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ABSTRACT

Aims. We investigate the use of some high-resolution shock-capturing schemes on curvilinear grids in the context of general relativistic
hydrodynamics (GRHD). We aim to demonstrate that these can be used to evolve accurately fluid flow onto a black hole.
Methods. We describe a numerical scheme which applies high-resolution shock-capturing schemes and the curvilinear overlapping
grids methodology to the evolution of the equations of GRHD.
Results. We apply our scheme to the problem of Bondi-Hoyle-Lyttleton accretion onto a black hole. We validate our approach against
an exact solution of the problem and against previous numerical results. Our approach allows for the incident wind to be at any angle
to the spin-axis of the Kerr black hole, and also allows the flow density to be perturbed upstream. We give an illustration of the effects
of these perturbations on the resulting flow-field.
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1. Introduction

The simulation of general relativistic hydrodynamical (GRHD)
problems is of great importance to the astrophysics commu-
nity. Although special relativistic and post Newtonian approx-
imations can be used in some cases, the full effects of general
relativity must be taken into account in cases of strong gravity
such as neutron stars, supernovae, and the behaviour of inter-
stellar gas in the neighbourhood of black holes. These problems
require large amounts of computational power for their accurate
solution, and so any computational approach which reduces the
computational expense of a particular simulation is of interest.

In this paper we demonstrate, building on work in Blakely
et al. (2015), the development and testing of a numerical scheme
capable of solving the equations of GRHD accurately and ef-
ficiently, using modern numerical methodologies. In particular,
we consider the use of overlapping, curvilinear grids in order to
adapt the geometry of our computational domain to the physical
configuration of the problem.

In Blakely et al. (2015), we demonstrated the use of the
Generalized First ORder CEntred (GFORCE) scheme for cal-
culating the approximate solution to Riemann problems that are
used as the basis for a high-resolution shock-capturing scheme.
We showed that this scheme enabled one-dimensional problems
to be evolved accurately and stably, producing results of simi-
lar accuracy to those obtained by other researchers using more
computationally expensive schemes. The approach is therefore
suitable for the accurate evolution of fluid dynamical problems
containing shocks and discontinuities.

In Blakely et al. (2015) we also discussed the use of multi-
staging a simple flux scheme as an inexpensive way to improve
the accuracy of the Riemann solution for little computational

effort. However, although tests showed that accuracy was indeed
increased, an analysis suggested that this might be at the expense
of the stability of the scheme. In this paper, therefore, we do not
use multi-staging but restrict ourselves to the use of the slope-
limited GFORCE approximation.

Many problems in GRHD, such as stellar or black hole evo-
lution, are well adapted to the use of a spherical grid geome-
try. However, many GRHD codes only use Cartesian grids for
the solution of such problems. Although no issues have been re-
ported with such simulations, it is reasonable to suppose that a
mesh better adapted to the geometry of the problem would give
more accurate results, and perhaps in less computational time.
In particular, when evolving a fluid on a space-time containing a
singularity, problems can arise near the singularity as the space-
time curvature tends to infinity. One solution to this is to take
advantage of the fact that, by causality, no physical information
can emerge from inside the event horizon surrounding the sin-
gularity. If the numerical scheme we use takes into account the
speed and direction of information flow, then we might reason-
ably hope that propagation of numerical errors outside the event
horizon will be limited. In general, however, note that numerical
waves can propagate faster than any of the physical wave-speeds.
This means that we can excise part of the domain inside the event
horizon, and impose reasonable artificial boundary conditions at
the excision boundary, and any numerical errors caused by the
approximate boundary condition will have minor effects outside
the event horizon.

Simulations using Cartesian grids have needed to capture
the excision boundary using a jagged grid boundary. The use
of a jagged boundary is more difficult to obtain accurate evolu-
tions with as compared to a boundary generated from a spherical
grid. Further, due to the effects of a curved space-time metric,
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it is often necessary to put the spatial boundary at a large dis-
tance from the object being simulated, in order to provide good
far-field boundary conditions in the limit of flat space-time.
Spherical grids have a distinct advantage in this situation, gen-
erally requiring fewer points to reach a given large radius than a
Cartesian grid of similar resolution at the centre of the domain.
However, the standard spherical coordinate system has a singu-
larity on its axis, and this can cause problems with standard nu-
merical schemes unless allowances are made for the small grid
cells near the axis. An alternative approach, and the one we use
in this paper, is to capture the spherical coordinate system us-
ing two partial, overlapping, spherical grids, neither of which
contains a singularity. Although this introduces significant is-
sues with the implementation of routines to interpolate between
the two grids, we demonstrated in Blakely et al. (2015) that the
Overture infrastructure of Brown et al. (1997) was sufficiently
robust to simulate, for example, the flow of a relativistic fluid
past multiple solid cylinders embedded in a rectangular domain.

In this paper we extend the overlapping curvilinear grid
methodology to the simulation of a relativistic fluid on a strongly
curved space-time. We include an explanation of how the metric
should enter into the scheme for best accuracy.

As a demonstration of the abilities of our new scheme, we
apply it to the problem of Bondi-Hoyle-Lyttleton (BHL) flow
onto a black hole. Although some work has been done on this
problem by Font & Ibáñez (1998a,b) and Font et al. (1999),
this was done at a time when three-dimensional simulations
were prohibitively expensive, and all their simulations were per-
formed either in axi-symmetry or using the thin-disc approxima-
tion of flow restricted to the equatorial plane of the black hole.
Given a fully three-dimensional simulation framework, we can
thus verify their results and extend them to more complicated
scenarios.

In this paper we follow the work of Ruffert (1995, 1999)
in extending BHL accretion to include the case where the flow
onto the compact object was non-uniform upstream. Other au-
thors have performed investigations into BHL accretion, but not
for the particular regime we are covering. In particular, Farris
et al. (2010) have investigated BHL accretion in the context of
a BBH system in a gas cloud, and Penner (2011) has exam-
ined a range of parameters similar to ours, but in the context of
GRMHD rather than plain GRHD. Further, Dönmez et al. (2011)
have studied instabilities and quasi-periodic oscillations within
BHL, but restricted to the thin-disc approximation. The struc-
ture of this paper is as follows: in Sect. 2 we give the GRHD
equations, the equations of state that we use, and our method
of recovery of primitive variables. In Sect. 3 we give the met-
rics on which we shall be evolving the fluid. We follow this in
Sect. 4 with a detailed explanation of the numerical schemes that
we use, with explicit details of how they are adapted to give good
accuracy on curvilinear grids and with a non-flat metric. We then
proceed to validate our code in Sect. 7 by comparing its results
to an exact solution of wind accretion onto a black hole. This
is followed by a comparison to some of the results of Font &
Ibáñez in Sect. 8. Finally, in Sect. 9, we give an example of how
our code performs when simulating the accretion of a perturbed
fluid onto a spinning black hole. We close in Sect. 11 with some
conclusions.

2. System equations

Throughout this paper, we use units where the speed of light,
c = 1. Greek indices run over space and time: μ, ν, . . . = 0, 1, 2, 3,
and Roman indices run over space only: i, j, . . . = 1, 2, 3.

The evolution of a relativistic fluid on an arbitrary metric is
given by

1√−g
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∂
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∂x0
+
∂
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∂xi

)
= S, (1)
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with g = det(gμν) being the four-metric, γ = det(γi j) being the
three-metric, and Γνδμ being the related Christoffel symbols. D is
the relativistic density, vi is the three-velocity, S i is the three-
momentum, p is the pressure, and τ = E − D is the total energy
minus the energy due to the mass. Here, α is the lapse function
and βi is the shift vector as defined by the 3+1 splitting approach,
and W is the Lorentz factor. The energy-momentum tensor T μν

depends on the fluid-type, and we define it for two fluid types in
later sections. Full details of the GRHD equations can be found
in the work of Banyuls et al. (1997).

We note that the source-terms on the right-hand side of
Eq. (2) can also be written as (see documentation for the Whisky
code as presented by Baiotti et al. 2003)

S =
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,

where

Ki j = −1
2
Lnγi j = − 1

2α

(
∂tγi j + ∇iβ j + ∇ jβi

)
,

nμ = −α∇μt,
(4)

and h is the fluid enthalpy. Equation (3) assumes that the met-
ric is an exact solution of Einstein’s equations. This definition of
the sources is equivalent to that in Eq. (2), but is an improvement
for numerical solutions as it only uses variables already defined,
rather than having to calculate the time derivatives of γi j and
other space-time variables to incorporate into the 4-Christoffel
symbols. In the case of a stationary metric, these are exactly
equivalent, but if we had a time-dependent metric (either analytic
or numerical), then we would have to find the time derivatives,
requiring extra expense and perhaps the use of a finite differ-
ence approximation, the accuracy of which would then have to
be assessed.

The wavespeeds for the full GRHD system of equations are
given by Font (2008, Sect. 6.2):

λ0 = αvi − βi (triple eigenvalue of the system),

λi
± =

α

1 − v2c2
s

(
vi(1 − c2

s )

± cs

√
(1 − v2)(γii(1 − v2c2

s ) − vivi(1 − c2
s ))

)
− βi (5)
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in each coordinate direction i, where there is no sum over the i in-
dex. Given an equation of state through the specific enthalpy h,
the energy momentum tensor for a perfect fluid is given by

T μν = ρhuμuν + pgμν, (6)

where the four-velocity uμ is defined in terms of the three-
velocity vi via

vi =
ui

αu0
+
βi

α
, and W = αu0. (7)

In this paper, we restrict ourselves to two fluid types: a per-
fect ideal gas, with a given adiabatic index, Γ, and a stiff, ultra-
relativistic fluid. We define these in the following sections.

2.1. Stiff fluid

The stiff fluid is a special case of an ultra-relativistic fluid, where,
instead of taking p = (Γ−1)ρ as for an ultra-relativistic fluid, we
now take p = ρ. This results in the sound-speed in the fluid being
equal to the speed of light, i.e. cs = 1, but does not introduce any
further complications.

The fluid is defined in terms of a stream-function ψ, which
allows for some simplifications to the fluid equations, resulting
in the possibility of analytical solutions (e.g. Petrich et al. 1988;
Shapiro 1989). The details of the more general ultra-relativistic
fluid can be found in the thesis of Neilsen (1999).

We define the fluid variables as follows:

n = (−ψ,μψ,μ)1/2, uμ =
1
n
ψ,μ,

ρ = p = n2, vi =
ui

αu0
+
βi

α
, (8)

S j =
√
γ(ρ + p)W2v j, τ =

√
γ(W2(ρ + p) − p),

where, due to the inherent simplifications, we can ignore the
equation for D. This explains the absence of a −D term in the
expression for τ.

The primitive variables are easily recovered from the con-
served variables via the formulae

ρ = τ2 − S jS
j and vi =

S i

τ + ρ
· (9)

We note that Neilsen (1999) warns against calculating vi in this
way due to potential numerical precision problems, but the solu-
tion he gives is for one dimension only, and is not easily gener-
alisable to multi-dimensions.

The above equation of state allows the simplification of the
equation for conservation of energy and momentum, T μν

;μ = 0,
to the linear wave equation ψ;ν

ν = 0 (although we note that not
all solutions of the linear wave equation result in physically valid
stiff-fluid solutions).

2.2. Ideal fluid

For the ideal fluid, we define the specific enthalpy of the fluid
to be

h = 1 +
p
ρ

(
Γ

Γ − 1

)
, (10)

where Γ is the adiabatic index of the fluid (often written as γ,
but that has already been used for the determinant of the three-
metric). The speed of sound in the fluid, cs, is then given by

c2
s =
Γp
ρ

(
1 +

p
ρ

Γ

Γ − 1

)−1

· (11)

In non-relativistic fluid evolution, the recovery of the primitive
variables from the conserved variables is an algebraic opera-
tion. However, the presence of the Lorentz factor complicates
the issue, since the three-momenta are no longer independent of
each other, and we use a Newton-Raphson method to recover the
primitive variables. Other techniques are available, including the
solution of a quartic, but tend to be computationally involved and
expensive.

For the primitive variable recovery, we follow the approach
in Appendix A of Eulderink & Mellema (1995). In order to retain
numerical accuracy, we rewrote the expression for calculating
u0 = W/α in Eq. (A.12) of Eulderink & Mellema (1995) as

W =
1
2

C0ξ

⎛⎜⎜⎜⎜⎜⎜⎝1 +
√

1 + 4
Γ − 1
Γ
· 1 −Cξ

C2
0ξ

2

⎞⎟⎟⎟⎟⎟⎟⎠ , (12)

taking C0ξ outside the brackets, since for large W the bracketed
expression is of order unity and C0ξ is large.

Although our numerical scheme is designed not to induce
unphysical data, this is only proven to be true for scalar conser-
vation laws. In case we encounter unphysical data, we enforce
a minimum fluid density. We use the following to recover the
remaining primitive variables:

ρ = max(D/W, ρmin), h = 1/(Cξ). (13)

where ρmin = 10−8 (assuming that the equations have been non-
dimensionalised with c = 1). Given that ρ may have been altered
from its correct value of D/W, we recalculate the appropriate
value of p from h, enforce p ≥ pmin if necessary, and then recal-
culate h before calculating vi as

vi =
S i

ρhW2
· (14)

Following the preceding scheme, we have not had any prob-
lems with unphysical values of variables being generated. We
are therefore confident that we have a robust approach to recov-
ering primitive variables.

3. Black hole metrics

In this section we give an overview of the space-time metrics we
have used in our simulations. Note that we have expressed these
in Cartesian coordinates throughout. Our reasons for doing so
are that we wish to have a global coordinate system across all
overlapping grids (see Sect. 4.4) and that the coordinate system
not have any singularities.

The two main metrics that we consider are:

– Kerr-Schild: this metric represents a single black-hole with
mass M, spin a, but no charge. Details are given in Sect. A.1.

– Boyer-Lindquist: this metric represents the same space-time
as Kerr-Schild and has been used in previous work in this
area. We do not actively use it in our simulations but refer to
it for comparative purposes. Details are given in Sect. A.2.

In order to compare with previous work, we shall need to trans-
form between the Kerr-Schild and Boyer-Lindquist coordinate
systems. Details of this transformation are given in Sect. A.3.

As a demonstration of the applications to which our nu-
merical scheme could be put, we also use a binary black-hole
system. Here we use Brill-Lindquist initial-data which, when
evolved would give rise to an inspiralling binary black-hole sys-
tem. However, we are not evolving the metric and will only use
this for demonstration purposes. Details of the metric are given
in Sect. A.4.
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4. Numerical schemes

In this section, we describe the numerical scheme we have de-
veloped and our adaptation of the scheme to curved space-time.
Further details can be found in our previous paper on evolving
special relativistic hydrodynamical (SRHD) problems (Blakely
et al. 2015).

To summarise the scheme, we use the Slope-LImited Centred
(SLIC) scheme described in Toro (1999), based on the GFORCE
approximate Riemann solver of Toro & Titarev (2006). As
demonstrated in Blakely et al. (2015) this allows us to improve
the accuracy of the scheme without needing to derive character-
istic information for the system. This modified SLIC scheme is
implemented for a curvilinear coordinate system, which entails
some extra work to maintain conservation.

The governing equations presented in Eq. (1) can be written
in the form of a conservation law:

∂u
∂t
+
∂ f j(u)
∂x j

= s(u), (15)

where u is a general state vector, whose evolution in time is gov-
erned by fluxes f j in each dimension and source terms s.

Neglecting the source term, the numerical update formula for
this is:

un+1
i = un

i +
Δt
Δx

(
f i+1/2 − f i−1/2

)
(16)

where spatial cells are indexed with i, and time-steps are indexed
with n. The fluxes appearing in Eq. (16) are computed using the
approach described in the following sections. The time-step Δt
is computed as

Δt = CCFL
Δx

S max
(17)

where CCFL is the CFL number, Δx is the grid spacing, and
S max is the maximum wave-speed across all cells.

4.1. GFORCE flux

We can express the generalised First-ORdered CEntred
(FORCE) flux (GFORCE) of Toro & Titarev (2006) as a
weighted average of the Lax-Friedrichs and Lax-Wendroff
fluxes, with the weighting depending on local wave speed infor-
mation. For the case of linear-advection, GFORCE is identical to
the Godunov upwind scheme. This suggests that the GFORCE
flux could well provide improved accuracy for complex systems
of equations compared to the FORCE flux, which does not de-
pend on local wave-speed information. The wave speed calcu-
lation is carried out in the local computational grid coordinates
so that the wave speeds are aligned with the grid, and the wave-
speeds we use for GRHD are those given in Eq. (5).

4.2. Slope limiting

The GFORCE scheme is only first-order accurate. In order to in-
crease the order of accuracy, we use a slope-limited reconstruc-
tion of the solution to determine left and right biased solution
states at cell-faces for which we can solve a Riemann problem
using GFORCE. Full details are given in Blakely et al. (2015).
As in the previous paper, we use the van Leer slope-limiter,
which we have found to give good shock-capturing properties
introducing minimal non-physical oscillations into the solution.

To implement the SLIC scheme we first reconstruct the slope
of the solution, Δi, using data from either side of the current cell,
taking the average of the forward and backward differences:

Δ−i = un
i − un

i−1, Δ
+
i = un

i+1 − un
i , Δi =

1
2

(
Δ−i + Δ

+
i
)
, (18)

and then determine a limited slope Δ∗i by multiplying each com-
ponent by a factor dependent on the local solution behaviour:

Δ∗i = Δi · ξ(Δ−i ,Δ+i ), (19)

where the limiting function ξ is taken to be

ξ(Δ−i ,Δ
+
i ) ≡ ξ

(
Δ−i
Δ+i

)
≡ ξ(r) =

⎧⎪⎪⎨⎪⎪⎩0 if r ≤ 0
min

(
2r

1+r ,
2

1+r

)
if r > 0

(20)

being the van Leer limiter. The preceding two equations are ap-
plied to each individual component of Δi, Δ+i , and Δ−i to form the
limited slope Δ∗i .

The SLIC flux is then calculated according to

un
i,L = un

i − 1
2Δ
∗
i , un

i,R = un
i +

1
2Δ
∗
i , (21)

u
n+ 1

2
i,L = un

i,L +
Δt

2Δx

(
f (un

i,L) − f (un
i,R)

)
, (22)

u
n+ 1

2
i,R = un

i,R +
Δt

2Δx

(
f (un

i,L) − f (un
i,R)

)
, (23)

f i+ 1
2
= f GFORCE

i+ 1
2

(
u

n+ 1
2

i,R , u
n+ 1

2

i+1,L

)
, (24)

where we use u
n+ 1

2
i,R and u

n+ 1
2

i+1,L as the left and right states for the
GFORCE flux.

4.3. Source terms and operator splitting

In Eq. (2) we see that there are source terms which arise from
the non-flat metric. We evolve these separately using a second-
order-accurate Runge-Kutta scheme, to match our second-order
finite-volume scheme. However, in order to retain second-order
accurate evolution overall, when combined with the evolution of
the flux terms, we need to use the Strang splitting

E (Δt) = S
(

1
2Δt

)
T (Δt) S

(
1
2Δt

)
, (25)

where S is the evolution operator of the source terms, T is the
evolution operator of the hyperbolic part of the system, and E is
the full evolution operator. As a result E is second order in time
if both T and S are.

4.4. Curvilinear overlapping grids

Details of how we adapt the standard finite-volume schemes to
work on curvilinear grids are given in Blakely et al. (2015). We
give a brief overview of our approach here, in preparation for its
extension to a non-flat metric.

We denote the spatial Cartesian coordinates as xi and the co-
ordinate system of the grid as ri, and write the standard conser-
vation law in the following way:

⇒ ∂u
∂t
+

1
J
∂

∂ri

(
J
∂ri

∂x j
f j(u)

)
− 1

J
∂

∂ri

(
J
∂ri

∂x j

)
f i(u) = 0. (26)

where J is the Jacobian of the coordinate transformation:

J =

∣∣∣∣∣∣
[
∂xi

∂r j

]∣∣∣∣∣∣ · (27)

A103, page 4 of 15



P. M. Blakely et al.: GRHD on overlapping curvilinear grids

The slope-limiting approach is then re-written from Eq. (24) as:

Δ−i = Ji ·
(

un
i

Ji
− un

i−1

Ji−1

)
, Δ+i = Ji ·

(
un

i+1

Ji+1
− un

i

Ji

)
,

Δi =
1
2

(
Δ−i + Δ

+
i

)
,Δ∗i = ξ(Δ

−
i ,Δ

+
i ),

un
i,L =

Ji− 1
2

Ji

(
un

i −
1
2
Δ∗i

)
, un

i,R =
Ji+ 1

2

Ji

(
un

i +
1
2
Δ∗i

)
,

u
n+ 1

2
i,L = un

i,L +
Δt

2Δx

⎛⎜⎜⎜⎜⎜⎝ f (un
i,L) −

Ji− 1
2

Ji+ 1
2

f (un
i,R)

⎞⎟⎟⎟⎟⎟⎠ ,
u

n+ 1
2

i,R = un
i,R +

Δt
2Δx

⎛⎜⎜⎜⎜⎜⎝ Ji+ 1
2

Ji− 1
2

f (un
i,L) − f (un

i,R)

⎞⎟⎟⎟⎟⎟⎠ , (28)

where Ji is the Jacobian of cell i, and we interpolate Ji+ 1
2
= 1

2 (Ji+

Ji+1). The derivatives ∂rl/∂xm, however, are averaged using the
harmonic mean[
∂rl

∂xm

]∣∣∣∣∣∣
x=xi+1/2

= B
i+

1
2
= 2

(
B−1

i + B−1
i+1

)−1
, (29)

where Bi is the matrix given by

Bi =

[
∂rl

∂xm

]∣∣∣∣∣∣
x=xi

. (30)

4.5. Evolution on a curved metric

So far we have not made any mention of how we deal with a non-
flat metric. Since our intention is to develop numerical schemes
that will be of use when the metric is being evolved as well as
the fluid, we make the assumption that we only know the metric
at the cell centres (i.e. at the same points as the fluid), rather than
using analytic values wherever they are needed. However, since
the SLIC scheme requires metric values at cell faces, we need
to describe how to determine these from cell-centred values. A
careful and rigorous approach to this is presented in Rossmanith
et al. (2004). However, as this approach is somewhat involved,
and computationally expensive, we instead use the following ap-
proach, which also includes considerations for a curvilinear co-
ordinate system. This is a generalisation of the SLIC method on
flat space, given in Eq. (28), and explicitly uses slope-limiting
on primitive variables, rather than conserved variables. In the
following we use p for the primitive fluid variables, u for the
conserved fluid variables, and g for the metric variables. We also
use u(gi, pi) to define the conserved variables u as a function of
the primitive variables p and the metric g, where the subscript
i refers to the cell in which the quantities are calculated. In the
case where the metric is stationary, and is not being evolved, we
define

Δ−i = pi − pi−1 , Δ
+
i = pi+1 − pi,

Δ =
1
2

(
Δ+i + Δ

−
i

)
, ξ = ξ

(
Δ−i ,Δ

+
i

)
, (31)

then find slope-limited values

ui,L = u(gi , pi) − 1
2
ξΔi, ui,R = u(gi , pi) +

1
2
ξΔi, (32)

average the metric for cell-faces

gi− 1
2
=

1
2

(
gi +

Ji

Ji−1
gi−1

)
, gi+ 1

2
=

1
2

(
gi +

Ji

Ji+1
gi+1

)
, (33)

adjust the fluid variables for the cell-face metric

ui− 1
2 ,L
=

Ji− 1
2

Ji
u(gi− 1

2
, p(gi, ui,L)),

ui+ 1
2 ,R
=

Ji+ 1
2

Ji
u(gi+ 1

2
, p(gi, ui,R)),

(34)

and then continue as in Eq. (28), replacing un
i,∗ by the un

i+ 1
2 ,∗

found above. These calculations are somewhat expensive
since they involve several conversions between primitive and
conserved variables. However, we have found them to im-
prove accuracy substantially, particularly for three-dimensional
simulations.

The main improvement to the fluid evolution comes through
the use of averaging the metric correctly for the cell faces as
above. Our reason for using the primitive variables on which to
limit is due to the fact that, on a curvilinear grid, the mixing
that occurs between different components of the momentum can
cause a flow in the x-direction to develop non-zero velocities in
the y-direction. Removing the mixing effect of the Lorentz factor
on the momenta by limiting on primitive variables reduces this
effect, but does not remove it altogether.

4.6. Boundary conditions

In dealing with excised black holes, there are two types
of boundary condition that must be considered: inner (exci-
sion) boundary conditions, and outer (spatial infinity) boundary
conditions.

4.6.1. Excision boundary conditions

At the analytic level, boundary conditions are not needed at an
excision boundary, provided that it is within the black hole’s ap-
parent horizon, since no physical information can emerge from
an apparent horizon. However, most numerical methods do re-
quire numerical boundary conditions as a method may use cells
further inside the black hole in order to provide a local recon-
struction of the solution. There are methods which overcome
this, for example, causal differencing as described by Gundlach
& Walker (1999), but they tend to be computationally expensive.
Simpler methods can lead to satisfactory solutions if sufficient
care is taken with the boundary conditions.

When evolving the fluid, the approach we used was to copy
the conserved variables from just inside the grid onto the two
ghost cells, multiplying by the ratio of the metric determinants
in the respective cells. Any higher-order extrapolation, unless
checked carefully with extra routines, could lead to negative den-
sities or pressures, which would immediately cause the method
to fail.

4.6.2. Boundary conditions at spatial infinity

We should like to have our outer boundaries at spatial infinity.
However, due to limited computational resources, we choose to
restrict ourselves to a finite domain. There do exist ways of cap-
turing infinite space-times on a finite grid, such as the use of a
conformal mapping of the metric as descibed by Alcubierre et al.
(2000) but these require more computational expense and more
complex numerical algorithms.

The incoming fluid is defined using fixed Dirichlet bound-
ary conditions, and the boundary conditions where the fluid is
outgoing are that the fluid is extrapolated to zeroth-order in con-
served variables, where no allowance is made for the change in
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metric as at the excision boundary, since we assume the metric
to be nearly flat there.

4.7. Overlapping grids

There are two main issues with regard to dealing with overlap-
ping grids. The first is that of constructing the full grid struc-
ture. This is one of the tasks that Overture1 has been designed
to perform for even very complicated grids. Given a set of logi-
cally rectangular grids, along with mappings to the physical grid
coordinates, as well as boundary conditions, Overture can re-
move parts of grids that are obscured by other grids and cal-
culate which cells on which grids should be used to interpolate
data onto grid cells that are now near cut-out portions of the grid.
Cells that are obscured by other grids are masked out, and it is
possible within a code, to avoid performing any computations at
these points.

We use explicit fifth-order interpolation between grids. With
explicit interpolation, the interpolation points only need to use
values from the interior of other grids. Each point can therefore
be determined as an explicit function of a set of values on the
donor grid. Overture performs its interpolation using Lagrange
polynomials, and takes into account the grid geometries in-
volved. A possible drawback of using higher-order interpolation
is that it is not guaranteed that the interpolated values will be
contained in the same range as the values from which they are
interpolated. This could lead to overshoots developing at grid
boundaries. However, we have not found this to be a problem.

5. Bondi-Hoyle-Lyttleton accretion

Although we have analytic solutions of Einstein’s equations such
as the Kerr black hole, black holes will never exist in complete
isolation in the physical universe. It is more likely that they will
either be close to one or more stars or that they will be mov-
ing through an interstellar gas, the latter being known as Bondi-
Hoyle-Lyttleton (BHL) accretion. BHL accretion usually refers
to the supersonic flow of a gas onto a gravitating accretor, but
we specialise to a black hole for our purposes.

The starting assumptions for BHL accretion are that a sta-
tionary (fixed centre) black hole is subject to a wind composed
of a fluid coming from infinity at Mach M∞ = v∞/c∞, where
c∞ is the sound speed in the fluid and v∞ is the fluid speed, both
measured at a large distance upstream of the black hole. The
black hole has mass M and spin a, and the spin axis may be at
any angle to the wind direction. The gas may be of any com-
position, but we restrict ourselves to the cases of an ideal gas,
with adiabatic index Γ, and a stiff fluid. We assume that the ac-
cretion of the fluid onto the black hole does not change its mass
significantly, i.e. we are using the test-fluid approximation.

5.1. Relativistic BHL accretion

Some axisymmetric simulations of accretion onto a moving
black hole were performed by Petrich et al. (1989) using finite-
difference methods with artificial viscosity. Following them,
there is a series of papers on numerical calculations of accre-
tion rates by Font & Ibáñez (1998a,b) and Font et al. (1999). The
most general case studied was that of wind accretion onto a spin-
ning Kerr black hole, using a range of Mach numbers, adiabatic
indices, and spin rates. However, these were done either assum-
ing axisymmetry or in the equatorial plane (thin disk approxi-
mation), although as described by Font et al. (1999) this latter

1 Available from www.OvertureFramework.org

“dimensional simplification still captures the most demanding
aspect of the Kerr background, which is encoded in the large az-
imuthal shift vector near the horizon”. The reason for these sim-
plifications was limited computational resources, which at the
time would not allow high-resolution three-dimensional calcula-
tions to be performed in a reasonable time.

Further, the first two of these papers mentioned in the pre-
vious paragraph did not use excision, as such. Rather they
used Boyer-Lindquist coordinates as described in Appendix A.2,
which have a coordinate singularity at the horizon. Font et al.
(1999) made use of a tortoise coordinate r∗ in the radial direc-
tion such that

dr∗ =
r2 + a2

r2 + a2 − 2Mr
dr, (35)

for a black-hole of mass M and spin a, so that on the computa-
tional grid, the outer event horizon is situated at r∗ = −∞. This
defines a grid that becomes ever more refined as it approaches
the horizon, without ever reaching it. Any adverse effects caused
by not performing the excision within the horizon are thus put
at a sufficiently large distance (in computational space) that their
effect on the numerical solution are minimised. The third pa-
per in the series by Font et al. (1999), however, did use Kerr-
Schild coordinates, and so used excision inside the horizon, al-
though since the setup was two-dimensional only, this was easily
achieved by using plane-polar coordinates and enforcing suitable
outgoing boundary conditions at some non-zero radius.

5.2. Perturbed Newtonian BHL accretion

Another body of work on BHL accretion is due to Ruffert (1994,
1995, 1997, 1999). These look at Newtonian BHL accretion onto
an absorbing compact object. This is similar in nature to the sit-
uation in which we have a black hole, but we expect that rela-
tivistic effects will affect the results, possibly giving a stabilising
effect. Ruffert’s simulations were done in three dimensions for a
range of accretor sizes and incident wind directions, using a nest
of Cartesian grids at various resolutions (fixed mesh refinement).
Ruffert used a fluid whose density was not uniform upstream of
the black hole, but which had a non-constant profile perpendic-
ular to the wind direction.

6. Numerical parameters

In this section we detail the specific numerical schemes that we
use, and also the grid structure that we use for the problems de-
scribed above.

6.1. Evolution methods

As outlined in Sect. 4, and from a desire to use as little com-
puting power as possible, we have decided to use the GFORCE
scheme for flux evaluation, using piecewise-linear reconstruc-
tion, with the van Leer slope-limiter limiting on primitive vari-
ables. We use the RK2 scheme for evaluating source terms, and
a CFL parameter of 0.95.

6.2. Grid setup

There are several possibilities for creating a spherical grid with
no polar singularities. The most well-known are the Yin-Yang
grid as described by Kageyama (2005), where two identical grids
mesh to form the entire sphere, and the cubed sphere, where six
identical patches are used to cover the sphere, arranged like the
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Fig. 1. Overlapping grid structure used for three-dimensional simula-
tions. It is formed from two hollow spheres. The blue sphere is not
wholly present as parts of it have been removed where it covers the
same regions as the red sphere.

sides of a cube. The latter is the approach used by Zink et al.
(2008) and adapted to cover the interior of the spherical domain
if necessary by the inclusion of a central seventh grid.

However, for our simulations, we have used the following
scheme to remove the polar singularity:

– Take two identical hollow spheres.
– Remove their polar singularities by restricting the latitudinal

coordinate to θ ∈ [θmin, θmax] = [0.18π, 0.82π].
– Rotate one sphere through π/2 about a line perpendicular to

its axis.
– Combine the two spheres to form an overlapping grid.

The resulting grid is shown in Fig. 1.
We have defined our grid so that the grid cells are always

approximately cubic. To this end, we have used a stretching
transformation that makes the grid spacing in the radial direc-
tion proportional to the radius. Further, the numbers of cells in
the φ (longitudinal) and θ (latitudinal) directions are determined
so that the cells are approximately cubic. The numbers of cells
in the φ and θ directions are defined as

φcells = 1 + 4
⌈
π

4
rinnern

⌉
,

θcells = 1 + 2
⌈
(θmax − θmin)

π

4
rinners

⌉
, (36)

where s is a number characterising the resolution of the grid,
rinner is the excision radius, and router is the outer radius. The
number of radial cells is then defined as

rcells =

⌈ s
2

krinner

⌉
, where k = ln

(
router

rinner

)
, (37)

and the transformation of the radial coordinate is defined as

r∗ = rinner exp

(
k

r − rinner

router − rinner

)
· (38)

This is a transformation from [rinner, router] to itself, and clearly
dr∗
dr ∝ r∗ as required to maintain approximately cubic cells.

Although the resolution parameter n does not have a trivial
relationship with the number of cells in the grid, the setup re-
mains such that doubling s will multiply by eight the number

Table 1. Set of radii at which we perform spherical excision, ensuring
that the excision is inside the outer horizon.

Spin a 0 0.5 0.9
r+(θ = 0, π) 2 1.866 1.436
r+(θ = π/2) 2 1.932 1.695
Excision radius 1.4 1.477 1.307

Table 2. Grid cell statistics for the resolutions used.

Resolution Low Medium High

s 35 50 60
θ cells 37 53 63
φ cells 113 161 193
r cells 69 98 118
Cells per grid 288 489 836 234 1 392 768
Total cells 576 978 1 672 468 2 785 536
Interpolation points 62 928 120 736 171 808
Δθ 5.58 × 10−2 3.86 × 10−2 3.24 × 10−2

Minimum Δφ at r = 2M 6.01 × 10−2 4.21 × 10−2 3.50 × 10−2

Maximum Δφ at r = 2M 1.12 × 10−1 7.84 × 10−2 6.56 × 10−2

Minimum Δr 5.87 × 10−2 4.08 × 10−2 3.37 × 10−2

Maximum Δr 2.77 1.96 1.63

Notes. Points removed by the overlapping grid routines are still in-
cluded in these counts. These statistics are given for the case when
a = 0. In this case, the inner grid radius is 1.4M, and the outer grid
radius is 50M. For spins a � 0, the inner radius changes as in Table 1,
thereby changing the radial spacing, but the numbers of cells in all di-
mensions and the angular resolutions remain fixed.

of cells in the grid overall. The relation with the minimum grid-
cell size is not as trivial, however, due to the non-linear mapping
from computational space onto physical space.

Although the outer horizon of a spinning black hole is not
spherical, we always use a spherical excision boundary. The el-
lipsoidal outer horizon has a circular cross-section in the equa-
torial plane, with (Cartesian) radius

√
x2 + y2 + z2 =

√
2 + 2

√
1 − a2, (39)

and the minor axis of the horizon lies on the z-axis, and corre-
sponds to a radius

√
x2 + y2 + z2 = 1 +

√
1 − a2, (40)

where we have taken the black-hole mass to be M = 1, leaving
it characterised only by its spin a.

We therefore ensure that our spherical excision boundary is
within the latter radius, so that the whole of the region (up to
a large spatial distance) outside the outer horizon is covered by
the computational grid. The excision radii for the three spins we
use are given in Table 1. The scheme used to calculate them also
ensures that the two ghost cells inside the excision boundary still
lie outside the inner horizon.

The parameters of the grids we have used for our results are
shown in Table 2. There are three resolutions, which we will
refer to as low, medium, or high, corresponding to s = 35, 50,
60 respectively.
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6.3. Mass and momentum accretion

In order to calculate the mass accretion rate Ṁ from our numer-
ical output, we note that, following Petrich et al. (1989):

∂μ(
√−gJμ) =

√−g∇μJμ = 0,

where Jμ = ρuμ is the conserved four current, (41)

and
√−g = α√γ,

where g is the four-metric, γ the three-metric, and α the lapse
function.

Then, since u0 = W/α,

M =
∫

V

√
γρWdV =

∫
V

√−gJ0dV,

so that Ṁ =
∫

V

∂

∂x0

(√
γD

)
dV =

∫
V

∂

∂x0

(√−gJ0
)

dV

=

∫
V

√−g����0∇μJμ − ∂i

(√−gJi
)

dV

= −
∫

S

√−gρui dSi

= −
∫

S
α
√
γρW

(
vi − β

i

α

)
dSi. (42)

In order to evaluate Ṁ numerically, we interpolate the integrand
at evenly spaced points in the θ and φ coordinates around a
sphere with some radius r. These are then summed, weighted
by the areas ΔSi = γi jnjΔA at those points. We use 150 points
in the θ (latitudinal) direction and 300 points in the φ (longitudi-
nal) direction. This is a sufficient number of points as we show
in Sect. 7.2.

We compute the integral in Kerr-Schild coordinates, which
differs from Font & Ibáñez, who calculated the integral in
Boyer-Lindquist coordinates. However, as the result is a scalar,
it should be the same in both coordinate systems.

In Petrich et al. (1988), however, the density ρ in the above is
replaced by n =

√
ρ, the baryon density, and so for comparisons

with their exact solution, we use this slightly altered expression
when dealing with a stiff fluid.

7. Validation of code

Although in Blakely et al. (2015) we presented validation of our
code for a flat metric in simple 1D cases, and also in 2D cases,
we have not yet shown that our algorithm is robust enough to
evolve three-dimensional flows for very long periods of time ac-
curately. Further, there may be boundary condition issues, both
at the excision boundary and at the outer boundary that need to
be rectified. We therefore seek to test our code against known
results for BHL accretion.

7.1. Exact solutions

There is a surprisingly general exact solution for wind accretion,
derived by Petrich et al. (1988). Here, an exact, stationary solu-
tion for the accretion of a stiff fluid (see Sect. 2.1) onto a Kerr
black hole in Boyer-Lindquist coordinates is presented. The so-
lution is given for a black hole of mass M, any spin a, and for

any direction of incidence of the wind, by the components of the
four-velocity uμ and the density n as follows:

n · ut = −u0
∞,

n · ur = −
(
r2
+ + a2

) u0∞
Δ
+ u∞ cos θ cos θ0

+ u∞
(
[1 + ia(r − M + ia)/Δ] × sin θ sin θ0 ei(φ−φ0−χ)

)
,

n · uθ = −uθ(r − M) sin θ cos θ0 (43)

+ u∞
[
(r − M + ia) cos θ sin θ0 ei(φ−φ0−χ)

]
,

n · uφ = −u∞�
[
(r − M + ia) sin θ sin θ0 ei(φ−φ0−χ)

]
,

n2 =
[(

r2 + a2
)

u0
∞ − a ·

(
n · uφ

)]2
/(ΣΔ)

−
[(

nuφ
)
− a sin2 θ

(
u0
∞
)]2

/
(
Σ sin2 θ

)
− (Δ/Σ)(nur)2 − (nuθ)2 /Σ,

where

χ =
1

2
√

a(M2 − a2)
ln

(
r − r−
r − r+

)
, and Σ = r2 + a2 cos2 θ. (44)

The incident direction angles θ0 and φ0 are extracted from the
vector ui, being the polar angles corresponding to the wind di-
rection, and Δ is defined in Eq. (A.6).

The mass accretion rate is then found to be

Ṁ =
4π(r2

+ + a2)n∞√
1 − v2∞

, (45)

and the stagnation point of the fluid is at

r = M

⎡⎢⎢⎢⎢⎣1 +
√

1 +
4
v∞

⎤⎥⎥⎥⎥⎦ , (46)

for the case of zero spin.
This solution is not in the correct form for our purposes,

however, as it uses Boyer-Lindquist coordinates which are sin-
gular at the horizon. We therefore use the coordinate transfor-
mation given by Eq. (A.10) to transform the velocity to the
Kerr-Schild coordinate system.

7.2. Validation results

We now present the results of applying our code to the exact so-
lution for wind accretion of Petrich et al. presented above. When
taking cross sections of the solutions, we do so along the x-axis,
since we have the wind coming in from x = −∞ by default. We
do not plot raw values of the solution at grid points, but interpo-
late 800 equally spaced points between x = ±50M. Therefore,
our plots show the correct shape of our evolved solution, but not
raw numerical values. We note that for the low resolution grid
(see Table 2), 100M/Δrmin ≈ 1700, so 800 points is certainly not
too many to use for the interpolation, at least near the horizon.

Evolving the solution of Petrich et al. will test all parts of
our code, as it requires the capturing of effects that do not have
spherical or Cartesian symmetry, so that all flux components are
tested, along with our implementation of evolution on curvilin-
ear grids. The suitability of both the inner and outer boundary
conditions will also be tested.

Unless otherwise stated, the following tests are all carried out
using a low resolution grid (see Table 2) with an inner boundary
at r = M and an outer boundary at r = 50M. We use a fluid
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Fig. 2. Comparison of the numerical and exact solutions for log ρ and
vx. The numerical solution is given by the blue plus-signs and the exact
solution is given by the green triangles.

velocity at infinity of v∞ = 0.6, so as to compare to Fig. 1 in
Petrich et al. We perform an evolution starting with a constant
density and constant velocity field, adjusted near the black-hole
to avoid unphysical states. (This is the same initial conditions as
we use for later simulations.)

A comparison of the exact and numerical solutions is shown
in Fig. 2. The differences between the exact solution and the nu-
merical solution is shown in Fig. 3. We see that although the
solutions appear fairly close except near the outer boundaries,
the relative difference between the exact and numerical solu-
tions is somewhat larger than that from evolving the exact so-
lution as initial data. We note that there are interesting effects at
the boundaries, and we believe these to be due to boundary con-
ditions not necessarily being sufficiently accurate for subsonic
flow. However, we believe that our results are sufficiently ac-
curate as mass accretion rates are reasonably accurate for the
relatively low resolution that we use.

The mass accretion rate Ṁ, shown in Fig. 4, stabilises to a
constant limit after a time of about 130M. The limit is slightly
in excess of the analytic value, exceeding it by about 4.3%. We
note that increasing the outer radius of the domain did not seem
to correct this.

We performed a simple convergence study, evaluating the
mass accretion rate at radius r = 5M, after time T = 200M,
for three resolutions, shown in Table 3. If we assume a conver-
gence relation of the form ε = ks−p, then this yields p ≈ 1

2 . This
suggests that we are slowly converging to the exact solution. We
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Fig. 3. A stiff fluid with an initial state of ρ = 1 and
√
vivi = 0.6 is

evolved to time t = 197M. We plot the difference between the exact and
evolved solutions at this time.
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Fig. 4. Mass accretion rate Ṁ resulting from evolving constant intial
conditions to time t = 200M, evaluated at radius r = 5M. The solid line
shows the exact solution, and the plus-signs the numerical solution.

Table 3. Convergence of the accretion-rate with increasing resolution
parameter s.

s 35 50 60
Ṁnum/Ṁexact 1.043 1.036 1.034

Notes. We compare our numerical results to the analytic solution.

believe that the slow convergence is connected to incorrect sub-
sonic boundary conditions at a finite radius. Applying our code
to a stiff fluid accretion onto a BH with spin a = 0.5 results in
the mass accretion rate evolving as shown in Fig. 5. We see that
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Fig. 5. Variation in time of the mass accretion rate of a stiff fluid with
velocity v∞ = 0.6 onto a Kerr black hole with spin a = 0.5. The ana-
lytic solution as derived by Petrich et al. is shown by the line, and the
numerical solution is shown by the +s.

the limiting value resulting from the evolved solution is slightly
in excess of the analytic solution, this time by about 4.1%.

7.3. Comments on validation

We have demonstrated that our code is capable of reproducing
the exact solution of Petrich et al. to a good accuracy. The fact
that the solution converges to a steady state shows that the appro-
priate quantities are conserved. It is clear that our outer bound-
ary conditions, although only defined at a finite radius, are suf-
ficiently far away not to affect the solution adversely. We note,
however, that there are some issues with the solution near the
inflow boundary conditions. We suspect that these are related to
our implementation of the outer boundary conditions for sub-
sonic flow, and this may be the cause of the poor convergence
rate illustrated above. This would require further effort to han-
dle correctly and consistently. Further, the results have been ob-
tained at a relatively low resolution, which points to the overall
accuracy of our method.

Therefore, we conclude that our numerical methods are ro-
bust and accurate, and that the results and conclusions we present
in the next section are therefore valid.

8. Validation against previous work

In order to validate our code for use in modelling Bondi-Hoyle-
Lyttleton accretion, we use one of the models suggested by Font
& Ibáñez (1998b). Specifically, we use their model UB1, which
has the parameters:

c∞ = 0.570, Γ = 4/3,M∞ = 1.5, v∞ = 0.855, ρ∞ = 1. (47)

For a more direct comparison with Font & Ibáñez (1998b), we
have scaled the mass accretion rate in the same way, by a factor

4πλsM2ρ∞
(v2∞ + c2∞)3/2

, (48)

where λs =

(
1
2

)(Γ+1)/2(Γ−1) (5 − 3Γ
4

)−(5−3Γ)/2(Γ−1)

. (49)

In Fig. 6 we show the results for running the UB1 model to time
t = 400M on a medium resolution grid (see Table 2). We have
plotted the same contour levels and used the same figure limits
as Font & Ibáñez (1998b). We evolve to steady state, as do they,
although we show our results at a later time. For the velocity

(a) Plot of log10(ρ).

(b) Plot of
√
v2, evaluated in Boyer-Lindquist coordinates, so

that the contours cannot be calculated inside the horizon. The
stagnation point is marked.

Fig. 6. Steady-state fluid for model UB1 with uniform flow and a non-
spinning black hole at time t = 400M. The medium resolution grid
was used, and the axes are scaled in terms of the accretion radius
ra = 0.92M.

plot, we have transformed into Boyer-Lindquist coordinates for
a direct comparison. The plot of density shows somewhat higher
densities than those of Font & Ibáñez. The velocity plot shows
the stagnation point at r = 5.65M as being slightly further down-
stream than that found by Font & Ibáñez at r = 5.22M, but the
contours are otherwise visually very similar.

In Fig. 7 we plot the mass accretion rate as a function of
time. As expected, it tends to a constant limit since we have
reached a steady state. Evaluating the mass accretion rate at a
smaller radius does not affect the limiting value, either, again
showing that the flow is at a steady state. However, the final rate
of Ṁ = 34.3 is somewhat higher than the final (scaled) mass
accretion rate found in Font & Ibáñez (1998b), which suggested
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Fig. 7. Mass accretion rate for the UB1 model evaluated at r = 2.5M
(circles) and r = 5M (+ signs).

Table 4. Effect of θw on mass accretion rate for non-spinning black hole,
at time t = 300M, evaluated at radius r = 5M.

θw Ṁ
0 34.26
π/6 34.19
π/3 34.19
π/2 34.28

Notes. The low resolution grid was used.

it to be Ṁ = 27.0. The difference in the evolution of the mass
accretion rates (ours shows a peak at time t ≈ 10M, while Font
& Ibáñez (1998b) show a monotonic increase to the final limit)
is explained by the difference in coordinate systems, and hence
initial conditions, as we specified initial velocity to be constant
in Kerr-Schild coordinates, as opposed to Font & Ibáñez’s use of
Boyer-Lindquist coordinates. The difference in the final mass ac-
cretion rate may be due to either their slightly lower resolution,
or a difference in the far-field boundary conditions.

8.1. Testing spherical symmetry

Although our physical domain is spherical, the grids do not have
spherical symmetry, due to the overlapping grid structure (see
Fig. 1). In Table 4, we show the effect of θw, the incident an-
gle of the inflowing fluid, on the mass accretion rate for a non-
spinning black-hole when using the low resolution grid. In the-
ory, of course, there should be no difference due to the symmetry
of the configuration. We do, however, see a small difference in
the accretion rates. The fact that the results for θw = 0, π/2 and
θw = π/6, π/3 are very similar, with differences at most 0.3%,
suggests that the errors are either linked to the angle with a
Cartesian axis, or with the interpolation boundary at θw = π/4.

The effects we have noticed here, though, are relatively
small. We therefore conclude that we can safely use the low res-
olution grid to obtain good results in as little computational time
as possible.

9. Perturbed accretion onto a spinning BH

We have performed a comprehensive analysis of how spin and
density perturbations affect the accretion. However, for reasons
of space, we shall publish this full investigation separately, and
here give just a single result from our study.

We initialise our simulation with the following density pro-
file upstream (the flow direction is from x = −∞)

ρ∞ = ρ0

(
1 − 1

2
tanh

[
2ερ

y

RA

])
, (50)

where the accretion radius is defined to be

RA =
2GM

v2
0

, (51)

and we set parameters

M = 1 , a = 0.9 , ερ = 0.2 , ρ0 = 1, (52)

and other fluid parameters from the UB1 model. Note that the
perturbed density profile is maintained by explicitly setting the
boundary conditions at all times.

In Fig. 8 we show the final steady-state density and velocity
cross-sections of the accretion problem. The fluid accretes from
the left, and the black hole’s horizon is shown as a dashed line,
and it is spinning about an axis perpendicular to the page, and in
an anti-clockwise direction.

We see that a shock-cone has formed downstream of the
black hole. Due to the effect of the black hole’s spin, the points
where the shock-cone attaches to the horizon have been dragged
round. This feature was also found by Font & Ibáñez in their
study, that the effect of the spin did not extend to spatial infin-
ity, but was restricted to the immediate vicinity of the horizon.
However, the effect of the perturbed density is to pull the shock-
cone further round in the anti-clockwise direction. The reason
that it does so is that the fluid in the upper half of the domain is
at a lower density than that in the lower half. Therefore, the fluid
from the lower half has a larger momentum, and can therefore
penetrate into the upper half of the domain before being slowed
sufficiently to fall into the black hole.

We also see, in both the density and velocity plots, evidence
of the shock-cone being split into two by a region of lower den-
sity. This feature can also be seen in the work on perturbed ac-
cretion of Ruffert (1999), again providing strong evidence that
our simulations are consistent with previous work.

10. Accretion onto a BBH system

In order to demonstrate the generality of our approach in using
overlapping grids, we present an example of accretion onto a
binary black-hole system, represented by the Brill-Lindquist co-
ordinate system. We note that we do not yet have the facility to
evolve the metric within our code, so that the black holes remain
stationary.

Since the time for which we evolve this setup is several times
longer than it would take for the BBH system to inspiral and
collapse to a single black-hole, we do not claim that these results
have any physical relevance. However, they do demonstrate how
straightforward it is for our code to deal with multiple black-
holes and excise multiple singularities.

10.1. Simulation setup

For our flow parameters, we use adiabatic index Γ = 4/3,
Mach numberM = 1.5, and asymptotic upstream sound speed
c∞ = 0.1. Font & Ibáñez (1998b) show that when accreting onto
a single black hole, this flow results in a wide shock-cone which
is almost detached from the upwind side of the horizon.
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(a) Equally spaced contours of log ρ.

(b) Velocity contours evaluated in Boyer-Lindquist
coordinates.

Fig. 8. Contour plots of density and velocity for a supersonic flow with
density perturbed by ερ = 0.2 past a black hole with spin a = 0.9 and
flow parameters given by model UB1. The plots are evaluated at time
t = 300M, and the axes are in units of M.

We specify the black holes to have unit mass and to be posi-
tioned at (0, ±5, 0), with the flow coming along the x-axis. We
evolve the flow to a time t = 2000M, and note that the time to
merger of a pair of equal mass black holes at this separation is
somewhat smaller, at around 250M, than the simulation time.

We used the symmetric grid setup shown in Fig. 9. Here,
we have used two small pairs of grids (the pairs do not overlap
each other) to excise the two black holes, covered them with a
Cartesian grid, and finally encased the Cartesian grid in a third
pair of spherical grids, centred at the origin, and extending out
to 50M. Portions of the (green) Cartesian grid have been re-
moved in order to allow the two excision spheres to be captured
smoothly. The outer pair of spherical grids extend into the in-
ner black hole grids; this should probably be avoided in general,
to avoid interpolation between mismatched grids, but removing
this would require the Cartesian grid to be made much larger,
resulting in a larger number of grid cells.

Fig. 9. Cross-section of the grid structure used for the binary black
hole simulation, in the z = 0 plane. The two black holes are centred
at (0, ±5, 0). Two pairs of spherical grids (black and cyan, and blue
and magenta) are used to capture the excision boundaries of the black
holes, a Cartesian grid (green) surrounds them, and a third pair of spher-
ical grids (blue and red) is used to capture the outer spatial boundary
at 50M. This uses 4 195 765 grid points in total and 500 516 interpola-
tion points.

Fig. 10. Result of a fluid flowing onto a binary black hole system, with
the metric kept stationary. There are two black holes with unit mass
at (0, ±5, 0) in the Brill-Lindquist metric. The fluid upstream of the
binary system has adiabatic index Γ = 4/3, Mach numberM = 1.5, and
asymptotic sound speed c∞ = 0.1. We show the density, with contours
evenly spaced between ρ = 0 and ρ = 21.

The two pairs of grids covering the black holes have inner
radii 1.4M and outer radii 4M so that they do not overlap. The
Cartesian grid covers the region −10M ≤ x, y, z ≤ 10M, and the
outer pair of grids have inner radius 6M and outer radius 50M.
This grid setup is symmetric with respect to the two black holes.

10.2. Results

A three-dimensional view of the resulting flow at t = 2000M is
shown in Fig. 10. We see that a wide shock-cone has developed,
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(a) log ρ

(b) Total velocity
√
v2 calculated using the Brill-Lindquist

metric

Fig. 11. Contour plots for accretion onto a system of two unit-mass
black holes at (0, ±5, 0) using the Brill-Lindquist metric. The fluid state
upstream is given byM∞ = 1.5, c∞ = 0.1, ρ∞ = 1, and Γ = 4/3.

although it is now detached from both of the black hole hori-
zons. There are regions of high density to either side of the gap
between the holes, as well as some regions of lower density on
the outside edges of the horizons.

Some more quantitative results are shown in Fig. 11. The
density plot shows the shock cone forming upstream of the black
holes, with density increasing towards them. The density also in-
creases as the black holes are approached from the downstream
direction, and the region of highest density is located symmetri-
cally between the black holes, slightly downstream of their cen-
tres. The velocity plot also shows the shock-cone, and that the
flow decelerates across it. We see regions of low velocity both
downstream and upstream of the black holes.

In Fig. 12 we show the rate at which mass accretes onto the
two black holes, evaluated on a sphere of radius r = 10M, i.e. en-
closing both black holes. The simulation has clearly not reached
a steady state even at t = 2000M.

0 500 1000 1500 2000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

t/M

Ṁ

Fig. 12. Mass accretion rate for the binary black hole simulation. This
was calculated on a sphere radius 10M.

10.3. Comments

We have shown that our methodology is capable of being applied
to a problem where the grid setup is not trivial, and requires the
features of Overture to generate the interpolation correctly. If
we were to apply our algorithm to the case of inspiralling black
holes, we could generate two moving pairs of spherical grids for
the two black holes, and then a Cartesian grid that adapted itself
to only just contain the two small spherical grids. The outer pair
of far-field grids could, however, remain fixed.

11. Conclusions

In this paper, we have extended our previous work for SRHD
to GRHD on curvilinear grids. We have given details of how
our schemes have to be adapted to deal with a non-flat space-
time metric, and presented simulations validating our approach
by comparison with an exact solution of wind accretion onto a
black hole. We have also compared our code against previous
work and shown that our results are qualitatively consistent, al-
though our quantitative results show some discrepancy.

If we were to include evolution of the metric within our
code, we would have the added issue that the singularities could
move. However, it would be possible to detect apparent horizons
to determine their locations. From these, we could dynamically
generate spherical grids centred on the singularities, and inter-
polate the solution between grid systems. Overture has the ca-
pability to perform this interpolation for moving grid systems.
Alternatively, we could solve the equations in the moving grid
frame.
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Appendix A: Black-hole metrics

In this Appendix we give details of the black-hole metrics we
have used in our simulations. These need to be written in a
Cartesian coordinate system and, since this is not often given
explicitly in GR references, we give full details here for clarity.
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A.1. Kerr-Schild coordinates

The most general black hole we will consider here is the Kerr
black hole, with spin, but no charge. The mass of the black hole
is M and its dimensionless spin parameter is a where |a| < 1.
The metric can be expressed in Cartesian coordinates as follows
(Kelly 2004; Moreno et al. 2002):

gμν = ημν − 2Vlμlν,

α =
1√

1 − 2V
, βi =

2V
1 − 2V

li,

γi j = δi j − 2Vlil j,

Ki j = α
(
− li V, j − l j V,i − V li, j − V l j,i

+ 2V2
(
li lm l j,m + l j lm li,m

)
+ 2V li l j lm V,m

)
,

where V = − MR3

R4 + M2a2z2
,

li = li =
(
− Rx + aMy

R2 + M2a2
,− Ry − aMx

R2 + M2a2
,− z

R

)
,

and R2 =
1
2

(
‖x‖2 − M2a2 +

√
(‖x‖2 − M2a2)2 + 4M2a2z2

)
,(A.1)

and this is the form that we use in our code.
There is a more standard form of the metric, in Kerr-Schild

spherical coordinates which are defined by Boyer & Lindquist
(1967)

x = (r cosφ − a sin φ) sin θ

≡
√

r2 + a2 sin θ cos
(
φ − tan−1 a

r

)
,

y = (r sinφ + a cosφ) sin θ

≡
√

r2 + a2 sin θ sin
(
φ − tan−1 a

r

)
,

z = r cos θ,

(A.2)

where the 3 + 1 split of the metric now takes the form

γrr = 1 +
2Mr
R2

, γrφ = −Ma sin2 θ

(
1 +

2Mr
R2

)
, γθθ = R2,

γφφ =

(
r2 + M2a2 +

2M3ra2

R2
sin2 θ

)
sin2 θ,

α2 =
1

1 + 2Mr/R2
, βr =

2Mr
R2

α2. (A.3)

The space-time has an outer horizon at r = r+ and an inner hori-
zon at r = r−, where

r± = M
(
1 ±
√

1 − a2
)
. (A.4)

A.2. Boyer-Lindquist coordinates

Although we use Kerr-Schild coordinates in all of our simula-
tions, we note that previous work in this area has used Boyer-
Lindquist coordinates, which we therefore present here as we
shall need to use them for comparative purposes.

A black-hole metric can be written in Boyer-Lindquist coor-
dinates, where

x =
√

r2 + a2 sin θ cosφ,

y =
√

r2 + a2 sin θ sin φ,

z = r cos θ,

(A.5)

which differ from Kerr-Schild spherical coordinates only in the φ
coordinate when a � 0. In these coordinates, the metric becomes
(again, see Boyer & Lindquist 1967 and Kelly 2004)

γrr =
R2

Δ
, γθθ = R2 , γφφ =

Ω

R2
sin2 θ,

α2 =
ΔR2

Ω
, βφ = −2aMr

Ω
,

where Δ = r2 + a2 − 2Mr,

and Ω = R2(r2 + a2) + 2M3a2r sin2 θ.

(A.6)

This form of the metric has coordinate singularities whereΔ = 0,
corresponding to the outer and inner horizons. The metric there-
fore does not extend continuously to inside the event horizon of
the black hole, in the same way as the Schwarzschild coordi-
nates, which are a specialization of the Boyer-Lindquist coordi-
nates for a = 0.

A.3. Transformation between Kerr-Schild
and Boyer-Lindquist systems

We shall need to transform velocity vectors between the
Kerr-Schild and Boyer-Lindquist coordinate systems. The trans-
formations between Cartesian and spherical coordinate systems
are achieved via the transformation tensors

hi
j =

∂ri

∂x j
and (h−1)i

j =
∂x j

∂ri
, (A.7)

where ri are the spherical coordinates (given by Eq. (A.2) or
Eq. (A.5)) and x j are the Cartesian coordinates. One-tensors
are then transformed from the Cartesian basis to the spherical
basis by

vi
sph = hi

jv
j
Cart, and w

sph
i = (h−1)i

jwCart
j , (A.8)

and from the spherical basis to the Cartesian basis by

vi
Cart = (h−1) j

iv
j
sph, and wCart

i = hi
jw

sph
i . (A.9)

The transformation between Kerr-Schild and Boyer-Lindquist
spherical coordinates is then given by Font et al. (1999) as
follows:

vr
BL = Ψ

(
vr

KS −
βr

KS

αKS

)
vθBL = Ψ v

θ
KS

v
φ
BL = Ψ

(
v
φ
KS −

Ma
Δ
vr

KS

)
− Ψ

⎛⎜⎜⎜⎜⎜⎝ β
φ
KS

αKS
− Ma
Δ

βr
KS

αKS

⎞⎟⎟⎟⎟⎟⎠ + β
φ
BL

αBL
,

where Ψ =
WKS

WBL
=

(
αBL

αKS
− 2Mr
Δ

αBL

(
vr

KS −
βr

KS

αKS

))−1

,

(A.10)

where the subscripts KS and BL refer to variables expressed in
Kerr-Schild and Boyer-Lindquist spherical coordinates, respec-
tively, and where vi

KS, vi
BL are the components of the Eulerian

velocity, related to the proper velocity by Eq. (7). Note that Ψ
here is the reciprocal of that defined in Font et al. (1999); how-
ever, the expressions given here are correct.
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A.4. Binary black holes

In order to demonstrate the generality of our approach to the
computational grid structure, we shall demonstrate the evolution
of a fluid on a metric containing two singularities. Although we
shall not evolve the metric, rendering the simulation physically
unrealistic, this will demonstrate the ability of our code to deal
with complex grid structures.

We use Brill-Lindquist initial data, which encapsulates two
(non-spinning) black holes with arbitrary masses m1 and m2, at
positions x1 and x2. The metric is then given by Jaranowski &
Schäfer (2002):

ds2 = −
(
1 − ψ/8
1 + φ/2

)2

dt2 + (1 + φ/8)4
(
dx2 + dy2 + dz2

)
, (A.11)

where

φ = 8

(
α1

r1
+
α2

r2

)
, ψ = 8

(
β1

r1
+
β2

r2

)
, (A.12)

α1 =

−1
4

(2r12 + m2 − m1)

+
r12

4

√
4 +

4
r12

(m1 + m2) +

(
m1 − m2

r12

)2

,

α2 =

−1
4

(2r12 + m1 − m2)

+
r12

4

√
4 +

4
r12

(m1 + m2) +

(
m1 − m2

r12

)2

,

β1 = α1
r12 + α1 − α2

r12 + α1 + α2
, β2 = α2

r12 + α2 − α1

r12 + α1 + α2
,

r12 = ‖x1 − x2‖ , r1 = ‖x − x1‖, r2 = ‖x − x2‖. (A.13)

The extrinsic curvature Ki j is zero, as is the shift vector βi. This
data, when evolved, would rise to a head-on collision of two
BHs. However, we reiterate that we do not evolve the metric in
our code.
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