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Abstract 

 

This paper presents an optimization of a thorium-plutonium (Th-Pu) fuel cycle by 

screening various design options for the Integral Inherently Safe Light Water Reactor 

(I2S-LWR). The I2S-LWR is an advanced 2850 MWt integral pressurized water reactor 

with enhanced safety beyond that of Gen-III+ reactors. The features of this reactor, such 

as material choice, make it attractive for alternative fuel cycles including the use of 

thorium. Recently, the feasibility of the Th-Pu cycle was studied and the benefits 

associated with it were demonstrated. More specifically, the Pu incineration 

performance was enhanced by adopting multi-batch (i.e. more than 3-batch) schemes 

and extended burnup (above 100 MWd/kg). The optimized design with the most 

favorable loading pattern was obtained by applying the Simulated Annealing 

optimization technique. This paper demonstrates further plausible modifications to the 

Th-Pu cycle design that may enhance its performance considerably. The paper seeks to 

identify the contributory factors, such as cladding types, plutonium vectors and initial 

plutonium loadings, with major impact on the incineration performance. The post-

irradiation characteristics are also analyzed and suggest that such a cycle may simplify 

the design and operation of the waste repository.  
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1. Introduction 

 

The I2S-LWR concept (Petrovic, 2014; Salazar and Franceschini, 2014; Salazar et 

al., 2015) is a large power (i.e. ~1 GWe) pressurized water reactor (PWR) that aims to 

enhance safety beyond that of Gen-III+ reactors. The project is funded by the US 

Department of Energy through a Nuclear Energy University Programs (NEUP) 

Integrated Research Project (IRP). The project is led by the Georgia Institute of 

Technology and the design team is made up of many universities and industry partners.  

The safety features of the design are enhanced by adopting an integral 

configuration, a fully passive decay heat removal system and the use of new fuel and 

cladding materials. More specifically, U3Si2 fuel pellets within advanced FeCrAl steel 

or SiC cladding are proposed.  

Recent research (Kotlyar et al., 2017) showed the potential benefits of 

incorporating the Th-Pu oxide (TOX) fuel cycle in the I2S-LWR design. Large 

stockpiles of separated civil plutonium have been accumulated (IAEA, 1998) and pose 

proliferation and environmental risks. Current experience (IAEA, 2003) of plutonium 

recycling is mostly limited to mixed oxide U-Pu (MOX) fuel. However, Pu destruction 

is accompanied by simultaneous generation of Pu from the U-based matrix when this 

fuel cycle is employed. The presented TOX fuel cycle was shown to be an attractive 

candidate for Pu incineration, but would require high discharge burnups, i.e. above 100 

MWd/kg, to be achieved in order to attain the maximum Pu utilization potential. Unlike 

standard Zr-based alloys, the envisioned cladding materials (e.g. advanced FeCrAl 

steel) can withstand longer irradiation periods (Terrani et al., 2012) with much lower 

degradation of mechanical properties.  

The analyses were also complemented by performing optimization studies (Kotlyar 

and Parks, 2016) that relied on the Simulated Annealing (SA) method (Metropolis and 

Ulam, 1949; Kirkpatrick et al., 1983). The SA optimization method allowed loading 

patterns (LPs) that considerably improved Pu and transuranic elements (TRU) 

incineration while preserving the required safety margins to be identified. The major 

issue associated with high Pu core loadings relates to the moderator temperature 

coefficient (MTC), which may become positive. Therefore, the SA optimization was 

applied for different refueling strategies, i.e. 3-, 5- and 7.56-batches. The results 

confirmed that increasing the number of batches allows the MTC to be kept negative 
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and also reduces the power peaking factors. Moreover, the increased number of batches 

extends the discharge burnup and hence results in deeper Pu incineration and also 

improved Pu utilization.  

The optimization studies (Kotlyar and Parks, 2016) were performed for the 

proposed cladding type (advanced FeCrAl steel), assumed a fixed reactor grade Pu 

vector and 16 volume % loading of PuO2 in the TOX mixture. The optimized design 

achieved 62% Pu incineration and 41% TRU incineration.  

The research reported here seeks to enhance the performance of the TOX cycle 

even further by identifying various parameters that contribute to the efficient 

incineration of Pu and TRU. The chosen parameters included different cladding types, 

reactor grade Pu vectors, PuO2 volumetric fractions and moderator-to-fuel volume 

ratios. The SA method was applied to 24 different core designs representing different 

combinations of the above parameters to identify the most favorable LP (for each 

design) with respect to cycle length performance.  

A second objective was to investigate the post-irradiation fuel characteristics, such 

as radiotoxicities and decay heat, for the various designs. The design and loading of a 

repository is governed primarily by the thermal load (Wigeland et al., 2006) and the 

appropriate temperature limits to ensure adequate performance of the repository. Since 

different incineration rates can alter the decay heat of the resulting spent nuclear fuel, 

there is a possibility of improving the utilization of a geological repository of a given 

size.  

The results presented here indicate that more than 75% of Pu and 51% of TRU 

could be incinerated while preserving the required safety limits. The results also 

indicate that achieving this high incineration allows the decay heat power and 

cumulative energy after disposal to be reduced considerably. This would imply that the 

size of the repository could be reduced or alternatively more waste could be stored in a 

given space.  
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2. Calculation methodology 

 

2.1 Codes 

 

The optimization analyses of the I2S-LWR thorium-based core designs were 

performed by linking an external SA implementation (Section 3) that sequentially 

executed PANTHER (Morrison, 2003). This core physics package is a nodal diffusion 

code that also includes a thermal-hydraulic module to solve the heat conduction-

convection problem. WIMS10 (Newton et al., 2008) was used for lattice data generation 

by employing a 172-group JEFF3.1-based library. WIMS uses the method of 

characteristics and/or collision probabilities to obtain the transport solution needed to 

generate homogenized parameters for each fuel type. WIMS has been extensively 

verified and is capable of modelling fast and thermal reactor systems, see for example 

(Lindley et al., 2016).  

Decay calculations were performed with the BGCore code to determine the spent 

fuel radiotoxicity and decay heat following irradiation. BGCore couples the Monte 

Carlo neutron transport code MCNP with independently developed burnup and 

thermal-hydraulic modules (Kotlyar et al., 2011). BGCore was verified via a series of 

code-to-code benchmark exercises for thermal and fast spectrum lattices (Fridman et 

al., 2008; Bomboni et al., 2010). The ability of BGCore to predict post-irradiation fuel 

characteristics for standard UO2 and non-conventional fuels was demonstrated in past 

publications (Fridman et al., 2008; Shwageraus and Hejzlar, 2009).  

 

2.2 Core management and design 

 

The various core designs investigated here rely on a multi-batch reloading 

scheme, implying that the core consists of fresh and burnt assemblies. Previous studies 

(Kotlyar and Parks, 2016) showed that increasing the number of batches allows the 

discharge burnup and thus Pu incineration to be increased. In addition, the increased 

number of batches eliminates the possibility of the MTC becoming positive. In those 

studies, various refueling strategies were considered, namely 3-, 5- and 7.56-batch 
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schemes. In the current study, it was decided to adopt the 7.56-batch core that assumes 

16 fresh assemblies are loaded each cycle.  

The assemblies contain burnable poison in the form of integral fuel burnable 

absorber (IFBA). The 10B concentration used in the IFBA rods is 0.984 mg/cm. In this 

research, only a single radial fuel assembly IFBA loading pattern was used to flatten 

the core power distribution, as illustrated in Fig. 1. Axially, each assembly consists of 

3.6576 m of homogeneous fuel between top and bottom reflectors.  

 

 

Fig. 1. IFBA (156 rods) loading pattern. The top-right quadrant of the assembly is 

shown. IFBA rods are indicated by the green circles, blue circles are the guide tubes 

and red circles are the fuel rods without burnable absorber. 

 

 

In order to identify how various contributors may affect the performance of the TOX 

cycle, the following combinations were considered: 

 The studied cladding materials included advanced FeCrAl steel and SiC ceramic 

composite. The advanced FeCrAl steel cladding is proposed for use in the I2S-

LWR rather than the current Zr-based materials. This choice is primarily driven 

by the possibility of enhancing the accident tolerance of the fuel through the 

deployment of a robust cladding material that can withstand high temperature 

(> 1200 ◦C) steam-water conditions without experiencing the high oxidation and 

hydrogen generation rates of Zr-based alloys. However, some of the Fe and Cr 

isotopes have high neutron absorption cross-sections which lead to a significant 

reactivity penalty. SiC cladding is also under consideration due to its high 

temperature strength and slow reaction with steam. Thus, it can also be 

considered accident tolerant but with a significantly lower neutron absorption 
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cross-section than the FeCrAl steel cladding.  

 Different volume fractions of PuO2 in the fuel mixture were studied as well. 

Values of 12%, 16% and 18% were considered. The densities of ThO2 and PuO2 

were set to be 95% of their theoretical values, which are 9.5 g/cm3 and 10.89 

g/cm3 respectively. Previous studies (Kotlyar et al., 2017) showed that 

increasing the PuO2 volume fraction allows higher burnups and therefore deeper 

incineration to be achieved.  

 The performance of three fuel/cladding options (U3Si2/FeCrAl, U3Si2/SiC and 

UO2/Zr) in the I2S-LWR core was examined previously (Salazar et al., 2015). 

The use of these options ( 

 Table 2) would result in a core operating with a slightly different spectrum, 

enrichment and initial heavy metal (HM) loading, which would therefore reach 

different discharge burnups. Thus, the reactor-grade Pu isotopic vector at 

discharge (after 10 years cooling) would be unique for each option. These 

different Pu isotopic vectors (denoted Pu-1, Pu-2 and Pu-3) were all considered 

in the current study and are presented in Table 3.  

 Past studies (Shwageraus et al., 2004) concluded that increasing the hydrogen 

to heavy metal (H/HM) ratio will allow higher Pu and TRU incineration levels to be 

achieved. Therefore, sensitivity analyses were performed for 2 lattices characterized by 

different H/HM atomic ratios as presented in Table 1. The analyses for the first lattice 

(H/HM-1) included a full set of combinations, which resulted in optimization studies 

of 18 cores: 2 types of cladding × 3 Pu loadings × 3 Pu vectors. Following these analyses 

it was concluded that a reasonable PuO2 loading would be around 12%. Therefore, for 

the second lattice (H/HM-2) only 6 core designs were studied: 2 types of cladding × 3 

Pu vectors for a single PuO2 loading value of 12%.  

 

 

 

 

 

 

 

 

 



Page 7 of 36 

Table 1: Main model parameters. 

Parameter Value 

Core thermal power (MW) 2850 

Fuel assembly pitch (cm) 23.1 

Lattice 19×19 square 

Control rods per assembly 24 

Cladding material FeCrAl or SiC 

Fuel cell pitch (cm) 1.2150 

 H/HM-1 H/HM-2 

Fuel pin outer radius (cm) 0.4591 0.4572 

Fuel pellet radius (cm) 0.4097 0.3700 

Cladding thickness (cm) 0.0406 0.0762 

Guide tube inner radius (cm) 0.5102 0.5154 

Guide tube outer radius (cm) 0.5476 0.5527 

Moderator-to-fuel volume ratio 1.7504 2.1590 

H/HM atomic ratio 3.6879 4.5488 

Average fuel temperature (K) 900 1030 

Average coolant density (kg/m3) 710 715 

 

Table 2: Considered fuel-cladding options in the I2S-LWR design. 

 Pu-1 Pu-2 Pu-3 

Enrichment (w%) 4.838 4.695 4.838 

Fuel type U3Si2 U3Si2 UO2 

Cladding type FeCrAl SiC Zr 

Discharge burnup (MWd/kgHM) 42 55 53 

 

Table 3: Isotopic composition of plutonium vectors. 

 Pu-1 Pu-2 Pu-3 

238Pu 2.18 3.29 2.93 

239Pu 63.63 54.53 55.84 

240Pu 21.18 25.16 24.51 

241Pu 8.85 9.58 9.64 



Page 8 of 36 

242Pu 4.15 7.44 7.08 

3. Loading pattern optimization with Simulated Annealing 

 

In our recent work (Kotlyar and Parks, 2016), the Simulated Annealing (SA) 

optimization technique was applied to obtain the most favorable loading pattern with 

respect to cycle length. A detailed description of the method and the implemented 

procedure was given previously and thus only a concise summary is presented here. 

This technique was adopted here for each case (i.e. a combination of cladding type, Pu 

vector, %PuO2 and H/HM ratio) with the objective to maximize the cycle length. SA 

was used to find the minimum value of the multivariate function 𝐹(𝑥1, … , 𝑥𝑛) of 

discrete variables (𝑥1, … , 𝑥𝑛). These variables represent the assemblies’ loading pattern 

within the core and 𝐹 is the cycle length multiplied by –1.  

First, at each iteration 𝑘, the SA procedure samples the LP arrangement of the 

assemblies 𝑥1
𝑘 , … , 𝑥𝑛

𝑘, where 𝑥𝑛
𝑘 is the coordinate of assembly 𝑛 in the examined 

configuration. Then, the PANTHER code is executed and the objective function 𝐹𝑘 =

𝐹(𝑥1
𝑘 , … , 𝑥𝑛

𝑘) and maximum power peaking values 𝑔𝑘 = 𝑔(𝑥1
𝑘, … , 𝑥𝑛

𝑘) are obtained. 

Penalization of infeasible solutions (with 𝑔𝑘 > 𝑔𝑚𝑎𝑥) is achieved by adding a positive 

penalty value to the objective function as follows:  

𝜙(𝑥1
𝑘 , … , 𝑥𝑛

𝑘; 𝜇) = 𝐹(𝑥1
𝑘 , … , 𝑥𝑛

𝑘) + 𝜇𝑘 × (𝑔𝑘)𝛾(𝛼) (1) 

where the power of the constraint violation term 𝛾 is itself violation-dependent. Here, 

a simple threshold relation was adopted: 

𝛾(𝛼) = {
1, 𝛼 ≤ 0.1
2, 𝛼 > 0.1

 

𝛼 = 𝑔 − 𝑔𝑚𝑎𝑥 

(2) 

It should be noted that for negative values of 𝛼, the corresponding penalty term is zero. 

The parameter 𝜇 is a positive penalty parameter. In addition, since the penalty 

application process is iterative, a scheme to update 𝜇, which also includes an upper 

bound to prevent problems becoming ill-conditioned, was implemented: 

𝜇𝑘+1 = 𝑚𝑖𝑛(𝑐𝜇𝑘, 𝜇𝑚𝑎𝑥) (3) 

where 𝑐 > 1 and 𝑘 represents the iteration counter.  The values of the various 

parameters used are given in Table 4.  
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The following procedure was used to implement the SA algorithm: 

1) Set 𝑘 = 1, 𝑇0, 𝑐, 𝜇0, 𝑔𝑚𝑎𝑥 

2) Sample an initial LP arrangement of the various assemblies 𝑥1
𝑘 , … , 𝑥𝑛

𝑘  and 

calculate 𝜙𝑘.  

3) Randomly select a new configuration 𝑥1
𝑘+1, … , 𝑥𝑛

𝑘+1 and calculate 𝜙𝑘+1. Only a 

binary swap of fuel assemblies is allowed at each new random selection. 

4)  

a. If the current objective function 𝜙𝑘+1 ≤ 𝜙𝑘, then accept the new LP. 

b. Otherwise, if  𝜙𝑘+1 > 𝜙𝑘, accept the less preferable solution/LP with 

annealing probability: 

𝑝 = 𝑒𝑥𝑝 (−
𝑘

𝑇0

(𝜙𝑘+1 − 𝜙𝑘)) (4) 

c. If the new LP was accepted, update (𝑥1
𝑘 , … , 𝑥𝑛

𝑘) = (𝑥1
𝑘+1, … , 𝑥𝑛

𝑘+1), 

𝜙𝑘 = 𝜙𝑘+1, the index 𝑘 = 𝑘 + 1 and the penalty 𝜇𝑘+1 according to 

Eq.3.  

5) Go to step (3). 

The term 
𝑘

𝑇0
 in Eq. (4) is simply a continuous cooling annealing parameter that gradually 

reduces the probability of accepting a less preferable solution as 𝑘 increases.  

 

4. SA optimization results 

 

Optimization exercises were performed with SA for each of the considered cases 

separately. More specifically, the TOX cores were loaded with fuel that has one of each 

of the following parameters:  

 PuO2 loadings: 12%, 16% or 18% by volume in the fuel mixture 

 Initial Pu isotopic vectors: Pu-1, Pu-2 or Pu-3 (Table 3) 

 Cladding types: FeCrAl or SiC 

 H/HM ratios: 3.69 or 4.55 (Table 1) 

 

As mentioned, the objective function chosen for optimization was the cycle length. An 

upper limit was set to the maximum cycle total power peaking. The parameter values 

used in the optimizations are specified in Table 4.  
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Table 4: Optimization parameters.  

Parameter Value 

𝑇0 300 

𝑐 1.02 

𝜇0 1.02 

𝜇𝑚𝑎𝑥 60 

Maximum allowed power peaking (𝑔𝑚𝑎𝑥) 1.80 

 

 

For each of the cases, 1500 different LPs were examined with full 3D neutronic and 

thermal-hydraulic calculations performed by PANTHER until equilibrium was 

achieved. Fig. 2 and Fig. 3 present arbitrary selected examples of the results for 12% 

PuO2 in the TOX mixture and for 2 different initial Pu vectors (Pu-1 and Pu-2). The 

figures depict the values of the cycle length versus the associated total power peaking 

factor. In these figures, the filled green circles represent all the LPs evaluated and the 

red triangles denote the LPs accepted during the optimization. The optimal LPs found 

– those with the longest cycle lengths that satisfied the maximum cycle total power 

peaking constraint – are denoted by the purple squares. The complete set of all optimal 

LPs examined in the current work is shown in Fig. 4 through Fig. 6. 

 

Fig. 2 and Fig. 3 illustrate the ability of SA search to accept “uphill” moves and, because 

of the penalty function approach used to handle constraints, to accept solutions for 

which the constraints are violated. 
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a. FeCrAl cladding 

 

 

b. SiC cladding 

Fig. 2. Cycle length vs. cycle maximum power peaking factor for 12%PuO2 with the 

Pu-1 vector. 
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a. FeCrAl cladding 

 

 

b. SiC cladding 

Fig. 3. Cycle length vs. cycle maximum power peaking factor for 12%PuO2 with the 

Pu-2 vector. 
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Fig. 4. Optimized equilibrium cycle core LPs for H/HM-1 and FeCrAl options. The 

labels ‘i×’ denote the number of core residence cycles.  
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Fig. 5. Optimized equilibrium cycle core LPs for H/HM-1 and SiC options. The labels 

‘i×’ denote the number of core residence cycles. 
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Fig. 6. Optimized equilibrium cycle core LPs for H/HM-2 and 12%PuO2. The labels 

‘i×’ denote the number of core residence cycles. 
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Fig. 7 through Fig. 10 compare the performance of the various designs for 

H/HM-1. These results correspond to the LPs shown in Fig. 4 and Fig. 5. Each figure 

presents the results for different Pu vectors (Pu-1, Pu-2 and Pu-3), various PuO2 

loadings (12%: blue, 16%: red, 18%: grey) and different cladding types (FeCrAl: full 

column; SiC: dashed column). The results presented in Fig. 7 through Fig. 10 lead to 

the following observations: 

 Contributors that increase the cycle length (Fig. 7) and hence burnup (Fig. 8): 

– Increased Pu volume fraction in the mixture.  

– Higher fissile content in the Pu vector (e.g. Pu-1). 

– Lower parasitic absorption in the cladding: FeCrAl has an 

approximately 1% higher absorption rate compared to the SiC cladding.  

 Plutonium (Fig. 9) and TRU (Fig. 10) incineration performance: 

– The results again indicate that there is a strong incentive to increase the 

initial Pu volume fraction since it enhances Pu and TRU incineration. In 

the case with FeCrAl cladding and the Pu-2 vector, for example, 57.2% 

and 64.1% of the loaded plutonium is incinerated for 12% and 18% of 

loaded PuO2 in the mixture respectively. The designs with the Pu-1 

vector show considerably higher incineration rates. These attractive 

incineration rates are achieved due to the higher fissile content of the Pu-

1 vector that allows higher fuel burnups to be reached. It must be pointed 

out that loading more PuO2 in this case (Pu-1) doesn’t help higher 

incineration rates to be achieved; this is due to the lower build-up rate 

of 233U from 232Th.  

– It must be pointed out that the nodal discharge burnup obtained from the 

3D core analyses were used to extract the actinide concentrations at the 

discharge point. 

 It seems that the most promising combination is SiC cladding, the Pu-1 vector 

with a loading fraction of 12 volume % of PuO2 in the (Pu-Th)O2 mixture. This 

design achieves a reasonable cycle length of ~376 days and discharge burnup of 

116 MWd/kg. Moreover, this combination allows more than 75% of the initial 

Pu and 51% of TRU loaded into the core to be incinerated. In this work, only 3 

discrete %PuO2 values were considered and therefore the optimized number 

may not be exactly 12%. However, additional sensitivity studies suggest that it 
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is indeed close to 12%.  

 

 

Fig. 7. Cycle length values for various cladding materials, Pu vectors and %PuO2 for 

H/HM-1. 

 

 

Fig. 8. Discharge burnups for various cladding materials, Pu vectors and %PuO2 for 

H/HM-1. 
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Fig. 9. Burnt-Pu (%) for various cladding materials, Pu-vectors and %PuO2 for 

H/HM-1. 

 

 

Fig. 10. Burnt-TRU (%) for various cladding materials, Pu-vectors and %PuO2 for 

H/HM-1. 
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Fig. 11 through Fig. 14 compare the performance of various designs for the 2 

different H/HM lattice designs for a single PuO2 loadings of 12%. In the H/HM-2 

designs, the dimensions of the fuel pin were reduced while the pitch was fixed (Table 

1). These results correspond to the LPs shown in Fig. 6.  

Fig. 11 shows that the cycle lengths obtained are considerably shorter since the 

core contains less mass of fuel, although the burnup is similar (Fig. 12). The designs 

with more thermal lattices (H/HM-2) achieve roughly the same Pu (Fig. 13) and TRU 

(Fig. 14) incineration rates. However, in these designs, the fuel power density is 

increased and hence the centerline fuel temperature is considerably higher (by about 

800 ◦C) than in the H/HM-1 designs. These results are somewhat contradictive of 

previous research (Shwageraus et al., 2004), which showed that incineration of Pu 

improves with increasing the H/HM ratio for the values chosen here. However, those 

studies were performed on a unit cell configuration, whereas the results presented here 

were obtained from full core analysis. Moreover, the LPs identified by the SA 

optimization algorithm were different for the various cases examined. The main 

conclusion to be drawn here is that increasing H/HM has a negligible effect on the 

incineration of Pu, but a considerable one in terms of thermal-hydraulic performance.  

 

 

Fig. 11. Cycle length comparison between H/HM-1 and H/HM-2 designs. 
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Fig. 12. Discharge burnup comparison between H/HM-1 and H/HM-2 designs. 

 

 

 

Fig. 13. Incinerated Pu comparison between H/HM-1 and H/HM-2 designs. 
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Fig. 14. Incinerated TRU comparison between H/HM-1 and H/HM-2 designs. 
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5. Post-irradiation fuel characteristics results 

 

This section presents the decay analysis results for the different incineration 

strategies considered in the current research. The first strategy is the open fuel cycle, 

where U3Si2 fuel is irradiated up to about 42 MWd/kg in the I2S-LWR core and then 

disposed directly of as high-level waste (Fig. 15a). The second strategy is to extract Pu 

from the previous waste stream and mix it with thorium to create a TOX fuel, i.e. 

(Pu,Th)O2, which is then re-introduced into the I2S-LWR core (Fig. 15b). For 

consistency, all the calculations in this stage were performed with BGCore, which was 

used to extract the fuel composition at the discharge burnups provided by PANTHER 

for the different designs considered here. Then, BGCore was also used to perform post-

irradiation characteristics calculations for the different options. Radiotoxicity analysis 

and decay heat calculation results for the different forms of spent nuclear fuel (SNF) 

are presented in Sections 5.1 and 5.2 respectively.  

 

 

 

 

 

a. Open U3Si2 fuel cycle 

 

 

 

 

 

 

 

                                                             …. 

                                                             …. 

 

 

b. 2-tier U3Si2-TOX fuel cycle 

Fig. 15. Fuel cycles scenarios. 
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The decay calculations for the first scenario were performed for the composition 

(designated here as 𝑀𝑈3𝑆𝑖2
) obtained at the discharge burnup of 42 MWd/kg. In the 

second scenario, the decay calculations were performed for the waste stream (𝑀𝑤𝑎𝑠𝑡𝑒) 

that includes the streams of both Pu-generating and Pu-burning cores: 

𝑀𝑤𝑎𝑠𝑡𝑒 = 𝑁(%𝑃𝑢𝑂2
) × 𝑀𝑈3𝑆𝑖2

∗ + 𝑀𝑇𝑂𝑋 (5) 

 

where 𝑀𝑈3𝑆𝑖2

∗ is the composition of 𝑀𝑈3𝑆𝑖2
 excluding Pu nuclides, and  𝑁(%𝑃𝑢𝑂2

) is 

the required number of U3Si2 cores to fuel a single TOX core (Table 5) and thus depends 

on the loading (%𝑃𝑢𝑂2
) of PuO2 in the TOX mixture. Lastly, 𝑀𝑇𝑂𝑋 represents the 

irradiated TOX spent fuel inventory, which is unique for each examined case (i.e. Pu 

vector, loading and cladding type).  

 

 

Table 5: Mass balance for U3Si2 and TOX cores.  

HM core loading (t) 

U3Si2 82 

TOX 67 

Number of U3Si2 cores to fuel a single TOX core 

With 12% of PuO2 4.68 

With 16% of PuO2 6.21 

With 18% of PuO2 6.98 
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5.1 Radiotoxicity characteristics 

 

The potential biological hazard of a nuclear waste is measured by either ingested 

or inhaled radiotoxicities in Sieverts (Sv). The ingested/inhaled radiotoxicity for a given 

isotope is determined by the activity (Bq) multiplied by the isotope effective dose for 

ingestion or inhalation coefficients (Sv/Bq units), which are isotope-dependent. These 

coefficients account for radiation type and tissue weighting factors, metabolic and 

biokinetic information of an adult based on ICRP 72 report (ICRP, 1995). Typically, 

ingestion radiotoxicity is considered to be more significant than inhalation radiotoxicity 

for long-term disposal. This is because the greatest biological hazard to humans occurs 

when the isotope is absorbed in nearby ground water and eventually enters the food 

chain. Therefore, all the radiotoxicity values used in this work are calculated as ingested 

radiotoxicity to maintain consistency and expressed in relative terms, i.e. divided by the 

ingested radiotoxicity of the equivalent freshly mined natural uranium. 

The radiotoxicity curves versus time after discharge for U3Si2 and Pu incinerated 

to different levels in TOX fuel are shown in Fig. 16. Note that radiotoxicity curves 

presented in Fig. 16 through Fig. 18 include the actinides as well as fission products. 

Fig. 16 shows that the radiotoxicity for TOX is notably lower than that of U3Si2 in the 

10–105 years range. After this period, the radiotoxicity of TOX SNF becomes greater 

than that of U3Si2 due to the build-up of highly radiotoxic 229Th from alpha decay of 

233U. Moreover, deeper Pu incineration further reduces the radiotoxicities in the 10–105 

years range. For example, after 104 years, the radiotoxicity of the TOX waste stream, 

for which the Pu is burnt to 30%, 50% or 75% levels, is lower by a factor of 1.5, 2.1 

and 3.9 respectively when compared to the radiotoxicity from the U3Si2 waste stream. 

The Pu vectors used are not identified in Fig. 16 because it was found that radiotoxicity 

curves are to all intents and purposes identical and depend only on the amount of Pu 

burnt in the second tier. Fig. 17 and Fig. 18 show the radiotoxicity of TOX wastes for 

different %PuO2 loadings and Pu vectors respectively. The important thing to note is 

that for identical amounts of burnt plutonium, the behavior of radiotoxicity as a function 

of time is very similar. However, in reality different cases offer different Pu incineration 

rates, as was shown in Fig. 9 and Fig. 13. 
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Fig. 16. Relative ingestion radiotoxicity of TOX (incinerated to different levels) and 

U3Si2 SNF. 

 

 

Fig. 17. Relative ingestion radiotoxicity of TOX with different PuO2 volumetric 

loadings and U3Si2 SNF. 
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Fig. 18. Relative ingestion radiotoxicity of TOX with different Pu-vectors and U3Si2 

SNF. 

5.2 Decay heat characteristics 

 

The disposal of SNF and radioactive waste has been extensively studied, almost 

since the beginning of nuclear power. Geological repositories, such as Yucca Mountain 

(United States Department of Energy, Office of Civilian Radioactive Waste 

Management, 2002), have been suggested in the past for the direct disposal of SNF. 

Such repositories are designed to safely store radioactive materials for extended periods 

of time while limiting any releases to the environment. In the case of Yucca Mountain, 

a number of temperature limits that act as constraints on the design are imposed. 

Meeting these limits can be accomplished by a variety of methods, including controlling 

the amount of decay heat generated by the waste in any given area of the repository or 

actively cooling the repository for an extended period of time. Previous research 

(Wigeland et al., 2006) related to the thermal performance of such repositories 

investigated chemical separations and transmutation criteria to increase the utilization 

of space within the repository. That research concluded that the temperature midway 

between adjacent tunnels (in which the waste is stored) is the controlling safety limit, 

with the peak temperature occurring between 1500 and 2000 years after waste 

placement. Due to the extended time-frame for heating this region of the repository and 

the large heat capacity of the surrounding rock, the temperature peak must be the result 
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of the integrated decay heat over time since the placement of the waste rather than the 

instantaneous value of decay heat at any particular time. 

The primary objective of this section is to show how the decay heat characteristics 

can benefit from incinerating Pu in the TOX core. The results clearly indicate that space 

utilization in a geological repository would be improved by adopting this approach. 

However, no quantitative analysis regarding the thermal performance was conducted in 

the current research.  

Fig. 19 shows the decay heat generated by spent U3Si2 and TOX fuels. It can be 

observed that the decay heat for all the examined cases drops rapidly after discharge for 

about the first 200 years. This figure also shows that, as the amount of incinerated Pu 

increases, the decay heat in the 50–104 years range is considerably lower. Fig. 20 shows 

the cumulative energy generated by TOX SNF incinerated to different levels relative to 

the cumulative energy produced by U3Si2 SNF. The main assumption here was that there 

is forced convection (Wigeland et al., 2006) during the first 90 years following a cooling 

time of 10 years.  

 

 

Fig. 19. Decay heat of TOX (incinerated to different levels) and U3Si2 SNF. 
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Fig. 20. Cumulative energy of TOX (incinerated to different levels) SNF relative to 

U3Si2 SNF. 

 

Fig. 21 and Fig. 22 present the dominant decay heat contributors in the spent fuels 

of U3Si2 and TOX (75% incinerated Pu) respectively. These figures show that the decay 

heat is mainly generated by the decay of fission products for the first 60 years, with the 

contribution dominated by barium (137mBa) and yttrium (39Y) as decay products of 

cesium (137Cs) and strontium (90Sr). After about 60 years, the decay heat is mostly from 

actinide elements, with the most significant ones being plutonium and americium. 

Beyond 200 years, the decay heat is generated almost entirely by the plutonium and 

americium, out to at least 104 years. Fig. 21 demonstrates for U3Si2 SNF a rather slow 

decrease of the total decay heat with time, due to the relatively long half-lives of the 

isotopes 241Am, 239Pu, and 240Pu. In contrast, Fig. 22 presents a sharper decrease in the 

total decay heat for TOX SNF due to the incineration of Pu isotopes.  
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Fig. 21. Dominant decay heat contributors in spent U3Si2 fuel. 

 

 

 

Fig. 22. Dominant decay heat contributors in spent TOX fuel with 75%Pu 

incineration. 

 

 

 

Fig. 23 and Fig. 24 show the decay heat of TOX wastes for different %PuO2 

loadings and Pu vectors respectively (75% Pu incineration in all cases). The important 
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thing to note is that for identical amounts of incinerated plutonium, the variation of 

decay heat as a function of time is very similar.  

 

 

Fig. 23. Decay heat of TOX with different PuO2 volumetric loadings and U3Si2 SNF. 

 

 

Fig. 24. Decay heat of TOX with different Pu vectors and U3Si2 SNF. 
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6. Performance summary 

 

Based on the results presented in the previous sections, several conclusions related 

to Pu and TRU incineration efficiency can be drawn:  

(1) Switching from advanced FeCrAl steel to SiC systematically allows 5% more 

Pu and TRU to be incinerated.  

a. For example, Fig. 9 and Fig. 10 show that for 12% PuO2 and the Pu-2 

vector only 70.7% (45%) of Pu (TRU) may be incinerated as opposed to 

75.1% (51.1%) when SiC cladding is used.  

(2) The Pu vector has a significant impact (~12%) on Pu and TRU incineration.  

a. For example, Fig. 9 and Fig. 10 show that for 12% PuO2 and SiC 

cladding, only 62.1% (39.4%) of Pu (TRU) is incinerated when the Pu-

2 vector is used as opposed to 75.1% (51.1%) with the Pu-1 vector.  

(3) Increasing the PuO2 volumetric fraction may or may not enhance the 

incineration performance.  

a. In general, increasing the Pu volume fraction in the mixture improves 

the incineration performance up to a certain point, after which the 

performance is degraded. This happens since a smaller fraction of the 

fuel is thorium which then leads to less 233U production. Different 

designs are characterized by different optimum points.  

b. In the FeCrAl case with the Pu-2 vector, for example, increasing the 

PuO2 loading from 12% to 16% also increases Pu incineration from 

57.2% to 63.7%. However, in the SiC case with the Pu-1 vector, for the 

same change in PuO2 loading, Pu incineration is decreased from 75.2% 

to 73.2%.  

(4) Increasing the moderator-to-fuel volume fraction reduces the overall 

performance.  

a. A slightly lower Pu incineration was observed. Moreover, the increased 

fuel power density considerably raises the fuel centerline temperature.  

 

The Pu and TRU incineration efficiencies for the most favorable TOX cores are 

reported in Table 6. It must be noted that 233U and 233Pa were included in the TRU 
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inventory in this table. It is believed that these cases are close to optimized since they 

achieve high Pu and TRU incineration rates together with reasonable burnup values.  

 

 

Table 6: Performance summary for 12% PuO2, Pu-1 and H/HM-1. 

Cladding SiC FeCrAl 

Pu burnt (%) 75.2 70.7 

TRU burnt (%) 51.1 45.0 

Discharge burnup (MWd/kg) 115.7 108.9 

Cycle length (days) 375.6 350.1 

 

 

 

7. Summary and conclusions 

 

The original Pu-Th fuel cycle developed for the I2S-LWR was designed (Kotlyar 

et al., 2017) to achieve extended fuel burnups (100 MWd/kg), compared to current 

practice in PWRs ( < 60MWd/kg), and thus lower Pu residual fractions. The new I2S-

LWR cladding materials are suitable for the goal of achieving high burnups. That study 

indicated that the Pu-Th fuel cycle can considerably reduce the Pu requirements for a 

fixed energy production and reduce the volume of high-level waste when compared 

with the MOX fuel cycle.  

The analyses were then expanded to consider various multi-batch refuelling 

strategies, i.e. 3-, 5- and 7.56-batch schemes. For each, the Simulated Annealing 

optimization technique was used to obtain optimal core configurations for which the 

cycle length is maximized. The SA method also maintained the cycle total power 

peaking constraint within acceptable limits. The results demonstrated that increasing 

the number of batches extends the discharge burnup and hence reduces initial Pu 

requirements. In addition, higher discharge burnups result in deeper Pu and TRU 

incineration. The optimized LP identified by the SA method showed that up to 62% and 

41% of Pu and TRU can be incinerated respectively. The design with the most 

favourable performance had 16% PuO2 loading (in the TOX mixture), advanced FeCrAl 

steel cladding, a fixed Pu vector and 7.56-batch fuel management.  
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In the current research, loading pattern SA optimization was performed for 

multiple designs that were shown to improve the performance of the TOX cycle. These 

designs used a 7.56-batch scheme (previously identified as the most favourable), 

various cladding materials, Pu isotopic vectors, volumetric fractions of loaded PuO2 

and H/HM ratios. The results indicate that considerable improvements in the Pu 

incineration (with up to 75.2% of Pu burnt) could be achieved. This optimized 

performance is obtained by adopting SiC cladding and a Pu vector (Pu-1) with a high 

fraction of fissile isotopes.  

According to IAEA reports (INFCIRC/549, 1998), the largest plutonium stockpile 

is in the UK and estimated to be around 112 tonnes. Moreover, the quality of the Pu 

vectors within this stockpile is very diverse since it originated from reactor cores with 

different spectra and irradiated to different burnup levels. Therefore, one could 

speculate that favourable Pu vectors could be created by appropriate mixing of these 

different Pu isotopic compositions.  

To conclude, the current study investigated the feasibility of enhancing the 

performance of the Pu-Th fuel cycle for the I2S-LWR by selecting the most favourable 

set of fuel-cladding combinations with respect to the highest incineration of Pu. 

Achieving deeper incinerations allows the decay heat of the spent nuclear fuel to be 

reduced significantly, which will allow the disposition of more waste in a given 

repository.  
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