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ABSTRACT
Data-driven model-independent reconstructions of the dark energy equation of state w(z) are
presented using Planck 2015 era cosmic microwave background, baryonic acoustic oscillations
(BAO), Type Ia supernova (SNIa) and Lyman α (Lyα) data. These reconstructions identify
the w(z) behaviour supported by the data and show a bifurcation of the equation of state
posterior in the range 1.5 < z < 3. Although the concordance � cold dark matter (�CDM)
model is consistent with the data at all redshifts in one of the bifurcated spaces, in the other,
a supernegative equation of state (also known as ‘phantom dark energy’) is identified within
the 1.5σ confidence intervals of the posterior distribution. To identify the power of different
data sets in constraining the dark energy equation of state, we use a novel formulation of the
Kullback–Leibler divergence. This formalism quantifies the information the data add when
moving from priors to posteriors for each possible data set combination. The SNIa and BAO
data sets are shown to provide much more constraining power in comparison to the Lyα data
sets. Further, SNIa and BAO constrain most strongly around redshift range 0.1–0.5, whilst
the Lyα data constrain weakly over a broader range. We do not attribute the supernegative
favouring to any particular data set, and note that the �CDM model was favoured at more
than 2 log-units in Bayes factors over all the models tested despite the weakly preferred w(z)
structure in the data.

Key words: equation of state – methods: data analysis – methods: statistical – cosmological
parameters – dark energy.

1 IN T RO D U C T I O N

The nature of dark energy (DE) remains a significant outstanding
problem in cosmology. The � cold dark matter (�CDM) model
considers a constant equation of state (EoS) parameter w = −1 mo-
tivated by vacuum energy. The most frequent generalization of the
�CDM DE EoS is to allow an alteration of the time-independent
EoS parameter so that w �= −1 (hereafter referred to as wCDM).
Allowing w to vary in time w = w(z) results in quintessence
DE models. Many quintessence models (Ratra & Peebles 1988;
Caldwell, Dave & Steinhardt 1998; Tsujikawa 2013), including
phantom DE (Caldwell 2002; Sahni 2005), as well as modified GR
theories (Sahni 2005), make predictions for the behaviour of w(z)
that may be tested against cosmological data sets (Planck Collab-
oration XIV 2016). Time-dependent behaviour can also be inves-
tigated by choosing equations that are simple or mathematically
appealing, to test as a DE model. These phenomenological models
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include the CPL (Chevallier & Polarski 2001; Linder 2003), JPB
(Jassal, Bagla & Padmanabhan 2004) and FNT (Felice, Nesseris
& Tsujikawa 2012) models. Lastly, free-form approaches attempt
to avoid any commitment to particular equations and instead aim
to allow the observational data to define any time-dependent fea-
tures in w(z) (Huterer & Starkman 2003; Zunckel & Trotta 2007;
Zhao, Huterer & Zhang 2008; Serra et al. 2009; Lazkoz, Salzano
& Sendra 2012; Vázquez et al. 2012b). Other free-form reconstruc-
tion methods include Gaussian processes (Holsclaw et al. 2010a,b;
Seikel, Clarkson & Smith 2012). We refer the reader to an older
review by Sahni & Starobinsky (2006) that describes the general re-
construction process and new results by Planck Collaboration XIV
(2016) for further reading on DE constraints.

In this paper, we use Bayes factors combined with a ‘nodal’
free-form method, which reconstructs a function using a spline
between nodes whose amplitude and position can vary, as first pro-
posed by Vázquez et al. (2012a), to investigate the constraints on
w(z). This approach has subsequently been used by Vázquez et al.
(2012b), Aslanyan et al. (2014), Planck Collaboration XX (2016)
and Hee et al. (2015) and has the benefit of remaining general and
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focusing on the cosmological data sets rather than a specific model.
The first aim of this paper is to investigate potential deviations from
the �CDM constant DE EoS using Bayesian model selection. The
second aim is to analyse the constraining power on w(z) of the data
sets using the Kullback–Leibler (KL) divergence (DKL). Observa-
tional data are improving in quality with many upcoming missions
promising to increase our ability to understand DE models. As-
sessing the data sets in the manner, this paper proposes provides a
robust, quantitative measure of DE information that may easily be
compared with past or future missions.

The paper is structured as follows. We first identify the data
sets and computational techniques in Section 2. An analysis of
w(z) constraints from Planck satellite era cosmological data sets
is presented in Section 3 and the analysis of these additional data
sets using the DKL approach is presented in Section 4. We conclude
in Section 5, considering the findings in relation to �CDM and
constraints on w(z), and comment on the efficacy of the techniques
used for quantifying data set constraining power and information
content.

2 DATA SE T S A N D C O M P U TATI O N

We update the work of Vázquez et al. (2012b) and Hee et al. (2015),
where time-dependent behaviour in w(z) within a cold dark matter
(CDM) universe is identified using a sequence of nodal reconstruc-
tions weighted by their Bayes factors. In addition, we use the KL
divergence to analyse information content, expanding on a similar
work by Trotta et al. (2008) and Bridges et al. (2009).

2.1 Bayes theorem and model selection

In order to reconstruct the w(z) plane, we perform Bayesian pa-
rameter estimation and model comparison (Bayes & Price 1763;
MacKay 2003; Sivia & Skilling 2006) on cosmological models to
be defined shortly.

Bayesian parameter estimation is the process of determining the
posterior probability distribution of a set of parameters θ for a given
model M via Bayes theorem:

Pr(θ |D,M) = Pr(D|θ,M)Pr(θ |M)

Pr(D|M)
≡ Lπ

Z . (1)

This requires a prior on the model parameters, Pr(θ |M) = π (θ ),
and a means to calculate the likelihood, Pr(D|θ,M) = L(θ ). The
evidence Z (or marginal likelihood) may be computed from the
priors and likelihoods via

Z ≡ Pr(D|M) =
∫

Pr(D|θ,M)Pr(θ |M) dθ ≡
∫

Lπ. (2)

Our priors are defined in Table 1, whilst the likelihood codes are
defined in the references in the data set section below.

Bayesian model comparison uses Bayes theorem to make infer-
ences about how probable a model is in light of the data:

P (M|D) = Pr(D|M)Pr(M)

Pr(D)
. (3)

Taking log-ratios of this equation for two different models yields
the posterior odds ratio:

exp(Pij ) ≡ P (Mj |D)

P (Mi |D)
= P (D|Mj )

P (D|Mi)

P (Mj )

P (Mi)
. (4)

Thus, the critical data-dependent quantity is the Bayes factor:

Bij = ln(Zj /Zi), (5)

Table 1. The 31 priors that define the parameter space. The
top set of parameters are the CDM parameters, the middle
ones show the nuisance parameters associated with the data
sets and the bottom set are the parameters introduced by
the free-form DE model extensions. Planck Collaboration
XI (2016) has more details about the CDM and nuisance
parameters, whilst the DE extension parameters are defined
in the text.

Parameter Prior range Prior type

�bh2 [0.019, 0.025] Uniform

�ch2 [0.095, 0.145] Uniform

100θMC [1.03, 1.05] Uniform

τ [0.01, 0.4] Uniform

ns [0.885, 1.04] Uniform

ln (1010As) [2.5, 3.7] Uniform

ycal [0.9, 1.1] Uniform

αJLA [0.01, 2.00] Uniform

βJLA [0.9, 4.6] Uniform

ACIB
217 [0, 200] Uniform

ξ tSZ−CIB [0, 1] Uniform

AtSZ
143 [0, 10] Uniform

APS
100 [0, 400] Uniform

APS
143 [0, 400] Uniform

APS
143×217 [0, 400] Uniform

APS
217 [0, 400] Uniform

AkSZ [0, 10] Uniform

AdustTT
100 [0, 50] Uniform

AdustTT
143 [0, 50] Uniform

AdustTT
143×217 [0, 100] Uniform

AdustTT
217 [0, 400] Uniform

c100 [0, 30] Uniform
c217 [0, 30] Uniform

w(zi)|i = 1. . . 5 [−2, −0.01] Uniform
zi|i = 2. . . 4 [0.01, 3.0] Sorted-uniform

Table 2. Jeffreys guideline for interpreting posterior odds
ratios. As Pji = −Pij , negative values imply model favour-
ing is reversed.

Posterior odds ratio Favouring of Mj over Mi

0.0 ≤ Pij ≤ 1.0 None
1.0 ≤ Pij ≤ 2.5 Slight
2.5 ≤ Pij ≤ 5.0 Significant
5.0 ≤ Pij Decisive

where Pr(D|Mi) = Zi is the evidence of model i. We quantify
a model’s favouring using the Jeffreys (1961) guideline defined
in Table 2. We use Bayes factors and posterior odds ratios inter-
changeably, as we assume uniform model priors P (Mj ) = P (Mi)
throughout.

2.2 Data sets

In order to investigate possible time-dependent behaviour in the
DE EoS, we use likelihood codes from Planck cosmic microwave
background (CMB) measurements, baryonic acoustic oscillations
(BAO), Type Ia supernovae (SNIa) and Lyman α (Lyα) BAO data.
Specifically, for the CMB data we use the low-l TEB and high-l
TT likelihoods from the Planck satellite 2015 data release (Planck
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Figure 1. Piecewise linear interpolation function. We place n internal nodes (xi, yi) in the rectangle bounded by (xmin , ymin ) and (xmax , ymax ), where the
positions xi and amplitudes yi are model parameters to be varied. At xmin and xmax fixed-position nodes are placed with varying amplitude only, such that for
the model defined by n internal nodes, there are 2 + 2n parameters. Linear interpolation between the nodes (xi, yi) is used to construct y at all points, with y(x)
set constant outside the range [xmin , xmax ].

Collaboration I 2016; Planck Collaboration XI 2016; Planck Col-
laboration XIII 2016), which we will refer to as Planck. For the BAO
data, we use the Baryon Oscillation Spectroscopic Survey (BOSS)
Data Release 11 likelihoods (Anderson et al. 2014), or BAO. For
the SNIa data, we use the JLA supernovae catalogue likelihoods
(Betoule et al. 2014), JLA for short. For the Lyα data, we use the like-
lihood codes described by Font-Ribera et al. (2014) (ALy α; BOSS
autocorrelation) and Delubac et al. (2015) (BLy α ; BOSS cross-
correlation). For a good summary of the BAO data, see Aubourg
et al. (2015). Using the above notation, the whole data set combi-
nation can be referred to as Planck + BAO + JLA + ALy α + BLy α .

2.3 Computational tools

To carry out Bayesian inference, we use COSMOMC (Lewis &
Bridle 2002) containing the Boltzmann CAMB code (Lewis, Challi-
nor & Lasenby 2000; Howlett et al. 2012). We substitute the
default Metropolis–Hastings sampler with the POLYCHORD nested
sampling plug-in (Handley, Hobson & Lasenby 2015a,b), an effec-
tive nested sampling implementation (Skilling 2004, 2006; Sivia &
Skilling 2006) for evidence calculations and parameter estimation
with proven efficacy using Planck era data (Planck Collaboration
XX 2016). Aside from the Lyα data sets, all data sets used are de-
fault COSMOMC options. To facilitate deviations from the standard
�CDM EoS parameter w = −1, we implement the parametrized
post-Friedmann framework (PPF) modification to CAMB (Fang, Hu
& Lewis 2008), which has sound speed equal to c and no scalar
anisotropic stress. The free-form reconstruction we use is the nodal
reconstruction as proposed by Vázquez et al. (2012b) and success-
fully used in several cosmological applications to date (Vázquez
et al. 2012a,b; Aslanyan et al. 2014; Hee et al. 2015; Planck Col-
laboration XX 2016).

2.4 Nodal reconstruction

We model a one-dimensional function y(x) using a piecewise linear
interpolation between a set of n nodes (Fig. 1), where the positions
of the nodes are model parameters to be varied. Alternative interpo-
lation schemes may be used, for example, the cubic spline studied
by Vázquez et al. (2012a), although we do not consider these here
since the continuity requirements of the interpolation functions and
its derivatives limit its ability to model sharply changing functions
y(x).

A model is defined by how many nodes are used in reconstruct-
ing y(x). We use Bayes factors to compare models with increasing

Table 3. The six models we consider. Priors on each w parameter
are uniform on the range [−2, 0], and were chosen to be conservative
(Vázquez et al. 2012b). Priors on each z parameter are uniform on
[0, 3] and sorted, such that for more than one internal node, we have
zi < zi + 1 (i.e. sorted uniform priors).

Model name Description

�CDM w = −1
wCDM w constant in z, but allowed to vary
tCDM tilted spectrum: two fixed-position nodes at z = 0, 3
1CDM One internal node
2CDM Two internal nodes
3CDM Three internal nodes

numbers of nodes, which quantify how many nodes are needed to
fit the data.

Further, as each posterior sample defines a function in y(x), we
can calculate the posterior probability of y in normalized slices of
constant x, Pr(y|x,D,M), to obtain the plane reconstruction of a
model. We plot these as a function of σ confidence intervals to
show the statistical significance of deviations from the maximal y
at each x. One can plot Pr(y|x, n�), where n� denotes the number
of nodes in the most favoured model. In order to identify the nature
of constraints from various models, one should also plot Pr(y|x)
averaged over all models weighted by their posterior odds ratios
(Parkinson & Liddle 2013; Hee et al. 2015; Planck Collaboration
XX 2016).

A key strength of this reconstruction procedure is its free-form
nature, which can capture any shape of function in the y(x) plane
by adding arbitrarily large numbers of nodes. The Bayes factor
penalizes overcomplex models, identifying how much complexity
the data are able to support. Model selection techniques can thus
be used to solve questions on the constraining power of the data
in cosmological applications (Vázquez et al. 2012a,b; Aslanyan
et al. 2014; Hee et al. 2015; Planck Collaboration XX 2016).

We apply this reconstruction to w(z). The models we consider,
along with their priors are detailed in Table 3. The previous work
using Wilkinson Microwave Anisotropy Probe (WMAP) satellite era
data by Vázquez et al. (2012b) found that �CDM was favoured,
whilst 2CDM had the second largest evidence, pointing to structure
in w(z) that could not be captured by a constant EoS parameter
wCDM, or even the 1 internal node model. Subsequent work with
Planck 2013 era data by Hee et al. (2015) showed that �CDM was
again favoured, and that each model of increasing complexity was
more disfavoured than the last. We now investigate this more fully
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with Planck 2015 era data sets, the addition of Lyα data and further
data set analysis tools.

2.5 Kullback–Leibler divergence and data set analysis

We expand on the model selection complexity analysis through the
use of the KL divergence. The KL divergence of P from Q is defined
as

DKL(P ||Q) ≡
∫ ∞

−∞
p(x) ln

[
p(x)

q(x)

]
dx =

∫
ln

[
dP

dQ

]
dP , (6)

where p(x) and q(x) are the probability density functions of prob-
ability distributions P and Q. Evaluating the KL divergence (6) of
a posterior distribution from its prior provides a measure of in-
formation gained from the data (Kullback & Leibler 1951; Trotta
et al. 2008; Bridges et al. 2009; Seehars et al. 2014, 2016; Grandis
et al. 2016).

We wish to restrict our analysis to the constraining power of
the data sets on w(z), and not the other cosmological and nuisance
parameters as a whole. First, we can calculate the KL divergence
of the marginalized posterior Pr(w|z) from the marginalized prior
π (w|z) for w at each z to obtain a function:

DKL(z) =
∫

Pr(w|z) ln

[
Pr(w|z)

π (w|z)

]
dw (7)

which defines the gain in information on w at each z. Second, we
calculate the DKL for the whole plane by using the function Pr(w, z)
and its prior, which can be written as

DKL =
∫

DKL(z)Pr(z)dz, (8)

where Pr(z) is flat (as z is not constrained by the analysis given that
every posterior sample for a nodal reconstruction passes through
every point in z). Note that it is also possible to integrate over da or
dlog (a) to compress higher redshifts, however dz is more natural
here given how we have defined our reconstruction. Together, the
two values allow us to analyse the gain in information due to differ-
ent data sets using DKL as well as to understand where each data set
provides the greatest gains in information using DKL(z). We obtain
the posterior plane reconstructions from POLYCHORD and the prior
distributions based on π (zi) and π (wi) together with the physical
restrictions imposed by COSMOMC.

Typically, a gain in information can occur for two reasons: either
due to an increase in parameter constraints, or due to a shift in
the position of the peak from prior to posterior (Trotta et al. 2008;
Seehars et al. 2014, 2016; Grandis et al. 2016). It is not yet possible
to differentiate between the two cases for non-Gaussian distribu-
tions. In order to identify the constraining power of the data, we
supplement our analysis by calculating the DKL and DKL(z) when
moving from a completely flat prior on w(z) to the posterior. As
there is no peak to shift from for a flat posterior, this measure only
identifies how tightly constrained the posterior is, due both to the
priors and data. In cases where the COSMOMC prior divergences are
larger than those from the flat prior, we can deduce that a significant
shift is present.

3 R E S U LT S : DA R K E N E R G Y E QUAT I O N
O F S TATE R E C O N S T RU C T I O N

The columns in Fig. 2 show from left to right the prior, poste-
rior and marginalized 1D and 2D posteriors for the w(z) plane
reconstructions alongside the Bayes factors for the five model ex-
tensions compared to �CDM. �CDM is the favoured model in

the Bayesian model selection analysis. wCDM is disfavoured by
more than 2 log-units, a slight disfavouring on the Jeffreys scale,
whilst all other models are significantly disfavoured at beyond 2.5
log-units. We conclude that the additional flexibility in capturing
w(z) features provided by additional parameters does not produce
favourable Bayes factors. This is consistent with previous results
obtained with Planck (Hee et al. 2015). The systematic dropping
off in Bayes factors for models with increasing numbers of param-
eters used for defining w(z) suggests that there is not sufficient time
dependence in the true EoS function to overcome the Occam factor
associated with the additional parameters (MacKay 2003). Specifi-
cally, one can estimate the evidence integral using a Laplace approx-
imation to obtain an Occam factor given by σθ |D/σθ (MacKay 2003,
p. 349; Hee et al. 2015), where σθ |D is the width around the peak of
the posterior and σ θ is the same for the prior, and use this to deter-
mine the size of the Occam factor between models. When moving
from 2CDM to 3CDM we obtain an Occam factor of approximately
0.72, where we assume the posterior on the additional nodal po-
sition parameter is equal to the prior, as there is little additional
structural information, and have taken the average full width half-
max value of the five 3CDM amplitude parameters to estimate the
effect of adding the additional node (the prior is flat so σ θ is the
width, 2). This shows that the observed Bayes factor drop of 0.54
(with errors on order 0.29) is comparable to the Occam factor and
therefore the information gained from the additional node, which
should compensate the effect, is small.

The plane reconstructions show clear constraining power com-
pared to the priors. In all cases that allow for time-dependence, there
is the suggestion that a supernegative EoS fits the data best at higher
redshifts. Specifically, the tCDM model deviates from �CDM by
1σ already before z = 1, whilst the models with internal nodes,
which are able to identify more flexibly where deviations occur,
suggest a 1σ deviation around z = 1.5. No model deviates at 2σ ,
however. It should also be noted that the tightest constraints on the
EoS are around redshift z = 0.1–0.5, and all models tend to �CDM
in this region. This suggests that conclusions are still data-limited
but that time-dependent behaviour of a supernegative EoS is hinted
at by the combinations of P lanck + BAO + JLA + Ly α.

We can look at the marginalized posteriors of nodes and am-
plitude parameters to gather further insights. Interestingly, the 1D
marginalized posteriors on the w(z = 0) parameters of the mod-
els seem to favour w > −1, whilst the wCDM model does not
specifically as the single amplitude parameter has simultaneously
to model the late time behaviour. This suggests that using wCDM
simplifies the DE problem in a way that can obscure underlying DE
physics. Given that the difference in Bayes factors between wCDM
and any of the more flexible models is indistinguishable on the Jef-
freys scale, using a more flexible model is statistically valid and
therefore advisable if wishing to analyse w(z).

Looking at the 2D marginalized node positions in the w(z) plane,
it is clear that in all cases, the lowest redshift node is well defined as
agreeing with �CDM. In 1CDM, where there is only one internal
node, the plane reconstruction takes a very similar form to tCDM
as a result. For the 2CDM and 3CDM models, the additional nodes
then have considerable freedom and the plane reconstruction shape
at higher redshifts reflects this via a more constant value of w from
about redshift 2 onwards. The last node for both the 2CDM and
3CDM models is largely consistent with �CDM as the amplitude is
poorly constrained beyond z = 2, whilst in the range 1.5 < z < 2.0,
it deviates by 1σ , as consistent with the plane reconstructions. Gen-
erally, we conclude that all the amplitude parameters are in good
agreement with �CDM, which is why the additional parameters do
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Figure 2. The w(z) priors, w(z) reconstructions and parameter constraints for each of the five model extensions beyond �CDM. The leftmost plots are the
prior space on the function w(z) as a result of our uniform nodal reconstruction parameters and COSMOMC’s sampling, and the central plots show the constraints
on w(z) as a result of the data. These plots show the posterior probability Pr(w|z): the probability of w as normalized in each slice of constant z, with colour
scale in confidence interval values. The 1σ and 2σ confidence intervals are plotted as black lines. Note that the σ -deviations are plotted assuming a central
value such that a flat prior would not have a uniform colour, thus interpreting regions of the posterior space that are highly unconstrained is more difficult,
such as when interpreting the lower bounds of w at high redshifts. Reviewing priors, we see a slight favouring in w(z) of the central values, as expected when
calculating priors analytically and given that COSMOMC restricts the permissible parameter space. The posteriors show that the data constrain w(z) strongly
compared to our priors. Rightmost are the 1D and 2D marginalized posteriors of the additional model parameters. Marginalized plots were produced using
GETDIST and w(z) reconstructions were produced in PYTHON with the CUBEHELIX colour scheme by Green (2011) for linearity in grey-scale.
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Figure 3. Summarizing the DE model extension results for the constraints on the w(z) plane. All models are weighted by their evidences to give a model
averaged plane reconstruction (Parkinson & Liddle 2013; Hee et al. 2015; Planck Collaboration XX 2016), and plotted as in Fig. 2. The three plots show the
prior space (left) contracting down to the posterior odds ratio averaged w(z) plane reconstruction for all of the model extensions beyond �CDM (middle) and
for all of the models including �CDM (right). For the model extension averaged reconstruction, it is clear that there is one solution around w = −1 and another
favouring a supernegative EoS. When including �CDM, the significance of the supernegative solution wanes due to the associated large Bayes factor for the
w = −1 equation.

not add sufficient constraining power to generate Bayes factors that
favour the models over �CDM.

Reviewing the model averaged plane reconstructions shown in
Fig. 3, we observe the conclusions noted above quite clearly in the
bifurcation of probabilities on w(z). In the central plot averaging
over all models that allow for deviation from �CDM, a supernega-
tive solution creates a second peak in the posterior of w for z > 1.5.
As the reconstruction colour represents posteriors on w in con-
stant slices of z measured by σ confidence intervals with respect
to the maximum, the dual peak structure defined by the 1σ con-
tour suggests that the data are sufficiently powerful to resolve a
distinct supernegative solution. This supernegative structure is well
within the 1σ confidence intervals of the posterior distribution, fit-
ting the data well, whilst w(z) = −1 creates the peak probability
that defines the 0σ confidence interval. When including �CDM
in the model averaging, to produce the right-hand plot, again the
statistical significance and consistent identification of deviations
away from �CDM in the reconstructions identifies the alternative
supernegative EoS structure. However, the significant Bayes fac-
tor favouring of �CDM ensures that the functional reconstruction
heavily favours w = −1 for all redshifts. When including �CDM
in the model averaging, we conclude that a supernegative EoS fits
the observed data at best to within the 1.5σ confidence interval. It
should be noted that the model averaging has been done over four
models with very similar features identified, which no doubt adds
to the strength of the bifurcation when averaging.

4 R ESULTS: K ULLBAC K–LEIBLER
D I V E R G E N C E A N D DATA S E T A NA LY S I S

To understand how the various data sets constrain the w(z) EoS, we
analyse every combination of the data sets using the 2CDM model
and the KL divergence (DKL). We chose the 2CDM model for its
flexibility to capture features whilst not being as computationally
demanding as 3CDM. For each combination, we present the w(z)
plane reconstruction to identify features visually, the single value
DKL to understand the total information gained and data set con-
straining power and the distribution DKL(z) to localize these effects
as a function of redshift. As discussed in Section 2.5, the DKL val-
ues and DKL(z) functions are presented for each data set using both
the COSMOMC priors to calculate the DKL, which reflect the data
set information content when updating our knowledge from prior
to posterior, and also using a flat prior when calculating the DKL to
quantify only the strength of the posterior distribution constraints.

Fig. 4 shows the plane reconstructions and plane DKL for each
data set combination in a grid of Lyα versus non-Lyα data sets. The

DKL values in brackets show the constraining power only, whilst the
DKL values not in brackets show the information content of the data
sets. Note that for the top row, containing only Planck and Lyα data
set combinations, the information content is larger than the con-
straining power. As discussed in Section 2.5, this happens when the
posterior peak shifts from the prior peak, and theDKL analysis there-
fore is consistent with the observed posterior reconstruction shift
to a supernegative EoS for these four data set combinations. From
reviewing the constraining power in plane reconstructions along
each row (where the combinations vary in use of Lyα data sets), it
appears that Lyα data sets do not strongly affect the constraining
power despite their large information content. Comparing P with
Pab, we observe an increase in constraining power of 0.14 nats only.
When reviewing plots along the columns (where the combinations
vary in use of BAO and JLA), we visually notice a more pronounced
constraint on w(z) and an increase of 0.49 nats when comparing P
with PBS. In general, comparing PBS and PabBS, on either measure
of information content or constraining power, shows an increase of
0.1 nats, which suggests that the Lyα data sets can complement the
analysis even if not significantly changing the constraining power.

Fig. 5 shows the DKL as a function of redshift, calculated again
using both the COSMOMC priors (solid lines; information content)
and flat priors (dashed lines; constraining power). Comparing PB
and PS, we observe that the peak information content of the BAO
data set is significantly smaller than the JLA peak information con-
tent. Specifically, the PB data set has a peak of 0.6 nats at z = 0.3
which is of lower magnitude but later redshift than the PS peak of
1.2 nats around z = 0.2. The constraining power functions show
that this information content is largely due to tightening posterior
constraints, and we conclude that the JLA data set is more power-
ful in constraining the DE EoS than BAO. Reviewing the DKL(z)
information content for the Lyα data set, combination Pab shows a
large and broad peak of almost 2 nats at redshift 0.4, suggesting that
the Lyα data set contains significantly more information than both
the BAO or JLA data sets. However, this is due to a shift, and the
constraining power has a significantly lower peak of only 0.6 nats
but over a broad redshift range.

When analysing which data sets may primarily support devia-
tions from �CDM, it is interesting to note that the addition of
the Lyα data sets pushes the high-redshift constraints away from
w = −1 further towards the supernegative. The PB combination
plane reconstruction shows that w = −1 is on the 1σ contour over
the range 1.5 < z < 2.0, whilst the PabB combination disfavours
w = −1 at more than 1σ for z > 1.5. This is similar for the PS
and PabS comparison. Generally though, the plane reconstructions
of most combinations either favour or approach a supernegative
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Figure 4. Plane reconstructions of w(z) using the 2CDM model for Planck data with each possible combination of the ALy α , BLy α , BAO and JLA data sets
(abbreviated to P, a, b, B and S, respectively). Results are laid out in a grid with columns of Lyα combinations (without any, with a, with b and with both)
against rows of BAO and JLA combinations (without either B, S and both). DKL values for the w(z) plane reconstructions, from 2CDM prior to each given
posterior, are stated next to each data set combination to quantify the information gained when moving from prior to posterior due to the data. In brackets are
the DKL values when moving from a flat reconstruction to the posterior, which capture the overall constraining of the posterior whilst ignore any shifts between
prior and posterior peaks. Reviewing each row from left to right shows that the Lyα data sets add only some constraining power, whilst reviewing each column
from top to bottom shows that BAO and JLA data sets are both numerically and graphically significant.

Figure 5. DKL(z) for all combinations of data sets, laid out as in Fig. 4, quantifying the constraining power observed qualitatively in the plane reconstructions.
The solid lines use the COSMOMC priors when computingDKL(z) and demonstrate the additional information gained by using the data in updating our knowledge
from the COSMOMC priors to the posteriors. The dashed lines use flat priors across the w(z) plane when calculating DKL(z) and quantify more intuitively how
constrained the plane appears visually, without including the effect of the posterior shifting from the COSMOMC prior peaks. Using the COSMOMC priors shows
that the Lyα data sets add much information due to this shift, whilst the posteriors themselves are less tightly constrained than when using BAO and JLA data.
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w(z) for z > 1.5 at a 1σ level even without the Lyα data sets and
the constraints often broaden out for z > 2 to be consistent with
�CDM due to a lack of data (as can be observed by the trailing
off in the DKL(z) plots at higher redshift). Therefore, we do not at-
tribute supernegative behaviour strongly to any single data set when
combining them. Another deviation from w = −1 can be observed
in the combination PaB at low redshift, where this time w > −1 is
favoured. Generally, the BAO data set seems to favour a less nega-
tive EoS for z < 0.5, whilst JLA is consistent with w = −1 at the
same period and the Lyα data sets favour a supernegative w-value
at all redshifts (which Planck does too).

Generally, from the dashed DKL plots, we conclude that for the
Lyα data sets, a broad but small peak in DKL(z) at around z = 1
can be observed to complement the BAO and JLA data sets (when
comparing PB with PabB, PS with PabS and PBS with PabBS)
by increasing DKL(z) for z > 1.5.1 Comparing the PabBS plane
reconstruction figure (or any data set combination) with the corre-
sponding DKL(z) plot shows good agreement with the qualitative
conclusion that the data sets provide the most constraining power at
redshift 0.1–0.5, and now provide a clear quantification of this ef-
fect together with a more precise conclusion: the constraining power
for the PabBS data set and COSMOMC prior combination peaks at
redshift 0.25 at 2.1 nats, whilst the data set maximizes information
gain at redshift 0.2 with 1.5 nats.

5 C O N C L U S I O N S

We have presented a detailed Bayesian model selection analysis ap-
plied to the nodal reconstruction of w(z), concluding that the Bayes
factors on the Jeffreys scale ‘slightly favour’ �CDM when com-
pared to wCDM and ‘significantly disfavour’ the tCDM, 1CDM,
2CDM and 3CDM models, with an error on the Bayes factors
of around 0.29. Despite this favouring, a model averaging ap-
proach presents a bifurcation of the P(w|z) plane reconstruction
space which shows that, whilst w = −1 for all redshift is strongly
favoured, a supernegative w(z) EoS at redshift z > 1.5 within the
1.5σ confidence intervals of the posterior on w(z) is supported by
the data.

To understand this possible deviation, we analysed the con-
straining power of the data sets using the KL divergence (DKL).
We calculated a novel function DKL(z) to analyse the information
gained when moving from the prior distribution of w(z) to the
posterior distribution, in slices of constant z, as well as a single
DKL value for the whole plane. For each we used both COSMOMC
priors and flat priors to observe information gain due to the data
and the overall constraining power, respectively, and we analysed
each permutation of data sets using the 2CDM model. We ob-
served that the BAO and JLA data sets constrained the w(z) plane
much more strongly than the Lyα data sets used. These two data
sets had a strong peak at redshifts <0.5, whilst the Lyα data sets
peaked more broadly at z = 1. As expected, the combination of
all data sets had the greatest constraining power, specifically the
Planck data set alone had DKL = 0.33 nats, the combination with
BAO and JLA data sets had DKL = 0.82 nats and the combination
P lanck + BAO + JLA + Ly α had DKL = 0.91 nats. The same

1 Note that taking the difference of twoDKL(z) graphs does not represent the
information gained or lost between combinations, but the observed change in
shape is what we are commenting on. The addition of ab raises DKL(1.5 <

z < 2) slightly and tightens the plane reconstruction contours for higher
redshifts.

data set combination had a maximum information gain at redshift
0.2 of 1.5 nats. Reviewing the plane reconstructions and DKL(z)
functions showed that the Lyα data sets provided additional con-
straints at z > 1.5 that favours a supernegative EoS, with �CDM
disfavoured at 1σ significance.

Generally, many of the data set combinations disfavoured �CDM
at 1σ significance around 1.5 < z < 2, with higher redshifts being
too poorly constrained to draw conclusions. For redshifts below 1.5,
the Lyα data sets favoured a supernegative w(z), the JLA data set
typically agrees with �CDM and the BAO data set tends towards
w > −1 values (around 1σ significance at z = 0.25). Concluding on
the higher redshift deviations, we do not attribute this supernegative
favouring to a particular data set, but note that the inclusion of Lyα

data adds prominence as it provides a small amount of much needed
constraining power over that range.

In the future, the conclusions of an analysis with these techniques
will strengthen as data quality improves. The nodal reconstruction
has again been shown to be useful in constraining cosmological
models and developing a model-independent data-driven analysis
(Vázquez et al. 2012a,b; Aslanyan et al. 2014; Hee et al. 2015;
Planck Collaboration XX 2016). In addition, the novel formalism
introduced here of the KL divergence as a function of redshift
provides a quantitative analysis of data set information content ap-
plied to specific cosmological problems. Future applications of this
method with upcoming mission and survey data or for forecasting
with mock data will provide useful insights into the value of data
sets in constraining our cosmological models.
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