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Abstract

■ Cognitive control has traditionally been associated with
pFC based on observations of deficits in patients with frontal
lesions. However, evidence from patients with Parkinson dis-
ease indicates that subcortical regions also contribute to control
under certain conditions. We scanned 17 healthy volunteers
while they performed a task-switching paradigm that pre-
viously dissociated performance deficits arising from frontal
lesions in comparison with Parkinson disease, as a function
of the abstraction of the rules that are switched. From a multi-
voxel pattern analysis by Gaussian Process Classification, we
then estimated the forward (generative) model to infer regional

patterns of activity that predict Switch/Repeat behavior between
rule conditions. At 1000 permutations, Switch/Repeat classifi-
cation accuracy for concrete rules was significant in the BG,
but at chance in the frontal lobe. The inverse pattern was ob-
tained for abstract rules, whereby the conditions were suc-
cessfully discriminated in the frontal lobe but not in the BG.
This double dissociation highlights the difference between
cortical and subcortical contributions to cognitive control and
demonstrates the utility of multivariate approaches in investi-
gations of functions that rely on distributed and overlapping
neural substrates. ■

INTRODUCTION

Since the inception of cybernetics, the application of
control theory to biological systems (Wiener, 1949), neuro-
science and medicine have identified control as a dimen-
sion of cognition that is critical to adaptive behavior in
changing environments. Control deficits have tradition-
ally been associated with damage to the frontal lobe, as a
result of disease or trauma, based on demonstrations of
rule-shifting impairments in patients with frontal lesions
(Reitan & Wolfson, 1994; Stuss, Eskes, & Foster, 1994;
Stuss & Benson, 1986; Benton, 1968). Feedback processes
are a key characteristic of control and are typified in re-
inforcement learning as well as rule or policy discovery
(e.g., Frank & Badre, 2012). However, to isolate control,
it is necessary to unconfound it from learning.

Task-switching paradigms systematically investigate
transitions between operational states or task sets, which
can be defined as online representations of stimulus–
response mappings governed by well-learned rules. From
this perspective, task switching lends itself to the operatio-
nalization of cognitive control (Allport & Wylie, 2000;
Rogers & Monsell, 1995), which is mirrored in the switch
cost, embodied in the contrast between task switches and
task repetitions. The switch cost theoretically controls for
task-specific cognitive components, leaving a pure index
of transition that reflects control. Studies on the neural
implementation of control have used neuropsychology

and neuroimaging to isolate its neural locus in terms of a
region or network. In this paper, we challenge the
orthodox view that the frontal lobe is necessary for the
implementation of control. We use neuroimaging in a
design that originates in neuropsychological dissociations
(Kehagia, Barker, & Robbins, 2014), indicating that
control can be subserved by the BG or frontal regions,
depending on the nature of the rules that are switched.
Neuropsychological studies addressing the effects of

brain damage and disease on task switching present an
inconsistent picture. Patients with frontal lesions exhibit
switching deficits only under certain conditions: Switch
costs are either generally inflated, indicating inefficiency
in the case of left-sided lesions (Mayr, Diedrichsen, Ivry,
& Keele, 2006; Aron, Monsell, Sahakian, & Robbins, 2004;
Keele & Rafal, 2000; Rogers et al., 1998), or inflated only
when control over irrelevant responses is required fol-
lowing right-sided lesions (Mayr et al., 2006; Aron et al.,
2004). Other studies however have demonstrated intact
switching in these patients when concrete attentional
rules are employed (Kehagia et al., 2014). Preserved
switching performance in the face of frontal damage
seen with such rules is observed after left (Mecklinger,
von Cramon, Springer, & Matthes-von Cramon, 1999)
or right lesions (Rogers et al., 1998). Moreover, patients
with neuropsychiatric disorders that compromise fronto-
striatal function such as schizophrenia or obsessive-
compulsive disorder exhibit intact task switching, despite
deficits on other tasks associated with frontal lobe damage
(Channon, Gunning, Frankl, & Robertson, 2006; Karayanidis
et al., 2006; Moritz, Hubner, & Kluwe, 2004; Manoach
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et al., 2002). Similarly, neurodegenerative disorders that
impact on the same circuitry such as Huntington dis-
ease (Middleton & Strick, 2000; Robbins & Rogers, 2000;
Alexander, DeLong, & Strick, 1986) and Parkinson disease
(PD) (e.g., Kehagia, Cools, Barker, & Robbins, 2009; Aron
et al., 2003; Cools, Barker, Sahakian, & Robbins, 2003)
also reveal a mixed picture of intact and impaired control.
To understand these impairment patterns and tease

apart the cortical and subcortical contributions to cog-
nitive control, we previously investigated the compara-
tive neuropsychology of patients with frontal lesions
and PD (Kehagia et al., 2014). We compared a condition
in which control was implemented through a concrete
rule, switching between deterministic rules pertaining
to stimuli, with a condition in which control was imple-
mented through abstract judgments of a stimulus prop-
erty. The demands of switching between concrete and
abstract rules highlight differences in terms of cognitive
operations, which have significant implications for the
organization of control hierarchies: Concrete rules (if
the target is on the left, press left key; if it is on the right,
press the right key) dictate deterministic responses to
stimuli, whereas abstract rules (if the target is an odd
number, press the left key; if it is even, press the right
key) engender categorical responses to classes of stimuli,
enabling response generalization. Crucially, the differ-
ence between these rules is not one of monotonic diffi-
culty, where additional load is placed on the same
cognitive operation; instead, the new, well-characterized
cognitive component of activating a new set of stimulus–
response mappings is introduced when switching be-
tween abstract rules (see also, Kehagia et al., 2009).
Patients with frontal lesions were impaired only when
switching between abstract but not concrete rules. PD
patients demonstrated abstract switching deficits only
when their disease had progressed (Hoehn & Yahr
Stage II), but not when it was in its earliest stages with
predominantly subcortical pathology (Hoehn & Yahr
Stage I). This neuropsychological dissociation holds also
at the neurochemical level: dopaminergic manipulations
in PD affect concrete (e.g., Cools, Barker, Sahakian, &
Robbins, 2001) but not abstract switches (Kehagia et al.,
2009), or switches between abstract stimulus dimensions
(for a review, see Kehagia, Murray, & Robbins, 2010). Thus,
rule abstraction is a useful tool in systematizing disparate
findings and characterizing possible differential roles of
frontal regions and the BG in cognitive control.
This issue of cortical and subcortical contributions to

cognitive control or flexibility as a function of rule ab-
straction has not yet been addressed in a neuroimaging
context. Distributed, left-lateralized activations in fronto-
parietal areas are often reported for the critical switch
versus repeat contrast, which include lateral pFC, insula,
anterior cingulate, SMA, pre-SMA (e.g., Badre & Wagner,
2006; Slagter et al., 2006; Yeung, Nystrom, Aronson, &
Cohen, 2006; Brass, Ullsperger, Knoesche, von Cramon, &
Phillips, 2005; Ruge et al., 2005; Brass & von Cramon, 2004;

Braver, Reynolds, & Donaldson, 2003; Rushworth, Hadland,
Paus, & Sipila, 2002; Rushworth, Passingham, & Nobre,
2002), and, sometimes, their subcortical connections to
the striatum (Crone, Wendelken, Donohue, & Bunge,
2006; Woodward, Ruff, & Ngan, 2006; Barber & Carter,
2005). Attempts to reconcile the precise contributions of
different regions to discrete aspects of control have focused
on cortical regions: for example, a rostrocaudal gradient of
frontoparietal activation has been proposed to reflect de-
grees of representational abstraction in the rules that are
switched (Kim, Johnson, Cilles, & Gold, 2011). Alternatively,
the inferior frontal junction and posterior parietal cortex
have been promoted as a common locus of control irre-
spective of abstraction (Kim, Cilles, Johnson, & Gold, 2012).
However, the frontostriatal components of control have
yet to be dissociated.

Given the intrinsic anatomical and functional complex-
ity of frontal and subcortical regions during cognitive
control and the former’s concomitant, frequently ob-
served association with variable task-related information,
we adopted a multivoxel pattern analysis (MVPA) to re-
solve voxel-wise spatial patterns by accounting for sim-
ultaneous regional activation patterns. There is good
agreement that the activity of one voxel often represents
a mixed functionality, confounding the interpretation of
BOLD signal changes in voxel-wise patterns. For example,
monkey electrophysiology relates activation of frontal
and parietal neurons to various task components and
rules (Sigala, Kusunoki, Nimmo-Smith, Gaffan, & Duncan,
2008; Muhammad, Wallis, & Miller, 2006; Stoet & Snyder,
2004; Niki & Watanabe, 1976). In human neuroimaging,
MVPA is predicated on acknowledging variation in neuro-
nal function across or within voxels (Haynes & Rees, 2005),
because domain-specific subpopulations of neurons within
an area associated with different task-related representa-
tions (Chiu & Yantis, 2009) will be included as a mixture
in any given voxel. With MVPA, it is possible to exploit
the aggregation of otherwise weak information across
multiple locations, which, only when considered in tan-
dem but not individually, may be meaningfully related
to cognition. This is achieved by addressing differences
in terms of the activation patterns evoked by different
events within the whole brain or specific regions. Inference
can proceed at the individual subject level as well as at the
group level. MVPA has been used to “decode” the nature of
rule representation in the brain, specifically in regions such
as the frontal cortex (e.g., Reverberi, Gorgen, & Haynes,
2012a) and even implicated the striatum in the represen-
tation of abstract rules (Reverberi, Gorgen, & Haynes,
2012b). This is a related, but different, question to the
one addressed in the current investigation on cognitive
control. We sought to interrogate not the representa-
tional content of the frontal lobes and BG in relation to
rules per se but rather the implementation of control over
these by addressing how each of these regions contributes
to flexible behavior in the context of different, well-learned
rules.
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We extend our previous neuropsychological findings
to the neuroimaging domain and interrogate the exis-
tence of a double dissociation in control over abstract
and concrete rules, as dissociable processes subserved
by frontal and subcortical regions using MVPA. Gaussian
process classifiers (GPCs) are a robust Bayesian approach
to MVPA. By training GPCs to classify individual partici-
pants’ patterns of frontal lobe and BG voxel activity for
switches and repeats, across abstract and concrete rules,
we elicited the neural substrates of cognitive control dis-
tributed over these regions. Classification was predicted
to be at chance level in both rule conditions in the tem-
poral lobe, which was selected as a region with no central
involvement in control.

METHODS

Participants

Eighteen right-handed healthy volunteers (mean age =
25.2 years, range = 23–33 years, nine women) completed
a single testing session. Data from one participant were
excluded from analysis because of excessive head move-
ment (>3 mm). Exclusion criteria were a history of neuro-
logical or psychiatric disease, drug abuse, and concurrent
medication. All participants gave written informed consent
and received monetary compensation of £20. The protocol
was approved by the Cambridgeshire research ethics com-
mittee (LREC 07/H0311/213), and the study was performed
in accordance with the ethical standards laid down in the
1964 Declaration of Helsinki.

fMRI Task

The task was run on E-Prime 2.0 (Psychology Tools, Inc.,
Pittsburgh, PA) during a single EPI session of 25 min. There
were eight blocks in total: four blocks were governed by
abstract categorization rules and four blocks were gov-
erned by concrete attentional rules. An instruction screen
at the start of each block informed participants whether
they would be switching between abstract categorizations
or concrete rules, with a brief summary of the stimulus and
response mappings for each task set. On each trial, a digit
(1, 2, 3, 4, 6, 7, 8, or 9) and a letter (A, E, I, U, C, F, T, or X)
were presented as a pair in the centre of the screen. Within
each rule block, participants were required to switch be-
tween two tasks: one was based on the letter, and one
was based on the numerical digit. Each block comprised
49 trials of these pseudorandomly alternating tasks, yield-
ing a balanced mix of task Switch and task Repeat trials.

The task on each trial was cued by the shape surround-
ing the character pair. To unconfound task switching
from cue switching, we employed two cues to signal each
task. An angular shape (a square or a diamond) cued the
digit task, and a curved shape (a vertical or a horizontal
ellipse) cued the letter task (Figure 1). For example, with-
in the pseudorandomized task sequence of any given

block, the digit task could be cued on one trial with a
square and on another with a diamond, and similarly
for the letter task using a vertical and a horizontal ellipse.
Whether a given trial is classed as a Repeat or a Switch is
a function of the task that preceded it: In a sequence of
BAA, the first Task A (digit) trial is a Switch, as it imme-
diately follows a Task B (letter) trial, and the second is a
Repeat, as it follows a trial of the same task kind. By def-
inition, the cue always also switches on a Switch trial,
confounding this switch of task with a switch of cue, a
controversial issue in the task-switching literature
(Schneider & Logan, 2005). By assigning one of two cues
to each task, it is possible to generate Repeat trials where
the cue has also switched, which can then be legitimately
compared to Switch trials (where the cue has also
switched) to yield a measure of task-switching cost un-
confounded by cue switching.
In the concrete rule condition, the stimuli were pre-

sented side by side. Participants switched between two
tasks in which they were instructed to respond to the lo-
cation of the digit (Task A) or letter (Task B), using the
index (L) and middle (R) finger of their right hand, in a
spatially compatible manner to the target, which could be
on the left or right. We define concrete attentional rules
(“if the stimulus is on the left/right, press the left/right key”)

Figure 1. (A) Table representing rule conditions, tasks, and cue
mappings. (B) Example of a trial sequence in the concrete rule condition,
where Task A (locate the number) repeats twice and a cue switch occurs
on the second repeat, before switching to Task B (locate the letter).
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as comprising 1:1, deterministic responses to stimuli: In
the two localization tasks, a digit on the left maps to left
button press, as does a letter on the left. Thus, on a switch
of task, the same deterministic relationship between stimuli
and responses (1:1) applies to different stimulus sets after,
for example, a task switch from letters to digits has taken
place.
In the Abstract rule condition, participants performed

a numeric judgment task for digits (Task A is the digit
greater or less than 5) and a grammatical judgment task
for letters (Task B is the letter a vowel or consonant). To
minimize response selection interference or the Simon
effect (Simon, 1969), stimuli were presented one above
the other. “Less than 5” and “vowel” responses were
mapped to the index finger of the right hand, and
“greater than 5” and “consonant” were mapped to the
middle finger. In what we define as abstract rules, an
n:1 stimulus–response correspondence applies to both
task sets as multiple stimuli map to a single response
(e.g., numbers 1–4 map to “less than 5,” or A, E, I, U
map to “vowel”). Switching between abstract rules en-
genders an equivalent stimulus set reconfiguration, but
also a new set of responses, such that the left/right key
press acquires a new meaning (from “vowel” to “less than
five”). Switching between abstract rule-governed tasks en-
genders different cognitive and neural processes given the
difference in the degree of response set reconfiguration.
At the beginning of each trial, the cue was presented

on the screen, and 300 msec later the stimulus pair ap-
peared within the cue. The stimulus was cleared as soon
as a response was made or after a maximum of 2000 msec.
Following the response, a central fixation cross ap-
peared during a variable intertrial interval of 1700, 1825,
or 1950 msec. No feedback was given.
The stimulus sequence was permuted to achieve com-

plete counterbalancing of all stimulus types within and
between conditions and blocks, avoiding repetition of
stimuli on successive trials. Within each rule condition,
trials were presented in a fixed pseudorandom order to
ensure that (a) a task switch, a task repetition with a cue
switch, and a task repetition with a cue repetition were
equally probable; (b) target and distracter stimuli were
counterbalanced across these conditions but did not re-
peat over consecutive trials; (c) cues were counter-
balanced across conditions; and (d) response repetitions
and response switches were counterbalanced across
switch and repeat trials within each task type. Within these
constraints, a new trial sequence was generated using
Matlab 7.1 (www.mathworks.com) for each participant.
The cue–task and target–response mappings were counter-
balanced across participants who were trained in a practice
session within 3 days of the fMRI session.

fMRI Acquisition

Participants were scanned at the Medical Research Council
Cognition and Brain Sciences Unit, UK, on a 3-T Tim Trio

Magnetic Resonance Imaging scanner (Siemens, Berlin,
Germany) with an eight-channel head coil. Whole-brain
data were acquired with echo-planar T2-weighted imaging
(EPI), sensitive to BOLD signal contrast (36 sequential
oblique axial 3-mm slices, distance factor = 25%; repetition
time = 2000 msec; echo time = 30 msec; flip angle = 78°;
field of view = 192 mm; in-plane resolution = 3 × 3 ×
3 mm). Stimuli were back-projected onto a mirror on the
head coil. Responses were made using the index or middle
finger on a button box. High-resolution MPRAGE ana-
tomical images (repetition time = 2250 msec, echo time =
2.99 msec, flip angle = 9°, inversion time 900 msec, 256 ×
256 × 192 isotropic 1 mm voxels) were collected for ana-
tomical localization and coregistration.

Behavioral Data Analyses

RTs for error and post-error trials were excluded. Error
rates were arcsin-transformed, as the variance was pro-
portional to the mean (Howell, 1997). RT and error rates
were subjected to repeated measures ANOVA, with Rule
(Abstract vs. Concrete) and Switch (Repeat vs. Switch) as
the within-subject factors. Greenhouse–Geisser correc-
tions were applied to adjust for non-sphericity where
necessary.

fMRI Data Analyses

Data were preprocessed using SPM8 (www.fil.ion.ucl.ac.
uk/spm/). The first six volumes were discarded to allow
for T1-equilibrium effects. The EPI images were realigned
to the first scan by rigid body transformations to correct
for head movement and sinc interpolated in time to cor-
rect for slice time differences. EPI and structural images
were coregistered and then normalized to the T1 stan-
dard template in MNI space (Montreal Neurological Insti-
tute International Consortium for Brain Mapping) and
smoothed with an 8-mm FWHM Gaussian kernel, as a
compromise between the larger and smaller kernels typ-
ically used for the pFC and BG in neuroimaging studies.
Low-frequency signal drift was removed using a high-pass
filter (cutoff 128 sec).

To model the task, we implemented a variable epoch
model within the general linearmodel framework (Henson,
2007), which is widely used for designs including com-
plex modulation of task conditions with both univariate
(Crittenden & Duncan, 2014) and multivariate (Woolgar,
Hampshire, Thompson, & Duncan, 2011) frameworks.
This models each trial with a boxcar epoch function whose
duration is equal to the RT on that trial, which assumes a
constant hemodynamic response at the voxel level
throughout the time course of the task. Because it takes
into account RT variability, variable epoch modeling en-
hances statistical power and improves the interpretabil-
ity of changes in neural activation (Grinband, Wager,
Lindquist, Ferrera, & Hirsch, 2008). Moreover, explicitly
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modeling variables such as individual RT differences is
one way of removing within condition variance to max-
imize sensitivity in multivariate analyses (Haynes, 2015).

Each experimental regressor in the general linear
model was constructed using RT as trial duration for
task Switch and task Repeat (only those which also con-
tained a cue switch were included) in the two rule con-
ditions. Motion parameters were included as nuisance
covariates. The first trial in each block and errors were
modeled separately. Stimulus events were convolved
with the canonical hemodynamic response function.

Classifier Model and Training

Individual participants’ beta maps for each of the four
experimental regressors (Switch and Repeat in the
Abstract and Concrete rule conditions) were used as in-
puts to different GPCs for the abstract and concrete rule
conditions, respectively (see below). Gaussian Process
Classification is a Bayesian method that learns a mapping
between a multivariate input, in this case, beta maps, and
a discrete output—a class label of interest, in this case,
“Switch” versus “Repeat.” For a detailed exposition of
GPCs, we refer the reader to Rasmussen and Williams
(2006). GPC has been well validated in neuroimaging
(see Schrouff, Kusse, Wehenkel, Maquet, & Phillips,
2012; Pereira, Mitchell, & Botvinick, 2009). An important
consideration for any multivariate modeling where the
number of “inputs” to the model (i.e., the size of the beta
maps) is orders of magnitude larger than the number of
observations (i.e., participants) is “overfitting.” When
learning a classification mapping, the model is trained
on a subset of the data and then validated using a
“hold-out” set to ensure the learned model can general-
ize beyond the training set, ensuring that a robust model
of the underlying joint distribution of inputs and outputs
has been acquired rather than simply “memorizing” the
data. An advantage of GPCs is that they incorporate reg-
ularization that prevents overfitting by virtue of their
Bayesian foundations. Given the limited number of par-
ticipants, the GPCs were also trained using leave-one-out
cross-validation (LOOCV), whereby the data of all but
one participant (i.e., a hold-out set of one) are used to
train the model and the data from this remaining single
participant are used to independently validate the model’s
classification performance. This method results in more
conservative estimates of classifier performance (Hastie,
Tibshirani, & Friedman, 2003) than more liberal ap-
proaches such as k-fold cross-validation.

GPCs were implemented using a linear kernel within the
PIPR toolbox (www.kcl.ac.uk/ioppn/depts/neuroimaging/
research/imaginganalysis/Software/PIPR.aspx), which
uses the GPML library implementation of GPCs (www.
GaussianProcess.org/gpml/code). To assess the statistical
significance of classification performance, permutation
testing was used where the LOOCV training procedure
was repeated 1000 times, with randomly permuted training

labels (Switch vs. Repeat) to generate a null distribution
for testing the hypothesis that the Switch and Repeat beta
images cannot discriminate between the Switch and
Repeat conditions above chance (i.e., no better than 50%
accuracy).

Classifier Construction and ROIs

This proceeded on the basis of our earlier neuropsycho-
logical findings in patients with frontal lobe lesions
and PD and our hypothesized double dissociation be-
tween the frontal lobe and the BG. These ROIs, along
with the temporal lobe as the “control” region, were de-
fined anatomically using the Harvard–Oxford cortical
and subcortical atlases (Desikan et al., 2006) using FSL
(version 4.1.8, FMRIB software library, www.fmrib.ox.ac.
uk/fsl; see Table A1 for individual regions comprising
the BG, frontal, and temporal lobe masks). The total
number of voxels (2 × 2 × 2 mm) for the BG, frontal,
and temporal lobe masks was 3585, 82,127, and 41,728,
respectively.
We trained different classifiers to discriminate between

classes (Switch and Repeat) separately for the Abstract
and Concrete rules. For each classifier, beta maps were
extracted from the frontal lobe mask and BG mask. Thus,
in total, we constructed six GPCs. For the Abstract condi-
tion, we trained one GPC that takes as input frontal lobe
beta images and learns Switch and Repeat classifications,
and similarly, a second GPC but for the BG beta images
and a third for the temporal lobe beta images. For the
Concrete condition, one GPC was trained with inputs
from the frontal lobe beta images (learning Switch and
Repeat classifications), a second from the BG, and a third
from the temporal lobe. Following training, the classifiers
report the probability that any given participant’s beta im-
age (from the frontal lobe, BG, temporal lobe with either
abstract or concrete rules) belong to a Switch or Repeat
condition. Moreover, we directly compared these classifi-
cation accuracies within each ROI to demonstrate that,
within each mask, classification accuracy was sig-
nificantly different between the abstract and concrete
conditions. The predicted class (Switch vs. Repeat) prob-
abilities were obtained for each participant when that
participant was the hold-out sample in LOOCV training
to ensure class probabilities represent independent sam-
ples of the more conservative classifier generalization
performance rather than optimistic biased estimates
attributable to having being “seen” by the classifier on
multiple LOOCV training sets. The distributions of these
predictive probabilities for each of the four classifiers for
each subject were compared using Kolmogorov–Smirnov
tests, as these data obtained non-parametrically were
neither normal nor unimodal.
To visualize the voxels driving the classification perfor-

mance for each of the four trained GPCs for the regions
pertaining to our hypothesis (the frontal lobe and BG), the
parameters (e.g., weight maps) of a forward (generative)

1394 Journal of Cognitive Neuroscience Volume 29, Number 8



model were estimated from the parameters of each trained
discriminative GPC (backward) model. Forward models
produce a pattern of weights for each voxel’s contribution
to the trained GPC classifier that aremore closely related to
changes in the underlying neural activity, avoiding diffi-
culties resulting from directly interpreting the parameters
learned by multivariate classifiers (Haufe et al., 2014) such
as the sensitivity of the backward model to the noise
components in the data. The resulting forward model
(see equation 6 in Haufe et al., 2014) provides an inter-
pretable visualization of the voxels driving the classifier,
where the magnitude and sign of each voxel in the weight
map denotes its contribution to predicting the class.
In other words, the maps presented in Figures 2 and 3
represent voxels whose direction and magnitude con-
tribute to classification accuracy, rather than simply voxels
whose collective magnitudes drive classification. This
renders our analysis directly interpretable in the same
way as a mass-univariate analysis, and enables us to sup-
port our claims on the basis of maps of voxels whose direc-
tion and magnitude contribute significantly. The resulting
forward maps for the two GPCs that achieved statistically
significant classification performance were overlaid onto
high-resolution T1 structural images using MRIcroGL
(www.mccauslandcenter.sc.edu/mricrogl/) and MRIcron
(Rorden & Brett, 2000).

RESULTS

Behavior

There were significant main effects of Rule, F(1, 16) =
98.99, p < .0001, and Switch, F(1, 16) = 55.95, p <
.0001, confirming switch costs. Switch costs were ob-
served with both rule types (Abstract: F(1, 16) = 60.63,
p < .0001; Concrete: F(1, 16) = 15.82, p < .001), but the
Rule × Switch interaction, F(1, 16) = 40.57, p < .0001,
indicated greater switch costs with abstract rules. Al-
though cue repetition was not the primary focus of this
investigation, a one-way repeated measures ANOVA on
repeat trials with cue switch (repeat vs. switch) as the
within-subject factor revealed no significant effect on
RT (F < 1). Error rates were on average 5.5% and were
subjected to the same two-way within-subject ANOVA.
There was a significant effect of Switch, F(1, 16) =
29.79, p < .0001, paralleling the RT effects, but no effects
of Rule or an interaction (F < 1). The behavioral data are
presented in Table 1.

Neuroimaging

Examining the classification performance within and be-
tween the frontal lobe and BG masks yielded a double dis-
sociation. The GPC trained for Switch/Repeat classification

Figure 2. Multiplanar forward model maps showing relative contribution of voxels for Switch/Repeat classes with abstract (left hand panel) and
concrete rules (right hand panel). Scale bar: Reddish/pink colors (>0) indicate voxels more implicated in classifying Switch. Bluish/purple colors
(<0) indicate voxels more implicated in classifying Repeat. The central figure represents the double dissociation between Switch/Repeat classification
accuracy for the abstract and concrete rule conditions in the frontal lobes and the BG, respectively.
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for abstract rules within the frontal lobe yielded statis-
tically significant classification accuracy of 82.35% ( p =
.022, 1000 permutations), but the GPC for the BG did
not (classification accuracy 41.18%, p = .791). Conversely,
the GPC trained for Switch/Repeat classification for con-
crete rules in the BG achieved statistically significant
classification accuracy at 88.24% ( p = .003), but the cor-
responding GPC for the frontal lobe did not (classification
accuracy 58.82%, p = .255). No significant classification
accuracy was achieved by the GPCs trained for Switch/
Repeat classification in the temporal lobe with either
abstract (classification accuracy 64.17%, p = .17) or con-
crete rules (classification accuracy 52.94%, p = .5). The
plot of the double dissociation in classification accura-
cies and voxel contributions visualized from the forward
model within the frontal lobe and the BG are presented
in Figure 2.

The double dissociation was directly tested by compar-
ing the predictive probabilities for all subjects in each of
the four classification conditions using Kolmogorov–

Smirnov tests. The abstract–concrete predictive probabil-
ity distributions were significantly different both in the
frontal lobe (D = 0.588, p = .005) as well as the BG (D =
0.529, p = .016) masks.
The forward model voxel weight maps created by for-

ward modeling and driving Switch/Repeat classification
are presented in Figures 2 and 3A, B. In the Abstract rule
condition (Figure 3A), the frontal lobe classification
weight pattern favoring the Switch class highlights the
mid cingulum and the medial frontal gyri, with the most
prominent weights concentrated around the superior
frontal gyrus medially. Conversely, lateral and medial or-
bitofrontal regions exhibited greater weights for the Re-
peat class. In the Concrete rule condition, the BG
classification weight pattern (Figure 3B) favoring Switch
is focused on dorsal regions of the putamen and caudate,
particularly the head, whereas the greatest weights for
Repeats were concentrated ventrally in the nucleus
accumbens.

DISCUSSION

We have demonstrated a double dissociation between
cortical and subcortical contributions to the implementa-
tion of cognitive control at different levels within a
hierarchy of rule-based behavior. We used GPC to dis-
criminate BOLD signal changes associated with switching
and repeating abstract and concrete rules, in two distinct
domains, the frontal lobes and the BG. In our study,
Switch/Repeat classification specifically seeks to identify
whether voxel-wise activation patterns seen on Switches
are different from those seen on Repeats in the frontal
lobe and the BG, respectively. MVPA succeeded in
isolating the differences between these regional patterns,

Figure 3. Axial slice renderings illustrating forward model maps. Scale bar as for Figure 2. For abstract rules in the frontal lobe (A), voxels favoring
Switch were greatest in the medial superior frontal gyrus whereas voxels favoring Repeat clustered around medial orbitofrontal regions. For concrete
rules in the BG (B), voxels favoring Switch concentrated on the caudate nucleus and putamen whereas those favoring Repeat were clustered in the
nucleus accumbens.

Table 1. Behavioral Mean (SEM ) RT and Error Rates

RT (msec) Errors (%)

Concrete Rules

Repeat 819 (61) 3 (0.6)

Switch 868 (64) 8.1 (1.5)

Abstract Rules

Repeat 989 (66) 3.6 (0.6)

Switch 1173 (76) 7.5 (1.2)
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which are both associated with the same task set specific
processes but differ in terms of the state they had assumed
on the immediately preceding trial. For a Switch trial, this
state reflected a different task rule, whereas the immed-
iately preceding state of a Repeat trial reflected the same
task rule. In this way, the “signature” of control can be
isolated from the cognitive operations associated with
executing any one particular task. Switch/Repeat classification
accuracy for concrete rules was significant in the BG, but
at chance level in the frontal lobe. The inverse pattern
was obtained for abstract rules, where classification was
significant in the frontal lobe, but at chance level in the
BG.
This regional dissociation cannot be explained either

by differences in stimulus materials or by the cue switch-
ing confound present in many other task-switching stud-
ies, differences in preparation time, strategy, or learning,
due to the training session, which ensured stable perfor-
mance with these well-learned rules. It is also not attrib-
utable to a main effect of differences in task-specific
activity, which is subtracted out in the comparison of
switch versus a repetition of the same task. In evaluating
the emergent double dissociation, it is nonetheless im-
portant to discount the possibility that the current pat-
tern of results is artifactual, stemming for example from
differences in the dimensionality of the frontal lobe and
BG data, whereby a weaker “signal” associated with Con-
crete Switch/Repeat classification was missed in the larg-
er frontal lobe mask. However, GPC performance was at
chance level for both rule conditions in the temporal
lobe, a large control region of the same order of magni-
tude as the frontal lobe, where no significant classifica-
tion was predicted. Moreover, we might have predicted
abstract Switch/Repeat classification to reach significance
in the smaller BG mask; the opposite was observed.
We predicted this double dissociation on the basis of

earlier neuropsychological findings of abstract switching
deficits in patients with frontal lesions and advanced PD,
in the face of intact performance with concrete rules seen
in the frontal lesion group and patients with early PD
(Kehagia et al., 2014). Our results demonstrate that rule
abstraction is a powerful way of simultaneously engaging
and dissociating the contributions of distinct brain regions
during cognitive control in task switching. They carry signif-
icant implications for neuropsychological assessment, as
they indicate that the concept of a generic prefrontal sub-
strate for executive control is of limited utility. Frontal or
subcortical contributions to control may vary as a function
of the abstraction of task set representations.
Our results also confirm the promising role for multi-

variate techniques in neuroimaging, especially in parsing
the neural substrates of executive functions, which are
notoriously heterogeneous and variably assessed. Be-
cause of its inherent sensitivity in detecting intercorre-
lated systems among or within a mixture of voxel-wise
functional distributions, MVPA is ideally suited to probe
the features of frontostriatal function during cognitive

control. This study did not focus on neural representa-
tion of rules or rule decoding, which has been addressed
in a number of studies previously (see Reverberi et al.,
2012b; Badre & D’Esposito, 2009; Badre, 2008; Koechlin
& Summerfield, 2007), but rather addressed the question
of control over these. Our observation that frontal or BG
networks participate differentially in both switch and
repeat trials, depending on the abstraction of the rules
that govern behavior, represents a parsimonious solution
to the problem of control. Our findings are consistent
with the proposed role of frontal regions in the timely
and adaptive coordination of behavior, while also provid-
ing evidence that the BG play a parallel coordinating role
for hierarchically simpler behaviors.

The current study highlights the complementary con-
tributions of the BG and the frontal lobes to cognitive
control. Efforts to distil a meaningful neural basis for con-
trol from the complex picture that arises from a burgeon-
ing literature characterized by differences between
paradigms and heterogeneity of findings have also fo-
cused on rule abstraction, yet a role for the BG has hith-
erto not been proposed. For example, Kim et al. (2011)
directly contrasted three types of switches that varied
according to rule abstraction, mirroring our defined con-
crete and abstract conditions in what they correspond-
ingly termed stimulus and context switches, as well as
an intermediate response switch condition. Distinct cor-
tical regions emerged in a rostrocaudal gradient depend-
ing on rule abstraction, with concrete switches associated
with posterior prefrontal regions and more abstract
switches with more anterior regions. Frontal, parietal,
thalamic, and cerebellar activations were observed during
concrete switches, but no activation emerged in the stri-
atum. Another study placed the origins of an abstraction-
independent control signal in the superior parietal lobule
(Chiu & Yantis, 2009). In a meta-analysis of 36 univariate
studies and using an activation likelihood estimation, Kim
et al. (2012) reported that two regions, the inferior fron-
tal junction and posterior parietal cortex, represent the
common denominators of all types of switch but found
no evidence for activation in the striatum, even during
concrete stimulus switches. The robust and dissociable
caudate activation during concrete switches we report
here indicates that this region is critical to understanding
lower levels of the control hierarchy.

The highlighted contribution of the caudate nucleus
during concrete switches compared to repeats is consis-
tent also with the striking observations from a study in
which rule abstraction was elegantly recapitulated as a
distinction between intention (between categorical re-
sponse rules) and attention (between concrete stimuli;
Rushworth, Hadland, et al., 2002). In that study, although
a frontal cortical region during a concrete switch was
identified by mass univariate fMRI, disrupting its function
with repetitive TMS did not impair performance, calling
into question the functional significance of this activation
altogether. Only switching intention (or abstract rules)
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was associated with BOLD signal changes in rostrocaudal
cingulate and pre-SMA/SMA and correspondingly behav-
iorally impaired by repetitive TMS application.

Notably, converging evidence from work in attentional
shifting between stimuli and abstract rules is consistent
with our current findings on the role of the BG (Cools,
Clark, & Robbins, 2004). This study reported significant
ventral striatal activation associated with attentional ob-
ject compared to rule shifts but failed to isolate activation
associated with the converse contrast, rule shifting over
object shifting, and revealed only lateral pFC activation
when contrasting all shift and nonshift trials. On the same
paradigm, patients with BG lesions exhibited object but
not attentional rule-shifting deficits, whereas patients
with frontal lesions were unimpaired; surprisingly, they
were also unimpaired at attentional rule shifting (Cools,
Ivry, & D’Esposito, 2006), in contrast to our own neuro-
psychological findings of abstract task-switching deficits
in this group. Thus, although our paradigm and analysis
differs in a number of ways, including the nature of stim-
uli, responses, and cognitive operations (see Kehagia
et al., 2010, for comparison between attentional set shift-
ing and task switching), there is agreement on the role of
the BG in coordinating concrete, stimulus-relevant be-
havior, with frontal regions apparently not contributing
differentially to cognitive flexibility in this context. Pre-
sumably, the procedural and analytical characteristics of
the current task-switching study are better suited to dou-
bly dissociating the frontal cortex from the BG during
cognitive control, extending our own findings as well as
those by Cools et al.

Finally, we note that, in our study, the weight maps of
the forward model derived from the GPC classifiers
(Figure 3) show a ventral to dorsal gradient that charac-
terized a Repeat and Switch of task, respectively. The
ventral to dorsal weight map distributions in the frontal
lobes with abstract rules paralleled those seen in the BG
with concrete rules. Task repetition highlighted ventral
regions, specifically the OFC in the case of abstract rules
and the nucleus accumbens for concrete rules. Con-
versely, switching was associated with dorsal GPC weight
clustering: superior medial frontal regions for abstract

rules and the caudate nucleus for concrete. Importantly,
these corresponding ventral and dorsal patterns mirror
wellestablished corticostriatal connections (Alexander
et al., 1986), in agreement with the known structural
and functional reciprocal connections between ventral
(OFC and nucleus accumbens) and corresponding dorsal
loops (dorsal and dorsolateral pFC and caudate nucleus).
They are consistent in a general sense with increasing
complexity in the cognitive operations carried out in
the context of cognitive control. Our finding of chance
level Switch/Repeat classification in the BG in the context
of well-learned abstract rules appear discrepant from the
predictions of computational and algorithmic work (e.g.,
Collins & Frank, 2014; Hazy, Frank, & O’Reilly, 2006),
which holds that dopaminergic activity in the BG acts
as a major gating signal over updating cortically sub-
served working memory representations or task sets, in
this case. These models, which are rooted in reinforce-
ment learning and have been extended to simulate exec-
utive tasks such as the WCST and Stroop, revolve around
dopamine. However, in the context of switching between
established abstract rules, subcortical dopamine may not
be critical. We have shown previously that dopaminergic
withdrawal had no effect on switching between such
rules in PD patients (Kehagia et al., 2009). Our neuroim-
aging findings indicate that during abstract rule switches
frontal cortical input has a significant bearing, which we
have theorized elsewhere may be noradrenergically me-
diated (Kehagia et al., 2010).
Collectively, our methods and results indicate the need

for a shift in the conceptual framework of task switching,
away from its representation as an unequivocally “frontal”
lobe paradigm. The dissociation presented here offers a
nuanced perspective on control by linking low level, de-
terministic control systems to the BG (Redgrave, Prescott,
& Gurney, 1999), a structure conserved in the phyloge-
netically oldest vertebrate, the lamprey (Stephenson-
Jones, Ericsson, Robertson, & Grillner, 2012). Conversely,
control systems that allow flexible response generaliza-
tion to stimulus classes and hence embody abstract rules
highlight the involvement of the more recently evolved
frontoparietal cortex in man (Passingham, 1973).
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