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Abstract 7 

Schultz’s rule predicts early eruption of replacement teeth (incisors, canines, and premolars) relative 8 

to molars as growth slows and life history events take place over a greater span of time. Here, we 9 

investigate if the opposite trend might occur during the domestication process as a consequence of 10 

an accelerated life-history and driven by increased energetic needs. We provide new data on tooth 11 

eruption in four mammalian species and their domesticated forms: wolf and dog, polecat and ferret, 12 

bezoar and goat, wild boar and pig. Our results show some variation in eruption sequences between 13 

wild and domestic forms, but none that is consistent and reliably distinct from intraspecific variation. 14 

There may be variation in the absolute timing of dental eruption, but despite well documented 15 

changes across life history variables, which distinguish wild from domestic forms, eruption sequences 16 

remained constant in each wild and domestic version of the species we examined. A conserved 17 

eruption sequence is in accordance with many earlier studies, which found no evidence for Schultz’s 18 

rule in some wild clades of mammals. Phylogenetic conservation and functional factors likely play an 19 

important role in constraining patterns of growth and tooth eruption in these mammals. 20 

Furthermore, we suggest that the domestication processes started too recently for fundamental 21 

changes of tooth eruption sequences to occur.  22 
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Introduction 27 

According to Schultz (1956, 1960), life history is correlated with patterns of tooth eruption in 28 

mammals. Schultz’s rule predicts that slow-growing mammals with a slow life history (e.g., late 29 

sexual maturity, long gestation and lifespan) tend to increase the number of replacement teeth 30 

(incisors, canines, premolars) erupting simultaneously with or before the molars; in more rapidly 31 

growing mammals with a faster life history on the other hand, the replacement teeth usually erupt 32 

only after most or all molars (Schultz, 1956, 1960; Smith, 2000) (Fig. 1). It has been hypothesised that 33 

a prolonged juvenile phase in slow-growing mammals makes necessary the relatively earlier 34 

replacement of the deciduous teeth to prevent them from wearing out before the permanent teeth 35 

become functional; alternatively, later eruption of the molars might be a consequence of a prolonged 36 

lifespan as a mechanism to keep the dentition functional for a longer period of time (Asher et al., 37 

2017; Janis and Fortelius, 1988). Support for Schultz’s rule has been found in primates and 38 

‘ungulates’ (Henderson, 2007; Smith, 2000); weak evidence for Schultz's rule has been found in 39 

Hyracoidea (Asher et al., 2017); evidence is disputed in primates (Byrd, 1981; Godfrey et al., 2005; 40 

Guthrie and Frost, 2011; Jogahara and Natori, 2012; Monson and Hlusko, 2018a; Schwartz et al., 41 

2005; Schwartz, 1974; Tattersall and Schwartz, 1974); and the rule seems not to apply in artiodactyls 42 

(Monson and Hlusko, 2018b; Veitschegger and Sánchez-Villagra, 2016). Several factors may augment 43 

and/or play a more important role in determining eruption patterns than Schultz's rule, such as 44 

phylogenetic history, jaw and tooth size, and mode of growth of jaws and teeth. 45 

 46 

Domestication is relevant to Schultz’s rule because marked changes of many life history variables 47 

have occurred independently in different species (Herre and Röhrs, 2013). Relative to the time 48 

elapsed from common ancestors of major clades (e.g., strepsirhines and haplorhines or suiforms and 49 

ruminants), domesticated forms occupy the tips of exceedingly short branches. This makes it possible 50 

to investigate how life history and dental eruption may correlate with one another, independent of 51 

phylogenetic constraints. Specifically, in domestic animals, many aspects of life history tend to be 52 
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faster compared to wild relatives, including earlier sexual maturity, larger litters, and more frequent 53 

and non-seasonal breeding (Herre and Röhrs, 2013; Tchernov and Horwitz, 1991)(see also Appendix 54 

A, Table A.1). This could be the effect of intentional artificial selection for increased productivity 55 

and/or the specific nature of the anthropogenic environment (Tchernov and Horwitz, 1991). Such 56 

environments are characterised by strong and unpredictable resource fluctuation, high intraspecific 57 

competition, low interspecific competition and predation, and isolation, all of which potentially 58 

favour adaptations towards a ‘fast’ life history (Hulme-Beaman et al., 2016; Tchernov and Horwitz, 59 

1991). In the framework of Schultz’s rule, one might therefore expect that faster growth and life 60 

history in domesticated mammals would result in later eruption of replacement teeth compared to 61 

molars relative to the wild forms (Fig. 1). Hence, if Schultz's rule were generally true among 62 

mammals, we would expect that molars erupt earlier relative to replacement teeth in domestic 63 

euungulates (i.e., perissodactyls and artiodactyls) and canids compared to their wild relatives (Fig. 1). 64 

 65 

Our hypothesis about a reversed Schultz’s rule in domestication was based on considerations 66 

concerning the correlation of tooth eruption and life history specific for domesticated mammals. 67 

Wild euungulates (i.e., perissodactyls and artiodactyls) tend to attain sexual maturity before their 68 

teeth and skeleton are fully grown (Shigehara, 1980; Smith, 1992). In addition to that, many 69 

domesticated euungulates attain sexual maturity even earlier than their wild relatives (e.g., Herre 70 

and Röhrs, 2013). As early sexual reproduction imposes considerable energetic cost, there might be 71 

selective pressure in at least some domesticated euungulates to erupt molars relatively early in order 72 

to increase the overall chewing surface and maximise mastication potential as early in life as possible 73 

(Geiger et al., 2018; Rodrigues et al., 2017).  74 

 75 

Conversely, wild carnivorans tend to attain sexual maturity only after the skeleton and the teeth are 76 

fully grown (Shigehara, 1980; Smith, 1992). As in the euungulates, sexual maturity is usually attained 77 

earlier in the domesticated forms, but does not occur prior to the full eruption of all permanent teeth 78 
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(e.g., in domestic dogs; Geiger et al., 2016). Although sexual maturity might therefore not impose a 79 

selective pressure on tooth eruption, relatively early independence from food provisioning in 80 

domestic dogs compared to wolves probably does. This is exemplified by wolves, the wild relative of 81 

domestic dogs; when weaning starts, pack members regurgitate food to pups for up to one year 82 

(Lord et al., 2013). In contrast, domestic dog pups are rarely fed in this manner and become 83 

completely independent from their mother subsequent to weaning at about 10 – 11 weeks of age, 84 

when they start competing with other conspecifics for available food (Lord et al., 2013). At this age, 85 

none of the deciduous teeth are replaced and no molar is erupted (Habermehl, 1975; see also 86 

Appendix B). Since domestic dogs are more omnivorous than wolves (Axelsson et al., 2013), grinding 87 

surfaces of molars might be more important for the former than for the latter (Holliday and Steppan, 88 

2004). In contrast, the carnivoran’s shearing carnassial teeth (composed of the m1 and P4), the 89 

anterior premolars and the canine teeth are typically used for slicing meat and tendons, and holding 90 

and strangling prey, respectively (Hillson, 2005). These functions might be of lesser importance in the 91 

domestic environment. Earlier independence and greater importance of dental grinding surfaces in 92 

domestic dogs compared to wolves might imply a selection pressure for early molar eruption in 93 

domestic dogs in order to optimise energy intake. It is not clear whether similar considerations might 94 

also apply to solitary carnivorans with no extensive post-weaning food provisioning for the young, 95 

e.g., the ferret (Blandford, 1987). 96 

 97 

Materials & Methods 98 

To test this hypothesis, we used 148 skulls and mandibles representing ontogenetic series in the 99 

relevant stages of tooth eruption of four widespread domesticated species (e.g., Mason 1984)  and 100 

their wild relatives: Sus domesticus (domestic pig, N = 23) and Sus scrofa (wild boar, N = 28), Capra 101 

hircus (domestic goat, N = 10) and Capra aegagrus (wild goat, or bezoar, N = 8), Canis familiaris 102 

(domestic dog, N = 22) and Canis lupus (wolf, N = 15), and Mustela furo (domestic ferret, N = 12) and 103 

Mustela putorius (European polecat, N = 26). Note that we consider the wild and the domestic form 104 
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as conspecifics, although given different scientific names (Gentry et al., 2004). Raw data from 105 

domestic dogs and wolves are in part from an earlier study (Geiger et al., 2016). Differences of tooth 106 

eruption sequences of another important domesticated species, as a consequence of domestication, 107 

the sheep (Ovis), are investigated and discussed in another place (Geiger et al., 2018). Additional 108 

information on the materials and methods are available in the Appendix A. 109 

 110 

We used specimens of both sexes with a complete set of permanent teeth, as typical for the species 111 

(Hillson, 2005). All specimens are part of institutional collections: Palaeontological Institute and 112 

Museum of the University of Zurich, Switzerland (AvN), The Natural History Museum, London, United 113 

Kingdom (BMNH), Naturhistorisches Museum Basel, Switzerland (NMB), Naturhistorisches Museum 114 

Bern, Switzerland (NMBE), Naturhistoriska Riksmuseet, Stockholm, Sweden (NRM), Zoological 115 

Institute of the Russian Academy of Science, Saint-Petersburg, Russia (ZIN RAS), Museum für 116 

Naturkunde, Berlin, Germany (MfN), Zoologische Staatssammlung München, Germany (ZSM). The 117 

domestic dogs at NMBE are housed in the collection of the Albert-Heim-Foundation and the 118 

domesticated pigs at MfN are housed in the Nehring-Collection (Zoologische Sammlung der 119 

Königlichen Landwirtschaftlichen Hochschule zu Berlin). 120 

 121 

We coded teeth of dry skulls (as opposed to CT-scans, see below) in the following stages: 1, Not 122 

erupted; the tooth is not yet erupted above the alveolar level, but might be visible in the crypt. 2, 123 

Erupting; the tooth has started to erupt and is at least in part above the alveolar level, but has not 124 

yet reached the occlusal plane. 3, Fully erupted; the tooth is fully erupted into occlusion (Geiger et 125 

al., 2016). The latter stage was determined according to first signs of wear, the attainment of a 126 

position of the crown in one line with other fully erupted teeth (in the occlusal plane), and the 127 

visibility of the enamel-dentin junction above the alveolar level, where applicable. Teeth of the lower 128 

jaw are denoted in lower case and teeth of the upper jaw in upper case (e.g., Asher et al., 2017; 129 

Gomes Rodrigues et al., 2017; Martin, 2005; Slaughter et al., 1974; Van Nievelt and Smith, 2005). I/i 130 
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indicates incisors, C/c canines, P/p premolars, M/m molars, and numerals represent each tooth 131 

locus. The homology of the first premolar, present in Canis and Sus in this study, may be with the 132 

deciduous generation (Ziegler, 1971). We therefore excluded this locus. 133 

 134 

All skulls and mandibles comprise specimens in which at least one tooth is in stage 2. We chose the 135 

sample so that the dentally most immature specimen in each group exhibits only one permanent 136 

tooth in the process of eruption (stage 2) or completely erupted (stage 3), with the other teeth still in 137 

their crypts (stage 1). (Note that this was not possible for Mustela, in which the dentally most 138 

immature specimen had up to three permanent incisors already partly erupted. The incisors in this 139 

species are comparatively small and appeared to start erupting simultaneously or closely timed, so 140 

that we could not establish the sequence of eruption among incisors. However, this did not hamper 141 

the object of this study, which is the comparison of the eruption sequence of molar and replacement 142 

teeth.) Further, we included one specimen with a complete set of fully erupted permanent teeth 143 

(except canine teeth, see Appendix A) in every group, available for all groups except the wild (and 144 

rare) Capra aegagrus. This ensured a comparable set of growth stages for every group.  145 

 146 

We then established the sequence of beginning and complete eruption in every wild and 147 

domesticated group separately for the upper and the lower jaw. For this, we added the eruption 148 

stages of all permanent tooth loci, resulting in a ‘specimen eruption score’ (ES). For example, a 149 

domestic dog with lower i1 and i2 fully erupted (stage 3), i3, c, and m1 in the process of eruption 150 

(stage 2), and p2, p3, p4, and m3 still in their crypts (stage 1) would attain an eruption score of 18 (3i1 151 

+ 3i2 + 2i3 + 2c + 1p2 + 1p3 + 1p4 + 2m1 + 2m2 + 1m3 = 18). We then ordered the specimens in each wild and 152 

domestic form according to their specimen’s eruption score. Specimens with few erupting and 153 

erupted teeth would have a smaller eruption score, whereas specimens with many erupting and 154 

erupted teeth would have a larger eruption score and we assumed that the latter were older than 155 

the former. This assumption has been validated on the basis of known age sheep (Geiger et al., 156 



7 
 

2018). These ordered specimens could be used to visually assess the sequence of tooth eruption. For 157 

every tooth locus, we calculated the sum of all eruption stages over all specimens of a group (e.g., all 158 

values for m1 in the wolf) resulting in a ‘tooth locus eruption score’. Thus, a tooth which erupts early 159 

(many specimens with stage 2 and 3 for that tooth) would attain a higher eruption score compared 160 

to a tooth which erupts late (many specimens with stage 1 for that tooth). These tooth locus 161 

eruption scores thus indicated the sequence of eruption by ordering the loci from the highest 162 

(erupted first) to the lowest (erupted last) eruption score. Together, specimen and tooth locus 163 

eruption scores served for a quantitative and a qualitative assessment of eruption sequences. All raw 164 

data are available as supplementary material (Appendix B). 165 

 166 

We evaluated the similarity of eruption sequences in the wild and the domestic form by comparing 167 

the number of replacement teeth (incisors, canines, and premolars) erupting before or after the 168 

molar teeth. According to Schultz’s rule, we would expect to find more replacement teeth erupting 169 

after the molars in the domestic Capra, Sus, Canis, and Mustela compared to the respective wild 170 

form (Smith, 2000). Differences of the eruption sequences between the wild and domestic forms 171 

were not considered if these differences resulted on the basis of simultaneous eruption of teeth in 172 

one form but not the other. We chose to use this procedure because ambiguous sequences may be 173 

the result of intra-group variation (i.e., deviations of the group-specific eruption sequence on an 174 

individual basis) and/or missing ontogenetic stages (see also below). Such missing data might lead to 175 

the appearance of an unresolved eruption sequence, which would in fact be resolved. Intra-group 176 

variation and missing ontogenetic stages might incorrectly convey a difference of eruption sequence 177 

between the wild and the domestic forms, which cannot be considered a result of the domestication 178 

process.  179 

 180 

To test if the dental eruption sequences of the wild and the domestic forms are similar to one 181 

another, we added up eruption stages of all replacement teeth in each individual where M1 was 182 
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completely erupted (‘replacement teeth eruption score’). The replacement teeth eruption scores of 183 

the wild group of each species was then compared to the scores in the respective domestic group 184 

using (non-parametric) Mann-Whitney-U-tests. As a measure of the effect size, Pearson’s correlation 185 

coefficients were calculated as r=z/ N ^(1/2), where z is the standardised test statistic and N is the 186 

total sample size including both groups in every comparison. When molars erupt relatively early in 187 

relation to the replacement teeth in the domestic group of a species, it will exhibit lower 188 

replacement teeth eruption scores than the wild group of that species, because fewer replacement 189 

teeth are erupting or have already erupted. The same analysis was conducted for m1, M2, and m2. 190 

All analyses were conducted using Microsoft Excel 2016 and Past 3.21 (Hammer et al., 2001). 191 

 192 

In addition to the visual evaluation of tooth eruption, we obtained micro-computed tomography 193 

scans (µCT-scans) from Mustela (domestic M. furo, N =11; wild M. putorius, N =7). We chose this 194 

sample on the basis of availability of a sufficient number of specimens in suitable ontogenetic stages. 195 

µCT-scans make it possible to evaluate eruption stages of permanent teeth that are hidden in the 196 

bony crypts or underneath deciduous teeth and also enable the assessment of crown mineralisation 197 

and root development. This in turn may provide more detailed information on tooth eruption stages 198 

and hence eruption sequences (Appendix A, Fig. A.1), although dental eruption and development are 199 

not tightly correlated in all taxa or individuals (Godfrey et al., 2005; Tattersall and Schwartz, 1974). 200 

We examined the development of teeth using the clipping plane tool in Drishti 2.6.4 (Limaye, 2012), 201 

which allows for flexible examination of teeth in different depths and at various angles within the 202 

dentary. For this, we extended and supplemented the coding system described above according to 203 

Brown and Chapman (1991a, b) and Asher et al. (2017) to also include assessment of internal growth 204 

and developmental processes via µCT-scans (Appendix A, Table A.2, Fig. A.1). We used only lower 205 

jaws for these examinations due to a greater number of teeth in the lower jaws of Mustela (Hillson, 206 

2005). 207 

 208 
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Results 209 

Our data showed that the sequence of eruption of molars and replacement teeth are similar in the 210 

wild and the domestic group in each of the investigated species (Fig. 2). This result was underpinned 211 

by the Mann-Whitney-U-tests. The comparisons of replacement teeth eruption scores between wild 212 

and domestic pairs in all investigated species showed that there are no significant differences 213 

between the groups (Pearson’s coefficients of variation r<0.4 and significance values p>0.05 for all 214 

comparisons). That is, the number of replacement teeth erupting or being erupted once M1, m1, M2 215 

and/or m2 have erupted is no different in the domestic groups relative to their wild relatives. 216 

Similarly, the examination of µCT-scans in Mustela showed no evidence for a shift in eruption 217 

sequence between the wild and the domestic form. On the contrary, specimens of the wild and the 218 

domestic groups taken together complement a uniform sequence of tooth development and growth 219 

and underpin the similarity of eruption sequences in wild and domestic pairs (Appendix A, Fig. A.2) 220 

 221 

Detailed examination of the sequences revealed intra-group variation, i.e., differences of dental 222 

eruption patterns among individuals within groups (wild and domestic), and sampling biases (Fig. 2a). 223 

Intra-group variation is apparent in cases where one tooth may start erupting or be completely 224 

erupted before another tooth in one specimen, while the configuration is the other way around in 225 

another specimen of the same group (e.g., I3 in stage 1 and C in stage 2 in one wild boar specimen 226 

exhibiting a ‘specimen eruption score’ (ES) of 12, and I3 in stage 2 and C in stage 1 in another wild 227 

boar specimen exhibiting ES 13, Fig. 2a). Such different configurations might even result in the same 228 

ES among specimens, despite different teeth exhibiting different eruption stages (e.g., multiple 229 

configurations of erupting/erupted teeth result in an ES of 16 in the upper jaw of domestic dogs, Fig. 230 

2a). Sampling biases, on the other hand, are to be expected as samples may not represent the same 231 

age stages in the wild and the domestic group of a species. Therefore, resolution of tooth eruption 232 

sequences may vary between groups. For example, age stages in which all replacement teeth but not 233 

m3 are fully erupted were available for the domestic goat but not for the wild bezoar, leading to 234 
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different classification of i3 relative to m3 in the sequence. Furthermore, we could investigate a 235 

greater number of domestic dogs with starting eruption of the incisors, whereas such specimens 236 

were scarcer in our wolf sample, thus leading to different classification of the incisors and the first 237 

molar in the sequences. Lastly, in the wild polecat and the domestic ferret m1 is starting to erupt 238 

before m2, but due to the tiny size of the latter (Appendix A, Figure A.1), m2 may be fully erupted 239 

earlier than m1 in some individuals. (Note that relative tooth size is similar in each wild and domestic 240 

pair). Such intra-group variation may lead to ambiguity and/or unresolved eruption sequences, in 241 

turn leading to seemingly different eruption sequences, which are actually not based on the wild-242 

domestic dichotomy. Intra-specific variation of dental eruption sequences has also been reported in 243 

wild mammals of various different clades (e.g., Forasiepi and Sánchez-Villagra, 2014; Monson and 244 

Hlusko, 2018a; Veitschegger and Sánchez-Villagra, 2016). 245 

 246 

Discussion 247 

In summary, our results show no evidence for a change of tooth eruption sequences of molar and 248 

replacement teeth between wild and domestic pairs of some of humanity's most ubiquitous 249 

domesticated species, Canis, Mustela, Capra, and Sus. Similar tooth eruption sequences have also 250 

been found previously in wild and domestic sheep (Ovis) (Geiger et al., 2018). Therefore, our data do 251 

not support Schultz’s rule among domestic relative to wild groups. This is despite marked changes in 252 

life history (Appendix A, Table A.1), which would potentially lead to selection pressures towards 253 

relatively early molar eruption according to Schultz’s rule (Fig. 1). However, the chronology of tooth 254 

eruption in days post-birth, as opposed to the sequence by which individual teeth erupt, can differ in 255 

wild vs. domestic groups of the same species, as shown recently for Ovis (Geiger et al., 2018). 256 

Schultz's rule may play a role behind such trends. 257 

 258 

Our results are consistent with previous findings that phylogenetic conservation plays a key role in 259 

tooth eruption sequences, independent of life history (see above). Additional, non-exclusive factors 260 
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behind dental eruption are discussed below: (1) size, ontogenetic, or functional constraints, including 261 

developmental canalization (Flatt, 2005); (2) potential absence of strong directional selection for a 262 

change in eruption patterns; (3) a lack of a sufficient number of generations for changes to become 263 

evident.  264 

 265 

First, the high abrasiveness of plant material consumed by grazers likely poses considerable stress on 266 

the low-crowned deciduous premolars. Replacing the premolars relatively early might therefore be 267 

an adaptive advantage and molars will not erupt relatively earlier in domesticated caprines, 268 

whatever the pace of their life history may be (Böhmer et al., 2016). In addition, size constraints 269 

imposed by a correlated growth of the jaws and the dentition might not leave enough room for 270 

molars to erupt considerably earlier in caprines (Geiger et al., 2018). In carnivorans, the deciduous 271 

and permanent carnassial complexes (dP3/dp4 and P4/m1) might constrain the variation of tooth 272 

eruption patterns as these teeth need to erupt in concert in order to function (Slaughter et al., 1974). 273 

Despite the possibly reduced significance of these shearing teeth for domestic carnivorans, such 274 

constraints might limit the potential to change the eruption sequence. Finally, small teeth might 275 

erupt earlier than larger ones, simply because they need less time to reach the occlusal plane and 276 

become functional. This might not be related to life history but to functional adaptations of dental 277 

shape and size to a specific ecological niche. 278 

 279 

Second, even without such constraints, there may not be directional selection for a change of tooth 280 

eruption sequences in domestication. For example, Schultz’s rule could still be a valid concept to 281 

describe the correlated evolution of life history and tooth eruption sequences in mammals; however,  282 

changes of life history that are observed in domestication (Appendix A, Table A.1), although marked, 283 

are not substantial enough to result in any changes of the tooth eruption sequences. 284 

 285 
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Third, domestication is a relatively recent process in evolutionary timescales. Even the domestication 286 

of dogs, which is likely the oldest domestication event, started 14,000 to 40,000 years before present 287 

(Frantz et al., 2016; Botigué et al., 2017; for a review of earlier studies see Larson & Bradley, 2014). 288 

This is comparatively recent relative to the evolutionary timescales in which Schultz’s rule is normally 289 

observed (e.g., as discussed by Smith, 2000) . Such short timescales coupled with evolutionary rates 290 

of phenotypic traits, which are not necessarily accelerated in domestication relative to the wild state 291 

(Geiger and Sánchez-Villagra, 2018; Purugganan and Fuller, 2011), might be too short for any 292 

substantial changes to the generally conserved dental eruption sequence to occur.  293 

 294 

Our findings can nonetheless help to get a better grasp of the timeframes in which evolutionary 295 

changes of tooth eruption sequence can occur in nature. This is exemplified by Myotragus, a Plio-296 

Pleistocene caprine that inhabited the Balearic Islands for 5.2 Ma and which evolved a set of 297 

apomorphies not found in mainland caprines (Köhler and Moyà-Solà, 2004). These peculiarities 298 

include a relatively late eruption of m3 and early eruption of the incisor (Bover and Alcover, 1999; 299 

Jordana et al., 2013). This sequence of tooth eruption is probably associated with a general 300 

slowdown of growth and life history in the context of its island environment, which is characterised 301 

by scarce resources and low extrinsic mortality, and is in accordance with Schultz’s rule (Jordana et 302 

al., 2013; Köhler and Moyà-Solà, 2009). If sexual maturity is used as a measure for generation time, 303 

and given sexual maturity in Myotragus around 8-12 years (Köhler and Moyà-Solà, 2009; Marín-304 

Moratalla et al., 2011), the Myotragus lineage evolved this changed eruption sequence over about 305 

540k generations. This is an order of magnitude greater than the number of generations since a 40K-306 

year origin of canid domestication. Dogs attain sexual maturity with on average one year (Johnston 307 

et al., 2001), which would result in a maximum of 40k generations since domestication. This 308 

comparison shows that if Schultz’s rule is a valid concept to describe the correlated evolution of life 309 

history and tooth eruption sequence in these domesticated species, the number of generations 310 
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needed for such changes to occur might be much greater than has elapsed so far among 311 

domesticates. 312 

 313 

Conclusions 314 

To conclude, we found no evidence for significant changes to tooth eruption sequences in key 315 

domestic mammals, despite marked changes of life history that occurred independently during the 316 

domestication process. This result is consistent with some previous findings in other clades and 317 

highlights the conserved nature of dental eruption sequences, which show strong correlations with 318 

phylogenetic, functional, and size constraints. A study of Schultz's rule across all of Mammalia would 319 

be important to assess its general validity and would also help to establish its potential to infer life 320 

history in extinct forms (Asher et al., 2017; Böhmer et al., 2016; Domingo et al., 2018; Hellmund, 321 

2013, 2016; Jordana et al., 2013; King et al., 2001; McGee and Turnbull, 2010; Miller et al., 2018; 322 

Sallam et al., 2016; Schwartz et al., 2005; Veitschegger et al., 2019). Future studies would also benefit 323 

from an expanded sample of rare juvenile specimens representing the missing ontogenetic stages. 324 

Considering dental eruption sequences of archaeological specimens representing more basal 325 

domestication stages was not possible in the current study, but would give further rigor to our 326 

results and would also broaden the taxonomic sampling, as domestic forms with extinct wild 327 

relatives could be added to these investigations (e.g., cattle and aurochs, see Appendix A). Finally, 328 

more detailed quantification of dental growth might reveal more subtle changes of tooth eruption 329 

between groups. 330 
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 497 

Figure 1. Model of Schultz’s rule and hypothetical changes associated with the domestication 498 

process. The schematic model shows the hypothetical adaptations of the tooth eruption sequences 499 

as growth and life history tends towards the slower (left arrow; classical Schultz’s rule; Smith, 2000) 500 

and the faster (right arrow; domestication process; this study) end of the continuum. Modified after 501 

Smith (2000). 502 
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 503 

Figure 2. Heat maps of tooth eruption in wild and domestic pairs (A). Columns indicate tooth loci 504 

and ‘specimen eruption scores’ (ES) that could be sampled in every group. ES were calculated by 505 

adding up eruption stages (see below and main text) of all permanent tooth loci for each specimen. 506 

Each row indicates a single observed ES, represented by at least one specimens. In cases where an ES 507 

was attained via different eruption stages for different loci (intra-group, i.e., individual, variation; see 508 

main text), more than one row represents one ES (e.g., ES 16 in the upper jaw of domestic dogs). 509 

Shading of eruption scores is as follows: white = stage 1 (not erupted), light grey = stage 2 (part 510 

erupted), dark grey = stage 3 (fully erupted and in occlusion). Note that not the same ES are 511 

represented in all groups and that differences in the sample size influence the resolution of the 512 

sequences. Eruption sequences were computed from ‘tooth locus eruption scores’ and dashes 513 
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indicate a resolved sequence between loci and slashed an unresolved/simultaneous eruption (B). The 514 

data indicate that there is no shift between molars and replacement teeth in the wild and domestic 515 

pairs according to Schultz’s rule. 516 

 517 

Supplementary information captions 518 

Appendix A.  Contains additional information on the used materials and methods, as well as Tables 519 

A.1 – A.2 and Figures A.1 – A.2. 520 

Appendix B. Contains raw data, including all used specimens, their specifics, and their dental 521 

eruption stages. 522 


