 -02 -0.2 0.83 0.76 0.97 0.53  One outcome is harmful

0.0 00 0.0 0.02 0.02 0.96 0.52  Global null (type I error)

03 03 03 0.77 0.77 0.97 0.53  All have some effect < §;

02 02 02 0.43 0.43 1.09 0.57  All outcomes have effect &

Table 4.3 p(reject Hp| true effects p), expected sample size ratios and expected number of
measurements ratios for drop the loser design and single stage design, where {K = 3, K4y =
1,m = 1} and design is powered for outcome effects 65 = (0.4,0.2,0.2). ESSp,;/55: ESS
ratio. ENMp, /ss: ENM ratio.

4.7 Discussion

We have examined two approaches to generalising multi-outcome designs to allow trials
that seek to determine if there exist some m of out K outcomes in a single treatment arm
that show promise. Multiple primary outcome designs and co-primary outcome designs, in

comparison, allow only m = 1 and m = K respectively.
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The first approach, a multi-outcome multi-stage design, was compared to a multi-stage
design with a single composite outcome. As outcome correlation increases, the ESS and ENM
of the proposed approach decrease relative to the composite approach, and were superior in
all tested cases with correlation p > 0.5. When different true outcome effects are examined,
ESS and ENM are generally lower for the proposed design, and are only greater than the
composite design when more outcomes are efficacious than anticipated. The probability
of rejecting the null hypothesis is more robust under the proposed approach, remaining
close to nominal power when some true outcome effects are lower than anticipated while
this probability decreases under the composite approach. Furthermore, rejecting the null
hypothesis when no outcomes have the desired effect size is less likely using the proposed
approach.

The second approach, a multi-outcome, two-stage DtL design, was compared to a single-
stage design. Again the ESS and ENM of the proposed approach decrease compared to the
existing approach as correlation increases. ENM was superior in the proposed approach for
all cases examined, while ESS was superior in 42 out of 45 cases. Furthermore, in greater
than 50% of cases, the ENM was reduced by at least half. When different true outcome
effects were examined, ENM was reduced under the proposed DtL design compared to the
single stage design in all cases, while ESS was reduced in 46 out of 49 cases. The probability
of rejecting the null hypothesis when one outcome was as efficacious as anticipated while
other outcomes had lower effect sizes than anticipated was similar for both approaches.
However, the rejection probability was slightly greater than the required power for the DtL.
approach and slightly lower for the single stage approach.

The proposed approaches allow investigators to measure, at least initially, a range of
outcomes while reducing the high costs that may be associated with such trials. Furthermore,
these approaches offer novel flexibility in the area of multiple-outcome clinical trials, allowing

investigators to specify any number of outcomes for which promise must be shown. This
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is a novel generalisation of existing designs, which are special cases in comparison as they

require promise to be shown on either all outcomes or one or more outcomes.



Chapter 5

Discussion

5.1 Summary

Phase II binary outcome trials are a critical aspect of drug development. However, with high
failure rates and high costs, it is valuable to find ways of making correct decisions more
quickly. Chapter 2 presented two single-arm designs created to improve binary outcome trials
in this respect. Our main goal with regards to these designs was to improve upon existing
designs in terms of the three optimality criteria ESS(pg), ESS(p1) and N. Secondary goals
included finding design realisations without simulation, introducing stochastic curtailment
for treatments that show promise and making any design search computationally viable.

Comparing our proposed designs to a number of existing designs, we found that the pro-
posed designs were superior in almost all cases, whether considering either single optimality
criteria or a weighted combination of multiple optimality criteria.

A number of the concepts used in the proposed single-arm designs would also be novel
in the two-arm randomised setting, the gold standard in trial design. As such, we presented
in Chapter 3 a two-arm design with some of the same goals as the proposed single-arm
approaches. Again, our main aim was to improve upon existing designs in terms of multiple

optimality criteria, in this case ESS(po, po), ESS(po, p1) and N. As with the single-arm case,
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we introduced stochastic curtailment for promising treatments, obtained design realisations
without simulation and made the design search computationally viable. When compared to
existing designs using a weighted combination of multiple optimality criteria, our proposed
two-arm design was superior for py values greater than or equal to 0.4, and second to only
one existing design, Carsten and Chen [17], otherwise. However, the design of Carsten
and Chen was found to be sensitive to deviations in the specified response rates, with a
considerably greater probability of rejecting the null hypothesis than the proposed design in
situations where the true treatment difference was smaller than desired.

Another aspect of clinical trials is the measurement of multiple outcomes, which is typical
in clinical trials, for a number of reasons discussed in Chapter 4. Amongst clinical trial
designs where multiple key outcomes are measured, designs are generally powered to identify
when either at least one outcome shows promise or all measured outcomes show promise.
Chapter 4 generalised this concept by presenting two multi-outcome designs, both of which
were powered to find when at least some specified number of outcomes shows promise. One
design permitted any number of stages, while the other was a two-stage design that permitted
dropping outcomes that were performing poorly. Our main goal was to improve on existing
designs by creating designs that meet the needs of investigators in ways that existing trials do
not. In particular, both designs offer a generalised framework in terms of seeking a specified
number of efficacious outcomes, and this framework is novel in a multi-stage setting.

Beyond this, the first multi-outcome design resulted in reduced ESS and ENM compared
to a multi-outcome multi-stage composite outcome design when correlation is high (p > 0.5),
while also being less sensitive to deviations to the anticipated effect sizes. The second design
resulted in reduced ESS and ENM compated to a multi-outcome single-stage design in most

cases, and again was less sensitive to deviations to the anticipated effect sizes.
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5.2 Limitations

While all proposed methods performed well in the comparisons that have been made, there
are limitations to their use. The two single-arm designs proposed in Chapter 2 find designs
with similar operating characteristics. However, one design, the m-stage design, completes
a design search more quickly than other design, the SC design, and this difference is
approximately one order of magnitude. As a result, it is currently difficult to foresee a
situation where the SC design can be recommended over the m-stage design. However,
increases in computing power will render “slow” design searches viable over time, and
choosing one approach over another in terms of computation time may be trivial in the near
future.

The two-arm design proposed in Chapter 3 uses a randomised block design. This aspect of
trial design is not novel. Nevertheless, in peer review one reviewer expressed concern that in
single-centre trials, investigators may engage in selection bias by successfully “guessing” the
arm to which the next participant will be assigned [112]. This concern is attributable to block
randomisation itself rather than the proposed trial design approach, but may still be briefly
addressed. In the first instance, we assume that any randomised study is double-blinded, that
is, both participants and investigators do not know which treatment is which [44]. Selection
bias may be further minimised by ensuring that the investigator responsible for selection does
not take part in participant treatment assignment. Such steps may be taken independently of
the design approach. Indeed, the CONSORT 2010 checklist of information to include when
reporting a randomised trial includes “describing any steps taken to conceal the allocation
sequence until interventions were assigned” [113]. A further step that may be taken is to vary
block sizes within a trial, though this would require an extension of the current work and is
beyond the scope of this paper. If a trial uses multiple centres and the randomised blocking

is stratified by centre, then some imbalance may occur. Due to the typical size of phase 11
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trials in oncology, we recommend using randomised blocks in a centralised system, that is,
not stratified by centre, which would ensure balance.

The proposed single- and two-arm designs both use sequential monitoring, which may be
seen as a limitation. If a number of participant results emerge in quick succession then the
interim analysis may not take place at the planned information fraction, increasing the sample
size compared to the ESS. Such a possibility has not negatively affected the popularity of the
Simon design, though we admit that sample size inflation is more likely as the number of
decisions increases. The same issues exist with regards to delayed responses, that is, when
recruitment rate is so great or endpoint length so long that not all participant results are
available at the point where a decision is to be made regarding stopping or not stopping the
trial [80]. However, as detailed in Chapter 2, recruitment is often slow in clinical trials, with
a median recruitment rate of approximately one patient per centre per month. Moreover, in
Chapter 2 we provide numerous examples of investigators making go and no go decisions as
a result of continuous monitoring, even when the trial design was single- or two-stage. In our
proposed designs, the frequency of monitoring can be specified at the trial design stage, to
accommodate the practical needs of the investigators. A stopping boundary check should
be undertaken as soon as results for each complete block are available. If this is somehow
not possible and there exist excess results beyond a whole block, a stopping boundary check
may still be undertaken using the results for participants whose results constitute completed
blocks.

A separate limitation of the sequential monitoring is that, depending on the design
realisation, it is possible that a trial may end with as few as two participants if block size
two is chosen, which may be undesirable in some circumstances. However, among the set of
five comparisons in Chapter 3, this did not occur for any of the four optimality criteria when
block size two was used. Across these design realisations, the median minimum number

of participants was found to be nine. Still, conservative investigators may prefer to either
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use a larger block size or to begin with a single large block (e.g. a block of size sixteen)
before switching to a smaller block size (e.g. blocks of size four), guaranteeing a minimum
number of participants equal to the size of the first block. In the latter case, this would require
augmenting the existing code in order to obtain the trial operating characteristics. The block
sizes used in practice may differ from the planned trial design. In this case, the stopping
boundaries could be reassessed taking this into account. Furthermore, stopping boundaries
and conditional power could be re-estimated given the trial information so far. However,
such extensions are beyond the scope of this thesis.

Both the proposed single- and two-arm designs may obtain design realisations that
improve considerably upon existing designs in terms of ESS(pg) and ESS(p1). However, a
limitation of the proposed designs is that the greatest improvements with respect to these
criteria come in general at the expense of an increase in maximum sample size N. This is not
unusual in adaptive design, and Wald’s SPRT [14] provides an extreme example, providing
low values of ESS(pg) and ESS(p) coupled with an infinite N. Furthermore, any design that
permits early stopping has uncertainty in the final sample size. This is of practical concern
as sample size uncertainty results propagates uncertainty in contract length, recruitment
targets, and ultimately, funding, though it is possible to ameliorate some negative effects
of this uncertainty [114]. It is also possible to reduce sample size uncertainty itself at the
design stage: when choosing a design realisation from a set of admissible designs, one may
prioritise a low maximum sample size or even to minimise maximum sample size. This can
be achieved by comparing design realisations using the loss function with a high weight
on N, and software to do this has been created [75]. An investigator may choose the best
design subject to the largest maximum sample size that they are willing to accept, where
“best” means assigning weights to ESS(po), ESS(p1) and maximum sample size.

The proposed multi-outcome designs have limitations regarding their generality. Both

rely on continuous outcomes, rather than allowing other outcome types, such as binary or
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ordinal, either on their own or in combination. The designs are single-arm, rather than
two-arm. There is a single final rejection boundary shared between all outcomes, rather
than permitting different boundaries for each outcome. The second design permits only
two stages, in contrast to the multi-arm DtL design, where a general number of stages are
accommodated.

Arguably, a limitation of this work in general is that it focuses solely on frequentist
methods. Bayesian methods can be used for phase II clinical trial design [115-118] and are
becoming more widely used over time [115, 119]. However, some Bayesian and frequentist
designs are closely related conceptually, for example, the frequentist CP-based approach used
in this thesis and the Bayesian predictive power approach [10]. Furthermore, in the context of
binary outcome trials, Bayesian and frequentist designs can both be described in exactly the
same way, that is, using vectors of lower and upper stopping boundaries f and e. One main
advantage of Bayesian methods in this context is the ability to incorporate prior information,
for example, data from a previous phase I trial. However, not all Bayesian designs do so, and
instead use an uninformative prior (or priors). In contrast, frequentist methods are deemed to
discard such data, or at best use it in as a summary by, for example, using the data to inform
a future choice of p;. However, using the data in this way still has merit in the single- and
two-arm designs we propose, for example, in a seamless phase I/II trial: our design searches
result in a series of admissible designs, all of which satisfy given operating characteristics.
Some designs may have low ESS when the response rate is low, while others may have low
ESS when the response rate is high. With this in mind, investigators could specify merely
the operating characteristics and design approach in a phase II protocol, allowing flexibility
to choose a particular design realisation once phase I data has been obtained. Bayesian
designs may be created with Bayesian operating characteristics in mind, which can be more
intuitive (and thus easier to explain) to non-statisticians. However, Bayesian designs may be

required to satisfy certain frequentist operating characteristics. In the case that a Bayesian
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design both uses an uninformative prior and must satisfy some typical frequentist operating
characteristics, the resulting design realisation may confer no advantage over an equivalent
frequentist design. Another advantage of some Bayesian designs is that they are more flexible
in terms of allowing interim analyses to occur at points that are not fixed in advance, with
only minor negative consequences in terms of Bayesian operating characteristics [118]. In
one example of such a design, Lee and Liu [118] investigate the effect of this flexibility by
assuming that the point at which the interim analyses will take place is random. However, in a
clinical trial, allowing such flexibility could result in unconscious bias, with investigators able
to undertake an interim analysis after observing a succession of positive results or avoiding
an interim analysis after observing a succession of negative results. Finally, a fundamental
difference between the frequentist and Bayesian frameworks is that the Bayesian framework
must rely on simulation, with results subject to simulation error. In contrast, some frequentist
approaches, such as those presented in Chapters 2 and 3, do not require simulation and are

free from simulation error.

5.3 Recommendations

While the m-stage design performed well in all circumstances examined, other designs
performed similarly when sole importance was placed on minimising maximum sample size
N, disregarding ESS(pg) and ESS(p;). In particular, in one of three scenarios, the design
of Mander and Thompson [8] achieved a better maximum sample size than the proposed
designs. As such, existing designs should be preferred over the proposed designs when
performance in similar for the optimality criterion of prime importance, and the existing
design uses fewer interim analyses.

The proposed two-arm design performed better than existing designs when pg > 0.4, and
we recommend its use in these circumstances. The design also outperforms existing designs

when po = 0.3 and the weighting of optimality criteria prioritises ESS(pg) or ESS(p), either
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on their own or in combination. We recommend our proposed design in these situations.
Otherwise, the design of Carsten and Chen [17] achieves better operating characteristics.
However, our proposed design is less sensitive to deviations from the anticipated response
rates, and so we also recommend our design when there is at least moderate uncertainty
regarding anticipated response rates. The Carsten and Chen design also requires results to be
analysed after every pair of participants, compared to out flexible degree of monitoring, and
so we also recommend our design when less frequent monitoring is desired.

In practical terms, the single- and two-arm designs can be used by calling the corre-
sponding functions in R [74], after installing the curtailment package in R [75]. One
function undertakes a single-arm design search, while another function undertakes a two-arm
design search, given the appropriate requirements, for example, type-I error-rate, power and
response rates. Admissible design realisations are returned, if they exist. A second function
(for each design approach) takes as its input any chosen design realisation and returns the
corresponding stopping boundaries. While the designs as proposed may be seen as complex,
the final output is simply a collection of stopping boundaries. Following the design could
be made as simple as checking a diagram similar to those in Figure 2.1. Providing ways to
make a novel design more easy to understand may be crucial to the design being adopted for
more widespread use [120].

The m-stage design is being considered for use in the upcoming single-arm Phase II trial
Positioning Imatinib for Pulmonary Arterial Hypertension (PIPAH) [121]. Pulmonary arterial
hypertension is a rare condition, with observed prevalence of 5-52 cases per million [122],
and so using a trial design that can come to conclusion quickly would be beneficial.

The proposed multi-outcome designs would be of value for any investigator who seeks
to conduct a multi-outcome trial that is powered to identify when a specified number of
the (continuous) outcomes show promise. In particular, the multi-outcome multi-stage

design shows improvements in ESS and ENM compared to a multi-stage composite design
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when correlation between outcomes is high (p > 0.5). The multi-outcome DtL design also
improves ESS and ENM when correlation is high, compared to the multi-outcome single-
stage design, and so both designs are recommended when outcome correlation is (or is
anticipated to be) high. The proposed designs can also be recommended when creating a
composite outcome is not appropriate. Both proposed designs seek to reduce ENM, the
multi-outcome multi-stage design by providing multiple interim analyses at which points the
trial may stop for either a go or no go decision, the multi-outcome DtL design by allowing
measurement of poorly performing outcomes to cease as well as allowing the trial to stop at
a single interim analysis. As such, we recommend these designs when the cost of outcome
measurement is high. Both designs showed less sensitivity to their comparators when the true
effect sizes deviated from the anticipated effect sizes. As such, like the proposed two-arm
outcome binary design above, we recommend the proposed multi-outcome designs when
there is uncertainty regarding the anticipated effect sizes.

Both multi-outcome design approaches find design realisations using simulation, and as
such simply report a single design realisation, again by calling a single function in the R
package moms [76]. The multi-outcome multi-stage design finds a single design realisation
and reports the stopping boundaries for each stage. These are found using the equation by
Wang-Tsiatis [105] (Section 4.3). With the stopping boundaries known, the investigator
will end the trial only if m upper boundaries or K —m + 1 lower boundaries are crossed
simultaneously.

The stopping boundaries for the multi-outcome DtL design can be found by inverting the

two-stage case of Jennison and Turnbull’s equation for CP [10], giving

1
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where .7y, % are the outcome-specific information .# for each stage. As above,
the investigator stops the trial at the interim if m upper boundaries or K —m + 1
lower boundaries are crossed simultaneously. Otherwise, some outcomes are dropped
at the interim and the trial continues. However, the number of outcomes retained is
min <Kmax, kgl]I(CPk(&k) > CPL)). Consequently, if the number of outcomes to be
dropped is gr;ater than the number of outcomes that are lower than the lower boundary, the
investigator must be able to know which outcomes to be dropped. That is, they must know
the CP of the outcomes at the interim. This is taken care of using a function in the R package
moms, where the interim test statistics can be entered and the appropriate decision (to stop
and reject Hy, stop and not reject Hy or continue and retain certain outcomes) is given, in

addition to the CP of each outcome [76].

5.4 Future work

The proposed single-arm designs could be generalised in a number of ways in future work. We
have assumed that all participants’ results are available before any subsequent enrollment. It
would be valuable to investigate the effects of delayed responses on ESS in curtailed designs,
for a range of recruitment rates and endpoint lengths. It may be particularly worthwhile to
consider how to proceed when a decision to stop has been made just before observing further
results. There may be, for example, a pause in recruitment, then the initial stopping decision
may be finalised or overturned. Such further work could quantify to what extent delayed
responses increase ESS in designs that use curtailment.

In case of a desire to collect a certain degree of information in a trial, a trial could be
specified to end only after data is available for some minimum number of participants. With
regard to estimation, estimates of confidence intervals and p values could be compared to

those from existing design types.
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The effect of less frequent monitoring on curtailed designs could be examined further in
terms of, for example, how to optimise monitoring frequency between improved operating
characteristics, the perceived cost of each interim analysis and bias.

Examples were given of clinical trials that informally used continuous monitoring to stop
early (Section 1.1.3.1). However, it is difficult to identify informal continuous monitoring in
trials where no early stopping took place. Consequently, it may be illuminating to attempt
to quantify what proportion of trials have used continuous monitoring and how frequently
monitoring takes place within such trials. This may be undertaken through a survey or
similar.

Some of the suggested future work for single-arm designs also apply to two-arm designs:
the effect of delayed responses on ESS; permitting a trial to end only after some minimum
number of participant results, and the effect of less frequent monitoring and how to optimise
this. For the proposed two-arm design, stopping decisions are made after every block of
participants, where a block must contain at least two participants, while future work could
consider how to find stopping boundaries that would be appropriate for after every single
participant, for a design that uses SC.

As discussed in Chapter 2, when using any clinical trial design that permits early stopping,
the maximum likelihood estimator may be biased. Estimators have been developed that can
be used for inference in trials with more than two stages [82, 123]. In particular, Bibbona and
Rubba [123] present an estimator for multi-stage multinomial clinical trials. This estimator
may be able to be applied to two-arm multi-stage trials.

For both the proposed single- and two-arm designs, we could further investigate quantiles
of sample size compared to other designs. In this thesis, single-arm designs were compared
to Simon’s design, but a comprehensive comparison could involve both more designs and
comparisons between two-arm designs. For example, Hanfelt et al. [124] modified Simon’s

design to optimise for median sample size.
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There is scope for future work regarding the proposed multi-outcome designs. This may
involve generalising the number of stages in the DtL design, which could result in further
savings in ESS and ENM. The proposed approaches are for a single-arm trial, while Sozu et
al. use a two-arm design [49]. Extending these designs to two arms would give investigators
more options with regards to trial design. Other possible generalisations include allowing
interim boundaries and CP boundaries to differ across outcomes for the multi-outcome and
DtL approaches respectively and allowing final boundaries to differ, for both approaches.
Such lack of generalisation may be considered limitations of the proposed approaches. For
the DtL design, it would be worthwhile to undertake a sensitivity analysis to fully explore
the effects of varying the interim CP bounds.

It may be possible to divide outcomes into those that must show promise, effectively a
subset containing multiple co-primary outcomes, and those among which only a subset are
required to show promise. This would be of use if, for example, a treatment is required to
show an effect on some safety outcome and simultaneously show an effect on some specified
number of efficacy outcomes. Other possible extensions include the introduction of alpha
spending, rather than using an overall type-I error-rate, and extending to other types of

outcome, for example binary outcomes.

5.5 Conclusion

The clinical trial designs proposed in this thesis make novel contributions to the literature,
both in binary outcome trial design and in continuous multiple outcome trial design. The
designs offer considerably improved operating characteristics compared to existing designs.
Particularly with regard to the proposed binary outcome designs, the designs are simple for

investigators to use. Widespread use of these designs would speed up drug development.
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Appendix A

Further results

Expected loss by design type, scenarios 2 and 3

Heat maps of expected loss for the admissible designs of each design types are shown in

Figures A.1 and A.2 for scenarios 2 and 3 respectively.

Admissible designs, by design type (scenarios 2 and 3)

For completeness, the range of admissible designs for each compared design for scenarios 2
and 3 is shown in Figures A.3 and A.4. Again, the overall results are similar across all three
scenarios: the designs that employ SC generally contain more admissible designs than those
that do not. For these designs, the admissible design regions often contain slopes parallel to
the hypotenuse, suggesting that the admissible design may be more dependent on the weight
of N than ESS(po) or ESS(p;). In some cases, this is manifested in long, thin regions near
the hypotenuse. Here, the admissible designs have the greatest maximum sample size of all
the possible admissible designs, with maximum sample size decreasing as the weight of N
increases (that is, in the bottom left corner), as could be expected. When the weight of N is
not close to 1, the novel designs often have a maximum sample size similar to those of the

Simon designs.
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Fig. A.1 Expected loss for each design type, for scenario 2 (a,f,po,p1) =
(0.05,0.20,0.10,0.30). MT: Mander and Thompson
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(0.05,0.20,0.20,0.40). MT: Mander and Thompson
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Fig. A.3 Admissible designs for each design type, for scenario 2 (a,f,po,p1) =

(0.05,0.20,0.10,0.30).
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