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Abstract  54 

Socio-economic position (SEP) is a multi-dimensional construct reflecting (and influencing) multiple 55 

socio-cultural, physical, and environmental factors. In a sample of 286,301 participants from UK 56 

Biobank, we identify 30 independent-loci associated with income. Using a recently-developed method 57 

to meta-analyze data from genetically-correlated traits, we identify an additional 120 income-58 

associated loci. These loci show clear evidence of functionality, with transcriptional differences 59 

identified across multiple cortical tissues, and links to GABAergic and serotonergic 60 

neurotransmission. By combining our GWAS on income with data from eQTL studies and chromatin 61 

interactions, 24 genes are prioritized for follow up, 18 of which were previously associated with 62 

intelligence. We identify intelligence as one of the likely causal, partly-heritable phenotypes that 63 

might bridge the gap between molecular genetic inheritance and phenotypic consequence in terms of 64 

income differences. These results indicate that, in Great Britain in the modern era, genetic effects 65 

contribute towards some of the observed socioeconomic inequalities.66 



People living in advantaged socio-economic backgrounds, on average, live longer, and have 67 

better mental and physical health than those from more deprived environments.1, 2, 3 An understanding 68 

of the causes underlying the association between socioeconomic position (SEP) and health is likely to 69 

be helpful to minimize social disparities in health and wellbeing.4 70 

 The link between SEP and health is typically thought to be due to environmental factors  71 

including, but not limited to: access to resources, exposure to harmful or stressful environments, 72 

adverse health behaviors such as smoking, poor diet, and excessive alcohol consumption, and a lack 73 

of physical exercise.5 However, genetic factors (most likely via mediated pleiotropy, Figure 1) have 74 

been discussed as a partial explanation for the SEP-health association; for example, genetic 75 

predispositions towards certain diseases, and/or genetic influences on what foods people like, could 76 

lead to poor diet which in turn could lead to both lower SEP and poorer health.6 It has recently been 77 

demonstrated that genome-wide association studies (GWASs) can capture shared genetic associations 78 

with both measures of health, and with SEP.7 Potential pleiotropic effects are highlighted in the 79 

observed genetic correlations between SEP variables such as completed years of education, household 80 

income, and social deprivation, and physical and mental health traits including longevity.7, 8 81 

Loci associated with two SEP phenotypes, education and household income, have been 82 

identified via GWASs7, 9, 10, 11, but—consistent with other complex traits, such as height—these loci 83 

collectively account for only a small fraction of the total heritability of the traits in question. For 84 

household income, an analysis of a sample of 96,900 individuals from Great Britain found that 85 

additive genetic effects tagged by common SNPs accounted for approximately 11% (SE = 0.7%) of 86 

differences in household income.7 Two loci attained genome-wide significance in that study, but they 87 

collectively accounted for less than 0.005% of the total SNP heritability. 88 

Here, we use the UK Biobank dataset12 to examine genetic associations with household 89 

income (N=286,301) in a contemporary British sample. We identify 30 independent genome wide 90 

significant loci, 29 of which are unreported in previous work. Using a method that leverages power 91 

from genetically-correlated traits, MTAG, an additional 120 loci are found to be associated with 92 

income. We identify neurogenesis and the components of the synapse as being associated with 93 

income. Furthermore, we link transcription differences across multiple cortical tissue types, as well as 94 
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both GABAergic and serotonergic neurotransmission, to income differences. We also show that the 95 

genes linked to differences in income are predominantly those that have been previously linked with 96 

intelligence,8 and that intelligence is one of the likely causal factors leading to differences in income. 97 

We compare the genetic correlations derived using income with those derived using another measure 98 

of SEP, educational attainment, to show that the genetic variants associated with income are related to 99 

better mental health than those related to education. Finally, we were able to predict 2.5% of income 100 

differences using genetic data alone in an independent sample. 101 

 102 

Results 103 

Graphical representation of statistical analysis 104 

A flow chart summarizing all statistical analyses conducted is displayed in Figure 2. 105 

 106 

SNP-based analysis of income 107 

For household income, 3,712 SNPs attained genome-wide significance (P < 5×10-8), across 108 

30 independent loci (Figure 3A & Supplementary Data 1) which contained 68 independent 109 

significant SNPs and 31 lead SNPs. A total of 29 of these 30 loci were not identified in the previous 110 

UK Biobank analysis of income7 (Supplementary Data 2). The 30 loci predominantly contained 111 

SNPs found within intronic regions (47%) as well as non-coding RNA introns (29%). A total of 17% 112 

of the SNPs within the independent loci were found in intergenic regions, and only 1.2% were found 113 

in exons (Figure 3B). Many of the loci contained SNPs showing evidence of influencing gene 114 

regulation with 33% having a Regulome-DB score of <2 (Figure 3C) and 86% having evidence of 115 

being in an open chromatin state (indicated by a minimum chromatin state of <8, in Figure 3D). 116 

Additionally, these loci were linked to intelligence (11 loci), mental health (schizophrenia, 1 locus; 117 

bipolar disorder, 2 loci; neuroticism, 4 loci), and neurological variables (corticobasal degeneration, 1 118 

locus; subcortical brain volumes, 1 locus; and Parkinson’s disease, 1 locus) (Supplementary Data 3). 119 

Linkage disequilibrium score (LDSC) regression showed that the mean χ2 statistic was 1.45 120 

and the intercept of the LDSC regression was 1.04. These statistics indicate that around 92% of the 121 

inflation in the GWAS test statistics was due to a polygenic signal rather than residual stratification or 122 
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confounding. The LDSC regression estimate of the heritability of household income was 7.39% 123 

(SE=0.33%).  124 

 125 

Gene prioritization 126 

 Three methods of mapping allelic variation to genes were used to better understand the 127 

functional consequences of the 30 independent loci linked to income (positional mapping, eQTL 128 

analysis, and chromatin mapping). Using positional mapping, SNPs from the GWAS were aligned to 129 

117 genes. eQTL mapping was used to match cis-eQTL SNPs to 186 genes, and chromatin interaction 130 

mapping linked the SNPs to 277 genes (Figure 3E & Supplementary Data 4 & Supplementary 131 

Figure 1). These mapping strategies identified a total of 400 unique genes, of which 133 (Figure 3E 132 

cells 14+23+26+3+24+11+2+30) were implicated by at least two mapping strategies and 47 (Figure 133 

3E cells 23+24) were implicated by all three. Of the 133 implicated by two mapping strategies, two 134 

showed evidence of a chromatin interactions with two independent genomic risk loci 135 

(Supplementary Data 5). Both HOXB2 and HOXB7 showed interactions with loci 24 and loci 25. 136 

HOXB2 showed interactions in mesendoderm (an embryonic tissue layer) tissue and IMR90 (fetal 137 

lung fibroblasts) tissue, whereas HOXB7 showed associations in the tissues of hESC (human 138 

embryonic stem cell), Mesenchymal (multipotent stromal cells which differentiate into a variety of 139 

different cell types) Stem Cell, IMR90, Left Ventricle, GM12878, and Trophoblast-like Cells. 140 

 141 

Gene-based association analysis 142 

Using MAGMA,13 118 genes were associated with income (P < 2.662×10−6) (Supplementary 143 

Data 6 & Figure 4A). These genes overlapped with 24 of those implicated using positional, eQTL, 144 

and chromatin interaction modelling (Figure 3E). Of the genes implicated by each of the three 145 

methods and the gene-based-GWAS, BSN was of particular note due to its being expressed primarily 146 

in the neurons of the brain and its role in the scaffolding protein involved in the organization of the 147 

presynaptic cytoskeleton. Also found in this overlap was the gene CHST10. The protein encoded by 148 

CHST10 is a sulfotransferase that acts on HNK-1 which is involved in neurodevelopment and 149 

synaptic plasticity.  150 
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These 24 genes were then examined to determine if gene-based statistics had implicated them 151 

in intelligence due to the previously-reported, strong genetic correlations between income and 152 

intelligence.7 We found that 18 were associated (P<2.75×10−6) with intelligence from the GWAS 153 

conducted by Hill et al. (2018).8 This indicates that the genes with the most biological relevance to 154 

income were also linked to intelligence, again suggestive of the role that intelligence plays in SEP 155 

differences. 156 

 157 

Gene-set and gene-property analysis 158 

Gene-set analysis did not find evidence that any of the gene-sets included here were enriched 159 

for differences in household income (Supplementary Data 7). However, a gene-property analysis 160 

showed that genes that were more associated with household income were also more highly expressed 161 

in the brain (P=1.31×10−5) and the testis (P=1.31×10−5) than genes that were less associated with 162 

income (Supplementary Table 1). This relationship was found across tissues of the cerebellum 163 

(P=5.61×10−6), the cerebellar hemisphere (P=5.99×10−6), the frontal cortex BA9 (P=9.68×10−5), the 164 

cortex (P=1.05×10−4), the nucleus accumbens basal ganglia (P=2.93×10−4), and the anterior cingulate 165 

cortex BA24 (P=6.81×10−4) (Supplementary Data 8 & Figure 4B).  166 

Cell-type analysis conducted on household income indicated that, of the 24 cell types 167 

examined, two were statistically significant after controlling for 24 tests. The significant cell types 168 

include medium spiny neurons P=7.67×10−5, and serotonergic neurons P=0.002 (Supplementary 169 

Table 2 & Figure 4C). Finally, gene-property analysis found little evidence that genes linked to 170 

household income were transcribed in the brain at any one of 11 developmental stages,14 or across 29 171 

different specific ages14 (Supplementary Table 3 & Supplementary Table 4).  172 

 173 

Partitioned heritability 174 

The partitioned heritability analysis describes whether or not the SNPs that capture the 175 

greatest proportion of the heritability of income, also cluster in regions of the genome that are united 176 

by a shared biological theme. We find that, consistent with the notion that intelligence and income are 177 

genetically linked,15 the regions of the genome that have undergone purifying selection are those that 178 
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harbor the greatest proportion of heritability for income (P=1.62×10−10). Also enriched was the 179 

Conserved (GERP RS>=4) annotation providing additional evidence that conserved regions of the 180 

genome are enriched for the heritability of income. None of the other functional categories were 181 

significantly enriched for the heritability of income (Figure 5A & Supplementary Data 9). 182 

The partitioned heritability analysis using the six continuous categories analysed by quintile 183 

showed that common variants that were in the first three quintiles for age (i.e. the younger three 184 

groupings) were associated with a greater proportion of the heritability of income (1st quintile 185 

P=2.57×10−4, 2nd quintile P=3.33×10−7, 3rd quintile P=6.91×10−16) as were SNPs in the upper two 186 

quintiles for background selection greater level of background selection (4th quintile P=9.81×10−8, 5th 187 

quintile P=0.001). The first three quintiles describing nucleotide diversity and the same quartiles 188 

describing the level of LD (LDD-AFR) were also significantly enriched for heritability (Nucleotide 189 

diversity, 1st quintile P=2.47×10−23, 2nd quintile P=3.79×10−20, 3rd quintile P=0.003, LDD-AFR, 1st 190 

quintile P=5.38×10−12, 2nd quintile P=7.36×10−16, 3rd quintile P=0.002) (Figure 5B & Supplementary 191 

Table 5). The enrichment found by examining the continuous annotations by quintile is consistent 192 

with the idea that negative selective pressure has acted on the partially heritable traits linked to 193 

income. 194 

When examining cell-type specific enrichment using partitioned heritability we show that the 195 

greatest level of enrichment for cell type specific groupings comes from the brain and central nervous 196 

system. This is indicated by the fact that the 24 cell types that were significantly enriched using the 197 

gene expression data set were all cell types that are found within the brain and the rest of the central 198 

nervous system (Figure 5C, & Supplementary Data 10). Additionally, using the chromatin based 199 

sets, 32 of the 34 cell groupings that were significantly enriched were drawn from the brain and the 200 

central nervous system (Figure 5D, & Supplementary Data 11).  201 

This enrichment of heritability in the central nervous system led us to examine brain regions 202 

and cell types. We found that gene expression in the cortex harbored an enriched proportion of the 203 

heritability of income (P=0.006), but no other regions were found to be enriched (Figure 5E & 204 

Supplementary Table 6). Finally, gene expression associated with the category of neuron was found 205 
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to be enriched (P=1.30×10−9) but the two glia annotations of astrocyte and oligodendrocyte were not 206 

linked to income (Figure 5F & Supplementary Table 7).   207 

 208 

Inference of causal links with intelligence 209 

 Mendelian randomization was performed using the genetic instrument derived using 19 SNPs 210 

associated with intelligence from a meta-analysis of a GWAS of intelligence from the INTERVAL 211 

BioResource16, 17 as well as publicly-available sources (Supplementary Methods). Here we inferred a 212 

strong, causal link between intelligence and income (Beta=0.213, SE=0.063, P=7.63×10−4) 213 

(Supplementary Table 8). Should the assumptions of MR be met, this indicates that greater 214 

intelligence causes a higher level of income. Sensitivity analyses revealed little evidence of 215 

directional pleiotropy which can bias MR estimates (MR-Egger intercept=0.010, SE=0.007, P=0.189) 216 

(Supplementary Table 8). The heterogeneity statistics indicate that the estimated size of the causal 217 

effect of intelligence on income varies across the SNPs (Supplementary Table 8). However, since 218 

there was little evidence of directional pleiotropy, the overall causal estimate based on all of the 219 

genetic variants is unlikely to be biased if the MR-Egger assumptions hold (i.e. the InSIDE 220 

assumption).  221 

 222 

Genetic correlations 223 

Genetic correlations were calculated between household income and a set of 27 data sets 224 

covering psychological traits, mental health, health and wellbeing, anthropometric traits, metabolic 225 

traits, and reproduction.  226 

First, we build on the findings of Hill et al. (2016)7 by using a larger, better-powered dataset 227 

on income to show that the genetic variants associated with household income are linked with those 228 

that influence intelligence, rg=0.69, SE=0.02, P<10×10−200. We also show there are genetic 229 

correlations between income with health (self-rated health, rg=0.60, SE=0.03, P=5.72×10−73), mental 230 

health (subjective wellbeing, rg=0.32, SE=0.04, P=4.99×10−17), and longevity (rg=0.47, SE=0.07, 231 

P=1.29 × 10−10). Furthermore, we replicated the finding of Hill et al. (2019) by showing in our current 232 

study that, whilst a general factor of neuroticism shows a negative genetic correlation with household 233 
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income (rg=−0.36, SE=0.02, P=2.07×10−53) the two special factors of neuroticism of anxiety/tension 234 

and worry/vulnerability each show positive genetic correlations with income (rg=0.12, SE=0.03, 235 

P=7.19×10−5 and rg=0.15, SE=0.03, P=5.61×10−7 respectively). 236 

These findings show that many of the same genetic variants linked to higher SEP are also 237 

linked to better health. It should, however, be noted that income shows a positive genetic correlation 238 

with the mental health variables of anorexia nervosa (rg=0.09, SE=0.03, P=9.53×10−3) and bipolar 239 

disorder (rg=0.11, SE=0.04, P=1.20×10−2) (Figure 6A & Supplementary Data 12). 240 

Second, as SEP is a multi-dimensional construct and each marker of SEP is imperfectly 241 

correlated with the others, the magnitude of the genetic correlations derived using income were 242 

compared with those derived using another measure of SEP, educational attainment. The goal of these 243 

analyses was to indicate if the genetic associations between income with health differed from those of 244 

education with health. As can be seen in Figure 6A, whereas the magnitude and direction of the 245 

genetic correlations derived using income and EA with the 27 health and wellbeing, anthropometric, 246 

mental health, and metabolic traits were highly similar, there were instances of divergence indicating 247 

unique genetic associations with the two SEP variables. Of note are the variables of autism and 248 

schizophrenia. As found in previous studies8, 18, 19, 20, 21, 22, 23 schizophrenia showed a small positive 249 

genetic correlation with EA (rg=0.06, SE=0.02, P=1.15 × 10−3) whereas, in the present study, income 250 

showed a negative genetic correlation with schizophrenia (rg=−0.14, SE=0.02, P=6.49×10−9, 251 

Pdiff=6.57×10−11). Autism was positively genetically correlated with EA (rg=0.27, SE = 0.03, 252 

P=1.10×10−15) as previously,8, 21, 24 whereas there was no detectable genetic correlation between 253 

income and autism (rg=0.04, SE=0.05, P=0.37, Pdiff=1.17×10−11). There was evidence of differences 254 

between the income and education genetic correlations and nine other traits (subjective wellbeing, 255 

Pdiff=1.42×10−5, tiredness, Pdiff=1.60×10−4, age at first birth, P=1.24×10−3, bipolar disorder, 256 

Pdiff=1.41×10−2, social deprivation, Pdiff=1.72×10−2, and chronotype, P=3.83×10−2
, the 257 

worry/vulnerability special factor of neuroticism P=1.17×10−2
, and a general factor of neuroticism 258 

Pdiff=7.26×10−3) (Figure 6A & Supplementary Table 12). 259 

Third, the role of intelligence in mediating the effect of genetic variation on income was 260 

explored by estimating the genetic correlation of income with each of the traits after conditioning the 261 
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income GWAS on a GWAS on intelligence. As can be seen in Figure 6B, after controlling for 262 

intelligence the genetic correlations between income and the 27 health and wellbeing, anthropometric, 263 

mental health, and metabolic traits remained largely similar. Two exceptions to this were age at first 264 

birth, where the genetic correlation with income decreased from rg=0.58 (SE=0.03, P=8.81×10−99) to 265 

rg=0.45 (SE=0.04, P=1.20×10−35, Pdiff=0.003), and ADHD which decreased from rg=−0.48 (SE=0.03, 266 

P=2.20×10−45) to rg=−0.36 (SE=0.04, P=1.86×10−17, Pdiff=0.03). This means that genetic variation that 267 

is associated with income, but not intelligence, shows much of the same overlap with the 27 traits 268 

used here, as the genetic variation that is common to both income and intelligence. 269 

In Figure 6C however, 12 genetic correlations with intelligence changed after controlling for 270 

income. There was little evidence that subjective wellbeing was genetically correlated with 271 

intelligence (rg=0.03, SE=0.03, P=0.31), as previously found8; however, subjective wellbeing was 272 

negatively genetically correlated after adjusting for income (rg=−0.18, SE=0.04, P=3.11×10−5), 273 

(Pdiff=9.92×10−5). The genetic correlation between intelligence and social deprivation (as measured by 274 

Townsend Scores) of rg=−0.42 (SE=0.04, P=1.38×10−23), attenuated to rg= 0.04 (SE=0.05, P=0.38); 275 

(Pdiff =1.29×10−13). The genetic correlation between intelligence and neuroticism (rg=−0.23, SE=0.02, 276 

P=1.83×10−23) also attenuated to close to zero after conditioning on income (rg=−0.02, SE=0.03, 277 

P=0.57), (Pdiff=7.26×10−3). This means that the genetic variation that is associated with intelligence, 278 

but not income, shows less overlap with the 27 traits used here, than the genetic variation that is 279 

common to both intelligence and income. The genetic correlations with intelligence once conditioning 280 

on income were different for the variables of self-rated health (Pdiff=6.76×10−12), age at first birth 281 

(Pdiff=1.33×10−8), fatigue or tiredness (Pdiff=6.82×10−8), ADHD (Pdiff=5.55×10−4), height 282 

(Pdiff=2.59×10−4), BMI (Pdiff=0.013), obesity (Pdiff=1.60 × 10−2), longevity (Pdiff=0.014), smoking 283 

(Pdiff=0.032) (Figure 6C, Supplementary Table 12). 284 

 285 

Genetic prediction  286 

Polygenic risk scores were derived using the summary statistics from our GWAS of 287 

household income and the GS:SFHS data on household income. When examining the polygenic risk 288 

scores within each of the five income groups in GS:SFHS we found those in category 5 (those earning 289 
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more than £70,000) had the highest PGR scores (Figure 7A). The predicted income for the PGR 290 

scores was lower in each subsequent level of household income in GS:SFHS.  291 

Those in the lowest quintile of the polygenic score for income were found on average to have 292 

the lowest predicted income (Figure 7B) with the mean level of household income rising across each 293 

quintile. Those in the three lowest quintiles for their genetic propensity for income were found to have 294 

an average level of household income between £10,000 and £30,000, whereas those in the top two 295 

quintiles were found to have a household income of between £30,000 and £50,000. Polygenic 296 

prediction conducted using the summary data from UK Biobank applied to the GS:SFHS data showed 297 

that between 1.2% and 2.0% of the variance in household income can be predicted using the 298 

polygenic score for income (Supplementary Table 9 & Figure 7C) with the PGRS that was most 299 

predictive using a P-value cut off of 0.1.  300 

 301 

Multi-trait analysis of genome-wide association studies 302 

MTAG has previously been used to conduct the first well-powered GWAS on intelligence.8 303 

We used MTAG here to increase the power of our GWAS on income by meta-analysing it with 304 

another measure of SEP, educational attainment10 as measured by the number of years of education a 305 

participant has completed. MTAG was conducted using the default settings and applied to increase the 306 

power in the GWAS of household income. Following the application of MTAG, the mean χ2 statistic 307 

increased from 1.45 to 1.73 and increased the effective sample size to 505,541 for income.  308 

The maxFDR derived was 0.003, over an order of magnitude lower than the commonly 309 

accepted standard of false discovery and comparable with those reported previously,8, 25 indicating 310 

that the data set was capturing variance associated with income. We also find that the genetic 311 

correlation between our MTAG-income phenotype and a previous GWAS on income7 was rg=0.97 312 

(SE=0.024), with a genetic correlation of rg=0.94 (SE=0.004) with educational attainment. This 313 

indicates that the polygenic signal in the MTAG-income analysis is virtually identical to that found in 314 

previous GWAS of income, but also that it captures more of the variance that is shared between 315 

income and education.  316 
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Using this MTAG-income phenotype we identify 144 independent genomic risk loci 317 

(Supplementary Figure 2A & Supplementary Data 13). A total of 24 overlapped with the 30 found 318 

without using MTAG, meaning that by using MTAG an additional 120 independent loci were 319 

identified that were associated with income (Supplementary Data 14). Functional annotation of these 320 

loci, as well as gene-based analyses and partitioned heritability analysis showed results that were 321 

consistent with a better-powered GWAS dataset on household income (Supplementary Figure 2B -322 

2E). These results can be found in Supplementary Note 1.   323 

Polygenic risk scores analysis using the MTAG phenotype, showed that between 1.7% and 324 

2.5% the variance of income was predicted in an independent sample (Supplementary Table 9 & 325 

Figure 7C) with the PGRS that was most predictive using a P-value cut off of 0.05.  326 

 327 

Discussion  328 

Using the UK Biobank data set, we identified 30 independent genetic loci associated with 329 

income levels in Great Britain today. This represents a considerable advance on the two loci 330 

previously identified by Hill et al. (2016).7 The present study contributes to our understanding of the 331 

genetic contributions to SEP in seven major ways. 332 

First, the loci associated with income showed clear evidence of functionality, particularly 333 

regarding their links to gene expression, regulatory regions of the genome, and open chromatin states. 334 

Second, by combining our GWAS data with eQTL data from BRAINEAC,26 GTEx,27 and others, 335 

along with chromatin interaction data28, 29 we were able to prioritize which genes were likely to be 336 

causal based on the overlap of multiple lines of biological enquiry. Although income, as a biologically 337 

distal phenotype, will not be directly linked to genetic variation (Figure 1),7 genes that may exert a 338 

causal influence are likely to do so through their effect on more proximal phenotypes.30  339 

Using our GWAS data set on income, we identified 47 genes that were mapped to the 30 340 

independent genomic loci using positional, eQTL, and chromatin mapping. In addition, we used the 341 

118 genome-wide significant genes from our gene-based analysis of income to further refine this set 342 

to a total of 24 implicated genes. These 24 genes therefore should be prioritized in follow-up studies 343 

as they are located close to the associated loci, have expression correlated with genetic variation of the 344 
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SNPs in the independent genomic loci, have chromatin interactions taking place between these genes 345 

and the SNPs found in the independent loci (Supplementary Data 4) and, consistent with highly 346 

polygenic traits, these genes harbor many SNPs that show consistent associations with income 347 

(Supplementary Data 6). In addition, 18 of these genes have been associated with intelligence,8 so 348 

efforts to ascertain how such genetic variation is associated with income differences should examine 349 

their associations with intelligence more closely. 350 

Third, by broadening our analysis to include the polygenic signal that fell outside of the 351 

independent loci, we identified additional, functional elements of the genome linked to differences in 352 

income. By combining the gene-based statistics from MAGMA with gene expression data from the 353 

GTEx27 database, we identified a positive association between expression in the brain, as well as 354 

several specific regions, and the level of association displayed by the gene-based statistics on income. 355 

This indicates that the higher the level of association between a gene and income, the higher that 356 

gene’s level of expression specific to the brain will be.  357 

Cell type specific analysis revealed that the expression that was specific to the serotonergic 358 

neurons and to medium spiny neurons was associated with income. Medium spiny neurons have 359 

previously been linked to schizophrenia31 which has a strong cognitive component and has previously 360 

been linked to glutamatergic systems including the NMDA receptor signaling complex.32 Medium 361 

spiny neurons are a sub-type of GABAergic inhibitory neurons. Future work should examine if, like 362 

other cognitive traits, income is linked to both GABAergic and glutamatergic systems. 363 

Partitioned heritability analysis identified enrichment across cell types from the central 364 

nervous system  and across the cortex as being significantly enriched for the heritability of income. 365 

These findings indicate that income in Great Britain today is associated with phenotypes that are 366 

associated with differences in the brain such as intelligence8 or neuroticism.33, 34 367 

These two approaches, gene-based statistics and LDSC regression, illustrate how combining 368 

the genetic data from GWAS with gene expression data can be informative as to the possible 369 

biological processes that are associated with income. This is of particular value for traits, like income, 370 

that have no clear biological analogue and are likely linked to genetic variation via mediated 371 

pleiotropy. This combination of data provides evidence that some of the individual differences in 372 
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income are related to gene expression differences in the brain (Figure 4B & Figure 5C, D, and E), as 373 

well as highlighting the role of specific classes of neuron (Figure 4C & Figure 5F). As importantly, 374 

we show the role for some tissue types outside of the central nervous system (Figure 5D) indicating 375 

that genetic factors associated with income differences may also lie outside of the phenotype of 376 

intelligence, and outside of cortical tissue types. 377 

Fourth, using Mendelian Randomization, we provided evidence implicating intelligence as 378 

one of the potentially causal, partly-heritable, phenotypes that might be one bridge in the gap between 379 

molecular genetic inheritance and phenotypic consequence. This result, if the assumptions of MR are 380 

met, helps explain why individual differences in income are found to be partly heritable.  381 

Fifth, our data show that income and education each have similar genetic correlations with many 382 

variables. However, some genetic correlations differ depending on whether income or education is 383 

used as a measure of SEP, and those that differed tend to be those related to mental health. In those, 384 

the income genetic correlations that are negative are of a greater magnitude than those derived using 385 

education, and where the income genetic correlations are positive, they are of smaller effect than the 386 

education derived genetic correlations (Figure 6A & Supplementary Data 12).  387 

Together this implies that the genetic variants that are associated with higher income tend to 388 

be more strongly associated with better psychological health than the genetic variants associated with 389 

education. This could be a stage-of-life-course-specific-phenomenon, i.e. education tends to be 390 

completed earlier in the life course, before some illnesses appear that could affect earning capability. 391 

It should also be considered that these significantly different genetic correlations between education 392 

and income indicate that educational attainment serves to provide access to opportunities in the labor 393 

market, and those that have these opportunities are then better placed to engage in health-relevant 394 

behaviors. This would indicate that, whereas income may be a more distal phenotype from DNA than 395 

education, it is potentially closer to outcomes such as later-life health, as evidenced by differences 396 

between the genetic correlations. Future work should examine models where DNA -> neuronal 397 

properties -> intelligence -> education -> income -> health, using multivariable Mendelian 398 

randomization35, 36, 37 to gauge the direct and indirect effects of income and education on health 399 

outcomes. 400 
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However, previous work using lotteries in Sweden as natural experiments to examine the 401 

causal effect of wealth on health differences38 found that, in the 10 years after receiving a prize (either 402 

as a single payment or multiple instalments), winning participants did not have a longer life or fewer 403 

hospital admissions compared with those who did not win the lottery.38 This indicates that, whereas 404 

high earners may be in better health and have a greater level of education than low earners, a high 405 

income might not be causal in such differences in affluent countries that have strong social support 406 

systems. Furthermore, children born to lottery winners were not found to be advantaged in terms of 407 

their level of scholastic performance compared to the children of those who did not win the lottery,38 a 408 

finding that argues against a dynastic effect mediated via wealth. Although any causal effect of wealth 409 

on health are likely to differ across countries and times, should the results of this Swedish study 410 

generalize to the UK today, they would complement our results and together would support a model 411 

whereby genetic differences that are linked with health might be linked to partly heritable 412 

intermediary phenotypes, such as intelligence. 413 

In this scenario, the similarities and differences between the genetic correlations derived using 414 

education and income might be accounted for in part by the differences in the intermediary 415 

phenotypes that give rise to each measure of SEP. Under this model, the observed differences between 416 

genetic correlations with mental health (Figure 6A) would be due to intermediary variables that make 417 

a greater contribution to both income and mental health than they do to education. The similarities 418 

between income and education genetic correlations and health potentially indicates a similar 419 

contribution from intermediary phenotypes to income, education, and health. 420 

Using mtCOJO we found that, when the genetic associations that are shared between income 421 

and intelligence were removed, the genetic correlations with other traits were largely unchanged. The 422 

exceptions were with ADHD and with age of first birth, where the genetic correlations with income 423 

are both attenuated once conditioned on intelligence. However, 12 of the income-health genetic 424 

correlations were attenuated after adjusting the SNP-income associations for intelligence. These 425 

results indicate that the genetic variation associated with intelligence and income is also associated 426 

with many health and mental health traits, because, when this shared variance is removed, leaving 427 

only the variance that is unique to intelligence, the magnitude of the genetic link between intelligence 428 
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and health is reduced. In the case of the genetic link between intelligence, social deprivation, 429 

neuroticism, and height, this genetic association disappears entirely following adjustment for income. 430 

The exception is that subjective wellbeing shows a genetic correlation with intelligence only after the 431 

variance that is common to both income and intelligence is removed.  432 

One interpretation of this finding is that the residual variance left in income after conditioning 433 

on intelligence still contains the genetic contributions to other partly-heritable traits (such as 434 

conscientiousness, or resistance to disease). These traits also contribute towards individual differences 435 

in income and so the association between income and health is, largely, intact following conditioning 436 

on intelligence. This would imply that intelligence is only one of a number of factors that contributes 437 

to variation in income, but income is a very important factor that mediates the associations between 438 

intelligence and health. Future work examining the genetic relationship between income and health, as 439 

well as intelligence and health, should focus on this genetic overlap between intelligence and income 440 

using tools such as genomic structural equation modelling (SEM) to partition the total variance of 441 

traits like income into the variance that is shared with intelligence and the variance that is separate 442 

from it.39 443 

Sixth, we were able to predict up to 2% of income differences using polygenic risk scores. 444 

This shows that even for phenotypes that are not impacted directly by genetic effects, but rather are 445 

more biologically distal as is the case with income, that the link between genotype and phenotype is 446 

sufficient to make predictions, based on DNA alone.  447 

Seventh, using MTAG, we increased our effective sample size from 286,301 participants to 448 

505,541. With this increase in power we were able to raise the number of loci found to be associated 449 

with income from 30 to 144. Of these 144 associations, 120 of were not found to be genome-wide 450 

significant before the application of MTAG. These loci demonstrated the same patterns of functional 451 

enrichment as shown in the 30 loci identified using income alone. We also identified the same 452 

relationship between expression in the brain, and across multiple cortical structures, using the better 453 

powered MTAG-derived income phenotype (Supplementary Note 1). Furthermore, following meta-454 

analysis with MTAG, we were able to increase our prediction accuracy of income by 25%. 455 
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The limitations of this study include that income was measured at the level of the household 456 

and was not an individual-level measure of income. However, previous GWASs examining household 457 

income variables have shown that income, measured on a household level, has a genetic correlation of 458 

0.90 (S.E. = 0.04) with educational attainment, as measured on an individual level, indicating that the 459 

household-level effects are likely to be generalizable to individual persons.7 Furthermore, GWASs 460 

conducted on regional measures of educational attainment show genetic correlations of >0.9 with 461 

education measured using an individual’s own level of educational attainment.40 462 

A limitation of the Mendelian Randomization analysis specifically are potential dynastic 463 

effects, which may violate the assumptions of MR. Dynastic effects are where genetic variants that the 464 

parent has but the child does not, are associated with parental behaviors, and these parenting 465 

behaviours are a causal factor in the SEP of the child.41 An example of this would could be that 466 

parents with a greater predisposition towards intelligence are also those that are more likely to provide 467 

opportunities for their children to enter higher-income occupations. In this instance the second 468 

assumption of Mendelian Randomization, that the instrument must only affect income via their effect 469 

on intelligence, would be violated. The association of the offspring’s SNPs and income would be 470 

partially due to the effects of the parents’ genotype on their parents’ intelligence which subsequently 471 

affects offspring’s income. Whereas the current data cannot differentiate between causality and 472 

dynastic effects, it should be noted that, for another measure of SEP, educational attainment, there is 473 

evidence of indirect genetic effects which  account for ~30% of the variance of the direct genetic 474 

associations.42 Future work in multi-generational samples should examine the role that such indirect 475 

genetic effects play in individual differences in income, as well as if their presence (if established) 476 

could result in an inflation of the estimate for a causal effect using Mendelian Randomization.43 477 

Furthermore, genetic variants associated with intelligence are likely to have pleiotropic 478 

effects.44 However, to break the assumptions Mendelian randomization it is not sufficient for the 479 

genetic variants to have pleiotropic effects.45 The genetic variants we use as instruments must have 480 

horizontally pleiotropic effects mediated via mechanisms other than intelligence. If the genetic 481 

variants have vertically pleiotropic effects, e.g. SNP->neuron->intelligence->income->health, then 482 

our Mendelian randomization estimates will not be biased. Equally, if the SNPs affect other 483 
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phenotypes, but these phenotypes do not affect outcome, then these effects will not result in bias in 484 

the Mendelian randomization estimates. It is possible that the genetic variants identified in 485 

intelligence GWAS have horizontally pleiotropic effects, however, it is unclear what mechanisms 486 

would mediate these effects. The genetic correlations between intelligence and personality traits are 487 

relatively low.46 The genetic variants identified in the intelligence GWAS are likely to also affect a 488 

range of cognitive ability related traits. However again, these pleiotropic effect via related phenotypes 489 

are unlikely to cause bias if the results are interpreted as a test of general cognitive function. It is 490 

possible to investigate potentially horizontal pleiotropic effects further using multivariable Mendelian 491 

randomization.47 If SNPs have been identified that explain sufficient independent variation in two or 492 

more two potential pathways, e.g. intelligence and education, it is possible to identify the direct 493 

effects of each exposure. Future research should use multivariable Mendelian randomization to 494 

investigate this further. 495 

Another limitation is that the present study was restricted to examining common genetic 496 

effects. Should rare or less common genetic variation be associated with income, then these effects 497 

will be absent from this study. Future work should utilize methods that can capture these genetic 498 

effects,48 as well as examine SEP variables using whole exome or whole genome sequencing. In 499 

addition, the participants of UK Biobank are drawn from the more educated and healthier individuals 500 

in the UK, which might introduce collider bias.49 Whereas a comparison of the level of SEP between 501 

the individuals in UK Biobank and the census conducted in the UK indicates that SEP, as measured 502 

using the Townsend Deprivation Index,50 was very similar,7 future work aiming to quantify or control 503 

for collider bias would be of value in addressing this potential issue.  504 

A further limitation is that molecular genetic analyses of phenotypes such as intelligence, 505 

income, or SEP, appear prone to being  misinterpreted.51 Such misunderstandings include describing 506 

associated variants as, genes for income, or the misinterpretation that any associated variant, and 507 

indeed any non-zero heritability estimate, is evidence for genetic determinism or the immutable nature 508 

of these phenotypes via environmental intervention. We include a figure (Figure 1) that illustrates 509 

that genetic variants do not act directly on income; instead, genetic variants are associated with partly 510 

heritable traits (such as intelligence, conscientiousness, health etc.) which have their own complex 511 
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gene-to-phenotype paths (including neural variables) and are ultimately associated with income. 512 

Therefore, the genetic variant-income associations discovered here are no more for income than they 513 

are for these other traits. For more discussion of the implications of these results, aimed at the general 514 

reader, we have provided a Frequently Asked Questions (FAQ) document in the Supplementary 515 

Note 2.  516 

Finally, it should be noted that GWASs, like heritability estimates, describe differences that 517 

exist within populations. This means that, although we report here that those with a greater number of 518 

intelligence-associated genetic variants tend to be those who report higher incomes, it does not hold 519 

that this is true across other societies or times. Indeed, the links between markers of SEP and health 520 

are not consistent across all societies.52 Research into genetic links to education has found indications 521 

that the genetic variants linked to higher educational attainment are less predictive of success in 522 

societies that have less meritocratic selection for education and occupation.53 Future work examining 523 

the relative contribution of genetic and environmental associations with income, as well as the 524 

biological systems causally implicated in any GWAS conducted on a marker of SEP across many 525 

cultures, would be valuable in identifying more and less meritocratic societies. 526 

In conclusion, this work adds to the growing body of evidence indicating that markers of 527 

socioeconomic position, and their links to health, are likely to be both genetic and environmental in 528 

origin.6, 7 We found that SEP variation in the Great Britain is partially accounted for by genetic 529 

differences in the population.54 We found little evidence that these genetic differences were 530 

attributable to population stratification, but rather that they indicated the unequal distribution of 531 

heritable traits, including intelligence, across different SEP groups. Using multiple forms of biological 532 

data, we showed that these genetic differences are predominantly found in regions of the genome that 533 

have undergone negative selection and are related to differences in gene expression in the brain, 534 

particularly in medium spiny neurons. We also prioritise 24 genes for further follow up as evidence 535 

from eQTL analysis, chromatin interactions, with previous associations with intelligence converging 536 

to implicate 18 of these genes. Furthermore, we identify intelligence as one of the likely causal 537 

psychological traits partly driving differences in income and SEP in Great Britain today. 538 

 539 
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 540 

Method 541 

Participants 542 

The primary sample used involved participants from UK Biobank, an open-access resource 543 

established to examine the determinants of disease in middle-aged and older adults living in the 544 

United Kingdom.55 Recruitment to UK Biobank occurred between 2006 and 2010, targeting 545 

community-dwelling individuals from both urban and rural environments across a broad range of 546 

socio-economic circumstances. A total of 502,655 participants were assessed at baseline on a range of 547 

cognitive and other psychological measures, physical and mental health, and their socioeconomic 548 

position. They donated a number of biological samples, including DNA for genotyping. In order to 549 

reduce the effects of population stratification, only participants from a single ancestry group, those of 550 

White British ancestry, were included in the analysis. High quality genotyping was performed by UK 551 

Biobank on 332,050 participants. Ethical approval for UK Biobank was received from the Research 552 

Ethics Committee (REC reference 11/NW/0382). This work was conducted under UK Biobank 553 

application 10279. 554 

 555 

Phenotype description 556 

A total of 332,050 participants had genotype data and data on their level of household 557 

income. Self-reported household income was collected using a 5 point scale corresponding to the total 558 

household income before tax, 1 being less than £18,000, 2 being £18,000 - £29,999, 3 being £30,000 - 559 

£51,999, 4 being £52,000 – £100,000, and 5 being greater than £100,000. This 5 point scale was 560 

analysed by treating the categories of income as a continuous variable. Participants were removed 561 

from the analysis if they answered “do not know” (n = 12,721), or “prefer not to answer” (n = 562 

31,947). This left a total number of 286,301 participants (138,425 male) aged 39-73 years (mean = 563 

56.5, SD = 8.0 years) with genotype data who had reported, between 1 and 5, their level of household 564 

income. 565 

 566 

UK Biobank genotyping 567 
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Full details of the UK Biobank genotyping procedure have been made available.56 In brief, 568 

two custom genotyping arrays were used to genotype 49,950 participants (UK BiLEVE Axiom Array) 569 

and 438,427 participants (UK Biobank Axiom Array).56, 57 Genotype data on 805,426 markers were 570 

available for 488,377 of the individuals in UK Biobank. Imputation to the Haplotype Reference 571 

Consortium (HRC) reference panel lead to 39,131,578 autosomal SNPs being available for 487,442 572 

participants.56 Allele frequency checks58 against the HRC59 and 1000G60 site lists were performed, and 573 

variants with minor allele frequencies (MAF) differing more than +/- 0.2 from the reference sets were 574 

removed. 575 

Additional quality control steps were conducted and described previously.8, 34 These included 576 

the removal of those with non-British ancestry based on self-report and a principal components 577 

analysis, as well as those with extreme scores based on heterozygosity and missingness. Individuals 578 

with neither XX or XY chromosomes, along with those individuals whose reported sex was 579 

inconsistent with genetically inferred sex, were also removed. Finally, individuals with more than 10 580 

putative third degree relatives (identified by Bycroft et al.56 by estimating the kinship coefficients 581 

for all pairs of samples using the software KING61) were also removed. Following these exclusions, 582 

a sample of 408,095 individuals remained. Using GCTA-GREML on 131,790 reportedly-related 583 

participants,62 related individuals were removed based on a genetic relationship threshold of 0.025. 584 

Following this quality control, household income data, and genetic data, were available on 286,301 585 

participants. Following association analysis, SNPs with a minor allele frequency < 0.0005, and an 586 

imputation quality score < 0.1 were removed. Finally, only bi-allelic SNPs were retained, resulting in 587 

18,485,882 autosomal SNPs.  588 

 589 

Genome-wide association analysis (GWAS) in the UK Biobank sample 590 

The level of household income as measured on the 5 point scale was subjected to a regression 591 

using income as the outcome as has been conducted previously,7 and 40 genetic principal components 592 

(to control for population stratification), genotyping array, batch, age, and sex as predictors. The 593 

residuals from this model were then used in a GWAS assuming an additive genetic model as 594 

implemented in BGENIE.56 595 
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 596 

Functional annotation and loci discovery  597 

Genomic risk loci were derived using the summary data from the data set of household 598 

income derived in UK Biobank, using FUnctional Mapping and Annotation of genetic associations 599 

(FUMA).63 First, independent significant SNPs were defined using a P-value cut off of genome-wide 600 

significant (P < 5 × 10−8), as well as being independent from each other (r2 < 0.6) within a 1mb 601 

window. Second, SNPs that were in LD with any independent SNP (r2 ≥ 0.6) and within a 1mb 602 

window in addition to being in the HRC genomes reference panel with a MAF greater than 0.001, 603 

were included for further annotation. Third, lead SNPs were identified using the independent 604 

significant SNPs as defined above. Lead SNPs were a subset of the independent significant SNPs that 605 

were in LD with each other at r2 < 0.1, with a 1mb window. Fourth, genomic risk loci were created by 606 

merging lead SNPs if they were closer than 250 kb apart. This means that a genomic risk locus could 607 

contain multiple independent significant SNPs and multiple lead SNPs. Finally, all SNPs in LD of r2 608 

≥0.6 with one of the independent significant SNPs formed the border, or edge, of the genomic risk 609 

loci.  610 

The lead SNPs and those in LD with the lead SNPs were then mapped to genes based on their 611 

functional consequences, as described using ANNOVAR64 and the Ensemble genes build 85. 612 

Intergenic SNPs were annotated as the two closest flanking genes which can result in them being 613 

assigned to multiple genes.   614 

 615 

Gene-mapping 616 

Three strategies were used to link the income-associated independent genomic loci to genes. 617 

First, positional mapping65 was used to map SNPs to genes based on physical distance. SNPs were 618 

mapped to genes if they were within a 10kb from a known protein gene found in the human reference 619 

assembly (hg19).  620 

Second, expression quantitative trait loci (eQTL) mapping was carried out by mapping SNPs 621 

to genes if allelic variation at the SNP is associated with expression levels of a gene. For eQTL 622 

mapping, information on 45 tissue types from three data bases (GTEx v7, Blood eQTL browser, BIOS 623 
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QTL browser) based on cis-QTLs was used and SNPs were mapped to genes up to 1Mb away. A false 624 

discovery rate (FDR) of 0.05 was used as a cut off to define significant eQTL associations. 625 

Finally, chromatin interaction mapping was carried out to map SNPs to genes when there is a 626 

three-dimensional DNA-DNA interaction between the SNP and gene. No distance boundary was 627 

applied as chromatin interactions can be long-ranging and span multiple genes. Hi-C data of 14 tissue 628 

types was used for chromatin interaction mapping.66 In order to reduce the total number of genes 629 

mapped using chromatin interactions and to increase the likelihood that those mapped are biologically 630 

relevant, an additional filter was added. We only retained interaction mapped genes if one region 631 

involved with the interaction overlapped with a predicted enhancer region in any of the 111 tissue/cell 632 

types found in the Roadmap Epigenomics Project,67 and the other region was located in a gene 633 

promoter region (i.e., 250bp upstream and 500bp downstream of the transcription start site and also 634 

predicted to be a promoter region by the Roadmap Epigenomics Project 67). An FDR of 1×10−5 was 635 

used to define a significant interaction. 636 

 637 

Gene-based GWAS 638 

Gene-based analyses have been shown to increase the power to detect association due to the 639 

multiple testing burden being reduced, in addition to the effects of multiple SNPs being combined.68 640 

Gene-based GWAS was conducted using MAGMA.69 All SNPs located within protein coding genes 641 

were used to derive a P-value describing the association found with household income. The NCBI 642 

build 37 was used to determine the location and boundaries of 18,782 autosomal genes and linkage 643 

disequilibrium within and between genes was gauged using the HRC panel. In order to control for 644 

multiple testing, a Bonferroni correction was applied using each gene as an independent statistical unit 645 

(0.05 / 18,782 =2.66 ×10−6). The gene-based statistics derived using MAGMA were then used to 646 

conduct the gene-set analysis, the gene-property analyses, and the cell type enrichment analysis. 647 

 648 

Gene-set analysis 649 

In order to understand the biological systems vulnerable to perturbation by common genetic 650 

variation, a competitive gene-set analysis was performed. Competitive testing, conducted in 651 
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MAGMA,69 examines if genes within the gene-set are more strongly associated with the trait of 652 

interest than other genes, and differs from self-contained testing by controlling for type 1 error rate as 653 

well as being able examine the biological relevance of the gene-set under investigation.70 654 

A total of 10,891 gene-sets (sourced from Gene Ontology,71 Reactome,72 and, MSigDB73) 655 

were examined for enrichment of household income. A Bonferroni correction was applied to control 656 

for the multiple tests performed on the 10,891 gene-sets available for analysis. 657 

 658 

Gene-property analysis 659 

In order to identify the relative importance of particular tissue types which may indicate the 660 

intermediary biological phenotypes that might act between genetic variation and SEP outcomes, a 661 

gene property analysis was conducted using MAGMA. The goal of this analysis was to determine if, 662 

in 30 broad tissue types, and 53 specific tissues, tissue specific differential expression levels were 663 

predictive of the association of a gene with household income. Tissue types were taken from the 664 

GTEx v7 RNA-seq database74 with expression values being log2 transformed with a pseudocount of 1 665 

after Winsorising at 50 with the average expression value being taken from each tissue. Multiple 666 

testing was controlled for using Bonferroni correction.  667 

An additional gene property analysis was conducted to determine if transcription in the brain 668 

at 11 developmental stages,14 or across 29 different age groupings,14  was associated with a gene’s 669 

link to household income. These RNA-Seq GEncode v10 summarized to genes data were accessed 670 

using the following link: http://www.brainspan.org/api/v2/well_known_file_download/267666525. 671 

The detailed descriptions of the normalization processes used can be found in the technical white 672 

paper at: http://help.brain-673 

map.org/download/attachments/3506181/Transcriptome_Profiling.pdf?version=1&modificationDate=674 

1382036562736&api=v2, where a total of 524 samples were available for analysis. The 675 

developmental stages were assigned to each two groups (11 developmental stages and 29 age 676 

groupings) based on the age of the sample. The groupings of 25 post-conception weeks (pcw) and 35 677 

pcw were excluded from the age groups as they contained fewer than three samples. Next, the 52,376 678 

annotated genes were filtered so that the average Reads Per Kilobase (RPKM) is >1. This was 679 



 26

performed in the developmental group and in the age group separately. This resulted in 19,601 genes 680 

for the developmental stage groupings and 21,001 genes for the age groupings. RPKM was then 681 

winsorized at 50 (RPKM>50 was replaced with 50). Then, the average of log transformed RPKM 682 

with a pseudocount 1 (log2(RPKM+1)) per group (for either 11 developmental stages or 29 age 683 

groups) was used as a covariate conditioning on the average across all the labels. To control for 684 

multiple tests a Bonferroni correction was used to control for 11 and 29 tests separately. 685 

 686 

Cell type enrichment 687 

As previous studies had indicated the importance of cortical tissues to differences in SEP,7, 10 688 

a gene property analysis was also conducted to examine a broad array of brain specific cell types. 689 

Enrichment of heritability was tested against 173 types of brain cells (24 broad categories of cell 690 

types), which were calculated following the method described in Skene et al., (2018)31 Briefly, brain 691 

cell-type expression data were drawn from single-cell RNA sequencing data from mouse brains. For 692 

each gene, a specificity value for each cell-type was calculated by dividing the mean Unique 693 

Molecular Identifier (UMI) counts for the given cell type by the summed mean UMI counts across all 694 

cell types. MAGMA69 was used to calculate cell type enrichments where specificity values were then 695 

divided into 40 equal sized bins for each cell type for the MAGMA analysis. A linear model was 696 

fitted over the 40 specificity bins (with the least specific bin indexed as 1 and the most specific as 40). 697 

This was done by passing the bin values for each gene using the ‘--gene-covar onesided’ argument. 698 

 699 

Univariate linkage disequilibrium score 700 

Univariate LDSC regression was performed on the summary statistics from the GWAS on 701 

household income in order to quantify the degree to which population stratification may have 702 

influenced these results.  703 

For the GWAS on household income, LD score regression was carried out by regressing the 704 

GWA test statistics (χ2) from each GWAS onto the LD score (the sum of squared correlations 705 

between the minor allele frequency count of a SNP with the minor allele frequency count of every 706 
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other SNP) of each SNP. This regression allows for the estimation of heritability from the slope, and a 707 

means to detect residual confounders using the intercept.  708 

LD scores and weights were downloaded from 709 

(http://www.broadinstitute.org/~bulik/eur_ldscores/) for use with European populations. SNPs were 710 

included if they had a minor allele frequency of > 0.01 and an imputation quality score of > 0.9. 711 

Following this, SNPs were retained if they were found in HapMap 3 with MAF > 0.05 in the 1000 712 

Genomes EUR reference sample. Following this indels and structural variants were removed along 713 

with strand ambiguous variants. SNPs whose alleles did not match those in the 1000 Genomes were 714 

also removed. As the presence of outliers can increase the standard error in LDSC regression and so 715 

SNPs where χ2 > 80 were also removed. 716 

 717 

Partitioned heritability 718 

Partitioned heritability was performed using stratified linkage disequilibrium score (LDSC) 719 

regression.75, 76 Stratified LD Scores were calculated from the European-ancestry samples in the 1000 720 

Genomes project (1000G) and only included the HapMap 3 SNPs with a minor allele frequency 721 

(MAF) of >0.05. The model was constructed using 60 overlapping, functional categories. In addition, 722 

10 minor allele frequency bins, and 6 continuous annotations, were included to control for LD-related 723 

bias in the partitioned heritability analysis by modelling regional LD, as well as MAF. Correction for 724 

multiple testing was performed using a Bonferroni test on the 60 functional categories (α = 0.00083). 725 

The continuous annotations were also analyzed by examining the enrichment of each quintile for the 726 

six continuous categories of predicted allele age, background selection, recombination rate, nucleotide 727 

diversity, low levels of linkage disequilibrium in African populations, and CpG content. Here, control 728 

for multiple testing was performed using a Bonferroni correction within each of the six annotations 729 

(α=0.05/5=0.01). 730 

Cell type analysis was conducted using the method of Finucane et al. (2018)77. Here, four data 731 

sets were used and examined for enrichment of household income. The first data set (gene expression) 732 

contained gene expression data from across 205 tissue or cell types taken from the GTEx74 data base 733 

and from Franke lab data set78, 79 from Finucane et al. (2018)77. The second data set (Chromatin) 734 
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contained data on 489 tissue and cell types taken from Roadmap Epigenomics consortium67 and from 735 

EN-TEx, a subgroup of ENCODE.80 77. Data pertaining to expression in 13 regions the brain was 736 

taken from GTEx74 and gene expression specific to the neuron, the astrocytes and the 737 

oligodendrocytes was taken from mouse data from the work of Cahoy et al.(2008).81 738 

Multiple testing for the partitioning of the heritability by cell types was conducted using a 739 

Bonferroni correction across the 13 brain regions (α=0.05/13=0.004) and across the three types of 740 

neuron (α=0.05/3=0.017). For the gene expression and chromatin groupings a false discovery rate 741 

(FDR)82 was applied to the 205 tests performed to look at enrichment using gene expression 742 

(α=0.006) and to the 489 tests examining chromatin based annotations (α=0.003). 743 

 744 

Mendelian Randomization  745 

The causal effects of intelligence (termed the exposure in an MR analysis) on income (termed 746 

the outcome in an MR analysis) were investigated using univariate Mendelian Randomization (MR) 747 

analysis. Here, the total causal effect of intelligence on income was examined by combining summary 748 

GWAS test statistics for intelligence and for income using an inverse-variance-weighted (IVW) 749 

regression model.83 This is equivalent to a weighted regression of the SNP-outcome coefficients on 750 

the SNP-exposure coefficients, with the intercept constrained to zero (i.e. assuming no unbalanced 751 

horizontal pleiotropy). 752 

The results of the IVW regression model were compared with the results obtained using MR-753 

Egger regression.84 MR analyses which use multiple SNPs are more likely to include invalid SNPs 754 

with horizontally pleiotropic effects.85 By not constraining the intercept to zero (as done using inverse 755 

variance weighted regression) MR-Egger relaxes the assumption that the effects of genetic variants on 756 

the outcome act solely through the exposure (in this case intelligence). The intercept parameter of the 757 

MR-Egger regression indicates the average directional pleiotropic effects of the SNPs on the outcome. 758 

As such, the direct pleiotropic effect that the SNPs have on the outcome, independent of the exposure, 759 

can be quantified, where a non-zero intercept provides evidence for bias due to directional pleiotropy 760 

and a violation of the MR IVW estimator assumptions. Of note is that the MR-Egger regression 761 

estimates only remain consistent if the magnitude of the gene-exposure associations, across all 762 
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variants, are independent of their horizontally pleiotropic effects on the outcome (i.e. the InSIDE 763 

assumption holds).84 In addition, power is almost always lower for MR-Egger and it requires variation 764 

in the size of effect of the SNPs on the exposure (i.e. if all SNPs have similar sized effects on the 765 

exposure, then MR-Egger will have very low power). 766 

For use with Mendelian Randomization, two-independent groups (n = 95,521 for intelligence 767 

and n = 271,732 for income) were created whereby the GWAS on income was re-run using only those 768 

participants whose data were not included in the interim release of the UK Biobank genotype data. A 769 

GWAS data set on intelligence was created by meta-analysing publicly-available data on intelligence 770 

with a GWAS (conducted for this study) on intelligence using data from the INTERVAL 771 

BioResource16, 17 (Supplementary Methods) where 19 SNPs were identified as being genome-wide 772 

significant and independent. These 19 SNPs were used as instrumental variables for intelligence in the 773 

MR analysis.  774 

 775 

Genetic correlations 776 

Genetic correlations were derived using bi-variate LDSC regression. A total of 27 GWAS 777 

data sets on health, anthropometric, psychiatric, and metabolic traits were examined for a genetic 778 

correlation with income (Supplementary Table 16). Genetic correlations were also derived between 779 

household income with education and intelligence. There were three objectives to our analysis 780 

examining genetic correlations using household income. First, we sought to replicate the results of 781 

Hill et al. (2016)7 who found genetic correlations between household income and other variables in a 782 

smaller data subset from the UK Biobank sample used here. Second, SEP is multi-dimensional in 783 

nature: it is composed of multiple measures, each of which are correlated imperfectly with the others. 784 

Because of this, different measures of SEP may have genetic variance that is both unique to them, and 785 

differentiates them from the others in the way it associates with health. To examine this, we compare 786 

how genetic correlations with household income and 27 health, anthropometric, psychiatric, cognitive, 787 

and metabolic traits differed compared to the genetic correlations derived using a different, 788 

individual-level measure of SEP, i.e. educational attainment as measured by the number of years one 789 

has spent in education.11 Third, Hill et al. (2016) also found that the phenotypes with the strongest 790 
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genetic correlations with income are those that are cognitive (verbal numerical reasoning, childhood 791 

IQ, and years of education) in nature.7 The magnitude of these genetic correlations might indicate the 792 

phenotypes that occur as potential mediators between molecular genetic inheritance and household 793 

income.  794 

In addition, intelligence is known to be genetically correlated with many physical and mental 795 

health traits.18, 21, 86 The role that intelligence might play in accounting for some of the genetic links 796 

between household income and 27 health and wellbeing, anthropometric, mental health, and 797 

metabolic traits was examined using genetic correlations. Here, the GWAS of income was 798 

conditioned on a GWAS on intelligence using Multi-trait-based conditional & joint analysis 799 

(mtCOJO). mtCOJO is used to perform conditional GWAS whereby the genetic effects from one 800 

GWAS are controlled for in another GWAS. Importantly, the mtCOJO method avoids well-known 801 

issues of collider bias that can occur by including heritable covariates.87 In the current study, the 802 

GWAS on income was conditioned on a GWAS on intelligence (and the intelligence GWAS was 803 

conditioned on the income GWAS) before the genetic correlations between income (and intelligence) 804 

and 27 variables mentioned above were re-ran. 805 

 806 

Genetic prediction  807 

Using the summary statistics from our GWAS of household income polygenic risk scores 808 

(PGRS) were derived using PRSice-288 and the Generation Scotland: Scottish Family Health Study 809 

(GS:SFHS) cohort. The recruitment protocol and sample characteristics of GS:SFHS are described in 810 

full elsewhere.89, 90 In brief, 23,690 participants were recruited through their GP from across Scotland. 811 

Participants were all aged 18 and over and were not ascertained based on the presence of any specific 812 

disease. Following the removal of individuals who preferred not to answer, income was assessed in 813 

GS:SFHS by 5 point scale (1 less than £10,000, 2 between £10,000 and £30,000, 3 between £30,000 814 

and £50,000, 4 between £50,000 and £70,000, 5 more than £70,000). Individuals who preferred not to 815 

answer were excluded from the analysis. Individuals who had taken part in UK Biobank were also 816 

removed from the GS:SFHS data set (n = 174). SNPs were included in the data if they had a MAF of 817 

≥ 0.01 and Hardy-Weinberg P-value > 0.000001. Finally, one from every pair of related individuals 818 
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were removed from the data set by creating a genetic relationship matrix using GCTA91 and removing 819 

individuals who are related at ≥ 0.025. This yielded a final sample size of 6,680 participants who had 820 

genotype data and income data.   821 

The participant’s level of income was then used as a predictor in a regression analysis with 822 

age, sex, and 20 principal components included to control for population stratification. The 823 

standardized residuals from this model were then used as each participant’s income phenotype. PGRS 824 

were created using the income phenotype derived using UK Biobank.  825 

In each instance PRSice-2 was used to create five PGRS corresponding to one of five P-value 826 

cut-offs (P ≤ 0.01, P ≤ 0.05, P ≤ 0.1, P ≤ 0.5, P ≤ 1) applied to the association statistics from the 827 

summary data. The polygenic risk scores for each threshold were then standardized and used in a 828 

regression model to predict the income phenotype in GS:SFHS.  829 

 830 

Multi-Trait Analysis of GWAS (MTAG) 831 

MTAG25 can be used to meta-analyze genetically correlated traits in order to increase power 832 

to detect loci in any one of the traits. Only summary data are required in order to carry out MTAG and 833 

bivariate LD score regression is carried out as part of an MTAG analysis to account for (possibly 834 

unknown) sample overlap between the GWAS data sets.25 The goal of this analysis was to increase 835 

the power to detect loci associated with income, and so our income GWAS was meta-analysed with 836 

the GWAS on years of education by Okbay et al.92 using MTAG. Both the Okbay data set and the 837 

income data set from UK Biobank had a similar level of power (Okbay mean χ2 = 1.65, UK Biobank 838 

income mean χ2 = 1.45) and they showed a genetic correlation of rg = 0.77 (SE = 0.02), confirming 839 

that both income and education, as measured using these data sets, have a highly similar genetic 840 

etiology. Functional annotation and loci discovery, gene-mapping, gene-based GWAS, gene-set and 841 

gene-property analysis, were also performed using the MTAG derived data set on income. In addition, 842 

following the removal of UK Based cohorts from the educational attainment summary statistics, 843 

genetic prediction was performed using the MTAG derived income phenotype and the GS:SFHS as 844 

described above. 845 

 846 
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Data availability 847 

The household income association results, and the multi-variate analysis conducted using 848 

MTAG can be downloaded from The Lothian Birth Cohorts of 1921 and 1936 data sharing resource; 849 

https://www.lothianbirthcohort.ed.ac.uk/content/gwas-summary-data and at 850 

http://www.phenoscanner.medschl.cam.ac.uk/.851 
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 1195 

Figure legends 1196 

 1197 

Figure 1. Illustrating a possible pathway from genetic inheritance to income. In this pathway there are 1198 

no direct effects of genetic variants on income. Rather, mediated pleiotropy (also termed vertical 1199 
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pleiotropy shown in blue) is used to understand, in part, the link between genetic variation and more 1200 

biologically distal phenotypes such as income and education. Mediated pleiotropy describes instances 1201 

where genetic variation is linked to a phenotype (in this case income) through genetic effects that act 1202 

on another partly-heritable trait. These partly-heritable traits would also be associated with income, 1203 

and so the genetic effects that act on them would also be associated with income. For simplicity, this 1204 

schematic illustrates only two possible pathways between genetic variation and income. In reality 1205 

there may be, and are likely to be, many links between genetic variation, including bi-directional 1206 

causality between the phenotypes in the pathway, and the more biologically distal phenotypes such as 1207 

income. 1208 

 1209 

Figure 2. Flow chart for the statistical analysis carried out using the GWAS data on household 1210 

income in 286,301 White British participants in UK Biobank. Blue indicates a type of analysis 1211 

conducted (i.e. LDSC to derive a heritability estimate) and gold indicates a subtype of this type of 1212 

analysis (i.e. global heritability or the heritability of a stratified subset of the SNPs). Green indicates 1213 

the result of an analysis (i.e. the global heritability was 7.39%).  1214 

 1215 

Figure 3. SNP level associations for income and mapping of the SNPs in independent genomic loci. 1216 

Figure 3A. Manhattan plot for income; negative log10 transformed P-values for each SNP are plotted 1217 

against chromosomal location. The red line indicates genome-wide significance and the black line 1218 

indicates suggestive associations (1 × 10−5). Figure 3B. Functional annotation carried out on the 1219 

independent genomic loci identified. The percentage of SNPs found in each of the nine functional 1220 

categories is listed. Figure 3C. The percentage of SNPs from the independent genomic loci that fell 1221 

into each of the Regulome DB scores categories. A lower score indicates greater evidence for that 1222 

SNPs involvement in gene regulation. Figure 3D. The percentage of SNPs within the independent 1223 

genomic loci plotted against the minimum chromatic state for 127 tissue/cell types. Figure 3E. Venn 1224 

diagram illustrating the overlap of the genes implicated using positional mapping, eQTL mapping, 1225 

chromatin interaction mapping, that was conducted on the independent significant loci identified in 1226 
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the SNP-based GWAS. Also shown is how these implicated genes overlap with those identified using 1227 

the gene-based statistics derived using MAGMA.  1228 

 1229 

 1230 

Figure 4. Gene level associations for income and links to transcription in the brain and cortical cell 1231 

types. Figure 4A. A Manhattan plot of income using the gene-based statistics derived using 1232 

MAGMA; negative log10 transformed P-values for each gene are plotted against chromosomal 1233 

location. The red line indicates genome-wide significance. Figure 4B. The results of a gene-property 1234 

analysis linking transcription differences in the brain with income differences. Significant links 1235 

between expression differences in cerebellar hemisphere, at Brodmann area 9 (BA9) of the frontal 1236 

cortex, the nucleus accumbens and at Brodmann area 24 of the anterior cingulate cortex (BA24) are 1237 

illustrated. Dark blue indicates low –log10 P-values (a lower level of association) describing the link 1238 

between gene expression and household income and light blue indicates high –log10 P-values (a higher 1239 

level of association) describing the same relationship. The full results found in Supplementary Data 1240 

8) with the gene based statistics produced using MAGMA. Figure 4C. Shows the results of a cell type 1241 

specific gene-property analysis where the relationship between the gene-based statistics from 1242 

MAGMA and the degree to which gene expression was specific to the annotations was examined. A 1243 

Bonferroni correction was applied to control for the 24 tests conducted. The red line indicates 1244 

statistical significance indicating that expression that is specific to the annotation is associated with 1245 

the gene-based statistics for income. 1246 

 Embr. DA Neurons, Embryonic Dopaminergic Neurons; Pyramidal (SS), Pyramidal 1247 

(Somatosensory); Hypoth. GABAergic Neurons, Hypothalamic GABAergic Neurons; DA Neuroblast, 1248 

Dopaminergic Neuroblast. 1249 

 1250 

Figure 5. Partitioned heritability of income. Figure 5A. Enrichment analysis for income using the 60 1251 

functional categories as well as 10 minor allele frequency groupings and 6 continuous annotations (27 1252 

categories describing enrichment within these categories is shown. This analysis differs from that 1253 

presented in Figure 3 and Figure 4 as here all SNPs are used, not only those that reached genome 1254 
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wide significance (Figure 3) or SNPs that were located within protein coding genes (Figure 4). The 1255 

enrichment statistic is the proportion of heritability found in each functional group divided by the 1256 

proportion of SNPS in each group (Pr(h2)/Pr(SNPs)). The red line indicates no enrichment found 1257 

when Pr(h2)/Pr(SNPs) = 1. Error bars represent ± 1 standard error. A Bonferroni correction 1258 

controlling for 52 tests was used to ascertain statistical significance which is indicated by an asterisk. 1259 

Figure 5B. Enrichment analysis for the six continuous annotations by quintile. Shading represents 1260 

quintile with light colours corresponding to low quintiles and dark colours to high quintiles. 1261 

Groupings that contained a significantly greater proportion of heritability proportional to the number 1262 

of SNPs they contain are marked with an asterisk. Multiple testing was performed within each of the 1263 

annotations resulting in an alpha level of α=0.05/5=0.01 with a red line indicating no enrichment. 1264 

Error bars represent ± 1 standard error. Figure 5C & 5D. Shows the enrichment of 205 tissue of cell 1265 

types assembled using gene expression data and 489 groupings assembled using chromatin data. In 1266 

each instance these were arranged into 9 tissue type groupings with correction for multiple testing 1267 

been performed using false discovery rate (FDR)82 conducted separately for the gene expression and 1268 

the chromatin groupings indicated by a red line. Figure 5E. Shows if the genes that are expressed 13 1269 

brain regions are enriched for the heritability of income. A Bonferroni correction was used to control 1270 

for 13 tests and the alpha level was set at 0.004 with the brain regions that crossed the red line being 1271 

those that were statistical significant. Figure 5D. Shows the level of enrichment for three brain cell 1272 

types. A Bonferroni correction was used to control for three tests (α=0.05/3=0.017) and groupings that 1273 

crossed the red line were those that were statistically significant. The full results for each of these 1274 

analyses can be found in Supplementary Data 9, Supplementary Table 5, Supplementary Data 1275 

10-11, and Supplementary Tables 6-7. 1276 

 1277 

 1278 

Figure 6. Pairs of genetic correlations are compared. Figure 6A compares genetic correlations 1279 

derived using income and with those derived using income conditioned on intelligence, Figure 6B 1280 

compares genetic correlations derived using intelligence with those derived using intelligence 1281 

conditioned on income, and Figure 6C compares genetic correlations derived using income with 1282 
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those derived using education. In each instance 27 pairs of genetic correlations are compared. Genetic 1283 

correlations that were significantly different between within each of the three comparisons described 1284 

above using a two-sided test (2*pnorm(-abs(abs(rgi − rgj) / sqrt(SEi^2+SEj^2)))) are indicated by an 1285 

asterisk next to the phenotype label. Abbreviations, MDD, major depressive disorder; ADHD, 1286 

attention deficit hyperactivity disorder; T2D, type 2 diabetes; CAD, coronary artery disease; SRH, 1287 

self-rated health; SWB, subjective wellbeing; BMI, body mass index. Worry/vulnerability and 1288 

anxiety/tension were derived as special factors of neuroticism.33, 93 Full results for each of the genetic 1289 

correlations derived can be found in Supplementary Table 12. Error bars represent ± 1 standard 1290 

error. 1291 

 1292 

 1293 

Figure 7. Polygenic risk score analysis of income. Figure 7A. Violin plot showing the level of 1294 

household income in GS:SFHS plotted against the standardized polygenic score of income in each 1295 

group. Median and interquartile range are plotted. Summary data from the income GWAS performed 1296 

in UK Biobank was used to derive PGRSs. Red line indicates a standardized polygenic score of 0. 1297 

Figure 7B. The average level of household income for the five PGRSs is shown. Summary data from 1298 

the income GWAS performed in UK Biobank was used to derive PGRSs. The y-axis corresponds to 1299 

the 5 point classification of household income in Generation Scotland. Above the red line indicates a 1300 

level of household income between £30,000 and £50,000 and below indicates a level of household 1301 

income between £10,000 and £30,000 in Generation Scotland. Error bars represent ± 1 standard error. 1302 

Figure 7C. The variance accounted for by each of the five P-value cut offs for the PGRS. Light 1303 

orange indicates that the income phenotype derived in UK Biobank was used to generate polygenic 1304 

risk scores along with Generation Scotland. The dark orange bars indicate instances of where the 1305 

MTAG phenotype derived using income and educational attainment was used to derive polygenic risk 1306 

scores in Generation Scotland. Summary data from the income GWAS performed in UK Biobank, 1307 

and the MTAG analysis of income was used to derive PGRSs. All results can be found in 1308 

Supplementary Table 9.1309 
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