Supplemental data

COHORTS SHORT DESCRIPTION

1982 Pelotas Birth Cohort Study:

The 1982 Pelotas (Brazil) Birth Cohort Study is a longitudinal population-based birth cohort. The maternity hospitals in Pelotas, a southern Brazilian city (current population ~330,000), were visited daily in the year of 1982. The 5,914 live-borns whose families lived in the urban area were examined and their mothers interviewed. Information was obtained for more than 99% of the livebirths. These subjects have been followed-up at the following mean ages: 11.3 months (all children born from January to Abril 1982; $n=1457$), 19.4 months (entire cohort; $n=4934$), 43.1 months (entire cohort; $n=4742$), 13.1 years (random subsample; $n=715$), 14.7 years (systematic subsample; $n=1076$); 18.2 (male cohorts attending to compulsory Army recruitment examination; $n=2250$), 18.9 (systematic subsample; $n=1031$), 22.8 years (entire cohort; $n=4297$) and 30.2 years (entire cohort; $n=3701$). Details about follow-up visits and available data can be found in the two Cohort Profile papers (1, 2). DNA samples (collected at the mean age of 22.8 years) were genotyped for ~ 2.5 million of SNPs using the Illumina HumanOmni2.5-8v1 array (which includes autosomal, X and Y chromosomes, and mitochondrial variants). After quality control, the data were pre-phased using SHAPEIT and imputed using IMPUTE2 based on 1000 Genomes haplotypes.

Avon Longitudinal Study of Parents and their Children (ALSPAC):

The Avon Longitudinal Study of Parents and their Children (ALSPAC) is a longitudinal population-based birth cohort that recruited pregnant women residing in Avon, UK, with an expected delivery date between 1st April 1991 and 31st December 1992. Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. This cohort is described in detail on the website (http://www.alspac.bris.ac.uk) and elsewhere (3) and the total body DXA measures and cohort analyzed in the present paper are described in Kemp et al. (2014) (4). Please note that the study website contains details of all the data that is available through a fully searchable data dictionary (http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/).

Bone Mineral Density in Childhood Study (BMDCS):

The Bone Mineral Density in Childhood Study is an ongoing longitudinal study in which boys and girls aged 6-16 year old were recruited between 2002-2003, and whose DXA measurements are obtained annually at five clinical centers in the United States $(5,6)$.

BPROOF:

B-PROOF is a trial investigating the effect of 2-year supplementation with 400 mcg folic acid and 500 mcg vitamin B12 on fracture incidence in hyperhomoycsteinemic persons aged 65 y and older.

CHS:

The Cardiovascular Health Study (CHS) is a prospective investigation of risk factors for CVD in community-dwelling adults aged 65 and older. Participants were identified from Medicare-eligibility lists at four field centers in the U.S. (California, Maryland, North Carolina, and Pennsylvania). Recruitment of an original cohort of 5,201 participants occurred in 1989-90, followed by a supplemental cohort of 697 predominantly African-American individuals in 1992-93. At the exam in 1994-5 1,563 participants underwent DXA using the array beam mode QDR 2000 or 2000+ bone densitometers (Hologic, Inc., Bedford, MA) according to a standardized protocol. See, (7), for a description of the cohort.

Copenhagen Prospective Studies on Asthma (COPSAC) cohort:

The Copenhagen Prospective Studies on Asthma in Childhood is a clinical study. All mothers had a history of a doctor's diagnosis of asthma after 7 years of age. Newborns were enrolled in the first month of life, as previously described in detail (8). The Ethics Committee for Copenhagen and the Danish Data Protection Agency approved this study.

deCODE genetics BMD study:

The deCODE genetics BMD study is an ongoing population based study of all subjects who have undergone a DEXA-Hologic bone mineral density scan at the Landspitali University Hospital, Reykjavik, Iceland. The study samples have been previously described in detail (9). All participants gave informed consent and the study was approved by the Data Protection Commission of Iceland and the National Bioethics Committee of Iceland.

EPIC NorFolk:

The European Prospective Investigation of Cancer (EPIC) began as a large multi-centre cohort study primarily looking at the connection between diet, lifestyle factors and cancer, although the study was broadened from the outset to include other conditions. EPIC-Norfolk is part of a Europe-wide programme (http://www.srl.cam.ac.uk/epic/international/index.shtml). With the help of over 30,000 people living in Norfolk, the aim of the study is to provide data-based evidence for health policies to prevent or delay disease onset and maintain health and independence in older people. EPIC-Norfolk participants are men and women who were aged between 40 and 79 when they joined the study and who lived in Norwich and the surrounding towns and rural areas. They have been contributing information about their diet, lifestyle and health through questionnaires and health checks over two decades.

ERF:

Erasmus Rucphen Family study (ERF) is a family-based cohort study that includes inhabitants of a genetically isolated community in the South-West of the Netherlands, studied as part of the Genetic Research in Isolated Population (GRIP) program. ERF includes over 3,000 individuals who are living descendants of 22 couples, who had at least six children baptized in the community church, and their spouses. All data were collected between June 2002 and February 2005. The population shows minimal
immigration and high inbreeding, therefore frequency of rare alleles is increased in this population. All participants gave informed consent, and the Medical Ethics Committee of the Erasmus University Medical Centre, approved the study.

FENLAND:

The Fenland study is a population-based cohort study that uses objective measures of disease exposure to investigate the influence of diet, lifestyle and genetic factors on the development of diabetes and obesity. The volunteers are recruited from general practice lists in and around Cambridgeshire (Cambridge, Ely, and Wisbech) in the United Kingdom from birth cohorts from 1950-1975 (10).

FHS:

The Framingham Osteoporosis Study (FOS) / Framingham Heart Study (FHS) is a family-based, multigenerational cohort study initiated originally to study the risk factors for cardiovascular disease. (11). The FHS was initiated in 1948 to study determinants of cardiovascular disease and other major illnesses. The Original Cohort included 5,209 men and women, aged 28-62 years at enrolment who have undergone routine biennial examinations $(12,13)$. In 1971, Offspring of the Original Cohort participants and Offspring spouses including 5,124 men and women, aged 5 to 70 years, were enrolled into the Framingham Offspring Study. Offspring participants have been examined approximately every 4 years $(14,15)$. In the 1990s, DNA was obtained for genetic studies from surviving Original Cohort and Offspring participants. The body composition measurements used in this analysis have been previously

The Generation R Study:

The Generation R Study is a multiethnic prospective cohort study in which 9,778 pregnant women living in Rotterdam and with delivery date from April 2002 until January 2006 were enrolled. Details of study design and data collection can be found elsewhere (16). Genotype and imputation of this cohort are described elsewhere (17).

GOOD Study:

The Gothenburg Osteoporosis and Obesity Determinants (GOOD) study was initiated to determine both environmental and genetic factors involved in the regulation of bone and fat mass. The GOOD study is a population-based cohort in which male subjects from between 18 and 20 years of age in the Gothenburg area in Sweden were randomly selected using national population registers and invited to participate in this initiative by phone. From the selected candidates 1,068 agreed to participate providing oral and written informed consent. The GOOD study was approved by the local ethics committee at Gothenburg University (18).

HABC:

A population based, prospective cohort study of well-functioning, unrelated men and women aged 70 and older. It was initiated to assess changes in body composition. A detailed description of this cohor can be found elsewhere (19-21).

MROS USA:

The Osteoporotic Fractures in Men (MrOS) Study is a multi-center prospective, longitudinal, observational study of risk factors for vertebral and all non-vertebral fractures in older men, and of the sequelae of fractures in men $(22,23)$. The original specific aims of the study include: (1) to define the skeletal determinants of fracture risk in older men, (2) to define lifestyle and medical factors related to fracture risk, (3) to establish the contribution of fall frequency to fracture risk in older men, (4) to determine to what extent androgen and estrogen concentrations influence fracture risk, (5) to examine the effects of fractures on quality of life, (6) to identify sex differences in the predictors and outcomes of fracture, (7) to collect and store serum, urine and DNA for future analyses as directed by emerging evidence in the fields of aging and skeletal health, and (8) define the extent to which bone mass/fracture risk and prostate diseases are linked. The MrOS Study enrolled 5,994 community dwelling, ambulatory men aged 65 years or older from six communities in the United States (Birmingham, AL; Minneapolis, MN; Palo Alto, CA; Monongahela Valley near Pittsburgh, PA; Portland, OR; and San Diego, CA) between 2000 and 2002. Inclusion criteria were designed to provide a study cohort that is representative of the broad population of older men. The inclusion criteria were: (1) ability to walk without the assistance of another, (2) absence of bilateral hip replacements, (3) ability to provide self-reported data, (4) residence near a clinical site for the duration of the study, (5) absence of a medical condition that (in the judgment of the investigator) would result in imminent death, and (6) ability to understand and sign an informed consent. To qualify as an enrollee, the participant had to provide written informed consent, complete the self-administered questionnaire (SAQ), attend the clinic visit, and complete at least the anthropometric, DXA, and vertebral X-ray procedures. There were no other exclusion criteria. Written informed consent was obtained from all participants, and the Institutional Review Board at each study site approved the study.

Whole body total BMD $\left(\mathrm{g} / \mathrm{cm}^{2}\right)$ and head BMD $\left(\mathrm{g} / \mathrm{cm}^{2}\right)$ was measured using dual energy x -ray absorptiometry (DXA) (Hologic, Inc., MA) using Hologic QDR 4500 workstations at the baseline clinic visit. A central quality control lab, certification of DXA operators, and standardized procedures for scanning were used to insure reproducibility of DXA measurements. At baseline, a Hologic whole body phantom was circulated and measured at the 6 clinical sites. The variability across clinics was within acceptable limits, and cross-calibration correction factors were not required.

NEO:

The NEO was designed for extensive phenotyping to investigate pathways that lead to obesity-related diseases. The NEO study is a population-based, prospective cohort study that includes 6,671 individuals aged 45-65 years, with an oversampling of individuals with overweight or obesity. At baseline, information on demography, lifestyle, and medical history have been collected by questionnaires. In addition, samples of 24 -h urine, fasting and postprandial blood plasma and serum, and DNA were collected.

OPRA:

The Osteoporosis Risk Assessment Cohort (OPRA) cohort recruited Swedish women aged 75, at which time age-related bone loss is already obvious and fractures prevalent. The study was designed to investigate genetic and lifestyle factors contributing to osteoporosis and fracture risk. Of 1604 women invited between December 1995 and May 1999, 1044 (65\%) attended at baseline. No exclusion criteria were applied. All participants answered a detailed questionnaire regarding their general health; BMD and body composition was assessed by DXA. All participants gave written informed consent and the Lund University Ethics Committee approved the study.

ORCADES:

The Orkney Complex Disease Study is an ongoing family-based genetic epidemiology collection in the isolated Scottish archipelago of Orkney. Genetic diversity in this population is decreased compared to Mainland Scotland, consistent with the high levels of endogamy historically. Fasting blood samples were collected and over 300 health-related phenotypes and environmental exposures were measured in each individual. All participants gave informed consent and the study was approved by Research Ethics Committees in Orkney and Aberdeen.

PANIC:

The Physical Activity and Nutrition in Children (PANIC) study is a controlled physical activity and dietary intervention study in a population sample of 506 Finnish children aged 6-8 years at baseline in 20072009. Ethical approval was obtained from the Research Ethics Committee of the Hospital District of Northern Savo. All children and their parents gave their written informed consent (24). (http://www.uef.fi/en/web/physical-activity-and-nutrition-in-children/home)

RAINE:

The Raine (West Australian Pregnancy Cohort) Study is a longitudinal population-based pregnancy cohort study, which recruited 2,900 pregnant women from the public antenatal clinic at King Edward

Memorial Hospital and surrounding private clinics in Perth, Western Australia between May 1989 and November 1991 (25). Of the 2868 live births, 1183 had a whole body DXA at 20 years (26).

Rotterdam Study:

The Rotterdam Study is a prospective cohort study of chronic disabling conditions in Dutch elderly individuals that started in 1990 in Ommoord, a suburb of Rotterdam, among 10,994, men and women aged 55 and over (27).

SOF:

The Study of Osteoporotic Fractures (SOF) is a prospective multicenter study of risk factors for vertebral and non-vertebral fractures (28). The cohort is comprised of 9,704 community-dwelling women 65 years old or older recruited from populations-based listings in four U.S. areas: Baltimore, Maryland; Minneapolis, Minnesota; Portland, Oregon; and the Monongahela Valley, Pennsylvania. The SOF participants were followed up every four months by postcard or telephone to ascertain the occurrence of falls, fractures and changes in address. To date, follow-up rates have exceeded 95% for vital status and fractures. All fractures are validated by x-ray reports or, in the case of most hip fractures, a review of pre-operative radiographs. The inclusion criteria were: 1) 65 years or older, (2) ability to walk without the assistance of another, (3) absence of bilateral hip replacements, (4) ability to provide self-reported data, (5) residence near a clinical site for the duration of the study, (6) absence of a medical condition that (in the judgment of the investigator) would result in imminent death, and (7) ability to understand and sign an informed consent.

This study used whole body total BMD ($\mathrm{g} / \mathrm{cm}^{2}$) and head BMD ($\mathrm{g} / \mathrm{cm}^{2}$) measured using dual energy x-ray absorptiometry (DXA) (Hologic, Inc., MA) using Hologic QDR 2000 workstations at the sixth clinic visit. Scans were performed and analyzed at each clinic. Review of scans was done at the UCSF Coordinating Center on random subsets of scans and on problematic scans identified by technicians at the clinic. Some scans were deemed unacceptable and are not included in the data or are set to a special missing value code.

TwinsUK:

The UK Adult Twin Registry (TwinsUK) (www.twinsuk.ac.uk/) was started in 1993 and is comprised of ~12,000 monozygotic and dizygotic twins (83% female) aged $16-85$ years recruited by successive media campaigns from all over the UK without selection for any particular disease or trait. The cohort is from Northern European/UK ancestry and has been shown to be representative of singleton populations and the UK population in general (26). All twins received a series of detailed disease and environmental questionnaires and the majority have been assessed in detail clinically at several time points for several hundred phenotypes related to common diseases or intermediate traits. The primary focus of the study has been the genetic basis of healthy aging process and complex diseases, including cardiovascular, metabolic, musculoskeletal, and ophthalmologic disorders.

$U K B B$:

In 2006-2010, the UK Biobank recruited 502,647 individuals aged between 37-76 years (99.5% were $40-$ 69 years) from across the country. Each participant provided information regarding their health and lifestyle using touch screen questionnaires, physical measurements and agreement to have their health followed and they also provided blood, urine and saliva samples for future analysis. UK Biobank has ethical approval from the Northwest Multi-centre Research Ethics Committee (MREC) and informed consent was obtained from all participants.

SUPPLEMENTAL ACKNOWLEDGMENTS

The authors would like to thank the many colleagues who contributed to collection and phenotypic characterization of the clinical samples, as well as genotyping and analysis of the GWAS data. Full details of acknowledgements are provided below.

1982 Pelotas Birth Cohort:

The 1982 Pelotas Birth Cohort Study is conducted by the Postgraduate Program in Epidemiology at Universidade Federal de Pelotas with the collaboration of the Brazilian Public Health Association (ABRASCO). From 2004 to 2013, the Wellcome Trust supported the study. The International Development Research Center, World Health Organization, Overseas Development Administration, European Union, National Support Program for Centers of Excellence (PRONEX), the Brazilian National Research Council (CNPq), and the Brazilian Ministry of Health supported previous phases of the study.

Genotyping of 1982 Pelotas Birth Cohort Study participants was supported by the Department of Science and Technology (DECIT, Ministry of Health) and National Fund for Scientific and Technological Development (FNDCT, Ministry of Science and Technology), Funding of Studies and Projects (FINEP, Ministry of Science and Technology, Brazil), Coordination of Improvement of Higher Education Personnel (CAPES, Ministry of Education, Brazil).

ALSPAC Study:

We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses. GWAS data was generated by Sample Logistics and Genotyping Facilities at the Wellcome Trust Sanger Institute and LabCorp (Laboratory Corporation of America) using support from 23andMe. The UK Medical Research Council and the Wellcome Trust (Grant ref: 102215/2/13/2) and the University of Bristol provide core support for ALSPAC. This publication is the work of the authors, and JPK and DME will serve as guarantors for the contents of this paper.. This work is supported by a Medical Research Council program grant (MC_UU_12013/4 to D.M.E). D.M.E is supported by an Australian Research Council Future Fellowship (FT130101709).

The Bone Mineral Density in Childhood Study:

BMDCS is extremely grateful to all the families who participated in this study, and the whole team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses. This work was funded by the National Institute of Child Health and Human Development (NICHD) contracts NO1-HD-1-3228, -3329, -3330, -3331, -3332 and 3333, R01 HD058886 and the Clinical and Translational Research Center (5-MO1-RR-000240 and UL1 RR026314).

BPROOF:

The authors gratefully thank all study participants, and all co-workers who helped to succeed this trial, especially P.H. in 't Veld, M. Hillen-Tijdink, A. Nicolaas-Merkus, N. Pliester, S. Oliai Araghi, and S. Smits. They also thank Prof. Dr. H.A.P. Pols for obtaining funding. B-PROOF is supported and funded by The Netherlands Organization for Health Research and Development (ZonMw, Grant 6130.0031), The Hague; unrestricted grant from NZO (Dutch Dairy Association), Zoetermeer; NCHA (Netherlands Consortium Healthy Ageing) Leiden/ Rotterdam; Ministry of Economic Affairs, Agriculture and Innovation (project KB-15-004-003), the Hague; Wageningen University, Wageningen; VU University Medical Center, Amsterdam; Erasmus MC, Rotterdam.

CHS:

Cardiovascular Health Study: This CHS research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants U01HL080295, R01HL087652, R01HL105756, R01HL103612, R01HL120393, and R01HL130114 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through R01AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center.The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

COPSAC:

We express our gratitude to the participants of the COPSAC2000, COPSAC2010 and COPSAC-REGISTRY cohort study for all their support and commitment. We also acknowledge and appreciate the unique efforts of the COPSAC research team.

deCODE:

We thank all the study participants their participation, the staff at deCODE genetics core facilities and the staff at the Research Service Center. deCODE genetics funded the study.

EPIC-Norfolk:

The UK's NIHR Biomedical Research Centre Grant to Cambridge contributed to the costs of genotyping. EPIC-Norfolk is funded by Cancer Research Campaign; Medical Research Council; Stroke Association; British Heart Foundation; Department of Health; Europe Against Cancer Programme Commission of the European Union and the Ministry of Agriculture, Fisheries and Food. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank in particular Nichola Dalzell for coordination and DXA/QUS data collection, Prof Nick J Wareham (EPICNorfolk PI) for obtaining co-funding, Robert Luben for cohort-wide data management, Matt Sims and Steve Knighton for managing the EPIC-Norfolk DNA bank, and Serena Scollen and Alison Dunning for genotyping in GENOMOS.

ERF:

We are grateful to all study participants and their relatives, general practitioners and neurologists for their contributions and to P. Veraart for her help in genealogy, J. Vergeer for the supervision of the laboratory work and P. Snijders for his help in data collection. Erasmus Rucphen family study: The ERF study as a part of EUROSPAN (European Special Populations Research Network) was supported by European Commission FP6 STRP grant number 018947 (LSHG-CT-2006-01947) and also received funding from the European Community's Seventh Framework Programme (FP7/2007-2013)/grant agreement HEALTH-F4-2007-201413 by the European Commission under the programme "Quality of Life and Management of the Living Resources" of 5th Framework Programme (no. QLG2-CT-2002-01254). Highthroughput analysis of the ERF data was supported by a joint grant from the Netherlands Organization for Scientific Research and the Russian Foundation for Basic Research (NWO-RFBR 047.017.043). Exome sequencing analysis in ERF was supported by the ZonMw grant (project 91111025). Najaf Amin is supported by the Netherlands Brain Foundation (project number F2013(1)-28).

FENLAND:

The Fenland Study is funded by the Wellcome Trust and the Medical Research Council (MC_U106179471). We are grateful to all the volunteers for their time and help, and to the General Practitioners and practice staff for assistance with recruitment. We thank the Fenland Study Investigators, Fenland Study Co-ordination team and the Epidemiology Field, Data and Laboratory teams. We further acknowledge support from the Medical research council (MC_UU_12015/1).

FHS:

Framingham Heart Study (FHS) was supported by the NHLBI in collaboration with Boston University (BU) (N01-HC-25195), and its contract with Affymetrix, Inc., for genome-wide genotyping services (NO2-HL-64278), for quality control by FHS investigators using genotypes in the SNP Health Association Resource
(SHARe) project. The Framingham Osteoporosis Study (FOS) is supported by the National Institute of Arthritis Musculoskeletal and Skin Diseases of the National Institutes of Health under award number R01AR061445 and R01 AR041398. Additional support was provided by Friends of Hebrew SeniorLife and a research grant from the Investigator Initiated Studies Program of Merck Sharp \& Dohme. DK was supported by ISF grant \#1283/14. DK was supported by a grant from the National institute on Arthritis, Musculoskeletal and Skin Diseases (R01 AR41398).

The Generation R Study:

We gratefully acknowledge the contribution of children and parents, general practitioners, hospitals, midwives and pharmacies in Rotterdam. The generation and management of GWAS genotype data for the Generation R Study was done at the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, The Netherlands. We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera and Marjolein Peters for their help in creating, managing and QC of the GWAS database. The musculoskeletal research of the Generation R Study is partly supported by the European Commission grant HEALTH-F2-2008-201865-GEFOS. The general design of Generation R Study is made possible by financial support from the Erasmus Medical Center, Rotterdam, the Erasmus University Rotterdam, the Netherlands Organization for Health Research and Development (ZonMw), the Netherlands Organisation for Scientific Research (NWO), the Ministry of Health, Welfare and Sport and the Ministry of Youth and Families. Additionally, the Netherlands Organization for Health Research and Development supported authors of this manuscript (ZonMw 907.00303, ZonMw 916.10159, ZonMw VIDI 016.136.361 to V.W.J., and ZonMw VIDI 016.136.367 to F.R.). V.W.J. received a Consolidator Grant from the European Research Council (ERC-2014-CoG-648916). J.F.F. has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 633595 (DynaHEALTH). The study was also supported by funding from the European Union's Horizon 2020 research and innovation programme (733206, LIFECYCLE).

GOOD Study:

Financial support was received from the Swedish Research Council (K2010-54X-09894-19-3, 2006-3832 and K2010-52X-20229-05-3),the Swedish Foundation for Strategic Research, the ALF/LUA research grant in Gothenburg, the Lundberg Foundation, the Torsten and Ragnar Söderberg's Foundation, the Västra Götaland Foundation, the Göteborg Medical Society, the Novo Nordisk foundation, and the European Commission grant HEALTH-F2-2008-201865-GEFOS. Financial support was received from the Swedish Research Council (K2010-54X-09894-19-3, 2006-3832 and K2010-52X-20229-05-3), the Swedish Foundation for Strategic Research, the ALF/LUA research grant in Gothenburg, the Lundberg Foundation, the Torsten and Ragnar Söderberg's Foundation, the Västra Götaland Foundation, the Göteborg Medical Society, the Novo Nordisk foundation, and the European Commission grant HEALTH-F2-2008-201865-GEFOS.

HABC:

This research was supported in part by the Intramural Research Program of the NIH, National Institute on Aging. This research was supported by the U.S. National Institute of Aging (NIA) contracts

N01AG62101, N01AG62103, and N01AG62106. The genome-wide association study was funded by NIA grant 1R01AG032098 to Wake Forest University Health Sciences and genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C. We would like to thank the participants of the Health, Aging, and Body Composition Study.

MROS-USA:

The Osteoporotic Fractures in Men (MrOS) Study is supported by National Institutes of Health funding. The following institutes provide support: The National Institute on Aging (NIA), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational Sciences (NCATS), and NIH Roadmap for Medical Research under the following grant numbers: U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128. NIAMS provided funding for the MrOS ancillary study 'Replication of candidate gene associations and bone strength phenotype in MrOS' under the grant number R01 AR051124 and the MrOS ancillary study 'GWAS in MrOS and SOF' under the grant number RC2 AR058973.

NEO:

The authors of the NEO study thank all individuals who participated in the Netherlands Epidemiology in Obesity study, all participating general practitioners for inviting eligible participants and all research nurses for collection of the data. We thank the NEO study group, Pat van Beelen, Petra Noordijk and Ingeborg de Jonge for the coordination, lab and data management of the NEO study. The genotyping in the NEO study was supported by the Centre National de Génotypage (Paris, France), headed by JeanFrancois Deleuze. The NEO study is supported by the participating Departments, the Division and the Board of Directors of the Leiden University Medical Center, and by the Leiden University, Research Profile Area Vascular and Regenerative Medicine. Dennis Mook-Kanamori is supported by Dutch Science Organization (ZonMW-VENI Grant 916.14.023).

OPRA:

This work was supported by grants from the Swedish Research Council (K2015-52X-14691-13-4), Forte (Grant 2007-2125), Greta and Johan Kock Foundation, A. Påhlsson Foundation, A. Osterlund Foundation, H Järnhardt foundation, King Gustav V 80 year fund, King Gustav V and Queen Victoria Foundation, Åke Wiberg Foundation, Thelma Zoegas Foundation, Swedish Rheumatism foundation, Skåne University Hospital Research Fund and the Research and Development Council of Region Skåne, Sweden.

Thanks are extended to the research nurses at the Clinical and Molecular Osteoporosis Research Unit, Malmö; Åsa Almgren for data management, Olle Melander for GWAS genotyping (performed at Lund University, Dept of Clinical Sciences Malmö, Sweden) and to all the women who kindly participated in the study.

ORCADES:

ORCADES was supported by the Chief Scientist Office of the Scottish Government (CZB/4/276, CZB/4/710), the Royal Society, the MRC Human Genetics Unit, Arthritis Research UK and the European Union framework program 6 EUROSPAN project (contract no. LSHG-CT-2006-018947). DNA extractions were performed at the Wellcome Trust Clinical Research Facility in Edinburgh. We would like to acknowledge the invaluable contributions of the research nurses in Orkney, the administrative team in Edinburgh and the people of Orkney.

PANIC:

We are grateful to the parents and children for participating in the PANIC study and to the whole research team for their contribution in carrying out the study. The PANIC study was financially supported by grants from Ministry of Social Affairs and Health of Finland, Ministry of Education and Culture of Finland, Finnish Innovation Fund Sitra, Social Insurance Institution of Finland, Finnish Cultural Foundation, Juha Vainio Foundation, Foundation for Pediatric Research, Paavo Nurmi Foundation, Paulo Foundation, Diabetes Research Foundation, Yrjo Jahnsson Foundation, Finnish Foundation for Cardiovascular Research, State Research Funding from Research Committee of Kuopio University Hospital Catchment Area, Kuopio University Hospital EVO Funding, National Doctoral Programs, and the City of Kuopio.

RAINE:

We thank the Raine Study participants and families for being part of the study, the Raine Study Team for cohort management and data collection. The Raine Study receives core funding support from the University of Western Australia -Faculty of Medicine, Dentistry and Health Sciences, Curtin University, the Raine Medical Research Foundation, the Women and Infants Research Foundation, Telethon Kids Institute and Edith Cowan University. The study was funded by the National Health and Medical Research Council of Australia [grant numbers 572613, 403981 and 003209], the Canadian Institutes of Health Research [grant number MOP-82893] and the Lions Eye Institute in WA. This work was supported by resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia.

Rotterdam Study:

The generation and management of GWAS genotype data for the Rotterdam Study (RS I, RS II, RS III) was executed by the Human Genotyping Facility of the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands. The GWAS datasets are supported by the Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012), the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) Netherlands Consortium for Healthy Aging (NCHA), project nr. 050-060-810. We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera and Marjolein Peters, MSc, and Carolina Medina-Gomez, MSc, for their help in creating the GWAS database, and Karol

Estrada, PhD, Yurii Aulchenko, PhD, and Carolina Medina-Gomez, PhD, for the creation and analysis of imputed data. We would like to thank Dr. Karol Estrada, Dr. Fernando Rivadeneira, Dr. Tobias A. Knoch, Marijn Verkerk, Anis Abuseiris, Dr. Linda Boer and Rob de Graaf (Erasmus MC Rotterdam, The Netherlands), for their help in creating and maintaining GRIMP. Dr. Fernando Rivadeneira received an additional grant from the Netherlands Organization for Health Research and Development ZonMw VIDI 016.136.367. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are very grateful to the study participants, the staff from the Rotterdam Study (particularly L. Buist and J.H. van den Boogert) and the participating general practitioners and pharmacists.

SOF:

The Study of Osteoporotic Fractures (SOF) is supported by National Institutes of Health funding. The National Institute on Aging (NIA) provides support under the following grant numbers: R01 AG005407, R01 AR35582, R01 AR35583, R01 AR35584, R01 AG005394, R01 AG027574, and R01 AG027576. The National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) provides funding for the SOF ancillary study 'GWAS in MrOS and SOF' under the grant number RC2AR058973.

Twins UK:

We gratefully acknowledge the help and support of the twin volunteers. TwinsUK is funded by the Wellcome Trust, Medical Research Council, European Union, the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. TDS is holder of an ERC Advanced Principal Investigator award. SNP Genotyping was performed by The Wellcome Trust Sanger Institute and National Eye Institute via NIH/CIDR for TwinsUK. The study also received support from the Australian National Health and Medical Research Council (Project Grant 1048216) and The Pawsey Supercomputing Centre (with Funding from the Australian Government and the Government of Western Australia; PG 16/0162, PG 17/director2025).

Functional Group:

C Ackert-Bicknell: National Institute of Health /National Institute of Arthritis Musculoskeletal and Skin Diseases grant number AR060981.

JH Duncan Bassett: Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK/ Wellcome Trust Strategic Award 101123/Z/13/A

Graham R Williams: Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK/ Wellcome Trust Strategic Award 101123/Z/13/A

SUPPLEMENTAL FIGURES

Figure S1. QQ-Plots for the genome-wide association study of TB-BMD. Left panel: Including studies regardless the ethnic background of the participants ($\mathrm{N}=66$, 628). Right panel: Including only studies of European ancestry ($N=56,284$).

Figure S2. Manhattan plots of association statistics (-log10(P values)) for TB-BMD only-European meta-analysis. Each dot represents a SNP and the x-axis indicates its chromosomal position (Build 37 NCBI). Dashed horizontal red and yellow lines mark the GWS threshold ($\mathrm{P}<5 \times 10^{-8}$) and suggestive threshold ($\mathrm{P}<1 \times 10^{-6}$), respectively. Top: The association P-value (on $-\log _{10}$ scale) in the meta-analysis including only studies comprising individuals of European ancestry. Loci only reaching significance in this analysis are highlighted: the novel 19q12 in red and the known 21q22.13 in magenta. Bottom: The association P-value (on - $\log _{10}$ scale) after conditional analysis on all variants. Highlighted in blue previously reported loci (SNPs within $\pm 500 \mathrm{~Kb}$ of leading SNPs in previous GWAS with different bone traits).

Figure S3. Regional Plots for all novel loci associated with TB-BMD ($\mathbf{P}<5 \times 10^{-8}$). Circles show GWAS meta-analysis P-values and position of SNPs for the overall meta-analysis ($N=66,628$) unless stated otherwise. Different colors indicate varying degrees of pair-wise linkage disequilibrium with the top marker (1000 Genomes - CEU population, except for 11 p 13 in which AFR was the reference population). Locus 11 p. 13 (chr11:35481152-36481152) association is driven by association in non-European populations [S]. Locus 12 q24.21 reached significance in the only-European meta-analysis ($\mathrm{N}=56,284$) [Y]. Locus 19 q 12 reached significance only in the $45-60$ age-bin meta-analysis ($\mathrm{N}=18,805$)[Ff]. Attached file.

Figure S4. Forest Plots for all novel loci associated with TB-BMD ($\mathbf{P}<\mathbf{5 x 1 0} \mathbf{}^{-8}$). Effect estimates for the leading SNPs of the 36 novel BMD loci in the overall meta-analysis. Novel loci detected in the overall and subgroup meta-analyses are displayed. Symbol size proportional to the inverse variance of the SNP main effect. Attached file

Figure S5. Manhattan plots of association statistics ($-\log 10(P$ values)) for TB-BMD metaanalyses per age bin. Each dot represents an SNP and the x-axis indicates its chromosomal position (Build 37 NCBI). Dashed horizontal red and yellow lines mark the GWS threshold ($\mathrm{P}<5 \times 10^{-8}$) and suggestive threshold ($\mathrm{P}<1 \times 10^{-6}$), respectively. Sample sizes vary across the different age bins. <15 years; $N=1,870.15-30$ years; $N=4,180.30-45$ years; $N=10,062.45-60$ years; $N=18,805$. >60 years $N=22,504$. Highlighted in red the age-specific signals: In red the novel locus 19q2 ($45-60$ years) and in magenta the known 14q32.12 locus (<15 years).

RIN3 : 14:93114787

TSHZ3 : 19:31654615

Figure S6. Meta-regression for GWS signals rising exclusively from an age-bin analysis. Left panel: Leading SNP of the signal mapping to 14 q32.12 TB-BMD GWS associated only in the <15 years bin ($\mathrm{N}=11,870$). Right panel: Leading SNP of the signal mapping to 19q12 TB-BMD GWS associated only in the $45-60$ years bin ($\mathrm{N}=18,805$). Each circle represents a study subgroup (i.e., study divided in age strata), with the circle size proportional to the inverse variance of the SNP main effect. At the left, estimates from each age-bin metaanalysis, with the symbol size proportional to the inverse variance of the SNP main effect.

Figure S7. Meta-regression for nominally significant signals in the meta- regression. Left panel: In total for 42 suggestive signals in the overall meta-analysis ($\mathrm{P}<5 \times 10^{-6}$) we found nominal evidence of an age-dependent effect of the associated variants. Meta-regression plots for each of the leading SNPs are shown. Each circle represents a study subgroup (i.e., study divided in age strata), with the circle size proportional to the inverse variance of the SNP main effect. At the left, estimates from each age-bin meta-analysis, with the symbol size proportional to the inverse variance of the SNP main effect. Attached file.

Figure S8. Depict results for cell/tissue enrichment analysis of novel TB-BMD associated regions. Bars represent the level of evidence for genes in the associated loci to be expressed in any of the 209 Medical Subject Heading (MeSH) tissue and cell type annotations. Highlighted in orange are these cell/tissue types significantly (FDR<5\%) enriched for the expression of the genes in the associated loci

Figure S9. GARFIELD functional enrichment analyses. The wheel plot displays functional enrichment for associations with TB-BMD within DHS hotspot regions in ENCODE and Roadmap Epigenomics studies. The radial axis shows fold enrichment calculated at each of eight GWAS P-value thresholds ($\mathrm{P}<1 \times 10^{-1}$ to $\mathrm{P}<1 \times 10^{-8}$) for each of 424 cell types. Cell types are sorted by tissue, represented along the outside edge of the plot with font size proportional to the number of cell types from that tissue. Fold enrichment values at the different thresholds are plotted with different colors inside the plot (indicated at the bottom of the figure). Dots along the inside edge of the plot denote significant enrichment (if present; $\mathrm{P}<1 \times 10^{-4}$) for a given cell type at $\mathrm{P}<1 \times 10^{-5}$ (outermost dot) to $\mathrm{P}<1 \times 10^{-8}$ (innermost dot). Results show overall well-spread enrichment.

Figure S10. Skeletal phenotype screening of Cyclic AMP-responsive element-binding protein 3-like 1 (Crebl1) knockout mice.
Decreased bone mass and strength in adult Creb3l1 knockout mice. A. X-ray microradiography (Faxitron MX20) of femur and caudal vertebrae from female wild-type (WT), heterozygous (Creb3/1 ${ }^{+/}$) and homozygous (Creb311- $)$knockout mice at postnatal day 112 (P112). Pseudocolored grey-scale images in which low bone mineral content (BMC) is blue/green and high BMC is pink. Reference ranges are derived from >300 WT mice of identical age, sex and genetic background (C57BL/6), mean (solid line), 1.0SD (dotted lines) and 2.0SD (grey box). Values for parameters from individual animals are shown as orange dots (Creb $3 / 1^{+/-} \mathrm{n}=2$) and red dots (Creb3/1 ${ }^{1-} \mathrm{n}=1$). Scale bar: 1 mm . B. Micro-CT images (Scanco MicroCT-50) of proximal femur trabecular bone (left) and mid-diaphysis cortical bone (right) from WT, Creb $3 / 1^{+/-}$and Creb $3 / 1^{-/-}$mice. Graphs showing trabecular bone volume/tissue volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), cortical thickness (Ct.Th), internal cortical diameter and cortical bone mineral density (BMD). Scale bar: 1mm. C. Representative load displacement curves from destructive 3-point bend testing (Instron 5543 load frame) of WT, Creb $3 / 1^{+/-}$and Creb $3 / 1^{-/-}$femurs. Yield load, maximum load, fracture load and gradient of the linear elastic phase (stiffness) are indicted for the WT curve. Graphs showing yield load, maximum load, fracture load, stiffness and energy dissipated prior to fracture (Toughness). D. Representative load displacement curves from destructive compression testing (Instron 5543 load frame) of WT, Creb $311^{+/-}$and Creb $3 / 1^{-1 /}$ caudal vertebra showing yield load, maximum load and stiffness.

SUPPLEMENTAL TABLES

Table S1. Descriptives per cohort of genotype data for analysis. Attached Excel file

Table S2. Participant description per cohort and age strata. Attached Excel file

CHR	BP Rsid	locus	Phenotype	Reference	A1	EAF	beta_TB	P_TB	beta_LS	P_LS	beta_FN	P_FN
1	22490724 rs 7521902	1p36.12	FN-BMD, LS-BMD	Estrada et al.	A	0.24	-0.066	3.32E-23	-0.034	0.002	-0.037	6.60E-05
1	22711473 rs 6426749	1p36.12	FN-BMD, LS-BMD	Estrada et al.	C	0.18	0.101	2.73E-42	0.088	1.2E-13	0.082	5.9E-16
1	68639385 rs 17482952	1p31.3	FN-BMD, LS-BMD	Estrada et al.	G	0.08	-0.065	$8.21 \mathrm{E}-10$	-0.045	0.008	-0.043	0.003
1	68647716 rs 12407028	1p31.3	FN-BMD, LS-BMD	Estrada et al.	C	0.38	-0.051	$1.10 \mathrm{E}-18$	-0.063	$4.3 \mathrm{E}-12$	-0.046	5.07E-09
1	172199573 rs 479336	1q24.3	FN-BMD	Estrada et al.	G	0.28	0.032	$1.18 \mathrm{E}-06$	0.034	9.74E-04	0.043	9.08E-07
1	240597214 rs 9287237	$1 q 43$	Trabecular vBMD	Paternoster et al.	T	0.17	0.056	$3.29 \mathrm{E}-12$	0.037	0.002	0.039	$1.47 \mathrm{E}-04$
2	42250549 rs 7584262	2p21	FN-BMD	Estrada et al.	T	0.24	0.033	$5.41 \mathrm{E}-07$	0.009	0.392	0.044	$1.34 \mathrm{E}-06$
2	54659707 rs 4233949	2p16.2	LS-BMD	Estrada et al.	C	0.37	0.031	$2.47 \mathrm{E}-07$	0.055	1.49E-03	0.044	0.002
2	112500035 rs 17040773	2 q 13	FN-BMD	Estrada et al.	C	0.22	-0.021	0.008	-0.004	0.714	-0.023	0.012
2	119038598 rs 1878526	2q14.2	LS-BMD	Estrada et al.	A	0.22	0.012	0.092	0.038	4.29E-04	0.006	0.529
2	119154872 rs 6542457	2 q 14.2	LS-BMD	Zheng et al.	C	0.09	0.048	$2.19 \mathrm{E}-05$	0.083	6.53E-06	-0.005	0.757
2	119545994 rs 11692564	2 q 14.2	LS-BMD	Zheng et al.	T	0.01	0.229	7.09E-15	0.238	4.1E-09	0.116	7.23E-04
2	166601046 rs 1346004	2q24.3	FN-BMD, LS-BMD	Estrada et al.	A	0.47	-0.051	3.62E-19	-0.052	8.7E-09	-0.058	7.15E-14
3	41128564 rs 430727	3p22.1	FN-BMD, LS-BMD	Estrada et al.	T	0.45	-0.070	$1.53 \mathrm{E}-34$	-0.056	5.3E-10	-0.061	2.02E-15
3	113370010 rs 1026364	3 q 13.2	FN-BMD	Estrada et al.	T	0.37	0.023	$1.50 \mathrm{E}-04$	0.013	0.171	0.024	0.003
3	118183783 rs 1949542	3 q 13.2	INT-BMD, TRO-BMD	Pei et al.	A	0.40	0.006	0.282	-0.013	0.150	-0.019	0.015
3	156555984 rs 344081	3q25.31	LS-BMD	Estrada et al.	C	0.16	-0.056	$7.40 \mathrm{E}-12$	-0.047	4.28E-04	-0.035	0.002
4	994414 rs3755955	4p16.3	FN-BMD, LS-BMD	Estrada et al.	A	0.16	-0.074	2.10E-19	-0.049	5.05E-05	-0.044	2.87E-05
4	88773849 rs 6532023	4q22.1	FN-BMD, LS-BMD	Estrada et al.	T	0.34	0.060	$1.31 \mathrm{E}-23$	0.048	$2.34 \mathrm{E}-07$	0.034	$2.78 \mathrm{E}-05$
5	88376061 rs 1366594	5q14.3	FN-BMD	Estrada et al.	C	0.49	-0.048	$2.35 \mathrm{E}-17$	-0.007	0.435	-0.079	5.44E-25
6	21384613 rs 9466056	6p22.3	FN-BMD, LS-BMD	Estrada et al.	A	0.39	-0.028	$1.90 \mathrm{E}-06$	-0.039	1.81E-05	-0.038	8.86E-07
6	44639184 rs 11755164	6p21.1	LS-BMD	Estrada et al.	T	0.41	-0.041	$7.13 \mathrm{E}-12$	-0.024	0.010	-0.013	0.108
6	127167072 rs 13204965	6q22.33	FN-BMD, LS-BMD	Estrada et al.	C	0.23	-0.062	$1.02 \mathrm{E}-18$	-0.039	2.81E-04	-0.052	1.39E-08
6	133350936 rs 3012465	6q23.2	Skull BMD	Kemp et al.	A	0.33	-0.022	$2.61 \mathrm{E}-04$	0.016	0.079	0.025	0.002
6	151895456 rs 6909279	$6 q 25.1$	Cortical vBMD	Paternoster et al.	G	0.44	-0.072	$2.52 \mathrm{E}-35$	-0.055	1.3E-09	-0.051	8.07E-11
6	151907748 rs 4869742	$6 q 25.1$	FN-BMD, LS-BMD	Estrada et al.	T	0.33	-0.070	5.20E-30	-0.061	$2.8 \mathrm{E}-08$	-0.052	$1.75 \mathrm{E}-08$
6	151946658 rs 7751941	6q25.1	FN-BMD, LS-BMD	Estrada et al.	A	0.21	-0.044	$1.45 \mathrm{E}-10$	-0.059	$9.8 \mathrm{E}-08$	-0.031	0.001
7	37938422 rs 10226308	7p14.1	LS-BMD	Estrada et al.	G	0.18	0.033	$1.06 \mathrm{E}-05$	0.059	2.48E-07	0.025	0.012
7	38128326 rs 6959212	7p14.1	FN-BMD, LS-BMD	Estrada et al.	T	0.34	-0.043	$7.34 \mathrm{E}-13$	-0.066	$2.6 \mathrm{E}-12$	-0.033	5.12E-05
7	96120675 rs 4727338	7 q 21.3	FN-BMD, LS-BMD	Estrada et al.	G	0.32	-0.073	6.07E-33	-0.059	5.8E-10	-0.063	5E-15
7	120742980 rs 148771817	7q31.31	FA-BMD	Zheng et al.	T	0.01	0.154	$7.88 \mathrm{E}-04$	0.136	0.006	0.011	0.798
7	120785064 rs 13245690	7q31.31	LS-BMD	Estrada et al.	G	0.37	-0.057	$4.06 \mathrm{E}-22$	-0.028	0.002	-0.023	0.003
7	120903815 rs 4609139	7 7 31.31	TB-BMD	Medina-Gomez et al.	T	0.35	-0.046	$1.17 \mathrm{E}-14$	-0.015	0.117	-0.013	0.114
7	120974765 rs 3801387	7q31.31	FN-BMD	Estrada et al.	G	0.27	0.135	$1.15 \mathrm{E}-100$	0.073	1.7E-13	0.054	$3.26 \mathrm{E}-10$
7	150919829 rs 7812088	7 7 36.1	FN-BMD	Estrada et al.	A	0.12	0.058	$3.54 \mathrm{E}-11$	0.035	0.010	0.044	$1.61 \mathrm{E}-04$
8	71591203 rs 7017914	$8 q 13.3$	Fem FN-BMD	Estrada et al.	G	0.48	-0.008	0.151	0.011	0.219	-0.016	0.045
8	120007420 rs 2062377	8q24.12	FN-BMD, LS-BMD	Estrada et al.	T	0.41	0.064	$1.47 \mathrm{E}-28$	0.081	6.6E-19	0.060	$1.64 \mathrm{E}-14$
9	133478827 rs 7851693	9 q 34.11	FN-BMD	Estrada et al.	G	0.35	-0.046	$5.73 \mathrm{E}-14$	-0.017	0.074	-0.040	9.62E-07
10	28479942 rs 3905706	10p12.1	LS-BMD	Estrada et al.	T	0.23	0.009	0.176	0.055	7.69E-07	-0.014	0.157
10	54427825 rs 1373004	10q21.1	FN-BMD, LS-BMD	Estrada et al.	T	0.15	-0.067	$1.22 \mathrm{E}-14$	-0.056	1.10E-04	-0.045	2.81E-04
10	79401316 rs 7071206	10q22.3	LS-BMD	Estrada et al.	C	0.21	0.016	0.027	0.053	8.60E-07	-0.014	0.122
10	101813802 rs 7084921	10q24.2	FN-BMD	Estrada et al.	T	0.41	0.024	$3.94 \mathrm{E}-05$	0.018	0.043	0.026	9.35E-04
11	15710084 rs 7108738	11p15.1	FN-BMD	Estrada et al.	G	0.18	0.056	9.06E-14	0.043	2.05E-04	0.083	8.07E-17
11	16296412 rs1347677	11p15.1	Hip BMD	Yang TL etal.	C	0.21	0.045	$5.41 \mathrm{E}-11$	0.030	0.006	0.039	3.37E-05
11	27505677 rs 10835187	11p14-p13	LS-BMD	Estrada et al.	C	0.48	0.044	$4.38 \mathrm{E}-14$	0.026	0.004	0.009	0.275
11	30951674 rs 163879	11p14.1	FN-BMD, LS-BMD	Estrada et al.	C	0.34	0.031	$3.02 \mathrm{E}-07$	0.039	6.17E-05	0.018	0.026
11	46722221 rs 7932354	11p11.2	FN-BMD, LS-BMD	Estrada et al.	T	0.34	0.043	$9.33 \mathrm{E}-12$	0.036	4.23E-04	0.041	1.64E-06
11	68201295 rs 3736228	11q13.2	FN-BMD, LS-BMD	Estrada et al.	T	0.15	-0.102	5.03E-34	-0.078	2.9E-10	-0.049	4.79E-06
11	68263370 rs 12272917	11q13.2	SK-BMD	Kemp et al.	C	0.25	-0.077	2.74E-31	-0.074	4.6E-13	-0.045	2.89E-07
11	86853997 rs 597319	11q14.2	BUA and VOS	Moayyeri et al.	G	0.32	-0.055	$1.72 \mathrm{E}-19$	-0.042	$1.25 \mathrm{E}-05$	-0.026	0.002
12	1638171 rs 2887571	12p13.33	FN-BMD, LS-BMD	Estrada et al.	G	0.24	0.038	$6.83 \mathrm{E}-09$	0.034	8.57E-04	0.022	0.012
12	28017159 rs 7953528	12p11.22	FN-BMD	Estrada et al.	A	0.17	0.018	0.019	-0.011	0.349	0.038	1.35E-04
12	49474605 rs 12821008	12q13.12	LS-BMD	Estrada et al.	T	0.38	0.034	$1.94 \mathrm{E}-08$.	0.012	0.525
12	53727955 rs 2016266	12q13.13	FN-BMD, LS-BMD	Estrada et al.	G	0.34	0.048	$1.55 \mathrm{E}-15$	0.056	6.7E-09	0.039	1.89E-06
12	54417576 rs 736825	12q13.13	FN-BMD, LS-BMD	Estrada et al.	G	0.37	-0.017	$4.09 \mathrm{E}-03$	-0.062	2.7E-11	-0.043	8.70E-08
12	107367225 rs 1053051	12 q 23.3	FN-BMD	Estrada et al.	C	0.49	0.032	$2.46 \mathrm{E}-08$	0.024	0.006	0.023	0.003
13	42951449 rs 9533090	13q14.11	FN-BMD, LS-BMD	Estrada et al.	T	0.45	-0.060	$1.09 \mathrm{E}-25$	-0.082	5.2E-20	-0.035	6.19E-06
13	43116133 rs 1021188	13q14.11	Cortical BMD	Paternoster et al.	C	0.19	-0.037	$5.79 \mathrm{E}-07$	-0.026	0.024	-0.020	0.051
14	70456699 rs 227425	14q24.2	LS-BMD	Zhang et al.	G	0.49	-0.013	0.026	-0.035	1.13E-04	-0.010	0.185
14	91442779 rs 1286083	14q32.11	FN-BMD, LS-BMD	Estrada et al.	C	0.20	0.053	1.95E-13	0.065	1E-08	0.038	7.66E-05
14	93114787 rs 754388	14q32.12	TB-BMD, LL-BMD	Kemp et al.	A	0.17	-0.010	0.167	-0.007	0.543	-0.004	0.670
14	103883633 rs 11623869	14q32.32	FN-BMD, LS-BMD	Estrada et al.	T	0.34	-0.029	1.11E-06	-0.020	0.029	-0.029	2.96E-04
16	375782 rs 9921222	16p13.3	FN-BMD, LS-BMD	Estrada et al.	T	0.48	-0.048	$1.76 \mathrm{E}-17$	-0.053	3.2E-09	-0.050	6.36E-11
16	1532463 rs 13336428	16p13.3	FN-BMD, LS-BMD	Estrada et al.	A	0.44	-0.025	$1.56 \mathrm{E}-05$	-0.027	0.003	-0.039	8.33E-07
16	15129459 rs 4985155	16p13.11	FN-BMD, LS-BMD	Estrada et al.	G	0.34	0.021	$4.35 \mathrm{E}-04$	0.035	2.09E-04	0.022	0.007
16	50986308 rs 1564981	16q12.1	LS-BMD	Estrada et al.	A	0.49	-0.025	6.86E-06	-0.044	7.95E-07	-0.032	$2.38 \mathrm{E}-05$
16	51021803 rs 1566045	16q12.1	FN-BMD	Estrada et al.	C	0.20	0.027	$8.05 \mathrm{E}-04$	0.012	0.317	0.043	2.90E-05
16	86710660 rs 10048146	16q24.1	FN-BMD, LS-BMD	Estrada et al.	G	0.18	-0.048	2.09E-10	-0.064	$4.5 \mathrm{E}-08$	-0.056	2.31E-08

CHR	BP	Rsid	locus	Phenotype	Reference	A1	EAF	beta_TB	P_TB	beta_LS	P_LS	beta_FN	P_FN
17	2068932	rs 4790881	17p13.3	FN-BMD, LS-BMD	Estrada et al.	C	0.29	-0.038	1.04E-09	-0.035	3.41E-04	-0.050	2.92E-09
17	41798824	rs 4792909	17q21.31	FN-BMD, LS-BMD	Estrada etal.	T	0.40	0.039	5.96E-11	0.047	3.07E-07	0.048	$1.52 \mathrm{E}-09$
17	42225547	rs 227584	17q21.31	FN-BMD, LS-BMD	Estrada etal.	C	0.34	0.032	2.16E-07	0.043	4.05E-05	0.048	$2.69 \mathrm{E}-08$
17	43977827	rs 1864325	17q21.31	LS-BMD	Estrada et al.	T	0.21	-0.023	0.008	-0.052	2.48E-04	-0.019	0.103
17	69949016	rs 7217932	17q24.3	FN-BMD	Estrada etal.	A	0.48	0.025	$1.14 \mathrm{E}-05$	0.006	0.501	0.033	$1.89 \mathrm{E}-05$
18	13708574	rs 4796995	18p11.21	FN-BMD	Estrada et al.	G	0.37	-0.022	$2.23 \mathrm{E}-04$	-0.025	0.006	-0.037	$2.56 \mathrm{E}-06$
18	60054857	rs 884205	$18 q 21.33$	FN-BMD, LS-BMD	Estrada et al.	A	0.24	-0.053	$4.39 \mathrm{E}-15$	-0.062	$2.8 \mathrm{E}-09$	-0.042	$2.71 \mathrm{E}-06$
19	33599127	rs 10416218	19q13.11	LS-BMD	Estrada et al.	C	0.29	0.028	$1.19 \mathrm{E}-05$	0.070	8.3E-09	0.042	$2.93 \mathrm{E}-05$
20	10639988	rs 3790160	20p12.2	FN-BMD, LS-BMD	Estrada et al.	C	0.50	-0.035	$7.99 \mathrm{E}-10$	-0.051	1.50E-08	-0.029	$1.94 \mathrm{E}-04$
21	37848334	rs 170183	21q22.13	Hip BMD-Female	Zhang et al.	G	0.50	0.026	6.80E-06	0.016	0.082	0.020	0.009

Table S3 Known independent markers associated with bone phenotypes. Index SNPs of the GWS association reported for the specific bone phenotype [fifth column] in the reference stated [sixth column]. All effect sizes (β) are reported for the minor allele (A1). EAF=Effect Allele Frequency, $T B=$ total body BMD, assessed in this study, LS=lumbar spine BMD, assessed in Zheng et al. , FN=Femoral Neck BMD, assessed in Zheng at al. Phenotype for which association was previously reported and the correspondent reference are given.

Table S4. Genome-wide significant SNPs for the overall TB-BMD meta-analysis. Estimates were derived from the overall approach. Beta coefficients and allele frequency (EAF) are reported for the A1 allele. Attached Excel file.

Table S5. Genome-wide significant SNPs for the TB-BMD meta-analysis in European cohorts. Estimates were derived from the all-age combined approach. Beta coefficients and allele frequency (EAF) are reported for the A1 allele. Attached Excel file.

CHR	BP	Rsid	A1	A2	EAF	beta	P.value	HetISq	HetPVal	N	locus	unreported
1	22700351	rs34920465	a	g	0.7968	-0.1008	9.41E-16	0	0.6114	22467	1p36.12	no
1	68656697	rs2566752	t	c	0.6119	-0.0776	$1.55 \mathrm{E}-14$	0	0.841	22380	1p31.3	no
1	110475971	rs7548588	t	c	0.6075	-0.0617	3.80E-10	34.4	0.07127	22324	1p13.3	yes
2	119529829	rs55983207	t	c	0.9474	-0.1409	3.37E-08	36.1	0.06437	22187	2 q 14.2	no
3	41171177	rs2371447	t	g	0.4846	-0.0711	6.58E-13	0	0.5362	22460	3p22.1	no
6	45144224	rs184065563	a	g	0.3052	-0.0623	7.14E-09	7.9	0.3586	22491	6p21.1	no
6	127423055	rs1936792	a	g	0.2652	0.0607	$3.72 \mathrm{E}-08$	20	0.2109	22458	6q22.33	no
6	151910126	rs6557155	t	g	0.428	-0.0981	5.18E-22	0	0.9731	22490	$6 q 25.1$	no
7	38136277	rs1524058	t	c	0.4044	-0.0604	7.43E-10	10.7	0.3237	22479	7p14.1	no
7	96134115	rs6465511	c	g	0.3265	-0.0849	1.16E-16	0	0.5605	22493	7 q 21.3	no
7	99130834	rs34670419	t	g	0.0387	-0.1603	1.40E-09	0	0.7425	22223	7 q 22.1	yes
7	120974765	rs3801387	a	g	0.7266	-0.1337	2.82E-35	13.3	0.2911	22423	7q31.31	no
8	120012700	rs11995824	c	g	0.4289	0.0806	2.80E-16	0	0.6858	22476	8q24.12	no
10	54425325	rs10824760	t	C	0.8217	0.0886	3.05E-09	0	0.9745	22453	10q21.1	no
11	16348061	rs7131442	a	t	0.7918	-0.0762	$1.81 \mathrm{E}-10$	0	0.6208	22497	11p15.1	no
11	46783435	rs61884328	t	c	0.9013	-0.1063	$2.46 \mathrm{E}-10$	29.7	0.1088	22502	11p11.2	no
11	68218290	rs11228240	t	c	0.254	-0.0848	$1.12 \mathrm{E}-13$	16.7	0.2501	22483	11q13.2	no
11	86873599	11:86873599:I	d	i	0.7333	0.0768	4.34E-09	0	0.6918	18952	11q14.2	no
13	42951449	rs9533090	t	c	0.4555	-0.0663	$8.41 \mathrm{E}-12$	53.8	0.002882	22493	13q14.11	no
17	41826839	rs2741856	c	g	0.0764	0.1391	7.03E-13	2.6	0.4249	22392	17q21.31	no
1	22697860	rs6679981	a	g	0.1811	0.1162	$4.81 \mathrm{E}-17$	34.1	0.1257	18784	1p36.12	no
1	68656697	rs2566752	t	c	0.6056	-0.075	$1.42 \mathrm{E}-11$	0	0.7436	18734	1p31.3	no
2	166618262	rs1968294	t	c	0.4895	-0.0632	4.41E-09	0	0.9458	18786	2q24.3	no
3	41127606	rs444561	c	g	0.5642	0.0831	1.02E-14	0	0.9578	18782	3p22.1	no
4	1008386	rs56396408	t	C	0.1529	-0.1198	1.37E-13	16.2	0.2938	16206	4p16.3	no
4	88831249	rs11934731	a	g	0.6784	-0.0718	$3.71 \mathrm{E}-10$	0	0.7177	18802	4q22.1	no
5	88354675	rs10037512	t	C	0.5173	0.0604	2.10E-08	0	0.6152	18780	5q14.3	no
6	151910126	rs6557155	t	g	0.4255	-0.0968	$1.42 \mathrm{E}-18$	11.1	0.3381	18802	6q25.1	no
7	96133871	rs6465510	a	c	0.6498	0.0787	$1.79 \mathrm{E}-12$	0	0.464	18802	7 q 21.3	no
7	120974765	rs3801387	a	g	0.7348	-0.1359	3.49E-30	0	0.4875	18735	7q31.31	no
8	119946656	rs7010267	a	c	0.4438	0.0838	$3.34 \mathrm{E}-15$	0	0.7913	18728	8q24.12	no
11	68220905	rs57502260	a	g	0.8295	0.1088	$1.81 \mathrm{E}-13$	36.4	0.1075	18792	11q13.2	no
11	86880458	rs540403	a	g	0.3312	-0.0699	1.36E-09	0	0.859	18791	11q14.2	no
12	49379537	rs118115924	t	g	0.0143	-0.3132	6.10E-10	23.7	0.2178	18764	12q13.12	no
12	53659448	rs7398996	t	c	0.6855	-0.0762	$1.56 \mathrm{E}-11$	0	0.4527	18787	12q13.13	no
13	42969049	rs9533095	t	g	0.4647	-0.091	1.32E-17	0	0.4543	18797	13q14.11	no
18	60054857	rs884205	a	c	0.2479	-0.072	9.97E-09	0	0.532	18757	18q21.33	no
19	31654615	rs6510186	t	c	0.2602	0.0677	$3.11 \mathrm{E}-08$	0	0.614	18782	19 q 12	yes*
1	22682366	rs12742784	t	c	0.2193	0.1126	6.64E-10	0	0.6669	10049	1p36.12	no
3	41112656	rs62259232	a	g	0.4885	0.0899	1.21E-09	0	0.8597	10050	3p22.1	no
4	88852643	rs10005067	t	C	0.5212	0.0883	2.16E-09	0	0.545	10062	4q22.1	no
6	151874122	rs9478217	a	g	0.4637	-0.1173	4.33E-15	13.1	0.3249	10055	6925.1	no
7	120983343	rs10242100	a	g	0.7296	-0.1614	8.22E-23	4.1	0.4007	10025	7 q 31.31	no
11	242859	rs55781332	a	g	0.7823	-0.1088	6.98E-10	8.7	0.3624	9965	11p15.5	yes
11	68218290	rs11228240	t	C	0.2576	-0.0974	$2.58 \mathrm{E}-08$	0	0.9399	10049	11q13.2	no
13	42965694	rs8001611	t	c	0.5404	0.0947	1.54E-10	0	0.8615	10059	13q14.11	no

4	88815986	rs77034375	t	c	0.3089	-0.1397	1.26E-08	0	0.5184	4180	4q22.1	no
1	22444975	rs10737462	t	c	0.2267	-0.0925	1.67E-09	22	0.2685	11807	1p36.12	no
1	68658266	1:68658266:1	d	i	0.4541	0.0947	2.60E-11	39.9	0.1553	11360	1p31.3	no
2	166573776	rs35969972	t	c	0.5148	0.0771	2.01E-09	26.3	0.2369	11807	2q24.3	no
4	88831249	rs11934731	a	g	0.6716	-0.0777	$1.52 \mathrm{E}-08$	0	0.6512	11807	4 q 22.1	no
7	121018857	rs917726	a	t	0.7269	-0.137	5.07E-21	36.4	0.1644	11807	7 7 31.31	no
11	68252123	rs12364620	t	g	0.7508	0.0848	$1.29 \mathrm{E}-08$	0	0.8874	11807	11q13.2	no
13	43128577	rs9525638	t	c	0.5826	-0.0844	1.90E-10	0	0.9245	11360	13q14.11	no
14	93114787	rs72699866	g	a	0.8247	0.0994	$1.01 \mathrm{E}-08$	54.3	0.05281	11807	14q32.12	no*

Table S6. Index Genome-wide significant SNPs in the age-bin meta-analyses. Genomic coordinates are on build 37 of the human genome. Beta coefficients and allele frequencies (EAF) are reported for the A1 allele. * Only GWS in the particular age-bin.

Table S7. Nominally significant variants after meta-regression analysis. Only suggestively associated variants $\left(\mathrm{P}<5 \times 10^{-6}\right)$ in the TBBMD overall meta-analysis were subjected to meta-regression assessment. Genomic coordinates are on build 37 of the human genome. Allele frequencies (EAF) are reported for the A1 allele. C.L-C.U, 95\% Confidence interval lower and upper limit. Attached Excel file

CHR	BP	locus	rsnumber	A1	EAF	beta	P	N	betaJ	PJ
1	22484575	1p36.12	rs3971300	T	0.71	0.069	7.41E-23	57561	0.071	$2.56 \mathrm{E}-24$
1	22700351	1p36.12	rs34920465	A	0.82	-0.101	2.67E-35	59625	-0.103	7.68E-37
1	68635879	1p31.3	rs145119306	A	0.07	-0.026	0.03436	58593	-0.088	$2.77 \mathrm{E}-11$
1	68656697	1p31.3	rs2566752	T	0.61	-0.074	6.79E-31	59727	-0.091	7.06E-40
1	110480220	1p13.3	rs7364724	A	0.40	-0.038	1.84E-09	60973	-0.038	$2.20 \mathrm{E}-09$
1	240581653	1 q 43	rs12044944	T	0.19	0.052	1.06E-10	58925	0.052	$8.86 \mathrm{E}-11$
2	40630678	2p22.1	rs10490046	A	0.77	0.042	$1.13 \mathrm{E}-08$	59278	0.043	$9.30 \mathrm{E}-09$
2	42280066	2p21	rs78572108	A	0.13	-0.054	$2.66 \mathrm{E}-08$	55121	-0.054	$2.35 \mathrm{E}-08$
2	68962137	2p13.3	rs10048745	A	0.25	-0.041	$1.76 \mathrm{E}-08$	58660	-0.041	$1.68 \mathrm{E}-08$
2	85483350	2p11.2	rs2043230	A	0.44	0.034	$4.77 \mathrm{E}-08$	61631	0.034	$4.59 \mathrm{E}-08$
2	119507607	$2 q 14.2$	rs115242848	T	0.01	0.312	$1.75 \mathrm{E}-14$	35647	0.305	6.28E-14
2	119632724	2 q 14.2	rs12621139	A	0.20	-0.060	3.88E-12	48934	-0.058	1.12E-11
2	166577489	2 q 24.3	rs7586085	A	0.52	0.051	1.72E-16	60651	0.051	1.76E-16
2	202803881	$2 q 33.2$	rs6716216	A	0.88	-0.066	$4.71 \mathrm{E}-12$	61489	-0.066	$4.40 \mathrm{E}-12$
3	41129297	3 p 22.1	rs415997	A	0.53	0.068	$2.64 \mathrm{E}-28$	60766	0.068	$3.61 \mathrm{E}-28$
3	156474152	3q25.31	rs344024	A	0.77	0.050	3.11E-12	62621	0.050	$2.61 \mathrm{E}-12$
4	996165	4p16.3	rs6831280	A	0.16	-0.080	8.26E-19	53031	-0.080	$1.06 \mathrm{E}-18$
4	88831249	4 q 22.1	rs11934731	A	0.68	-0.062	1.69E-20	61124	-0.062	$1.09 \mathrm{E}-20$
5	88376061	$5 q 14.3$	rs1366594	A	0.52	0.051	5.03E-16	60698	0.051	3.01E-16
5	122847622	5 q 23.2	rs11745493	A	0.75	0.044	9.90E-10	61202	0.044	8.30E-10
6	44636919	6p21.1	rs7741085	T	0.59	0.047	$1.19 \mathrm{E}-13$	60657	0.047	1.61E-13
6	127167072	6q22.33	rs13204965	A	0.76	0.062	1.05E-16	57298	0.085	5.46E-27
6	127446790	6q22.33	rs9482772	T	0.55	-0.039	5.70E-10	59203	-0.061	3.17E-20
6	151910126	$6 q 25.1$	rs6557155	T	0.42	-0.079	2.97E-34	58412	-0.074	3.00E-30
6	151994910	6 q 25.1	rs7765040	A	0.84	0.059	5.37E-12	58188	0.054	7.30E-10
6	152008982	$6 q 25.1$	rs2941741	A	0.41	0.058	1.29E-20	62437	0.040	$4.26 \mathrm{E}-10$
7	30957702	7p14.3	rs28362721	T	0.18	-0.061	1.02E-12	53488	-0.062	$6.40 \mathrm{E}-13$
7	37965963	7p14.1	rs28457747	T	0.18	0.039	9.85E-07	61792	0.045	$1.89 \mathrm{E}-08$
7	38136277	7p14.1	rs1524058	T	0.40	-0.054	$1.73 \mathrm{E}-17$	60883	-0.057	2.72E-19
7	50901491	7p12.1	rs1548607	A	0.69	0.041	9.71E-09	52156	0.041	9.02E-09
7	96133319	7 q 21.3	rs6965122	A	0.68	0.077	4.64E-31	61668	0.076	$1.52 \mathrm{E}-30$
7	96656572	7 q 21.3	rs3757493	T	0.42	-0.036	1.28E-08	60079	-0.035	$4.29 \mathrm{E}-08$
7	120790559	7q31.31	rs56335989	T	0.55	-0.023	0.0001878	59259	-0.045	$5.38 \mathrm{E}-09$
7	120902676	7q31.31	rs4731006	T	0.35	-0.040	5.45E-10	60966	-0.060	$2.85 \mathrm{E}-14$
7	120959155	7q31.31	rs2536195	A	0.68	-0.089	$1.11 \mathrm{E}-29$	43891	-0.068	1.46E-14
7	120974765	7 7 31.31	rs3801387	A	0.73	-0.138	3.31E-87	60474	-0.163	7.27E-91
7	120985854	7 7 31.31	rs2041490	C	0.18	0.017	0.04031	59352	0.084	$9.83 \mathrm{E}-21$
7	121178195	7 7 31.31	rs73717393	T	0.93	-0.094	4.69E-13	55499	-0.088	$8.04 \mathrm{E}-12$
7	150933044	7 q 36.1	rs10233479	T	0.12	0.062	1.20E-10	63298	0.062	$9.70 \mathrm{E}-11$
8	120012700	8q24.12	rs11995824	C	0.44	0.074	5.21E-32	59397	0.074	$8.68 \mathrm{E}-32$
9	133471891	9q34.11	rs10901216	A	0.35	-0.045	6.20E-12	58789	-0.045	$6.84 \mathrm{E}-12$
10	54423853	10q21.1	rs12258451	C	0.88	0.075	4.32E-14	56851	0.075	5.63E-14

10	124015986	10q26.13	rs10788264	A	0.49	-0.041	4.10E-11	60632	-0.041	3.43E-11
11	243268	11p15.5	rs505404	T	0.76	-0.052	9.04E-13	60292	-0.052	$9.75 \mathrm{E}-13$
11	15708792	11p15.2	rs7926837	A	0.79	-0.052	7.46E-12	60590	-0.054	1.76E-12
11	15814794	11p15.2	rs11023718	T	0.04	0.128	7.30E-13	52490	0.118	5.96E-11
11	16248894	11p15.1	rs12800049	T	0.26	0.056	1.11E-15	61150	0.048	$1.43 \mathrm{E}-11$
11	16630779	11p15.1	rs35199438	T	0.31	-0.047	2.24E-12	60906	-0.040	4.72E-09
11	27308483	11p14-p13	rs10450586	C	0.62	-0.048	8.17E-14	60024	-0.051	$2.26 \mathrm{E}-15$
11	27593899	11p14-p13	rs1352479	A	0.27	0.039	6.88E-08	57320	0.042	5.05E-09
11	35083633	11p13	rs2553773	C	0.43	-0.034	8.09E-08	60038	-0.036	$1.79 \mathrm{E}-08$
11	46856536	11p11.2	rs10838622	T	0.36	0.049	3.04E-13	56422	0.045	$2.54 \mathrm{E}-11$
11	47252107	11p11.2	rs4647728	A	0.03	-0.124	5.88E-11	49763	-0.111	5.94E-09
11	68174189	11q13.2	rs4988321	A	0.04	-0.160	4.08E-23	54286	-0.114	$1.63 \mathrm{E}-11$
11	68218290	11q13.2	rs11228240	T	0.26	-0.084	3.57E-31	56682	-0.069	3.51E-19
11	86887931	11q14.2	rs634277	A	0.67	0.062	2.19E-20	58914	0.062	2.01E-20
12	49379537	$12 q 13.12$	rs118115924	T	0.01	-0.277	8.01E-18	39253	-0.304	6.84E-21
12	49385679	$12 q 13.12$	rs10875906	T	0.27	0.053	1.07E-12	53734	0.061	1.57E-16
12	53737840	$12 q 13.13$	rs12424778	A	0.28	0.054	$2.23 \mathrm{E}-15$	61906	0.054	1.16E-15
12	90334829	12q21.33	rs10777212	T	0.35	0.045	5.00E-12	58906	0.045	6.15E-12
12	107297862	12q23.3	rs6539288	A	0.50	-0.040	$2.44 \mathrm{E}-10$	60592	-0.040	$1.86 \mathrm{E}-10$
12	116555786	12q24.21	rs73200209	A	0.80	0.045	$2.52 \mathrm{E}-08$	56109	0.045	$2.54 \mathrm{E}-08$
13	42952145	$13 q 14.11$	rs9594738	T	0.47	-0.072	5.00E-31	60695	-0.069	$2.43 \mathrm{E}-28$
13	43153869	$13 q 14.11$	rs117543324	A	0.96	-0.162	3.13E-17	46599	-0.147	2.42E-14
14	91445162	14q32.11	rs1286079	T	0.19	0.055	5.42E-12	59543	0.055	5.30E-12
15	51126002	15q21.2	rs34293575	A	0.82	-0.025	0.002497	60821	-0.049	1.80E-08
15	51524292	15q21.2	rs2414095	A	0.35	-0.040	6.22E-10	60408	-0.054	7.30E-15
15	67420680	$15 q 22.33$	rs1545161	A	0.54	0.038	1.16E-09	61086	0.036	7.67E-09
15	67562214	$15 q 22.33$	rs12901789	A	0.76	-0.049	$1.68 \mathrm{E}-11$	59612	-0.047	1.22E-10
16	392318	16 p13.3	rs8047501	A	0.49	0.056	6.83E-18	55097	0.056	8.38E-18
16	86714715	$16 q 24.1$	rs71390846	C	0.19	-0.050	6.95E-10	58067	-0.050	$7.94 \mathrm{E}-10$
17	2048713	17p13.3	rs7209460	T	0.70	0.044	1.15E-10	59907	0.044	$1.20 \mathrm{E}-10$
17	17843396	17p11.2	rs8070624	A	0.44	0.036	$2.45 \mathrm{E}-08$	57633	0.036	$2.45 \mathrm{E}-08$
17	41798621	$17 q 21.31$	rs66838809	A	0.08	0.109	$2.35 \mathrm{E}-18$	50133	0.110	$1.59 \mathrm{E}-18$
17	42283037	17q21.31	rs9910055	T	0.25	0.044	$3.13 \mathrm{E}-09$	57268	0.045	$1.37 \mathrm{E}-09$
17	63840961	17q24.1	rs9907056	A	0.32	0.041	1.61E-09	59188	0.041	$1.38 \mathrm{E}-09$
18	60054857	18q21.33	rs884205	A	0.25	-0.053	3.96E-13	58528	-0.053	3.96E-13
20	10640877	20p12.2	rs6040063	A	0.51	0.040	7.75E-11	60605	0.040	$1.01 \mathrm{E}-10$
21	36970350	21q22.12	rs9976876	T	0.46	-0.038	1.35E-09	59146	-0.038	$1.48 \mathrm{E}-09$
21*	37836973	21q22.13	rs7277076	T	0.43	0.036	$1.82 \mathrm{E}-08$	59889	0.036	$1.21 \mathrm{E}-08$
21	40350744	21q22.2	rs11910328	A	0.84	-0.049	8.51E-09	59137	-0.050	5.82E-09

Table S8. Independent variants associated with TB-BMD in the only -European meta-analysis. Genomic coordinates are on build 37 of the human genome. Beta coefficients and allele frequencies (EAF) are reported for the A1 allele. J suffix refers to the summary statistics in the join analysis fitting all variants together. * Only significant in the meta-analysis of European individuals.

Trait	PMID	year	rg	se	Z	P
Age.at.menarche	25231870	2014	-0.05	0.028	-1.801	0.072
Age.at.Menopause	26414677	2015	0.002	0.043	0.054	0.957
Anorexia.nervosa	24514567	2014	-0.027	0.034	-0.791	0.429
Asthma	17611496	2007	0.02	0.063	0.312	0.755
Autism.spectrum.disorder	www.med.unc.edu	2015	-0.059	0.064	-0.925	0.355
Bipolar.disorder	21926972	2011	0.035	0.052	0.669	0.504
Birth.length	25281659	2015	-0.109	0.059	-1.84	0.066
Birth.weight	23202124	2013	-0.023	0.059	-0.39	0.697
Body.mass.index. 2010	20935630	2010	0.108	0.029	3.748	0.0002
Childhood.intelligence.quotient	23358156	2014	-0.012	0.065	-0.183	0.855
Childhood.obesity	22484627	2012	0.091	0.049	1.858	0.063
Cholesterol.esters.in.large.HDL	27005778	2016	-0.077	0.107	-0.721	0.471
Cholesterol.esters.in.large.LDL	27005778	2016	0.036	0.068	0.535	0.593
Cholesterol.esters.in.large.VLDL	27005778	2016	-0.078	0.106	-0.735	0.463
Cholesterol.esters.in.medium.HDL	27005778	2016	0.076	0.094	0.807	0.42
Cholesterol.esters.in.medium.LDL	27005778	2016	-0.062	0.104	-0.598	0.55
Cognitive.performance	25201988	2014	0.057	0.039	1.472	0.141
College.completion	23722424	2013	0.059	0.042	1.43	0.153
Creatinine	27005778	2016	0.093	0.069	1.354	0.176
Crohn's.disease	26192919	2015	-0.044	0.042	-1.042	0.297
Depressive.symptoms	27089181	2016	-0.051	0.039	-1.307	0.191
Ever.vs.never.smoked	20418890	2010	-0.015	0.044	-0.335	0.737
Extreme.body.mass.index	23563607	2013	0.094	0.044	2.122	0.034
Extreme.height	23563607	2013	-0.087	0.044	-1.978	0.048
Extreme.waist.to.hip.ratio	23563607	2013	-0.035	0.072	-0.486	0.627
Fasting.glucose	22581228	2012	0.065	0.047	1.388	0.165
Fasting.insulin	22581228	2012	0.027	0.058	0.459	0.647
Femoral.neck.bone.mineral.density	22504420	2012	0.923	0.035	26.03	2.25E-149
Forced.expiratory.volume.in.1.second	21946350	2011	0.054	0.062	0.877	0.381
forced.vital.capacity	21946350	2011	0.056	0.044	1.272	0.203
Former.vs.current.smoker	20418890	2010	-0.019	0.067	-0.289	0.772
Free.cholesterol.in.IDL	27005778	2016	-0.101	0.106	-0.952	0.341
Free.cholesterol.in.large.HDL	27005778	2016	0.117	0.114	1.02	0.308
Free.cholesterol.in.large.LDL	27005778	2016	0.04	0.068	0.59	0.555
Free.cholesterol.in.large.VLDL	27005778	2016	-0.049	0.108	-0.453	0.651
Free.cholesterol.in.medium.HDL	27005778	2016	0.073	0.085	0.861	0.389
Free.cholesterol.in.medium.VLDL	27005778	2016	-0.068	0.072	-0.952	0.341
Free.cholesterol.in.serum	27005778	2016	-0.162	0.129	-1.258	0.208
Free.cholesterol.in.small.VLDL	27005778	2016	-0.102	0.093	-1.091	0.275
Glucose	27005778	2016	0.079	0.069	1.145	0.252
Glycated hemoglobin.HbA1C	20858683	2010	0.122	0.06	2.033	0.042
HDL.cholesterol	20686565	2010	-0.07	0.033	-2.116	0.034

Height.2010	20881960	2010	-0.057	0.031	-1.846	0.065
Hip.circumference	25673412	2015	-0.038	0.032	-1.174	0.24
Homeostasis.model.assessment-B	20081858	2011	0.026	0.059	0.44	0.66
Homeostasis.model.assessment-IR	20081858	2011	0.057	0.069	0.825	0.409
Infant.head.circumference	22504419	2012	0.258	0.074	3.493	0.0005
Inflammatory.bowel.disease	26192919	2015	-0.112	0.038	-2.908	0.004
Insulin.like.growth.factor.1	27329260	0	0.174	0.062	2.798	0.005
Leptin	26833098	2016	-0.028	0.065	-0.424	0.671
Leptin.adjusted.for.body.mass.index	26833098	2016	-0.081	0.07	-1.163	0.245
Lumbar.spine.bone.mineral.density	22504420	2012	0.99	0.035	28.097	$1.06 \mathrm{E}-173$
Lung.cancer.all	24880342	2016	0.009	0.067	0.136	0.891
Major.depressive.disorder	22472876	2013	0.004	0.048	0.073	0.942
Mean.platelet.volume	22139419	2011	0.109	0.048	2.278	0.023
Neuroticism	27089181	2016	-0.107	0.036	-3.012	0.003
Obesity.class.1	23563607	2013	0.077	0.032	2.422	0.015
Obesity.class.2	23563607	2013	0.029	0.04	0.714	0.475
Obesity.class.3	23563607	2013	-0.008	0.055	-0.14	0.889
Overweight	23563607	2013	0.097	0.033	2.902	0.004
PGC.cross.disorder.analysis	23453885	2013	0.012	0.048	0.259	0.796
Platelet.count	22139419	2011	-0.056	0.041	-1.379	0.168
Rheumatoid.Arthritis	24390342	2014	-0.028	0.051	-0.548	0.584
Subjective well being	27089181	2016	0.124	0.045	2.759	0.006
Total.cholesterol	20686565	2010	-0.085	0.038	-2.278	0.023
Triglycerides	20686565	2010	-0.027	0.04	-0.68	0.497
Type.2.diabetes	22885922	2012	0.108	0.05	2.153	0.031
Ulcerative.colitis	26192919	2015	-0.145	0.043	-3.358	0.001
Urinary.albumin/creatinine	26631737	2015	0.065	0.063	1.038	0.299
Urinary.albumin/creatinine.non.diabetes	26631737	2015	0.087	0.084	1.038	0.299
Waist.circumference	25673412	2015	-0.012	0.027	-0.435	0.664
Waist.to.hip.ratio	25673412	2015	0.038	0.032	1.171	0.241
Years.of.schooling	23722424	2013	0.053	0.038	1.366	0.172

Table S9. Genetic correlation of TB-BMD with different traits. The genetic correlation was calculated based on the summary statistics of the only-Europeans meta-analysis in LD-Hub using its current dataset. Significant results are shown in Figure 3.

CHR	BP	rsID	A1	A2	Freq1	P-value	Gene Name	Codons	SNP Type	SIFT	Polyphen2	OMIM Disease
11	68177510	rs 2306862	T	C	0.16	1.34E-33	LRP5	AAC-AAt	Synonymous			Van Buchem Disease, Type 2; Osteopetrosis, Autosomal Dominant 1; Exudative Vitreoretinopathy 4; OsteoporosisPseudoglioma Syndrome; Osteoporosis; Hyperostosis Corticalis Generalisata, Benign Form Of Worth, With Torus Van Buchem Disease, Type 2; Osteopetrosis, Autosomal Dominant 1; Exudative
11	68192690	rs 556442	A	G	0.65	6.53E-25	LRP5	GTG-GTa	Synonymous			Vitreoretinopathy 4; OsteoporosisPseudoglioma Syndrome; Osteoporosis; Hyperostosis Corticalis Generalisata, Benign Form Of Worth, With Torus Van Buchem Disease, Type 2; Osteopetrosis, Autosomal Dominant 1; Exudative
11	68201295	rs 3736228	T	C	0.15	5.03E-34	LRP5	GCG-GtG	Nonsynonymous	Not scored	benign	Vitreoretinopathy 4; OsteoporosisPseudoglioma Syndrome; Osteoporosis; Hyperostosis Corticalis Generalisata, Benign Form Of Worth, With Torus
12	49168798	rs 3730071	A	C	0.03	6.95E-10	ADCY6	GCC-tCC	Nonsynonymous	Tolerated	benign	
12	53662624	rs 6580942	C	A	0.30	$2.56 \mathrm{E}-16$	ESPL1	GCC-GaC	Nonsynonymous	Tolerated	benign	
12	53670545	rs 1318648	A	C	0.63	$3.32 \mathrm{E}-12$	ESPL1	AGC-AGa	Nonsynonymous	Damaging	prob. damaging	
12	53682326	rs 1110720	A	G	0.63	6.26E-12	ESPL1	GGG-GGa	Synonymous	.		
12	53682457	rs 56358776	A	G	0.34	$2.95 \mathrm{E}-13$	ESPL1	CGG-CaG	Nonsynonymous	Tolerated	benign	
13	43148546	rs 138818878	C	G	0.97	$5.47 \mathrm{E}-14$	TNFSF11	CCT-CgT	Nonsynonymous	Damaging*	prob. damaging	Osteopetrosis, Autosomal Recessive 2
15	67528374	rs7173826	T	G	0.67	7.49E-09	AAGAB	ATC-cTC	Nonsynonymous	Tolerated	benign	
16	396264	rs 1805105	A	G	0.34	5.40E-10	AXIN1	GAT-GAc	Synonymous	.		Caudal Duplication Anomaly; Hepatocellular Carcinoma
17	17698254	rs8067439	G	A	0.39	$4.69 \mathrm{E}-08$	RAI1	CCG-CCa	Synonymous	.	.	
17	17997209	rs2230316	G	A	0.44	$3.23 \mathrm{E}-08$	DRG2	TCG-TCa	Synonymous	.	.	
17	42254417	rs 7212854	A	G	0.71	$3.53 \mathrm{E}-09$	C17orf65	CGT-CGc	Synonymous	.		
17	42287519	rs 2071167	T	C	0.27	5.00E-09	UBTF	AAG-AAa	Synonymous			

Table S10. Genome-wide Significant coding variants. P-values are derived from the overall meta-analysis including all ethnicities. Bold rows correspond to SNPs mapping to novel loci for the first time described in this GWAS analysis. * Low confidence

Locus	Ensembl gene ID	Gene symbol	P value	FDR
1p13.3	ENSG00000184371	CSF1	1.91E-03	<0.05
1p31.3	ENSG00000116729	WLS	4.84E-03	<0.05
1p36.12	ENSG00000162552	WNT4	2.79E-03	<0.05
1p36.23	ENSG00000142599	RERE	$1.44 \mathrm{E}-04$	< $=0.01$
2 p 11.2	ENSG00000152284	TCF7L1	7.41E-04	<0.05
2p21	ENSG00000162878	PKDCC	$3.74 \mathrm{E}-04$	<0.05
2 q 14.2	ENSG00000163064	EN1	2.23E-04	<=0.01
2 q 33.2	ENSG00000155760	FZD7	1.19E-03	<0.05
3q25.31	ENSG00000163659	TIPARP	3.41E-06	< $=0.01$
4p16.3	ENSG00000127418	FGFRL1	$1.09 \mathrm{E}-03$	<0.05
4q22.1	ENSG00000152595	MEPE	5.51E-06	<=0.01
5q14.3	ENSG00000248309	MEF2C-AS1	$4.44 \mathrm{E}-03$	<0.05
6p21.1	ENSG00000124813	RUNX2	2.80E-09	<=0.01
6q22.33	ENSG00000146374	RSPO3	9.63E-06	<=0.01
7p12.1	ENSG00000106070	GRB10	6.19E-03	<0.05
7p14.1	ENSG00000106483	SFRP4	$1.39 \mathrm{E}-05$	<=0.01
7p14.3	ENSG00000240583	AQP1	1.18E-03	<0.05
7 q 21.3	ENSG00000105880	DLX5	7.75E-05	< $=0.01$
7 7 22.1	ENSG00000197037	ZSCAN25	5.15E-05	< $=0.01$
7 7 31.31	ENSG00000106034	CPED1	2.71E-04	<=0.01
8q24.12	ENSG00000164761	TNFRSF11B	1.19E-03	<0.05
10q25.2	ENSG00000138166	DUSP5	8.22E-03	<0.05
11p11.2	ENSG00000157613	CREB3L1	2.66E-04	<=0.01
11p11.2	ENSG00000165917	RAPSN	3.09E-03	<0.05
11p11.2	ENSG00000165915	SLC39A13	3.50E-03	<0.05
11p14-p13	ENSG00000176697	BDNF	$1.55 \mathrm{E}-03$	<0.05
11p14-p13	ENSG00000245573	BDNF-AS1	2.37E-03	<0.05
11p14-p13	ENSG00000205213	LGR4	5.31E-04	<0.05
11p15.1	ENSG00000110693	SOX6	2.02E-04	<=0.01
11p15.2	ENSG00000188487	INSC	2.24E-03	<0.05
11q13.2	ENSG00000162337	LRP5	5.67E-04	<0.05
11q13.3	ENSG00000110092	CCND1	4.08E-05	< $=0.01$
11q24.1	ENSG00000255248	-	1.81E-03	<0.05
12p13.33	ENSG00000111186	WNT5B	$1.45 \mathrm{E}-03$	<0.05
12 q 13.12	ENSG00000167548	MLL2	5.32E-06	< $=0.01$
12 q 13.12	ENSG00000125084	WNT1	$1.65 \mathrm{E}-03$	<0.05
12q13.13	ENSG00000257194	-	5.05E-04	<0.05
12q13.13	ENSG00000185591	SP1	4.12E-03	<0.05
12q13.13	ENSG00000170374	SP7	$1.64 \mathrm{E}-07$	< $=0.01$
$13 q 13.3$	ENSG00000120693	SMAD9	4.15E-03	<0.05
15q22.33	ENSG00000166949	SMAD3	4.05E-05	< $=0.01$
16q24.1	ENSG00000176678	FOXL1	7.57E-04	<0.05

17p11.2	ENSG00000108557	RAI1	3.50E-04	<0.05
17p13.3	ENSG00000070366	SMG6	$8.74 \mathrm{E}-03$	<0.05
17q21.31	ENSG00000161664	ASB16	$4.18 \mathrm{E}-03$	<0.05
17q21.31	ENSG00000161649	CD300LG	$2.73 \mathrm{E}-03$	<0.05
17q21.31	ENSG00000108840	HDAC5	$7.24 \mathrm{E}-03$	<0.05
17q21.31	ENSG00000005102	MEOX1	$7.38 \mathrm{E}-03$	<0.05
17q21.31	ENSG00000167941	SOST	$6.18 \mathrm{E}-05$	$<=0.01$
17q21.31	ENSG00000108312	UBTF	$7.66 \mathrm{E}-03$	<0.05
20p12.2	ENSG00000101384	JAG1	$3.66 \mathrm{E}-04$	<0.05
20q12	ENSG00000204103	MAFB	$\mathbf{3 . 8 5 E - 0 4}$	<0.05
21q22.12	ENSG00000159216	RUNX1	$\mathbf{2 . 2 4 E - 0 3 ~}$	<0.05

Table S11. DEPICT Gene prioritization (FDR<5\%). Based on genome-wide significant variants in the overall TBBMD meta-analysis. Bold rows correspond to genes mapping to novel loci not previously described in this GWAS analysis of bone phenotypes.

Table S12. DEPICT Gene-set enrichment analysis (FDR<5\%). Based on genome-wide significant variants in the overall TB-BMD meta-analysis. These 182 gene-sets were further clustered in 25 'metagene-sets' shown in Figure 4. Attached Excel file.

Position	Lead SNP	Proxy SNP	LD	Host gene	Related miRNA	Ancestral A	Derived A	Conservation	Change contex score	Functional class
7q22.1	rs34670419	rs34670419	1	ZKSCAN5	mir-382-3p	G	T	4	0.09	Create
11p15.5	rs11601356	rs6541	0.86	PSMD13	mir-942-5p	A	G	0	0.02	Create
7 q 36.1	rs73169649	rs73169654	0.88	ABCF2	mir-140-3p	C	T	1	0.09	Create
2q24.3	rs7586085	rs13429321	0.84	GALNT3	mir-499-3p	T	A	6	0.2	Disrupte
2p21	rs78572108	rs1044305	0.93	PKDCC	mir-1470	T	C	9	0.25	Create
5q22.2	rs818427	rs2545167	1	REEP5	mir-4444	C	A	0	0.2	Create
11q13.2	rs11228240	rs4988291	0.95	PPP6R3	mir-138-3P	G	A	5	0.02	Disrupte
15 q 22.33	rs3743347	rs10518716	1	AAGAB	mir-380/mir-424-3p	C	G	286	0.22/0.19	Disrupte/Create
17p11.2	rs8070128	rs1052299	1	TOM1L2	miR-133a, 138-3p	T	C	1	0.3	Create

Table S13. Putative effect of the TB-BMD top associated variants in miRNA-binding sites. The effect of the derived allele in the creation/disruption of a binding site (functional class) of a specific miRNA (miRNA) is described (using PolymiRTS database v3.0). Shown are 9 SNPs, including the lead SNP rs34670419 in ZKSCAN5 and proxy SNPs of other 8 lead SNPs, located in predicted miRNA binding sites. Loci not previously reported are in bold font. Proxy SNP, SNP with r2 >0.8, limit distance 500 kb , population panel CEU and in 1000 Genome project; Conservation, Occurrence of the miRNA site in other vertebrate genomes in addition to the query genome; LD, linkage disequilibrium; Related miRNA, miRNA that the SNP is predicted to create/disrupt its binding site; Context score predicts the binding of a miRNA to the gene 3'UTR by summing over contributions made by individual sites within the 3'UTR that have perfect sequence complementarity to the miRNA seed region. Change contex score, A more negative value of the context score difference indicates an increased likelihood that the miRNA targeting is disrupted or newly created by the SNP in the target sites.

Table S14. Skeletal phenotype data from the International Mouse Phenotyping Consortium and Mouse Genome Informatics databases and expression data from murine osteoblasts, osteocytes and osteoclasts. Data was collected for the 55 genes prioritized by DEPICT. Detailed bone phenotyping from the Origins of Bone and Cartilage Disease (OCBD) is presented in Table S15. Attached Excel file

Table S15. Detailed bone phenotyping of knockout models from the Origins of Bone and Cartilage Disease (OCBD) initiative. Knockout lines with a skeletal parameter greater than 2 standard deviations from the reference mean are highlighted in orange. The standard deviation from the reference mean for each parameter is shown with those greater than 2 highlighted (Black above the mean: Red below the mean). Attached Excel file.

Supplemental references

1 Victora, C.G. and Barros, F.C. (2006) Cohort profile: the 1982 Pelotas (Brazil) birth cohort study. Int J Epidemiol, 35, 237-242.

2 Horta, B.L., Gigante, D.P., Goncalves, H., dos Santos Motta, J., Loret de Mola, C., Oliveira, I.O., Barros, F.C. and Victora, C.G. (2015) Cohort Profile Update: The 1982 Pelotas (Brazil) Birth Cohort Study. Int J Epidemiol, 44, 441, 441a-441e.

3 Boyd, A., Golding, J., Macleod, J., Lawlor, D.A., Fraser, A., Henderson, J., Molloy, L., Ness, A., Ring, S. and Davey Smith, G. (2013) Cohort Profile: the 'children of the 90s'--the index offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol, 42, 111-127.

4 Kemp, J.P., Medina-Gomez, C., Estrada, K., St Pourcain, B., Heppe, D.H., Warrington, N.M., Oei, L., Ring, S.M., Kruithof, C.J., Timpson, N.J. et al. (2014) Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment. PLoS Genet, 10, e1004423.

5 Kalkwarf, H.J., Zemel, B.S., Gilsanz, V., Lappe, J.M., Horlick, M., Oberfield, S., Mahboubi, S., Fan, B., Frederick, M.M., Winer, K. et al. (2007) The bone mineral density in childhood study: bone mineral content and density according to age, sex, and race. J Clin Endocrinol Metab, 92, 2087-2099.

6 Zemel, B.S., Kalkwarf, H.J., Gilsanz, V., Lappe, J.M., Oberfield, S., Shepherd, J.A., Frederick, M.M., Huang, X., Lu, M., Mahboubi, S. et al. (2011) Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab, 96, 3160-3169.

7 Fried, L.P., Borhani, N.O., Enright, P., Furberg, C.D., Gardin, J.M., Kronmal, R.A., Kuller, L.H., Manolio, T.A., Mittelmark, M.B., Newman, A. et al. (1991) The Cardiovascular Health Study: design and rationale. Ann Epidemiol, 1, 263-276.

8 Bisgaard, H. (2004) The Copenhagen Prospective Study on Asthma in Childhood (COPSAC): design, rationale, and baseline data from a longitudinal birth cohort study. Ann Allergy Asthma Immunol, 93, 381-389.

9 Styrkarsdottir, U., Thorleifsson, G., Sulem, P., Gudbjartsson, D.F., Sigurdsson, A., Jonasdottir, A., Jonasdottir, A., Oddsson, A., Helgason, A., Magnusson, O.T. et al. (2013) Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits. Nature, 497, 517-520.

10 Rolfe Ede, L., Loos, R.J., Druet, C., Stolk, R.P., Ekelund, U., Griffin, S.J., Forouhi, N.G., Wareham, N.J. and Ong, K.K. (2010) Association between birth weight and visceral fat in adults. Am J Clin Nutr, 92, 347-352.

11 Roubenoff, R., Baumgartner, R.N., Harris, T.B., Dallal, G.E., Hannan, M.T., Economos, C.D., Stauber, P.M., Wilson, P.W. and Kiel, D.P. (1997) Application of bioelectrical impedance analysis to elderly populations. J Gerontol A Biol Sci Med Sci, 52, M129-136.

12 Dawber, T.R., Kannel, W.B. and Lyell, L.P. (1963) An approach to longitudinal studies in a community: the Framingham Study. Ann N Y Acad Sci, 107, 539-556.

13 Dawber, T.R., Meadors, G.F. and Moore, F.E., Jr. (1951) Epidemiological approaches to heart disease: the Framingham Study. Am J Public Health Nations Health, 41, 279-281.

14 Feinleib, M., Kannel, W.B., Garrison, R.J., McNamara, P.M. and Castelli, W.P. (1975) The Framingham Offspring Study. Design and preliminary data. Prev Med, 4, 518-525.

15 Kannel, W.B., Feinleib, M., McNamara, P.M., Garrison, R.J. and Castelli, W.P. (1979) An investigation of coronary heart disease in families. The Framingham offspring study. Am J Epidemiol, 110, 281-290.

16 Kooijman, M.N., Kruithof, C.J., van Duijn, C.M., Duijts, L., Franco, O.H., van, I.M.H., de Jongste, J.C., Klaver, C.C., van der Lugt, A., Mackenbach, J.P. et al. (2016) The Generation R Study: design and cohort update 2017. Eur J Epidemiol, 31, 1243-1264.

17 Medina-Gomez, C., Felix, J.F., Estrada, K., Peters, M.J., Herrera, L., Kruithof, C.J., Duijts, L., Hofman, A., van Duijn, C.M., Uitterlinden, A.G. et al. (2015) Challenges in conducting genome-wide association studies in highly admixed multi-ethnic populations: the Generation R Study. Eur J Epidemiol, 30, 317-330.

18 Lorentzon, M., Mellstrom, D. and Ohlsson, C. (2005) Age of attainment of peak bone mass is site specific in Swedish men--The GOOD study. J Bone Miner Res, 20, 1223-1227.

19 Visser, M., Kritchevsky, S.B., Goodpaster, B.H., Newman, A.B., Nevitt, M., Stamm, E. and Harris, T.B. (2002) Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study. J Am Geriatr Soc, 50, 897-904.

20 Strotmeyer, E.S., Cauley, J.A., Schwartz, A.V., Nevitt, M.C., Resnick, H.E., Bauer, D.C., Tylavsky, F.A., de Rekeneire, N., Harris, T.B. and Newman, A.B. (2005) Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med, 165, 1612-1617.

21 Strotmeyer, E.S., Cauley, J.A., Schwartz, A.V., Nevitt, M.C., Resnick, H.E., Zmuda, J.M., Bauer, D.C., Tylavsky, F.A., de Rekeneire, N., Harris, T.B. et al. (2004) Diabetes is associated independently of body composition with BMD and bone volume in older white and black men and women: The Health, Aging, and Body Composition Study. J Bone Miner Res, 19, 1084-1091.

22 Orwoll, E., Blank, J.B., Barrett-Connor, E., Cauley, J., Cummings, S., Ensrud, K., Lewis, C., Cawthon, P.M., Marcus, R., Marshall, L.M. et al. (2005) Design and baseline
characteristics of the osteoporotic fractures in men (MrOS) study--a large observational study of the determinants of fracture in older men. Contemp Clin Trials, 26, 569-585.

23 Blank, J.B., Cawthon, P.M., Carrion-Petersen, M.L., Harper, L., Johnson, J.P., Mitson, E. and Delay, R.R. (2005) Overview of recruitment for the osteoporotic fractures in men study (MrOS). Contemp Clin Trials, 26, 557-568.

24 Viitasalo, A., Eloranta, A.M., Lintu, N., Vaisto, J., Venalainen, T., Kiiskinen, S., Karjalainen, P., Peltola, J., Lampinen, E.K., Haapala, E.A. et al. (2016) The effects of a 2-year individualized and family-based lifestyle intervention on physical activity, sedentary behavior and diet in children. Prev Med, 87, 81-88.

25 Newnham, J.P., Evans, S.F., Michael, C.A., Stanley, F.J. and Landau, L.I. (1993) Effects of frequent ultrasound during pregnancy: a randomised controlled trial. Lancet, 342, 887891.

26 Straker, L., Mountain, J., Jacques, A., White, S., Smith, A., Landau, L., Stanley, F., Newnham, J., Pennell, C. and Eastwood, P. (2017) Cohort Profile: The Western Australian Pregnancy Cohort (Raine) Study-Generation 2. Int J Epidemiol, in press.

27 Hofman, A., Brusselle, G.G., Darwish Murad, S., van Duijn, C.M., Franco, O.H., Goedegebure, A., Ikram, M.A., Klaver, C.C., Nijsten, T.E., Peeters, R.P. et al. (2015) The Rotterdam Study: 2016 objectives and design update. Eur J Epidemiol, 30, 661-708.

28 Cummings, S.R., Black, D.M., Nevitt, M.C., Browner, W.S., Cauley, J.A., Genant, H.K., Mascioli, S.R., Scott, J.C., Seeley, D.G., Steiger, P. et al. (1990) Appendicular bone density and age predict hip fracture in women. The Study of Osteoporotic Fractures Research Group. $J A M A, 263,665-668$.

